Science.gov

Sample records for fluorescent lighting product

  1. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  2. Shedding Some Light on Fluorescent Bulbs.

    ERIC Educational Resources Information Center

    Guilbert, Nicholas R.

    1996-01-01

    Explores some of the principles behind the working of fluorescent bulbs using a specially prepared fluorescent bulb with the white inner fluorescent coating applied along only half its length. Discusses the spectrum, the bulb plasma, and light production. (JRH)

  3. Shelf life of fresh meat products under LED or fluorescent lighting.

    PubMed

    Steele, K S; Weber, M J; Boyle, E A E; Hunt, M C; Lobaton-Sulabo, A S; Cundith, C; Hiebert, Y H; Abrolat, K A; Attey, J M; Clark, S D; Johnson, D E; Roenbaugh, T L

    2016-07-01

    Enhanced pork loin chops, beef longissimus lumborum steaks, semimembranosus steaks (superficial and deep portions), ground beef, and ground turkey were displayed under light emitting diode (LED) and fluorescent (FLS) lighting in two multi-shelf, retail display cases with identical operating parameters. Visual and instrumental color, internal product temperature, case temperature, case cycling, thiobarbituric acid reactive substances (TBARS), and Enterobacteriaceae and aerobic plate counts were evaluated. Under LED, beef products (except the deep portion of beef semimembranosus steaks) showed less (P<0.05) visual discoloration. Pork loin chops had higher (P<0.05) L* values for LED lighting. Other than beef longissimus lumborum steaks, products displayed under LED lights had colder internal temperatures than products under FLS lights (P<0.05). Under LED, pork loin chops, ground turkey, and beef semimembranosus steaks had higher (P<0.05) values for TBARS. LED provides colder case and product temperatures, more case efficiency, and extended color life by at least 0.5d for longissimus and semimembranosus steaks; however, some LED cuts showed increased lipid oxidation. PMID:26950612

  4. [Formation of fluorescent products in mitochondria exposed to UV-light].

    PubMed

    Popov, G A; Konev, V V

    1979-01-01

    UV-irradiation of mitochondrial membranes causes formation and accumulation of fluorescing products in the course of incubation, like it takes place during the initiation of peroxide oxidation by the iron--ascorbate system. The rate of the change of mitochondria fluorescence and the level of TBA-products in them do not correlate, which points to the difference in the formation mechanisms of these products in the course of incubation. However, a correlation is observed between the initial fluorescence intensity and the number of TBA-active products in mitochondria, which increases with the increase of the time of UV-irradiation.

  5. Fluorescence and Light Scattering

    ERIC Educational Resources Information Center

    Clarke, Ronald J.; Oprysa, Anna

    2004-01-01

    The aim of the mentioned experiment is to aid students in developing tactics for distinguishing between signals originating from fluorescence and light scattering. Also, the experiment provides students with a deeper understanding of the physicochemical bases of each phenomenon and shows that the techniques are actually related.

  6. [Effect of UV-light on formation of fluorescent products of lipid peroxidation].

    PubMed

    Konev, V V; Popov, G A

    1978-01-01

    The rate of fluorescent product formation during the peroxidation of polyunsaturated linolenic acid or egg phosphatidylethanolamine and also during the oxidation of linolenic acid together with a phenylalanine and synthetic phosphatidylethanolamine 1,5--3 times more intensive after previous UV-irradiation of the unsaturated fatty acid. Schiff bases are fluorescent products in amine containing systems which are produced in the reaction of the malonaldehyde with amines. It is possible that fluorochromes produced during the only unsaturated acid oxidation are the result of the radical recombination. Accumulation of the oxidated products determined by TBA-reactive substances does not inevitably correlate with the fluorescent intensity in explored systems.

  7. Effect of light-emitting diode vs. fluorescent lighting on laying hens in aviary hen houses: Part 1 - Operational characteristics of lights and production traits of hens.

    PubMed

    Long, H; Zhao, Y; Wang, T; Ning, Z; Xin, H

    2016-01-01

    Light-emitting diode (LED) lights are becoming more affordable for agricultural applications. Despite many lab-scale studies concerning impact of LED on poultry, little research has been documented under field production conditions, especially for laying hens. This 15-month field study was carried out to evaluate the effects of LED vs. fluorescent (FL) lights on laying hens (Dekalb white breed) using 4 (2 pairs) aviary hen houses each at a nominal capacity of 50,000 hens. The evaluation was done regarding operational characteristics of the lights and hen production traits. The results show that spatial distribution of the LED light was less uniform than that of the FL light. Light intensity of the LED light decreased by 27% after 3,360 h use but remained quite steady from 3,360 to 5,760 h use. Eleven out of 762 (1.44%) LED lamps (new at onset of the study) in the 2 houses failed during the 15-month experiment period. The neck area of the LED lamp was hottest, presumably the primary reason for the lamp failure as cracks were noticed in the neck region of all failed LED lamps. No differences were observed in egg weight, hen-day egg production, feed use, and mortality rate between LED and FL regimens. However, hens under the FL had higher eggs per hen housed and better feed conversion than those under the LED during 20 to 70 wk production (P < 0.05). Hens under the LED tended to have less feather uniformity and insulation than those under the FL (P < 0.05). Moreover, hens under the LED showed a larger median avoidance distance than those under the FL at 36 wk age (P < 0.05), indicating that hens under the LED were more alert; but no difference at 60 wk age. More comparative research to quantify behavioral and production responses of different breeds of hens to LED vs. FL lighting seems warranted.

  8. Effect of light-emitting diode vs. fluorescent lighting on laying hens in aviary hen houses: Part 1 - Operational characteristics of lights and production traits of hens.

    PubMed

    Long, H; Zhao, Y; Wang, T; Ning, Z; Xin, H

    2016-01-01

    Light-emitting diode (LED) lights are becoming more affordable for agricultural applications. Despite many lab-scale studies concerning impact of LED on poultry, little research has been documented under field production conditions, especially for laying hens. This 15-month field study was carried out to evaluate the effects of LED vs. fluorescent (FL) lights on laying hens (Dekalb white breed) using 4 (2 pairs) aviary hen houses each at a nominal capacity of 50,000 hens. The evaluation was done regarding operational characteristics of the lights and hen production traits. The results show that spatial distribution of the LED light was less uniform than that of the FL light. Light intensity of the LED light decreased by 27% after 3,360 h use but remained quite steady from 3,360 to 5,760 h use. Eleven out of 762 (1.44%) LED lamps (new at onset of the study) in the 2 houses failed during the 15-month experiment period. The neck area of the LED lamp was hottest, presumably the primary reason for the lamp failure as cracks were noticed in the neck region of all failed LED lamps. No differences were observed in egg weight, hen-day egg production, feed use, and mortality rate between LED and FL regimens. However, hens under the FL had higher eggs per hen housed and better feed conversion than those under the LED during 20 to 70 wk production (P < 0.05). Hens under the LED tended to have less feather uniformity and insulation than those under the FL (P < 0.05). Moreover, hens under the LED showed a larger median avoidance distance than those under the FL at 36 wk age (P < 0.05), indicating that hens under the LED were more alert; but no difference at 60 wk age. More comparative research to quantify behavioral and production responses of different breeds of hens to LED vs. FL lighting seems warranted. PMID:26009753

  9. Bi-Directional Fluorescence Distribution and its Correction for Estimates of Gross Ecosystem Productivity and Photosynthetic Light-Use Efficiency

    NASA Astrophysics Data System (ADS)

    Liu, Liangyun; Liu, Xinjie

    2015-04-01

    Passive measurement of solar-induced chlorophyll fluorescence (SIF) presents a new way for directly estimating the photosynthetic activities. In this study, one diurnal multi-angular spectral experiment and three independent diurnal flux experiments were carried out on winter wheat and maize to assess directional emission of SIF for estimating photosynthesis activities. Firstly, the Bi-Directional Fluorescence Distribution Function (BFDF) of SIF was investigated. A BFDF shape similar to the red Bi-Directional Reflectance Distribution Function (BRDF) was observed for the directional SIF emissions at 688 nm. Secondly, the relationship between the directional emission of canopy SIF and BRDF reflectance was examined, finding a strict linear correlation between SIF and reflectance at 688 nm, with an R2> 0.80 for all seven BRDF observations on winter wheat. Then, a BFDF correction model for the canopy SIF at 688 nm was presented by dividing by the canopy reflectance, and about 65.3% of the directional variation was successfully removed. Finally, the BFDF-corrected SIF signals were linked to photosynthetic activities, including gross ecosystem productivity (GEP) and photosynthetic light-use efficiency (LUE), and the determination coefficients between photosynthetic activities and the BFDF-corrected SIF increased for most cases. For GEP, the determination coefficients were slightly improved from 0.563, 0.382, and 0.613 (for raw SIF signals) to 0.592, 0.473, and 0.640 for all three diurnal experiments. For LUE, the determination coefficients increased from 0.393, and 0.358 to 0.517, and 0.528 for two experiments, while deceased slightly from 0.695 to 0.607 for one experiment. Therefore, according to the above preliminary results, the canopy SIF cannot be regarded as isotropic, and the directional emission SIF may be an important uncertainty in estimates of GEP and LUE.

  10. High intensity portable fluorescent light

    NASA Technical Reports Server (NTRS)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  11. Light Sheet Fluorescence Microscopy (LSFM).

    PubMed

    Adams, Michael W; Loftus, Andrew F; Dunn, Sarah E; Joens, Matthew S; Fitzpatrick, James A J

    2015-01-05

    The development of confocal microscopy techniques introduced the ability to optically section fluorescent samples in the axial dimension, perpendicular to the image plane. These approaches, via the placement of a pinhole in the conjugate image plane, provided superior resolution in the axial (z) dimension resulting in nearly isotropic optical sections. However, increased axial resolution, via pinhole optics, comes at the cost of both speed and excitation efficiency. Light sheet fluorescent microscopy (LSFM), a century-old idea made possible with modern developments in both excitation and detection optics, provides sub-cellular resolution and optical sectioning capabilities without compromising speed or excitation efficiency. Over the past decade, several variations of LSFM have been implemented each with its own benefits and deficiencies. Here we discuss LSFM fundamentals and outline the basic principles of several major light-sheet-based imaging modalities (SPIM, inverted SPIM, multi-view SPIM, Bessel beam SPIM, and stimulated emission depletion SPIM) while considering their biological relevance in terms of intrusiveness, temporal resolution, and sample requirements.

  12. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect

    None, None

    2011-09-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life: Environmental Impact Review – Designs are comparable

  13. Fast Fluorescence Microscopy with Light Sheets.

    PubMed

    Daetwyler, Stephan; Huisken, Jan

    2016-08-01

    In light sheet microscopy, optical sectioning by selective fluorescence excitation with a sheet of light is combined with fast full-frame acquisition. This illumination scheme provides minimal photobleaching and phototoxicity. Complemented with remote focusing and multi-view acquisition, light sheet microscopy is the method of choice for acquisition of very fast biological processes, large samples, and high-throughput applications in areas such as neuroscience, plant biology, and developmental biology. This review explains why light sheet microscopes are much faster and gentler than other established fluorescence microscopy techniques. New volumetric imaging schemes and highlights of selected biological applications are also discussed. PMID:27638692

  14. Sensitized fluorescence in organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, C.; Ingram, G.; Lu, Z. H.

    2014-10-01

    We have studied the effects of incorporating phosphorescent sensitizers into fluorescent organic-light emitting diode (OLED) devices. In the emissive layer of this system, the host material is co-doped at low concentrations with both a phosphorescent and a fluorescent dye. The purpose of the phosphorescent dopant is to capture both singlet and triplet excitons from the host material and to transfer them into the singlet state of the fluorescent dye. Ideally, recombination of excitons and the emission of light would occur solely on the fluorescent dye. This sensitized fluorescent system can potentially achieve 100% internal quantum efficiency as both triplet and singlet states are being harvested. We have observed an almost two-fold improvement in the quantum efficiency of a sensitized fluorescent system, utilizing rubrene as the fluorescent dye and Ir(ppy)2(acac) as the sensitizer, versus a standard rubrene-based host-guest system. By testing various dopant concentrations, the optimal emissive layer composition for this system was determine to be ~2 wt.% rubrene and ~7 wt.% Ir(ppy)2(acac) in a CBP host.

  15. Light production by green plants.

    PubMed

    STREHLER, B L; ARNOLD, W

    1951-07-01

    1. Green plants have been found to emit light of approximately the same color as their fluorescent light for several minutes following illumination. This light is about 10(-3) the intensity of the fluorescent light, about one-tenth second after illumination below saturation or 10(-6) of the intensity of the absorbed light. 2. The decay curve follows bimolecular kinetics at 6.5 degrees C. and reaction order 1.6 at 28 degrees C. 3. This light saturates as does photosynthesis at higher light intensities and in about the same intensity range as does photosynthesis. 4. An action spectrum for light emitted as a function of the wave length of exciting light has been determined. It parallels closely the photosynthetic action spectrum. 5. The intensity of light emission was studied as a function of temperature and found to be optimal at about 37 degrees C. with an activation energy of approximately 19,500 calories. Two-temperature studies indicated that the energy may be trapped in the cold, but that temperatures characteristic for enzymatic reactions are necessary for light production. 6. Illumination after varying dark periods showed initial peaks of varying height depending on the preceding dark period. 7. 5 per cent CO(2) reversibly depresses the amount of light emitted by about 30 per cent. About 3 minutes are required for this effect to reach completion at room temperatures. 8. Various inhibitors of photosynthesis were tested for their effect on luminescence and were all inhibitory at appropriate concentrations. 9. Irradiation with ultraviolet light (2537A) inhibits light production at about the same rate as it inhibits photosynthesis. 10. This evidence suggests that early and perhaps later chemical reactions in photosynthesis may be partially reversible.

  16. Phenology and gross primary production of maize croplands from chlorophyll light absorption, solar-induced chlorophyll fluorescence and CO2 flux tower approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Yongguang; Wagle, Pradeep; Guanter, Luis; Jin, Cui; Xiao, Xiangming

    2015-04-01

    It is important to accurately quantify cropland gross primary productivity (GPP) for monitoring cropland status and the carbon budgets. Both sattellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBM) have been widely used to quantify cropland GPP at different scales. Space-borne solar-induced chlorophyll fluorescence (SIF) has recently shown the ability to monitor photosynthesis from space. In this presentation, we compared the three approaches for estimating seasonal dynamics and magnitudes of maize cropland GPP during 2007-2011 at a cropland site in Nebraska, USA. Three approaches used were a satellite-based Vegetation Photosynthsis Model (VPM) with the concept of light absorption by chlorophyll, the process-based Soil-Canopy Observation of Photosynthesis and Energy (SCOPE), and space-borne SIF. Validations against flux tower estimates demonstrate that maize GPP can be accurately estimated with the three models. The SCOPE model provides the best simulation of maize GPP by incorporation of satellite SIF measurements. On the other hand, satellite-based VPM model shows the potential for scaling-up GPP estimation of intensified managed croplands with higher spatial resolution data from MODIS. The results show that the space-borne SIF data can be simply and directly used not only to monitor actual photosynthesis of crop without much ancillary information, but also to improve cropland GPP modeling by constraining process-based TBM.

  17. Estimation of gross primary production and light use efficiency by the tower-based sun-induced fluorescence measurement in the Japanese evergreen coniferous forest

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Kato, T.; Hirano, T.; Saitoh, T. M.; Nagai, S.; Akitsu, T.; Nasahara, K. N.

    2015-12-01

    Chlorophyll fluorescence (ChlF) is emitted from chlorophyll a and b to release the excess sun-light energy. Recently, ChlF has been utilized to represent the ecosystem photosynthetic activity, i.e. gross primary production (GPP), by the satellite remote-sensing studies (e.g. Frankenberg et al., 2011). Despite its high expectation, small number of ecosystem-level ChlF observation at the ground reduces its availability. The aim of this study is to clarify the relationships between ChlF, and photosynthesis and light use efficiency (LUE) by the ground based measurement in the forest. The observations were carried out in the evergreen coniferous forest in Takayama, Japan, from March 2008 to February 2009. Downward and upward spectral radiances were measured with hemispherical spectroradiometer (MS-700, Eko Instruments, Japan) mounted at 30m-high above the ground surface. We calculated Sun-Induced fluorescence (FS) around the O2-A band (760 nm) from the spectral data with the Fraunhofer Line Depth method. The GPP was calculated from the carbon fluxes measured with eddy covariance at the top of the tower. FS showed the strong correlation to GPP linearly in the diurnal course (sunny day (8 August, 2008): r2 = 0.81, cloudy day (28 July, 2008): r2 = 0.87). In addition, GPP was fitted against FS by rectangular hyperbolic curve. (r2 = 0.87 (daily)). We also investigated the relationship between FS and LUE in daily averages. The FS-LUE relationship could be regressed by logarithm curve for each month (r2 = 0.46 ˜0.95). The seasonal changes in the regression coefficients for FS-GPP and FS-LUE curves were thought to be induced by the seasonal variation in the temperature-dependency of photosynthesis and the phenology. We conclude that FS can be utilized to estimate GPP and LUE in evergreen forest, and that relationship between FS and GPP is influenced by environmental factors such as PAR and air temperature.Chlorophyll fluorescence (ChlF) is emitted from chlorophyll a and b to

  18. Fluorescent lighting with aluminum nitride phosphors

    DOEpatents

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  19. Light-induced fluorescence for pulpal diagnosis

    NASA Astrophysics Data System (ADS)

    Ebihara, Arata; Liaw, Lih-Huei L.; Krasieva, Tatiana B.; Wilder-Smith, Petra B. B.

    2001-04-01

    A direct non-histological means of pulpal diagnosis remains elusive to clinical practice. Clinical vitality testing remains limited to electric, thermal criteria, or laser Doppler flowmetry. The goal of these investigations was to determine the feasibility of using light-induced fluorescence as a non-invasive modality for pulpal evaluation. Such a capability would, for example, permit expanded use of pulpotomy/pulpectomy techniques. Clinically healthy and diseased human extirpated pulpal tissues were used in this study. After excision, they were rapidly frozen and standard cryosections prepared. Measurement of tissue excitation/emission characteristics was performed using spectrographic analysis. A low-light level fluorescence microscopy system was then used to image autofluorescence localization and intensity at optimal excitation/detection parameters. Excitation/detection parameters used in this study included 405/605, 405/635, 405/670, 440/550, and 440/635. Autofluorescence intensities in healthy tissues were significantly stronger than those in diseased tissues at optimal parameters. It is postulated that autofluorescence characteristics are related to pathology- related structural changes in the pulp. This work provides the basis for further investigation into the relation between autofluorescence, histology and clinical symptoms.

  20. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  1. High-efficiency organic light-emitting diodes with fluorescent emitters

    NASA Astrophysics Data System (ADS)

    Nakanotani, Hajime; Higuchi, Takahiro; Furukawa, Taro; Masui, Kensuke; Morimoto, Kei; Numata, Masaki; Tanaka, Hiroyuki; Sagara, Yuta; Yasuda, Takuma; Adachi, Chihaya

    2014-05-01

    Fluorescence-based organic light-emitting diodes have continued to attract interest because of their long operational lifetimes, high colour purity of electroluminescence and potential to be manufactured at low cost in next-generation full-colour display and lighting applications. In fluorescent molecules, however, the exciton production efficiency is limited to 25% due to the deactivation of triplet excitons. Here we report fluorescence-based organic light-emitting diodes that realize external quantum efficiencies as high as 13.4-18% for blue, green, yellow and red emission, indicating that the exciton production efficiency reached nearly 100%. The high performance is enabled by utilization of thermally activated delayed fluorescence molecules as assistant dopants that permit efficient transfer of all electrically generated singlet and triplet excitons from the assistant dopants to the fluorescent emitters. Organic light-emitting diodes employing this exciton harvesting process provide freedom for the selection of emitters from a wide variety of conventional fluorescent molecules.

  2. 16 CFR 305.15 - Labeling for lighting products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Required Disclosures § 305.15 Labeling for lighting products. (a) Fluorescent lamp ballasts and luminaires—(1) Contents. Fluorescent lamp ballasts that are “covered products,” as defined in § 305.2(n), and to...-contrasting ink, with a capital letter “E” printed within a circle. Packaging for such fluorescent...

  3. High Hats, Swiss Cheese, and Fluorescent Lighting?

    SciTech Connect

    McCullough, Jeffrey J.; Gordon, Kelly L.

    2002-08-30

    For DOE, PNNL is conducting a competitive procurement to promote market introduction of new residential recessed downlights (also known as ''recessed cans'' or ''high hats'') that are airtight, rated for insulated ceilings, and hard-wired for CFLs. This paper discusses the potential energy savings of new high-efficiency downlights, and the results of product testing to date. Recessed downlights are the most popular residential lighting fixtures in the United States, with 21.7 million fixtures sold in 2000. An estimated 350 million are currently installed in American homes. Recessed cans are relatively inexpensive, and provide an unobtrusive, directed source of light for kitchens, hallways, and living rooms. Recessed cans are energy-intensive in three ways. First, virtually all recessed cans currently installed in the residential sector use incandescent light sources, typically reflector-type lamps drawing 65-150 watts. Second, heat from incandescent lamps adds to air-conditioning loads. Third, most installed recessed cans are not airtight, so they allow conditioned air to escape from the living area into unconditioned spaces such as attics. Addressing both lighting energy use and air leakage in recessed cans has proven challenging. Lighting energy efficiency is greatly improved by using CFLs. Air leakage can be addressed by making fixtures airtight. But when CFLs are used in an airtight recessed can, heat generated by the lamp and ballast is trapped within the fixture. Excessive heat causes reduced light output and shorter lifespan of the CFL. The procurement was designed to overcome these technical challenges and make new products available in the marketplace.

  4. Photoreaction of indole-containing mycotoxins to fluorescent products.

    PubMed

    Maragos, C M

    2009-06-01

    Photochemical reaction of the non-fluorescent mycotoxin cyclopiazonic acid (CPA) to fluorescent products was recently reported. Because CPA contains an indole moiety, believed to contribute to the fluorescence, it was of interest to determine whether the effect might be more generally applicable to indole-containing mycotoxins. Three indole-containing tremorgens (penitrem A, paxilline, verruculogen) that have not previously been reported to be fluorescent were rendered fluorescent by exposure to ultraviolet light in a photoreactor. Naturally fluorescent ergot alkaloids, which also contain an indole-moiety, exhibited a diminished response after exposure. This suggests that the phenomenon may be most useful for detection of indole-containing tremorgens that are non-fluorescent, rather than for the enhancement of materials that are already fluorescent, such as the ergot alkaloids. The extent to which fluorescence enhancement was seen was strongly influenced by the reaction environment, in particular the solvent used and whether cyclodextrins were present. In an HPLC format, placement of the photoreactor post-column allowed for the fluorescence detection of penitrem A, paxilline, and verruculogen. The ability to photoreact indole-containing tremorgens and detect them by fluorescence may open up new avenues for detection of these mycotoxins alone or in combination. PMID:23604981

  5. Fluorescent light bulbs - energy saver or environmental hazard?

    SciTech Connect

    Christenson, S.M.

    1995-03-01

    Businesses and homeowners have installed millions of fluorescent light bulbs in buildings around the country in the last few decades. Because fluorescent light bulbs are energy efficient and save electricity, environmentalists and governmental officials - including U.S. EPA - have promoted their use. Yet, fluorescent bulbs raise environmental concerns of their own. When these bulbs burn out, environmental and facility managers face complex issues about whether the old bulbs are regulated as hazardous waste.

  6. Multimodal light-sheet microscopy for fluorescence live imaging

    NASA Astrophysics Data System (ADS)

    Oshima, Y.; Kajiura-Kobayashi, H.; Nonaka, S.

    2012-03-01

    Light-sheet microscopy, it is known as single plane illumination microscope (SPIM), is a fluorescence imaging technique which can avoid phototoxic effects to living cells and gives high contrast and high spatial resolution by optical sectioning with light-sheet illumination in developmental biology. We have been developed a multifunctional light-sheet fluorescence microscopy system with a near infrared femto-second fiber laser, a high sensitive image sensor and a high throughput spectrometer. We performed that multiphoton fluorescence images of a transgenic fish and a mouse embryo were observed on the light-sheet microscope. As the results, two photon images with high contrast and high spatial resolution were successfully obtained in the microscopy system. The system has multimodality, not only mutiphoton fluorescence imaging, but also hyperspectral imaging, which can be applicable to fluorescence unmixing analysis and Raman imaging. It enables to obtain high specific and high throughput molecular imaging in vivo and in vitro.

  7. Light cone matrix product

    SciTech Connect

    Hastings, Matthew B

    2009-01-01

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  8. Fluorescent profiling of natural product producers.

    PubMed

    Sandler, Joel S; Fenical, William; Gulledge, Brian M; Chamberlin, A Richard; La Clair, James J

    2005-07-01

    The identification of natural product producer organisms remains a problem for both isolation and natural product classification. A concise screen is developed through fluorescent modification of a set of natural products that offer a common activity. Through real-time multicolor microscopy, the processing, storage, and effects of a natural product are rapidly screened at the level of the strain and individual organism.

  9. Detail of window treatment, suspended radiators, and fluorescent lights, prop ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of window treatment, suspended radiators, and fluorescent lights, prop shop. View to east. - San Bernardino Valley College, Auditorium, 701 South Mount Vernon Avenue, San Bernardino, San Bernardino County, CA

  10. Light emission from compound eye with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2015-03-01

    Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  11. Organimetallic Fluorescent Complex Polymers For Light Emitting Applications

    DOEpatents

    Shi, Song Q.; So, Franky

    1997-10-28

    A fluorescent complex polymer with fluorescent organometallic complexes connected by organic chain spacers is utilized in the fabrication of light emitting devices on a substantially transparent planar substrate by depositing a first conductive layer having p-type conductivity on the planar surface of the substrate, depositing a layer of a hole transporting and electron blocking material on the first conductive layer, depositing a layer of the fluorescent complex polymer on the layer of hole transporting and electron blocking material as an electron transporting emissive layer and depositing a second conductive layer having n-type conductivity on the layer of fluorescent complex polymer.

  12. New method of acne disease fluorescent diagnostics in natural and fluorescent light and treatment control

    NASA Astrophysics Data System (ADS)

    Karimova, L. N.; Berezin, A. N.; Shevchik, S. A.; Kharnas, S. S.; Kusmin, S. G.; Loschenov, V. B.

    2005-08-01

    In the given research the new method of fluorescent diagnostics (FD) and photodynamic therapy (PDT) control of acne disease is submitted. Method is based on simultaneous diagnostics in natural and fluorescent light. PDT was based on using 5-ALA (5- aminolevulinic acid) preparation and 600-730 nanometers radiation. If the examined site of a skin possessed a high endogenous porphyrin fluorescence level, PDT was carried out without 5-ALA. For FD and treatment control a dot spectroscopy and the fluorescent imaging of the affected skin were used.

  13. RNA Fluorescence with Light-Up Aptamers.

    PubMed

    Ouellet, Jonathan

    2016-01-01

    Seeing is not only believing; it also includes understanding. Cellular imaging with GFP in live cells has been transformative in many research fields. Modulation of cellular regulation is tightly regulated and innovative imaging technologies contribute to further understand cellular signaling and physiology. New types of genetically encoded biosensors have been developed over the last decade. They are RNA aptamers that bind with their cognate fluorogen ligands and activate their fluorescence. The emergence and the evolution of these RNA aptamers as well as their conversion into a wide spectrum of applications are examined in a global way. PMID:27446908

  14. RNA Fluorescence with Light-Up Aptamers

    PubMed Central

    Ouellet, Jonathan

    2016-01-01

    Seeing is not only believing; it also includes understanding. Cellular imaging with GFP in live cells has been transformative in many research fields. Modulation of cellular regulation is tightly regulated and innovative imaging technologies contribute to further understand cellular signaling and physiology. New types of genetically encoded biosensors have been developed over the last decade. They are RNA aptamers that bind with their cognate fluorogen ligands and activate their fluorescence. The emergence and the evolution of these RNA aptamers as well as their conversion into a wide spectrum of applications are examined in a global way. PMID:27446908

  15. RNA fluorescence with light-up aptamers

    NASA Astrophysics Data System (ADS)

    Ouellet, Jonathan

    2016-06-01

    Seeing is not only believing; it also includes understanding. Cellular imaging with GFP in live cells has been transformative in many research fields. Modulation of cellular regulation is tightly regulated and innovative imaging technologies contribute to further understand cellular signaling and physiology. New types of genetically encoded biosensors have been developed over the last decade. They are RNA aptamers that bind with their cognate fluorogen ligands and activate their fluorescence. The emergence and the evolution of these RNA aptamers as well as their conversion into a wide spectrum of applications are examined in a global way.

  16. Benefits and Costs of Ultraviolet Fluorescent Lighting

    PubMed Central

    Lestina, Diane C.; Miller, Ted R.; Knoblauch, Richard; Nitzburg, Marcia

    1999-01-01

    Objective To demonstrate the improvements in detection and recognition distances using fluorescent roadway delineation and auxiliary ultra-violet (UVA) headlights and determine the reduction in crashes needed to recover increased costs of the UVA/flourescent technology. Methods Field study comparisons with and without UVA headlights. Crash types potentially reduced by UVA/flourescent technology were estimated using annual crash and injury incidence data from the General Estimates System (1995–1996) and the 1996 Fatality Analysis Reporting System. Crash costs were computed based on body region and threat-to-life injury severity. Results Significant improvements in detection and recognition distances for pedestrian scenarios, ranging from 34% to 117%. A 19% reduction in nighttime motor vehicle crashes involving pedestrians or pedal-cycles will pay for the additional UVA headlight costs. Alternatively, a 5.5% reduction in all relevant nighttime crashes will pay for the additional costs of UVA headlights and fluorescent highway paint combined. Conclusions If the increased detection and recognition distances resulting from using UVA/flourescent technology as shown in this field study reduce relevant crashes by even small percentages, the benefit cost ratios will still be greater than 2; thus, the UVA/flourescent technology is very cost-effective and a definite priority for crash reductions.

  17. Acrodynia: exposure to mercury from fluorescent light bulbs

    SciTech Connect

    Tunnessen, W.W. Jr.; McMahon, K.J.; Baser, M.

    1987-05-01

    Medical attention was sought for a 23-month-old toddler because of anorexia, weight loss, irritability, profuse sweating, peeling and redness of his fingers and toes, and a miliarial rash. The diagnosis was mercury poisoning, and an investigation of his environment disclosed that he had been exposed to mercury from broken fluorescent light bulbs. Acrodynia resulting from fluorescent bulbs has not been previously reported.

  18. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    SciTech Connect

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-12-09

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup.

  19. Fluorescence enhancement in visible light: dielectric or noble metal?

    PubMed

    Sun, S; Wu, L; Bai, P; Png, C E

    2016-07-28

    A high permittivity dielectric gives the impression of outperforming plasmonic noble metal in visible light fluorescence enhancement primarily because of its small loss. Nonetheless, the performances of these two platforms in various situations remain obscure due to the different optical confinement mechanisms as well as the complexity in the fluorescence enhancement process. This study presents a comprehensive comparison between these two platforms based on nanoparticles (NPs) to evaluate their capability and applicability in fluorescence enhancement by taking into account the fluorescence excitation rate, the quantum yield, the fluorophore wavelengths and Stokes shifts as well as the far field intensity. In a low permittivity sensing medium (e.g. air), the dielectric NP can achieve comparable or higher fluorescence enhancement than the metal NP due to its decent NP-enhanced excitation rate and larger quantum yield. In a relatively high permittivity sensing medium (e.g. water), however, there is a significant decrement of the excitation rate of the dielectric NP as the permittivity contrast decreases, leading to a smaller fluorescence enhancement compared to the metallic counterpart. Combining the fluorescence enhancement and the far field intensity studies, we further conclude that for both dielectric and plasmonic NPs, the optimal situation occurs when the fluorescence excitation wavelength, the fluorescence emission wavelength and the electric-dipole-mode of the dielectric NP (or the plasmonic resonance of the metal NP) are the same and all fall in the low conductivity region of the NP material. We also find that the electric-dipole-mode of the dielectric NP performs better than the magnetic-dipole-mode for fluorescence enhancement applications because only the electric-dipole-mode can be strongly excited by the routinely used fluorescent dyes and quantum dots, which behave as electric dipoles by nature.

  20. Fluorescence enhancement in visible light: dielectric or noble metal?

    PubMed

    Sun, S; Wu, L; Bai, P; Png, C E

    2016-07-28

    A high permittivity dielectric gives the impression of outperforming plasmonic noble metal in visible light fluorescence enhancement primarily because of its small loss. Nonetheless, the performances of these two platforms in various situations remain obscure due to the different optical confinement mechanisms as well as the complexity in the fluorescence enhancement process. This study presents a comprehensive comparison between these two platforms based on nanoparticles (NPs) to evaluate their capability and applicability in fluorescence enhancement by taking into account the fluorescence excitation rate, the quantum yield, the fluorophore wavelengths and Stokes shifts as well as the far field intensity. In a low permittivity sensing medium (e.g. air), the dielectric NP can achieve comparable or higher fluorescence enhancement than the metal NP due to its decent NP-enhanced excitation rate and larger quantum yield. In a relatively high permittivity sensing medium (e.g. water), however, there is a significant decrement of the excitation rate of the dielectric NP as the permittivity contrast decreases, leading to a smaller fluorescence enhancement compared to the metallic counterpart. Combining the fluorescence enhancement and the far field intensity studies, we further conclude that for both dielectric and plasmonic NPs, the optimal situation occurs when the fluorescence excitation wavelength, the fluorescence emission wavelength and the electric-dipole-mode of the dielectric NP (or the plasmonic resonance of the metal NP) are the same and all fall in the low conductivity region of the NP material. We also find that the electric-dipole-mode of the dielectric NP performs better than the magnetic-dipole-mode for fluorescence enhancement applications because only the electric-dipole-mode can be strongly excited by the routinely used fluorescent dyes and quantum dots, which behave as electric dipoles by nature. PMID:27374052

  1. Fluorescent photography of spray droplets using a laser light source

    NASA Technical Reports Server (NTRS)

    Groeneweg, J.; Hiroyasu, H.; Sowls, R.

    1969-01-01

    Monochromatic laser emission transformed by a fluorescent process into droplet emission over a wavelength band provides high light intensities for obtaining adequate time resolution to stop droplet motion in photographic spray studies. Experiments showed that the Q-switched laser-optical harmonic generator combination produced sharp, well-exposed droplet images.

  2. Evaluation of premalignant and malignant lesions by fluorescent light (VELscope)

    PubMed Central

    Sawan, Dania; Mashlah, Ammar

    2015-01-01

    Aim: The purpose of this study was the early detection of premalignant and malignant oral soft lesions by fluorescent light (VELscope). Materials and Methods: A total of 748 patients were evaluated through clinical and fluorescent light analysis of the entire oral cavity. Any lesion that was detected underwent a surgical excision biopsy as the golden standard for the detection of the lesion's histology; then a comparison was made between the results to assure the efficacy of the fluorescent light analysis outcome. Results: About 9.4% of the lesions detected were abnormal lesions and 83.09% had loss of fluorescent light effect. Based on the use of surgical biopsy, the machine had a sensitivity of 74.1% and a specificity of 96.3%. According to the statistical analysis, the P value was much lower than 0.05, so we can conclude that at 95% confidence level, there was significant agreement between VELscope results and biopsy results. Kappa coefficient value was approximately 0.5, which means that the strength of the agreement was medium. Conclusion: VELscope can be used as a clinical diagnostic aid in the detection of premalignant and malignant lesions of the oral cavity. In addition, it helps in the detection of the borders in both surgical biopsy and surgical excision. PMID:26236687

  3. A compact multi-channel fluorescence sensor with ambient light suppression

    NASA Astrophysics Data System (ADS)

    Egly, Dominik; Geörg, Daniel; Rädle, Matthias; Beuermann, Thomas

    2012-03-01

    A multi-channel fluorescence sensor has been developed for process monitoring and fluorescence diagnostics. It comprises a fiber-optic set-up with an immersion probe and an intensity-modulated high power ultraviolet light-emitting diode as a light source for fluorescence excitation. By applying an electronic lock-in procedure, fluorescence signals are selectively detectable at ambient light levels of 1000 000 times higher intensity. The sensor was designed to be compact, low cost and easily adaptable to a wide field of application. The set-up was used to simultaneously monitor three important metabolic fluorophores: NAD(P)H, flavins and porphyrins during the cultivation of a baker's yeast. Moreover, the accumulation and degradation kinetics of protoporphyrin IX induced by 5-aminolevulinic acid on the skin could be recorded by the sensor. The detection limit for protoporphyrin IX was determined to be 4 × 10-11 mol L-1. The linear signal amplification of the sensor and time courses of fluorescence signals monitored during yeast fermentations were validated using a commercial CCD spectrometer. The robust and flexible set-up of the fiber-optic measurement system promises easy implementation of this non-invasive analytical tool to fluorescence monitoring and diagnostics in R&D and production.

  4. Blue-green phosphor for fluorescent lighting applications

    DOEpatents

    Srivastava, Alok; Comanzo, Holly; Manivannan, Venkatesan; Setlur, Anant Achyut

    2005-03-15

    A fluorescent lamp including a phosphor layer including Sr.sub.4 Al.sub.14 O.sub.25 :Eu.sup.2+ (SAE) and at least one of each of a red, green and blue emitting phosphor. The phosphor layer can optionally include an additional, deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of SAE in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.

  5. Affective and cognitive reactions to subliminal flicker from fluorescent lighting.

    PubMed

    Knez, Igor

    2014-05-01

    This study renews the classical concept of subliminal perception (Peirce & Jastrow, 1884) by investigating the impact of subliminal flicker from fluorescent lighting on affect and cognitive performance. It was predicted that low compared to high frequency lighting (latter compared to former emits non-flickering light) would evoke larger changes in affective states and also impair cognitive performance. Subjects reported high rather than low frequency lighting to be more pleasant, which, in turn, enhanced their problem solving performance. This suggests that sensory processing can take place outside of conscious awareness resulting in conscious emotional consequences; indicating a role of affect in subliminal/implicit perception, and that positive affect may facilitate cognitive task performance.

  6. Affective and cognitive reactions to subliminal flicker from fluorescent lighting.

    PubMed

    Knez, Igor

    2014-05-01

    This study renews the classical concept of subliminal perception (Peirce & Jastrow, 1884) by investigating the impact of subliminal flicker from fluorescent lighting on affect and cognitive performance. It was predicted that low compared to high frequency lighting (latter compared to former emits non-flickering light) would evoke larger changes in affective states and also impair cognitive performance. Subjects reported high rather than low frequency lighting to be more pleasant, which, in turn, enhanced their problem solving performance. This suggests that sensory processing can take place outside of conscious awareness resulting in conscious emotional consequences; indicating a role of affect in subliminal/implicit perception, and that positive affect may facilitate cognitive task performance. PMID:24685568

  7. Spectroscopic Analysis of Today's Compact Fluorescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Pluhar, Edward

    2012-03-01

    In today's consumer market, there are many different light bulbs that claim to produce `natural' light. In my research, I both quantitatively and qualitatively analyzed this claim. First, utilizing a spectroscope, I compared the spectra emitted by different brands and types of compact fluorescent light (CFL) bulbs to the spectra emitted by the Sun. Once the bulbs were quantitatively analyzed, I proceeded to qualitatively analyze them by exposing subjects to the different bulbs. The subjects were asked to rate the quality of color in different pictures illuminated by each type of CFL. From these tests, I was able to determine the ``best'' CFL bulbs, and conclude whether the health risks associated with CFL bulbs outweigh the cost savings, longevity of the bulbs, and/or quality of light benefits.

  8. Remediation plan for fluorescent light fixtures containing polychlorinated biphenyls (PCBs)

    SciTech Connect

    1992-04-30

    This report describes the remedial action to achieve compliance with 29 CFR 1910 Occupational Safety and Health Administration (OSHA) requirements of fluorescent light fixtures containing PCBs at K-25 site. This remedial action is called the Remediation Plan for Fluorescent Light Fixtures Containing PCBs at the K-25 Site (The Plan). The Plan specifically discusses (1) conditions of non-compliance, (2) alternative solutions, (3) recommended solution, (4) remediation plan costs, (5) corrective action, (6) disposal of PCB waste, (7) training, and (8) plan conclusions. The results from inspections by Energy Systems personnel in 2 buildings at K-25 site and statistical extension of this data to 91 selected buildings at the K-25 site indicates that there are approximately 28,000 fluorescent light fixtures containing 47,036 ballasts. Approximately 38,531 contain PCBs and 2,799 of the 38,531 ballasts are leaking PCBs. Review of reportable occurrences at K-25 for the 12 month period of September 1990 through August 1991 shows that Energy Systems personnel reported 69 ballasts leaking PCBs. Each leaking ballast is in non-compliance with 29 CFR 1910 - Table Z-1-A. The age of the K-25 facilities indicate a continued and potential increase in ballasts leaking PCBs. This report considers 4 alternative solutions for dealing with the ballasts leaking PCBs. The advantages and disadvantages of each alternative solution are discussed and ranked using cost of remediation, reduction of health risks, and compliance with OSHA as criteria.

  9. Mutagenic activation of 2-aminofluorene by fluorescent light

    SciTech Connect

    White, G.L.; Heflich, R.H.

    1985-01-01

    To determine the effect of artificially produced light on the direct mutagenicity of 2-aminofluorene, that arylamine was irradiated with either sun, cool-white, black, blue, or yellow fluorescent light or held in the dark prior to assaying for mutagenicity using Salmonella typhimurium strain TA98. The order of effectiveness of these exposures in potentiating the mutagenicity of 2-aminofluorene was sun greater than black greater than cool-white greater than blue greater than yellow approximately equal to dark. By varying the radiant flux densities produced by the lamps and using optical filters, wavelengths of light up to approximately 450 nm were found to be effective in the mutagenic potentiation. Studies using radical scavengers and oxygen modifiers indicated that the light-induced mutagenicity was dependent on oxygen and that singlet oxygen may be an effective activator of 2-aminofluorene. The mutagenicity of fluorene was not increased by exposure to light, while only sunlight potentiated the mutagenicity of 2-acetylaminofluorene. This result suggested the importance of the primary amine in the mutagenic activation of 2-aminofluorene by light. These studies indicate that the effect of light on environmental contaminants must be considered in assessing their genotoxic potential.

  10. Orange/Red Fluorescence of Active Caries by Retrospective Quantitative Light-Induced Fluorescence Image Analysis.

    PubMed

    Felix Gomez, Grace; Eckert, George J; Ferreira Zandona, Andrea

    2016-01-01

    This retrospective clinical study determined the association of caries activity and orange/red fluorescence on quantitative light-induced fluorescence (QLF) images of surfaces that progressed to cavitation, as determined by clinical visual examination. A random sample of QLF images from 565 children (5-13 years) previously enrolled in a longitudinal study was selected. Buccal, lingual and occlusal surface images obtained after professional brushing at baseline and every 4 months over a 4-year period were analyzed for red fluorescence. Surfaces that progressed (n = 224) to cavitation according to the International Caries Detection and Assessment System (ICDAS 0/1/2/3/4 to 5/6 or filling), and surfaces that did not progress (n = 486) were included. QA2 image analysis software outputs the percentage increase of the red/green components as x0394;R and area of x0394;R (areax0394;R) at different thresholds. Mixed-model ANOVA was used to compare progressive and nonprogressive surfaces to account for correlations of red fluorescence (x0394;R and areax0394;R) between surfaces within a subject. The first analysis used the first observation for each surface or the first available visit if the surface was unerupted (baseline), while the second analysis used the last observation prior to cavitation for surfaces that progressed and the last observation for surfaces that did not progress (final). There was a significant (p < 0.05) association between red fluorescence and progression to cavitation at thresholds x0394;R0, x0394;R10, x0394;R20, x0394;R60, x0394;R70, x0394;R80, x0394;R90 and x0394;Rmax at baseline and for x0394;R0 and x0394;R10 at the final observation. Quantification of orange/red fluorescence may help to identify lesions that progress to cavitation. Future studies identifying microbiological factors causing orange/ red fluorescence and its caries activity are indicated. PMID:27160323

  11. Infrared imaging of LED lighting tubes and fluorescent tubes

    NASA Astrophysics Data System (ADS)

    Siikanen, Sami; Kivi, Sini; Kauppinen, Timo; Juuti, Mikko

    2011-05-01

    The low energy efficiency of conventional light sources is mainly caused by generation of waste heat. We used infrared (IR) imaging in order to monitor the heating of both LED tube luminaires and ordinary T8 fluorescent tubes. The IR images showed clearly how the surface temperatures of the fluorescent tube ends quickly rose up to about +50...+70°C, whereas the highest surface temperatures seen on the LED tubes were only about +30...+40°C. The IR images demonstrated how the heat produced by the individual LED chips can be efficiently guided to the supporting structure in order to keep the LED emitters cool and hence maintain efficient operation. The consumed electrical power and produced illuminance were also recorded during 24 hour measurements. In order to assess the total luminous efficacy of the luminaires, separate luminous flux measurements were made in a large integrating sphere. The currently available LED tubes showed efficacies of up to 88 lm/W, whereas a standard "cool white" T8 fluorescent tube produced ca. 75 lm/W. Both lamp types gave ca. 110 - 130 lx right below the ceiling-mounted luminaire, but the LED tubes consume only 40 - 55% of the electric power compared to fluorescent tubes.

  12. Blue fluorescent organic light emitting diodes with multilayered graphene anode

    SciTech Connect

    Hwang, Joohyun; Choi, Hong Kyw; Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo; Choi, Sung-Yool; Lee, Jeong-Ik; Chu, Hye Yong

    2012-10-15

    As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm × 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m{sup 2}. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

  13. Pulsed-light imaging for fluorescence guided surgery under normal room lighting.

    PubMed

    Sexton, Kristian; Davis, Scott C; McClatchy, David; Valdes, Pablo A; Kanick, Stephen C; Paulsen, Keith D; Roberts, David W; Pogue, Brian W

    2013-09-01

    Fluorescence guided surgery (FGS) is an emerging technology that has demonstrated improved surgical outcomes. However, dim lighting conditions required by current FGS systems are disruptive to standard surgical workflow. We present a novel FGS system capable of imaging fluorescence under normal room light by using pulsed excitation and gated acquisition. Images from tissue-simulating phantoms confirm visual detection down to 0.25 μM of protoporphyrin IX under 125 μW/cm2 of ambient light, more than an order of magnitude lower than that measured with the Zeiss Pentero in the dark. Resection of orthotopic brain tumors in mice also suggests that the pulsed-light system provides superior sensitivity in vivo.

  14. Photodynamic tumor therapy and on-line fluorescence spectroscopy after ALA administration using 633-nm light as therapeutic and fluorescence excitation radiation

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Kienle, Alwin; Boehncke, Wolf-Henning; Kaufmann, Roland; Rueck, Angelika C.; Meier, Thomas H.; Steiner, Rudolf W.

    1994-09-01

    Photodynamic therapy (PDT) and on-line fluorescence spectroscopy were carried out on human tumors after 5-aminolevulinic acid (ALA) administration using 633-nm light of a dye laser as therapeutic radiation and as fluorescence excitation radiation. This has the advantages of (1) enabling use of one laser for PDT and fluorescence diagnosis only, (2) enabling the possibility of on-line fluorescence measurements, and (3) exciting protoporphyrin molecules in deep tissue layers. Monte Carlo calculations were carried out to determine excitation and fluorescence phonon distribution in case of red and violet excitation radiation. The results show the possibility of depth-resolved measurements on the fluorophore distribution by variation of excitation wavelength. The high penetration depth of 633-nm radiation results in a higher ratio of the 700-nm protoporphyrin fluorescence of the xenotransplanted tumor It to Is compared with 407-nm excitation. No values greater than 1 for the ratio I/Is were found, however, in case of intravenous ALA injection even for red excitation. Therefore, a large amount of ALA will be metabolized in the skin and can cause photosensitivity of the patient when applied systematically. In contrast, protoporphyrin fluorescence limited to the pretreated skin area was detected in case of topically applied ALA to patients with mycosis funcoides and erythroplasy of Queyrat. The influence of remitted excitation light and of the spontaneous radiation from the laser as well as the possible excitation of foodbased degradation products of chlorophyll has to be considered in high-sensitivity fluorescence measurements.

  15. Diagnosis of dental caries using quantitative light-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Amaechi, Bennett T.; Higham, Susan M.

    2001-10-01

    Current dental diagnostic methods can detect caries but cannot quantify the mineral status of the lesion. Quantitative Light-induced Fluorescence (QLF) measures the percentage fluorescence radiance change of demineralised enamel with respect to surround sound enamel, and related it directly to the amount of mineral lost during demineralisation. Demineralisation of teeth to produce caries-like lesions and the subsequent remineralisation of the lesions were monitored quantitatively and longitudinally with QLF. The influence of factors such as presence of plaque or saliva, lesion staining, lesion magnification, tooth thickness and developmental hypomineralisation, on the reproducibility of QLF imaging and analysis were investigated, Results showed that the integrated fluorescence change (hence the mineral loss) increased linearly with demineralisation time and decreased with increasing remineralisation time. Caries detection was limited by saliva or plaque, but enhanced by staining. QLF could not discriminate between developmental hypomineralisation and caries. Neither the variation in tooth thickness nor lesion magnification within the limit of a sharp image made a significant difference in QLF analysis. It was concluded that QLF could detect and quantitatively monitor the mineral changes in an incipient caries on a longitudinal basis, however detection may be limited by the presence of saliva or plaque or enhanced by staining.

  16. Pulsed-light imaging for fluorescence guided surgery under normal room lighting

    PubMed Central

    Sexton, Kristian; Davis, Scott C.; McClatchy, David; Valdes, Pablo A.; Kanick, Stephen C.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.

    2013-01-01

    Fluorescence guided surgery (FGS) is an emerging technology that has demonstrated improved surgical outcomes. However, dim lighting conditions required bycurrent FGS systems are disruptive to standard surgical workflow. We present a novel FGS system capable of imaging fluorescence under normal room lightby using pulsed excitation and gated acquisition. Images from tissue-simulating phantoms confirm visual detection down to 0.25 μM of protopor-phyrin IX under 125 μW/cm2 of ambient light, more than an order of magnitude lower than that measured with the Zeiss Pentero in the dark. Resection of orthotopic brain tumors in mice also suggests that the pulsed-light system provides superior sensitivity in vivo. PMID:23988926

  17. Photolysis of Indole-Containing Mycotoxins to Fluorescent Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical reaction of the non-fluorescent mycotoxin cyclopiazonic acid (CPA) to fluorescent products was recently reported. Because CPA contains an indole moiety, believed to contribute to the fluorescence, it was of interest to determine whether the effect might be more generally applicable to ...

  18. Shedding light on azopolymer brush dynamics by fluorescence correlation spectroscopy.

    PubMed

    Kollarigowda, R H; De Santo, I; Rianna, C; Fedele, C; Manikas, A C; Cavalli, S; Netti, P A

    2016-09-14

    Understanding the response to illumination at a molecular level as well as characterising polymer brush dynamics are key features that guide the engineering of new light-stimuli responsive materials. Here, we report on the use of a confocal microscopy technique that was exploited to discern how a single molecular event such as the photoinduced isomerisation of azobenzene can affect an entire polymeric material at a macroscopic level leading to photodriven mass-migration. For this reason, a set of polymer brushes, containing azobenzene (Disperse Red 1, DR) on the side chains of poly(methacrylic acid), was synthesised and the influence of DR on the polymer brush dynamics was investigated for the first time by Fluorescence Correlation Spectroscopy (FCS). Briefly, two dynamics were observed, a short one coming from the isomerisation of DR and a long one related to the brush main chain. Interestingly, photoinduced polymer aggregation in the confocal volume was observed. PMID:27491890

  19. Engineering light-emitting diode surgical light for near-infrared fluorescence image-guided surgical systems

    PubMed Central

    Zhu, Nan; Mondal, Suman; Gao, Shengkui; Achilefu, Samuel; Gruev, Viktor; Liang, Rongguang

    2014-01-01

    Abstract. The near-infrared (NIR) fluorescence signal in the 700 to 900 nm from molecular probes used in fluorescence image-guided surgery (FIGS) is usually weak compared to the NIR component from white light-emitting diode surgical light, which is typically switched off during FIGS to enhance the molecular fluorescence contrast of the image. We propose a simple solution to this critical issue in FIGS by removing NIR light from surgical light with a low cost commercial 3M cool mirror film 330. PMID:25057962

  20. Engineering light-emitting diode surgical light for near-infrared fluorescence image-guided surgical systems.

    PubMed

    Zhu, Nan; Mondal, Suman; Gao, Shengkui; Achilefu, Samuel; Gruev, Viktor; Liang, Rongguang

    2014-01-01

    The near-infrared (NIR) fluorescence signal in the 700 to 900 nm from molecular probes used in fluorescence image-guided surgery (FIGS) is usually weak compared to the NIR component from white light-emitting diode surgical light, which is typically switched off during FIGS to enhance the molecular fluorescence contrast of the image. We propose a simple solution to this critical issue in FIGS by removing NIR light from surgical light with a low cost commercial 3M cool mirror film 330.

  1. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development

    PubMed Central

    Sidhaye, Jaydeep; Tomancak, Pavel; Preibisch, Stephan; Norden, Caren

    2016-01-01

    Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments. PMID:27167079

  2. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development.

    PubMed

    Icha, Jaroslav; Schmied, Christopher; Sidhaye, Jaydeep; Tomancak, Pavel; Preibisch, Stephan; Norden, Caren

    2016-01-01

    Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments. PMID:27167079

  3. A light diet for a giant appetite: An assessment of China's proposed fluorescent lamp standard

    SciTech Connect

    Lin, Jiang

    2002-04-11

    Lighting has been one of the fastest growing electric end-uses in China over the last twenty years, with an average annual growth rate of 14%. Fluorescent lighting provides a significant portion of China's lighting need. In 1998, China produced 680 million fluorescent lamps, of which 420 million were linear fluorescent lamps of various diameters (T8 to T12). There are substantial variations both in energy efficiency and lighting performance among locally produced fluorescent lamps. Such variations present a perfect opportunity for policy intervention through efficiency standards to promote the adoption of more efficient fluorescent lamps in China. This paper analyzes China's proposed minimum efficiency standard for fluorescent lamps and presents an assessment of its likely impacts on China's lighting energy consumption and GHG emissions.

  4. Understanding the Fluorescence of TADF Light-Emitting Dyes.

    PubMed

    Valchanov, Georgi; Ivanova, Anela; Tadjer, Alia; Chercka, Dennis; Baumgarten, Martin

    2016-09-01

    In order to afford in a controlled fashion fine-tuning of the color and the intensity of the emitted light of potential fluorophores for organic light-emitting diodes (OLED), directed molecular design based on a donor-spacer-acceptor model is undertaken. One way of increasing emission efficiency is triplet harvesting. This can be achieved by thermally activated delayed fluorescence (TADF) when triplet and singlet excited states are quasi degenerate. Molecular building units are selected and bound in a specific pattern to allow for increase in emission performance, also due to TADF. Using time-dependent density functional theory, the relevant singlet-singlet and triplet-singlet energy gaps corresponding to absorption or emission transitions of the compounds are computed to simulate the electroluminescent spectrum. The results are analyzed in depth and relations between some spectral and structural properties are proposed. The best suited molecules are delineated as potential OLED building blocks. Guidelines for systematic improvement of the molecular characteristics are outlined. PMID:27529727

  5. Light emitting diode-based nanosecond ultraviolet light source for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Araki, Tsutomu; Misawa, Hiroaki

    1995-12-01

    A compact pulsed-light source is devised from an InGaN/AlGaN double heterostructure light-emitting diode (LED). The LED emits a 450-nm (blue) light under conventional dc operation below 30 mA. When a current larger than 50 mA is applied, the intensity of the 450-nm light saturates, but that of the 380-nm light due to the InGaN component continues to increase. This phenomenon is utilized to realize a nanosecond ultraviolet (UV) light source. Under repetitive, large current pulsing (frequency=10 kHz, pulse width=4 ns, peak current=2 A), the peak LED emission shifts from 450 to 380 nm. Intense light pulses (peak value=40 mW) of 4-ns duration were generated. To evaluate the potential of the pulsed LED as an excitation source, the fluorescence lifetime of a quinine-sulfate solution was measured. The observed lifetime characteristics agreed well with the generally accepted behavior.

  6. Light availability may control extracellular phosphatase production in turbid environments.

    PubMed

    Rychtecký, Pavel; Řeháková, Klára; Kozlíková, Eliška; Vrba, Jaroslav

    2015-01-01

    Extracellular phosphatase production by phytoplankton was investigated in the moderately eutrophic Lipno reservoir, Czech Republic during 2009 and 2010. We hypothesized that production of extracellular phosphatases is an additional mechanism of phosphorus acquisition enabling producers to survive rather than to dominate the phytoplankton. Hence, we examined the relationship between light availability and phosphatase production, as light plays an important role in polymictic environments. Bulk phosphatase activity was measured using a common fluorometric assay, and the production of phosphatases was studied using the Fluorescently Labelled Enzyme Activity technique, which enabled direct microscopic detection of phosphatase-positive cells. In total, 29 taxa of phytoplankton were identified during both years. Only 17 taxa from the total number of 29 showed production of extracellular phosphatases. Species dominating the phytoplankton rarely produced extracellular phosphatases. In contrast, taxa exhibiting phosphatase activity were present in low biomass in the phytoplankton assemblage. Moreover, there was a significant relationship between the proportion of phosphatase positive species in samples and the Z(eu):Z(mix) ratio (a proxy of light availability). A laboratory experiment with different light intensities confirmed the influence of light on production of phosphatases. Our seasonal study confirmed that extracellular phosphatase production is common in low-abundance populations but not in dominant taxa of the phytoplankton. It also suggested the importance of sufficient light conditions for the production of extracellular phosphatases.

  7. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    PubMed Central

    2015-01-01

    Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404

  8. Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue

    PubMed Central

    Lyndby, Niclas H.; Kühl, Michael; Wangpraseurt, Daniel

    2016-01-01

    Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating. PMID:27225857

  9. Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue

    NASA Astrophysics Data System (ADS)

    Lyndby, Niclas H.; Kühl, Michael; Wangpraseurt, Daniel

    2016-05-01

    Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating.

  10. Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment

    NASA Astrophysics Data System (ADS)

    Baszanowska, E.; Otremba, Z.

    2014-08-01

    To protect the natural marine ecosystem, it is necessary to continuously enhance knowledge of environmental contamination, including oil pollution. Therefore, to properly track the qualitative and quantitative changes in the natural components of seawater, a description of the essential spectral features describing petroleum products is necessary. This study characterises two optically-different types of crude oils (Petrobaltic and Romashkino) - substances belonging to multi-fluorophoric systems. To obtain the spectral features of crude oils, the excitation-emission spectroscopy technique was applied. The fluorescence and light absorption properties for various concentrations of oils at a stabilised temperature are described. Both excitation-emission spectra (EEMs) and absorption spectra of crude oils are discussed. Based on the EEM spectra, both excitation end emission peaks for the wavelengthindependent fluorescence maximum (Exmax/ Emmax) - characteristic points for each type of oil - were identified and compared with the literature data concerning typical marine chemical structures.

  11. Obstacles and opportunities in the commercialization of the solid-state-electronic fluorescent-lighting ballast

    SciTech Connect

    Johnson, D.R.; Marcus, A.A.; Campbell, R.S.; Sommers, P.; Skumatz, L.; Berk, B.; Petty, P.; Eschbach, C.

    1981-10-01

    The Solid State Ballast (SSB) Program, aimed at improving the efficiency of fluorescent lights, is described. The first generation of solid state electronic ballasts has been developed and the technology has been transferred to the private sector. This report examines the opportunities for rapid dissemination of this technology into the marketplace. It includes a description of product characteristics and their influence on the commercialization of the SSB, a description of the technology delivery system presently used by the ballast industry, an analysis of the market for SSB, and identification of some high-leverage opportunities to accelerate the commercialization process. (MCW)

  12. Obstacles and opportunities in the commercialization of the solid state electronic fluorescent lighting ballast

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Marcus, A. A.; Campbell, R. S.; Sommers, P.; Skumatz, L.; Berk, B.; Petty, P.; Eschbach, C.

    1981-10-01

    A solid state ballast (SSB), which improves the efficiency of fluorescent lights, is described. The first generation of solid state electronic ballasts was developed and the technology was transferred to the private sector. The opportunities for rapid dissemination of this technology into the marketplace is examined. Product characteristics and their influence on the commercialization of the SSB, a description of the technology delivery system presently used by the ballast industry, an analysis of the market for SSB, and identification of some high leverage opportunities to accelerate the commercialization process are included.

  13. 78 FR 14357 - Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... COMMISSION Certain Compact Fluorescent Reflector Lamps, Products Containing Same and Components Thereof... importation of certain compact fluorescent reflector lamps, products containing same and components thereof by... importation of certain compact fluorescent reflector lamps, products containing same and components thereof...

  14. Micro-light guides: a new method for measuring tissue fluorescence and reflectance.

    PubMed

    Ji, S; Chance, B; Nishiki, K; Smith, T; Rich, T

    1979-03-01

    Three-way light guides containing one or more strands of 25-micron or 80-micron diameter optical fibers in each channel have been constructed and used to measure the NADH fluorescence and UV reflectance from mitochondrial suspensions, the perfused, hemoglobin-free rat liver, and the perfused beating interventricular septum of the rabbit. The optical changes measured with these so-called micro-light guides, which have channels containing one or several strands of optical fibers less than 100 micron, are comparable in magnitude with those measured using much larger conventional light guides. The effect of light scattering on the fluorescence channel has been determined and an empirical equation for correcting the fluorescence channel for light scattering has been obtained for mitochondrial suspensions. A mathematical equation characterizing the optical behavior of a two-way micro-light guide has been derived and has been shown to account satisfactorily for reflectance and fluorescence measurements of a mat surface in air.

  15. Real-time intraoperative fluorescence imaging system using light-absorption correction

    NASA Astrophysics Data System (ADS)

    Themelis, George; Yoo, Jung Sun; Soh, Kwang-Sup; Schulz, Ralf; Ntziachristos, Vasilis

    2009-11-01

    We present a novel fluorescence imaging system developed for real-time interventional imaging applications. The system implements a correction scheme that improves the accuracy of epi-illumination fluorescence images for light intensity variation in tissues. The implementation is based on the use of three cameras operating in parallel, utilizing a common lens, which allows for the concurrent collection of color, fluorescence, and light attenuation images at the excitation wavelength from the same field of view. The correction is based on a ratio approach of fluorescence over light attenuation images. Color images and video is used for surgical guidance and for registration with the corrected fluorescence images. We showcase the performance metrics of this system on phantoms and animals, and discuss the advantages over conventional epi-illumination systems developed for real-time applications and the limits of validity of corrected epi-illumination fluorescence imaging.

  16. Fluorescent property of indocyanine green (ICG) rubber ring using LED and laser light sources.

    PubMed

    Hong, Nha Young; Kim, Hong Rae; Lee, Hyun Min; Sohn, Dae Kyung; Kim, Kwang Gi

    2016-05-01

    Fluorescent properties of ICG depends on solvent. Fluorescent characteristics of ICG rubber rings and optimized detection system condition were identified. The fluorescent rubber rings are produced by drying mixture of ICG solution and liquid rubber. LED and laser light sources were used to test differences between them. Other variables are ICG molar concentration (100, 80, 60, 40, 20, 10μM), excitation light spectrum (740, 760, 785nm) and angle of view (0~80°). We observed that ICG ring emitted fluorescence at longer wavelength than in blood and aqueous state. Observation angle between 0 and 50 provided similar brightness of images, while others are significantly less luminous. Excitation light between 740~760nm ensured non-overlapping spectrums of excitation light and fluorescence emission. PMID:27280060

  17. Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

    NASA Technical Reports Server (NTRS)

    Mickens, Matthew A.

    2012-01-01

    Growing vegetable crops in space will be an essential part of sustaining astronauts during long-term missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop production, there have also been recent interests in analyzing the subtle effects of green light on plant growth, and to determine if it serves as a source of growth enhancement or suppression. A comparative study was performed on two short cycle crops of lettuce (Outredgeous) and radish (Cherry Bomb) grown under two light treatments. The first treatment being red and blue LEDs, and the second treatment consisting of white fluorescent lamps which contain a portion of green light. In addition to comparing biomass production, physiological characterizations were conducted on how the light treatments influence morphology, water use, chlorophyll content, and the production of A TP within plant tissues.

  18. Ultraviolet light output of compact fluorescent lamps: comparison to conventional incandescent and halogen residential lighting sources.

    PubMed

    Nuzum-Keim, A D; Sontheimer, R D

    2009-05-01

    Patients with photosensitive dermatologic and systemic diseases often question the ultraviolet light (UVL) output of household lighting sources. Such individuals have increasing concern about potential UVL exposure from energy-efficient compact fluorescent lamps (CFL), as little data have been presented concerning their UVL output. The objective was to compare, via pilot study, the levels of ultraviolet A (UVA) and ultraviolet B (UVB) leak between residential lighting sources. Equivalent wattage CFL, incandescent and halogen bulbs were purchased from local retailers in Oklahoma City, Oklahoma, USA. The UVA and UVB outputs of these sources were measured under controlled conditions at 10, 25, 50, 100 and 150 cm away from the light source using an IL-1700 research radiometer equipped with UVA and UVB detectors. Negligible UVB and UVA was detected at 100 and 150 cm. Therefore, data were analysed from measurements at 10, 25 and 50 cm only. The results demonstrated UVA leak highest from incandescent and halogen bulbs, and UVB leak highest from CFL. The overall UVA/UVB leak was lowest from CFL shielded during the manufacturing process. In conclusion, patients with photosensitivity have choices depending on their relative risk from different UVL wavelength spectra. UVB exposure risk may be reduced the greatest by utilising CFL with manufacturer-provided shields.

  19. Deeper Insight into Fluorescence-Excitation of Molecules by Light

    ERIC Educational Resources Information Center

    Wahab, M. Farooq; Gore, Gordon R.

    2013-01-01

    In a recent issue of "TPT," Gordon Gore made interesting observations about the red or yellow fluorescence when laser beams are passed through olive oil. With the excellent visuals contained in that article, we present a pictorial explanation of the questions that were raised in Ref 1 ("Fun with Fluorescence in Olive Oil,"…

  20. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

    PubMed Central

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.

    2014-01-01

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\

  1. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner.

  2. Fixation-resistant photoactivatable fluorescent proteins for correlative light and electron microscopy

    PubMed Central

    Paez Segala, Maria G.; Sun, Mei G.; Shtengel, Gleb; Viswanathan, Sarada; Baird, Michelle A.; Macklin, John J.; Patel, Ronak; Allen, John R.; Howe, Elizabeth S.; Piszczek, Grzegorz; Hess, Harald F.; Davidson, Michael W.; Wang, Yalin; Looger, Loren L.

    2014-01-01

    Fluorescent proteins facilitate a variety of imaging paradigms in live and fixed samples. However, they cease to function following heavy fixation, hindering advanced applications such as correlative light and electron microscopy. Here we report engineered variants of the photoconvertible Eos fluorescent protein that function normally in heavily fixed (0.5–1% OsO4), plastic resin-embedded samples, enabling correlative super-resolution fluorescence imaging and high-quality electron microscopy. PMID:25581799

  3. Organic Light Emitting Device as a fluorescence spectroscopy's light source : one step towards the lab-on-a-chip device

    NASA Astrophysics Data System (ADS)

    Camou, S.; Kitamura, M.; Gouy, Jean-Philippe; Fujita, Hiroyuki; Arakawa, Yasuhiko; Fujii, Teruo

    2003-02-01

    Many papers were recently dedicated to the lab-on-a-chip applications, where all the basic elements should be integrated directly onto the microchip. The fluorescence spectroscopy is mostly used as a detection method due to its high reliability and sensitivity, but requires light source and photo-detector. For the first time, we then propose to use Organic material Light Emitting Diode (OLED) to supply a light source for the optical detection based on fluorescence spectroscopy. By combining this OLED with micro-fluidic channels patterned in PDMS layer, the integration of light source on the chip is then achieved. First, the ability of Organic Material to excite fluorescent response from dye is demonstrated. Then, some configurations are described in order to decrease the major drawbacks that have to be solved before applying such kind of devices.

  4. Fluorescent lamps and lighting systems. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning fluorescent lamp and fluorescent lighting system technology. Design, development, manufacture, and applications are presented. Characteristics, performance evaluations, energy efficiency, controls, materials, trends and innovations are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Evaluation of dental enamel caries assessment using Quantitative Light Induced Fluorescence and Optical Coherence Tomography.

    PubMed

    Maia, Ana Marly Araújo; de Freitas, Anderson Zanardi; de L Campello, Sergio; Gomes, Anderson Stevens Leônidas; Karlsson, Lena

    2016-06-01

    An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light-Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System. QLF versus OCT imaging of enamel caries: a photonics assessment.

  6. Energy Conservation Using Scotopically Enhanced Fluorescent Lighting In An Office Environment

    SciTech Connect

    2004-03-01

    This study was conducted in a recently built and occupied office building to determine whether the energy savings benefits of scotopically enhanced fluorescent lighting can be achieved while maintaining user acceptability.

  7. Cancer detection using NIR elastic light scattering and tissue fluorescence imaging

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B; Gandour-Edwards, R; deVere White, R

    2000-12-04

    Near infrared imaging using elastic light scattering and tissue fluorescence under long-wavelength laser excitation are explored for cancer detection. Various types of normal and malignant human tissue samples were utilized in this investigation.

  8. White light-emitting diode with quasisolar spectrum based on organic fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Chung, Shuang-Chao; Li, Ming-Chia; Sun, Ching-Cherng

    2015-07-01

    We present a study of light-emitting diodes (LEDs) using organic fluorescent dyes to replace the general phosphor. The blue die with a specific organic fluorescent dye gives the LED a single color appearance. Through a color-mixing cavity, multiple LEDs are used to produce a quasisolar spectrum at a certain band and white light with a color rendering index as high as 97 at around 2800 K.

  9. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOEpatents

    Forrest, Stephen; Kanno, Hiroshi

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  10. Vibrio azureus emits blue-shifted light via an accessory blue fluorescent protein.

    PubMed

    Yoshizawa, Susumu; Karatani, Hajime; Wada, Minoru; Kogure, Kazuhiro

    2012-04-01

    Luminous marine bacteria usually emit bluish-green light with a peak emission wavelength (λ(max) ) at about 490 nm. Some species belonging to the genus Photobacterium are exceptions, producing an accessory blue fluorescent protein (lumazine protein: LumP) that causes a blue shift, from λ(max)  ≈ 490 to λ(max)  ≈ 476 nm. However, the incidence of blue-shifted light emission or the presence of accessory fluorescent proteins in bacteria of the genus Vibrio has never been reported. From our spectral analysis of light emitted by 16 luminous strains of the genus Vibrio, it was revealed that most strains of Vibrio azureus emit a blue-shifted light with a peak at approximately 472 nm, whereas other Vibrio strains emit light with a peak at around 482 nm. Therefore, we investigated the mechanism underlying this blue shift in V. azureus NBRC 104587(T) . Here, we describe the blue-shifted light emission spectra and the isolation of a blue fluorescent protein. Intracellular protein analyses showed that this strain had a blue fluorescent protein (that we termed VA-BFP), the fluorescent spectrum of which was almost identical to that of the in vivo light emission spectrum of the strain. This result strongly suggested that VA-BFP was responsible for the blue-shifted light emission of V. azureus.

  11. Low-picomolar limits of detection using high-power light-emitting diodes for fluorescence.

    PubMed

    de Jong, Ebbing P; Lucy, Charles A

    2006-05-01

    Fluorescence detectors are ever more frequently being used with light-emitting diodes (LEDs) as the light source. Technological advances in the solid-state lighting industry have produced LEDs which are also suitable tools in analytical measurements. LEDs are now available which deliver 700 mW of radiometric power. While this greater light power can increase the fluorescence signal, it is not trivial to make proper use of this light. This new generation of LEDs has a large emitting area and a highly divergent beam. This presents a classic problem in optics where one must choose between either a small focused light spot, or high light collection efficiency. We have selected for light collection efficiency, which yields a light spot somewhat larger than the emitting area of the LED. This light is focused onto a flow cell. Increasing the detector cell internal diameter (i.d.) produces gains in (sensitivity)3. However, since the detector cell i.d. is smaller than the LED spot size, scattering of excitation light towards the detector remains a significant source of background signal. This can be minimized through the use of spectral filters and spatial filters in the form of pinholes. The detector produced a limit of detection (LOD) of 3 pM, which is roughly three orders of magnitude lower than other reports of LED-based fluorescence detectors. Furthermore, this LOD comes within a factor of six of much more expensive laser-based fluorescence systems. This detector has been used to monitor a separation from a gel filtration column of fluorescently labeled BSA from residual labeling reagent. The LOD of fluorescently labeled BSA is 25 pM.

  12. [Effects of different LED light qualities on photosynthetic characteristics, fruit production and quality of strawberry].

    PubMed

    Liu, Qing; Lian, Hai-feng; Liu, Shi-qi; Sun, Ya-li; Yu, Xin-hui; Guo, Hui-ping

    2015-06-01

    Taking 'Miaoxiang No.7' strawberry as material, full red light, full blue light, full yellow light, full white light, red/blue/yellow (7/2/1), red/blue (7/2) light generated by light emitting diode (LED) was applied to accurately modulate with white light generated as control. The indicators of photosynthetic and fluorescence parameters, pigment content, fruit production and quality, root activity were investigated. The effects of light quality under the light intensity (500 µmol · m(-2) · s(-1)) on the photosynthetic characteristic, fruit production and quality of strawberry were studied. The results showed that the red light could increase photosynthetic parameters (Pn, Tr), while blue light had inhibitory effect. Intercellular CO2 concentration (Ci) and conductance (g(s)) were the highest under blue light. The fluorescence parameters were significantly affected by light quality, Fo, Fm and Φ PS II the highest under red light, but values of the maximal photochemical of PS II (Fv/Fm), Fv/Fo and Fm/Fo highest under red/blue/yellow (7/2/1). In addition, the soluble solids content and vitamin C were highest under red light, the blue light could increase protein and titratable acid, sugar-acid ratio was the highest under red/blue/yellow (7/2/1). Comprehensive analysis indicated that red/blue/yellow (7/2/1) was more beneficial to the increase of pigment contents of leaves, fruit production and some qualities of strawberry.

  13. Regulation of red fluorescent light emission in a cryptic marine fish

    PubMed Central

    2014-01-01

    Introduction Animal colouration is a trade-off between being seen by intended, intra- or inter-specific receivers while not being seen by the unintended. Many fishes solve this problem by adaptive colouration. Here, we investigate whether this also holds for fluorescent pigments. In those aquatic environments in which the ambient light is dominated by bluish light, red fluorescence can generate high-contrast signals. The marine, cryptic fish Tripterygion delaisi inhabits such environments and has a bright red-fluorescent iris that can be rapidly up- and down-regulated. Here, we described the physiological and cellular mechanism of this phenomenon using a neurostimulation treatment with KCl and histology. Results KCl-treatment revealed that eye fluorescence regulation is achieved through dispersal and aggregation of black-pigmented melanosomes within melanophores. Histology showed that globular, fluorescent iridophores on the anterior side of the iris are grouped and each group is encased by finger-like extensions of a single posterior melanophore. Together they form a so-called chromatophore unit. By dispersal and aggregation of melanosomes into and out of the peripheral membranous extensions of the melanophore, the fluorescent iridophores are covered or revealed on the anterior (outside) of the iris. Conclusion T. delaisi possesses a well-developed mechanism to control the fluorescent emission from its eyes, which may be advantageous given its cryptic lifestyle. This is the first time chromatophore units are found to control fluorescent emission in marine teleost fishes. We expect other fluorescent fish species to use similar mechanisms in the iris or elsewhere in the body. In contrast to a previously described mechanism based on dendritic fluorescent chromatophores, chromatophore units control fluorescent emission through the cooperation between two chromatophore types: an emitting and an occluding type. The discovery of a second mechanism for fluorescence

  14. UV/blue light-induced fluorescence for assessing apple maturity

    NASA Astrophysics Data System (ADS)

    Noh, Hyun Kwon; Lu, Renfu

    2005-11-01

    Chlorophyll fluorescence has been researched for assessing fruit post-harvest quality and condition. The objective of this preliminary research was to investigate the potential of fluorescence spectroscopy for measuring apple fruit quality. Ultraviolet (UV) and blue light was used as an excitation source for inducing fluorescence in apples. Fluorescence spectra were measured from 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples by using a visible/near-infrared spectrometer after one, three, and five minutes of continuous UV/blue light illumination. Standard destructive tests were performed to measure fruit firmness, skin and flesh color, soluble solids and acid content from the apples. Calibration models for each of the three illumination time periods were developed to predict fruit quality indexes. The results showed that fluorescence emission decreased steadily during the first three minutes of UV/blue light illumination and was stable within five minutes. The differences were minimal in the model prediction results based on fluorescence data at one, three or five minutes of illumination. Overall, better predictions were obtained for apple skin chroma and hue and flesh hue with values for the correlation coefficient of validation between 0.80 and 0.90 for both GD and RD. Relatively poor predictions were obtained for fruit firmness, soluble solids content, titrational acid, and flesh chroma. This research demonstrated that fluorescence spectroscopy is potentially useful for assessing selected quality attributes of apple fruit and further research is needed to improve fluorescence measurements so that better predictions of fruit quality can be achieved.

  15. Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors

    PubMed Central

    Göröcs, Zoltán; McLeod, Euan; Ozcan, Aydogan

    2015-01-01

    In fluorescence microscopy, the signal-to-noise ratio (SNR) of the optical system is directly linked to the numerical aperture (NA) of the microscope objective, which creates detection challenges for low-NA, wide-field and high-throughput imaging systems. Here we demonstrate a method to increase the light collection efficiency from micron-scale fluorescent objects using self-assembled vapor-condensed polyethylene glycol droplets, which act as micro-reflectors for fluorescent light. Around each fluorescent particle, a liquid meniscus is formed that increases the excitation efficiency and redirects part of the laterally-emitted fluorescent light towards the detector due to internal reflections at the liquid-air interface of the meniscus. The three-dimensional shape of this micro-reflector can be tuned as a function of time, vapor temperature, and substrate contact angle, providing us optimized SNR performance for fluorescent detection. Based on these self-assembled micro-reflectors, we experimentally demonstrate ~2.5-3 fold enhancement of the fluorescent signal from 2-10 μm sized particles. A theoretical explanation of the formation rate and shapes of these micro-reflectors is presented, along with a ray tracing model of their optical performance. This method can be used as a sample preparation technique for consumer electronics-based microscopy and sensing tools, thus increasing the sensitivity of low-NA systems that image fluorescent micro-objects. PMID:26083081

  16. Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors

    NASA Astrophysics Data System (ADS)

    Göröcs, Zoltán; McLeod, Euan; Ozcan, Aydogan

    2015-06-01

    In fluorescence microscopy, the signal-to-noise ratio (SNR) of the optical system is directly linked to the numerical aperture (NA) of the microscope objective, which creates detection challenges for low-NA, wide-field and high-throughput imaging systems. Here we demonstrate a method to increase the light collection efficiency from micron-scale fluorescent objects using self-assembled vapor-condensed polyethylene glycol droplets, which act as micro-reflectors for fluorescent light. Around each fluorescent particle, a liquid meniscus is formed that increases the excitation efficiency and redirects part of the laterally-emitted fluorescent light towards the detector due to internal reflections at the liquid-air interface of the meniscus. The three-dimensional shape of this micro-reflector can be tuned as a function of time, vapor temperature, and substrate contact angle, providing us optimized SNR performance for fluorescent detection. Based on these self-assembled micro-reflectors, we experimentally demonstrate ~2.5-3 fold enhancement of the fluorescent signal from 2-10 μm sized particles. A theoretical explanation of the formation rate and shapes of these micro-reflectors is presented, along with a ray tracing model of their optical performance. This method can be used as a sample preparation technique for consumer electronics-based microscopy and sensing tools, thus increasing the sensitivity of low-NA systems that image fluorescent micro-objects.

  17. On the advantages of using green light to study fluorescence yield changes in leaves.

    PubMed

    Rappaport, Fabrice; Béal, Daniel; Joliot, Anne; Joliot, Pierre

    2007-01-01

    In photosynthetic chains, the kinetics of fluorescence yield depends on the photochemical rates at the level of both Photosystem I and II and thus on the absorption cross section of the photosynthetic units as well as on the coupling between light harvesting complexes and photosynthetic traps. A new set-up is described which, at variance with the commonly used set-ups, uses of a weakly absorbed light source (light-emitting diodes with maximum output at 520 nm) to excite the photosynthetic electron chain and probe the resulting fluorescence yield changes and their time course. This approach optimizes the homogeneity of the exciting light throughout the leaf and we show that this homogeneity narrows the distribution of the photochemical rates. Although the exciting light is weakly absorbed, the possibility to tune the intensity of the light emitting diodes allows one to reach photochemical rates ranging from 10(4) s(-1) to 0.25 s(-1) rendering experimentally accessible different functional regimes. The variations of the fluorescence yield induced by the photosynthetic activity are qualitatively and quantitatively discussed. When illuminating dark-adapted leaves by a weak light, the kinetics of fluorescence changes displays a pronounced plateau which precedes the fluorescence increase reflecting the full reduction of the plastoquinone pool. We ascribe this plateau to the time delay needed to reduce the photosystem I electron acceptors.

  18. Deeper Insight into Fluorescence--Excitation of Molecules by Light

    NASA Astrophysics Data System (ADS)

    Wahab, M. Farooq; Gore, Gordon R.

    2013-05-01

    In a recent issue of TPT, Gordon Gore made interesting observations about the red or yellow fluorescence when laser beams are passed through olive oil. With the excellent visuals contained in that article, we present a pictorial explanation of the questions that were raised in Ref 1.

  19. Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing.

    PubMed

    Jin, An; Yazici, Birsen; Ntziachristos, Vasilis

    2014-06-01

    Fluorescence diffuse optical tomography (FDOT) is an emerging molecular imaging modality that uses near infrared light to excite the fluorophore injected into tissue; and to reconstruct the fluorophore concentration from boundary measurements. The FDOT image reconstruction is a highly ill-posed inverse problem due to a large number of unknowns and limited number of measurements. However, the fluorophore distribution is often very sparse in the imaging domain since fluorophores are typically designed to accumulate in relatively small regions. In this paper, we use compressive sensing (CS) framework to design light illumination and detection patterns to improve the reconstruction of sparse fluorophore concentration. Unlike the conventional FDOT imaging where spatially distributed light sources illuminate the imaging domain one at a time and the corresponding boundary measurements are used for image reconstruction, we assume that the light sources illuminate the imaging domain simultaneously several times and the corresponding boundary measurements are linearly filtered prior to image reconstruction. We design a set of optical intensities (illumination patterns) and a linear filter (detection pattern) applied to the boundary measurements to improve the reconstruction of sparse fluorophore concentration maps. We show that the FDOT sensing matrix can be expressed as a columnwise Kronecker product of two matrices determined by the excitation and emission light fields. We derive relationships between the incoherence of the FDOT forward matrix and these two matrices, and use these results to reduce the incoherence of the FDOT forward matrix. We present extensive numerical simulation and the results of a real phantom experiment to demonstrate the improvements in image reconstruction due to the CS-based light illumination and detection patterns in conjunction with relaxation and greedy-type reconstruction algorithms.

  20. Non-invasive fluorescence imaging under ambient light conditions using a modulated ICCD and laser diode

    PubMed Central

    Zhu, Banghe; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2014-01-01

    One limitation of fluorescence molecular imaging that can limit clinical implementation and hamper small animal imaging is the inability to eliminate ambient light. Herein, we demonstrate the ability to conduct rapid non-invasive, far-red and near-infrared fluorescence imaging in living animals and a phantom under ambient light conditions using a modulated image intensified CCD (ICCD) and a laser diode operated in homodyne detection. By mapping AC amplitude from three planar images at varying phase delays, we show improvement in target-to-background ratios (TBR) and reasonable signal-to-noise ratios (SNR) over continuous wave measurements. The rapid approach can be used to accurately collect fluorescence in situations where ambient light cannot be spectrally conditioned or controlled, such as in the case of fluorescent molecular image-guided surgery. PMID:24575349

  1. Far wing depolarization of light - Generalized absorption profiles. [in laser fluorescence spectroscopy of Sr vapor

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1981-01-01

    An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.

  2. Quantification of photosensitized singlet oxygen production by a fluorescent protein.

    PubMed

    Ragàs, Xavier; Cooper, Laurie P; White, John H; Nonell, Santi; Flors, Cristina

    2011-01-17

    Fluorescent proteins are increasingly becoming actuators in a range of cell biology techniques. One of those techniques is chromophore-assisted laser inactivation (CALI), which is employed to specifically inactivate the function of target proteins or organelles by producing photochemical damage. CALI is achieved by the irradiation of dyes that are able to produce reactive oxygen species (ROS). The combination of CALI and the labelling specificity that fluorescent proteins provide is useful to avoid uncontrolled photodamage, although the inactivation mechanisms by ROS are dependent on the fluorescent protein and are not fully understood. Herein, we present a quantitative study of the ability of the red fluorescent protein TagRFP to produce ROS, in particular singlet oxygen ((1)O(2)). TagRFP is able to photosensitize (1)O(2) with an estimated quantum yield of 0.004. This is the first estimation of a quantum yield of (1)O(2) production value for a GFP-like protein. We also find that TagRFP has a short triplet lifetime compared to EGFP, which reflects relatively high oxygen accessibility to the chromophore. The insight into the structural and photophysical properties of TagRFP has implications in improving fluorescent proteins for fluorescence microscopy and CALI. PMID:21226197

  3. Angular distribution of light emission from compound-eye cornea with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2014-09-01

    The complex morphology of the apposition compound eyes of insects of many species provides them a wide angular field of view. This characteristic makes these eyes attractive for bioreplication as artificial sources of light. The cornea of a blowfly eye was conformally coated with a fluorescent thin film with the aim of achieving wide field-of-view emission. On illumination by shortwave-ultraviolet light, the conformally coated eye emitted visible light whose intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  4. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn(2+) detection.

    PubMed

    Liu, Biwu; Han, Xiao; Liu, Juewen

    2016-07-14

    Fluorescent polydopamine (FPD) is an interesting material with excellent biocompatibility. However, its preparation is currently a lengthy and potentially dangerous process. We herein employ magnetic iron oxide (Fe3O4) nanoparticles as a peroxidase-mimicking nanozyme to produce FPD under mild conditions. Different from previous protocols using multiple steps with up to 6% (∼2 M) H2O2, this preparation takes place in a single step with just 5 mM H2O2 at room temperature. The oxidized product shows excitation-wavelength-dependent emission peaks, similar to previous reports. The reaction kinetics, pH, temperature, and ionic strength are individually optimized. Among a diverse range of other nanomaterials tested, including Fe2O3, CeO2, CoO, Co3O4, NiO, TiO2, gold nanoparticles, and graphene oxide, Fe2O3 and graphene oxide yielded relatively weak emission, while the rest of the materials failed to produce FPD. The Fe3O4 nanoparticles retained ∼90% catalytic activity even after ten cycles of synthesis. Finally, Zn(2+) can enhance the fluorescence of FPD under 360 nm excitation but not under 480 nm excitation, leading to a sensitive light-up sensor with a detection limit of 60 nM Zn(2+). Therefore, this work has demonstrated not only a novel use of nanozymes, but also an interesting application of FPD. PMID:27364882

  5. Fluorescence spectroscopy: a rapid tool for analyzing dairy products.

    PubMed

    Andersen, Charlotte Møller; Mortensen, Grith

    2008-02-13

    This paper gives a critical evaluation of the use of fluorescence spectroscopy for measuring chemical and physical changes in dairy products caused by processing and storage. Fluorescence spectroscopy is able to determine various properties of foods without use of chemicals and time-consuming sample preparation. This is shown by examples where the measurement of a given chemical parameter has been appropriately described and validated, as well as situations showing potential applications, but where further research and validation is required. The interpretation of fluorescence spectroscopic data is complex due to absorbance by other molecular groups, changes caused by variation in the sample matrix, etc. It is illustrated how advanced data analytical techniques are required to obtain optimal interpretation of the data. Even though the review focuses on examples from the dairy industry, the principles are broader and can be applied to other fields of food and agricultural research.

  6. A Combined Light Sheet Fluorescence and Differential Interference Contrast Microscope for Live Imaging of Multicellular Specimens

    NASA Astrophysics Data System (ADS)

    Baker, Ryan; Taormina, Michael; Jemielita, Matthew; Parthasarathy, Raghuveer

    2015-03-01

    We present a microscope capable of both light sheet fluorescence microscopy (LSFM) and differential interference contrast microscopy (DICM). The two imaging modes, which to the best of our knowledge have not previously been combined, are complementary: LSFM provides high speed three-dimensional imaging of fluorescently labeled components of multicellular systems, large fields of view, and low phototoxicity, while DICM reveals the unlabeled neighborhood of tissues, organs, and other structures with high contrast and inherent optical sectioning. Use of a shared detection path for both imaging modes enables simple integration of the two techniques in one microscope. To demonstrate the instrument's utility, we provide several examples which focus on the digestive tract of the larval zebrafish. We show that DICM can sometimes circumvent the need for fluorescent based techniques, augmenting the number of parameters obtainable per experiment when used alongside LSFM, and that DICM can be used to augment each experiment by imaging complementary features, such as non-fluorescent local environments near fluorescent samples (e.g. fluorescent enteric neurons imaged alongside the non-fluorescent gut wall), interactions between fluorescent and non-fluorescent samples (e.g. bacteria), and more. NSF Award 0922951, NIH Award 1P50 GM098911

  7. Fluorescent Brighteners as Visible LED-Light Sensitive Photoinitiators for Free Radical Photopolymerizations.

    PubMed

    Zuo, Xiaoling; Morlet-Savary, Fabrice; Graff, Bernadette; Blanchard, Nicolas; Goddard, Jean-Philippe; Lalevée, Jacques

    2016-05-01

    The photochemical and electrochemical investigations of commercially available, safe, and cheap fluorescent brighteners, namely, triazinylstilbene (commercial name: fluorescent brightener 28) and 2,5-bis(5-tert-butyl-benzoxazol-2-yl)thiophene, as well as their original use as photoinitiators of polymerization upon light emitting diode (LED) irradiation are reported. Remarkably, their excellent near-UV-visible absorption properties combined with outstanding fluorescent properties allow them to act as high-performance photoinitiators when used in combination with diaryliodonium salt. These two-component photoinitiating systems can be employed for free radical polymerizations of acrylate. In addition, this brightener-initiated photopolymerization is able to overcome oxygen inhibition even upon irradiation with low LED light intensity. The underlying photochemical mechanisms are investigated by electron-spin resonance-spin trapping, fluorescence, cyclic voltammetry, and steady-state photolysis techniques. PMID:27072016

  8. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  9. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  10. A Method for the Rapid Generation of Nonsequential Light-Response Curves of Chlorophyll Fluorescence1

    PubMed Central

    Serôdio, João; Ezequiel, João; Frommlet, Jörg; Laviale, Martin; Lavaud, Johann

    2013-01-01

    Light-response curves (LCs) of chlorophyll fluorescence are widely used in plant physiology. Most commonly, LCs are generated sequentially, exposing the same sample to a sequence of distinct actinic light intensities. These measurements are not independent, as the response to each new light level is affected by the light exposure history experienced during previous steps of the LC, an issue particularly relevant in the case of the popular rapid light curves. In this work, we demonstrate the proof of concept of a new method for the rapid generation of LCs from nonsequential, temporally independent fluorescence measurements. The method is based on the combined use of sample illumination with digitally controlled, spatially separated beams of actinic light and a fluorescence imaging system. It allows the generation of a whole LC, including a large number of actinic light steps and adequate replication, within the time required for a single measurement (and therefore named “single-pulse light curve”). This method is illustrated for the generation of LCs of photosystem II quantum yield, relative electron transport rate, and nonphotochemical quenching on intact plant leaves exhibiting distinct light responses. This approach makes it also possible to easily characterize the integrated dynamic light response of a sample by combining the measurement of LCs (actinic light intensity is varied while measuring time is fixed) with induction/relaxation kinetics (actinic light intensity is fixed and the response is followed over time), describing both how the response to light varies with time and how the response kinetics varies with light intensity. PMID:24067245

  11. High volume confinement in two-photon fluorescence correlation spectroscopy with radially polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, D.; Shcheslavskiy, V.; Märki, I.; Leutenegger, M.; Lasser, T.

    2009-02-01

    We present the results on two-photon total-internal-reflection fluorescence correlation spectroscopy. The combination of liquid crystal spatial light modulator, providing radial polarization, with ultrafast laser (picosecond Nd:GdVO4 laser) allowed us to take the advantage of nonlinear optical contrast mechanisms to suppress the side-lobe energy specific for radial polarization and reduce the effective excited volume twice compared to one-photon evanescent wave excitation in fluorescence correlation spectroscopy.

  12. Recent progress in the use of fluorescent and phosphorescent organic compounds for organic light-emitting diode lighting

    NASA Astrophysics Data System (ADS)

    Jeong, Hyocheol; Shin, Hwangyu; Lee, Jaehyun; Kim, Beomjin; Park, Young-Il; Yook, Kyoung Soo; An, Byeong-Kwan; Park, Jongwook

    2015-01-01

    Organic light-emitting diodes (OLEDs) have attracted considerable attention in both academic and industrial circles. Certain properties of OLEDs make them especially attractive in the lighting market, including area emission characteristics not found in other existing light sources, environmentally friendly efficient use of energy, large area, ultra-light weight, and ultra-thin shape. Fluorescent and phosphorescent materials that are being applied to white OLEDs have been categorized, and the chemical structures and device performances of the important blue, orange, and red light-emitting materials have been summarized. Such a systematic classification and understanding of the materials that have already been reported can aid the development and study of new light-emitting materials through quantitative and qualitative approaches.

  13. Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity.

    PubMed

    Leiger, Kristjan; Freiberg, Arvi

    2016-01-01

    Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment-protein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed.

  14. Fluorescence enhancement of light-harvesting complex 2 from purple bacteria coupled to spherical gold nanoparticles

    SciTech Connect

    Bujak, Ł.; Czechowski, N.; Piatkowski, D.; Litvin, R.; Mackowski, S.; Brotosudarmo, T. H. P.; Pichler, S.; Cogdell, R. J.; Heiss, W.

    2011-10-24

    The influence of plasmon excitations in spherical gold nanoparticles on the optical properties of a light-harvesting complex 2 (LH2) from the purple bacteria Rhodopseudomonas palustris has been studied. Systematic analysis is facilitated by controlling the thickness of a silica layer between Au nanoparticles and LH2 complexes. Fluorescence of LH2 complexes features substantial increase when these complexes are separated by 12 nm from the gold nanoparticles. At shorter distances, non-radiative quenching leads to a decrease of fluorescence emission. The enhancement of fluorescence originates predominantly from an increase of absorption of pigments comprising the LH2 complex.

  15. Metal-Enhanced Fluorescence of Chlorophylls in Light-Harvesting Complexes Coupled to Silver Nanowires

    PubMed Central

    Kowalska, Dorota; Krajnik, Bartosz; Olejnik, Maria; Czechowski, Nikodem; Mackowski, Sebastian

    2013-01-01

    We investigate metal-enhanced fluorescence of peridinin-chlorophyll protein coupled to silver nanowires using optical microscopy combined with spectrally and time-resolved fluorescence techniques. In particular we study two different sample geometries: first, in which the light-harvesting complexes are deposited onto silver nanowires, and second, where solution of both nanostructures are mixed prior deposition on a substrate. The results indicate that for the peridinin-chlorophyll complexes placed in the vicinity of the silver nanowires we observe higher intensities of fluorescence emission as compared to the reference sample, where no nanowires are present. Enhancement factors estimated for the sample where the light-harvesting complexes are mixed together with the silver nanowires prior deposition on a substrate are generally larger in comparison to the other geometry of a hybrid nanostructure. While fluorescence spectra are identical both in terms of overall shape and maximum wavelength for peridinin-chlorophyll-protein complexes both isolated and coupled to metallic nanostructures, we conclude that interaction with plasmon excitations in the latter remains neutral to the functionality of the biological system. Fluorescence transients measured for the PCP complexes coupled to the silver nanowires indicate shortening of the fluorescence lifetime pointing towards modifications of radiative rate due to plasmonic interactions. Our results can be applied for developing ways to plasmonically control the light-harvesting capability of photosynthetic complexes. PMID:23533354

  16. Metal-enhanced fluorescence of chlorophylls in light-harvesting complexes coupled to silver nanowires.

    PubMed

    Kowalska, Dorota; Krajnik, Bartosz; Olejnik, Maria; Twardowska, Magdalena; Czechowski, Nikodem; Hofmann, Eckhard; Mackowski, Sebastian

    2013-01-01

    We investigate metal-enhanced fluorescence of peridinin-chlorophyll protein coupled to silver nanowires using optical microscopy combined with spectrally and time-resolved fluorescence techniques. In particular we study two different sample geometries: first, in which the light-harvesting complexes are deposited onto silver nanowires, and second, where solution of both nanostructures are mixed prior deposition on a substrate. The results indicate that for the peridinin-chlorophyll complexes placed in the vicinity of the silver nanowires we observe higher intensities of fluorescence emission as compared to the reference sample, where no nanowires are present. Enhancement factors estimated for the sample where the light-harvesting complexes are mixed together with the silver nanowires prior deposition on a substrate are generally larger in comparison to the other geometry of a hybrid nanostructure. While fluorescence spectra are identical both in terms of overall shape and maximum wavelength for peridinin-chlorophyll-protein complexes both isolated and coupled to metallic nanostructures, we conclude that interaction with plasmon excitations in the latter remains neutral to the functionality of the biological system. Fluorescence transients measured for the PCP complexes coupled to the silver nanowires indicate shortening of the fluorescence lifetime pointing towards modifications of radiative rate due to plasmonic interactions. Our results can be applied for developing ways to plasmonically control the light-harvesting capability of photosynthetic complexes.

  17. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed. PMID:25577254

  18. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOEpatents

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  19. Photocatalytic activity of silver vanadate with one-dimensional structure under fluorescent light.

    PubMed

    Ren, Jia; Wang, Wenzhong; Shang, Meng; Sun, Songmei; Zhang, Ling; Chang, Jiang

    2010-11-15

    One-dimensional β-AgVO(3) nanobelts (SVN) were realized by a facile hydrothermal method. It indicates the anisotropic crystallographic characteristics through the characterization. With the additive PEG, the sample was restrained in the one-dimensional preferential orientation (SV-P) effectively. The photocatalytic activity studies reveal that the photocatalyst β-AgVO(3) exhibits excellent photocatalytic activity in the inactivation of Escherichia coli under fluorescent light. In addition, it is found that the morphology has effect on the photocatalytic activity. The β-AgVO(3) photocatalyst with one-dimensional structure has the potential and promising application in bacterial disinfection indoor using fluorescent light. PMID:20800352

  20. Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure.

    PubMed

    Scheidegger, D; Pecora, R P; Radici, P M; Kivatinitz, S C

    2010-11-01

    We investigated how protein changes occur, at the primary or higher structural levels, when proteins are exposed to UV or fluorescent (FL) light while in the complex matrix, milk. Whole milk (WM) or skim milk (SM) samples were exposed to FL or UV light from 0 to 24h at 4°C. Protein oxidation was evaluated by the formation of protein carbonyls (PC), dityrosine bond (DiTyr), and changes in molecular weight (protein fragmentation and polymerization). Oxidative changes in AA residues were measured by PC. Dityrosine and N'-formylkynurenine (NFK), a carbonylation derivative of Trp, were measured by fluorometry. Protein carbonyls increased as a function of irradiation time for both WM and SM. The initial rate for PC formation by exposure to FL light (0.25 or 0.27 nmol/h for WM and SM, respectively) was slower than that following exposure to UV light (1.95 or 1.20 nmol/h, respectively). The time course of NFK formation resembled that of PC. After 24h of UV exposure, SM had significantly higher levels of NFK than did WM. In contrast, WM samples irradiated with UV had higher levels of DiTyr than did SM samples, indicating different molecular pathways. The formation of intra- or intermolecular DiTyr bonds could be indicative of changes in the tertiary structure or oligomerization of proteins. The existence of NFK suggests the occurrence of protein fragmentation. Thus, proteolysis and oligomerization were analyzed by sodium dodecyl sulfate-PAGE. After 24h of exposing WM to UV or FL light, all the proteins were affected by both types of light, as evidenced by loss of material in most of the bands. Aggregates were produced only by UV irradiation. Hydrolysis by pepsin and enzyme-induced coagulation by rennet were performed to evaluate altered biological properties of the oxidized proteins. No effect on pepsin digestion or rennet coagulation was found in irradiated SM or WM. The oxidative status of proteins in milk and dairy products is of interest to the dairy industry and

  1. Light-induced fluorescence studies on dehydration of incipient enamel lesions.

    PubMed

    Al-Khateeb, S; Exterkate, R A M; de Josselin de Jong, E; Angmar-Månsson, B; ten Cate, J M

    2002-01-01

    Changes in the hydration state of enamel affect its optical qualities, such as light scattering and fluorescence. In this study, the rate of fluorescence loss was measured when incipient enamel lesions with different de-remineralization history were left to dehydrate. Four groups of lesions were studied. In groups A, B and C, the lesions were prepared in vitro in an acid-gel system. Group A was kept as control, and groups B and C were remineralized (4 weeks) without and with 1 ppm F in solution, respectively. Group D consisted of natural incipient lesions. Enamel fluorescence was measured for all lesions immediately after removal from water and subsequently at short intervals for 30 min. The change in fluorescence with dehydration varied between the groups. In lesions from groups A and B, it followed a double exponential decrease, while in lesions from groups C and D, it followed a mono-exponential decrease. In all groups, the fluorescence of sound surfaces declined mono-exponentially. The 'fractional fluorescence difference', defined as (L(sound) - L(carious) )/L(sound), became constant after periods of dehydration of about 5, 5, 20 and 5 min for groups A to D, respectively. The observation of the change of fluorescence with dehydration should be taken into consideration when planning studies that use fluorescence as an assessment method. However, it might also be used to gain insight into the properties for fluid transport inside the various lesions, relevant to de-remineralization or fluoride treatments.

  2. Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2+ detection

    NASA Astrophysics Data System (ADS)

    Liu, Biwu; Han, Xiao; Liu, Juewen

    2016-07-01

    Fluorescent polydopamine (FPD) is an interesting material with excellent biocompatibility. However, its preparation is currently a lengthy and potentially dangerous process. We herein employ magnetic iron oxide (Fe3O4) nanoparticles as a peroxidase-mimicking nanozyme to produce FPD under mild conditions. Different from previous protocols using multiple steps with up to 6% (~2 M) H2O2, this preparation takes place in a single step with just 5 mM H2O2 at room temperature. The oxidized product shows excitation-wavelength-dependent emission peaks, similar to previous reports. The reaction kinetics, pH, temperature, and ionic strength are individually optimized. Among a diverse range of other nanomaterials tested, including Fe2O3, CeO2, CoO, Co3O4, NiO, TiO2, gold nanoparticles, and graphene oxide, Fe2O3 and graphene oxide yielded relatively weak emission, while the rest of the materials failed to produce FPD. The Fe3O4 nanoparticles retained ~90% catalytic activity even after ten cycles of synthesis. Finally, Zn2+ can enhance the fluorescence of FPD under 360 nm excitation but not under 480 nm excitation, leading to a sensitive light-up sensor with a detection limit of 60 nM Zn2+. Therefore, this work has demonstrated not only a novel use of nanozymes, but also an interesting application of FPD.Fluorescent polydopamine (FPD) is an interesting material with excellent biocompatibility. However, its preparation is currently a lengthy and potentially dangerous process. We herein employ magnetic iron oxide (Fe3O4) nanoparticles as a peroxidase-mimicking nanozyme to produce FPD under mild conditions. Different from previous protocols using multiple steps with up to 6% (~2 M) H2O2, this preparation takes place in a single step with just 5 mM H2O2 at room temperature. The oxidized product shows excitation-wavelength-dependent emission peaks, similar to previous reports. The reaction kinetics, pH, temperature, and ionic strength are individually optimized. Among a diverse range

  3. Traffic lights in trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy.

    PubMed

    Küpper, Hendrik; Ferimazova, Naila; Setlík, Ivan; Berman-Frank, Ilana

    2004-08-01

    We investigated interactions between photosynthesis and nitrogen fixation in the non-heterocystous marine cyanobacterium Trichodesmium IMS101 at the single-cell level by two-dimensional (imaging) microscopic measurements of chlorophyll fluorescence kinetics. Nitrogen fixation was closely associated with the appearance of cells with high basic fluorescence yield (F(0)), termed bright cells. In cultures aerated with normal air, both nitrogen fixation and bright cells appeared in the middle of the light phase. In cultures aerated with 5% oxygen, both processes occurred at a low level throughout most of the day. Under 50% oxygen, nitrogen fixation commenced at the beginning of the light phase but declined soon afterwards. Rapid reversible switches between fluorescence levels were observed, which indicated that the elevated F(0) of the bright cells originates from reversible uncoupling of the photosystem II (PSII) antenna from the PSII reaction center. Two physiologically distinct types of bright cells were observed. Type I had about double F(0) compared to the normal F(0) in the dark phase and a PSII activity, measured as variable fluorescence (F(v) = F(m) - F(0)), similar to normal non-diazotrophic cells. Correlation of type I cells with nitrogen fixation, oxygen concentration, and light suggests that this physiological state is connected to an up-regulation of the Mehler reaction, resulting in oxygen consumption despite functional PSII. Type II cells had more than three times the normal F(0) and hardly any PSII activity measurable by variable fluorescence. They did not occur under low-oxygen concentrations, but appeared under high-oxygen levels outside the diazotrophic period, suggesting that this state represents a reaction to oxidative stress not necessarily connected to nitrogen fixation. In addition to the two high-fluorescence states, cells were observed to reversibly enter a low-fluorescence state. This occurred mainly after a cell went through its bright phase

  4. Leaf architecture and direction of incident light influence mesophyll fluorescence profiles.

    PubMed

    Johnson, Daniel M; Smith, William K; Vogelmann, Thomas C; Brodersen, Craig R

    2005-09-01

    Light propagation and distribution inside leaves have been recognized as important processes influencing photosynthesis. Monochromatic light absorption across the mesophyll was measured using chlorophyll fluorescence generated from illumination of the cut edge (epi-illumination), as well as the adaxial or abaxial surfaces of the leaf. Species were selected that had basic leaf types: laminar leaf with adaxial palisade layer (Rhododendron catawbiense), needle with palisade (Abies fraseri), and needle without palisade (Picea rubens). Fluorescence was more evenly distributed across the mesophyll for adaxially illuminated leaves with a palisade cell layer, as well as for the needles (cylindrical) without palisade, when compared to fluorescence generated by abaxial illumination. Moreover, fluorescence from green light illumination remained high across the mesophyll of adaxially illuminated R. catawbiense, indicating a possible influence of mesophyll structure on internal light distribution beyond that of chlorophyll levels. These data support the idea that light propagation within the mesophyll is associated with asymmetric mesophyll structure, in particular the presence of palisade cell layers. In addition, we propose that the evolution of a more cylindrical leaf form, such as found in conifer species, may be a structural solution to excessive sunlight that replaces the highly differentiated mesophyll found in most laminar-leaved species.

  5. 78 FR 24233 - Certain Dimmable Compact Fluorescent Lamps and Products Containing Same: Notice of Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Dimmable Compact Fluorescent Lamps and Products Containing Same: Notice of Institution of... importation of certain dimmable compact fluorescent lamps (``CFLs'') and products containing the same by...

  6. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets.

    PubMed

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y; Du, Shengwang; Loy, M M T

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel ('non-diffracting') light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  7. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets

    PubMed Central

    Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.

    2016-01-01

    We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786

  8. Online multispectral fluorescence lifetime values estimation and overlay onto tissue white-light video frames

    NASA Astrophysics Data System (ADS)

    Gorpas, Dimitris; Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Marcu, Laura

    2016-03-01

    Fluorescence lifetime imaging has been shown to be a robust technique for biochemical and functional characterization of tissues and to present great potential for intraoperative tissue diagnosis and guidance of surgical procedures. We report a technique for real-time mapping of fluorescence parameters (i.e. lifetime values) onto the location from where the fluorescence measurements were taken. This is achieved by merging a 450 nm aiming beam generated by a diode laser with the excitation light in a single delivery/collection fiber and by continuously imaging the region of interest with a color CMOS camera. The interrogated locations are then extracted from the acquired frames via color-based segmentation of the aiming beam. Assuming a Gaussian profile of the imaged aiming beam, the segmentation results are fitted to ellipses that are dynamically scaled at the full width of three automatically estimated thresholds (50%, 75%, 90%) of the Gaussian distribution's maximum value. This enables the dynamic augmentation of the white-light video frames with the corresponding fluorescence decay parameters. A fluorescence phantom and fresh tissue samples were used to evaluate this method with motorized and hand-held scanning measurements. At 640x512 pixels resolution the area of interest augmented with fluorescence decay parameters can be imaged at an average 34 frames per second. The developed method has the potential to become a valuable tool for real-time display of optical spectroscopy data during continuous scanning applications that subsequently can be used for tissue characterization and diagnosis.

  9. Development of a noninvasive diabetes screening device using the ratio of fluorescence to Rayleigh scattered light

    NASA Astrophysics Data System (ADS)

    Yu, Nai-Teng; Krantz, Brian S.; Eppstein, Jonathan A.; Ignotz, Keith D.; Samuels, Mark A.; Long, James R.; Price, John

    1996-07-01

    We have developed a new lens measurement system that simultaneously measures the intensities of fluorescence and Rayleigh components at various distances into the lens along the optical axis. The noninvasive measurement is performed through an undilated pupil, and with the assistance of a pupil tracking system that facilitates maintaining the x and y positions of the sample volume to within +/- 100 micrometers of any programmed 'lock' position. The intensity of the Rayleigh component that is used to normalize the measured fluorescent signal serves to correct the attenuation effects due to absorption and lens light scatter. This report, resulting from a SpectRx Site L clinical study using a refined instrumentation, presents analysis of fluorescence and Rayleigh data from the lenses of 923 controls and 239 diabetic subjects ranging from 23 to 75 years old. Fluorescence and Rayleigh data have been obtained via confocal mode from various locations nominally along the lens optical axis for controls and diabetics, at different ages, using three pairs of excitation and collection wavelengths: 364/495 nm, 434/495 nm, and 485/515 nm. For control subjects, there exists a strong, almost linear relationship between age and fluorescence, while diabetic subjects tend to deviate from this age-fluorescence relationship. Our data show that the lenses of diabetic patients are subject to an accelerated aging process, presumably due to an elevated level of brown and fluorescence protein adducts and crosslinks from nonenzymatic glycosylation. We have also shown that by using the measured Rayleigh profiles to normalize the measured fluorescence, most of the absorption effects are removed and therefore the separation between the fluorescence of diabetics and controls is greatly improved. Thus, the device for measuring fluorescence/Rayleigh ratios can be used to noninvasively screen populations for possible undiagnosed diabetes.

  10. 78 FR 7450 - Certain Fluorescent Reflector Lamps and Products and Components Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... COMMISSION Certain Fluorescent Reflector Lamps and Products and Components Containing Same; Notice of Receipt... Commission has received a complaint entitled Certain Compact Fluorescent Reflector Lamps and Products and... importation of certain fluorescent reflector lamps and products and components containing same. The...

  11. 77 FR 11587 - Certain Dimmable Compact Fluorescent Lamps and Products Containing Same; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... COMMISSION Certain Dimmable Compact Fluorescent Lamps and Products Containing Same; Institution of... States after importation of certain dimmable compact fluorescent lamps and products containing same by... certain dimmable compact fluorescent lamps and products containing same that infringe one or more of...

  12. Is fluorescence under an alternate light source sufficient to accurately diagnose subclinical bruising?

    PubMed

    Lombardi, Maria; Canter, Jennifer; Patrick, Patricia A; Altman, Robin

    2015-03-01

    This single-blinded, randomized validation study was conducted to evaluate whether fluorescence under alternate light sources (ALS) is sufficient to diagnose subclinical bruising (bruising not visible under white light). Standardized trauma was induced on randomly selected ventral forearms. On days 1, 7, and 14 investigators independently examined case forearms under white light for perceived bruising and under ALS for fluorescence and compared body maps. 56 case and 62 control forearms (n = 118) were examined. Sensitivity of ALS on days 1, 7, and 14 was 76.8%, 69.6%, and 60.7%, respectively, compared to 69.6%, 60.0%, and 32.1% for white light. The specificity of ALS on days 1, 7, and 14 was 51.6%, 59.7%, and 53.2%, respectively, compared to 71.0%, 81.4%, and 86.9% for white light. ALS has increased sensitivity yet low specificity compared to white light in accurately detecting bruises. Fluorescence under ALS is not sufficient to accurately or responsibly diagnose subclinical bruising. PMID:25677469

  13. Is fluorescence under an alternate light source sufficient to accurately diagnose subclinical bruising?

    PubMed

    Lombardi, Maria; Canter, Jennifer; Patrick, Patricia A; Altman, Robin

    2015-03-01

    This single-blinded, randomized validation study was conducted to evaluate whether fluorescence under alternate light sources (ALS) is sufficient to diagnose subclinical bruising (bruising not visible under white light). Standardized trauma was induced on randomly selected ventral forearms. On days 1, 7, and 14 investigators independently examined case forearms under white light for perceived bruising and under ALS for fluorescence and compared body maps. 56 case and 62 control forearms (n = 118) were examined. Sensitivity of ALS on days 1, 7, and 14 was 76.8%, 69.6%, and 60.7%, respectively, compared to 69.6%, 60.0%, and 32.1% for white light. The specificity of ALS on days 1, 7, and 14 was 51.6%, 59.7%, and 53.2%, respectively, compared to 71.0%, 81.4%, and 86.9% for white light. ALS has increased sensitivity yet low specificity compared to white light in accurately detecting bruises. Fluorescence under ALS is not sufficient to accurately or responsibly diagnose subclinical bruising.

  14. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    PubMed

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition.

  15. Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs).

    PubMed

    Ra, Chae Hun; Kang, Chang-Han; Jung, Jang-Hyun; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-10-01

    The effects of light-emitting diode (LED) wavelength, light intensity, nitrate concentration, and time of exposure to different LED wavelength stresses in a two-phase culture on lipid production were evaluated in the microalga, Picochlorum atomus. The biomass produced by red LED light was higher than that produced by purple, blue, green, or yellow LED and fluorescent lights from first phase of two-phase culture. The highest lipid production of P. atomus was 50.3% (w/w) with green LED light at 2days of second phase as light stress. Fatty acid analysis of the microalgae showed that palmitic acid (C16:0) and linolenic acid (C18:3) accounted for 84-88% (w/w) of total fatty acids from P. atomus. The two-phase culture of P. atomus is suitable for biofuel production due to higher lipid productivity and favorable fatty acid composition. PMID:27474341

  16. Live imaging of Tribolium castaneum embryonic development using light-sheet-based fluorescence microscopy.

    PubMed

    Strobl, Frederic; Schmitz, Alexander; Stelzer, Ernst H K

    2015-10-01

    Tribolium castaneum has become an important insect model organism for evolutionary developmental biology, genetics and biotechnology. However, few protocols for live fluorescence imaging of Tribolium have been reported, and little image data is available. Here we provide a protocol for recording the development of Tribolium embryos with light-sheet-based fluorescence microscopy. The protocol can be completed in 4-7 d and provides procedural details for: embryo collection, microscope configuration, embryo preparation and mounting, noninvasive live imaging for up to 120 h along multiple directions, retrieval of the live embryo once imaging is completed, and image data processing, for which exemplary data is provided. Stringent quality control criteria for developmental biology studies are also discussed. Light-sheet-based fluorescence microscopy complements existing toolkits used to study Tribolium development, can be adapted to other insect species, and requires no advanced imaging or sample preparation skills.

  17. A combined light sheet fluorescence and differential interference contrast microscope for live imaging of multicellular specimens.

    PubMed

    Baker, R P; Taormina, M J; Jemielita, M; Parthasarathy, R

    2015-05-01

    We describe a microscope capable of both light sheet fluorescence microscopy and differential interference contrast microscopy (DICM). The two imaging modes, which to the best of our knowledge have not previously been combined, are complementary: light sheet fluorescence microscopy provides three-dimensional imaging of fluorescently labelled components of multicellular systems with high speed, large fields of view, and low phototoxicity, whereas differential interference contrast microscopy reveals the unlabelled neighbourhood of tissues, organs, and other structures with high contrast and inherent optical sectioning. Use of a single Nomarski prism for differential interference contrast microscopy and a shared detection path for both imaging modes enables simple integration of the two techniques in one custom microscope. We provide several examples of the utility of the resulting instrument, focusing especially on the digestive tract of the larval zebrafish, revealing in this complex and heterogeneous environment anatomical features, the behaviour of commensal microbes, immune cell motions, and more. PMID:25611324

  18. Supplemental photosynthetic lighting for greenhouse tomato production

    SciTech Connect

    Godfriaux, B.L.; Wittman, W.K. ); Janes, H.W.; McAvoy, R.J.; Putman, J.; Logendra, S. . Dept. of Horticulture and Forestry); Mears, D.R.; Giacommelli, G.; Giniger, M. . Dept. of Biological and Agricultural Engineering)

    1989-12-01

    The influence of supplemental light on the growth and productivity of greenhouse tomatoes grown to a single cluster on movable benches is examined, and the economic feasibility of such a system is evaluated. Experiments were conducted to quantify the tomato plants' response to various levels of supplemental light in terms of growth rate and yield at various stages in their development (e.g., seedling, flowering plant, etc.). The 1984--85 experiments showed that supplemental photosynthetic lighting nearly doubled tomato yields, from 0.48 to 0.86 lbs/plant. Subsequent experiments in 1985--86 identified the best tomato varieties for this treatment and further increased yields to 1.3 lbs/plant. In addition, the use of supplemental lighting was found to hasten tomato crop maturity. An economic analysis was performed on the 1985--86 empirical data using the tax rates and provisions then in force. It indicated that a 10-acre greenhouse could provide an after-tax internal rate of return of 10% to 12% using only equity financing. This return could likely be increased to 15--18% with the use of combined debt/equity financing. Using supplemental lighting on 10,000 acres of greenhouse production would require an estimated 7.5 billion kWh of additional electricity per year and, at 4.7 cents/kWh, generate an estimated $350 million in additional utility revenues. 48 refs., 34 figs., 24 tabs.

  19. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching.

    PubMed

    Wientjes, Emilie; Renger, Jan; Curto, Alberto G; Cogdell, Richard; van Hulst, Niek F

    2014-06-23

    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes.

  20. Femtosecond study of light-induced fluorescence increase of the dark chromoprotein asFP595

    NASA Astrophysics Data System (ADS)

    Schüttrigkeit, Tanja A.; Feilitzsch, Till von; Kompa, Christian K.; Lukyanov, Konstantin A.; Savitsky, Alexander P.; Voityuk, Alexander A.; Michel-Beyerle, Maria E.

    2006-04-01

    Femtosecond time-resolved spectroscopy is applied to study the mechanism of the light-induced increase of fluorescence quantum yield of the initially non-fluorescent (dark) chromoprotein asFP595. Spectroscopic and kinetic characteristics of this unique fluorescence "kindling" phenomenon are: (i) the small Stokes shift of the dark chromophore consistent with either the zwitterion or the anion; (ii) the singlet excited state of the dark chromophore decaying predominantly with a time constant of ˜320 fs corresponding to a fluorescence quantum yield ΦFl ⩽ 10 -4. Since ground state recovery occurs on the same time scale, this radiationless channel is assigned to internal conversion; (iii) the formation of the fluorescent species depending on the sequential absorption of two photons with a delay significantly exceeding the excitation pulse duration of 150 fs; (iv) the fluorescent species showing a red-shift of ˜20 nm in absorption and emission, and an excited state lifetime of 2.2 ns. The ultrafast internal conversion of the excited dark state is attributed to the proximity of the S 0 and S 1 potential energy surfaces favored by the non-planarity of the chromophore as revealed in recent X-ray structures. Competing with internal conversion two different transformations of the chromophore structure are suggested which may be identified in a future X-ray structural analysis of the the photoconverted fluorescent state. The predominant kindling mechanism may be either (i) trans- cis isomerization or (ii) proton transfer between an excited zwitterion and the protein cleft. For mechanism (ii) the large dipole moment change of about 11 D upon S 0-S 1 excitation of the chromophore would be crucial in order to initiate protein relaxation and deprotonation of a zwitterion. Both mechanisms are assumed to lead to a metastable planar structure responsible for the long-lived fluorescence of the chromophore "kindled" at high light intensities.

  1. The influence of visible light and inorganic pigments on fluorescence excitation emission spectra of egg-, casein- and collagen-based painting media

    NASA Astrophysics Data System (ADS)

    Nevin, A.; Anglos, D.; Cather, S.; Burnstock, A.

    2008-07-01

    Spectrofluorimetric analysis of proteinaceous binding media is particularly promising because proteins employed in paintings are often fluorescent and media from different sources have significantly different fluorescence spectral profiles. Protein-based binding media derived from eggs, milk and animal tissue have been used for painting and for conservation, but their analysis using non-destructive techniques is complicated by interferences with pigments, their degradation and their low concentration. Changes in the fluorescence excitation emission spectra of films of binding media following artificial ageing to an equivalent of 50 and 100 years of museum lighting include the reduction of bands ascribed to tyrosine, tryptophan and Maillard reaction products and an increase in fluorescent photodegradation. Fluorescence of naturally aged paint is dependent on the nature of the pigment present and, with egg-based media, in comparison with un-pigmented films, emissions ascribed to amino acids are more pronounced.

  2. Inherent visible light signature of an intense underwater ultraviolet light source due to combined Raman and fluorescence effects

    NASA Astrophysics Data System (ADS)

    Mazel, Charles H.; Kalata-Olson, Jody; Pham, Chuong N.

    2000-07-01

    We investigated the utility of a portable, intense source of ultraviolet light for diver use in support of Very Shallow Water operations. The working hypothesis was that the light would be of use to divers at short-to-medium ranges (up to several meters) while remaining invisible to surface observers due to the incoherent insensitivity of the human eye to ultraviolet light. The light source contained an arc discharge lamp rich in short wavelengths and was fitted with a filter that transmitted only the near ultraviolet portion of the spectrum. In-water tests were made in darkness using Navy divers both in a natural coastal environment and in a test tank. It was found that the light was of limited utility to the divers. In addition, the light was not covert because of a bluish-white glow associated with the ultraviolet beam. Subsequent measurements demonstrated that the visible glow was produced by a combination of fluorescence of dissolved organic matter in the water and Raman scatter from the water itself. The relative importance of the two factors varied with water type. These two effects that transform light from the invisible to the visible impose inherent limitations on the use of ultraviolet light for covert operations.

  3. The Effects of Fluorescent and Incandescent Lighting on the Repetitive Behaviours of Autistic and Intellectually Handicapped Children.

    ERIC Educational Resources Information Center

    Fenton, D. M.; Penney, R.

    1985-01-01

    Repetitive behaviors of five autistic and five intellectually disabled children were observed under both fluorescent and incandescent lighting conditions. Findings supported the hypothesis that autistic children engage in a significantly greater frequency of stereotypes under fluorescent lighting, while there is no significant difference among…

  4. A compact fluorescence and white light imaging system for intraoperative visualization of nerves

    NASA Astrophysics Data System (ADS)

    Gray, Dan; Kim, Evgenia; Cotero, Victoria; Staudinger, Paul; Yazdanfar, Siavash; Tan Hehir, Cristina

    2012-03-01

    Fluorescence image guided surgery (FIGS) allows intraoperative visualization of critical structures, with applications spanning neurology, cardiology and oncology. An unmet clinical need is prevention of iatrogenic nerve damage, a major cause of post-surgical morbidity. Here we describe the advancement of FIGS imaging hardware, coupled with a custom nerve-labeling fluorophore (GE3082), to bring FIGS nerve imaging closer to clinical translation. The instrument is comprised of a 405nm laser and a white light LED source for excitation and illumination. A single 90 gram color CCD camera is coupled to a 10mm surgical laparoscope for image acquisition. Synchronization of the light source and camera allows for simultaneous visualization of reflected white light and fluorescence using only a single camera. The imaging hardware and contrast agent were evaluated in rats during in situ surgical procedures.

  5. Compact fluorescence and white-light imaging system for intraoperative visualization of nerves

    NASA Astrophysics Data System (ADS)

    Gray, Dan; Kim, Evgenia; Cotero, Victoria; Staudinger, Paul; Yazdanfar, Siavash; tan Hehir, Cristina

    2012-02-01

    Fluorescence image guided surgery (FIGS) allows intraoperative visualization of critical structures, with applications spanning neurology, cardiology and oncology. An unmet clinical need is prevention of iatrogenic nerve damage, a major cause of post-surgical morbidity. Here we describe the advancement of FIGS imaging hardware, coupled with a custom nerve-labeling fluorophore (GE3082), to bring FIGS nerve imaging closer to clinical translation. The instrument is comprised of a 405nm laser and a white light LED source for excitation and illumination. A single 90 gram color CCD camera is coupled to a 10mm surgical laparoscope for image acquisition. Synchronization of the light source and camera allows for simultaneous visualization of reflected white light and fluorescence using only a single camera. The imaging hardware and contrast agent were evaluated in rats during in situ surgical procedures.

  6. Fluorescent Carbon Quantum Dots as Single Light Converter for White LEDs

    NASA Astrophysics Data System (ADS)

    Feng, Xiaoting; Zhang, Feng; Wang, Yaling; Zhang, Yi; Yang, Yongzhen; Liu, Xuguang

    2016-06-01

    Synthesis of fluorescent carbon quantum dots (CQDs) as single light converter and their application in white light-emitting diodes (LEDs) are reported. CQDs were prepared by a one-step hydrothermal method using glucose and polyethylene glycol 200 as precursors. The structural and optical properties of the CQDs were investigated. The CQDs with uniform size of 4 nm possessed typical excitation-dependent emission wavelength and quantum yield of 3.5%. Under ultraviolet illumination, the CQDs in deionized water emitted bright blue fluorescence and produced broad visible-light emission with high red, green, and blue spectral component ratio of 63.5% (red-to-blue intensity to total intensity), suggesting great potential as single light converter for white LEDs. To demonstrate their potential, a white LED using CQDs as a single light converter was built. The device exhibited cool white light with corresponding color temperature of 5584 K and color coordinates of (0.32, 0.37), belonging to the white gamut. This research suggests that CQDs could be a promising candidate single light converter for white LEDs.

  7. Light scattering measurement of sodium polyacrylate products

    NASA Astrophysics Data System (ADS)

    Lama, Nisha; Norwood, David; Boone, Steven; Massie-Boyer, Valerie

    2015-03-01

    In the presentation, we will describe the use of a multi-detector HPLC incorporating the DAWN EOS multi-angle laser light scattering (MALLS) detector to measure the properties such as molecular weight, RMS radius, contour and persistence length and polydispersity of sodium polyacrylate products. The samples of sodium polyacrylate are used in various industries as thickening agents, coating dispersants, artificial snow, laundry detergent and disposable diapers. Data and results obtained from the experiment will be presented.

  8. Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources.

    PubMed

    Elder, A D; Frank, J H; Swartling, J; Dai, X; Kaminski, C F

    2006-11-01

    High brightness light emitting diodes are an inexpensive and versatile light source for wide-field frequency-domain fluorescence lifetime imaging microscopy. In this paper a full calibration of an LED based fluorescence lifetime imaging microscopy system is presented for the first time. A radio-frequency generator was used for simultaneous modulation of light emitting diode (LED) intensity and the gain of an intensified charge coupled device (CCD) camera. A homodyne detection scheme was employed to measure the demodulation and phase shift of the emitted fluorescence, from which phase and modulation lifetimes were determined at each image pixel. The system was characterized both in terms of its sensitivity to measure short lifetimes (500 ps to 4 ns), and its capability to distinguish image features with small lifetime differences. Calibration measurements were performed in quenched solutions containing Rhodamine 6G dye and the results compared to several independent measurements performed with other measurement methodologies, including time correlated single photon counting, time gated detection, and acousto optical modulator (AOM) based modulation of excitation sources. Results are presented from measurements and simulations. The effects of limited signal-to-noise ratios, baseline drifts and calibration errors are discussed in detail. The implications of limited modulation bandwidth of high brightness, large area LED devices ( approximately 40 MHz for devices used here) are presented. The results show that phase lifetime measurements are robust down to sub ns levels, whereas modulation lifetimes are prone to errors even at large signal-to-noise ratios. Strategies for optimizing measurement fidelity are discussed. Application of the fluorescence lifetime imaging microscopy system is illustrated with examples from studies of molecular mixing in microfluidic devices and targeted drug delivery research. PMID:17204064

  9. [Normal light and fluorescence microscopy for authentication of Delphinii Brunoniani Herba of Tibet].

    PubMed

    Wang, Ya-Qiong; Xu, Fu-Chun; Dongzhi, Zhuo-Ma; Liu, E-Hu; Xu, Luo-Shan; Liu, Hui-Juan; Li, Ping

    2012-11-01

    Dried herb of Delphinium brunonianum Royle (Ranunculaceae) has long been used under the herbal name "Xiaguobei" (Delphinii Brunoniani Herba) in traditional Tibetan medicine and prescribed for the treatment of influenza, itchy skin rash and snake bites. In order to find a useful and convenient method for the identification of microscopic features, the technique of fluorescence microscopy was applied to authenticate "Xiaguobei" of Tibet. The transverse sections of stem and leaf, as well as the powder of "Xiaguobei" were observed to seek for typical microscopic features by normal light and fluorescence microscopy. A style-like, single-cell glandular hair containing yellow secretions on the leaf, young stem and sepal of "Xiaguobei" was found. Under the fluorescence microscope, the xylem and pericycle fiber group emitted significant fluorescence. This work indicated that fluorescence microscopy could be an useful additional method for the authentication work. Without the traditional dyeing methods, the main microscopic features could be easily found by fluorescence microscopy. The results provided reliable references for the authentication of "Xiaguobei". PMID:23387092

  10. Image-guided surgery using near-infrared fluorescent light: from bench to bedside

    NASA Astrophysics Data System (ADS)

    Boogerd, Leonora S. F.; Handgraaf, Henricus J. M.; van de Velde, Cornelis J. H.; Vahrmeijer, Alexander L.

    2015-03-01

    Due to its relatively high tissue penetration, near-infrared (NIR; 700-900 nm) fluorescent light has the potential to visualize structures that need to be resected (e.g. tumors, lymph nodes) and structures that need to be spared (e.g. nerves, ureters, bile ducts). Until now, most clinical trials have focused on suboptimal, non-targeted dyes. Although successful, a new era in image-guided surgery has begun by the introduction of tumor-targeted agents. In this paper, we will describe how tumor-targeted NIR fluorescent imaging can be applied in a clinical setting.

  11. Spatially coherent white-light interferometer based on a point fluorescent source.

    PubMed

    Liu, H H; Cheng, P H; Wang, J

    1993-05-01

    We developed a point-fluorescent-source-based white-light interferometer for high-resolution reflectometry, range-gating imaging, and group-velocity-dispersion measurement. The laser-pumped point fluorescent source has 9 mW of power and a spatial coherence of 0.97, which allows it to be used like a laser beam. Owing to its 40-nm FWHM spectral width, the width of its temporal autocorrelation is only 19 fs, which corresponds to that of 14-fs Gaussian pulses.

  12. Spatial distribution of fluorescent light emitted from neon and nitrogen excited by low energy electron beams

    SciTech Connect

    Morozov, A.; Kruecken, R.; Ulrich, A.; Wieser, J.

    2006-11-01

    Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12 keV electron beams at gas pressures from 250 to 1400 hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations.

  13. 77 FR 4363 - Certain Dimmable Compact Fluorescent Lamps and Products Containing Same; Receipt of Complaint...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... COMMISSION Certain Dimmable Compact Fluorescent Lamps and Products Containing Same; Receipt of Complaint... complaint entitled In Re Certain Dimmable Compact Fluorescent Lamps and Products Containing Same, DN 2873... within the United States after importation of certain dimmable compact fluorescent lamps and...

  14. Comparison of Light Emitting Diodes (LED) and Fluorescent Light on Suppression of Pineal Melatonin in the Rat

    NASA Technical Reports Server (NTRS)

    Winget, Charles M.; Heeke, D. S.; Holley, D. C.; Mele, G.; Brainard, G. C.; Hanifin, J. P.; Rollag, M. D.; Savage, Paul D. (Technical Monitor)

    1997-01-01

    To validate a novel LED array for use in animal habitat lighting by comparing its effectiveness to cool-white fluorescent (CWF) lighting in suppressing pineal gland melatonin. Male Sprague-Dawley rats, 175-200 g, were maintained under control conditions for 2 weeks (food and water ad lib, 12L: 12D CWF, 18 uW/square cm). Dark adapted animals (animals before lights on) were exposed to 5 min of LED or CWF light of similar spectral power distribution. Two groups of rats (LED vs. CWF) were compared at 5 light intensities (100, 40, 1, 1.0, and 0. 1 lux). A control group was placed into the exposure apparatus but not exposed to light. After exposure, pineal glands were rapidly removed and assayed for melatonin by RIA. Results. The dark-exposed control groups matched with the 5 intensity groups (100, 40, 10, 1.0, and 0.1 lux) showed mean + SEM pineal melatonin values of 1167 +/- 136, 1569 +/- 126, 353 +/- 34, 650 +/- 124, and 464 +/- 85, pg/ml respectively. The corresponding CWF exposure data were 393 1 41, 365 +34, 257 +/- 13, 218 +/- 42, and 239 +/- 71 pg/ml, respectively. Corresponding LED exposure data were 439 +/- 25, 462 +/- 50, 231 +/- 6, 164 +/- 12, and 158 +/- 12 pg/ml, respectively. Rats exposed to both experimental light conditions at all illuminances studied showed significant melatonin suppression (p less than 0.01, ANOVA). In no case was the melatonin suppression induced by LED illuminance significantly different from the melatonin suppression elicited by the same intensity of CWF light. The results show that a novel LED light source can suppress pineal melatonin equal to that of a conventional CWF light source.

  15. High Power, Computer-Controlled, LED-Based Light Sources for Fluorescence Imaging and Image-Guided Surgery

    PubMed Central

    Gioux, Sylvain; Kianzad, Vida; Ciocan, Razvan; Gupta, Sunil; Oketokoun, Rafiou; Frangioni, John V.

    2009-01-01

    Optical imaging requires appropriate light sources. For image-guided surgery, and in particular fluorescence-guided surgery, high fluence rate, long working distance, computer control, and precise control of wavelength are required. In this study, we describe the development of light emitting diode (LED)-based light sources that meet these criteria. These light sources are enabled by a compact LED module that includes an integrated linear driver, heat-dissipation technology, and real-time temperature monitoring. Measuring only 27 mm W by 29 mm H, and weighing only 14.7 g, each module provides up to 6500 lx of white (400-650 nm) light and up to 157 mW of filtered fluorescence excitation light, while maintaining an operating temperature ≤ 50°C. We also describe software that can be used to design multi-module light housings, and an embedded processor that permits computer control and temperature monitoring. With these tools, we constructed a 76-module, sterilizable, 3-wavelength surgical light source capable of providing up to 40,000 lx of white light, 4.0 mW/cm2 of 670 nm near-infrared (NIR) fluorescence excitation light, and 14.0 mW/cm2 of 760 nm NIR fluorescence excitation light over a 15-cm diameter field-of-view. Using this light source, we demonstrate NIR fluorescence-guided surgery in a large animal model. PMID:19723473

  16. Bulk fluorescence light blockers to improve homogeneous detection in capillary-waveguide fluoroimmunosensors.

    PubMed

    Mastichiadis, Christos; Petrou, Panagiota S; Christofidis, Ion; Misiakos, Konstantinos; Kakabakos, Sotirios E

    2009-04-15

    A simple approach that employs black drawing ink (BDI) as bulk fluorescence light blocker and improves considerably the homogeneous signal detection in capillary-waveguide fluoroimmunosensors is presented. The concept was proved using a capillary sensor configuration. Fluorescent molecules in the capillary were excited by a laser beam vertically to its axis and the emitted photons that were trapped and waveguided through the capillary wall were then collected. Two competitive fluoroimmunoassays, for rabbit gamma-globulins in buffer and thyroxine in human serum, respectively, were set-up to evaluate this approach. It was found that the presence of ink improved the specific to bulk fluorescence signal ratio by approximately 60-times without affecting the analyte-antibody binding reaction thus, facilitating homogeneous detection. The analytical characteristics of the two assays developed with the sensor operating in homogeneous detection mode were similar to those determined following the heterogeneous detection mode (i.e. after removal/washing of the immunoreaction mixture).

  17. Quantified light-induced fluorescence, review of a diagnostic tool in prevention of oral disease

    NASA Astrophysics Data System (ADS)

    de Josselin de Jong, Elbert; Higham, Susan M.; Smith, Philip W.; van Daelen, Catherina J.; van der Veen, Monique H.

    2009-05-01

    Diagnostic methods for the use in preventive dentistry are being developed continuously. Few of these find their way into general practice. Although the general trend in medicine is to focus on disease prevention and early diagnostics, in dentistry this is still not the case. Nevertheless, in dental research some of these methods seem to be promising for near future use by the general dental professional. In this paper an overview is given of a method called quantitative light-induced fluorescence or (QLF) in which visible and harmless light excites the teeth in the patient's mouth to produce fluorescent images, which can be stored on disk and computer analyzed. White spots (early dental caries) are detected and quantified as well as bacterial metabolites on and in the teeth. An overview of research to validate the technique and modeling to further the understanding of the technique by Monte Carlo simulation is given and it is shown that the fluorescence phenomena can be described by the simulation model in a qualitative way. A model describing the visibility of red fluorescence from within the dental tissue is added, as this was still lacking in current literature. An overview is given of the clinical images made with the system and of the extensive research which has been done. The QLF™ technology has been shown to be of importance when used in clinical trials with respect to the testing of toothpastes and preventive treatments. It is expected that the QLF™ technology will soon find its way into the general dental practice.

  18. Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light.

    PubMed

    Eisenman, Lawrence N; Shu, Hong-Jin; Akk, Gustav; Wang, Cunde; Manion, Brad D; Kress, Geraldine J; Evers, Alex S; Steinbach, Joe Henry; Covey, Douglas F; Zorumski, Charles F; Mennerick, Steven

    2007-04-01

    Most photoactivatable compounds suffer from the limitations of the ultraviolet wavelengths that are required for activation. We synthesized a neuroactive steroid analog with a fluorescent (7-nitro-2,1,3-benzoxadiazol-4-yl) amino (NBD) group in the beta configuration at the C2 position of (3alpha,5alpha)-3-hydroxypregnan-20-one (allopregnanolone, 3alpha5alphaP). Light wavelengths (480 nm) that excite compound fluorescence strongly potentiate GABAA receptor function. Potentiation is limited by photodepletion of the receptor-active species. Photopotentiation is long-lived and stereoselective and shows single-channel hallmarks similar to steroid potentiation. Other NBD-conjugated compounds also generate photopotentiation, albeit with lower potency. Thus, photopotentiation does not require a known ligand for neurosteroid potentiating sites on the GABAA receptor. Photoactivation of a membrane-impermeant, fluorescent steroid analog demonstrates that membrane localization is critical for activity. The photoactivatable steroid silences pathological spiking in cultured rat hippocampal neurons and anesthetizes tadpoles. Fluorescent steroids photoactivated by visible light may be useful for modulating GABAA receptor function in a spatiotemporally defined manner.

  19. Measurement of air and nitrogen fluorescence light yields induced by electron beam for UHECR experiments

    NASA Astrophysics Data System (ADS)

    Colin, P.; Chukanov, A.; Grebenyuk, V.; Naumov, D.; Nédélec, P.; Nefedov, Y.; Onofre, A.; Porokhovoi, S.; Sabirov, B.; Tkatchev, L.; Macfly Collaboration

    2007-06-01

    Most of the Ultra High Energy Cosmic Ray (UHECR) experiments and projects (HiRes, AUGER, TA, EUSO, TUS, etc.) use air fluorescence to detect and measure extensive air showers (EAS). The precise knowledge of the Fluorescence Light Yield (FLY) is of paramount importance for the reconstruction of UHECR. The MACFLY—Measurement of Air Cherenkov and Fluorescence Light Yield—experiment has been designed to perform such FLY measurements. In this paper we will present the results of FLY in the 290-440 nm wavelength range for dry air and pure nitrogen, both excited by electrons with energy of 1.5 MeV, 20 GeV and 50 GeV. The experiment uses a 90Sr radioactive source for low energy measurement and a CERN SPS e - beam for high energy. We find that the FLY is proportional to the deposited energy ( Ed) in the gas and we show that the air fluorescence properties remain constant independently of the electron energy. At the reference point: atmospheric dry air at 1013 hPa and 23 °C, the ratio FLY/ Ed = 17.6 photon/MeV with a systematic error of 13.2%.

  20. Numerical spherical aberration correction method using spatial light modulator under deep-part fluorescence observation

    NASA Astrophysics Data System (ADS)

    Takiguchi, Yu; Takamoto, Hisayoshi; Kanada, Masamitsu; Inoue, Takashi; Matsumoto, Naoya; Terakawa, Susumu

    2014-03-01

    We have developed a confocal fluorescence laser scanning microscopy (CFLSM) incorporating a liquid crystal on silicon spatial light modulator (LCOS-SLM). To achieve high-resolution and high-contrast imaging for deeper part of the tissue with CFLSM, high numerical aperture objective lenses are required to tightly focus excitation light to meet Rayleigh limit(criterion) for the specimens. However, mismatch of refractive index at the boundary of interfacing materials, such as atmosphere, glass cover, and biological tissues, causes spherical aberration. Recently, we proposed a numerical method for correcting spherical aberration. In this method a pre-distorted wavefront pattern for aberration correction is calculated by ray tracing from a hypothetical focal point inside a specimen to the pupil plane. The resulting microscope can correct such spherical aberration. We observed 6.0μm fluorescent micro-beads dispersed three-dimensionally in agarose gel to confirm effectiveness of aberration correction. We reconstructed a three-dimensional image by taking 20 images by changing the depth with 1 μm interval and stacking them. It was apparent that the longitudinal/depth resolution was improved and that the intensity of fluorescence image was increased with aberration correction. While this method is applicable to other laser scanning microscopes, it has potential to enhance the signals for various super-resolution microscopic techniques, such as stimulated- emission-depletion (STED) fluorescence microscopy.

  1. Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip.

    PubMed

    Irawan, Rudi; Tjin, Swee Chuan; Fang, Xiaoqin; Fu, Chit Yaw

    2007-06-01

    A combination of fluorescence detection and microfluidic technology provides promising applications in life sciences. A prototype of an integrated fluorescence detection system and optical fiber light guide on a laminate-based multichannel microfluidic chip has been developed and tested. A blue LED, plastic optical fiber, photodiode, Mylar and PMMA, and fluorescein and BSA-FITC were used as an excitation source, light coupler and guide, detector, microfluidic substrate and sample, respectively. The results show that the system is capable of detecting weak fluorescence emission from a fluorescein solution at concentration down to 0.01 ng/ml, and gives linear response. The results were also reproducible, and no cross-talk between adjacent channels was observed. The test using BSA as a model analyte demonstrates its feasibility for on-chip immunosensor applications. The performance and applications can be developed further. This prototype can be used as a platform to develop a simple and compact bio-fluorescence detection system integrated with an inexpensive and disposable multichannel microfluidic chip for biomedical devices.

  2. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT.

    PubMed

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J; Hell, Stefan W; Hufnagel, Lars

    2016-03-29

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs. PMID:26984498

  3. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT

    NASA Astrophysics Data System (ADS)

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.; Hufnagel, Lars

    2016-03-01

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs.

  4. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT

    PubMed Central

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J.; Hell, Stefan W.; Hufnagel, Lars

    2016-01-01

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5–12-fold compared with their conventional diffraction-limited LS analogs. PMID:26984498

  5. Instrument for fluorescence sensing of circulating cells with diffuse light in mice in vivo

    PubMed Central

    Zettergren, Eric; Vickers, Dwayne; Runnels, Judith; Murthy, Shashi K.; Lin, Charles P.

    2012-01-01

    Abstract. Accurate quantification of circulating cell populations in mice is important in many areas of preclinical biomedical research. Normally, this is done either by extraction and analysis of small blood samples or, more recently, by using microscopy-based in vivo fluorescence flow cytometry. We describe a new technological approach to this problem using detection of diffuse fluorescent light from relatively large blood vessels in vivo. The diffuse fluorescence flow cytometer (DFFC) uses a laser to illuminate a mouse limb and an array of optical fibers coupled to a high-sensitivity photomultiplier tube array operating in photon counting mode to detect weak fluorescence signals from cells. We first demonstrate that the DFFC instrument is capable of detecting fluorescent microspheres and Vybrant-DiD-labeled cells in a custom-made optical flow phantom with similar size, optical properties, linear flow rates, and autofluorescence as a mouse limb. We also present preliminary data demonstrating that the DFFC is capable of detecting circulating cells in nude mice in vivo. In principle, this device would allow interrogation of the whole blood volume of a mouse in minutes, with sensitivity improvement by several orders of magnitude compared to current approaches. PMID:22502573

  6. Outbreak of illness due to volatilized asphalt coming from a malfunctioning fluorescent lighting fixture.

    PubMed Central

    Tavris, D R; Field, L; Brumback, C L

    1984-01-01

    We investigated an outbreak of headache, eye irritation, sore throat, nasal congestion, and nausea in an office complex, ongoing for three months and regularly resolved upon leaving the building. Investigation suggested that the etiology of the illness was malfunctioning fluorescent light ballasts , which overheated and resulted in melting and volatilization of contained asphalt . Correction of the problem resulted in almost complete disappearance of symptoms within two weeks. PMID:6721022

  7. Light trapping to amplify metal enhanced fluorescence with application for sensing TNT.

    PubMed

    Matoian, Meredith A; Sweetman, Richard; Hall, Emily C; Albanese, Shayna; Euler, William B

    2013-09-01

    Metal Enhanced Fluorescence (MEF) typically produces enhancement factors of 10 to 50. By using a polymer layer as the dielectric spacer enhancements as high as 1,600 can be observed. The effect occurs with a variety of different polymers and substrates, all of which act to trap light in the dielectric layer. This allows the fabrication of sensors with improved sensitivity as demonstrated for detection of trinitrotoluene (TNT).

  8. Outbreak of illness due to volatilized asphalt coming from a malfunction fluorescent lighting fixture

    SciTech Connect

    Tavris, D.R.; Field, L.; Brumback, C.L.

    1984-06-01

    An investigation was made of an outbreak of headache, eye irritation, sore throat, nasal congestion, and nausea in an office complex, ongoing for three months and regularly resolved upon leaving the building. Investigation suggested that the etiology of the illness was malfunctioning fluorescent light ballasts, which overheated and resulted in melting and volatilization of contained asphalt. Correction of the problem resulted in almost complete disappearance of symptoms within two weeks.

  9. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Nishide, Jun-ichi; Nakanotani, Hajime; Hiraga, Yasuhide; Adachi, Chihaya

    2014-06-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  10. [The digital reprocessing of underexposed x-rays. Studies with a fluorescent light scanner].

    PubMed

    Hidajat, N; Schröder, R J; Bergh, B; Cordes, M; Felix, R

    1994-09-01

    Incorrect exposure of conventional radiographs frequently leads to repetition of the examination and thereby to increased radiation exposure for the patient. Underexposed films of an Alderson-Rando phantom, an ankle joint and a patella were digitised by means of an inexpensive fluorescent light scanner, and subsequent image manipulation improved quality so as to make the image diagnostically adequate. For the demonstration of markedly underexposed structures digitalisation with subsequent contrast enhancement was used. Well exposed structures are best evaluated in contrast enhanced transmitted light. Our results suggest it should be possible to reduce the number of repeat exposures and thereby to limit radiation exposure. PMID:7919250

  11. Phantom and mouse experiments of time-domain fluorescence tomography using total light approach

    PubMed Central

    Okawa, Shinpei; Yano, Akira; Uchida, Kazuki; Mitsui, Yohei; Yoshida, Masaki; Takekoshi, Masashi; Marjono, Andhi; Gao, Feng; Hoshi, Yoko; Kida, Ikuhiro; Masamoto, Kazuto; Yamada, Yukio

    2013-01-01

    Phantom and mouse experiments of time-domain fluorescence tomography were conducted to demonstrate the total light approach which was previously proposed by authors. The total light approach reduces the computation time to solve the forward model for light propagation. Time-resolved temporal profiles were acquired for cylindrical phantoms having single or double targets containing indocyanine green (ICG) solutions. The reconstructed images of ICG concentration reflected the true distributions of ICG concentration with a spatial resolution of about 10 mm. In vivo experiments were conducted using a mouse in which an ICG capsule was embedded beneath the skin in the abdomen. The reconstructed image of the ICG concentration again reflected the true distribution of ICG although artifacts due to autofluorescence appeared in the vicinity of the skin. The effectiveness of the total light approach was demonstrated by the phantom and mouse experiments. PMID:23577297

  12. Life cycle cost analysis for replacement of fluorescent light fixtures containing polychlorinated biphenyls

    SciTech Connect

    1992-04-29

    This report describes the remedial action to achieve compliance with 29 CFR 1910 Occupational Safety and Health Administration (OSHA) requirements of fluorescent light fixtures containing PCBs at K-25 site. This remedial action is called the Remediation Plan for Fluorescent Light Fixtures Containing PCBs at the K-25 Site (The Plan). The Plan specifically discusses (1) conditions of non-compliance, (2) alternative solutions, (3) recommended solution, (4) remediation plan costs, (5) corrective action, (6) disposal of PCB waste, (7) training, and (8) plan conclusions. The results from inspections by Energy Systems personnel in 2 buildings at K-25 site and statistical extension of this data to 91 selected buildings at the K-25 site indicates that there are approximately 28,000 fluorescent light fixtures containing 47,036 ballasts. Approximately 38,531 contain PCBs and 2,799 of the 38,531 ballasts are leaking PCBs. Review of reportable occurrences at K-25 for the 12 month period of September 1990 through August 1991 shows that Energy Systems personnel reported 69 ballasts leaking PCBs. Each leaking ballast is in non-compliance with 29 CFR 1910 - Table Z-1-A. The age of the K-25 facilities indicate a continued and potential increase in ballasts leaking PCBs. This report considers 4 alternative solutions for dealing with the ballasts leaking PCBs. The advantages and disadvantages of each alternative solution are discussed and ranked using cost of remediation, reduction of health risks, and compliance with OSHA as criteria.

  13. Estimation of photosynthetic rate from measurements of natural fluorescence: analysis of the effects of light and temperature

    NASA Astrophysics Data System (ADS)

    Chamberlin, Sean; Marra, John

    1992-10-01

    We examine the effects of light and temperature on the relationship between photosynthesis and natural fluorescence in oceanic and coastal waters. While a moderately-sized database suggests a strong correlation, there is evidence that light and temperature alter the ratio of the quantum yields of photosynthesis and natural fluorescence. Specifically, we find a reduction of this ratio as light intensity increases and temperature decreases. In this paper, we review the effects of these factors and present empirical equations to account for their behavior. Although these equations significantly improve our ability to predict photosynthetic rate from natural fluorescence, the biophysical and biochemical mechanisms undelying these effects are not understood sufficiently.

  14. Theory of light quenching: effects of fluorescence polarization, intensity, and anisotropy decays.

    PubMed Central

    Kuśba, J; Bogdanov, V; Gryczynski, I; Lakowicz, J R

    1994-01-01

    Experimental studies have recently demonstrated that fluorescence emission can be quenched by laser light pulses from modern high repetition rate lasers, a phenomenon we call "light quenching." We now describe the theory of light quenching and some of its effects on the steady-state and time-resolved intensity and anisotropy decays of fluorophores. Light quenching can decrease or increase the steady-state or time-zero anisotropy. Remarkably, the light quenching can break the usual z axis symmetry of the excited-state population, and the emission polarization can range from -1 to +1 under selected conditions. The measured anisotropy (or polarization) depends upon whether the observation axis is parallel or perpendicular to the propagation direction of the light quenching beam. The effects of light quenching are different for a single pulse, which results in both excitation and quenching, as compared with a time-delayed quenching pulse. Time-delayed light quenching pulses can result in step-like changes in the time-dependent intensity or anisotropy and are predicted to cause oscillations in the frequency-domain intensity and anisotropy decays. The increasing availability of pulsed laser sources offers the opportunity for a new class of two-pulse or multiple-pulse experiments where the sample is prepared by an excitation pulse, the excited state population is modified by the quenching pulse(s), followed by time- or frequency-domain measurements of the resulting emission. PMID:7858140

  15. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    PubMed

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change.

  16. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    PubMed

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change. PMID:27155416

  17. Synthesis of polymeric fluorescent brightener based on coumarin and its performances on paper as light stabilizer, fluorescent brightener and surface sizing agent

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghua; Zheng, Hua; Guo, Mingyuan; Du, Lun; Liu, Guojun; Wang, Peng

    2016-03-01

    In this work, a novel polymeric fluorescent brightener based on coumarin (PFBC) was synthesized, using three-step synthetic route, from 7-amino-4-methylcoumarin, coumarin monomer (FBC), Acrylamide (AM) and methacrylatoethyl trimethyl ammonium chloride (DMC). The structure of PFBC was characterized by FT-IR, 1HNMR and GPC. PFBC was applied to paper fiber as light stabilizer, fluorescent brightener and surface sizing agent and its performances were evaluated by measuring the UV-vis, fluorescence, thermal stability, the cationic degree, surface strength and smoothness of paper, the brightness degree of paper and the PC value of paper. Results showed that PFBC had better solubility in water than that of FBC, by measuring the optical properties. Through the surface sizing experiment and UV aging experiment, PFBC not only enhanced the surface strength and smoothness of paper as a surface sizing agent, but also had better effect on anti-UV aging than that of FBC as light stabilizer and fluorescent brightener.

  18. A method for tuning the excitation wavelength of an LED light source during fluorescence-based cystoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lindvold, Lars R.; Hermannn, Gregers G.

    2016-02-01

    In clinical applications of fluorescence-guided endoscopy of the bladder (cystoscopy) it can be observed that the contrast in light from autofluorescence and from photodynamic diagnosis (PDD) varies from patient to patient. To compensate for this effect, a new method is presented for tuning the wavelength of a LED-based light source during fluorescence guided endoscopy of the bladder i.e. photodynamic diagnosis of bladder tumours. In the present embodiment, the wavelength of the LED source, developed in our laboratory, can be tuned to vary the excitation wavelength of both the sensitised fluorescence in the tumours (PDD) as well as the native fluorescence of the bladder mucosa and blood vessels. The contrast of the image observed through the CCD-camera attached to the cystoscope is thereby increased. In this way, patient to patient variations in autofluorescence and in sensitised fluorescence of tumours can be compensated for during fluorescence-guided cystoscopy in the clinic.

  19. Development of a High Output Fluorescent Light Module for the Commercial Plant Biotechnology Facility

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)

    2000-01-01

    To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.

  20. A portable system for noninvasive assessment of advanced glycation end-products using skin fluorescence and reflectance spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Y. K.; Zhu, L.; Zhang, L.; Zhang, G.; Liu, Y.; Wang, A.

    2012-07-01

    An optical system has been developed for noninvasive assessment of skin advanced glycation end-products (AGEs). The system comprises mainly a high-power ultraviolet light emitting diode (LED) as an excitation source, an LED array for the reflectance measurement, a trifurcated fiber-optic probe for light transmitting and receiving, and a compact spectrometer for light detecting. Both skin fluorescence of a subject and the reflectance spectrum of the same site can be obtained in a single measurement with the system. Demonstrative measurements with the system have been conducted. Results indicate that the measured reflectance spectrum can be used to compensate for the distortion of AGEs fluorescence, which is caused by skin absorption and scattering. The system is noninvasive, portable, easy to operate, and has potential applications for clinical diagnosis of AGE-related diseases, especially diabetes mellitus.

  1. Light sheet fluorescence microscopy for in situ cell interaction analysis in mouse lymph nodes.

    PubMed

    Abe, Jun; Ozga, Aleksandra J; Swoger, Jim; Sharpe, James; Ripoll, Jorge; Stein, Jens V

    2016-04-01

    Reactive lymph nodes (LNs) are sites where pMHC-loaded dendritic cells (DCs) interact with rare cognate T cells, leading to their clonal expansion. While DC interactions with T cell subsets critically shape the ensuing immune response, surprisingly little is known on their spatial orchestration at physiologically T cell low precursor frequencies. Light sheet fluorescence microscopy and one of its implementations, selective plane illumination microscopy (SPIM), is a powerful method to obtain precise spatial information of entire organs of 0.5-10mm diameter, the size range of murine LNs. Yet, its usefulness for immunological research has thus far not been comprehensively explored. Here, we have tested and defined protocols that preserve fluorescent protein function during lymphoid tissue clearing required for SPIM. Reconstructions of SPIM-generated 3D data sets revealed that calibrated numbers of adoptively transferred T cells and DCs are successfully detected at a single cell level within optically cleared murine LNs. Finally, we define parameters to quantify specific interactions between antigen-specific T cells and pMHC-bearing DCs in murine LNs. In sum, our studies describe the successful application of light sheet fluorescence microscopy to immunologically relevant tissues.

  2. Light sheet fluorescence microscopy for in situ cell interaction analysis in mouse lymph nodes.

    PubMed

    Abe, Jun; Ozga, Aleksandra J; Swoger, Jim; Sharpe, James; Ripoll, Jorge; Stein, Jens V

    2016-04-01

    Reactive lymph nodes (LNs) are sites where pMHC-loaded dendritic cells (DCs) interact with rare cognate T cells, leading to their clonal expansion. While DC interactions with T cell subsets critically shape the ensuing immune response, surprisingly little is known on their spatial orchestration at physiologically T cell low precursor frequencies. Light sheet fluorescence microscopy and one of its implementations, selective plane illumination microscopy (SPIM), is a powerful method to obtain precise spatial information of entire organs of 0.5-10mm diameter, the size range of murine LNs. Yet, its usefulness for immunological research has thus far not been comprehensively explored. Here, we have tested and defined protocols that preserve fluorescent protein function during lymphoid tissue clearing required for SPIM. Reconstructions of SPIM-generated 3D data sets revealed that calibrated numbers of adoptively transferred T cells and DCs are successfully detected at a single cell level within optically cleared murine LNs. Finally, we define parameters to quantify specific interactions between antigen-specific T cells and pMHC-bearing DCs in murine LNs. In sum, our studies describe the successful application of light sheet fluorescence microscopy to immunologically relevant tissues. PMID:26844990

  3. Light induced fluorescence evaluation: A novel concept for caries diagnosis and excavation.

    PubMed

    Gugnani, Neeraj; Pandit, Ik; Srivastava, Nikhil; Gupta, Monika; Gugnani, Shalini

    2011-10-01

    In the era of minimal invasive dentistry, every effort should be directed to preserve the maximum tooth structure during cavity preparation. However, while making cavities, clinicians usually get indecisive at what point caries excavation should be stopped, so as to involve only the infected dentin. Apparent lack of valid clinical markers, difficulties with the use of caries detector dyes and chemo mechanical caries removal systems carve out a need for an improved system, which would be helpful to differentiate between the healthy and infected dentin during caries excavation. Light induced fluorescence evaluation is a novel concept implicated for caries detection and for making decisions while cavity preparation. This paper describes a few cases that explain the clinical applicability of this concept, using the SoproLife camera that works on this principle. Autofluorescence masking effect was found to be helpful for caries detection and the red fluorescence in the treatment mode was found helpful in deciding 'when to stop the excavation process.' Light induced fluorescence evaluation - Diagnosis - Treatment concept concept can be used as a guide for caries detection and excavation. It also facilitates decision making for stopping the caries excavation so as to involve infected dentin only.

  4. Light induced fluorescence evaluation: A novel concept for caries diagnosis and excavation

    PubMed Central

    Gugnani, Neeraj; Pandit, IK; Srivastava, Nikhil; Gupta, Monika; Gugnani, Shalini

    2011-01-01

    In the era of minimal invasive dentistry, every effort should be directed to preserve the maximum tooth structure during cavity preparation. However, while making cavities, clinicians usually get indecisive at what point caries excavation should be stopped, so as to involve only the infected dentin. Apparent lack of valid clinical markers, difficulties with the use of caries detector dyes and chemo mechanical caries removal systems carve out a need for an improved system, which would be helpful to differentiate between the healthy and infected dentin during caries excavation. Light induced fluorescence evaluation is a novel concept implicated for caries detection and for making decisions while cavity preparation. This paper describes a few cases that explain the clinical applicability of this concept, using the SoproLife camera that works on this principle. Autofluorescence masking effect was found to be helpful for caries detection and the red fluorescence in the treatment mode was found helpful in deciding ‘when to stop the excavation process.’ Light induced fluorescence evaluation – Diagnosis - Treatment concept concept can be used as a guide for caries detection and excavation. It also facilitates decision making for stopping the caries excavation so as to involve infected dentin only. PMID:22144816

  5. Fluorescence light suppression in Raman spectroscopy using ultrafast time-gated CCD camera

    NASA Astrophysics Data System (ADS)

    Martyshkin, Dmitri V.; Ahuja, Ramesh C.; Kudriavtsev, Anatoliy; Mirov, Sergey B.

    2004-06-01

    A high level of fluorescence background signal rejection was achieved for solid and powder samples by using a combination of simple low-resolution spectrograph and ultrafast intensified/gated CCD camera. The unique timing characteristics of CCD camera match exceptionally well characteristics of Ti:sapphire oscillator allowing fast gated light detection at a repetition rate of up to 110 MHz, making this approach superior in terms of duty cycle in comparison with other time-resolved Raman techniques. The achieved temporal resolution was about 150 ps under 785 nm Ti:sapphire laser excitation. At an average excitation power up to 300 mW there was no noticeable sample damage observed. The strong Hexobenzocoronane (HBC) fluorescence with a lifetime about 2.1 ns was efficiently rejected and Raman spectrum revealed. The combination of spectrometer and ultrafast gated CCD camera allows simultaneous study of spectral and temporal characteristics of emitted light for the fluorophores with a fluorescence lifetime in nanosecond range. It is particularly important in biomedical spectroscopy, since the majority of endogenous fluorophores has a relatively short lifetime of about 1-5 ns. This capability opens an exciting possibility to build a universal instrument for solving multitask problems in applied laser spectroscopy.

  6. Generation of extended light-sheets for single and multi-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Purnapatra, Subhajit B.; Pratim Mondal, Partha

    2013-07-01

    We theoretically propose and computationally demonstrate the generation of extended light-sheet for fluorescence microscopy. This is made possible by the introduction of a specially designed double-window spatial filter that allows the light to pass through the periphery and center of a cylindrical lens. When illuminated with a plane wave, the proposed filter results in an extended depth-of-focus along with side-lobes which are due to other interferences in the transverse focal plane. Computational studies show a maximum extension of light-sheet by 3.38 times for single photon excitation and 3.68 times for multiphoton excitation as compared to state-of-art single plane illumination microscopy system. This technique may facilitate the study of large biological specimens (such as Zebrafish embryo and tissue) with high spatial resolution and reduced photobleaching.

  7. Low Light CMOS Contact Imager with an Integrated Poly-Acrylic Emission Filter for Fluorescence Detection

    PubMed Central

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert’s law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented. PMID:22399920

  8. Changes in intensity and spectral distribution of fluorescence. Effect of light treatment on normal and DCMU-poisoned Anacystis nidulans.

    PubMed

    Papageorgiou, G; Govindjee

    1967-07-01

    The intensity of the "steady-state" fluorescence of "aerobic" Anacystis nidulans is variable under prolonged illumination with orange (590 mmu) or blue (440 mmu) light for both normally photosynthesizing and DCMU-poisoned cells. In general, orange light illumination causes an increase of the fluorescence intensity followed by a decrease, while blue light causes an increase until a steady level is reached. Poisoned Anacystis cells show four to eight times larger changes in fluorescence intensity than the normal cells; the detailed time course of fluorescence changes is also different in poisoned and normal cells. When algae are cooled to -196 degrees C in light, the light-induced changes in the "steady-state" fluorescence disappear in both types of cells. Difference fluorescence spectra, constructed by subtracting the fluorescence spectra taken after 5-15 min of illumination from those after 60-90 min of illumination, show a doublet structure of the difference band with a major peak coinciding with the Anacystis emission maximum (685 mmu) and a minor peak located at about 693 mmu.

  9. The fluorescence detection of glutathione by ∙OH radicals' elimination with catalyst of MoS2/rGO under full spectrum visible light irradiation.

    PubMed

    Zhang, Nan; Ma, Weiguang; Han, Dongxue; Wang, Lingnan; Wu, Tongshun; Niu, Li

    2015-11-01

    In this study, a new method for the detection of glutathione (GSH) was designed based on the ∙OH radicals' elimination system due to the reducing ability of GSH for the first time. Fluorescence method with terephthalic acid (TA) as the probe was employed for the quantification of ∙OH radicals' production and elimination. Experimental conditions of ∙OH radicals' production were optimized in detail, and ∙OH radicals were found to be efficiently produced by the excellent catalysis performance of MoS2/rGO under full spectrum visible light irradiation. The introduction of GSH make fluorescent intensity decrease due to the elimination of ∙OH radicals. For the present fluorescence based GSH sensor, a wide detection range of 60.0-700.0 µM and excellent selectivity have been achieved. Furthermore, it has been successfully employed for the determination of GSH in commercial drug tablets and human serum.

  10. The fluorescence detection of glutathione by ∙OH radicals' elimination with catalyst of MoS2/rGO under full spectrum visible light irradiation.

    PubMed

    Zhang, Nan; Ma, Weiguang; Han, Dongxue; Wang, Lingnan; Wu, Tongshun; Niu, Li

    2015-11-01

    In this study, a new method for the detection of glutathione (GSH) was designed based on the ∙OH radicals' elimination system due to the reducing ability of GSH for the first time. Fluorescence method with terephthalic acid (TA) as the probe was employed for the quantification of ∙OH radicals' production and elimination. Experimental conditions of ∙OH radicals' production were optimized in detail, and ∙OH radicals were found to be efficiently produced by the excellent catalysis performance of MoS2/rGO under full spectrum visible light irradiation. The introduction of GSH make fluorescent intensity decrease due to the elimination of ∙OH radicals. For the present fluorescence based GSH sensor, a wide detection range of 60.0-700.0 µM and excellent selectivity have been achieved. Furthermore, it has been successfully employed for the determination of GSH in commercial drug tablets and human serum. PMID:26452861

  11. Light irradiance and spectral distribution effects on cyanobacterial hydrogen production

    NASA Astrophysics Data System (ADS)

    Fatihah Salleh, Siti; Kamaruddin, Azlina; Hekarl Uzir, Mohamad; Rahman Mohamed, Abdul; Halim Shamsuddin, Abdul

    2016-03-01

    Light is an essential energy source for photosynthetic cyanobacteria. Changes in both light irradiance and spectral distribution will affect their photosynthetic productivity. Compared to the light irradiance, little investigations have been carried out on the effect of light spectra towards cyanobacterial hydrogen production. Hence, this work aims to investigate the effects of both light quantity and quality on biohydrogen productivity of heterocystous cyanobacterium, A.variabilis. Under white light condition, the highest hydrogen production rate of 31 µmol H2 mg chl a -1 h-1 was achieved at 70 µE m-2 s-1. When the experiment was repeated at the same light irradiance but different light spectra of blue, red and green, the accumulations of hydrogen were significantly lower than the white light except for blue light. As the light irradiance was increased to 350 µE m-2 s-1, the accumulated hydrogen under the blue light doubled that of the white light. Besides that, an unusual prolongation of the hydrogen production up to 120 h was observed. The results obtained suggest that blue light could be the most desirable light spectrum for cyanobacterial hydrogen production.

  12. Quantitative Light Fluorescence (QLF) and Polarized White Light (PWL) assessments of dental fluorosis in an epidemiological setting

    PubMed Central

    2012-01-01

    Background To determine if a novel dual camera imaging system employing both polarized white light (PWL) and quantitative light induced fluorescence imaging (QLF) is appropriate for measuring enamel fluorosis in an epidemiological setting. The use of remote and objective scoring systems is of importance in fluorosis assessments due to the potential risk of examiner bias using clinical methods. Methods Subjects were recruited from a panel previously characterized for fluorosis and caries to ensure a range of fluorosis presentation. A total of 164 children, aged 11 years (±1.3) participated following consent. Each child was examined using the novel imaging system, a traditional digital SLR camera, and clinically using the Dean’s and Thylstrup and Fejerskov (TF) Indices on the upper central and lateral incisors. Polarized white light and SLR images were scored for both Dean’s and TF indices by raters and fluorescence images were automatically scored using software. Results Data from 164 children were available with a good distribution of fluorosis severity. The automated software analysis of QLF images demonstrated significant correlations with the clinical examinations for both Dean’s and TF index. Agreement (measured by weighted Kappa’s) between examiners scoring clinically, from polarized photographs and from SLR images ranged from 0.56 to 0.92. Conclusions The study suggests that the use of a digital imaging system to capture images for either automated software analysis, or remote assessment by raters is suitable for epidemiological work. The use of recorded images enables study archiving, assessment by multiple examiners, remote assessment and objectivity due to the blinding of subject status. PMID:22607363

  13. Imaging green fluorescent protein-labeled neurons using light and electron microscopy.

    PubMed

    Knott, Graham W

    2013-06-01

    The ability to observe axons and dendrites with transmission electron microscopy (EM) after they have been previously imaged live with laser-scanning microscopy is a useful technique to study their synaptic connectivity. This protocol provides a detailed method by which neurons that were imaged in a live brain or slice culture can be reimaged using EM. First, brain tissue expressing green fluorescent protein (GFP) is chemically fixed. Then, an immunocytochemistry process is used to render the fluorescent protein electron dense so that it can first be located using light microscopy and then serial thin-sectioned for EM so that the ultrastructure of specific parts of neurites can be analyzed in three dimensions. Patterns of blood vessels observed in the live brain are used to locate the previously imaged neurons. The method described here allows for a complete three-dimensional (3D) reconstruction to be made of the imaged structures from serial electron micrographs. PMID:23734023

  14. A Combined Light Sheet Fluorescence and Differential Interference Contrast Microscope for Live Imaging of Multicellular Specimens

    PubMed Central

    Baker, Ryan P.; Taormina, Michael J.; Jemielita, Matthew; Parthasarathy, Raghuveer

    2014-01-01

    We describe a microscope capable of both light sheet fluorescence microscopy (LSFM) and differential interference contrast microscopy (DICM). The two imaging modes, which to the best of our knowledge have not previously been combined, are complementary: LSFM provides three-dimensional imaging of fluorescently labeled components of multicellular systems with high speed, large fields of view, and low phototoxicity, while DICM reveals the unlabeled neighborhood of tissues, organs, and other structures with high contrast and inherent optical sectioning. Use of a single Nomarski prism for DICM and a shared detection path for both imaging modes enables simple integration of the two techniques in one custom microscope. We provide several examples of the utility of the resulting instrument, focusing especially on the digestive tract of the larval zebrafish, revealing in this complex and heterogeneous environment anatomical features, the behavior of commensal microbes, immune cell motions, and more. PMID:25611324

  15. Simultaneous localization of six antigens in single sections of transgenic mouse intestine using a combination of light and fluorescence microscopy.

    PubMed

    Hermiston, M L; Latham, C B; Gordon, J I; Roth, K A

    1992-09-01

    To study the geographic differentiation of the intestinal epithelium and to understand the complex lineage relationships of its cell populations, it is often necessary to visualize the protein products of multiple genes in sections prepared from different positions along the duodenal-to-colonic and/or crypt-to-villus axes. Multilabel fluorescence or brightfield immunohistochemical techniques have previously been used for this purpose. However, the number of antigens that can be identified on single sections is limited in fluorescence microscopy by the number of fluorophores with non-overlapping absorption and emission characteristics, in brightfield microscopy by the number of visually distinguishable chromogens, and in both methods by the availability of primary antisera raised in multiple species. We have now used a combination of light and fluorescence microscopic techniques to increase the number of antigens that can be detected in a single section to six. Sections were sequentially stained using immunogold with silver intensification, peroxidase-antiperoxidase with diaminobenzidine chromogen, and peroxidase-anti-peroxidase with alpha-naphthol/basic dye as chromogen, followed by simultaneous fluorescent detection with fluorescein, 7-amino-4-methylcoumarin-3-acetic acid, and beta-phycoerythrin. This method enables up to four separate antigens to be visualized within a single cell and two additional antigens to be detected in unrelated cells. The technique is illustrated by examining the cellular patterns of expression of liver fatty acid binding protein/human growth hormone fusion genes in the intestinal epithelium of adult transgenic mice. It should be generally applicable to other experimental systems that require localization of multiple antigens in single tissue sections.

  16. Pulsed lasers versus continuous light sources in capillary electrophoresis and fluorescence detection studies: Photodegradation pathways and models.

    PubMed

    Boutonnet, Audrey; Morin, Arnaud; Petit, Pierre; Vicendo, Patricia; Poinsot, Véréna; Couderc, François

    2016-03-17

    Pulsed lasers are widely used in capillary electrophoresis (CE) studies to provide laser induced fluorescence (LIF) detection. Unfortunately pulsed lasers do not give linear calibration curves over a wide range of concentrations. While this does not prevent their use in CE/LIF studies, the non-linear behavior must be understood. Using 7-hydroxycoumarin (7-HC) (10-5000 nM), Tamra (10-5000 nM) and tryptophan (1-200 μM) as dyes, we observe that continuous lasers and LEDs result in linear calibration curves, while pulsed lasers give polynomial ones. The effect is seen with both visible light (530 nm) and with UV light (355 nm, 266 nm). In this work we point out the formation of byproducts induced by pulsed laser upon irradiation of 7-HC. Their separation by CE using two Zeta LIF detectors clearly shows that this process is related to the first laser detection. All of these photodegradation products can be identified by an ESI-/MS investigation and correspond to at least two 7HC dimers. By using the photodegradation model proposed by Heywood and Farnsworth (2010) and by taking into account the 7-HC results and the fact that in our system we do not have a constant concentration of fluorophore, it is possible to propose a new photochemical model of fluorescence in LIF detection. The model, like the experiment, shows that it is difficult to obtain linear quantitation curves with pulsed lasers while UV-LEDs used in continuous mode have this advantage. They are a good alternative to UV pulsed lasers. An application involving the separation and linear quantification of oligosaccharides labeled with 2-aminobezoic acid is presented using HILIC and LED (365 nm) induced fluorescence. PMID:26920784

  17. Pulsed lasers versus continuous light sources in capillary electrophoresis and fluorescence detection studies: Photodegradation pathways and models.

    PubMed

    Boutonnet, Audrey; Morin, Arnaud; Petit, Pierre; Vicendo, Patricia; Poinsot, Véréna; Couderc, François

    2016-03-17

    Pulsed lasers are widely used in capillary electrophoresis (CE) studies to provide laser induced fluorescence (LIF) detection. Unfortunately pulsed lasers do not give linear calibration curves over a wide range of concentrations. While this does not prevent their use in CE/LIF studies, the non-linear behavior must be understood. Using 7-hydroxycoumarin (7-HC) (10-5000 nM), Tamra (10-5000 nM) and tryptophan (1-200 μM) as dyes, we observe that continuous lasers and LEDs result in linear calibration curves, while pulsed lasers give polynomial ones. The effect is seen with both visible light (530 nm) and with UV light (355 nm, 266 nm). In this work we point out the formation of byproducts induced by pulsed laser upon irradiation of 7-HC. Their separation by CE using two Zeta LIF detectors clearly shows that this process is related to the first laser detection. All of these photodegradation products can be identified by an ESI-/MS investigation and correspond to at least two 7HC dimers. By using the photodegradation model proposed by Heywood and Farnsworth (2010) and by taking into account the 7-HC results and the fact that in our system we do not have a constant concentration of fluorophore, it is possible to propose a new photochemical model of fluorescence in LIF detection. The model, like the experiment, shows that it is difficult to obtain linear quantitation curves with pulsed lasers while UV-LEDs used in continuous mode have this advantage. They are a good alternative to UV pulsed lasers. An application involving the separation and linear quantification of oligosaccharides labeled with 2-aminobezoic acid is presented using HILIC and LED (365 nm) induced fluorescence.

  18. Resolving the depth of fluorescent light by structured illumination and shearing interferometry

    NASA Astrophysics Data System (ADS)

    Schindler, Johannes; Elmaklizi, Ahmed; Voit, Florian; Hohmann, Ansgar; Schau, Philipp; Brodhag, Nicole; Krauter, Philipp; Frenner, Karsten; Kienle, Alwin; Osten, Wolfgang

    2016-03-01

    A method for the depth-sensitive detection of fluorescent light is presented. It relies on a structured illumination restricting the excitation volume and on an interferometric detection of the wave front curvature. The illumination with two intersecting beams of a white-light laser separated in a Sagnac interferometer coupled to the microscope provides a coarse confinement in lateral and axial direction. The depth reconstruction is carried out by evaluating shearing interferograms produced with a Michelson interferometer. This setup can also be used with spatially and temporally incoherent light as emitted by fluorophores. A simulation workflow of the method was developed using a combination of a solution of Maxwell's equations with the Monte Carlo method. These simulations showed the principal feasibility of the method. The method is validated by measurements at reference samples with characterized material properties, locations and sizes of fluorescent regions. It is demonstrated that sufficient signal quality can be obtained for materials with scattering properties comparable to dental enamel while maintaining moderate illumination powers in the milliwatt range. The depth reconstruction is demonstrated for a range of distances and penetration depths of several hundred micrometers.

  19. Two-photon fluorescence and confocal reflected light imaging of thick tissue structures

    NASA Astrophysics Data System (ADS)

    Kim, Ki H.; So, Peter T. C.; Kochevar, Irene E.; Masters, Barry R.; Gratton, Enrico

    1998-04-01

    The technology of two-photon excitation has opened a window of opportunity for developing non-invasive medical diagnostic tools capable of monitoring thick tissue biochemical states. Using cellular endogenous chromophores, (beta) -nicotinamide- adenine dinucleotide phosphate [NAD(P)H], the cellular metabolic rates in living human skin were determined. Although important functional information can be obtained from the fluorescence spectroscopy of endogenous chromophores, these chromophores are rather poor contrast enhancing agent for mapping cellular morphology. First, most endogenous chromophores are confined to the cellular cytoplasm which prevents the visualization of other cellular organelles. Second, there is significant variability in the distribution and the quantum yield of endogenous chromophores which depends on tissue biochemistry but prevents consistent comparison of cellular morphology. On the other hand, the deep tissue cellular morphology has been imaged with excellent resolution using reflected light confocal microscopy. In reflected light microscopy, the image contrast originates from the index of refraction differences of the cellular structures. The organelle boundaries with significant index differences such as the plasma membrane and the nucleus envelope can be consistently visualized. A combination of morphological and functional information is required for a thorough tissue study. This presentation describes the development of a new microscope which is capable of simultaneously collecting both two-photon fluorescence and confocal reflected light signals. Promising biomedical applications include the non-invasive diagnosis of skin cancer and the study of wound healing.

  20. Refractive errors among students occupying rooms lighted with incandescent or fluorescent lamps.

    PubMed

    Czepita, Damian; Gosławski, Wojciech; Mojsa, Artur

    2004-01-01

    The purpose of the study was to determine whether the development of refractive errors could be associated with exposure to light emitted by incandescent or fluorescent lamps. 3636 students were examined (1638 boys and 1998 girls, aged 6-18 years, mean age 12.1, SD 3.4). The examination included retinoscopy with cycloplegia. Myopia was defined as refractive error < or = -0.5 D, hyperopia as refractive error > or = +1.5 D, astigmatism as refractive error > 0.5 DC. Anisometropia was diagnosed when the difference in the refraction of both eyes was > 1.0 D. The children and their parents completed a questionnaire on exposure to light at home. Data were analyzed statistically with the chi2 test. P values of less than 0.05 were considered statistically significant. It was found that the use of fluorescent lamps was associated with an increase in the occurrence of hyperopia (P < 0.01). There was no association between sleeping with the light turned on and prevalence of refractive errors.

  1. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    PubMed

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. PMID:23261400

  2. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space.

  3. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. PMID:23242824

  4. Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations

    PubMed Central

    Domínguez, Jorge Bouza; Bérubé-Lauzière, Yves

    2011-01-01

    We introduce a system of coupled time-dependent parabolic simplified spherical harmonic equations to model the propagation of both excitation and fluorescence light in biological tissues. We resort to a finite element approach to obtain the time-dependent profile of the excitation and the fluorescence light fields in the medium. We present results for cases involving two geometries in three-dimensions: a homogeneous cylinder with an embedded fluorescent inclusion and a realistically-shaped rodent with an embedded inclusion alike an organ filled with a fluorescent probe. For the cylindrical geometry, we show the differences in the time-dependent fluorescence response for a point-like, a spherical, and a spherically Gaussian distributed fluorescent inclusion. From our results, we conclude that the model is able to describe the time-dependent excitation and fluorescent light transfer in small geometries with high absorption coefficients and in nondiffusive domains, as may be found in small animal diffuse optical tomography (DOT) and fluorescence DOT imaging. PMID:21483606

  5. Exposure to fluorescent light triggers down regulation of genes involved with mitotic progression in Xiphophorus skin.

    PubMed

    Walter, Ronald B; Walter, Dylan J; Boswell, William T; Caballero, Kaela L; Boswell, Mikki; Lu, Yuan; Chang, Jordan; Savage, Markita G

    2015-12-01

    We report RNA-Seq results from skin of X. maculatus Jp 163 B after exposure to various doses of "cool white" fluorescent light (FL). We show that FL exposure incites a genetic transcriptional response in skin nearly as great as observed for UVB exposure; however, the gene sets modulated due to exposure to the two light sources are quite different. Known light responsive genes involved in maintaining circadian cycling (e.g., clock, cry2a, cry1b, per1b, per2, per3, and arntl1a) exhibited expected shifts in transcriptional expression upon FL exposure. Exposure to FL also resulted in down-regulated transcription of many genes involved with cell cycle progression (e.g., cdc20, cdc45, cdca7b, plk1, cdk1, ccnb-3, and cdca7a) and chromosome segregation (e.g., cenpe, cenpf, cenpi, cenpk, cenpo, cenpp, and cenpu; cep70; knstrm, kntc, mcm2, mcm5; smc2). In addition, several DNA replication and recombination repair genes (e.g., pola1, pole, rec52, rad54l, rpa1, and parpbp) exhibit reduced expression in FL exposed X. maculatus skin. Some genes down modulated by FL are known to be associated with DNA repair and human diseases (e.g., atm2, brip1, fanc1, fancl, and xrcc4). The overall suppression of genes involved with mitotic progression in the skin of adult fish is consistent with entry into the light phase of the circadian cycle. Current efforts are aimed at determining specific wavelengths that may lead to differential expression among the many genes affected by fluorescent light exposure.

  6. Integrated OLED as excitation light source in fluorescent lateral flow immunoassays.

    PubMed

    Venkatraman, Vishak; Steckl, Andrew J

    2015-12-15

    The integration of organic light emitting diodes (OLEDs) as excitation light sources for quantum dot-based fluorescent lateral flow immunoassay systems (LFIA) was investigated. This approach has the potential to deliver a sensitive visible detection scheme for low-cost, disposable lab-on-chip point-of-care (POC) diagnosis system. Thin film phosphorescent green OLEDs fabricated on plastic substrates were integrated on-chip to excite the test line of a quantum dot-based LFIA (QD-LFIA). OLEDs were fabricated by sequential deposition of organic thin films (total of ~100 nm) onto ITO-coated PET substrates. CdSe/ZnS QDs emitting at 655 nm and Au nanoparticles (NP - 10 nm size) conjugated antibodies were used for the fluorescence QD-LFIA and conventional reflection-mode Au NP-LFIA, respectively. Thin plastic color light filters were integrated for filtering the excitation light source and, thereby, increasing the contrast of the emitted light for optimized visual detection. Integration of the OLED and color filters with the analytical membrane was achieved using adhesive techniques facilitated by the planar nature of the layers, which suggests possible large scale manufacturing using roll-to-roll processing. Gray scale analysis from digital images captured with a digital camera was used to quantify the visual sensitivity. The signal intensity, signal-to-noise ratio (SNR) and the limit of detection (LOD) of OLED integrated QD-LFIAs were compared to Au NP LFIAs. OLED QD-LFIA exhibited superior performance in all signal aspects: 7-8× higher signal intensity and SNR, and a 7× lower LOD of 3 nM (measured at S/N=3). These results demonstrate the potential of OLED-integrated in LFIA devices for obtaining sensitive, fast and low-cost POC diagnostics.

  7. Integrated OLED as excitation light source in fluorescent lateral flow immunoassays.

    PubMed

    Venkatraman, Vishak; Steckl, Andrew J

    2015-12-15

    The integration of organic light emitting diodes (OLEDs) as excitation light sources for quantum dot-based fluorescent lateral flow immunoassay systems (LFIA) was investigated. This approach has the potential to deliver a sensitive visible detection scheme for low-cost, disposable lab-on-chip point-of-care (POC) diagnosis system. Thin film phosphorescent green OLEDs fabricated on plastic substrates were integrated on-chip to excite the test line of a quantum dot-based LFIA (QD-LFIA). OLEDs were fabricated by sequential deposition of organic thin films (total of ~100 nm) onto ITO-coated PET substrates. CdSe/ZnS QDs emitting at 655 nm and Au nanoparticles (NP - 10 nm size) conjugated antibodies were used for the fluorescence QD-LFIA and conventional reflection-mode Au NP-LFIA, respectively. Thin plastic color light filters were integrated for filtering the excitation light source and, thereby, increasing the contrast of the emitted light for optimized visual detection. Integration of the OLED and color filters with the analytical membrane was achieved using adhesive techniques facilitated by the planar nature of the layers, which suggests possible large scale manufacturing using roll-to-roll processing. Gray scale analysis from digital images captured with a digital camera was used to quantify the visual sensitivity. The signal intensity, signal-to-noise ratio (SNR) and the limit of detection (LOD) of OLED integrated QD-LFIAs were compared to Au NP LFIAs. OLED QD-LFIA exhibited superior performance in all signal aspects: 7-8× higher signal intensity and SNR, and a 7× lower LOD of 3 nM (measured at S/N=3). These results demonstrate the potential of OLED-integrated in LFIA devices for obtaining sensitive, fast and low-cost POC diagnostics. PMID:26134292

  8. Light-assisted non-Poissonian fluorescence blinking from bosonic composite reservoirs

    SciTech Connect

    Budini, Adrian A.

    2007-08-15

    Single fluorophore systems attached to complex hosting molecules may exhibit a light-assisted fluorescence blinking phenomenon between two or more different intensity states whose sojourn statistic depends on the pumping laser intensity and also may depart from an exponential law. In contrast with standard phenomenological models, here we demonstrate that such kind of radiation patterns can be microscopically derived and characterized by describing the fluorophore decay through a composite reservoir where quantum degrees of freedom associated to the host molecule mediate the interaction between the fluorophore and a bosonic bath associated to its natural decay.

  9. Fluorescence molecular tomography on animal model by means of multiple views structured light illumination

    NASA Astrophysics Data System (ADS)

    Ducros, N.; Bassi, A.; Valentini, G.; Canti, G.; Arridge, S.; D'Andrea, C.

    2013-03-01

    Fluorescence molecular tomography (FMT) is quite demanding in terms of acquisition/computational times due to the huge amount of data. Different research groups have proposed compression approaches regarding both illumination (wide field structured light instead of raster point scanning) and detection (compression of the acquired images). The authors have previously proposed a fast FMT reconstruction method based on the combination of a multiple-view approach with a full compression scheme. This method had been successfully tested on a cylindrical phantom and is being generalized in this paper to samples of arbitrary shape. The devised procedure and algorithms have been tested on an ex-vivo mouse.

  10. OSL response bleaching of BeO samples, using fluorescent light and blue LEDs

    NASA Astrophysics Data System (ADS)

    Groppo, D. P.; Caldas, L. V. E.

    2016-07-01

    The optically stimulated luminescence (OSL) is widely used as a dosimetric technique for many applications. In this work, the OSL response bleaching of BeO samples was studied. The samples were irradiated using a beta radiation source (90Sr+90Y); the bleaching treatments (fluorescent light and blue LEDs) were performed, and the results were compared. Various optical treatment time intervals were tested until reaching the complete bleaching of the OSL response. The best combination of the time interval and bleaching type was analyzed.

  11. The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics

    NASA Astrophysics Data System (ADS)

    Linnenberger, Anna; Peterka, Darcy S.; Quirin, Sean; Yuste, Rafael

    2014-09-01

    Microscopy incorporating spatial light modulators (SLMs) enables three dimensional (3D) excitation and monitoring of the activity of neuronal ensembles, enabling studies of neuronal circuit activity both in vitro and in vivo. In this paper we present a portable (22 cm x 42.5 cm x 30 cm), SLM-based epi-fluorescence upright microscope ("Pocketscope") that enables 3D calcium imaging and photoactivation of neurons in brain slices. Here we describe the implementation of the instrument; quantify the volume over which neural activity can be excited; and demonstrate the use of the system for mapping neural circuits in brain slices.

  12. Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market

    SciTech Connect

    Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; Steward, Heidi E.; Calwell, Chris

    2006-05-22

    This report describes the history of compact fluorescent lamps (CFLs) in America. CFLs were introduced in the 1970s; however, it has taken more than 20 years for them to gain widespread recognition in the U.S. residential lighting market. This report reviews the development of CFLs, efforts to increase market acceptance of them, and barriers to that acceptance. Lessons to be learned from this study of CFLs are identified in hopes of assisting future market introduction efforts for other promising energy-efficient technologies. This report was prepared by the Pacific Northwest National Laboratory for the U.S. Department of Energy’s Office of Building Technologies, Emerging Technologies Program.

  13. Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources.

    PubMed

    Berman, S M; Greenhouse, D S; Bailey, I L; Clear, R D; Raasch, T W

    1991-08-01

    Time-averaged human electroretinogram (ERG) responses were determined for several workplace visual stimuli which are temporally modulated at rates exceeding the perceptual critical fusion frequency (CFF). A clearly identifiable synchronous response was in evidence for a video display terminal (VDT) stimulus operating with a refresh rate as high as 76 Hz. A directly viewed fluorescent luminaire with controllable driving frequency elicited a synchronous response at rates as high as 145 Hz. In addition, an intense stimulus created by modulating the light from a slide projector produced responses at least as high as 162 Hz. The implications of these high-frequency responses are representing a potential basis for visual symptoms are discussed.

  14. The Effect of Time on Bone Fluorescence: Implications for Using Alternate Light Sources to Search for Skeletal Remains.

    PubMed

    Swaraldahab, Mohamed A H; Christensen, Angi M

    2016-03-01

    Bones fluoresce when exposed to certain wavelengths of shortwave light, and this property can be useful in locating and sorting skeletal remains in forensic contexts. The proteins in bone collagen are largely responsible for its fluorescent properties, but these proteins degrade and denature over time. This study examined the fluorescence of bones from four temporal groups (recent, semi-recent, ancient, and historic) ranging from 0 to 1064 years before present. Specimens were photographed under 490 nm wavelength light, and fluorescence was quantified by converting intensity to a gray scale value based on the RGB color model using ImageJ(®) software. Significant (p < 0.05) differences were found in mean fluorescence between all four temporal groups, and a 0.324 coefficient of correlation indicates a significant (inverse) relationship between fluorescence and time. Bone fluorescence decreases with time, but some fluorescence is retained even in older samples. Fluorescence can therefore be reliably used in many modern skeletal remains searches. PMID:27404617

  15. Light stress effect and by nitrogen deficiency in plants of Petiveria alliacea measured with two-chlorophyll-fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zuluaga, H.; Oviedo, A.; Solarte, Efrain; Pena, E. J.

    2004-10-01

    The chlorophyll fluorescence was studied in Petiveria alliacea plants exposed to different nitrogen concentrations and light radiation, the response was measured by two different forms; (1) measuring the photosynthetic efficiency with a pulse amplitude modulated fluorometro (PAM) emitted by a 650 nm diode and (2) measuring the fluorescence spectra caused by high power 452 nm diode with a SD2000 spectrometer. It was found out that the photosynthetic efficiency decreased in the plants exposed to high radiance and low nitrogen. Two chlorophyll fluorescence peaks were observed on 684 nm and 739 nm, the intensities in this wavelengths are inversely related with the light radiance. The correlation between the FIR and photosynthetic efficiency was very strong (r2 = -0.809, p <<0.01) this let us conclude that the fluorescence spectral analysis induced by the diode (excitation at 452 nm) is an efficient technique to detect stress by high light intensity and nitrogen in P. Alliacea plants.

  16. The health risks associated with energy efficient fluorescent, LEDs, and artificial lighting

    NASA Astrophysics Data System (ADS)

    Panahi, Allen

    2014-09-01

    With the phasing out of incandescent lamps in many countries, the introduction of new LED based light sources and luminaries sometimes raise the question of whether the spectral characteristics of the LED and other energy savings Fluorescent lights including the popular CFLs are suitable to replace the traditional incandescent lamps. These concerns are sometimes raised particularly for radiation emissions in the UV and Blue parts of the spectrum. This paper aims to address such concerns for the common `white light' sources typically used in household and other general lighting used in the work place. Recent studies have shown that women working the night shift have an increased probability of developing breast cancer. We like to report on the findings of many studies done by medical professionals, in particular the recent announcement of AMA in the US and many studies conducted in the UK, as well as the European community to increase public awareness on the long term health risks of the optical and opto-biological effects on the human health caused by artificial lighting.

  17. Efficient White-Light Generation from Ionically Self-Assembled Triply-Fluorescent Organic Nanoparticles.

    PubMed

    Das, Susmita; Debnath, Tanay; Basu, Amrita; Ghosh, Deepanwita; Das, Abhijit Kumar; Baker, Gary A; Patra, Amitava

    2016-06-20

    Low cost, simple, and environmentally friendly strategies for white-light generation which do not require rare-earth phosphors or other toxic or elementally scare species remain an essentially unmet challenge. Progress in the area of all-organic approaches is highly sought, single molecular systems remaining a particular challenge. Taking inspiration from the designer nature of ionic-liquid chemistry, we now introduce a new strategy toward white-light emission based on the facile generation of nanoparticles comprising three different fluorophores assembled in a well-defined stoichiometry purely through electrostatic interactions. The building blocks consist of the fluorophores aminopyrene, fluorescein, and rhodamine 6G which represent blue, green, and red-emitting species, respectively. Spherical nanoparticles 16(±5) nm in size were prepared which display bright white-light emission with high fluorescence quantum efficiency (26 %) and color coordinate at (0.29, 0.38) which lie in close proximity to pure white light (0.33, 0.33). It is noteworthy that this same fluorophore mixture in free solution yields only blue emission. Density functional theory calculations reveal H-bond and ground-state proton transfer mediated absolute non-parallel orientation of the constituent units which result in frustrated energy transfer, giving rise to emission from the individual centers and concomitant white-light emission. PMID:27219524

  18. Development and application of fluorescent, green light-activatable caged compound

    NASA Astrophysics Data System (ADS)

    Umeda, Nobuhiro; Urano, Yasuteru; Nagano, Tetsuo

    2011-03-01

    Caged compound is one of the most powerful tools for spatiotemporal control of biomolecules in cells, which can be activated by irradiation of light. However, ultra violet light, which is required for activation of caged compounds, can damage cells and has poor permeability into tissues. In addition, invisibility of caged compounds makes it difficult to tell distribution of released small molecules. At the conference, we will describe the development of novel caging group and new caged compounds which are fluorescently visible and efficiently activatable with green light. We have found that boron dipyrromethene (BODIPY), known as a widely used fluorophore, is a potential caging group for phenol, carboxyl acid and amine, which can be photolized with irradiation of green light at around 500 nm wavelength. Based on the novel photo-reaction of 4-phenoxy BODIPY derivatives, we have developed caged histamine and applied it to HeLa cells. Photo-irradiation to cells in the presence of caged histamine induced transient increase of calcium ion in cytosol, which was specifically inhibited with pyrilamine, a H1 blocker. Also, we showed that BODIPY-caged compound can be utilized in vivo with tissue-permeable 500 nm green light.

  19. A Self-Quenching-Resistant Carbon-Dot Powder with Tunable Solid-State Fluorescence and Construction of Dual-Fluorescence Morphologies for White Light-Emission.

    PubMed

    Chen, Yonghao; Zheng, Mingtao; Xiao, Yong; Dong, Hanwu; Zhang, Haoran; Zhuang, Jianle; Hu, Hang; Lei, Bingfu; Liu, Yingliang

    2016-01-13

    Self-quenching in the aggregation state is overcome, and tunable solid-state photoluminescence of carbon-dot powder is achieved. Furthermore, based on the controllable optical property in organic solvents, a novel concept, i.e., constructing dual-fluorescence morphologies from single luminescent species, is presented to realize white-light emission. PMID:26568431

  20. Effects of fluorescent lighting on in vitro micropropagation of Lemna minor

    NASA Astrophysics Data System (ADS)

    Somsri, Kollawat; Pinyopich, Pataradawn; Mohammed, Waleed S.

    2010-05-01

    The vegetative in vitro propagation of Lemna minor stain SING-4 exposed to two different types of fluorescent light sources, Philips TLD 36W/54 and Toshiba FL40T8BRF/36, was studied. The liquid culture medium contained 4.43gl-1 phytohormone-free full-strength Murashige & Skoog (MS) basal medium with vitamins, 30gl-1 sucrose, and 1gl-1 MES. The results showed that both plant cultures had undergone normal asexual reproduction with an exponential increase trend. Cultures exposed to Toshiba FL40T8BRF/36 reproduced at a slightly faster rate while expressing significantly greener foliage (leaf color chart shade No.8), which indicates the presence of more chlorophyll, than cultures exposed to Philips TLD 36W/54 (leaf color chart shade No.4). The data obtained from our experiment reveals that light emitted from Toshiba FL40T8BRF/36 produces healthier and higher quality cultures.

  1. Far-red light activatable, multifunctional prodrug for fluorescence optical imaging and combinational treatment.

    PubMed

    Bio, Moses; Rajaputra, Pallavi; Nkepang, Gregory; You, Youngjae

    2014-04-24

    We recently developed "photo-unclick chemistry", a novel chemical tool involving the cleavage of aminoacrylate by singlet oxygen, and demonstrated its application to visible light-activatable prodrugs. In this study, we prepared an advanced multifunctional prodrug, Pc-(L-CA4)2, composed of the fluorescent photosensitizer phthalocyanine (Pc), an SO-labile aminoacrylate linker (L), and a cytotoxic drug combretastatin A-4 (CA4). Pc-(L-CA4)2 had reduced dark toxicity compared with CA4. However, once illuminated, it showed improved toxicity similar to CA4 and displayed bystander effects in vitro. We monitored the time-dependent distribution of Pc-(L-CA4)2 using optical imaging with live mice. We also effectively ablated tumors by the illumination with far-red light to the mice, presumably through the combined effects of photodynamic therapy (PDT) and released chemotherapy drug, without any sign of acute systemic toxicity.

  2. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  3. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death.

    PubMed

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J; Kräutler, Bernhard

    2009-09-15

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in 'senescence associated' dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212

  4. Lighting Up Clostridium Difficile: Reporting Gene Expression Using Fluorescent Lov Domains

    PubMed Central

    Buckley, Anthony M.; Jukes, Caitlin; Candlish, Denise; Irvine, June J.; Spencer, Janice; Fagan, Robert P.; Roe, Andrew J.; Christie, John M.; Fairweather, Neil F.; Douce, Gillian R.

    2016-01-01

    The uses of fluorescent reporters derived from green fluorescent protein have proved invaluable for the visualisation of biological processes in bacteria grown under aerobic conditions. However, their requirement for oxygen has limited their application in obligate anaerobes such as Clostridium difficile. Fluorescent proteins derived from Light, Oxygen or Voltage sensing (LOV) domains have been shown to bridge this limitation, but their utility as translational fusions to monitor protein expression and localisation in a strict anaerobic bacterium has not been reported. Here we demonstrate the utility of phiLOV in three species of Clostridium and its application as a marker of real-time protein translation and dynamics through genetic fusion with the cell division protein, FtsZ. Time lapse microscopy of dividing cells suggests that Z ring assembly arises through the extension of the FtsZ arc starting from one point on the circumference. Furthermore, through incorporation of phiLOV into the flagella subunit, FliC, we show the potential of bacterial LOV-based fusion proteins to be successfully exported to the extracellular environment. PMID:26996606

  5. Lighting Up Clostridium Difficile: Reporting Gene Expression Using Fluorescent Lov Domains.

    PubMed

    Buckley, Anthony M; Jukes, Caitlin; Candlish, Denise; Irvine, June J; Spencer, Janice; Fagan, Robert P; Roe, Andrew J; Christie, John M; Fairweather, Neil F; Douce, Gillian R

    2016-01-01

    The uses of fluorescent reporters derived from green fluorescent protein have proved invaluable for the visualisation of biological processes in bacteria grown under aerobic conditions. However, their requirement for oxygen has limited their application in obligate anaerobes such as Clostridium difficile. Fluorescent proteins derived from Light, Oxygen or Voltage sensing (LOV) domains have been shown to bridge this limitation, but their utility as translational fusions to monitor protein expression and localisation in a strict anaerobic bacterium has not been reported. Here we demonstrate the utility of phiLOV in three species of Clostridium and its application as a marker of real-time protein translation and dynamics through genetic fusion with the cell division protein, FtsZ. Time lapse microscopy of dividing cells suggests that Z ring assembly arises through the extension of the FtsZ arc starting from one point on the circumference. Furthermore, through incorporation of phiLOV into the flagella subunit, FliC, we show the potential of bacterial LOV-based fusion proteins to be successfully exported to the extracellular environment. PMID:26996606

  6. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death.

    PubMed

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J; Kräutler, Bernhard

    2009-09-15

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in 'senescence associated' dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death.

  7. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J.; Kräutler, Bernhard

    2009-01-01

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in ‘senescence associated’ dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212

  8. Light quality and efficiency of consumer grade solid state lighting products

    NASA Astrophysics Data System (ADS)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders; Poulsen, Peter Behrensdorff

    2013-03-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light quality with respect to correlated color temperature and color rendering properties. This shows a trade-off between high color rendering warm white light and energy efficiency. The lumen and color maintenance over time has been investigated and results for products running over 11000 h will be presented. A new internet based SSL product selection tool will be shown. Here the products can be compared on efficiency, light quality parameters, thus providing a better basis for the selection of SSL products for consumers.

  9. Light-gravitino production at hadron colliders

    SciTech Connect

    Kim, J.; Nanopoulos, D.V.; Rangarajan, R.; Lopez, J.L.; Nanopoulos, D.V.; Zichichi, A.

    1998-01-01

    We consider the production of gravitinos ({tilde G}) in association with gluinos ({tilde g}) or squarks ({tilde q}) at hadron colliders, including the three main subprocesses: q{bar q}{r_arrow}{tilde g}{tilde G}, and qg{r_arrow}{tilde q}{tilde G}, and gg{r_arrow}{tilde g}{tilde G}. These channels become enhanced to the point of being observable for sufficiently light gravitino masses (m{sub {tilde G}}{lt}10{sup {minus}4}eV), as motivated by some supersymmetric explanations of the Collider Detector at Fermilab ee{gamma}{gamma}+E{sub T,miss} event. The characteristic signal of such events would be monojets, as opposed to dijets obtained in the more traditional supersymmetric process p{bar p}{r_arrow}{tilde g}{tilde g}. Searches for such events at the Fermilab Tevatron can impose lower limits on the gravitino mass. In the appendixes, we provide a complete set of Feynman rules for the gravitino interactions used in our calculation. {copyright} {ital 1997} {ital The American Physical Society}

  10. Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera

    NASA Astrophysics Data System (ADS)

    Martyshkin, D. V.; Ahuja, R. C.; Kudriavtsev, A.; Mirov, S. B.

    2004-03-01

    A high level of fluorescence background signal rejection was achieved for solid and powder samples by using a combination of simple low-resolution spectrograph and ultrafast gated charge coupled device (CCD) camera. The unique timing characteristics of the CCD camera match exceptionally well to characteristics of a Ti:sapphire oscillator allowing fast gated light detection at a repetition rate of up to 110 MHz, making this approach superior in terms of the duty cycle in comparison with other time-resolved Raman techniques. The achieved temporal resolution was about 150 ps under 785 nm Ti: sapphire laser excitation. At an average excitation power up to 300 mW there was no noticeable sample damage observed. Hence, the demonstrated approach extends the capabilities of Raman spectroscopy regarding the investigation of samples with a short fluorescence lifetime. The combination of a spectrometer and a gated CCD camera allows simultaneous study of spectral and temporal characteristics of emitted light. This capability opens an exciting possibility to build a universal instrument for solving multitask problems in applied laser spectroscopy.

  11. Improved micro x-ray fluorescence spectrometer for light element analysis

    SciTech Connect

    Smolek, Stephan; Streli, Christina; Zoeger, Norbert; Wobrauschek, Peter

    2010-05-15

    Since most available micro x-ray fluorescence (micro-XRF) spectrometers operate in air, which does not allow the analysis of low-Z elements (Z{<=}14), a special micro-XRF spectrometer has been designed to extend the analytical range down to light elements (Z{>=}6). It offers improved excitation and detection conditions necessary for light element analysis. To eliminate absorption of the exciting and fluorescent radiation, the system operates under vacuum condition. Sample mapping is automated and controlled by specialized computer software developed for this spectrometer. Several different samples were measured to test and characterize the spectrometer. The spot size has been determined by scans across a 10 {mu}m Cu wire which resulted in a full width at half maximum of 31 {mu}m for Mo K{alpha} line (17.44 keV) and 44 {mu}m effective beam size for the Cu K edge and 71 {mu}m effective beam size for the Cu L edge. Lower limits of detection in the picogram range for each spot (or {mu}g/cm{sup 2}) were obtained by measuring various thin metal foils under different conditions. Furthermore, detection limits in the parts per million range were found measuring NIST621 standard reference material. Area scans of a microscopic laser print and NaF droplet were performed to show mapping capabilities.

  12. Laser-induced fluorescence and reflected white light imaging for robot-assisted MIS.

    PubMed

    Noonan, David P; Elson, Daniel S; Mylonas, George P; Darzi, Ara; Yang, Guang-Zhong

    2009-03-01

    This paper presents an articulated robotic-controlled device to facilitate large-area in vivo tissue imaging and characterization through the integration of miniaturized reflected white light and fluorescence intensity imaging for minimally invasive surgery (MIS). The device is composed of a long, rigid shaft with a robotically controlled distal tip featuring three degrees of in-plane articulation and one degree of rotational freedom. The constraints imposed by the articulated section, coupled with the small footprint available in MIS devices, require a novel optical configuration to ensure effective target illumination and image acquisition. A tunable coherent supercontinuum laser source is used to provide sequential white light and fluorescence illumination through a multimode fiber (200 microm diameter), and the reflected images are transmitted to an image acquisition system using a 10,000 pixel flexible fiber image guide (590 microm diameter). By using controlled joint actuation to trace overlapping trajectories, the device allows effective imaging of a larger field of view than a traditional dual-mode laparoscope. A first-generation prototype of the device and its initial phantom and ex vivo tissue characterization results are described. The results demonstrate the potential of the device to be used as a new platform for in vivo tissue characterization and navigation for MIS.

  13. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.

    PubMed

    Arendt, John D; Katers, John F

    2013-07-01

    The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin. PMID:23635464

  14. Compact fluorescent lighting in Wisconsin: elevated atmospheric emission and landfill deposition post-EISA implementation.

    PubMed

    Arendt, John D; Katers, John F

    2013-07-01

    The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin.

  15. THE IMPACT OF NONPHOTOCHEMICAL QUENCHING OF FLUORESCENCE ON THE PHOTON BALANCE IN DIATOMS UNDER DYNAMIC LIGHT CONDITIONS(1).

    PubMed

    Su, Wanwen; Jakob, Torsten; Wilhelm, Christian

    2012-04-01

    The nonphotochemical quenching (NPQ) of fluorescence is an important photoprotective mechanism in particular under dynamic light conditions. Its photoprotective potential was suggested to be a functional trait of algal diversity. In the present study, the influence of the photoprotective capacity on the growth balance was investigated in two diatoms, which possess different NPQ characteristics. It was hypothesized that under fluctuating light conditions Cyclotella meneghiniana Kütz. would benefit from its large and flexible NPQ potential, whereas the comparably small NPQ capacity in Skeletonema costatum (Grev.) Cleve should exert an unfavorable impact on growth. The results of the study clearly falsify this hypothesis. Although C. meneghiniana possesses a fast NPQ component, this diatom was not able to recover its full NPQ capacity under fluctuating light. On the other hand, the induction of NPQ at relatively low irradiance in S. costatum resulted in rather small differences in the fraction of energy dissipation by the NPQ mechanism in the comparison of both diatoms. Larger differences were found in the metabolic characteristics. Both diatoms differed in their biomass composition, with a higher content of lipids in C. meneghiniana but higher amounts of carbohydrates in S. costatum. Finally, the lower degree of reduction in the biomass compensated for the higher respiration rates in S. costatum and resulted in a higher quantum efficiency of biomass production. An indirect correlation between the photoprotective and the metabolic capacity is discussed. PMID:27009723

  16. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation.

    PubMed

    Seo, Yeong Hwan; Cho, Changsoon; Lee, Jung-Yong; Han, Jong-In

    2014-12-01

    Solar radiation has intensity that is too high to inhibit microalgae activity and is composed of wide light spectrum including ultraviolet (UV) range which cannot be utilized for microalgae. For these reasons, the modification of solar radiation is required for effective microalgae cultivation, and to do that, fluorescent paint was used for not only blocking excessive solar energy but also converting UV to visible light. With fluorescent aqueous layer, microalgae was protected from photoinhibition and could grow well, but there was difference in growth and lipid accumulation efficiencies depending on the color; maximum dry weight of 1.7 g/L was achieved in red paint, whereas best lipid content of 30% was obtained in blue one. This phenomenon was due to the different light spectrum made by colors. With simple process using fluorescent paint, modification of light was successfully done and allowing microalgae to grow under strong radiation such as solar radiation.

  17. Highly sensitive analysis of flavonoids by zwitterionic microemulsion electrokinetic chromatography coupled with light-emitting diode-induced fluorescence detection.

    PubMed

    Cao, Wan; Hu, Shuai-Shuai; Li, Xing-Ying; Pang, Xiao-Qing; Cao, Jun; Ye, Li-Hong; Dai, Han-Bin; Liu, Xiao-Juan; Da, Jian-Hua; Chu, Chu

    2014-09-01

    A rapid zwitterionic microemulsion electrokinetic chromatography (ZI-MEEKC) approach coupled with light-emitting-diode-induced fluorescence (LED-IF, 480nm) detection was proposed for the analysis of flavonoids. In the optimization process, we systematically investigated the separation conditions, including the surfactants, cosurfactants, pH, buffers and fluorescence parameters. It was found that the baseline separation of the seven flavonoids was obtained in less than 5min with a running buffer consisting of 92.9% (v/v) 5mM sodium borate, 0.6% (w/v) ZI surfactant, 0.5% (w/v) ethyl acetate and 6.0% (w/v) 1-butanol. High sensitivity was obtained by the application of LED-IF detection. The limits of detection for seven flavonoids were in the range of 3.30×10(-8) to 2.15×10(-6)molL(-1) without derivatization. Ultimately, the detection method was successfully applied to the analysis of flavonoids in hawthorn plant and food products with satisfactory results. PMID:25047822

  18. Estimate of federal relighting potential and demand for efficient lighting products

    SciTech Connect

    Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

    1993-11-01

    The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

  19. Developing methods based on light sheet fluorescence microscopy for biophysical investigations of larval zebrafish

    NASA Astrophysics Data System (ADS)

    Taormina, Michael J.

    Adapting the tools of optical microscopy to the large-scale dynamic systems encountered in the development of multicellular organisms provides a path toward understanding the physical processes necessary for complex life to form and function. Obtaining quantitatively meaningful results from such systems has been challenging due to difficulty spanning the spatial and temporal scales representative of the whole, while also observing the many individual members from which complex and collective behavior emerges. A three-dimensional imaging technique known as light sheet fluorescence microscopy provides a number of significant benefits for surmounting these challenges and studying developmental systems. A thin plane of fluorescence excitation light is produced such that it coincides with the focal plane of an imaging system, providing rapid acquisition of optically sectioned images that can be used to construct a three-dimensional rendition of a sample. I discuss the implementation of this technique for use in larva of the model vertebrate Danio rerio (zebrafish). The nature of light sheet imaging makes it especially well suited to the study of large systems while maintaining good spatial resolution and minimizing damage to the specimen from excessive exposure to excitation light. I show the results from a comparative study that demonstrates the ability to image certain developmental processes non-destructively, while in contrast confocal microscopy results in abnormal growth due to phototoxicity. I develop the application of light sheet microscopy to the study of a previously inaccessible system: the bacterial colonization of a host organism. Using the technique, we are able to obtain a survey of the intestinal tract of a larval zebrafish and observe the location of microbes as they grow and establish a stable population in an initially germ free fish. Finally, I describe a new technique to measure the fluid viscosity of this intestinal environment in vivo using

  20. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    PubMed

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. PMID:26412502

  1. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    PubMed

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis.

  2. Short-term light adaptation of a cyanobacterium, Synechocystis sp. PCC 6803, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Akimoto, Seiji; Yokono, Makio; Yokono, Erina; Aikawa, Shimpei; Kondo, Akihiko

    2014-08-01

    In photosynthetic organisms, the interactions among pigment-protein complexes change in response to light conditions. In the present study, we analyzed the transfer of excitation energy from the phycobilisome (PBS) and photosystem (PS) II to PSI in the cyanobacterium Synechocystis sp. PCC 6803. After 20 min of dark adaptation, Synechocystis cells were illuminated for 5 min with strong light with different spectral profiles, blue, green, two kinds of red, and white light. After illumination, the energy-transfer characteristics were evaluated using steady-state fluorescence and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra, followed by spectral component analysis. Under illumination with strong light, the contribution of the energy transfer from the PSII to PSI (spillover) became greater, and that of the energy transfer from the PBS to PSI decreased; the former change was larger than the latter. The energy transfer pathway to PSI was sensitive to red light. We discuss the short-term adaptation of energy-transfer processes in Synechocystis under strong-light conditions.

  3. Scenedesmus dimorphus biofilm: Photoefficiency and biomass production under intermittent lighting.

    PubMed

    Toninelli, Andrea Efrem; Wang, Junfeng; Liu, Mingshen; Wu, Hong; Liu, Tianzhong

    2016-01-01

    This study investigated the effect of intermittent lighting on the growth performances of a Scenedesmus dimorphus biofilm. Flashing light effect (FLE) is common in traditional suspended cultures of microalgae; yet, publications about this phenomenon, in the context of biofilm cultivation, are scarce. In this work we demonstrate that, thanks to intermittent illumination, it is possible for attached cultivations to fulfill FLE, improve photoefficiency and productivity as well as providing protection from photoinhibition using much lower flashing light frequencies than those usually required with suspended cultures. Medium frequency intermittent lighting (0.1 Hz) guaranteed excellent light integration resulting in 9.13 g m(-2) d(-1) biomass productivity, which was 8.9% higher than with continuous lighting. Results showed that a light fraction value of 0.5 always improved photoefficiency values as related to continuous light with a 118.8% maximum increase. PMID:27561323

  4. Scenedesmus dimorphus biofilm: Photoefficiency and biomass production under intermittent lighting

    PubMed Central

    Toninelli, Andrea Efrem; Wang, Junfeng; Liu, Mingshen; Wu, Hong; Liu, Tianzhong

    2016-01-01

    This study investigated the effect of intermittent lighting on the growth performances of a Scenedesmus dimorphus biofilm. Flashing light effect (FLE) is common in traditional suspended cultures of microalgae; yet, publications about this phenomenon, in the context of biofilm cultivation, are scarce. In this work we demonstrate that, thanks to intermittent illumination, it is possible for attached cultivations to fulfill FLE, improve photoefficiency and productivity as well as providing protection from photoinhibition using much lower flashing light frequencies than those usually required with suspended cultures. Medium frequency intermittent lighting (0.1 Hz) guaranteed excellent light integration resulting in 9.13 g m−2 d−1 biomass productivity, which was 8.9% higher than with continuous lighting. Results showed that a light fraction value of 0.5 always improved photoefficiency values as related to continuous light with a 118.8% maximum increase. PMID:27561323

  5. Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification

    PubMed Central

    Nafar, Zahra; Jiang, Minshan; Wen, Rong; Jiao, Shuliang

    2016-01-01

    We developed a spectral-domain visible-light optical coherence tomography (VIS-OCT) based multimodal imaging technique which can accomplish simultaneous OCT and fluorescence imaging with a single broadband light source. Phantom experiments showed that by using the simultaneously acquired OCT images as a reference, the effect of light attenuation on the intensity of the fluorescent images by materials in front of the fluorescent target can be compensated. This capability of the multimodal imaging technique is of high importance for achieving quantification of the true intensities of autofluorescence (AF) imaging of the retina. We applied the technique in retinal imaging including AF imaging of the retinal pigment epithelium and fluorescein angiography (FA). We successfully demonstrated the effect of compensation on AF and FA images with the simultaneously acquired VIS-OCT images. PMID:27699094

  6. Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification

    PubMed Central

    Nafar, Zahra; Jiang, Minshan; Wen, Rong; Jiao, Shuliang

    2016-01-01

    We developed a spectral-domain visible-light optical coherence tomography (VIS-OCT) based multimodal imaging technique which can accomplish simultaneous OCT and fluorescence imaging with a single broadband light source. Phantom experiments showed that by using the simultaneously acquired OCT images as a reference, the effect of light attenuation on the intensity of the fluorescent images by materials in front of the fluorescent target can be compensated. This capability of the multimodal imaging technique is of high importance for achieving quantification of the true intensities of autofluorescence (AF) imaging of the retina. We applied the technique in retinal imaging including AF imaging of the retinal pigment epithelium and fluorescein angiography (FA). We successfully demonstrated the effect of compensation on AF and FA images with the simultaneously acquired VIS-OCT images.

  7. Highly Efficient Sky-Blue Fluorescent Organic Light Emitting Diode Based on Mixed Cohost System for Thermally Activated Delayed Fluorescence Emitter (2CzPN).

    PubMed

    Sun, Jin Won; Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2016-04-20

    The mixed cohosts of 1,3-bis(N-carbazolyl)benzene and 2,8-bis(diphenylphosphoryl)dibenzothiophene have been developed for a highly efficient blue fluorescent oragnic light emitting diode (OLED) doped with a thermally activated delayed fluorescence (TADF) emitter [4,5-di (9H-carbazol-9-yl) phthalonitrile (2CzPN)]. We have demonstrated one of the highest external quantum efficiency of 21.8% in blue fluorescent OLEDs, which is identical to the theoretically achievable maximum electroluminescence efficiency using the emitter. Interestingly, the efficiency roll-off is large even under the excellent charge balance in the device and almost the same as the single host based devices, indicating that the efficiency roll-off in 2CzPN based TADF host is related to the material characteristics, such as low reverse intesystem crossing rate rather than charge imbalance. PMID:27019330

  8. Broadband Antireflection and Light Extraction Enhancement in Fluorescent SiC with Nanodome Structures

    PubMed Central

    Ou, Yiyu; Zhu, Xiaolong; Jokubavicius, Valdas; Yakimova, Rositza; Mortensen, N. Asger; Syväjärvi, Mikael; Xiao, Sanshui; Ou, Haiyan

    2014-01-01

    We demonstrate a time-efficient and low-cost approach to fabricate Si3N4 coated nanodome structures in fluorescent SiC. Nanosphere lithography is used as the nanopatterning method and SiC nanodome structures with Si3N4 coating are formed via dry etching and thin film deposition process. By using this method, a significant broadband surface antireflection and a considerable omnidirectional luminescence enhancement are obtained. The experimental observations are then supported by numerical simulations. It is believed that our fabrication method will be well suitable for large-scale production in the future. PMID:24722521

  9. Efficient Lighting Design and Office Worker Productivity

    SciTech Connect

    Jones, Carol C.; Gordon, Kelly L.

    2004-08-22

    This paper provides an overview of the research findings that will be used as the basis for changing customer buying behaviors and a recipe for success for lighting solutions that will yield both energy savings and non-energy benefits. The lighting energy savings of these new systems compared to strategies of the past is analyzed, along with a recommended market penetration strategy using market research and the dynamics of the construction market.

  10. Light-Emitting Diodes and Cool White Fluorescent Light Similarly Suppress Pineal Gland Melatonin and Maintain Retinal Function and Morphology in the Rat. Part 1

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Heeke, D.; Mele, G.

    1999-01-01

    Currently, the light sources most commonly used in animal habitat lighting are cool white fluorescent or incandescent lamps. We evaluated a novel light-emitting diode (LED) light source for use in animal habitat lighting by comparing its effectiveness to cool white fluorescent light (CWF) in suppressing pineal gland melatonin and maintaining normal retinal physiology and morphology in the rat. Results of pineal melatonin suppression experiments showed equal suppression of pineal melatonin concentrations for LED light and CWF light at five different light illuminances (100, 40, 10, 1 and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light when compared to unexposed controls. Retinal physiology was evaluated using electroretinography. Results show no differences in a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histology assessment show no differences in retinal thickness rod outer segment length and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for days. Furthermore, the retinal pigmented epithelium and rod outer segments of all eyes observed were in good condition and of normal thickness. This study indicates that LED light does not cause retinal damage and can suppress pineal melatonin at similar intensities as a conventional CWF light source. These data suggest that LED light sources may be suitable replacements for conventional light sources used in the lighting of rodent vivariums while providing many mechanical and economical advantages.

  11. Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers

    NASA Astrophysics Data System (ADS)

    Yang, Yixing; Farley, Richard T.; Steckler, Timothy T.; Eom, Sang-Hyun; Reynolds, John R.; Schanze, Kirk S.; Xue, Jiangeng

    2009-08-01

    We report efficient near-infrared (NIR) organic light-emitting devices (OLEDs) based on fluorescent donor-acceptor-donor conjugated oligomers. The energies of the highest occupied and lowest unoccupied molecular orbitals of these oligomers are controlled by the donor and acceptor components, respectively; hence the energy gap and therefore the emission wavelength can be tuned by changing the strengths of the donor and acceptor components. External quantum efficiencies (EQEs) up to 1.6% and power efficiencies up to 7.0 mW/W are achieved in NIR OLEDs based on 4,9-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-6,7-dimethyl-[1,2,5]thiadiazolo[3,4-g]-quinoxaline (BEDOT-TQMe2), in which the electroluminescence peaks at a wavelength of 692 nm but extends to well above 800 nm. With a stronger acceptor in the oligomer, 4,8-bis(2,3-dihydrothieno-[3,4-b][1,4]dioxin-5-yl)benzo[1,2-c;4,5-c']bis [1,2,5]thiadiazole (BEDOT-BBT) based devices show longer wavelength emission peaked at 815 nm, although the maximum EQE is reduced to 0.51% due to the lower fluorescent quantum yield of the NIR emitter. The efficiencies of these NIR OLEDs are further increased by two to three times by using the sensitized fluorescent device structure, leading to a maximum EQE of 3.1% for BEDOT-TQMe2 and 1.6% for BEDOT-BBT based devices.

  12. UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids.

    PubMed

    Li, Zong-Yu; Wu, Yun-Tse; Tseng, Wei-Lung

    2015-10-28

    The use of DNA as a template has been demonstrated as an effective method for synthesizing different-sized silver nanoclusters. Although DNA-templated silver nanoclusters show outstanding performance as fluorescent probes for chemical sensing and cellular imaging, the synthesis of DNA-stabilized gold nanoclusters (AuNCs) with high fluorescence intensity remains a challenge. Here a facile, reproducible, scalable, NaBH4-free, UV-light-assisted method was developed to prepare AuNCs using repeats of 30 adenosine nucleotides (A30). The maximal fluorescence of A30-stabilized AuNCs appeared at 475 nm with moderate quantum yield, two fluorescence lifetimes, and a small amount of Au(+) on the surface of the Au core. Results of size-exclusion chromatography revealed that A30-stabilized AuNCs were more compact than A30. A series of control experiments showed that UV light played a dual role in the reduction of gold-ion precursors and the decomposition of citrate ions. A30 also acted as a stabilizer to prevent the aggregation of AuNCs. In addition, single-stranded DNA (ssDNA) consisting of an AuNC-nucleation sequence and a hybridization sequence was utilized to develop a AuNC-based ratiometric fluorescent probe in the presence of the double-strand-chelating dye SYBR Green I (SG). Under conditions of single-wavelength excitation, the combination of AuNC/SG-bearing ssDNA and perfectly matched DNA emitted fluorescence at 475 and 525 nm, respectively. The formed AuNC/SG-bearing ssDNA enabled the sensitive, selective, and ratiometric detection of specific nucleic acid targets. Finally, the AuNC-based ratiometric probes were successfully applied to determine specific nucleic acid targets in human serum.

  13. Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries.

    PubMed

    Rodrigues, Jonas A; Hug, Isabel; Neuhaus, Klaus W; Lussi, Adrian

    2011-10-01

    The aim of this study was to assess the performance of two light-emitting diode (LED)- and two laser fluorescence-based devices in detecting occlusal caries in vitro. Ninety-seven permanent molars were assessed twice by two examiners using two LED- (Midwest Caries - MID and VistaProof - VP) and two laser fluorescence-based (DIAGNOdent 2095 - LF and DIAGNOdent pen 2190 - LFpen) devices. After measuring, the teeth were histologically prepared and classified according to lesion extension. At D1 the specificities were 0.76 (LF and LFpen), 0.94 (MID), and 0.70 (VP); the sensitivities were 0.70 (LF), 0.62 (LFpen), 0.31 (MID), and 0.75 (VP). At D(3) threshold the specificities were 0.88 (LF), 0.87 (LFpen), 0.90 (MID), and 0.70 (VP); the sensitivities were 0.63 (LF and LFpen), 0.70 (MID), and 0.96 (VP). Spearman's rank correlations with histology were 0.56 (LF), 0.51 (LFpen), 0.55 (MID), and 0.58 (VP). Inter- and intraexaminer ICC values were high and varied from 0.83 to 0.90. Both LF devices seemed to be useful auxiliary tools to the conventional methods, presenting good reproducibility and better accuracy at D(3) threshold. MID was not able to differentiate sound surfaces from enamel caries and VP still needs improvement on the cut-off limits for its use.

  14. Measurement of air-fluorescence-light yield induced by an electromagnetic shower

    NASA Astrophysics Data System (ADS)

    MACFLY Collaboration; Colin, P.; Chukanov, A.; Grebenyuk, V.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Onofre, A.; Porokhovoi, S.; Sabirov, B.; Tkatchev, L.

    2009-01-01

    For most of the ultra-high-energy cosmic ray (UHECR) experiments and projects (HiRes, AUGER, TA, JEM-EUSO, TUS, …), the detection technique of extensive air showers is based, at least, on the measurement of the air-fluorescence-induced signal. The knowledge of the fluorescence-light yield (FLY) is of paramount importance for the UHECR energy reconstruction. The MACFLY experiment was designed to perform absolute measurements of the air FLY and to study its properties. Here, we report the result of measurement of dry-air FLY induced by 50 GeV electromagnetic showers as a function of the shower age and as a function of the pressure. The experiment was performed at CERN using a SPS-electron-test-beam line. The result shows the air FLY is proportional to the energy deposited in air (Ed). The ratio FLY/Ed and its pressure dependence remain constant independently of shower age, and more generally, independently of the excitation source used (single-electron track or air shower).

  15. Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina

    PubMed Central

    Hausselt, Susanne E.; Breuninger, Tobias; Castell, Xavier; Denk, Winfried; Margolis, David J.; Detwiler, Peter B.

    2009-01-01

    Dendritic signals play an essential role in processing visual information in the retina. To study them in neurites too small for electrical recording, we developed an instrument that combines a multi-photon (MP) microscope with a through-the-objective high-resolution visual stimulator. An upright microscope was designed that uses the objective lens for both MP imaging and delivery of visual stimuli to functionally intact retinal explants or eyecup preparations. The stimulator consists of a miniature liquid-crystal-on-silicon display coupled into the optical path of an infrared-excitation laser-scanning microscope. A pair of custom-made dichroic filters allows light from the excitation laser and three spectral bands (‘colors’) from the stimulator to reach the retina, leaving two intermediate bands for fluorescence imaging. Special optics allow displacement of the stimulator focus relative to the imaging focus. Spatially resolved changes in calcium-indicator fluorescence in response to visual stimuli were recorded in dendrites of different types of mammalian retinal neurons. PMID:19023590

  16. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes.

    PubMed

    Zhang, Yifan; Forrest, Stephen R

    2012-06-29

    Nonradiative triplets in fluorescent organic light emitting diodes (OLEDs) can lead to increased efficiency through triplet-triplet annihilation, or to decreased efficiency due to singlet-triplet annihilation. We study the tradeoff between the two processes from the electroluminescence transients of an OLED comprising a tetraphenyldibenzoperiflanthene (DBP) doped rubrene emissive layer, whose emission spectrum peaks at a wavelength of 610 nm. The electroluminescent transients in the current density range, 4 mA/cm(2)fluorescent OLEDs. PMID:23005014

  17. Robust incremental compensation of the light attenuation with depth in 3D fluorescence microscopy.

    PubMed

    Kervrann, C; Legland, D; Pardini, L

    2004-06-01

    Summary Fluorescent signal intensities from confocal laser scanning microscopes (CLSM) suffer from several distortions inherent to the method. Namely, layers which lie deeper within the specimen are relatively dark due to absorption and scattering of both excitation and fluorescent light, photobleaching and/or other factors. Because of these effects, a quantitative analysis of images is not always possible without correction. Under certain assumptions, the decay of intensities can be estimated and used for a partial depth intensity correction. In this paper we propose an original robust incremental method for compensating the attenuation of intensity signals. Most previous correction methods are more or less empirical and based on fitting a decreasing parametric function to the section mean intensity curve computed by summing all pixel values in each section. The fitted curve is then used for the calculation of correction factors for each section and a new compensated sections series is computed. However, these methods do not perfectly correct the images. Hence, the algorithm we propose for the automatic correction of intensities relies on robust estimation, which automatically ignores pixels where measurements deviate from the decay model. It is based on techniques adopted from the computer vision literature for image motion estimation. The resulting algorithm is used to correct volumes acquired in CLSM. An implementation of such a restoration filter is discussed and examples of successful restorations are given. PMID:15157197

  18. Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 .

    PubMed

    Suzuki, Katsuaki; Kubo, Shosei; Shizu, Katsuyuki; Fukushima, Tatsuya; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya; Kaji, Hironori

    2015-12-01

    Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron-accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor-acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky-blue to green emission and high photoluminescence quantum yields of 87-100 % in host matrices. Organic light-emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0-22.8 %, which originate from efficient up-conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states.

  19. Irradiance Decay in Fluorescent and Light-emitting Diode-based Phototherapy Devices: A Pilot Study.

    PubMed

    Olusanya, Bolajoko O; Osibanjo, Folashade B; Emokpae, Abieyuwa A; Slusher, Tina M

    2016-10-01

    We set out to determine the rate of decline of irradiance for fluorescent tube (FT) and light-emitting diode (LED) phototherapy devices in resource-limited settings where routine irradiance monitoring is uncommon. Irradiance levels (μW/cm(2)/nm) were measured weekly using BiliBlanket(®) II Meter on three FT-based and two LED-based phototherapy devices over a 19 week period. The two LED devices showed stable irradiance levels and did not require any lamp changes. The three FT-based devices showed rapid decline in irradiance, and all required three complete lamp exchanges approximately every 5-6 weeks. FT-based devices are associated with more rapid decline in irradiance to sub-therapeutic levels and require more frequent lamp changes than LED devices. Clinicians should be alert to the maintenance requirements of the phototherapy devices available in their settings to ensure efficacy of treatment.

  20. Irradiance Decay in Fluorescent and Light-emitting Diode-based Phototherapy Devices: A Pilot Study.

    PubMed

    Olusanya, Bolajoko O; Osibanjo, Folashade B; Emokpae, Abieyuwa A; Slusher, Tina M

    2016-10-01

    We set out to determine the rate of decline of irradiance for fluorescent tube (FT) and light-emitting diode (LED) phototherapy devices in resource-limited settings where routine irradiance monitoring is uncommon. Irradiance levels (μW/cm(2)/nm) were measured weekly using BiliBlanket(®) II Meter on three FT-based and two LED-based phototherapy devices over a 19 week period. The two LED devices showed stable irradiance levels and did not require any lamp changes. The three FT-based devices showed rapid decline in irradiance, and all required three complete lamp exchanges approximately every 5-6 weeks. FT-based devices are associated with more rapid decline in irradiance to sub-therapeutic levels and require more frequent lamp changes than LED devices. Clinicians should be alert to the maintenance requirements of the phototherapy devices available in their settings to ensure efficacy of treatment. PMID:27118821

  1. Combined application of dynamic light scattering imaging and fluorescence intravital microscopy in vascular biology

    NASA Astrophysics Data System (ADS)

    Kalchenko, V.; Ziv, K.; Addadi, Y.; Madar-Balakirski, N.; Meglinski, I.; Neeman, M.; Harmelin, A.

    2010-08-01

    The dynamic light scattering imaging (DLSI) system combined with the conventional fluorescence intravital microscope (FIM) has been applied for the examination of blood and lymph vessels in the mouse ear in vivo. While the CCD camera can be shared by both techniques the combined application of DLSI and FIM allows rapid switching between the modalities. In current study temporal speckles fluctuations are used for rendering blood vessels structure and monitoring blood perfusion with the higher spatial resolution, whereas FIM provides the images of lymphatic vessels. The results clearly demonstrate that combined application of DLSI and FIM approaches provides synchronic in vivo images of blood and lymph vessels with higher contrast and specificity. The use of this new dual-modal diagnostic system is particularly important and has a great potential to significantly expand the capabilities of vascular diagnostics providing synchronic in vivo images of blood and lymph vessels.

  2. A wide field fluorescence lifetime imaging system using a light sheet microscope

    NASA Astrophysics Data System (ADS)

    Birch, Phil M.; Moore, Lamar; Li, Xiaofei; Phillips, Roger; Young, Rupert; Chatwin, Chris

    2016-04-01

    Fluorescence lifetime imaging microscopy (FLIM) has allowed scientists to discern information about the chemical properties of biological processes and has become a vital tool in the life sciences and medical research communities. Measuring the spatial lifetime distribution of the fluorophores as well as the intensity distribution enables users to discern vital information about the chemical environment. It however, remains challenging and often involves slow scanning. We present a new microscope system based on light sheet illumination that uses a micro channel plate (MCP) device called a Capacitive Division Imaging Readout (CDIR) which has been developed by Photek Ltd. The device uses an array of capacitors to move the charge site from the MCP to four pre-amplifiers and time-over-threshold discriminators. This camera has the ability to image photons as well as measure the arrival time, enabling high speed FLIM imaging of biological samples.

  3. Triarylboron-Based Fluorescent Organic Light-Emitting Diodes with External Quantum Efficiencies Exceeding 20 .

    PubMed

    Suzuki, Katsuaki; Kubo, Shosei; Shizu, Katsuyuki; Fukushima, Tatsuya; Wakamiya, Atsushi; Murata, Yasujiro; Adachi, Chihaya; Kaji, Hironori

    2015-12-01

    Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron-accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor-acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky-blue to green emission and high photoluminescence quantum yields of 87-100 % in host matrices. Organic light-emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0-22.8 %, which originate from efficient up-conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states. PMID:26563845

  4. Simulation of light attenuation within fluorescent microspheres used for liquid fraction separation recorded by a CSLM

    NASA Astrophysics Data System (ADS)

    Liljeborg, Anders

    1996-04-01

    In order to separate different proteins, liquid chromatography is often used. The sample is pumped through a column filled with microspheres. The velocity of the proteins are depending on their interaction with the microspheres. The proteins could be labelled with a fluorescent marker and the distribution of the protein within the sphere can be recorded using a CSLM. When collecting optical sections using a CSLM the detected intensity decreases the deeper in the specimen the section is collected. This is due to absorption, scattering and bleaching. For the special case of a single microsphere it is of interest to find out how this combined effect is distributed within the sphere for a certain distribution of the fluorescent stain. When this distribution is known the attenuation can be compensated for. In the simulation the distribution of the stain is supposed to be the result of a diffusion process and all attenuation is supposed to arise from absorption only. The attenuation for a certain volume element (voxel) is supposed to occur from absorption in the voxels above, within the cone formed by the focused excitation light beam. A basic assumption is that the attenuation within each voxel is a fraction of the fluorescent intensity within that same voxel. A simulation program has been written where the parameters of the diffusion process within the microsphere can be controlled. Also the parameters for the attenuation calculation can be set, e.g. the assumed fraction of fluorescent intensity that act as attenuation. 3D datasets can be generated for visualization. Also intensity profiles can be generated along a diameter of the simulated sphere in the depth direction, since the intensity distribution is circularly symmetric in the lateral directions. Some comparisons are made to real microspheres, and the parameters are adjusted for closest resemblance. This adjustment can be done manually but an implementation using non-linear fitting of data is also presented. The

  5. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques

    PubMed Central

    Jemielita, Matthew; Taormina, Michael J.; DeLaurier, April; Kimmel, Charles B.; Parthasarathy, Raghuveer

    2013-01-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. (A) Schematic: Light sheet microscopy of zebrafish embryos. Opercle-forming osteoblasts following twenty-four hours of (B) light sheet imaging, showing normal growth, and (C) spinning disk confocal imaging, showing aberrant growth. PMID:23242824

  6. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.; Middelboe, Mathias

    2014-04-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27-52% removal of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially force microbes to degrade less labile substrates, thereby increasing RDOM production and stimulating ocean carbon storage.

  7. 78 FR 46368 - Certain Dimmable Compact Fluorescent Lamps and Products Containing Same; Termination of an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Certain Dimmable Compact Fluorescent Lamps and Products Containing Same; Termination of an... Lake Forest, Illinois (collectively, ``Neptun''). 77 FR 11587 (Feb. 27, 2012). The complaint...

  8. Low-frequency wide-field fluorescence lifetime imaging using a high-power near-infrared light-emitting diode light source

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Lomnes, Stephen J.; Choi, Hak Soo; Frangioni, John V.

    2010-03-01

    Fluorescence lifetime imaging (FLi) could potentially improve exogenous near-infrared (NIR) fluorescence imaging, because it offers the capability of discriminating a signal of interest from background, provides real-time monitoring of a chemical environment, and permits the use of several different fluorescent dyes having the same emission wavelength. We present a high-power, LED-based, NIR light source for the clinical translation of wide-field (larger than 5 cm in diameter) FLi at frequencies up to 35 MHz. Lifetime imaging of indocyanine green (ICG), IRDye 800-CW, and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) was performed over a large field of view (10 cm by 7.5 cm) using the LED light source. For comparison, a laser diode light source was employed as a gold standard. Experiments were performed both on the bench by diluting the fluorescent dyes in various chemical environments in Eppendorf tubes, and in vivo by injecting the fluorescent dyes mixed in Matrigel subcutaneously into CD-1 mice. Last, measured fluorescence lifetimes obtained using the LED and the laser diode sources were compared with those obtained using a state-of-the-art time-domain imaging system and with those previously described in the literature. On average, lifetime values obtained using the LED and the laser diode light sources were consistent, exhibiting a mean difference of 3% from the expected values and a coefficient of variation of 12%. Taken together, our study offers an alternative to laser diodes for clinical translation of FLi and explores the use of relatively low frequency modulation for in vivo imaging.

  9. Lighting the way to willow biomass production.

    PubMed

    Cunniff, Jennifer; Cerasuolo, Marianna

    2011-08-15

    Biofuels produced from willow could help reduce our dependence on fossil fuels. To maximise yields per hectare light interception and utilisation of the plant canopy need to be optimised. Jennifer Cunniff and Marianna Cerasuolo explain how this target can be reached by integrating morphological field measurements and modelling techniques.

  10. Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures

    NASA Astrophysics Data System (ADS)

    Hopfmann, Caspar; Musiał, Anna; Maier, Sebastian; Emmerling, Monika; Schneider, Christian; Höfling, Sven; Kamp, Martin; Reitzenstein, Stephan

    2016-09-01

    Within this work we propose and demonstrate a technological approach to efficiently suppress excitation laser stray-light in resonance fluorescence experiments on quantum dot micropillars. To ensure efficient stray-light suppression, their fabrication process includes a planarization step and subsequent covering with a titanium mask to fabricate self-aligned apertures at the micropillar positions. These apertures aim to limit laser stray-light in the side-excitation vertical-detection configuration, while enabling detection of the optical signal through the top facet of the micropillars. The beneficial effects of these apertures are proven and quantitatively evaluated within a statistical study in which we determine and compare the stray-light suppression of 48 micropillars with and without metal apertures. Actual resonance fluorescence experiments on single quantum dots coupled to the cavity mode prove the relevance of the proposed approach and demonstrate that it will foster further studies on cavity quantum electrodynamics phenomena under coherent optical excitation.

  11. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.

    PubMed

    Tan, Quanyin; Li, Jinhui

    2016-01-01

    The use of fluorescent lamps has expanded rapidly all over the world in recent years, because of their energy-saving capability. Consequently, however, mercury emissions from production, breakage, and discard of the lamps are drawing increasing concern from the public. This article focuses on evaluating the amount of mercury used for fluorescent lamp production, as well as the potential mercury emissions during production and breakage, in mainland China. It is expected to provide a comprehensive understanding about the risks present in the mercury from fluorescent lamps, and to know about the impacts of the policies on fluorescent lamps after their implementation. It is estimated that, in 2020, mercury consumption will be about 11.30-15.69 tonnes, a significant reduction of 34.9%-37.4% from that used in 2013, owing to improvement in mercury dosing dosage technology and tighter limitations on mercury content in fluorescent lamps. With these improvements, the amount of mercury remaining in fluorescent lamps and released during production is estimated to be 10.71-14.86 and 0.59-0.83 tonnes, respectively; the mercury released from waste fluorescent lamps is estimated to be about 5.37-7.59 tonnes. Also, a significant reduction to the mercury emission can be expected when a collection and treatment system is well established and conducted in the future. PMID:26628052

  12. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.

    PubMed

    Tan, Quanyin; Li, Jinhui

    2016-01-01

    The use of fluorescent lamps has expanded rapidly all over the world in recent years, because of their energy-saving capability. Consequently, however, mercury emissions from production, breakage, and discard of the lamps are drawing increasing concern from the public. This article focuses on evaluating the amount of mercury used for fluorescent lamp production, as well as the potential mercury emissions during production and breakage, in mainland China. It is expected to provide a comprehensive understanding about the risks present in the mercury from fluorescent lamps, and to know about the impacts of the policies on fluorescent lamps after their implementation. It is estimated that, in 2020, mercury consumption will be about 11.30-15.69 tonnes, a significant reduction of 34.9%-37.4% from that used in 2013, owing to improvement in mercury dosing dosage technology and tighter limitations on mercury content in fluorescent lamps. With these improvements, the amount of mercury remaining in fluorescent lamps and released during production is estimated to be 10.71-14.86 and 0.59-0.83 tonnes, respectively; the mercury released from waste fluorescent lamps is estimated to be about 5.37-7.59 tonnes. Also, a significant reduction to the mercury emission can be expected when a collection and treatment system is well established and conducted in the future.

  13. Analysis of Compact Fluorescent Lights for Use by Patients with Photosensitive Conditions

    PubMed Central

    Klein, Rachel S.; Werth, Victoria P.; Dowdy, John C.; Sayre, Robert M.

    2010-01-01

    Ultraviolet radiation (UVR) is hazardous to patients with photosensitive skin disorders, such as lupus erythematosus, xeroderma pigmentosum and skin cancer. As such, these patients are advised to minimize their exposure to UVR. Classically, this is accomplished through careful avoidance of sun exposure and artificial tanning booths. Indoor light bulbs, however, are generally not considered to pose significant UVR hazard. We sought to test this notion by measuring the UV emissions of 19 different compact fluorescent light bulbs. The ability to induce skin damage was assessed with the CIE erythema action spectrum, ANSI S(λ) generalized UV hazard spectrum and the CIE photocarcinogenesis action spectrum. The results indicate that there is a great deal of variation amongst different bulbs, even within the same class. Although the irradiance of any given bulb is low, the possible daily exposure time is rather lengthy. This results in potential daily UVR doses ranging from 0.1 to 625 mJ cm−2, including a daily UVB (290–320 nm) dose of 0.01 to 15 mJ cm−2. Because patients are exposed continually over long time frames, this could lead to significant cumulative damage. It would therefore be prudent for patients to use bulbs with the lowest UV irradiance. PMID:19320850

  14. Rapid at-line pharmaceutical cleaning verification using a novel light induced fluorescence (LIF) sensor.

    PubMed

    Peles, Dana N; Ely, Kevin J; Crowder, Timothy M; Ponstingl, Mike

    2013-01-01

    A novel light emitting diode (LED) array-based light induced fluorescence (LIF) sensor is presented as an analytical methodology for at-line cleaning verification within the pharmaceutical industry. This sensor differs from conventional LIF sensors through the ability to dynamically control both the LED excitation array and detection parameters, enabling the exploitation of the optical power and detection sensitivity to rapidly detect trace concentrations of residual drug. This feature makes this sensor an ideal alternative to conventional cleaning verification analytical methodologies. In this study, the LIF sensor was validated as an analytical technique through the analysis of specificity, precision, linearity, limit of quantitation, and accuracy, with respect to solutions and swab extracts of a single pharmaceutical compound (Compound A). The validated system was then utilized for cleaning process optimization and subsequent routine cleaning process verification following three manufacturing campaigns. The LIF sensor enabled a significant improvement in the analysis time for quantitative detection of Compound A; individual swab and rinsate extracts were analyzed in less than 1 min. The results presented herein effectively demonstrate the ability of the novel LIF sensor to efficiently function as a valid at-line analytical methodology for cleaning verification.

  15. Virtual unfolding of light sheet fluorescence microscopy dataset for quantitative analysis of the mouse intestine

    NASA Astrophysics Data System (ADS)

    Candeo, Alessia; Sana, Ilenia; Ferrari, Eleonora; Maiuri, Luigi; D'Andrea, Cosimo; Valentini, Gianluca; Bassi, Andrea

    2016-05-01

    Light sheet fluorescence microscopy has proven to be a powerful tool to image fixed and chemically cleared samples, providing in depth and high resolution reconstructions of intact mouse organs. We applied light sheet microscopy to image the mouse intestine. We found that large portions of the sample can be readily visualized, assessing the organ status and highlighting the presence of regions with impaired morphology. Yet, three-dimensional (3-D) sectioning of the intestine leads to a large dataset that produces unnecessary storage and processing overload. We developed a routine that extracts the relevant information from a large image stack and provides quantitative analysis of the intestine morphology. This result was achieved by a three step procedure consisting of: (1) virtually unfold the 3-D reconstruction of the intestine; (2) observe it layer-by-layer; and (3) identify distinct villi and statistically analyze multiple samples belonging to different intestinal regions. Even if the procedure has been developed for the murine intestine, most of the underlying concepts have a general applicability.

  16. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands

    PubMed Central

    Ciruela, Francisco; Fernández-Dueñas, Víctor; Jacobson, Kenneth A.

    2015-01-01

    The use of G protein-coupled receptors fluorescent ligands is undergoing continuous expansion. In line with this, fluorescent agonists and antagonists of high affinity for G protein-coupled adenosine and P2Y receptors have been shown to be useful pharmacological probe compounds. Fluorescent ligands for A1R, A2AR, and A3R (adenosine receptors) and P2Y2R, P2Y4R, P2Y6R, and P2Y14R (nucleotide receptors) have been reported. Such ligands have been successfully applied to drug discovery and to GPCR characterization by flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer and scanning confocal microscopy. Here we summarize recently reported and readily available representative fluorescent ligands of purinergic receptors. In addition, we pay special attention on the use of this family of fluorescent ligands revealing two main aspects of purinergic receptor biology, namely ligand binding and receptor oligomerization. PMID:25890205

  17. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies.

    PubMed

    Ho, Shih-Hsin; Chan, Ming-Chang; Liu, Chen-Chun; Chen, Chun-Yen; Lee, Wen-Lung; Lee, Duu-Jong; Chang, Jo-Shu

    2014-01-01

    Lutein, one of the main photosynthetic pigments, is a promising natural product with both nutritional and pharmaceutical applications. In this study, light-related strategies were applied to enhance the cell growth and lutein production of a lutein-rich microalga Scenedesmus obliquus FSP-3. The results demonstrate that using white LED resulted in better lutein production efficiency when compared to the other three monochromatic LEDs (red, blue, and green). The lutein productivity of S. obliquus FSP-3 was further improved by adjusting the type of light source and light intensity. The optimal lutein productivity of 4.08 mg/L/d was obtained when using a TL5 fluorescent lamp at a light intensity of 300 μmol/m(2)/s, and this performance is better than that reported in most related studies. Moreover, the time-course profile of lutein accumulation in the microalga shows that the maximal lutein content and productivity were obtained at the onset of nitrogen depletion.

  18. Electro-Production of Light Lambda Hypernuclei

    SciTech Connect

    Nakamura, Satoshi N.

    2013-02-01

    Through the study of light hypernuclei, we can learn about hyperon nucleon interaction. The hypernuclear spectroscopy with electron beams is one of most powerful methods to study detailed structure of light hypernuclei thanks to its high energy resolution. With a decade of efforts at Jefferson Lab, the spectroscopy of Λ hypernuclei with an electron beam is now established. Observation of {sup 7}{sub Λ}He which gave the last missing binding energy of the A = 7, T = 1 iso-triplet hypernuclei provides an important experimental input for the charge symmetry breaking (CSB) effect of the ΛN interaction. Further study about A = 4 hypernuclear iso-doublet, {sup 4}{sub Λ}H and {sup 4}{sub Λ}He , is necessary and such experiments are now planned.

  19. Electro-Production of Light Lambda Hypernuclei

    NASA Astrophysics Data System (ADS)

    Nakamura, S. N.; Acha, A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baker, O. K.; Baturin, P.; Benmokhtar, F.; Boeglin, W.; Bono, J.; Bosted, P.; Brash, E.; Carlini, R.; Carter, P.; Chen, C.; Chiba, A.; Christy, M.; Cole, L.; Dalton, M.; Danagoulian, S.; Daniel, A.; Dharmawardane, V.; Doi, D.; Egiyan, K.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gibson, E. F.; Gogami, T.; Gueye, P.; Han, Y.; Hashimoto, O.; Hiyama, E.; Honda, D.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jayalath, C.; Johnston, K.; Jones, M.; Kalantarians, N.; Kanda, H.; Kaneta, M.; Kato, F.; Kato, S.; Kawai, M.; Kawama, D.; Keppel, C.; Khanal, H.; Kohl, M.; Lan, K. J.; De Leo, R.; Liyanage, A.; Luo, W.; Mack, D.; Maeda, K.; Malace, S.; Margaryan, A.; Marikyan, G.; Markowitz, P.; Maruta, T.; Maruyama, N.; Matsumura, A.; Maxwell, V.; Miyoshi, T.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Narayan, A.; Navasardyan, T.; Neville, C.; Niculescu, G.; Niculescu, M.-I.; Nomura, H.; Nonaka, K.; Nunez, A.; Nuruzzaman; Ohtani, A.; Okayasu, Y.; Oyamada, M.; Perez, N.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Randeniya, S.; Raue, B.; Reinhold, J.; Roche, J.; Rodriguez, V. M.; Samanta, C.; Sato, Y.; Sawatzky, B.; Segbefia, E. K.; Seva, T.; Shichijo, A.; Simicevic, N.; Smith, G.; Song, Y.; Sumihama, M.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Taniya, N.; Tsukada, K.; Tvaskis, V.; Veilleux, M.; Vulcan, W.; Wells, S.; Wesselmann, F. R.; Wood, S. A.; Ya, L.; Yamamoto, T.; Yan, C.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.

    2013-02-01

    Through the study of light hypernuclei, we can learn about hyperon nucleon interaction. The hypernuclear spectroscopy with electron beams is one of most powerful methods to study detailed structure of light hypernuclei thanks to its high energy resolution. With a decade of efforts at Jefferson Lab, the spectroscopy of Λ hypernuclei with an electron beam is now established. Observation of {^7_ΛHe} which gave the last missing binding energy of the A = 7, T = 1 iso-triplet hypernuclei provides an important experimental input for the charge symmetry breaking (CSB) effect of the ΛN interaction. Further study about A = 4 hypernuclear iso-doublet, {^4_ΛH} and {^4_ΛHe}, is necessary and such experiments are now planned.

  20. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells.

    PubMed

    Peddie, Christopher J; Blight, Ken; Wilson, Emma; Melia, Charlotte; Marrison, Jo; Carzaniga, Raffaella; Domart, Marie-Charlotte; O'Toole, Peter; Larijani, Banafshe; Collinson, Lucy M

    2014-08-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure.

  1. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.

    PubMed

    Morrow, J M; Chang, B S W

    2015-07-28

    Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates.

  2. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.

    PubMed

    Morrow, J M; Chang, B S W

    2015-07-28

    Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates. PMID:26098991

  3. Elemental mercury emission in the indoor environment due to broken compact fluorescent light (CFL) bulbs--paper

    EPA Science Inventory

    Compact fluorescent light (CFL) bulbs contain a few milligrams (mg) of elemental mercury. When a CFL breaks, some of the mercury is immediately released as elemental mercury vapor and the remainder is deposited on indoor surfaces with the bulb debris. In a controlled study design...

  4. High-Efficiency Blue Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives.

    PubMed

    Lee, Sae Youn; Adachi, Chihaya; Yasuda, Takuma

    2016-06-01

    High-efficiency blue thermally activated delayed fluorescence (TADF) molecules, consisting of phenoxaphosphine oxide and phenoxathiin dioxide as acceptor units and 9,9-dimethylacridan as a donor unit, are reported. Maximum external electroluminescence quantum efficiencies of up to 20.5% are achieved in blue organic light-emitting diodes (OLEDs) by employing these materials as TADF emitters.

  5. Fluorescent Organic Planar pn Heterojunction Light-Emitting Diodes with Simplified Structure, Extremely Low Driving Voltage, and High Efficiency.

    PubMed

    Chen, Dongcheng; Xie, Gaozhan; Cai, Xinyi; Liu, Ming; Cao, Yong; Su, Shi-Jian

    2016-01-13

    Fluorescent organic light-emitting diodes capable of radiative utilization of both singlet and triplet excitons are achieved via a simple double-layer planar pn hetero-junction configuration without a conventional emission layer, leading to high external quantum efficiency above 10% and extremely low driving voltages close to the theoretical minima.

  6. Using peel fluorescence in black light rooms to identify navel oranges with shorter storage life and poor rind quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this project is to minimize postharvest decay losses of fresh citrus fruits. Among the approaches recently examined was peel fluorescence under ultraviolet light. In addition to its usual application to identify fruit with developing decay lesions (“blister” or “clear” rot) in black...

  7. NLO Vector Boson Production With Light Jets

    SciTech Connect

    Bern, Z.; Diana, G.; Dixon, L.J.; Febres Cordero, F.; Forde, D.; Gleisberg, T.; Hoeche, S.; Ita, H.; Kosower, D.A.; Maitre, D.; Ozeren, K.

    2012-02-15

    In this contribution we present recent progress in the computation of next-to-leading order (NLO) QCD corrections for the production of an electroweak vector boson in association with jets at hadron colliders. We focus on results obtained using the virtual matrix element library BlackHat in conjunction with SHERPA, focusing on results relevant to understanding the background to top production. The production of a vector boson in association with several jets at the Large Hadron Collider (LHC) is an important background for other Standard Model processes as well as new physics signals. In particular, the production of a W boson in association with many jets is an important background for processes involving one or more top quarks. Precise predictions for the backgrounds are crucial to measurement of top-quark processes. Vector boson production in association with multiple jets is also a very important background for many SUSY searches, as it mimics the signatures of many typical decay chains. Here we will discuss how polarization information can be used as an additional handle to differentiate top pair production from 'prompt' W-boson production. More generally, ratios of observables, for example for events containing a W boson versus those containing a Z boson, are expected to be better-behaved as many uncertainties cancel in such ratios. Precise calculation of ratios, along with measurement of one of the two processes in the ratio, can be used in data-driven techniques for estimating backgrounds.

  8. Light sheet-based fluorescence microscopy (LSFM) reduces phototoxic effects and provides new means for the modern life sciences

    NASA Astrophysics Data System (ADS)

    Pampaloni, Francesco; Ansari, Nari; Girard, Philippe; Stelzer, Ernst H. K.

    2011-07-01

    Most optical technologies are applied to flat, basically two-dimensional cellular systems. However, physiological meaningful information relies on the morphology, the mechanical properties and the biochemistry of a cell's context. A cell requires the complex three-dimensional relationship to other cells. However, the observation of multi-cellular biological specimens remains a challenge. Specimens scatter and absorb light, thus, the delivery of the probing light and the collection of the signal light become inefficient; many endogenous biochemical compounds also absorb light and suffer degradation of some sort (photo-toxicity), which induces malfunction of a specimen. In conventional and confocal fluorescence microscopy, whenever a single plane, the entire specimen is illuminated. Recording stacks of images along the optical Z-axis thus illuminates the entire specimen once for each plane. Hence, cells are illuminated 10-20 and fish 100-300 times more often than they are observed. This can be avoided by changing the optical arrangement. The basic idea is to use light sheets, which are fed into the specimen from the side and overlap with the focal plane of a wide-field fluorescence microscope. In contrast to an epi-fluorescence arrangement, such an azimuthal fluorescence arrangement uses two independently operated lenses for illumination and detection. Optical sectioning and no photo-toxic damage or photo-bleaching outside a small volume close to the focal plane are intrinsic properties. Light sheet-based fluorescence microscopy (LSFM) takes advantage of modern camera technologies. LSFM can be operated with laser cutters and for fluorescence correlation spectroscopy. During the last few years, LSFM was used to record zebrafish development from the early 32-cell stage until late neurulation with sub-cellular resolution and short sampling periods (60-90 sec/stack). The recording speed was five 4-Megapixel large frames/sec with a dynamic range of 12-14 bit. We followed

  9. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter.

    PubMed

    Braun-Galleani, Stephanie; Baganz, Frank; Purton, Saul

    2015-08-01

    Microalgae have potential as platforms for the synthesis of high-value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low-cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co-expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl-1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl-1. This study suggests that recombinant protein expression is product-specific and needs to be optimized individually. PMID:26098300

  10. Detection of Biomass in New York City Aerosols: Light Scattering and Optical Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Niebauer, M.; Alimova, A.; Katz, A.; Xu, M.; Rudolph, E.; Steiner, J.; Alfano, R. R.

    2005-12-01

    Optical spectroscopy is an ideal method for detecting bacteria and spores in real time. Optical fluorescence spectroscopy examination of New York City aerosols is used to quantify the mass of bacteria spores present in air masses collected at 14 liters/minute onto silica fiber filters, and on silica fiber ribbons using an Environmental Beta Attenuation Monitor manufactured by MetOne Instruments configured for the PM2.5 fraction. Dipicolinic acid (DPA), a molecule found primarily in bacterial spores, is the most characteristic component of spores in trial experiments on over 200 collected aerosol samples. DPA is extracted from the spores using a heat bath and chelated with Terbium. The DPA:Tb is detected by measuring its characteristic fluorescence with emission bands at 490, 545 and 585 nm for 270 nm excitation. Light scattering also measures the size distribution for a number of a variety of bacteria - Bacillus subtilis (rod shaped), Staphylococcus aureus (spherical) and Pseudomonas aeruginosa (short rods) establishing that optical techniques satisfactorily distinguish populations based on their variable morphology. Size and morphology are obtained by applying a variation of the Gaussian Ray Approximation theory of anomalous diffraction theory to an analysis of the transmission spectra in the range of 0.4 to 1.0 microns. In test experiments, the refractive index of the inner spore core of Bacillus subtilis decreases from 1.51 to 1.39 while the spore radius enlarges from 0.38 to 0.6 micrometers. Optical determinations are verified by oil-immersion techniques and by scanning electron microscope measurements. Characterization of spores, germinating spore materials, and bacteria is considered vital to tracing bacteria in the environment, for the development of life-detection systems for planetary exploration, monitoring pathogens in environmental systems, and for the preparation of anti-terrorism strategies.

  11. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs.

    PubMed

    Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M

    2013-01-15

    Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. Although CFLs and LEDs are more energy-efficient than incandescent bulbs, they require more metal-containing components. There is uncertainty about the potential environmental impacts of these components and whether special provisions must be made for their disposal at the end of useful life. Therefore, the objective of this study is to analyze the resource depletion and toxicity potentials from the metals in incandescent, CFL, and LED bulbs to complement the development of sustainable energy policy. We assessed the potentials by examining whether the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state regulations and by applying life cycle impact-based and hazard-based assessment methods (note that "life cycle impact-based method" does not mean a general life cycle assessment (LCA) but rather the elements in LCA used to quantify toxicity potentials). We discovered that both CFL and LED bulbs are categorized as hazardous, due to excessive levels of lead (Pb) leachability (132 and 44 mg/L, respectively; regulatory limit: 5) and the high contents of copper (111,000 and 31,600 mg/kg, respectively; limit: 2500), lead (3860 mg/kg for the CFL bulb; limit: 1000), and zinc (34,500 mg/kg for the CFL bulb; limit: 5000), while the incandescent bulb is not hazardous (note that the results for CFL bulbs excluded mercury vapor not captured during sample preparation). The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. Comparing the bulbs on an equivalent quantity basis with respect to the expected lifetimes of

  12. Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs.

    PubMed

    Lim, Seong-Rin; Kang, Daniel; Ogunseitan, Oladele A; Schoenung, Julie M

    2013-01-15

    Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. Although CFLs and LEDs are more energy-efficient than incandescent bulbs, they require more metal-containing components. There is uncertainty about the potential environmental impacts of these components and whether special provisions must be made for their disposal at the end of useful life. Therefore, the objective of this study is to analyze the resource depletion and toxicity potentials from the metals in incandescent, CFL, and LED bulbs to complement the development of sustainable energy policy. We assessed the potentials by examining whether the lighting products are to be categorized as hazardous waste under existing U.S. federal and California state regulations and by applying life cycle impact-based and hazard-based assessment methods (note that "life cycle impact-based method" does not mean a general life cycle assessment (LCA) but rather the elements in LCA used to quantify toxicity potentials). We discovered that both CFL and LED bulbs are categorized as hazardous, due to excessive levels of lead (Pb) leachability (132 and 44 mg/L, respectively; regulatory limit: 5) and the high contents of copper (111,000 and 31,600 mg/kg, respectively; limit: 2500), lead (3860 mg/kg for the CFL bulb; limit: 1000), and zinc (34,500 mg/kg for the CFL bulb; limit: 5000), while the incandescent bulb is not hazardous (note that the results for CFL bulbs excluded mercury vapor not captured during sample preparation). The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. Comparing the bulbs on an equivalent quantity basis with respect to the expected lifetimes of

  13. Production Process for Strong, Light Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Holmquist, G. R.; Cordia, E. R.; Tomer, R. S.

    1985-01-01

    Proportions of ingredients and sintering time/temperature schedule changed. Production process for lightweight, high-strength ceramic insulating tiles for Space Shuttle more than just scaled-up version of laboratory process for making small tiles. Boron in aluminum borosilicate fibers allows fusion at points where fibers contact each other during sintering, thereby greatly strengthening tiles structure.

  14. The use of light-emitting diode fluorescence to diagnose mycobacterial lymphadenitis in fine-needle aspirates from children

    PubMed Central

    van Wyk, A. C.; Marais, B. J.; Warren, R. M.; van Wyk, S. S.; Wright, C. A.

    2011-01-01

    SUMMARY BACKGROUND Fine-needle aspiration biopsy (FNAB) is a simple, safe and effective method for investigating suspected mycobacterial lymphadenitis in children. Fluorescence microscopy can provide rapid mycobacterial confirmation. Light-emitting diodes (LEDs) provide a cheap and robust excitation light source, making fluorescence microscopy feasible in resource-limited settings. OBJECTIVE To compare the diagnostic performance of LED fluorescence microscopy on Papanicolaou (PAP) stained smears with the conventional mercury vapour lamp (MVL). METHODS FNAB smears routinely collected from palpable lymph nodes in children with suspected mycobacterial disease were PAP-stained and evaluated by two independent microscopists using different excitatory light sources (MVL and LED). Mycobacterial culture results provided the reference standard. A manually rechargeable battery-powered LED power source was evaluated in a random subset. RESULTS We evaluated 182 FNAB smears from 121 children (median age 31 months, interquartile range 10–67). Mycobacterial cultures were positive in 84 of 121 (69%) children. The mean sensitivity with LED (mains-powered), LED (rechargeable battery-powered) and MVL was respectively 48.2%, 50.0% and 51.8% (specificity 78.4%, 86.7% and 78.4%). Inter-observer variation was similar for LED and MVL (κ = 0.5). CONCLUSION LED fluorescence microscopy provides a reliable alternative to conventional methods and has many favourable attributes that would facilitate improved, decentralised diagnostic services. PMID:21276297

  15. Improving the estimation of terrestrial gross primary productivity by downscaling global sun-induced chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Duveiller, G.

    2015-12-01

    The synoptic nature of satellite remote sensing makes this technique a key tool to contribute to estimating the amount of Carbon fixed by vegetation at global scale. From the various types of information that can be derived from space, the recent capacity to create global datasets of sun-induced chlorophyll fluorescence (SIF) may prove to be a game-changer. SIF is a signal emitted by the photosynthetic machinery itself that, under the illumination conditions in which it can be estimated by satellite, has been shown to be proportional to gross primary productivity (GPP). However, this relationship is dependent on vegetation types that are typically spatially mixed at the coarse spatial resolution of SIF datasets (at best 0.5°), which in turn is a consequence of the complexity of the SIF retrieval itself. This study demonstrates how 0.5° SIF derived from GOME-2 data can be downscaled to a more adequate spatial resolution of 0.05° by combining 3 explanatory biophysical variables derived from the MODIS sensor (NDVI, land surface temperature and evapotranspiration) under a semi-empirical light-use efficiency framework. The finer spatial resolution results in a cleaner signal when aggregating it per land cover type. The signal is also better correlated in time with GPP estimated from flux towers, reaching the same level of performance than global GPP products calibrated on such flux towers and driven by meteorological and remote sensing variables (other than SIF). Establishing linear relationships between SIF and flux-tower GPP at vegetation type level allows to estimate values of global terrestrial vegetation gross productivity that have different magnitude but similar temporal patterns as other GPP products. Based on downscaled SIF, the mean global GPP values over the period 2007 to 2013 are (for deciduous broadleaf and mixed forests) 13.7, (for evergreen needleleaf forests) 2.5, (for grasslands) 12.5 and (savannahs and woody savannas) 36.8 Pg of Carbon per year.

  16. Fluorescence of aqueous solutions of commercial humic products

    NASA Astrophysics Data System (ADS)

    Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.

    2012-01-01

    We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.

  17. 3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis.

    PubMed

    Park, Ok Kyu; Kwak, Jina; Jung, Yoo Jung; Kim, Young Ho; Hong, Hyun-Seok; Hwang, Byung Joon; Kwon, Seung-Hae; Kee, Yun

    2015-11-01

    Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity.

  18. Effects of a Fluorescent Myosin Light Chain Phosphatase Inhibitor on Prostate Cancer Cells

    PubMed Central

    Grindrod, Scott; Suy, Simeng; Fallen, Shannon; Eto, Masumi; Toretsky, Jeffrey; Brown, Milton L.

    2011-01-01

    Myosin light chain phosphatase (MLCP) is an enzyme important to regulation of cell cycle and motility that is shown to be upregulated in aggressive prostate cancer cells and tissue. We developed a fluorescent small molecule inhibitor of MLCP using structure based design in recombinant protein phosphatase 1C. Several best fit compounds were synthesized and evaluated by their inhibition of MLCP/32P-MLC dephosphorylation, which resulted in the identification of novel MLCP inhibitors. Androgen dependent (AD) and castration resistant prostate cancer cell (CRPC) lines were treated with the lead inhibitor resulting in decreased growth rate, reduced DNA synthesis, and G2/M cell cycle arrest. Moreover, CRPC cell lines showed an increased sensitivity to drug treatment having GI50 values four times lower than the AD prostate cancer cell line. This was reinforced by reduced BrdU DNA incorporation into CRPC cells compared to AD cells. β-actin disruption was also seen at much lower drug concentrations in CR cells which caused a dose dependent reduction in cellular chemotaxis of PC-3 cells. Since there are currently few clinical therapeutics targeting CR prostate cancer, MLCP represents a new target for preclinical and clinical development of new potential therapeutics which inhibit this disease phenotype. PMID:22655237

  19. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Tieqiang; Zhang, Yu

    2016-08-01

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  20. Endolymph movement visualized with light sheet fluorescence microscopy in an acute hydrops model.

    PubMed

    Brown, Daniel J; Pastras, Christopher J; Curthoys, Ian S; Southwell, Cassandra S; Van Roon, Lieke

    2016-09-01

    There are a variety of techniques available to investigate endolymph dynamics, primarily seeking to understand the cause of endolymphatic hydrops. Here we have taken the novel approach of injecting, via a glass micropipette, fluorescein isothiocyanate-dextran (FITC-dex) and artificial endolymph into scala media of anaesthetized guinea pigs, with subsequent imaging of the inner ear using Light Sheet Fluorescence Microscopy (LSFM) as a means to obtain highly resolved 3D visualization of fluid movements. Our results demonstrate endolymph movement into the utricle, semicircular canals and endolymphatic duct and sac when more than 2.5 μl of fluid had been injected into scala media, with no apparent movement of fluid into the perilymphatic compartments. There was no movement of endolymph into these compartments when less than 2.5 μl was injected. The remarkable uptake of the FITC-dex into the endolymphatic duct, including an absorption into the periductal channels surrounding the endolymphatic duct, highlights the functional role this structure plays in endolymph volume regulation. PMID:27377233

  1. Quantification of Canine Dental Plaque Using Quantitative Light-Induced Fluorescence.

    PubMed

    Wallis, Corrin; Gill, Yadvinder; Colyer, Alison; Davis, Ian; Allsopp, Judi; Komarov, Gleb; Higham, Susan; Harris, Stephen

    2016-03-01

    The aim of this work was to evaluate Quantitative Light-induced Fluorescence (QLF) as an alternative to the established Logan and Boyce method for determining plaque coverage of dogs' teeth. In a series of studies in conscious and anesthetized dogs, QLF showed good intra-photographer repeatability (coefficient of variation [CV] of 7.5% for undisclosed teeth) and inter-photographer reproducibility (CV of 3.2% for undisclosed teeth and 8.5% for disclosed teeth). The QLF software accurately identifies areas of plaque as demonstrated by comparison to the variability of 5 human scorers, manually marking plaque on QLF-acquired images (P = 0.1). There was good agreement with the modified Logan and Boyce method in the percentage reduction in plaque accumulation measured when dogs were fed an oral care chew versus no chew. To see a 15% difference in plaque accumulation, which is considered sufficient by the Veterinary Oral Health Council to differentiate between 2 treatments, a retrospective power analysis (90%) of the data established that only 7 dogs would be required, compared to 19 dogs for the modified Logan and Boyce method. QLF is a reliable method for measuring dental plaque in dogs with the added advantage that it is not subjective and requires fewer animals. PMID:27487653

  2. Compact fluorescent lights and the impact of convenience and knowledge on household recycling rates.

    PubMed

    Wagner, Travis P

    2011-06-01

    Increased energy costs, social marketing campaigns, public subsidies, and reduced retail prices have dramatically increased the number of compact fluorescent lights (CFLs) installed worldwide. CFLs provide many benefits, but they contain a very small amount of mercury. Given the billions of CFLs in use worldwide, they represent a significant source of mercury unless CFLs are recycled and the mercury recovered in an environmentally sound manner. In the state of Maine (northeast United States), despite mandated recycling of CFLs and availability of free CFL recycling, the household CFL recycling rate is very low. A study was undertaken to identify the primary factors responsible for low recycling. The first step was to survey householders who use CFLs. The 520 survey responses indicated that insufficient knowledge regarding recycling and inconvenience of the collection system are the two primary factors for the low recycling rate. To validate these findings, the second step was an examination of the current collection system to assess (a) the knowledge requirements necessary for recycling and (b) the convenience of the collection system. The results of this examination validated that knowledge requirements were excessively difficult to fulfill and the collection system is not sufficiently convenient. Based on these results, waste managers should focus on increasing convenience and simplifying access to information when designing or improving household collection and recycling of CFLs.

  3. 3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

    PubMed Central

    Park, Ok Kyu; Kwak, Jina; Jung, Yoo Jung; Kim, Young Ho; Hong, Hyun-Seok; Hwang, Byung Joon; Kwon, Seung-Hae; Kee, Yun

    2015-01-01

    Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity. PMID:26429501

  4. Assessment of the quality of durum wheat products by spectrofluorometry and fluorescence video image analysis

    NASA Astrophysics Data System (ADS)

    Novales, Bruno; Abecassis, Joel; Bertrand, Dominique; Devaux, Marie-Francoise; Robert, Paul

    1995-01-01

    Because assessment of Durum wheat semolina purity by standard ash-test has been widely criticized, we attempted to characterize products of a semolina mill by spectrofluorometry and fluorescence imaging. A collection of milled wheat products ranging from very pure semolina to brans were chosen for this study. Multidimensional statistical analyses (Principal component analyses) were applied to the spectral and image data. Maps showing a classification of the products according to purity were obtained without biochemical calibration. Principal component regression was applied to the data in order to test the relationship of aleurone fluorescence to ash content. Both spectrofluorometry and fluorescence imaging gave similar results with good determination coefficients (r2 equals 0.97 and 0.92) for the study of a single wheat variety. Products obtained from different wheat varieties were more difficult to compare.

  5. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter

    PubMed Central

    Baganz, Frank; Purton, Saul

    2015-01-01

    Abstract Microalgae have potential as platforms for the synthesis of high‐value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low‐cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co‐expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl‐1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl‐1. This study suggests that recombinant protein expression is product‐specific and needs to be optimized individually. PMID:26098300

  6. Electromagnetic production of very light gluinos

    SciTech Connect

    Carlson, C.E.; Sher, M.; Weinstein, L.

    1994-04-01

    Current experiments allow the possibility of gluino masses below about 600 MeV if the lifetime of the gluino is longer than 100 picoseconds. If the mass and lifetime are in this window, then electromagnetic production of pairs of gluino-gluon bound states can provide a means to observe them. The cross section is large enough that the window can be fully explored, up to lifetimes exceeding a microsecond, at high luminosity electron accelerators. A discussion of signatures and a table of event rates for various possibilities at CEBAF is given.

  7. Supplementary artificial light to increase egg production of geese under natural lighting conditions.

    PubMed

    Wang, Chin-Meng; Chen, Lih-Ren; Lee, Shuen-Rong; Jea, Yu-Shine; Kao, Jung-Yie

    2009-07-01

    A new supplementary lighting program was designed to increase the egg production of geese under natural light conditions. The objective of this study was to evaluate the effects of the supplementary lighting program on egg production of White Roman geese in an open housing system at the Tropic of Cancer. Forty mature White Roman geese were randomly allocated into two groups (male:female=1:4). The supplementary lighting program with a total daily photoperiod of between 12.0 h and 13.5 h was initiated on 1 November and withdrawn from the experimental group on 30 January. In contrast, the geese in the control group were kept under natural lighting conditions throughout this study. The results showed that the laying peak of the experimental group occurred earlier than normal in the reproductive season and the geese continued laying throughout the breeding season. The geese in the experimental group had 47.6 eggs/goose which was significantly (P<0.05) more than that of the control group having 26.4 eggs/goose. We can conclude that the supplemental lighting method will result in an earlier laying peak of the geese in the breeding season and higher egg production. The supplementary lighting program was able to maximize egg production in geese at the Tropic of Cancer.

  8. Levels of Visual Stress in Proficient Readers: Effects of Spectral Filtering of Fluorescent Lighting on Reading Discomfort.

    PubMed

    Loew, Stephen J; Rodríguez, Celestino; Marsh, Nigel V; Jones, Graham L; Núñez, Jose Carlos; Watson, Kenneth

    2015-08-10

    Visual stress (VS) affects reading in 5-12% of the general population and 31-36% of children with reading disorders. Symptoms include print distortions and visual discomfort when reading, and are exacerbated by fluorescent lighting. Prior research has indicated that VS can also affect proficient readers. We therefore examined levels of visual discomfort in a group of expert readers (n = 24) under both standard and spectrally-filtered fluorescent lighting. Participants rated their awareness of six symptoms of VS under each lighting condition. Under the standard condition, 4(16.7%) of the group recorded moderate to high levels of VS. Differences in symptom levels and reading speed between conditions were analysed using the Wilcoxon Signed Rank Test. Under the filter condition, the group reported less discomfort regarding all six symptoms of VS surveyed. The differences were significant with respect to three of the symptoms (p = .029 - p < .001), with a medium effect size in all of them (r = .31 - r = .46) and total score (p = .007; r = .39). Variations in reading proficiency included significantly fewer self-corrections (p = .019) and total errors (p = .004). Here we present evidence that VS-type symptoms of reading discomfort are not confined to populations with reading difficulties and may also occur in proficient readers, and that simple adaptations to fluorescent lighting may alleviate such symptoms.

  9. Levels of Visual Stress in Proficient Readers: Effects of Spectral Filtering of Fluorescent Lighting on Reading Discomfort.

    PubMed

    Loew, Stephen J; Rodríguez, Celestino; Marsh, Nigel V; Jones, Graham L; Núñez, Jose Carlos; Watson, Kenneth

    2015-01-01

    Visual stress (VS) affects reading in 5-12% of the general population and 31-36% of children with reading disorders. Symptoms include print distortions and visual discomfort when reading, and are exacerbated by fluorescent lighting. Prior research has indicated that VS can also affect proficient readers. We therefore examined levels of visual discomfort in a group of expert readers (n = 24) under both standard and spectrally-filtered fluorescent lighting. Participants rated their awareness of six symptoms of VS under each lighting condition. Under the standard condition, 4(16.7%) of the group recorded moderate to high levels of VS. Differences in symptom levels and reading speed between conditions were analysed using the Wilcoxon Signed Rank Test. Under the filter condition, the group reported less discomfort regarding all six symptoms of VS surveyed. The differences were significant with respect to three of the symptoms (p = .029 - p < .001), with a medium effect size in all of them (r = .31 - r = .46) and total score (p = .007; r = .39). Variations in reading proficiency included significantly fewer self-corrections (p = .019) and total errors (p = .004). Here we present evidence that VS-type symptoms of reading discomfort are not confined to populations with reading difficulties and may also occur in proficient readers, and that simple adaptations to fluorescent lighting may alleviate such symptoms. PMID:26255657

  10. Lighting for summer egg production by turkeys: day length and light intensity.

    PubMed

    Siopes, T D

    2007-11-01

    This experiment tested the hypothesis that typical poor egg production during the summer is a consequence of insufficient lighting and reduced photoperiodic drive. Large White turkey breeder hens were photostimulated at 30 wk of age with incandescent light on May 12 for summer (off-season) egg production and continued for 28 wk. The lighting treatments were given in a 2 x 2 factorial arrangement with day length and light intensity as main effects. Day lengths used were 15L:9D and 18L:6D, whereas the intensities were 567 +/- 67 and 22 +/- 2 lx. All the treatments were within a light-controlled building, and there were 8 replicate pens of 4 hens for each treatment. Data were collected, by pen, for onset and the rate of lay; BW and feed consumption at 4-wk intervals; and egg weight (EW) at 4-wk intervals including the weight of the first 14 eggs laid, livability, and plasma thyroid hormones for 8 wk postlighting. The rate of egg production through 28 wk of photostimulation was better in the hens receiving 18 than 15 h of light per day (14 eggs/hen difference) but was similar between the 2 intensity treatments. The lower number of eggs in the 15-h group was associated with a greater number of photorefractory hens than in the 18 h of light per day group (39 vs. 14%, respectively). Egg weights were similar between the 18 and 15 h of light/day treatment groups but was significantly greater in the low intensity treatment as compared with the high intensity treatment. We may conclude that by increasing photoperiodic drive by increased day length, but not light intensity, there results an improved summer egg production by turkeys and reduced incidence of photorefractoriness. Egg weight was best at a reduced light intensity.

  11. High-Fidelity Modelling Methodology of Light-Limited Photosynthetic Production in Microalgae.

    PubMed

    Bernardi, Andrea; Nikolaou, Andreas; Meneghesso, Andrea; Morosinotto, Tomas; Chachuat, Benoît; Bezzo, Fabrizio

    2016-01-01

    Reliable quantitative description of light-limited growth in microalgae is key to improving the design and operation of industrial production systems. This article shows how the capability to predict photosynthetic processes can benefit from a synergy between mathematical modelling and lab-scale experiments using systematic design of experiment techniques. A model of chlorophyll fluorescence developed by the authors [Nikolaou et al., J Biotechnol 194:91-99, 2015] is used as starting point, whereby the representation of non-photochemical-quenching (NPQ) process is refined for biological consistency. This model spans multiple time scales ranging from milliseconds to hours, thus calling for a combination of various experimental techniques in order to arrive at a sufficiently rich data set and determine statistically meaningful estimates for the model parameters. The methodology is demonstrated for the microalga Nannochloropsis gaditana by combining pulse amplitude modulation (PAM) fluorescence, photosynthesis rate and antenna size measurements. The results show that the calibrated model is capable of accurate quantitative predictions under a wide range of transient light conditions. Moreover, this work provides an experimental validation of the link between fluorescence and photosynthesis-irradiance (PI) curves which had been theoricized. PMID:27055271

  12. High-Fidelity Modelling Methodology of Light-Limited Photosynthetic Production in Microalgae.

    PubMed

    Bernardi, Andrea; Nikolaou, Andreas; Meneghesso, Andrea; Morosinotto, Tomas; Chachuat, Benoît; Bezzo, Fabrizio

    2016-01-01

    Reliable quantitative description of light-limited growth in microalgae is key to improving the design and operation of industrial production systems. This article shows how the capability to predict photosynthetic processes can benefit from a synergy between mathematical modelling and lab-scale experiments using systematic design of experiment techniques. A model of chlorophyll fluorescence developed by the authors [Nikolaou et al., J Biotechnol 194:91-99, 2015] is used as starting point, whereby the representation of non-photochemical-quenching (NPQ) process is refined for biological consistency. This model spans multiple time scales ranging from milliseconds to hours, thus calling for a combination of various experimental techniques in order to arrive at a sufficiently rich data set and determine statistically meaningful estimates for the model parameters. The methodology is demonstrated for the microalga Nannochloropsis gaditana by combining pulse amplitude modulation (PAM) fluorescence, photosynthesis rate and antenna size measurements. The results show that the calibrated model is capable of accurate quantitative predictions under a wide range of transient light conditions. Moreover, this work provides an experimental validation of the link between fluorescence and photosynthesis-irradiance (PI) curves which had been theoricized.

  13. High-Fidelity Modelling Methodology of Light-Limited Photosynthetic Production in Microalgae

    PubMed Central

    Meneghesso, Andrea; Morosinotto, Tomas; Chachuat, Benoît; Bezzo, Fabrizio

    2016-01-01

    Reliable quantitative description of light-limited growth in microalgae is key to improving the design and operation of industrial production systems. This article shows how the capability to predict photosynthetic processes can benefit from a synergy between mathematical modelling and lab-scale experiments using systematic design of experiment techniques. A model of chlorophyll fluorescence developed by the authors [Nikolaou et al., J Biotechnol 194:91–99, 2015] is used as starting point, whereby the representation of non-photochemical-quenching (NPQ) process is refined for biological consistency. This model spans multiple time scales ranging from milliseconds to hours, thus calling for a combination of various experimental techniques in order to arrive at a sufficiently rich data set and determine statistically meaningful estimates for the model parameters. The methodology is demonstrated for the microalga Nannochloropsis gaditana by combining pulse amplitude modulation (PAM) fluorescence, photosynthesis rate and antenna size measurements. The results show that the calibrated model is capable of accurate quantitative predictions under a wide range of transient light conditions. Moreover, this work provides an experimental validation of the link between fluorescence and photosynthesis-irradiance (PI) curves which had been theoricized. PMID:27055271

  14. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    SciTech Connect

    Melis, Anastasios

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  15. Optimization of light for growth, photosynthesis, and hydrocarbon production by the colonial microalga Botryococcus braunii BOT-22.

    PubMed

    Sakamoto, Kohei; Baba, Masato; Suzuki, Iwane; Watanabe, Makoto M; Shiraiwa, Yoshihiro

    2012-04-01

    Optimization of the light conditions for biofuel production by the microalga Botryococcus braunii BOT-22 (race B) was performed using monochromatic red light. The lipid and sugar contents were approximately 40% and 20-30% of the cell dry weight, respectively, and about half of the lipids were liquid hydrocarbons. The half-saturation intensities for the production rate of lipids, hydrocarbons, and sugars were 63, 49, and 44μmolm(-2)s(-1), respectively. Fluorescence microscopic images of Nile Red-stained cells showed an increased number of intracellular neutral lipid granules due to increased light intensity. After 16days of incubation in the dark, lipid and sugar, but not hydrocarbon content decreased. Growth, metabolite production, and photosynthesis were saturated at 100, 200 and 1000μmolm(-2)s(-1), respectively. These results indicate that photosynthetically captured energy is not used efficiently for metabolite production; thus, improvements in metabolic regulation may increase hydrocarbon production.

  16. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Guan, K.; Lobell, D. B.; Berry, J. A.; Joiner, J.; Guanter, L.; Zhang, Y.; Grayson, B.

    2014-12-01

    Large scale monitoring of crop growth and yield has relied on empirical correlations between remotely sensed vegetation-indices and yield. However, the determinants of yield are complex with several processes including crop phenology, photosynthesis and respiration contributing to overall crop yield. It has not been possible to delve more deeply into environmental effects on these controls given the limitations of current remote sensing technology. Recent advances in the ability to monitor solar induced chlorophyll fluorescence (SIF) now provides a direct measurement of photosynthetic activity from space and opens up new approaches for understanding the controls on crop yield. Using county-level crop statistics in the United States, we find that spaceborne SIF measurements for 2007-2012 provided improved measures of crop productivity compared with various traditional crop monitoring approaches, despite the fact that SIF sensors are still not optimized for crop monitoring. We also demonstrate that SIF, when combined with other data, can be used to estimate light-use-efficiency and plant autotrophic respiration. SIF thus opens up an unprecedented opportunity for improved crop monitoring and mechanistic understanding of how crops respond to temperature and other climate drivers.

  17. Effect of Triplet Harvesting on the Lifetime Based on Fluorescence and Phosphorescence in Hybrid White Organic Light Emitting Diodes.

    PubMed

    Lee, Eun; Lee, Ho Won; Yang, Hyung Jin; Sun, Yong; Lee, Jae Woo; Hwang, Kyo Min; Kim, Woo Young; Kim, Young Kwan

    2016-03-01

    We investigated efficient hybrid white organic light emitting diodes (WOLEDs) apply to triplet harvesting (TH) concept based on three complementary colors by mixing containing blue fluorescent emitter with phosphorescent emitters. The TH is to transfer these triplet excitons from a fluorescence to a phosphorescence, where they can decay radiatively. We fabricated several hybrid WOLEDs, having various emitting layer structures with blue fluorescent emitter and red, green phosphorescent emitter. The WOLED exhibited maximum luminous efficiency of 9.02 cd/A, and a maximum external quantum efficiency of 4.17%. The WOLED showed a highly color-stable white emission with the Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1,000 cd/m2. PMID:27455693

  18. Steady state emission of the fluorescent intermediate of Anabaena Sensory Rhodopsin as a function of light adaptation conditions

    NASA Astrophysics Data System (ADS)

    Cheminal, A.; Léonard, J.; Kim, S. Y.; Jung, K.-H.; Kandori, H.; Haacke, S.

    2013-11-01

    Steady-state fluorescence measurements of the first excited state of the anabaena sensory rhodopsin (ASR), and Bacteriorhodopsin are reported for different light stabilization conditions, including the dark-adapted state. We determine the fluorescence spectra of both all-trans (AT), and 13-cis (13C) protonated Schiff base of retinal, and compare the effect of the proteins. Referenced against the fluorescence quantum yield of AT-bR (2.5 × 10-4) we find for AT-ASR, 13C-ASR, and 13C-bR the values of 3.3 × 10-4, 0.8 × 10-4, and 1.7 × 10-4, respectively. Using reported excited state lifetimes, the radiative rates are deduced, and their differences discussed on the basis of a configuration-dependent oscillator strength.

  19. Effect of Triplet Harvesting on the Lifetime Based on Fluorescence and Phosphorescence in Hybrid White Organic Light Emitting Diodes.

    PubMed

    Lee, Eun; Lee, Ho Won; Yang, Hyung Jin; Sun, Yong; Lee, Jae Woo; Hwang, Kyo Min; Kim, Woo Young; Kim, Young Kwan

    2016-03-01

    We investigated efficient hybrid white organic light emitting diodes (WOLEDs) apply to triplet harvesting (TH) concept based on three complementary colors by mixing containing blue fluorescent emitter with phosphorescent emitters. The TH is to transfer these triplet excitons from a fluorescence to a phosphorescence, where they can decay radiatively. We fabricated several hybrid WOLEDs, having various emitting layer structures with blue fluorescent emitter and red, green phosphorescent emitter. The WOLED exhibited maximum luminous efficiency of 9.02 cd/A, and a maximum external quantum efficiency of 4.17%. The WOLED showed a highly color-stable white emission with the Commission International de L'Éclairage chromaticity of (0.38, 0.36) at 1,000 cd/m2.

  20. Color-stable and efficient stacked white organic light-emitting devices comprising blue fluorescent and orange phosphorescent emissive units

    NASA Astrophysics Data System (ADS)

    Chen, Ping; Xue, Qin; Xie, Wenfa; Duan, Yu; Xie, Guohua; Zhao, Yi; Hou, Jingying; Liu, Shiyong; Zhang, Liying; Li, Bin

    2008-10-01

    We have demonstrated two kinds of stacked white organic light-emitting diodes (WOLEDs) employing tri(8-hydroxyquinoline) aluminum:20 wt %Mg/MoO3 as charge generation layer. White light emission can be obtained by mixing blue fluorescence and orange phosphorescence. Stacked WOLED with individual blue fluorescent and orange phosphorescent emissive units has better color stability and higher efficiency than that with double white emissive units, which is attributed to the avoidance of the movement of charges recombination zone and elimination of the Dexter energy transfer between blue and orange emission layers occurring in the latter. The efficiency of the stacked WOLED is 35.9 cd/A at 1000 cd/m2.

  1. Light-emitting diode fluorescence microscopy for tuberculosis diagnosis: a meta-analysis.

    PubMed

    Chang, Eva W; Page, Anne-Laure; Bonnet, Maryline

    2016-03-01

    Light-emitting diode fluorescence microscopy (LED-FM) is recommended by the World Health Organization to replace conventional Ziehl-Neelsen microscopy for pulmonary tuberculosis diagnosis. Uptake of LED-FM has been slow. One reason is its reported loss of specificity compared with Ziehl-Neelsen microscopy. We aimed to determine the diagnostic accuracy of LED-FM for tuberculosis detection and explore potential factors that might affect its performance.A comprehensive search strategy based on pre-specified criteria was employed to identify eligible studies between January 1, 2000 and April 1, 2014 in 11 databases. Standardised study selection, data extraction and quality assessment were conducted. Pooled sensitivity and specificity of LED-FM using culture as the reference standard were estimated through meta-analyses using a bivariate random-effects model. Investigation of heterogeneity was performed by subgroup analyses.We identified 12 unique studies, half of which were from peripheral healthcare facilities. LED-FM achieved a pooled sensitivity of 66.9% (95% CI 60.5-72.7%) and pooled specificity of 96.8% (95% CI 93.1-98.6%). A pooled sensitivity of 53.0% (95% CI 42.8-63.0%) and pooled specificity of 96.1% (95% CI 86.0-99.0%) were obtained by LED-FM among HIV-infected patients. Study methodology factors and differences in the LED-FM procedure or device could also affect the performance.LED-FM specificity is high and should not be a barrier to device introduction, particularly among peripheral healthcare settings where this technology is meant to be used. Sensitivity is reduced in HIV-infected patients.

  2. Assessing caries removal by undergraduate dental students using quantitative light-induced fluorescence.

    PubMed

    Adeyemi, Adejumoke A; Jarad, Fadi D; Komarov, Gleb N; Pender, Neil; Higham, Susan M

    2008-11-01

    The purpose of this study was to compare detection of enamel and dentinal caries by dental students' and faculty members' visual inspection and by quantitative light-induced fluorescence (QLF). The overall aim was to determine whether QLF is an appropriate technique for use in clinical skills laboratories as a teaching aid for dental undergraduates to detect and assess the removal of enamel and dentinal caries. Sixty students who had no clinical experience with dental caries were asked to select . suitably decayed teeth and mount them in plaster. After recording baseline QLF images, students removed caries according to instructions given by the clinical tutor. On completion of the exercise, the teeth were visually determined to be caries-free by the student, then confirmed by the clinical tutor. A fluorescein in alcohol solution was injected into the cavity for two minutes, rinsed, and dried before QLF images were captured. The images were visually analyzed by two examiners for the presence or absence of caries. From seventy-four images recorded, seventeen were excluded due to exposure of the pulp chamber. The remaining fifty-seven teeth, which by clinical visual examination were judged to be caries-free, were examined using QLF. Fifty-three percent were found to be caries-free, while 47 percent were carious. In this sample of fifty-seven teeth judged to be caries-free by both dental students and faculty members, QLF thus detected caries in almost half of these teeth. These findings suggest that QLF is a useful, noninvasive, nondestructive technique for the detection of caries and can serve as an adjunct to chair-side diagnosis and management of dental caries, which is typically accomplished by visual inspection. QLF may be useful and appropriate as an objective clinical teaching aid for the assessment of dental caries.

  3. High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence

    SciTech Connect

    D'Andrade, Brian W.; Baldo, Marc A.; Adachi, Chihaya; Brooks, Jason; Thompson, Mark E.; Forrest, Stephen R.

    2001-08-13

    We demonstrate high-efficiency yellow organic light-emitting devices (OLEDs) employing [2-methyl-6-[2,3,6,7-tetrahydro-1H,5H-benzo[ij]quinolizin-9-yl-ethenyl]-4H-pyran-4-ylidene] propane-dinitrile (Dcm{sup 2}) as a fluorescent lumophore, with a green electrophospho- rescent sensitizer, fac tris(2-phenylpyridine) iridium [Ir(ppy){sub 3}] co-doped into a 4,4{prime}-N,N{prime}dicarbazole-biphenyl host. The devices exhibit peak external fluorescent quantum and power efficiencies of 9%{+-}1% (25 cd/A) and 17{+-}2 lm/W at 0.01 mA/cm{sup 2}, respectively. At 10 mA/cm{sup 2}, the efficiencies are 4.1%{+-}0.5% (11 cd/A) and 3.1{+-}0.3 lm/W. We show that this exceptionally high performance for a fluorescent dye is due to the {approx}100% efficient transfer of both singlet and triplet excited states in the doubly doped host to the fluorescent material using Ir(ppy){sub 3} as a sensitizing agent. These results suggest that 100% internal quantum efficiency fluorescent OLEDs employing this sensitization process are within reach. {copyright} 2001 American Institute of Physics.

  4. Cold fluorescent light as major inducer of lipid oxidation in soybean oil stored at household conditions for eight weeks.

    PubMed

    Pignitter, Marc; Stolze, Klaus; Gartner, Stephanie; Dumhart, Bettina; Stoll, Christiane; Steiger, Georg; Kraemer, Klaus; Somoza, Veronika

    2014-03-12

    Light, temperature, and oxygen availability has been shown to promote rancidity in vegetable oils. However, the contribution of each of these environmental factors to lipid oxidation in oil stored under household conditions is not known. We aimed to identify the major inducer of oxidative deterioration of soybean oil stored at constant (67.0 mL) or increasing (67.0-283 mL) headspace volume, 22 or 32 °C, with or without illumination by cold fluorescent light for 56 days by means of fatty acid composition, peroxide value, formation of conjugated dienes, lipid radicals, hexanal, and the decrease in the contents of tocopherols. Soybean oil stored in the dark for 56 days showed an increase of the peroxide value by 124 ± 0.62% (p = 0.006), whereas exposure of the oil to light in a cycle of 12 h light alternating with 12 h darkness for 56 days led to a rise of the peroxide value by 1473 ± 1.79% (p ≤ 0.001). Little effects on the oxidative status of the oil were observed after elevating the temperature from 22 to 32 °C and the headspace volume from 67.0 to 283 mL during 56 days of storage. We conclude that storing soybean oil in transparent bottles under household conditions might pose an increased risk for accelerated lipid oxidation induced by exposure to cold fluorescent light. PMID:24548005

  5. Product Quality Assurance for Off-Grid Lighting in Africa

    SciTech Connect

    World Bank; Mills, Evan; Mills, Evan

    2008-07-13

    Although the emergence of markets for high efficiency off-grid lighting technologies holds promise, realizing the potential of this opportunity on a long-term, sustainable basis requires careful attention to issues of product quality, consumer protection, and the potential for significant 'market spoiling', in anticipation of increases of sales of low cost, low performance off-grid lighting products. The goal of the Lighting Africa quality assurance workshop was to articulate strategies to mitigate the dangers of market spoiling and to explore ways to protect consumers from misleading advertising for sales of inferior, off-grid lighting products in the context of Lighting Africa's overarching objective to support the industry in developing a robust off-grid lighting market in Africa. The workshop resulted in the identification of two strategic approaches for meeting Lighting Africa quality assurance programmatic needs. The first strategy is intended to meet a short-term programmatic need for quality associated with requests for lighting products by bulk procurement agents, such as in a World Bank-financed project. The development of procurement specifications and test procedures that could be used in a quality/usability screening method in order to provide guidance for forthcoming large volume purchases emerged as the best solution to meet this need. Such approaches are used in World Bank-financed solar home systems (SHSs) projects in Bangladesh, Sri Lanka, and China, among others. However, unlike the SHSs which have multiple balance-of-system (BOS) components warranting the need for an array of specifications for individual components, stand alone lighting systems require specifications that are amenable to individual light points. To test this approach, Lighting Africa elected to use the technical specifications issued by the Photovoltaic Global Approval Program for solar lanterns that use CFL bulbs (PVRS11A) as the basis of qualifying such products. A contract

  6. The effect of high and very low fluorescent light exposure levels on age-related cataract in a pigmented mouse strain.

    PubMed

    Wolf, N S; Penn, P E

    2001-07-01

    This study examined the effect of fluorescent light on the timing and severity of age-related cataracts in a fully pigmented mouse strain, the (C57BL/6 x C3H)F1, that normally develops slowly progressing age-related cataracts only beyond middle age. Two groups of 56 animals each were exposed, respectively, either to a daily range of 66-222 foot candles (FC) or to 1 FC of standard fluorescent lighting for a period beginning at 5 weeks of age and ending at 33.5 months (by which time approximately 65% of the colony had died). Contrary to previous reports involving albino rats or mice and a strain of pigmented but cataract-prone transgenic mice, the two groups of animals in this experiment did not differ for cataract development in time of first occurrence, rate of advancement, or degree of severity. It was concluded that genetic predisposition, based on levels of oxidative free radical production vs antioxidant enzyme and repair enzyme protection in the lens, was probably the major factor governing the rate and degree of age-related cataract development in these animals. The effect of relatively intense life-long fluorescent light exposure was so minimal as not to be manifested in this strain of mice under the conditions of this experiment. Remarkably, maintaining the one group of mice in semi-darkness from 5 weeks of age to beyond their mean lifespans did nothing to delay or reduce the incidence or severity of their age-related cataracts. PMID:11428861

  7. Liquid chromatography-fluorescence and liquid chromatography-mass spectrometry detection of tryptophan degradation products of a recombinant monoclonal antibody.

    PubMed

    Nowak, Christine; Ponniah, Gomathinayagam; Cheng, Guilong; Kita, Adriana; Neill, Alyssa; Kori, Yekaterina; Liu, Hongcheng

    2016-03-01

    Light exposure is one of several conditions used to study the degradation pathways of recombinant monoclonal antibodies. Tryptophan is of particular interest among the 20 amino acids because it is the most photosensitive. Tryptophan degradation forms several products, including an even stronger photosensitizer and several reactive oxygen species. The current study reports a specific peptide mapping procedure to monitor tryptophan degradation. Instead of monitoring peptides using UV 214 nm, fluorescence detection with an excitation wavelength of 295 nm and an emission wavelength of 350 nm was used to enable specific detection of tryptophan-containing peptides. Peaks that decreased in area over time are likely to contain susceptible tryptophan residues. This observation can allow further liquid chromatography-mass spectrometry (LC-MS) analysis to focus only on those peaks to confirm tryptophan degradation products. After confirmation of tryptophan degradation, susceptibility of tryptophan residues can be compared based on the peak area decrease. PMID:26717898

  8. Effect of ambient light on IgG1 monoclonal antibodies during drug product processing and development.

    PubMed

    Sreedhara, Alavattam; Yin, Jian; Joyce, Michael; Lau, Kimberly; Wecksler, Aaron T; Deperalta, Galahad; Yi, Li; John Wang, Y; Kabakoff, Bruce; Kishore, Ravuri S K

    2016-03-01

    Photostability studies are standard stress testing conducted during drug product development of various pharmaceutical compounds, including small molecules and proteins. These studies as recommended by ICH Q1B are carried out using no less than 1.2× 10(6)lux-hours in the visible region and no less than 200Wh/m(2) in UV light. However, normal drug product processing is carried out under fluorescent lamps that emit white light almost exclusively in the >400nm region with a small UV quotient. We term these as ambient or mild light conditions. We tested several IgG1 monoclonal antibodies (mAbs 1-5) under these ambient light conditions and compared them to the ICH light conditions. All the mAbs were significantly degraded under the ICH light but several mAbs (mAbs 3-5) were processed without impacting any product quality attributes under ambient or mild light conditions. Interestingly we observed site-specific Trp oxidation in mAb1, while higher aggregation and color change were observed for mAb2 under mild light conditions. The recommended ICH light conditions have a high UV component and hence may not help to rank order photosensitivity under normal protein DP processing conditions.

  9. Review of organic light-emitting diodes with thermally activated delayed fluorescence emitters for energy-efficient sustainable light sources and displays

    NASA Astrophysics Data System (ADS)

    Volz, Daniel

    2016-04-01

    Thermally activated delayed fluorescence (TADF) is an emerging hot topic. Even though this photophysical mechanism itself has been described more than 50 years ago and optoelectronic devices with organic matter have been studied, improved, and even commercialized for decades now, the realization of the potential of TADF organic light-emitting diodes (OLEDs) happened only recently. TADF has been proven to be an attractive and very efficient alternative for phosphorescent materials, such as dopants in OLEDs, light-emitting electrochemical cells as well as potent emitters for chemiluminescence. In this review, the TADF concept is introduced in terms that are also understandable for nonchemists. The basic concepts behind this mechanism as well as state-of-the-art examples are discussed. In addition, the future economic impact, especially for the lighting and display market, is addressed here. We conclude that TADF materials are especially helpful to realize efficient, durable deep blue and white displays.

  10. Optimization of light use efficiency for biofuel production in algae.

    PubMed

    Simionato, Diana; Basso, Stefania; Giacometti, Giorgio M; Morosinotto, Tomas

    2013-12-01

    A major challenge for next decades is development of competitive renewable energy sources, highly needed to compensate fossil fuels reserves and reduce greenhouse gas emissions. Among different possibilities, which are currently under investigation, there is the exploitation of unicellular algae for production of biofuels and biodiesel in particular. Some algae species have the ability of accumulating large amount of lipids within their cells which can be exploited as feedstock for the production of biodiesel. Strong research efforts are however still needed to fulfill this potential and optimize cultivation systems and biomass harvesting. Light provides the energy supporting algae growth and available radiation must be exploited with the highest possible efficiency to optimize productivity and make microalgae large scale cultivation energetically and economically sustainable. Investigation of the molecular bases influencing light use efficiency is thus seminal for the success of this biotechnology. In this work factors influencing light use efficiency in algal biomass production are reviewed, focusing on how algae genetic engineering and control of light environment within photobioreactors can improve the productivity of large scale cultivation systems.

  11. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    PubMed

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. PMID:27161580

  12. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    PubMed

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009. PMID:23760636

  13. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence

    PubMed Central

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A.; Guanter, Luis; Boyce, C. Kevin; Fisher, Joshua B.; Morrow, Eric; Worden, John R.; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-01-01

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r2 = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r2 = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009. PMID:23760636

  14. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    PubMed

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009.

  15. Determination of Key Hydrocarbon Autoxidation Products by Fluorescence.

    PubMed

    Shah, Ron; Pratt, Derek A

    2016-08-01

    Hydroperoxides and carboxylic acids are key primary products that arise in the autoxidation of hydrocarbons. We have developed a simple approach to rapidly and simultaneously determine both types of products using hydroperoxide- and acid-sensitive moieties conjugated to nonpolar coumarin- and BODIPY-based fluorophores. The coumarin- and BODIPY-conjugated amine probes described here undergo 38- and 8-fold enhancement, respectively, upon protonation in a solvent system compatible with heavy hydrocarbons. The latter can be used directly with our previously described hydroperoxide-sensitive coumarin-conjugated phosphine probe to enable rapid quantification of both carboxylic acids and hydroperoxides in hydrocarbon samples. The utility of the approach is illustrated by the ready determination of the differing relative rates of hydroperoxide and acid formation with changes in hydrocarbon structure (e.g., n-hexadecane vs 1-hexadecene vs a lubricant base stock). The method offers significant versatility and automation compared with common but laborious titration approaches, and greatly improves screening efficiency and accuracy for the identification of novel radical-trapping antioxidants for high temperature applications. This application was demonstrated by the automated analysis of hydroperoxides and carboxylic acids (by microplate reader) in samples from 24 inhibited autoxidations of a lubricating oil, which were carried out on a parallel synthesizer at 160 °C in triplicate in a single day.

  16. Determination of Key Hydrocarbon Autoxidation Products by Fluorescence.

    PubMed

    Shah, Ron; Pratt, Derek A

    2016-08-01

    Hydroperoxides and carboxylic acids are key primary products that arise in the autoxidation of hydrocarbons. We have developed a simple approach to rapidly and simultaneously determine both types of products using hydroperoxide- and acid-sensitive moieties conjugated to nonpolar coumarin- and BODIPY-based fluorophores. The coumarin- and BODIPY-conjugated amine probes described here undergo 38- and 8-fold enhancement, respectively, upon protonation in a solvent system compatible with heavy hydrocarbons. The latter can be used directly with our previously described hydroperoxide-sensitive coumarin-conjugated phosphine probe to enable rapid quantification of both carboxylic acids and hydroperoxides in hydrocarbon samples. The utility of the approach is illustrated by the ready determination of the differing relative rates of hydroperoxide and acid formation with changes in hydrocarbon structure (e.g., n-hexadecane vs 1-hexadecene vs a lubricant base stock). The method offers significant versatility and automation compared with common but laborious titration approaches, and greatly improves screening efficiency and accuracy for the identification of novel radical-trapping antioxidants for high temperature applications. This application was demonstrated by the automated analysis of hydroperoxides and carboxylic acids (by microplate reader) in samples from 24 inhibited autoxidations of a lubricating oil, which were carried out on a parallel synthesizer at 160 °C in triplicate in a single day. PMID:27384266

  17. Hadron production in light and heavy, quark and antiquark jets

    SciTech Connect

    Baird, K.G.; SLD Collaboration

    1996-08-01

    The authors review four hadronization studies performed by the SLD experiment at SLAC, involving separation of light (Z{sup 0} {r_arrow} u{anti u}, d{anti d}, s{anti s}), c, and b flavors using precision vertexing, and separation of q- and {anti q}-jets using the highly polarized SLC electron beam. They measured the differences between the average charged multiplicities in Z{sup 0} {r_arrow} light, {r_arrow} c{anti c}, and {r_arrow}b{anti b} events, and found that the results were consistent with predictions of perturbative QCD. Next, they measured {pi}/{Kappa}/p/{Kappa}{sup 0}/{Lambda}{sup 0} production in light events for the first time, and compared with production in c- and b-flavor events. They then examined particle production differences in light quark and antiquark hemispheres, and observed more high momentum baryons and K{sup {minus}}`s than antibaryons and K{sup +}`s in quark hemispheres, consistent with the leading particle hypothesis. Lastly, they performed a search for jet handedness in light q- and {anti q}-jets. Assuming Standard Model values of quark polarization in Z{sup 0} decays, they have set an improved upper limit on the analyzing power of the handedness method.

  18. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis.

    PubMed

    Ciszak, Kamil; Kulasek, Milena; Barczak, Anna; Grzelak, Justyna; Maćkowski, Sebastian; Karpiński, Stanisław

    2015-01-01

    Systemic acquired acclimation (SAA) is an important light acclimatory mechanism that depends on the global adjustments of non-photochemical quenching and chloroplast retrograde signaling. As the exact regulation of these processes is not known, we measured time-resolved fluorescence of chlorophyll a in Arabidopsis thaliana leaves exposed to excess light, in leaves undergoing SAA, and in leaves after excess light episode. We compare the behavior induced in wild-type plants with null mutant of non-photochemical quenching (npq4-1). The wild type rosettes exhibit a small reduction of fluorescence decay times in leaves directly exposed to excess light and in leaves undergoing SAA in ambient low light. However in npq4-1 exposition to excess light results in much faster fluorescence decay, which is insensitive to excitation power. At the same time npq4-1 leaves undergoing SAA displayed intermediate fluorescence decay. The npq4-1 plants also lost the ability to optimize florescence decay, and thus chlorophyll a dynamics up to 2 h after excess light episode. The fluorescence decay dynamics in both WT and npq4-1 can be described by a set of 3 maximum decay times. Based on the results, we concluded that functional PsbS is required for optimization of absorbed photon fate and optimal light acclimatory responses such as SAA or after excess light stress.

  19. Thioflavin T as a fluorescence light-up probe for G4 formation

    PubMed Central

    Renaud de la Faverie, Amandine; Guédin, Aurore; Bedrat, Amina; Yatsunyk, Liliya A.; Mergny, Jean-Louis

    2014-01-01

    Thioflavin T (ThT) becomes fluorescent in the presence of the G-quadruplex structure such as that formed by the human telomeric motif. In this report, we extend and generalize these observations and show that this dye may be used as a convenient and specific quadruplex probe. In the presence of most, but not all, G4-forming sequences, we observed a large increase in ThT fluorescence emission, whereas the presence of control duplexes and single strands had a more limited effect on emission. This differential behavior allowed us to design a high-throughput assay to detect G4 formation. Hundreds of different oligonucleotides may be tested in parallel for G4 formation with a simple fluorescence plate reader. We applied this technique to a family of aptamers not previously recognized as G4-forming sequences and demonstrated that ThT fluorescence signal may be used to predict G4 formation. PMID:24510097

  20. Predicting Light Acclimation in Cyanobacteria from Nonphotochemical Quenching of Photosystem II Fluorescence, Which Reflects State Transitions in These Organisms.

    PubMed Central

    Campbell, D.; Oquist, G.

    1996-01-01

    An important factor in photosynthetic ecophysiology is the light regime that a photobiont is acclimated to exploit. In a wide range of cyanobacteria and cyano-lichens, the easily measured fluorescence parameters, coefficient of nonphotochemical quenching of photosystem II variable fluorescence (qN) and nonphotochemical quenching, decline to a minimum near the acclimated growth light intensity. This characteristic pattern predicts the integrated light regime to which populations are acclimated, information that is particularly useful for cyanobacteria or cyano-lichens from habitats with highly variable light intensities. qN reflects processes that compete with photosystem II photochemistry for absorbed excitation energy. In cyanobacteria, we find no evidence for energy-dependent quenching mechanisms, which are the predominant components of qN in higher plants. Instead, in cyanobacteria, qN correlates closely with the excitation flow from the phycobilisome to photosystem I, indicating that qN reflects the state transition mechanism for equilibration of excitation from the phycobilisome to the two photosystems. PMID:12226362

  1. A ratiometric fluorescent probe for hyaluronidase detection via hyaluronan-induced formation of red-light emitting excimers.

    PubMed

    Hu, Qinghua; Zeng, Fang; Wu, Shuizhu

    2016-05-15

    Hyaluronidase (HAase), which is involved in various physiological and pathological processes, can selectively degrade hyaluronan (HA) into small fragments, and it has been reported as a diagnostic and prognostic biomarker for bladder cancer. Herein, a facile ratiometric fluorescent sensing system for HAase has been developed, which is based on hyaluronan-induced formation of red-light emitting excimers and can realize sensitive detection of HAase with a detection limit of 0.007 U/mL. A positively-charged pyrene analog (N-Py) has been synthesized and then mixed with the negatively-charged HA, due to electrostatic interaction between the two components, aggregation along with the N-Py excimers readily form which emits red light. While in the presence of HAase, the enzyme catalyzes the hydrolysis of HA into small fragments, which in turn triggers disassembly of excimers; consequently the N-Py excimer emission turns into monomer emission. The emission ratio resulted from the excimer-monomer transition can be used as the sensing signal for detecting HAase. The probe features visible-light excitation and red light emission (excimer), which is conducive to reducing possible interference from autofluorescence of biological samples. Furthermore, the assay system can be successfully used to determine HAase in human urine samples with satisfactory accuracy. This strategy may provide a suitable sensitive and accurate assay for HAase as well as an effective approach for developing fluorescent ratiometric assays for other enzymes. PMID:26774093

  2. Lighting Up Enzymes for Solar Hydrogen Production (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Scientists at the National Renewable Energy Laboratory (NREL) have combined quantum dots, which are spherical nanoparticles that possess unique size-tunable photophysical properties, with the high substrate selectivity and fast turnover of hydrogenase enzymes to achieve light-driven hydrogen (H2) production. They found that quantum dots of cadmium telluride coated in carboxylic acids easily formed highly stable complexes with the hydrogenase and that these hybrid assemblies functioned to catalyze H2 production using the energy of sunlight.

  3. Effect of light-emitting diode (LED) vs. fluorescent (FL) lighting on laying hens in aviary hen houses: Part 2 - Egg quality, shelf-life and lipid composition.

    PubMed

    Long, H; Zhao, Y; Xin, H; Hansen, H; Ning, Z; Wang, T

    2016-01-01

    In this 60-wk study, egg quality, egg shelf-life, egg cholesterol content, total yolk lipids, and yolk fatty acid composition of eggs produced by Dekalb white laying hens in commercial aviary houses with either light-emitting diode (LED) or fluorescent (FL) lighting were compared. All parameters were measured at 27, 40, and 60 wk of age, except for egg shelf-life, which was compared at 50 wk of age. The results showed that, compared to the FL regimen, the LED regimen resulted in higher egg weight, albumen height, and albumen weight at 27 wk of age, thicker shells at 40 wk of age, but lower egg weight at 60 wk of age. Egg quality change was similar between the lighting regimens during the 62-d egg storage study, indicating that LED lighting did not influence egg shelf-life. Eggs from both lighting regimens had similar cholesterol content. However, cholesterol concentration of the yolk (15.9 to 21.0 mg cholesterol/g wet weight yolk) observed in this study was higher than that of United States Department of Agriculture (USDA) database (10.85 mg/g). No significant differences in total lipids or fatty acid composition of the yolks were detected between the two lighting regimens.

  4. A Review of the Reflector Compact Fluorescent Lights Technology Procurement Program: Conclusions and Results

    SciTech Connect

    Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; McCullough, Jeffrey J.

    2008-05-19

    This report describes a project sponsored by the U.S. Department of Energy (DOE) and implemented by the Pacific Northwest National Laboratory (PNNL), from 2000 to 2007 to improve the performance of reflector type (R-lamp) compact fluorescent lamps (CFLs) and increase their availability throughout the United States by means of a technology development and procurement strategy. In 2000, at the request of the U.S. Department of Energy’s Emerging Technologies Program and its predecessors, the Pacific Northwest National Laboratory undertook a technology procurement seeking R-CFLs that were specifically designed for use in ICAT recessed can fixtures and that met other minimum performance criteria including minimum light output and size restrictions (to ensure they fit in standard residential recessed cans). The technology procurement included two phases. In Phase I, requests for proposals (RFPs) were issued in October 2002 and five manufacturers responded with 12 lamp models. Eight of these models met the minimum requirements and passed the 6-hour short-term test in a simulated ICAT environment. These eight models were subjected to long-term tests of 6,000 or more hours in a simulated ICAT environment. Three of these models passed the short- and long-term tests and were promoted through the program website (www.pnl.gov/rlamps), press releases, and fliers. To increase the number of qualifying models, a second RFP was issued in June 2005. In April 2007, DOE announced that 16 reflector CFL (R-CFL) models by four manufacturers had met all the minimum requirements of Phase 2 of the R-CFL Technology Innovation Competition. PNNL developed both the criteria and the test apparatus design for Elevated Temperature Life Testing (ETLT), which has been included by DOE in its draft ENERGY STAR specifications for the reflector category of CFLs. PNNL promoted the winning lamps through a program website, press releases, and fliers as well as through program partners. PNNL also helped

  5. Correction of depth-induced spherical aberration for deep observation using two-photon excitation fluorescence microscopy with spatial light modulator

    PubMed Central

    Matsumoto, Naoya; Inoue, Takashi; Matsumoto, Akiyuki; Okazaki, Shigetoshi

    2015-01-01

    We demonstrate fluorescence imaging with high fluorescence intensity and depth resolution in which depth-induced spherical aberration (SA) caused by refractive-index mismatch between the medium and biological sample is corrected. To reduce the impact of SA, we incorporate a spatial light modulator into a two-photon excitation fluorescence microscope. Consequently, when fluorescent beads in epoxy resin were observed with this method of SA correction, the fluorescence signal of the observed images was ∼27 times higher and extension in the direction of the optical axes was ∼6.5 times shorter at a depth of ∼890 μm. Thus, the proposed method increases the depth observable at high resolution. Further, our results show that the method improved the fluorescence intensity of images of the fluorescent beads and the structure of a biological sample. PMID:26203383

  6. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-02-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500-650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm.W-1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs.

  7. Organic Fluorescent Dyes Supported on Activated Boron Nitride: A Promising Blue Light Excited Phosphors for High-Performance White Light-Emitting Diodes

    PubMed Central

    Li, Jie; Lin, Jing; Huang, Yang; Xu, Xuewen; Liu, Zhenya; Xue, Yanming; Ding, Xiaoxia; Luo, Han; Jin, Peng; Zhang, Jun; Zou, Jin; Tang, Chengchun

    2015-01-01

    We report an effective and rare-earth free light conversion material synthesized via a facile fabrication route, in which organic fluorescent dyes, i.e. Rhodamine B (RhB) and fluorescein isothiocyanate (FITC) are embedded into activated boron nitride (αBN) to form a composite phosphor. The composite phosphor shows highly efficient Förster resonance energy transfer and greatly improved thermal stability, and can emit at broad visible wavelengths of 500–650 nm under the 466 nm blue-light excitation. By packaging of the composite phosphors and a blue light-emitting diode (LED) chip with transparent epoxy resin, white LED with excellent thermal conductivity, current stability and optical performance can be realized, i.e. a thermal conductivity of 0.36 W/mk, a Commission Internationale de 1'Eclairage color coordinates of (0.32, 0.34), and a luminous efficiency of 21.6 lm·W−1. Our research opens the door toward to the practical long-life organic fluorescent dyes-based white LEDs. PMID:25682730

  8. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  9. Fluorescence imaging of microbe-containing particles shot from a two-stage Light-gas gun into an aerogel

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yuko; Sugino, Tomohiro; Tabata, Makoto; Okudaira, Kyoko; Imai, Eichi; Yano, Hajime; Hasegawa, Sunao; Hashimoto, Hirofumi; Yabuta, Hikaru; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Yamagishi, Akihiko

    2014-02-01

    We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.

  10. Fluorescence imaging of microbe-containing particles shot from a two-stage Light-gas gun into an aerogel.

    PubMed

    Kawaguchi, Yuko; Sugino, Tomohiro; Tabata, Makoto; Okudaira, Kyoko; Imai, Eichi; Yano, Hajime; Hasegawa, Sunao; Hashimoto, Hirofumi; Yabuta, Hikaru; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Yamagishi, Akihiko

    2014-02-01

    We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.

  11. Fluorescence imaging of microbe-containing particles shot from a two-stage Light-gas gun into an aerogel.

    PubMed

    Kawaguchi, Yuko; Sugino, Tomohiro; Tabata, Makoto; Okudaira, Kyoko; Imai, Eichi; Yano, Hajime; Hasegawa, Sunao; Hashimoto, Hirofumi; Yabuta, Hikaru; Kobayashi, Kensei; Kawai, Hideyuki; Mita, Hajime; Yokobori, Shin-ichi; Yamagishi, Akihiko

    2014-02-01

    We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude. PMID:25086872

  12. Integrated fluorescence detection of labeled biomolecules using a prism-like PDMS microfluidic chip and lateral light excitation.

    PubMed

    Novo, Pedro; Chu, Virginia; Conde, João Pedro

    2014-06-21

    Microfabricated amorphous silicon photodiodes were integrated with prism-like PDMS microfluidics for the detection and quantification of fluorescence signals. The PDMS device was fabricated with optical quality surfaces and beveled sides. A 405 nm laser beam perpendicular to the lateral sides of the microfluidic device excites the fluorophores in the microchannel at an angle of 70° to the normal to the microchannel/photodiode surface. This configuration, which makes use of the total internal reflection of the excitation beam and the isotropy of the fluorescence emission, minimizes the intensity of excitation light that reaches the integrated photodetector. A difference of two orders of magnitude was achieved in the reduction of the detection noise level as compared with a normally incident excitation configuration. A limit-of-detection of 5.6 × 10(10) antibodies per square centimeter was achieved using antibodies labeled with a model organic fluorophore. Furthermore, the results using the lateral excitation scheme are in good proportionality agreement with those by fluorescence quantification using wide-field fluorescence microscopy. PMID:24806101

  13. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  14. Dual-channel red/blue fluorescence dosimetry with broadband reflectance spectroscopic correction measures protoporphyrin IX production during photodynamic therapy of actinic keratosis

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen Chad; Davis, Scott C.; Zhao, Yan; Hasan, Tayyaba; Maytin, Edward V.; Pogue, Brian W.; Chapman, M. Shane

    2014-07-01

    Dosimetry for aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) photodynamic therapy of actinic keratosis was examined with an optimized fluorescence dosimeter to measure PpIX during treatment. While insufficient PpIX generation may be an indicator of incomplete response, there exists no standardized method to quantitate PpIX production at depths in the skin during clinical treatments. In this study, a spectrometer-based point probe dosimeter system was used to sample PpIX fluorescence from superficial (blue wavelength excitation) and deeper (red wavelength excitation) tissue layers. Broadband white light spectroscopy (WLS) was used to monitor aspects of vascular physiology and inform a correction of fluorescence for the background optical properties. Measurements in tissue phantoms showed accurate recovery of blood volume fraction and reduced scattering coefficient from WLS, and a linear response of PpIX fluorescence versus concentration down to 1.95 and 250 nM for blue and red excitations, respectively. A pilot clinical study of 19 patients receiving 1-h ALA incubation before treatment showed high intrinsic variance in PpIX fluorescence with a standard deviation/mean ratio of >0.9. PpIX fluorescence was significantly higher in patients reporting higher pain levels on a visual analog scale. These pilot data suggest that patient-specific PpIX quantitation may predict outcome response.

  15. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems. PMID:26061541

  16. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy.

    PubMed

    Hammers, Matthew D; Taormina, Michael J; Cerda, Matthew M; Montoya, Leticia A; Seidenkranz, Daniel T; Parthasarathy, Raghuveer; Pluth, Michael D

    2015-08-19

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems. PMID:26061541

  17. A Bright Fluorescent Probe for H2S Enables Analyte-Responsive, 3D Imaging in Live Zebrafish Using Light Sheet Fluorescence Microscopy.

    PubMed

    Hammers, Matthew D; Taormina, Michael J; Cerda, Matthew M; Montoya, Leticia A; Seidenkranz, Daniel T; Parthasarathy, Raghuveer; Pluth, Michael D

    2015-08-19

    Hydrogen sulfide (H2S) is a critical gaseous signaling molecule emerging at the center of a rich field of chemical and biological research. As our understanding of the complexity of physiological H2S in signaling pathways evolves, advanced chemical and technological investigative tools are required to make sense of this interconnectivity. Toward this goal, we have developed an azide-functionalized O-methylrhodol fluorophore, MeRho-Az, which exhibits a rapid >1000-fold fluorescence response when treated with H2S, is selective for H2S over other biological analytes, and has a detection limit of 86 nM. Additionally, the MeRho-Az scaffold is less susceptible to photoactivation than other commonly used azide-based systems, increasing its potential application in imaging experiments. To demonstrate the efficacy of this probe for H2S detection, we demonstrate the ability of MeRho-Az to detect differences in H2S levels in C6 cells and those treated with AOAA, a common inhibitor of enzymatic H2S synthesis. Expanding the use of MeRho-Az to complex and heterogeneous biological settings, we used MeRho-Az in combination with light sheet fluorescence microscopy (LSFM) to visualize H2S in the intestinal tract of live zebrafish. This application provides the first demonstration of analyte-responsive 3D imaging with LSFM, highlighting the utility of combining new probes and live imaging methods for investigating chemical signaling in complex multicellular systems.

  18. Bili lights

    MedlinePlus

    Phototherapy for jaundice; Bilirubin - bili lights; Neonatal care - bili lights; Newborn care - bili lights ... Phototherapy involves shining fluorescent light from the bili lights on bare skin. A specific wavelength of light can break down bilirubin into a form that ...

  19. 75 FR 36119 - In the Matter of Certain Cold Cathode Fluorescent Lamp (“CCFL”) Inverter Circuits and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... COMMISSION In the Matter of Certain Cold Cathode Fluorescent Lamp (``CCFL'') Inverter Circuits and Products... United States after importation of certain cold cathode fluorescent lamp inverter circuits and products..., California. 74 FR 2099. The complaint alleges violations of section 337 of the Tariff Act of 1930 (19...

  20. Spectral Trends in the Fluorescence of Single Bacterial Light-Harvesting Complexes: Experiments and Modified Redfield Simulations

    PubMed Central

    Rutkauskas, Danielis; Novoderezhkin, Vladimir; Gall, Andrew; Olsen, John; Cogdell, Richard J.; Hunter, C. Neil; van Grondelle, Rienk

    2006-01-01

    In this work we present and discuss the single-molecule fluorescence spectra of a variety of species of light-harvesting complexes: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum and LH1 of Rhodobacter sphaeroides. The emission spectrum of these complexes varies as a function of time as was described in earlier work. For each type of complex, we observe a pronounced and well-reproducible characteristic relationship between the fluorescence spectral parameters of the peak wavelength, width, and asymmetry. This dependence for the LH2 complexes can be quantitatively explained on the basis of a disordered exciton model by varying the static disorder and phonon coupling parameters. In addition, a correlation of the pigment site energies has to be assumed to interpret the behavior of the LH1 complex. PMID:16399834

  1. Action spectra of oxygen production and chlorophyll a fluorescence in the green microalga Nannochloropsis oculata.

    PubMed

    Tamburic, Bojan; Szabó, Milán; Tran, Nhan-An T; Larkum, Anthony W D; Suggett, David J; Ralph, Peter J

    2014-10-01

    The first complete action spectrum of oxygen evolution and chlorophyll a fluorescence was measured for the biofuel candidate alga Nannochloropsis oculata. A novel analytical procedure was used to generate a representative and reproducible action spectrum for microalgal cultures. The action spectrum was measured at 14 discrete wavelengths across the visible spectrum, at an equivalent photon flux density of 60 μmol photon sm(-2) s(-1). Blue light (∼ 414 nm) was absorbed more efficiently and directed to photosystem II more effectively than red light (∼ 679 nm) at light intensities below the photosaturation limit. Conversion of absorbed photons into photosynthetic oxygen evolution was maximised at 625 nm; however, this maximum is unstable since neighbouring wavelengths (646 nm) resulted in the lowest photosystem II operating efficiency. Identifying the wavelength-dependence of photosynthesis has clear implications to optimising growth efficiency and hence important economic implications to the algal biofuels and bioproducts industries.

  2. Multi-channel LED light source for fluorescent agent aided minimally invasive surgery.

    PubMed

    Ren, Jiacheng; Venugopalan, Janani; Xu, Jian; Kairdolf, Brad; Durfee, Robert; Wang, May D

    2014-01-01

    Cancer is one of the most common and deadly diseases around the world. Amongst all the different treatments of cancer such as surgery, chemotherapy and radiation therapy, surgical resection is the most effective. Successful surgeries greatly rely on the detection of the accurate tumor size and location, which can be enhanced by contrast agents. Commercial endoscope light sources, however, offer only white light illumination. In this paper, we present the development of a LED endoscope light source that provides 2 light channels plus white light to help surgeons to detect a clear tumor margin during minimally invasive surgeries. By exciting indocyanine green (ICG) and 5-Aminolaevulinic acid (ALA)-induced protoporphyrin IX (PPIX), the light source is intended to give the user a visible image of the tumor margin. This light source is also portable, easy to use and costs less than $300 to build. PMID:25571589

  3. Multi-Channel LED Light Source for Fluorescent Agent Aided Minimally Invasive Surgery

    PubMed Central

    Ren, Jiacheng; Venugopalan, Janani; Xu, Jian; Kairdolf, Brad; Durfee, Robert; Wang, May D.

    2016-01-01

    Cancer is one of the most common and deadly diseases around the world. Amongst all the different treatments of cancer such as surgery, chemotherapy and radiation therapy, surgical resection is the most effective. Successful surgeries greatly rely on the detection of the accurate tumor size and location, which can be enhanced by contrast agents. Commercial endoscope light sources, however, offer only white light illumination. In this paper, we present the development of a LED endoscope light source that provides 2 light channels plus white light to help surgeons to detect a clear tumor margin during minimally invasive surgeries. By exciting indocyanine green (ICG) and 5-Aminolaevulinic acid (ALA)-induced protoporphyrin IX (PPIX), the light source is intended to give the user a visible image of the tumor margin. This light source is also portable, easy to use and costs less than $300 to build. PMID:25571589

  4. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    PubMed

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.

  5. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light

    PubMed Central

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m−2⋅s−1 irradiance for a 16 h⋅d−1 photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (Amax) and photosynthetic rate (Pn) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. Pn and Amax under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between Pn and shoot dry weight accumulation. PMID:27014285

  6. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light.

    PubMed

    Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang

    2016-01-01

    Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation. PMID:27014285

  7. Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes.

    PubMed

    Palczewska, Grazyna; Maeda, Tadao; Imanishi, Yoshikazu; Sun, Wenyu; Chen, Yu; Williams, David R; Piston, David W; Maeda, Akiko; Palczewski, Krzysztof

    2010-12-01

    Multiphoton excitation fluorescence microscopy (MPM) can image certain molecular processes in vivo. In the eye, fluorescent retinyl esters in subcellular structures called retinosomes mediate regeneration of the visual chromophore, 11-cis-retinal, by the visual cycle. But harmful fluorescent condensation products of retinoids also occur in the retina. We report that in wild-type mice, excitation with a wavelength of ∼730 nm identified retinosomes in the retinal pigment epithelium, and excitation with a wavelength of ∼910 nm revealed at least one additional retinal fluorophore. The latter fluorescence was absent in eyes of genetically modified mice lacking a functional visual cycle, but accentuated in eyes of older wild-type mice and mice with defective clearance of all-trans-retinal, an intermediate in the visual cycle. MPM, a noninvasive imaging modality that facilitates concurrent monitoring of retinosomes along with potentially harmful products in aging eyes, has the potential to detect early molecular changes due to age-related macular degeneration and other defects in retinoid metabolism.

  8. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta)

    PubMed Central

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation. PMID:27642603

  9. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta)

    PubMed Central

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation.

  10. Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta).

    PubMed

    Wu, Huanyang

    2016-01-01

    Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation. PMID:27642603

  11. Lighting Up Ultraviolet Fluorescence From Chicken Albumen Through Plasmon Resonance Energy Transfer of Gold Nanoparticles

    PubMed Central

    -Tsung Chen, I.; Chang, Po-Hsiang; Chang, Yun-Chorng; Guo, Tzung-Fang

    2013-01-01

    Au nanoparticles (AuNPs), which easily aggregate in organic thin film, are observed to well-disperse in chicken albumen thin films. The incorporated AuNPs is distributed uniformly inside the thin film and is as dense as 650 (particles/μm3). In addition, enhanced ultraviolet (UV) fluorescence centered at 350 nm is observed from the AuNPs-containing chicken albumen thin film. The enhancement is proposed to be originated from the plasmon resonance energy transfer (PRET) from the d-band absorption of AuNPs to the chicken albumen protein. The enhanced fluorescence is further verified by the shorter fluorescence lifetime from the time-resolved fluorescence spectra. These results indicate that d-band transition of AuNPs can be used to interface with other UV-emitting biomolecules. Results in this study demonstrate that AuNPs exhibit future potentials in applications for both the organic thin-film technology and nano-biotechnology. PMID:23514900

  12. Real-time endoscopic guidance using near-infrared fluorescent light for thoracic surgery

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Stockdale, Alan; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidharta P.; Gioux, Sylvain

    2013-03-01

    Lung cancer is the leading cause of cancer death in the United States, accounting for 28% of all cancer deaths. Standard of care for potentially curable lung cancer involves preoperative radiographic or invasive staging, followed by surgical resection. With recent adjuvant chemotherapy and radiation studies showing a survival advantage in nodepositive patients, it is crucial to accurately stage these patients surgically in order to identify those who may benefit. However, lymphadenectomy in lung cancer is currently performed without guidance, mainly due to the lack of tools permitting real-time, intraoperative identification of lymph nodes. In this study we report the design and validation of a novel, clinically compatible near-infrared (NIR) fluorescence thoracoscope for real-time intraoperative guidance during lymphadenectomy. A novel, NIR-compatible, clinical rigid endoscope has been designed and fabricated, and coupled to a custom source and a dual channel camera to provide simultaneous color and NIR fluorescence information to the surgeon. The device has been successfully used in conjunction with a safe, FDA-approved fluorescent tracer to detect and resect mediastinal lymph nodes during thoracic surgery on Yorkshire pigs. Taken together, this study lays the foundation for the clinical translation of endoscopic NIR fluorescence intraoperative guidance and has the potential to profoundly impact the management of lung cancer patients.

  13. Fluorescent Proteins as Biomarkers and Biosensors: Throwing Color Lights on Molecular and Cellular Processes

    PubMed Central

    Stepanenko, Olesya V.; Verkhusha, Vladislav V.; Kuznetsova, Irina M.; Uversky, Vladimir N.; Turoverov, K.K.

    2010-01-01

    Green fluorescent protein (GFP) from jellyfish Aequorea victoria is the most extensively studied and widely used in cell biology protein. GFP-like proteins constitute a fast growing family as several naturally occurring GFP-like proteins have been discovered and enhanced mutants of Aequorea GFP have been created. These mutants differ from wild-type GFP by conformational stability, quantum yield, spectroscopic properties (positions of absorption and fluorescence spectra) and by photochemical properties. GFP-like proteins are very diverse, as they can be not only green, but also blue, orange-red, far-red, cyan, and yellow. They also can have dual-color fluorescence (e.g., green and red) or be non-fluorescent. Some of them possess kindling property, some are photoactivatable, and some are photoswitchable. This review is an attempt to characterize the main color groups of GFP-like proteins, describe their structure and mechanisms of chromophore formation, systemize data on their conformational stability and summarize the main trends of their utilization as markers and biosensors in cell and molecular biology. PMID:18691124

  14. Enhancement of fluorescence development of end products by use of a fluorescence developer solution in a rapid and sensitive fluorescent spot test for specific detection of microbial beta-lactamases.

    PubMed

    Chen, K C; Holmes, K K

    1986-03-01

    A fluorescent spot test method for specific detection of microbial beta-lactamases as previously published (K. C. S. Chen, J. S. Knapp, and K. K. Holmes, J. Clin. Microbiol. 19:818-825, 1984) was improved by the use of a fluorescence developer solution. The fluorescence developer solution used in this study consisted of 0.78 M sodium tartrate buffer containing 12% formaldehyde at a final pH of 4.5. An addition of 1 volume of fluorescence developer solution to 5 volumes of ampicillin or cephalex substrate solution incubated with beta-lactamase-producing organisms, followed by heating the mixture at 45 degrees C for 10 min resulted in enhancement of fluorescence of the end products of beta-lactamase activity. This provides a more sensitive assay for microbial beta-lactamases and offers the potential for direct detection of beta-lactamases in clinical specimens.

  15. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells

    PubMed Central

    Hockberger, Philip E.; Skimina, Timothy A.; Centonze, Victoria E.; Lavin, Colleen; Chu, Su; Dadras, Soheil; Reddy, Janardan K.; White, John G.

    1999-01-01

    Violet-blue light is toxic to mammalian cells, and this toxicity has been linked with cellular production of H2O2. In this report, we show that violet-blue light, as well as UVA, stimulated H2O2 production in cultured mouse, monkey, and human cells. We found that H2O2 originated in peroxisomes and mitochondria, and it was enhanced in cells overexpressing flavin-containing oxidases. These results support the hypothesis that photoreduction of flavoproteins underlies light-induced production of H2O2 in cells. Because H2O2 and its metabolite, hydroxyl radicals, can cause cellular damage, these reactive oxygen species may contribute to pathologies associated with exposure to UVA, violet, and blue light. They may also contribute to phototoxicity often encountered during light microscopy. Because multiphoton excitation imaging with 1,047-nm wavelength prevented light-induced H2O2 production in cells, possibly by minimizing photoreduction of flavoproteins, this technique may be useful for decreasing phototoxicity during fluorescence microscopy. PMID:10339574

  16. National voluntary laboratory accreditation program: Energy efficient lighting products. Handbook

    SciTech Connect

    Galowin, L.S.; Hall, W.; Rossiter, W.J.

    1994-07-01

    The purpose of this handbook is to set out procedures and technical requirements for the National Voluntary Laboratory Accreditation Program (NVLAP) accreditation of laboratories which perform test methods covered by the Energy Efficient Lighting (EEL) Products program. It complements and supplements the NVLAP programmatic procedures and general requirements found in NIST Handbook 150 (PB94-178225). The interpretive comments and additional requirements contained in this handbook make the general NVLAP criteria specifically applicable to the EEL program.

  17. Design and development of a LabVIEW-based LED-induced fluorescence spectroscopy system with applications in non-destructive quality assessment of agricultural products

    NASA Astrophysics Data System (ADS)

    Abbasi, Hamed; Nazeri, Majid; Mireei, Seyed Ahmad

    2016-01-01

    Over the past several years, the demand for high quality agricultural products has been remarkably increased. Thus, it is important to use non-destructive methods for product quality monitoring. LED-induced fluorescence spectroscopy has proved its potential for nondestructive detection of some defects in agricultural products, such as tissue browning and bruising. Due to such defects, changes in the polyphenol and chlorophyll contents occur which can be considered as the visible marks of decreasing fruit quality. In the present work, a fluorescence spectrometer (spectrofluorometer) controlled by LabVIEW software was designed and developed. In this spectrometer, a consumer-grade webcam was used as an imaging sensor. The spectrometer was able to measure the fluorescence spectra directly from the fruit and vegetable surface in the desired regions. To do so, the spectrometer was equipped with a suitable fiber-optic probe. The hardware solution was based on data acquisition working on the USB platform and controlled by the application running on the PC. In this system, light emitting diodes with different wavelengths were used as the excitation sources for inducing fluorescence spectra of some famous fruits and vegetables.

  18. Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy

    SciTech Connect

    Rätsep, Margus Pajusalu, Mihkel Linnanto, Juha Matti; Freiberg, Arvi

    2014-10-21

    We have observed that an assembly of the bacteriochloropyll a molecules into B850 and B875 groups of cyclic bacterial light-harvesting complexes LH2 and LH1, respectively, results an almost total loss of the intra-molecular vibronic structure in the fluorescence spectrum, and simultaneously, an essential enhancement of its phonon sideband due to electron-phonon coupling. While the suppression of the vibronic coupling in delocalized (excitonic) molecular systems is predictable, as also confirmed by our model calculations, a boost of the electron-phonon coupling is rather unexpected. The latter phenomenon is explained by exciton self-trapping, promoted by mixing the molecular exciton states with charge transfer states between the adjacent chromophores in the tightly packed B850 and B875 arrangements. Similar, although less dramatic trends were noted for the light-harvesting complexes containing chlorophyll pigments.

  19. Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy.

    PubMed

    Rätsep, Margus; Pajusalu, Mihkel; Linnanto, Juha Matti; Freiberg, Arvi

    2014-10-21

    We have observed that an assembly of the bacteriochloropyll a molecules into B850 and B875 groups of cyclic bacterial light-harvesting complexes LH2 and LH1, respectively, results an almost total loss of the intra-molecular vibronic structure in the fluorescence spectrum, and simultaneously, an essential enhancement of its phonon sideband due to electron-phonon coupling. While the suppression of the vibronic coupling in delocalized (excitonic) molecular systems is predictable, as also confirmed by our model calculations, a boost of the electron-phonon coupling is rather unexpected. The latter phenomenon is explained by exciton self-trapping, promoted by mixing the molecular exciton states with charge transfer states between the adjacent chromophores in the tightly packed B850 and B875 arrangements. Similar, although less dramatic trends were noted for the light-harvesting complexes containing chlorophyll pigments.

  20. Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence

    PubMed Central

    Nakanotani, Hajime; Masui, Kensuke; Nishide, Junichi; Shibata, Takumi; Adachi, Chihaya

    2013-01-01

    Organic light-emitting diodes (OLEDs) are attractive for next-generation displays and lighting applications because of their potential for high electroluminescence (EL) efficiency, flexibility and low-cost manufacture. Although phosphorescent emitters containing rare metals such as iridium or platinum produce devices with high EL efficiency, these metals are expensive and their blue emission remains unreliable for practical applications. Recently, a new route to high EL efficiency using materials that emit through thermally activated delayed fluorescence (TADF) was demonstrated. However, it is unclear whether devices that emit through TADF, which originates from the contributions of triplet excitons, are reliable. Here we demonstrate highly efficient, stable OLEDs that emit via TADF by controlling the position of the carrier recombination zone, resulting in projected lifetimes comparable to those of tris(2-phenylpyridinato)iridium(III)-based reference OLEDs. Our results indicate that TADF is intrinsically stable under electrical excitation and optimization of the surrounding materials will enhance device reliability. PMID:23820465

  1. A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color.

    PubMed

    Yeh, Hsin-Chih; Sharma, Jaswinder; Shih, Ie-Ming; Vu, Dung M; Martinez, Jennifer S; Werner, James H

    2012-07-18

    Rapid and precise screening of small genetic variations, such as single-nucleotide polymorphisms (SNPs), among an individual's genome is still an unmet challenge at point-of-care settings. One crucial step toward this goal is the development of discrimination probes that require no enzymatic reaction and are easy to use. Here we report a new type of fluorescent molecular probe, termed a chameleon NanoCluster Beacon (cNCB), that lights up into different colors upon binding SNP targets. NanoCluster Beacons (NCBs) are collections of a small number of Ag atoms templated on single-stranded DNA that fluoresce strongly when placed in proximity to particular DNA sequences, termed enhancers. Here we show the fluorescence emission color of a NCB can change substantially (a shift of 60-70 nm in the emission maximum) depending upon the alignment between the silver nanocluster and the DNA enhancer sequence. Chameleon NCBs exploit this color shift to directly detect SNPs, based on the fact that different SNPs produce a different alignment between the Ag nanocluster and the enhancer. This SNP detection method has been validated on all single-nucleotide substitution scenarios in three synthetic DNA targets, in six disease-related SNP targets, and in two clinical samples taken from patients with ovarian serous borderline tumors. Samples with single-nucleotide variations can be easily identified by the naked eye under UV excitation, making this method a reliable and low-cost assay with a simple readout format.

  2. Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn(2+) Sensor into a Light-Responsive Zn(2+) Binding Protein.

    PubMed

    Aper, Stijn J A; Merkx, Maarten

    2016-07-15

    Protein-based sensors and switches provide attractive tools for the real-time monitoring and control of molecular processes in complex biological environments. Fluorescent sensor proteins have been developed for a wide variety of small molecules, but the construction of genetically encoded light-responsive ligand binding proteins remains mostly unexplored. Here we present a generic approach to reengineer a previously developed FRET-based Zn(2+) sensor into a light-activatable Zn(2+) binding protein using a design strategy based on mutually exclusive domain interactions. These so-called VividZn proteins consist of two light-responsive Vivid domains that homodimerize upon illumination with blue light, thus preventing the binding of Zn(2+) between two Zn(2+) binding domains, Atox1 and WD4. Following optimization of the linker between WD4 and the N-terminus of one of the Vivid domains, VividZn variants were obtained that show a 9- to 55-fold decrease in Zn(2+) affinity upon illumination, which is fully reversible following dark adaptation. The Zn(2+) affinities of the switch could be rationally tuned between 1 pM and 2 nM by systematic variation of linker length and mutation of one of the Zn(2+) binding residues. Similarly, introduction of mutations in the Vivid domains allowed tuning of the switching kinetics between 10 min and 7 h. Low expression levels in mammalian cells precluded the demonstration of light-induced perturbation of cytosolic Zn(2+) levels. Nonetheless, our results firmly establish the use of intramolecular Vivid dimerization as an attractive light-sensitive input module to rationally engineer light-responsive protein switches based on mutually exclusive domain interactions. PMID:27031076

  3. Rewiring Multidomain Protein Switches: Transforming a Fluorescent Zn(2+) Sensor into a Light-Responsive Zn(2+) Binding Protein.

    PubMed

    Aper, Stijn J A; Merkx, Maarten

    2016-07-15

    Protein-based sensors and switches provide attractive tools for the real-time monitoring and control of molecular processes in complex biological environments. Fluorescent sensor proteins have been developed for a wide variety of small molecules, but the construction of genetically encoded light-responsive ligand binding proteins remains mostly unexplored. Here we present a generic approach to reengineer a previously developed FRET-based Zn(2+) sensor into a light-activatable Zn(2+) binding protein using a design strategy based on mutually exclusive domain interactions. These so-called VividZn proteins consist of two light-responsive Vivid domains that homodimerize upon illumination with blue light, thus preventing the binding of Zn(2+) between two Zn(2+) binding domains, Atox1 and WD4. Following optimization of the linker between WD4 and the N-terminus of one of the Vivid domains, VividZn variants were obtained that show a 9- to 55-fold decrease in Zn(2+) affinity upon illumination, which is fully reversible following dark adaptation. The Zn(2+) affinities of the switch could be rationally tuned between 1 pM and 2 nM by systematic variation of linker length and mutation of one of the Zn(2+) binding residues. Similarly, introduction of mutations in the Vivid domains allowed tuning of the switching kinetics between 10 min and 7 h. Low expression levels in mammalian cells precluded the demonstration of light-induced perturbation of cytosolic Zn(2+) levels. Nonetheless, our results firmly establish the use of intramolecular Vivid dimerization as an attractive light-sensitive input module to rationally engineer light-responsive protein switches based on mutually exclusive domain interactions.

  4. The Effects on Visually Impaired Children of Viewing Fluorescent Stimuli under Black-Light Conditions.

    ERIC Educational Resources Information Center

    LaGrow, S. J.; Leung, J-P.; Leung, S.; Yeung, P.

    1998-01-01

    This study compared effects of four visual conditions of stimuli and light on the visual performance of 30 children with low vision (divided into high, and low, visual-acuity groups). Orange stimuli viewed under black light resulted in the best overall performance, benefitted the low-acuity group more than the high-acuity group, and was the…

  5. Microneedles rollers as a potential device to increase ALA diffusion and PpIX production: evaluations by wide-field fluorescence imaging and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gracielli Sousa, R. Phamilla; de Menezes, Priscila F. C.; Fujita, Alessandra K. L.; Requena, Michelle B.; Govone, Angelo Biassi; Escobar, André; de Nardi, Andrigo B.; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2014-03-01

    One of the limitations of topical photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA) is the poor ability to penetrate biological barriers of skin and the recurrence rates in treatments. This study aimed to identify possible signs of increased diffusion of ALA-induced PpIX by fluorescence images and fluorescence spectroscopy. The research was done using in vivo porcine skin model. Before the cream application, microholes was performed with microneedles rollers in only one direction, afterward the ALA cream was applied at a 2.5cm2 area in triplicate and an occlusive dressing was placed. PpIX production was monitored using fluorescence spectroscopy collected at skin surface after 70, 100, 140, and 180 minutes of ALA incubation. About 100 fluorescence spectra of each treatment were collected, distributed by about five points for each site. Wide-field fluorescence imaging was made after 70, 90, and 170 minutes after treatment. The results obtained by imaging analysis indicated increase of the PpIX diffusion in the skin surface using the microneedles rollers (MNs) before ALA application. Circular regions of red fluorescence around the microholes were observed. In addition, the fluorescence spectra showed a greater intensity (2 times as many) in groups microneedles rollers associated. In conclusion, our data shown greater homogeneity and PpIX production in the groups pre-treated with microneedles indicating that the technique can be used to greater uniformity of PpIX production throughout the area to be treated reducing the chances of recurrent tumor as well as has potential for decreasing the time of therapy. (FUNDING SUPPORT:CAPES, CNPq and FAPESP)

  6. Facile synthesis of bioconjugated fluorescent CdS nanoparticles of tunable light emission

    NASA Astrophysics Data System (ADS)

    Kalasad, M. N.; Rabinal, M. K.; Mulimani, B. G.

    2010-08-01

    Bioconjugated CdS nanoparticles capped with L-cysteine molecules are prepared by an aqueous route. A new source of sulfur that is a complex of hydrazine hydrate-sulfur is used to develop the aqueous synthesis of these nanoparticles. The change in volume ratio of sulfur and cadmium ions with a fixed molarity of capping molecules, as prepared colloids exhibits different colours. These nanoparticles are characterized by optical absorption, photoluminescence, FTIR, x-ray diffraction and transmission electron microscopic measurements. It is observed that the present technique yields nanoparticles that are spherical in shape whose size ranges from 1.7 to 3.39 nm (estimated from optical absorption). The resulting colloids are highly stable (for more than a few months) and exhibit high quantum yield for fluorescence (close to 34%). This demonstrates that the present route of synthesis is simple and easily scalable to prepare highly fluorescent and biologically important nanoparticles of CdS.

  7. Differential fluorescence EEMs can be used to assess treatability of DOM during drinking water production

    NASA Astrophysics Data System (ADS)

    Lavonen, Elin; Kothawala, Dolly; Tranvik, Lars; Köhler, Stephan

    2014-05-01

    Fluorescence spectroscopy has been widely used to characterize fluorescent dissolved organic matter (FDOM) in various waters including during drinking water production. Commonly used techniques for data treatment include peak picking, indexes calculated from 2D emission spectra and modelling of fluorescence components using parallel factor analysis (PARAFAC). However, peak picking and indexes only use limited information from the fluorescence EEMs and PARAFAC requires a larger dataset and experience to perform. Because DOM is a major issue in drinking water production, and personnel at water treatment plants usually have limited time for advanced analysis we have developed a simple way of assessing the treatability of DOM in different waters using differential fluorescence. With this approach the removed fraction of FDOM is calculated from samples taken before and after a particular treatment process and the percentage of removed material assessed. Samples have been collected from four large water treatment plants in Sweden and analyzed for 3Dfluorescence, absorbance and DOC. The selective removal of DOM during e.g. flocculation and slow sand filtration as well as differences in experienced treatability between the treatment plants was described with differential fluorescence. Chemical flocculation is selective towards FDOM with red-shifted emission across the entire EEM. Red-shift has earlier been connected to condensation (i.e. decrease in H/C) and positively correlated to molecular size indicating that larger, humified molecules are being preferentially removed. During the biological process of slow sand filtration compounds with blue-shifted emission are targeted demonstrating selective removal of more freshly produced, microbial material. Disinfection with UV/NH2Cl and NaOCl was found to only target material with protein-like fluorescence suggesting that FDOM of this nature could be responsible for unwanted consumption of disinfection agent. Targeted removal

  8. Thermally Activated Delayed Fluorescence Polymers for Efficient Solution-Processed Organic Light-Emitting Diodes.

    PubMed

    Lee, Sae Youn; Yasuda, Takuma; Komiyama, Hideaki; Lee, Jiyoung; Adachi, Chihaya

    2016-06-01

    Thermally activated delayed fluorescence (TADF) π-conjugated polymers are developed for solution-processed TADF-OLEDs. Benzophenone-based alternating donor-acceptor structures contribute to the small ∆EST , enabling efficient exciton-harvesting through TADF. Solution-processed OLEDs using the TADF polymers as emitters can achieve high maximum external electroluminescence efficiencies of up to 9.3%. PMID:27001891

  9. Bimolecular Fluorescence Complementation; Lighting-Up Tau-Tau Interaction in Living Cells

    PubMed Central

    Tak, HyeJin; Haque, Md. Mamunul; Kim, Min Jung; Lee, Joo Hyun; Baik, Ja-Hyun; Kim, YoungSoo; Kim, Dong Jin; Grailhe, Regis; Kim, Yun Kyung

    2013-01-01

    Abnormal tau aggregation is a pathological hallmark of many neurodegenerative disorders and it is becoming apparent that soluble tau aggregates play a key role in neurodegeneration and memory impairment. Despite this pathological importance, there is currently no single method that allows monitoring soluble tau species in living cells. In this regard, we developed a cell-based sensor that visualizes tau self-assembly. By introducing bimolecular fluorescence complementation (BiFC) technique to tau, we were able to achieve spatial and temporal resolution of tau-tau interactions in a range of states, from soluble dimers to large aggregates. Under basal conditions, tau-BiFC cells exhibited little fluorescence intensity, implying that the majority of tau molecules exist as monomers. Upon chemically induced tau hyperphosphorylation, BiFC fluorescence greatly increased, indicating an increased level of tau-tau interactions. As an indicator of tau assembly, our BiFC sensor would be a useful tool for investigating tau pathology. PMID:24312574

  10. Green fluorescent protein: new light to visualize metastasis and angiogenesis in cancer

    NASA Astrophysics Data System (ADS)

    Yang, Meng; Chishima, Takashi; Baranov, Eugene; Shimada, Hiroshi; Moossa, A. R.; Hoffman, Robert M.

    1999-07-01

    Green fluorescent protein (GFP)-expressing cell-lines have been established by our laboratory that permit the visualization and imaging of primary tumors and micrometastases in live tissue and live animals. Hamster and human cancer cell-lines were transfected with vectors containing the humanized GFP cDNA. Stable high-level expression of GFP was maintained in subcutaneously and orthotopically growing tumors in nude or SCID mice. Subsequent micro-metastases were visualized by GFP fluorescence in live tissue of systematic organs down to the single-cell level. GFP-expressing lung and prostate cancer were visualized to metastasize widely throughout the skeleton when implanted orthotopically in nude mice. With these GFP-cell lines, we have developed models that closely mimic the clinic situation. We have now developed a mean to visualize the onset and progression of angiogenesis of growing and spreading tumors by injecting a fluorescent rhodamine dye to the GFP-tumor-bearing mice indicate that the onset and extent of tumor angiogenesis depends on the site and type of tumor growing in the animal. These models are ideal for studying the mechanisms of cancer metastasis and for discovery of angiogenesis and metastasis inhibitors.

  11. Resonance fluorescence spectra from coherently driven quantum dots coupled to slow-light photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Roy-Choudhury, Kaushik; Mann, Nishan; Manson, Ross; Hughes, Stephen

    2016-06-01

    Using a polaron master equation approach, we investigate the resonance fluorescence spectra from coherently driven quantum dots (QDs) coupled to an acoustic phonon bath and photonic crystal waveguides with a rich local density of photon states (LDOS). Resonance fluorescence spectra from QDs in semiconductor crystals are known to show strong signatures of electron-phonon interactions, but when coupled to a structured photonic reservoir, the QD emission properties are also determined by the frequency dependence of the LDOS of the photon reservoir. Here, we investigate the simultaneous role of coupled photon and phonon baths on the characteristic Mollow triplet spectra from a strongly driven QD. As an example structured photonic reservoir, we first study a photonic crystal coupled cavity waveguide, and find that photons and phonons have counterinteracting effects near the upper mode edge of the coupled-cavity waveguide, thus establishing the importance of their separate roles in determining the emission spectra. The general theory is developed for arbitrary photonic reservoirs and is further applied to determine the resonance fluorescence spectra from a realistic, disordered W1 photonic crystal waveguide showing important photon-phonon interaction effects that are directly relevant to emerging experiments and theoretical proposals.

  12. Two-photon light-sheet nanoscopy by fluorescence fluctuation correlation analysis.

    PubMed

    Chen, Xuanze; Zong, Weijian; Li, Rongqin; Zeng, Zhiping; Zhao, Jia; Xi, Peng; Chen, Liangyi; Sun, Yujie

    2016-05-21

    Advances in light-sheet microscopy have enabled the fast three-dimensional (3D) imaging of live cells and bulk specimens with low photodamage and phototoxicity. Combining light-sheet illumination with super-resolution imaging is expected to resolve subcellular structures. Actually, such kind of super-resolution light-sheet microscopy was recently demonstrated using a single-molecule localization algorithm. However, the imaging depth and temporal resolution of this method are limited owing to the requirements of precise single molecule localization and reconstruction. In this work, we present two-photon super-resolution light-sheet imaging via stochastic optical fluctuation imaging (2PLS-SOFI), which acquires high spatiotemporal resolution and excellent optical sectioning ability. 2PLS-SOFI is based on non-linear excitation of fluctuation/blinking probes using our recently developed fast two-photon three-axis digital scanned light-sheet microscope (2P3A-DSLM), which enables both deep penetration and thin sheet of light. Overall, 2PLS-SOFI demonstrates up to 3-fold spatial resolution enhancement compared with conventional two-photon light-sheet (2PLS) microscopy and about 40-fold temporal resolution enhancement compared with individual molecule localization-selective plane illumination microscopy (IML-SPIM). Therefore, 2PLS-SOFI is promising for 3D long-term, deep-tissue imaging with high spatiotemporal resolution.

  13. Chlorophyll fluorescence and the polarized underwater light field: comparison of vector radiative transfer simulations and multi-angular hyperspectral polarization field measurements

    NASA Astrophysics Data System (ADS)

    El-habashi, Ahmed; Ahmed, Samir

    2016-05-01

    Previous partial simulations and field measurements by us, had demonstrated the impact of the un-polarized nature of algal chlorophyll fluorescence to reduce the observed degree of polarization of the underwater light field in the spectral vicinity of fluorescence. (Polarization otherwise existing as a result of non-algal particulate (NAP) and molecular elastic scattering). The magnitude of this fluorescence driven dip in the observed degree of polarization was also seen to be theoretically related to the fluorescence magnitude. The recent availability to us of the RayXP vector radiative transfer code (VRTE) for the coupled atmosphere ocean system now permits us to make complete simulations of the underwater polarized light field, using measured inherent optical properties (IOPs) as inputs. Based on these simulations, a much more comprehensive analysis of the fluorescence impact is now possible. Combining the results of these new simulations with underwater field measurements in eutrophic waters using our hyperspectral multi angle polarimeter, we verified the theoretical relationship. In addition, comparisons of VRTE simulations and hyperspectral polarized field measurements for various coastal water conditions permit retrieval of fluorescence magnitudes. Comparisons of these polarization based fluorescence retrievals with retrievals obtained using fluorescence height over baseline or Hydrolight scalar simulations, together with total unpolarized radiance measurements, show good agreement.

  14. Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize.

    PubMed

    Wagle, Pradeep; Zhang, Yongguang; Jin, Cui; Xiao, Xiangming

    2016-06-01

    Accurately quantifying cropland gross primary production (GPP) is of great importance to monitor cropland status and carbon budgets. Satellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBMs) have been widely used to quantify cropland GPP at different scales in past decades. However, model estimates of GPP are still subject to large uncertainties, especially for croplands. More recently, space-borne solar-induced chlorophyll fluorescence (SIF) has shown the ability to monitor photosynthesis from space, providing new insights into actual photosynthesis monitoring. In this study, we examined the potential of SIF data to describe maize phenology and evaluated three GPP modeling approaches (space-borne SIF retrievals, a LUE-based vegetation photosynthesis model [VPM], and a process-based soil canopy observation of photochemistry and energy flux [SCOPE] model constrained by SIF) at a maize (Zea mays L.) site in Mead, Nebraska, USA. The result shows that SIF captured the seasonal variations (particularly during the early and late growing season) of tower-derived GPP (GPP_EC) much better than did satellite-based vegetation indices (enhanced vegetation index [EVI] and land surface water index [LSWI]). Consequently, SIF was strongly correlated with GPP_EC than were EVI and LSWI. Evaluation of GPP estimates against GPP_EC during the growing season demonstrated that all three modeling approaches provided reasonable estimates of maize GPP, with Pearson's correlation coefficients (r) of 0.97, 0.94, and 0.93 for the SCOPE, VPM, and SIF models, respectively. The SCOPE model provided the best simulation of maize GPP when SIF observations were incorporated through optimizing the key parameter of maximum carboxylation capacity (Vcmax). Our results illustrate the potential of SIF data to offer an additional way to investigate the seasonality of photosynthetic activity, to constrain process-based models for improving GPP estimates, and to

  15. Light flavour hadron production in the ALICE experiment at LHC

    NASA Astrophysics Data System (ADS)

    Badalà, Angela

    2016-05-01

    Unique among the LHC experiments, ALICE has excellent particle identification capabilities for the measurement of light-flavour hadrons. A large number of hadron species from pions to multi-strange baryons and light nuclei have been measured over a large transverse momentum region. The measurement of the production of these particles is a valuable tool to study the properties of the medium formed in heavy-ion collisions. In particular they give information on the collective phenomena of the fireball, on the parton energy loss in the hot QCD medium and on the hadronization mechanisms such as recombination and statistical hadronization. The measurements in pp and in p-nucleus collisions provide the necessary baseline for heavy-ion data and help to investigate the effects of the ordinary nuclear matter. In this paper some of the main ALICE results on identified light-flavour hadron production in Pb-Pb collisions at √sNN = 2.76 TeV and p-Pb collisions at √sNN = 5.02 TeV will be presented.

  16. Daytime Cognitive Performance in Response to Sunlight or Fluorescent Light Controlling for Sleep Duration

    NASA Technical Reports Server (NTRS)

    Ramos, Jhanic; Zamos, Adela; Rao, Rohit; Flynn-Evans, Erin

    2015-01-01

    Light is the primary synchronizer of the human circadian rhythm and also has acute alerting effects. Our study involves and comparing the alertness, performance and sleep of participants in the NASA Ames Sustainability Base, which uses sunlight as its primary light source, to in a traditional office building which uses overhead florescent lighting and varying exposure to natural light. The purpose of this study is to determine whether the use of natural lighting as a primary light source improves daytime cognitive function and promotes nighttime sleep. Participants from the Sustainability Base will be matched by gender and age to individuals working in other NASA buildings. In a prior study we found no differences in performance between those working in the Sustainability Base and those working in other buildings. Unexpectedly, we found that the average sleep duration among participants in both buildings was short, which likely obscured our ability to detect a difference the effect of light exposure on alertness. Given that such sleep deprivation has negative effects on cognitive performance, in this iteration of the study we are asking the participants to maintain a regular schedule with eight hours in bed each night in order to control for the effect of self-selected sleep restriction. Over the course of one week, we will ask the participants to wear actiwatches continuously, complete a psychomotor vigilance task (PVT) and digit symbol substitution task (DSST) three times per day, and keep daily sleepwork diaries. We hope that this study will provide data to support the idea that natural lighting and green architectural design are optimal to enhance healthy nighttime sleep patterns and daytime cognitive performance.

  17. Characterizing chlorine oxidation of dissolved organic matter and disinfection by-product formation with fluorescence spectroscopy and parallel factor analysis

    NASA Astrophysics Data System (ADS)

    Beggs, Katherine M. H.; Summers, R. Scott; McKnight, Diane M.

    2009-12-01

    Relationships between chlorine demand and disinfection by-product (DBP) formation during chlorination and fluorescence of dissolved organic matter (DOM) were developed. Fluorescence excitation and emission (EEM) spectroscopy was employed, and parameters including fluorescence index, redox index, and overall fluorescence intensity (OFI) were correlated to chlorine demand and DBP formation. The EEMs were also analyzed using a well established global parallel factor analysis (PARAFAC) model which resolves the fluorescence signal into 13 components, including quinone-like and protein-like components. Over an 8-day chlorination period the OFI and sum of the 13 PARAFAC loadings decreased by more than 70%. The remaining identified quinone-like compounds within the DOM were shifted to a more oxidized state. Quinone fluorescence was strongly correlated to both reduced fluorescence intensity and to chlorine demand which indicates that fluorescence may be used to track the chlorine oxidation of DOM. Quinone fluorescence was also correlated strongly with both classes of regulated DBPs: total trihalomethanes and haloacetic acids. Quinone-like components were found to be strongly correlated to overall, short-term, and long-term specific DBP formation. The results of this study show that fluorescence is a useful tool in tracking both DOM oxidation and DBP formation during chlorination.

  18. Production and excitation-emission fluorescence properties of colored dissolved organic matter from marine tropical species

    NASA Astrophysics Data System (ADS)

    Mendoza, W. G.; Zika, R. G.

    2009-12-01

    Colored dissolved organic matter (CDOM) plays an important key role in the photochemistry and biogeochemical cycling of carbon in the coastal region. Their distribution can vary in space and time due to supply of CDOM from different sources. To determine properties of fluorescence-CDOM produced by various marine tropical species, two species from each of the different marine communities were examined after incubation in the dark for forty-nine (49) days: seagrasses-Enhalus acoroides (EA), Thalassia testudinium (TT); corals-Pocillopora cylindrical (PC), Seriatopora hystrix (SH) ; mangroves- Avicennia marina (AM), Sonneratia alba (SA); brown algae-Hormophysa cuneiformis (HC), Sargassum sp.(SS). Average CDOM production is highest from mangrove species (218 QSU/g-sample/day), followed by seagrass (42 QSU/g-sample/day), brown alga (26 QSU/g-sample/day) then corals (19 QSU/g-sample/day).The fluorescence maximum at 312; 380-420 nm emission-excitation pair appears to be present in all species that is an identified humic-like signature. These results suggest that the production of the fluorescent CDOM fraction is a common phenomenon of tropical marine species and as such constitutes a major part of the marine CDOM pool in coastal regions.

  19. LED Lighting Facts® Program Supports Accuracy in SSL Product Information

    SciTech Connect

    2013-09-30

    Fact sheet that provides a summary of LED Lighting Facts, a program to assure that LED lighting is accurately represented in the marketplace, illustrated by the LED Lighting Facts label to disclose product performance data.

  20. Influence of the light-curing unit, storage time and shade of a dental composite resin on the fluorescence

    NASA Astrophysics Data System (ADS)

    Queiroz, R. S.; Bandéca, M. C.; Calixto, L. R.; Gaiao, U.; Cuin, A.; Porto-Neto, S. T.

    2010-07-01

    The aim of this study was to determine the influence of three light-curing units, storage times and colors of the dental composite resin on the fluorescence. The specimens (diameter 10.0 ± 0.1 mm, thickness 1.0 ± 0.1 mm) were made using a stainless steel mold. The mold was filled with the microhybrid composite resin and a polyethylene film covered each side of the mold. After this, a glass slide was placed on the top of the mold. To standardize the top surface of the specimens a circular weight (1 kg) with an orifice to pass the light tip of the LCU was placed on the top surface and photo-activated during 40 s. Five specimens were made for each group. The groups were divided into 9 groups following the LCUs (one QTH and two LEDs), storage times (immediately after curing, 24 hours, 7 and 30 days) and colors (shades: A2E, A2D, and TC) of the composite resin. After photo-activation, the specimens were storage in artificial saliva during the storage times proposed to each group at 37°C and 100% humidity. The analysis of variance (ANOVA) and Tukey’s posthoc tests showed no significant difference between storage times (immediately, 24 hours and 30 days) ( P > 0.05). The means of fluorescence had difference significant to color and light-curing unit used to all period of storage ( P < 0.05). The colors had difference significant between them (shades: A2D < A2E < TC) ( P < 0.05). The Ultraled (LED) and Ultralux (QTH) when used the TC shade showed higher than Radii (LED), however to A2E shade and A2D shade any difference were found ( P > 0.05).

  1. Triplet-triplet annihilation in highly efficient fluorescent organic light-emitting diodes: current state and future outlook.

    PubMed

    Kondakov, Denis Y

    2015-06-28

    Studies of delayed electroluminescence in highly efficient fluorescent organic light-emitting diodes (OLEDs) of many dissimilar architectures indicate that the triplet-triplet annihilation (TTA) significantly increases yield of excited singlet states-emitting molecules in this type of device thereby contributes substantially to their efficiency. Towards the end of the 2000s, the essential role of TTA in realizing highly efficient fluorescent devices was widely recognized. Analysis of a diverse set of fluorescent OLEDs shows that high efficiencies are often cor-related to TTA extents. It is therefore likely that it is the long-term empirical optimization of OLED efficiencies that has resulted in fortuitous emergence of TTA as a large and ubiquitous contributor to efficiency. TTA contributions as high as 20-30% are common in the state-of-the-art OLEDs, and even become dominant in special cases, where TTA is shown to substantially exceed the spin-statistical limit. The fundamental features of OLED efficiency enhancement via TTA-molecular structure-dependent contributions, current density-dependent intensities in practical devices and frequently observed antagonistic relationships between TTA extent and OLED lifetime-came to be understood over the course of the next few years. More recently, however, there was much less reported progress with respect to all-important quantitative details of the TTA mechanism. It should be emphasized that, to this day and despite the decades of work on improving blue phosphorescent OLEDs as well as the recent advent of thermally activated delayed fluorescence OLEDs, the majority of practical blue OLEDs still rely on TTA. Considering such practical importance of fluorescent blue OLEDs, the design of blue OLED-compatible materials capable of substantially exceeding the spin-statistical limit in TTA, elimination of the antagonistic relationship between TTA-related efficiency gains and lifetime losses, and designing devices with an extended

  2. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn.

    PubMed

    Linkosalo, Tapio; Heikkinen, Juha; Pulkkinen, Pertti; Mäkipää, Raisa

    2014-01-01

    We studied the photosynthetic activity of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst) in relation to air temperature changes from March 2013 to February 2014. We measured the chlorophyll fluorescence of approximately 50 trees of each species growing in southern Finland. Fluorescence was measured 1-3 times per week. We began by measuring shoots present in late winter (i.e., March 2013) before including new shoots once they started to elongate in spring. By July, when the spring shoots had achieved similar fluorescence levels to the older ones, we proceeded to measure the new shoots only. We analyzed the data by fitting a sigmoidal model containing four parameters to link sliding averages of temperature and fluorescence. A parameter defining the temperature range over which predicted fluorescence increased most rapidly was the most informative with in describing temperature dependence of fluorescence. The model generated similar fluorescence patterns for both species, but differences were observed for critical temperature and needle age. Down regulation of the light reaction was stronger in spring than in autumn. Pine showed more conservative control of the photosynthetic light reactions, which were activated later in spring and more readily attenuated in autumn. Under the assumption of a close correlation of fluorescence and photosynthesis, spruce should therefore benefit more than pine from the increased photosynthetic potential during warmer springs, but be more likely to suffer frost damage with a sudden cooling following a warm period. The winter of 2013-2014 was unusually mild and similar to future conditions predicted by global climate models. During the mild winter, the activity of photosynthetic light reactions of both conifers, especially spruce, remained high. Because light levels during winter are too low for photosynthesis, this activity may translate to a net carbon loss due to respiration.

  3. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    SciTech Connect

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized

  4. Limited-view light sheet fluorescence microscopy for three dimensional volume imaging

    NASA Astrophysics Data System (ADS)

    Rasmi, C. K.; Mohan, Kavya; Madhangi, M.; Rajan, K.; Nongthomba, U.; Mondal, Partha P.

    2015-12-01

    We propose and demonstrate a limited-view light sheet microscopy (LV-LSM) for three dimensional (3D) volume imaging. Realizing that longer and frequent image acquisition results in significant photobleaching, we have taken limited angular views (18 views) of the macroscopic specimen and integrated with maximum likelihood (ML) technique for reconstructing high quality 3D volume images. Existing variants of light-sheet microscopy require both rotation and translation with a total of approximately 10-fold more views to render a 3D volume image. Comparatively, LV-LSM technique reduces data acquisition time and consequently minimizes light-exposure by many-folds. Since ML is a post-processing technique and highly parallelizable, this does not cost precious imaging time. Results show noise-free and high contrast volume images when compared to the state-of-the-art selective plane illumination microscopy.

  5. Interhead fluorescence energy transfer between probes attached to translationally equivalent sites on the regulatory light chains of scallop myosin.

    PubMed

    Chantler, P D; Tao, T

    1986-11-01

    Interhead fluorescence energy transfer studies between probes located at translationally equivalent sites on the two heads of scallop myosin indicates that the distance between such sites is no less than 50 A. Regulatory light chains, possessing either one (Mercenaria, chicken gizzard) or two (Loligo, rabbit skeletal) sulfhydryl groups, were modified either with 1,5-IAEDANS (N'-iodoacetyl-N'-(1-sulfo-5-n-naphthyl)ethylenediamine), as energy transfer donor, or with IAF (5-(iodoacetamido)fluorescein) or DABMI (4-dimethylaminophenylazophenyl-4'-maleimide), as energy transfer acceptor. The sulfhydryl groups on these light chains are located at different positions within the regulatory light-chain primary sequence; this enables one to probe a variety of locations, with respect to regulatory light-chain topology, on each myosin head. These independently modified regulatory light chains were added back to desensitized scallop myosin under a variety of conditions, including biphasic re-addition, the aim being to maximize the number of interhead energy transfer couples present. The efficiency of energy transfer was determined on the same samples by both steady-state and time-decay techniques. Results obtained by these two techniques were in good agreement with each other and indicated that the efficiency of energy transfer did not exceed 20% in any of the hybrids studied. Transfer efficiencies were invariant, irrespective of the presence or absence of MgATP, calcium or actin, either separately or in combination. Results using heavy meromyosin at low ionic strength were identical. It is shown that these results, in conjunction with the results of recent crosslinking studies performed on comparable myosin hybrids, may place certain restrictions on the configurations of the two heads of myosin.

  6. Light screening in lichen cortices can be quantified by chlorophyll fluorescence techniques for both reflecting and absorbing pigments.

    PubMed

    Solhaug, Knut Asbjørn; Larsson, Per; Gauslaa, Yngvar

    2010-04-01

    Lichens, representing mutualistic symbioses between photobionts and mycobionts, often accumulate high concentrations of secondary compounds synthesized by the fungal partner. Light screening is one function for cortical compounds being deposited as crystals outside fungal hyphae. These compounds can non-destructively be extracted by 100% acetone from air-dry living thalli. Extraction of atranorin from Physcia aipolia changed the lichen colour from pale grey to green in the hydrated state, whereas acetone-rinsed and control thalli were all pale grey when dry. Removal of parietin from Xanthoria parietina changed the colour of desiccated thalli from orange to grey. Colour changes were quantified by reflectance measurements. By a new chlorophyll fluorescence method, screening was assessed as the decrease in incident irradiance (PAR) necessary to reach identical effective quantum yields of PSII (Phi(PSII)) in acetone-rinsed and control thalli. Thereby, we estimated a screening efficiency due to cortical atranorin crystals at 61, 38, and 40% of blue, green and red light, respectively, whereas parietin screened 81, 27 and 1% of these wavelength ranges. Removal of atranorin caused similar levels of increased photoinhibition for P. aipolia in blue, green and red light, whereas parietin-deficient thalli of X. parietina exhibited increased photoinhibition with decreasing wavelengths. Atranorin possibly prevents water from entering the spaces between the hyphae in the cortex. The air-filled cavities with white atranorin crystals reflect excess light, whereas the yellow compound parietin absorbs excess light. Thereby, both atranorin and parietin play significant photoprotective roles for symbiotic green algae, but with compound-specific screening mechanisms. PMID:20135325

  7. Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Akimoto, Seiji; Yokono, Makio; Aikawa, Shimpei; Kondo, Akihiko

    2013-11-01

    In cyanobacteria, the interactions among pigment-protein complexes are modified in response to changes in light conditions. In the present study, we analyzed excitation energy transfer from the phycobilisome and photosystem II to photosystem I in the cyanobacterium Arthrospira (Spirulina) platensis. The cells were grown under lights with different spectral profiles and under different light intensities, and the energy-transfer characteristics were evaluated using steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra. The direct energy transfer from the phycobilisome to photosystem I and energy transfer from photosystem II to photosystem I were modified depending on the light quality, light quantity, and cultivation period. However, the total amount of energy transferred to photosystem I remained constant under the different growth conditions. We discuss the differences in energy-transfer processes under different cultivation and light conditions. PMID:23605291

  8. Degradation products from consumer nanocomposites - a case study on quantum dot lighting

    PubMed Central

    Liu, Jingyu; Katahara, John; Li, Guanglai; Coe-Sullivan, Seth; Hurt, Robert H.

    2012-01-01

    Most nanomaterials enter the natural environment as nano-enabled products, which are typically composites with primary nanoparticles bound on substrates or embedded in liquid or solid matrices. The environmental risks associated with these products are expected to differ from those associated with the as-produced particles. This article presents a case study on the end-of-life emission of a commercial prototype polymer/quantum-dot (QD) composite used in solid-state lighting for homes. We report the extent of cadmium release upon exposure to a series of environmental and biological simulant fluids, and track the loss of QD-characteristic fluorescence as a marker for chemical damage to the CdSe/ZnS nanoparticles. Measured cadmium releases after 30-day exposure range from 0.007-1.2 mg/g of polymer, and the higher values arise for low-pH simulants containing nitric or gastric acid. Centrifugal ultrafiltration and ICP was used to distinguish soluble cadmium from particulate forms. The leachate is found to contain soluble metals with no evidence of free QDs or QD-containing polymeric debris. The absence of free nanoparticles suggests that this product does not raise nanotechnology-specific environmental issues associated with degradation and leaching, but is more usefully regarded as a conventional chemical product that is a potential source of small amounts of soluble cadmium. PMID:22352378

  9. Effect of imaging geometry on evaluating natural white-spot lesions using quantitative light-induced fluorescence.

    PubMed

    Ando, Masatoshi; Eckert, George J; Stookey, George K; Zero, Domenick T

    2004-01-01

    The objective of this study was to determine the effect of imaging geometry on evaluating natural white-spot lesions with quantitative light-induced fluorescence (QLF). A total of 34 specimens were prepared from extracted human premolars and permanent molars with white spots on the interproximal surface. The specimens were each adjusted to a final thickness of 3.0 mm. Images were acquired with the QLF system perpendicular to the white spots and at 5 degrees intervals up to 30 degrees above and below the perpendicular. The specimens were rotated around the buccolingual axis of the tooth (pitch angle) and around the long axis of the tooth (roll angle). The averages of fluorescence loss (DeltaF, %) and lesion size (mm2) were determined with QLF. Another variable, DeltaQ, which was defined as the fluorescence loss integrated over the lesion size (% x mm2), was also calculated. DeltaF was smaller when lesions were viewed from the cervical direction (angles less than 90 degrees ), and became bigger when viewed from the coronal direction. Roll angle did not significantly affect DeltaF. Apparent lesion size diminished with deviations from 90 degrees in both directions for pitch and roll angles. DeltaQ was affected by pitch and roll angles with the largest value at 90 degrees and values decreasing in both directions from 90 degrees. In general, there were significant differences for angles larger than 20 degrees from the perpendicular for all three QLF variables. This study suggests that angle is an important factor to control when performing QLF studies; however, small changes (deviations within 20 degrees ) have a minimal effect on QLF variables. PMID:14684976

  10. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  11. Comparison of light-induced and laser-induced fluorescence methods for the detection and quantification of enamel demineralization

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Analoui, Mostafa; Schemehorn, Bruce R.; Stookey, George K.

    1999-05-01

    The Quantitative Laser-Induced Fluorescence (QLF) technique has been sued for diagnosis of early caries in permanent teeth (PT). The objective of this study was to determine the caries quantification ability of QLF in deciduous teeth (DT). Sixty sound teeth, thirty DT and thirty PT, were used. All teeth were cleaned to remove debris and equally divided into three groups. Lesions were created in small windows (0.8x2.0 mm2) on buccal or labial surface for 48, 72, and 96 hr. Lesion images were made with a 488 nm argon laser (QLF I) and then with a 370 +/- 80 nm violet-blue light (QLF II). Both images were analyzed to determine the mean percent change in fluorescence radiance (ΔF). A center section from the lesions was taken for analysis with microradiography. The lesion depth and loss of mineral content were determined. The correlations between ΔF and lesion depth as well as ΔZ in DT were 0.76 and 0.84 with QLF I, 0.81 and 0.88 with QLF II, respectively. It can be concluded the ability of QLF to quantify white-spots in DT is better than in PT.

  12. Highly Efficient Nondoped Organic Light Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter with Quantum-Well Structure.

    PubMed

    Meng, Lingqiang; Wang, Hui; Wei, Xiaofang; Liu, Jianjun; Chen, Yongzhen; Kong, Xiangbin; Lv, Xiaopeng; Wang, Pengfei; Wang, Ying

    2016-08-17

    Highly efficiency nondoped thermally activated delayed fluorescence (TADF) organic light emitting diodes (OLEDs) with multiquantum wells structure were demonstrated. By using an emitting layer with seven quantum wells, the nondoped TADF OLEDs exhibit high efficiency with EQE of 22.6%, a current efficiency of 69 cd/A, and a power efficiency of 50 lm/W, which are higher than those of the conventional doped OLED and among the best of the TADF OLEDs. The high performance of the devices can be ascribed to effective confinement of the charges and excitons in the emission layer by the quantum well structure. The emission layer with multiquantum well structure is demonstrated to be cost effective for highly efficient nondoped TADF OLEDs and holds great potential for organic electronics.

  13. Triplet exciton confinement for enhanced fluorescent organic light-emitting diodes using a co-host system

    NASA Astrophysics Data System (ADS)

    Yoo, Han Kyu; Lee, Ho Won; Lee, Song Eun; Kim, Young Kwan; Kim, Se Hyun; Yoon, Seung Soo; Park, Jaehoon

    2016-05-01

    In this work, the co-host system within an emitting layer (EML) consists of the host and triplet managing (TM) host materials. A set of EML structures was fabricated with various concentrations of the TM host (0, 10, 30, 50, and 70%). The TM host triplet energy level is lower than the energy levels of the host and the guest, which leads to a reduction in the triplet exciton density and the singlet-triplet annihilation of the guest. Blue fluorescent organic light-emitting diodes exhibit a maximum luminous efficiency (LE) and an external quantum efficiency (EQE) of 9.74 cd/A and 4.92%, respectively. In addition, the efficiency roll-off ratios of the LE and the EQE are 14.25 and 13.16%, respectively.

  14. Fluorescent optical position sensor

    DOEpatents

    Weiss, Jonathan D.

    2005-11-15

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  15. Discovery of Small Molecules for Fluorescent Detection of Complement Activation Product C3d.

    PubMed

    Gorham, Ronald D; Nuñez, Vicente; Lin, Jung-Hsin; Rooijakkers, Suzan H M; Vullev, Valentine I; Morikis, Dimitrios

    2015-12-24

    Complement activation plays a major role in many acute and chronic inflammatory conditions. C3d, a terminal product of complement activation, remains covalently attached to cells and is an excellent biomarker of complement-mediated inflammation. We employed a virtual high-throughput screening protocol to identify molecules with predicted binding to complement C3d and with intrinsic fluorescence properties to enable detection. Pharmacophore models were developed based on known C3d-ligand interactions and information from computational analysis of structural and molecular dynamics data. Iterative pharmacophore-based virtual screening was performed to identify druglike molecules with physicochemical similarity to the natural C3d ligand CR2. Hits from the pharmacophore screens were docked to C3d and ranked based on predicted binding free energies. Top-ranked molecules were selected for experimental validation of binding affinity to C3d, using microscale thermophoresis, and for their suitability to become molecular imaging agents, using fluorescence spectroscopy. This work serves as a foundation for identifying additional fluorescent molecules with high-affinity for C3d that will subsequently be explored as noninvasive in vivo diagnostics of complement-mediated inflammation, for spatiotemporal monitoring of disease progression, and for targeting therapeutics to sites of inflammation.

  16. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products.

    PubMed

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs’ characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial. PMID:25764396

  17. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products

    NASA Astrophysics Data System (ADS)

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs' characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial.

  18. Discovery of Small Molecules for Fluorescent Detection of Complement Activation Product C3d.

    PubMed

    Gorham, Ronald D; Nuñez, Vicente; Lin, Jung-Hsin; Rooijakkers, Suzan H M; Vullev, Valentine I; Morikis, Dimitrios

    2015-12-24

    Complement activation plays a major role in many acute and chronic inflammatory conditions. C3d, a terminal product of complement activation, remains covalently attached to cells and is an excellent biomarker of complement-mediated inflammation. We employed a virtual high-throughput screening protocol to identify molecules with predicted binding to complement C3d and with intrinsic fluorescence properties to enable detection. Pharmacophore models were developed based on known C3d-ligand interactions and information from computational analysis of structural and molecular dynamics data. Iterative pharmacophore-based virtual screening was performed to identify druglike molecules with physicochemical similarity to the natural C3d ligand CR2. Hits from the pharmacophore screens were docked to C3d and ranked based on predicted binding free energies. Top-ranked molecules were selected for experimental validation of binding affinity to C3d, using microscale thermophoresis, and for their suitability to become molecular imaging agents, using fluorescence spectroscopy. This work serves as a foundation for identifying additional fluorescent molecules with high-affinity for C3d that will subsequently be explored as noninvasive in vivo diagnostics of complement-mediated inflammation, for spatiotemporal monitoring of disease progression, and for targeting therapeutics to sites of inflammation. PMID:26613117

  19. Photon Production through Multi-step Processes Important in Nuclear Fluorescence Experiments

    SciTech Connect

    Hagmann, C; Pruet, J

    2006-10-26

    The authors present calculations describing the production of photons through multi-step processes occurring when a beam of gamma rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of backscattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence.

  20. Ubiquitous Autofragmentation of Fluorescent Proteins Creates Abundant Defective Ribosomal Products (DRiPs) for Immunosurveillance*

    PubMed Central

    Wei, Jiajie; Gibbs, James S.; Hickman, Heather D.; Cush, Stephanie S.; Bennink, Jack R.; Yewdell, Jonathan W.

    2015-01-01

    Green fluorescent protein (GFP) and other fluorescent proteins are essential tools for biological research. When fused to peptides or proteins as a reporter, GFP enables localization and quantitation of gene products in otherwise unmanipulated live cells or organisms. We previously reported that a sizable fraction of nascent GFP is post-translationally converted into a 20-kDa Triton X-100-insoluble proteasome substrate (Qian, S. B., Princiotta, M. F., Bennink, J. R., and Yewdell, J. W. (2006) J. Biol. Chem. 281, 392–400; Dolan, B. P., Li, L., Veltri, C. A., Ireland, C. M., Bennink, J. R., and Yewdell, J. W. (2011) J. Immunol. 186, 2065–2072). Here, we show that a similarly sized fragment is generated by all GFP and red fluorescent protein family members we examined. We demonstrate that fragmentation is a by-product of GFP chromophore rearrangement. A non-rearranging GFP mutant fails to fragment and generates diminished levels of Kb-SIINFEKL complexes when SIINFEKL is genetically fused to either the C- or N-terminal domains of GFP fusion proteins. Instructively, another fragmenting GFP mutant that cannot create the functional chromophore but still generates fragments also demonstrates diminished Kb-SIINFEKL generation. However, the mutant and wild-type fragments differ fundamentally in that wild-type fragments are rapidly liberated from the intact molecule and degraded quickly, accounting for increased Kb-SIINFEKL generation. In the fragmenting mutant, the fragments are generated slowly and remain associated, likely in a native conformation based on their original structural description (Barondeau, D. P., Kassmann, C. J., Tainer, J. A., and Getzoff, E. D. (2006) J. Am. Chem. Soc. 128, 4685–4693). The wild-type GFP fragments represent the first biochemically defined natural defective ribosomal products to contribute peptides for immunosurveillance, enabling quantitation of peptide generation efficiency from this source of defective ribosomal products. More

  1. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy.

    PubMed

    Bixler, Joel N; Cone, Michael T; Hokr, Brett H; Mason, John D; Figueroa, Eleonora; Fry, Edward S; Yakovlev, Vladislav V; Scully, Marlan O

    2014-05-20

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment.

  2. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy

    PubMed Central

    Bixler, Joel N.; Cone, Michael T.; Hokr, Brett H.; Mason, John D.; Figueroa, Eleonora; Fry, Edward S.; Yakovlev, Vladislav V.; Scully, Marlan O.

    2014-01-01

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment. PMID:24799690

  3. Ultrasensitive detection of waste products in water using fluorescence emission cavity-enhanced spectroscopy.

    PubMed

    Bixler, Joel N; Cone, Michael T; Hokr, Brett H; Mason, John D; Figueroa, Eleonora; Fry, Edward S; Yakovlev, Vladislav V; Scully, Marlan O

    2014-05-20

    Clean water is paramount to human health. In this article, we present a technique for detection of trace amounts of human or animal waste products in water using fluorescence emission cavity-enhanced spectroscopy. The detection of femtomolar concentrations of urobilin, a metabolic byproduct of heme metabolism that is excreted in both human and animal waste in water, was achieved through the use of an integrating cavity. This technique could allow for real-time assessment of water quality without the need for expensive laboratory equipment. PMID:24799690

  4. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells.

    PubMed

    Gollavelli, Ganesh; Ling, Yong-Chien

    2014-05-01

    Developing a simple and cost-effective strategy to diagnose and treat cancer with single and minimal dosage through noninvasive strategies are highly challenging. To make the theranostic strategy effective, single light induced photothermal and photodynamic reagent with dual modal imaging capability is highly desired. Herein, a simple non-covalent approach was adopted to immobilize hydrophobic silicon napthalocyanine bis (trihexylsilyloxide) (SiNc4) photosensitizer onto water dispersible magnetic and fluorescent graphene (MFG) via π-π stacking to yield MFG-SiNc4 functioned as a theranostic nanocarrier. Taking the advantage of broad near infra-red absorption (600-1200 nm) by graphene, photosensitizer of any wavelength within this range will facilitate the single light induced phototherapy. Phosphorescence spectra, singlet oxygen sensor green (SOSG) experiments, and 1,3-diphenyl isobenzofuran quenching studies confirm the generation of singlet (1)O2 upon photoirradiation. Confocal microscopic images reveal successful internalization of MFG-SiNc4 in HeLa cells; whereas T2-weighted magnetic resonance images of MFG reveal a significant concentration dependent darkening effect. In vitro photodynamic/photothermal therapeutic studies on HeLa cells have demonstrated that the killing efficacy of MFG-SiNc4 using a single light source is ∼97.9%, presumably owing to the combined effects of generating reactive oxygen species, local heating, and induction of apoptosis. The developed MFG-SiNc4 may thus be utilized as a potential theranostic nanocarrier for dual modal imaging and phototherapy of cancer cells with single light source for time and cost effective treatments with a minimal therapy dose.

  5. Fluorometric flow-immunoassay for alkylphenol polyethoxylates on a microchip containing a fluorescence detector comprised of an organic light emitting diode and an organic photodiode.

    PubMed

    Liu, Rong; Ishimatsu, Ryoichi; Yahiro, Masayuki; Adachi, Chihaya; Nakano, Koji; Imato, Toshihiko

    2015-03-01

    A compact fluorescence detector was constructed on a microchip from an organic light emitting diode (OLED) as the light source and an organic photodiode (OPD) as the photo-detector and was used in an immunoassay for alkylphenol polyethoxylates (APE). The OLED based on a terbium complex emitted a sharp light at the main wavelength of 546 nm with a full width at half maximum of 9 nm. The incident photo-to-current conversion efficiency (IPCE) of the OPD fabricated with Fullerene 70 (C70) and tris[4-(5-phenylthiopen-2-yl)phenyl]-amine (TPTPA) was approximately 44% for light at a wavelength of 586 nm. The performance of the fluorescence detector was evaluated for the determination of resorufin (λ(em)=586 nm) and the photocurrent of the OPD due to the fluorescence of resorufin was proportional to the concentration of resorufin in the range from 0 to 18 µM with a detection limit (S/N=3) of 0.6 µM. The fluorescence detector was successfully utilized in a competitive enzyme-linked immunosorbent assay for APE, where an anti-APE antibody was immobilized on the surface of the channel of the Polydimethylsiloxane (PDMS) microchip or on the surface of magnetic microbeads. After an immunoreaction with a sample solution of APE containing a horse radish peroxidase (HRP)-labeled APE, the fluorescence of resorufin generated just after introduction of a mixed solution of Amplex Red and H2O2 was measured using the fluorescence detector. The calibration curve for the photocurrent signals of the OPD due to the fluorescence of resorufin against the logarithmic concentration of APE was sigmoidal in shape. The detection limits defined as IC80 were ca. 1 ppb and ca. 2 ppb, respectively, for the methods using the anti-APE antibody immobilized on the surface of the microchannel and in the case where the antibody was immobilized on the surface of magnetic microbeads.

  6. Fluorometric flow-immunoassay for alkylphenol polyethoxylates on a microchip containing a fluorescence detector comprised of an organic light emitting diode and an organic photodiode.

    PubMed

    Liu, Rong; Ishimatsu, Ryoichi; Yahiro, Masayuki; Adachi, Chihaya; Nakano, Koji; Imato, Toshihiko

    2015-03-01

    A compact fluorescence detector was constructed on a microchip from an organic light emitting diode (OLED) as the light source and an organic photodiode (OPD) as the photo-detector and was used in an immunoassay for alkylphenol polyethoxylates (APE). The OLED based on a terbium complex emitted a sharp light at the main wavelength of 546 nm with a full width at half maximum of 9 nm. The incident photo-to-current conversion efficiency (IPCE) of the OPD fabricated with Fullerene 70 (C70) and tris[4-(5-phenylthiopen-2-yl)phenyl]-amine (TPTPA) was approximately 44% for light at a wavelength of 586 nm. The performance of the fluorescence detector was evaluated for the determination of resorufin (λ(em)=586 nm) and the photocurrent of the OPD due to the fluorescence of resorufin was proportional to the concentration of resorufin in the range from 0 to 18 µM with a detection limit (S/N=3) of 0.6 µM. The fluorescence detector was successfully utilized in a competitive enzyme-linked immunosorbent assay for APE, where an anti-APE antibody was immobilized on the surface of the channel of the Polydimethylsiloxane (PDMS) microchip or on the surface of magnetic microbeads. After an immunoreaction with a sample solution of APE containing a horse radish peroxidase (HRP)-labeled APE, the fluorescence of resorufin generated just after introduction of a mixed solution of Amplex Red and H2O2 was measured using the fluorescence detector. The calibration curve for the photocurrent signals of the OPD due to the fluorescence of resorufin against the logarithmic concentration of APE was sigmoidal in shape. The detection limits defined as IC80 were ca. 1 ppb and ca. 2 ppb, respectively, for the methods using the anti-APE antibody immobilized on the surface of the microchannel and in the case where the antibody was immobilized on the surface of magnetic microbeads. PMID:25618638

  7. Lighting Up the Force: Investigating Mechanisms of Mechanotransduction Using Fluorescent Tension Probes

    PubMed Central

    Jurchenko, Carol

    2015-01-01

    The ability of cells to sense the physical nature of their surroundings is critical to the survival of multicellular organisms. Cellular response to physical cues from adjacent cells and the extracellular matrix leads to a dynamic cycle in which cells respond by remodeling their local microenvironment, fine-tuning cell stiffness, polarity, and shape. Mechanical regulation is important in cellular development, normal morphogenesis, and wound healing. The mechanisms by which these finely balanced mechanotransduction events occur, however, are not well understood. In large part, this is due to the limited availability of tools to study molecular mechanotransduction events in live cells. Several classes of molecular tension probes have been recently developed which are rapidly transforming the study of mechanotransduction. Molecular tension probes are primarily based on fluorescence resonance energy transfer (FRET) and report on piconewton scale tension events in live cells. In this minireview, we describe the two main classes of tension probes, genetically encoded tension sensors and immobilized tension sensors, and discuss the advantages and limitations of each type. We discuss future opportunities to address major biological questions and outline the challenges facing the next generation of molecular tension probes. PMID:26031334

  8. Fluorescent minerals - A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments

    NASA Astrophysics Data System (ADS)

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark.

  9. Fluorescent minerals--A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments.

    PubMed

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark.

  10. Fluorescent minerals--A potential source of UV protection and visible light for the growth of green algae and cyanobacteria in extreme cosmic environments.

    PubMed

    Omairi, Tareq; Wainwright, Milton

    2015-07-01

    We propose that green algae (Chlorella variabilis and Dunaliella tertiolecta) and cyanobacteria (Synechococcus elongatus and Nostoc commune) can grow inside fluorescent rock minerals which convert damaging UV light to visible light, thereby allowing these organisms to survive and thrive in UV-rich environments without (or with limited) visible light, which would otherwise be inimical to them. The four microorganisms were incubated inside fluorescent rocks composed of fluorite, calcite and pyrite. The resultant growth was then measured following exposure to UV radiation, with the use of optical density and measurement of chlorophyll concentration. Results show that the microorganisms were shielded from harmful UV in these semi-transparent rocks, while at the same time benefiting from the fact that the minerals converted UV to visible light; this have been shown by a statistically significant increase in their growth, which although lower than when the cells were incubated in sunlight, was significantly higher than in controls incubated in the dark. PMID:26256632

  11. Self-assembly-induced far-red/near-infrared fluorescence light-up for detecting and visualizing specific protein-Peptide interactions.

    PubMed

    Wang, Huaimin; Liu, Jie; Han, Aitian; Xiao, Nannan; Xue, Zhaosheng; Wang, Gang; Long, Jiafu; Kong, Deling; Liu, Bin; Yang, Zhimou; Ding, Dan

    2014-02-25

    Understanding specific protein-peptide interactions could offer a deep insight into the development of therapeutics for many human diseases. In this work, we designed and synthesized a far-red/near-infrared (FR/NIR) fluorescence light-up probe (DBT-2EEGWRESAI) by simply integrating two tax-interacting protein-1 (TIP-1)-specific peptide ligands (EEGWRESAI) with one 4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole (DBT) unit. We first demonstrated that DBT is an environment-sensitive fluorophore with FR/NIR fluorescence due to its strong charge transfer character in the excited state. Thanks to the environmental sensitivity of DBT, the probe DBT-2EEGWRESAI is very weakly fluorescent in aqueous solution but lights up its fluorescence when the probe specifically binds to TIP-1 protein or polyprotein (ULD-TIP-1 tetramer). It is found that the DBT-2EEGWRESAI/TIP-1 protein and the DBT-2EEGWRESAI/ULD-TIP-1 tetramer could self-assemble into spherical nanocomplexes and a nanofiber network, respectively, which lead to probe fluorescence turn-on through providing DBT with a hydrophobic microenvironment. By virtue of the self-assembly-induced FR/NIR fluorescence turn-on, DBT-2EEGWRESAI can detect and visualize specific protein/polyprotein-peptide interactions in both solution and live bacteria in a high contrast and selective manner.

  12. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    NASA Astrophysics Data System (ADS)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  13. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials.

    PubMed

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9'-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9',9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  14. Fluorescent light mediated a green synthesis of silver nanoparticles using the protein extract of weaver ant larvae.

    PubMed

    Khamhaengpol, Arunrat; Siri, Sineenat

    2016-10-01

    Alternative to crude plant extracts, a crude protein extract derived from animal cells is one of the potential sources of biomolecules for mediating a reduction of silver ions and a formation of silver nanoparticles (AgNPs) under a mild condition, which very few works have been reported. This work demonstrated a use of the protein extract of weaver ant larvae as a bio-facilitator for a simple, green synthesis of AgNPs under fluorescent light at room temperature. The protein extract of weaver ant larvae exhibited the reducing and antioxidant activities, which assisted a formation of AgNPs in the reaction containing only silver nitrate under light exposure. Transmission electron microscopy images revealed the dispersed, spherical AgNPs with an average size of 7.87±2.54nm. The maximum surface plasmon resonance (SPR) band of the synthesized AgNPs was at 435nm. The energy-dispersive X-ray analysis revealed that silver was a major element of the particles. The identity of AgNPs was confirmed by X-ray diffraction pattern, selected area electron diffraction and high resolution transmission electron microscopy analyses, which demonstrated the planes of face centered cubic silver. The synthesized AgNPs showed antibacterial activity against both Escherichia coli and Staphylococcus aureus with the minimum bactericidal concentration (MBC) values equally at 250μg/ml, suggesting their potential application as an effective antibacterial agent. PMID:27614244

  15. Breakthrough of ultraviolet light from various brands of fluorescent lamps: lethal effects on DNA repair-defective bacteria.

    PubMed

    Hartman, P E; Biggley, W H

    1996-01-01

    In a comparative study of 17 pairs of 15 W fluorescent lamps intended for use in homes and purchased in local stores, we detect over 10-fold differences in UVB + UVC emissions between various lamps. This breakthrough of ultraviolet (UV) light is in part correlated with ability of lamps to kill DNA repair-defective recA-uvrB- Salmonella. Relative proficiency of lamps in eliciting photoreactivation of UV-induced DNA lesions also plays a prominent role in the relative rates of bacterial inactivation by emissions from different lamps. Lamps made in Chile, such as Philips brand lamps and one type of General Electric lamp, produce far less UVB + UVC and fail to kill recA-uvrB- bacteria. In contrast, all tested lamps manufactured in the USA, Hungary, and Japan exhibit readily observed deleterious biological effects. When an E. coli recA-uvrB-phr- (photolyase-negative) triple mutant is used for assay, lethal radiations are detected from all lamps, and single-hit exponential inactivation rates rather closely correlate to amount of directly measured UVB + UVC output of each pair of lamps. Although all lamps tested may meet international and United States standards for radiation safety, optimal practices in lamp manufacture are clearly capable of decreasing human exposure to indoor UV light.

  16. Light scalar mesons in central production at COMPASS

    NASA Astrophysics Data System (ADS)

    Austregesilo, Alexander

    2016-05-01

    COMPASS is a fixed-target experiment at the CERN SPS that studies the spectrum of light-quark hadrons. In 2009, it collected a large dataset using a 190 GeV/c positive hadron beam impinging on a liquid-hydrogen target in order to measure the central exclusive production of light scalar mesons. One of the goals is the search for so-called glueballs, which are hypothetical meson-like objects without valence-quark content. We study the decay of neutral resonances by selecting centrally produced pion pairs from the COMPASS dataset. The angular distributions of the two pseudoscalar mesons are decomposed in terms of partial waves, where particular attention is paid to the inherent mathematical ambiguities. The large dataset allows us to perform a detailed analysis in bins of the two squared four-momentum transfers carried by the exchange particles in the reaction. Possible parameterisations of the mass dependence of the partial-wave amplitudes in terms of resonances are also discussed.

  17. Light element production by low energy nuclei from massive stars

    NASA Technical Reports Server (NTRS)

    Vangioni-Flam, E.; Casse, M.; Ramaty, R.

    1997-01-01

    The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.

  18. Relationship between the Fluorescence Lifetime of Chlorophyll 'a' and Primary Productivity within the Mississippi River Plume and Adjacent Shelf Region

    NASA Technical Reports Server (NTRS)

    Hall, Callie; Miller, Richard L.; Fernandez, Salvador M.; McKee, Brent A.

    2000-01-01

    In situ measurements of chlorophyll fluorescence intensity have been widely used to estimate phytoplankton biomass. However, because the fluorescence quantum yield of chlorophyll a in vivo can be highly variable, measurements of chlorophyll fluorescence intensity cannot be directly correlated with phytoplankton biomass and do not provide information on the physiological state of the phytoplankton under study. Conversely, lifetime-based measurements of chlorophyll fluorescence provide a framework in which photosynthetic rates of phytoplankton can be analyzed according to phytoplankton physiology. Along with the measurement of primary production and ambient nutrient concentrations within the Mississippi River plume in the northern Gulf of Mexico, phytoplankton fluorescence lifetimes were measured using a Fluorescence Lifetime Phytoplankton Analyzer (developed under a NASA Small Business Innovative Research contract to Ciencia, Inc.). Variability of fluorescence lifetimes within the plume can be used as a background from which to interpret variations in the maximum quantum yield of photochemistry. The extent to which nutrient and effluent loading in this dynamic coastal area affect the photosynthetic performance of phytoplankton will be presented as a function of phytoplankton fluorescence lifetimes.

  19. Flavonoid content in fresh, home-processed, and light-exposed onions and in dehydrated commercial onion products.

    PubMed

    Lee, Seung Un; Lee, Jong Ha; Choi, Suk Hyun; Lee, Jin Shik; Ohnisi-Kameyama, Mayumi; Kozukue, Nobuyuki; Levin, Carol E; Friedman, Mendel

    2008-09-24

    Onion plants synthesize flavonoids as protection against damage by UV radiation and by intracellular hydrogen peroxide. Because flavonoids also exhibit health-promoting effects in humans, a need exists to measure their content in onions and in processed onion products. To contribute to the knowledge about the levels of onion flavonoids, HPLC and LC-MS were used to measure levels of seven quercetin and isorhamnetin glucosides in four Korean commercial onion bulb varieties and their distribution within the onion, in scales of field-grown onions exposed to home processing or to fluorescent light and in 16 commercial dehydrated onion products sold in the United States. Small onions had higher flavonoid content per kilogram than large ones. There was a graduated decrease in the distribution of the flavonoids across an onion bulb from the first (outside) to the seventh (innermost) scale. Commercial, dehydrated onion products contained low amounts or no flavonoids. Losses of onion flavonoids subjected to "cooking" (in percent) ranged as follows: frying, 33; sauteing, 21; boiling, 14-20; steaming, 14; microwaving, 4; baking, 0. Exposure to fluorescent light for 24 and 48 h induced time-dependent increases in the flavonoid content. The results extend the knowledge about the distribution of flavonoids in fresh and processed onions.

  20. Use of green fluorescent protein to monitor Lactobacillus sakei in fermented meat products.

    PubMed

    Gory, L; Montel, M C; Zagorec, M

    2001-01-15

    Lactobacillus sakei is a lactic acid bacterium naturally found on meat and often used as starter for the production of dry sausages or other fermented meat products. The gene encoding the green fluorescent protein (GFP) was cloned downstream from the constitutive L-lactate dehydrogenase promoter (pldhL) of L. sakei. The pldhL::gfp fusion was introduced in L. sakei either on a replicative plasmid or by double crossover integration into the chromosome, as a single copy. Both constructions were stable. Expression of GFP did not alter growth and was detectable by epifluorescence microscopy allowing the detection and monitoring of the development of GFP+ specific L. sakei strains both under growth laboratory conditions and in dry sausage samples.

  1. Significant anaerobic production of fluorescent dissolved organic matter in the deep East Sea (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghyun; Kim, Guebuem

    2016-07-01

    The distribution of fluorescent dissolved organic matter (FDOM) in the East Sea (Sea of Japan) was examined by excitation-emission matrix spectroscopy with parallel factor analysis (PARAFAC). Humic-like FDOM (FDOMH) increased with depth and was significantly correlated with Apparent Oxygen Utilization (AOU), indicating that FDOMH in the deep water is mainly produced by oxidation of organic matter. In addition, a surprisingly large excess of FDOMH relative to that expected from the observed AOU was found from 1000 m to the bottom (up to 3500 m). Based on the high-resolution geographical distribution and characteristics of FDOM in the East Sea, we conclude that this excess likely originates from anaerobic FDOMH production in subsurface bottom sediments. This FDOMH flux accounts for 8-15% of the total FDOM production in the water column. Our results suggest that anaerobic activities in subsurface sediments are an important hidden source of FDOM in the ocean.

  2. Status of Solid State Lighting Product Development and Future Trends for General Illumination.

    PubMed

    Katona, Thomas M; Pattison, P Morgan; Paolini, Steve

    2016-06-01

    After decades of research and development on fabrication of efficient light-emitting diodes (LEDs) throughout the visible spectrum, LED-based lighting has reached unparalleled performance with respect to energy efficiency and has become the light source for virtually all new lighting products being designed today. The development of the core light sources and their subsequent integration into lighting systems continue to present unique challenges and opportunities for product designers. We review these systems and the current development status, as well as provide context for the trends in solid state lighting that are leading to the development of value-added lighting solutions that extend the domain of lighting beyond light generation, into fields as diverse as communications, healthcare, and agricultural production.

  3. Status of Solid State Lighting Product Development and Future Trends for General Illumination.

    PubMed

    Katona, Thomas M; Pattison, P Morgan; Paolini, Steve

    2016-06-01

    After decades of research and development on fabrication of efficient light-emitting diodes (LEDs) throughout the visible spectrum, LED-based lighting has reached unparalleled performance with respect to energy efficiency and has become the light source for virtually all new lighting products being designed today. The development of the core light sources and their subsequent integration into lighting systems continue to present unique challenges and opportunities for product designers. We review these systems and the current development status, as well as provide context for the trends in solid state lighting that are leading to the development of value-added lighting solutions that extend the domain of lighting beyond light generation, into fields as diverse as communications, healthcare, and agricultural production. PMID:27023662

  4. Rapid chlorophyll a fluorescence transient of Lemna gibba leaf as an indication of light and hydroxylamine effect on photosystem II activity.

    PubMed

    Dewez, David; Ali, Nadia Ait; Perreault, François; Popovic, Radovan

    2007-05-01

    Rapid chlorophyll fluorescence transient induced by saturating flash (3000 micromol of photons m-2 s-1) was investigated when Lemna gibba had been exposed to light (100 micromol of photons m-2 s-1) causing the Kautsky effect or in low light intensity unable to trigger PSII photochemistry. Measurements were made by using, simultaneously, a pulse amplitude modulated fluorometer and plant efficiency analyzer system, either on non-treated L. gibba leaf or those treated with different concentrations of hydroxylamine (1-50 mM) causing gradual inhibition of the water splitting system. When any leaf was exposed to continuous light during the Kautsky effect, a rapid fluorescence transient may reflect current activity of photosystem II within the photosystem II complex. Under those conditions, a variation of transition steps appearing over time was related to a drastic change to the photosystem II functional properties. This value indicated that the energy dissipation through non-photochemical pathways was undergoing extreme change. The change of rapid fluorescence transient, induced under continuous light, when compared to those obtained under very low light intensity, confirmed the ability of photosystem II to be capable to undergo rapid adaptation lasting about two minutes. When the water splitting system was inhibited and electron donation partially substituted by hydroxylamine, the adaptation ability of photosystem II to different light conditions was lost. In this study, the change of rapid fluorescence kinetic and transient appearing over time was shown to be a good indication for the change of the functional properties of photosystem II induced either by light or by hydroxylamine. PMID:17487305

  5. Market Trial: Selling Off-Grid Lighting Products in Rural Kenya

    SciTech Connect

    Tracy, Jennifer; Alstone, Peter; Jacobson, Arne; Mills, Evan

    2010-06-21

    In this study, we performed a market trial of off-grid LED lighting products in Maai Mahiu, arural Kenyan town. Our goals were to assess consumer demand and consumer preferences with respect to off-grid lighting systems and to gain feedback from off-grid lighting users at the point of purchase and after they have used to products for some time.

  6. Gold nanoparticles for microfluidics-based biosensing of PCR products by hybridization-induced fluorescence quenching.

    PubMed

    Li, Yu-Ting; Liu, Hsiao-Sheng; Lin, Hong-Ping; Chen, Shu-Hui

    2005-12-01

    Colloidal gold nanoparticles were used to develop a simple microfluidics-based bioassay that is able to recognize and detect specific DNA sequences via conformational change-induced fluorescence quenching. In this method, a self-assembled monolayer of gold nanoparticles was fabricated on the channel wall of a microfluidic chip, and DNA probes were bonded to the monolayer via thiol groups at one end and a fluorophore dye was attached to the other end of the probe. The created construct is spontaneously assembled into a constrained arch-like conformation on the particle surface and, under which, the fluorescence of fluorophores is quenched by gold nanoparticles. Hybridization of target DNAs results in a conformational change of the construct and then restores the fluorescence, which serves as a sensing method for the target genes. The nanocomposite constructed on the glass surface was characterized by UV absorbance measurement and the quenching efficiency for different fluorophores was evaluated by Stern-Volmer studies. The applicability of proposed assay was first demonstrated by the use of a pair of synthesized complementary and noncomplementary DNA sequences. The method was further applied for the detection of the PCR product of dengue virus with the use of enterovirus as the negative control, and results indicate that the assay is specific for the target gene. Moreover, using this approach, dehybridization, hybridization, and detection of the target genes can be performed in situ on the same microfluidic channel. Thus, this method could be regarded as one-pot reaction and it holds great promises for clinical diagnostics.

  7. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation.

    PubMed

    Takemoto, Kiwamu; Matsuda, Tomoki; Sakai, Naoki; Fu, Donald; Noda, Masanori; Uchiyama, Susumu; Kotera, Ippei; Arai, Yoshiyuki; Horiuchi, Masataka; Fukui, Kiichi; Ayabe, Tokiyoshi; Inagaki, Fuyuhiko; Suzuki, Hiroshi; Nagai, Takeharu

    2013-01-01

    Chromophore-assisted light inactivation (CALI) is a powerful technique for acute perturbation of biomolecules in a spatio-temporally defined manner in living specimen with reactive oxygen species (ROS). Whereas a chemical photosensitizer including fluorescein must be added to specimens exogenously and cannot be restricted to particular cells or sub-cellular compartments, a genetically-encoded photosensitizer, KillerRed, can be controlled in its expression by tissue specific promoters or subcellular localization tags. Despite of this superiority, KillerRed hasn't yet become a versatile tool because its dimerization tendency prevents fusion with proteins of interest. Here, we report the development of monomeric variant of KillerRed (SuperNova) by direct evolution using random mutagenesis. In contrast to KillerRed, SuperNova in fusion with target proteins shows proper localization. Furthermore, unlike KillerRed, SuperNova expression alone doesn't perturb mitotic cell division. Supernova retains the ability to generate ROS, and hence promote CALI-based functional analysis of target proteins overcoming the major drawbacks of KillerRed.

  8. Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light

    SciTech Connect

    Singh, Amandeep; Kaur, Ramanjot; Pandey, O. P.; Wei, Xueyong; Sharma, Manoj E-mail: manojsharma@bilkent.edu.tr

    2015-07-28

    In this work, cadmium free core-shell ZnS:X/ZnS (X = Mn, Cu) nanoparticles have been synthesized and used for white light generation. First, the doping concentration of Manganese (Mn) was varied from 1% to 4% to optimize the dopant related emission and its optimal value was found to be 1%. Then, ZnS shell was grown over ZnS:Mn(1%) core to passivate the surface defects. Similarly, the optimal concentration of Copper (Cu) was found to be 0.8% in the range varied from 0.6% to 1.2%. In order to obtain an emission in the whole visible spectrum, dual doping of Mn and Cu was done in the core and the shell, respectively. A solid-solid mixing in different ratios of separately doped quantum dots (QDs) emitting in the blue green and the orange region was performed. Results show that the optimum mixture of QDs excited at 300 nm gives Commission Internationale del'Éclairage color coordinates of (0.35, 0.36), high color rendering index of 88, and correlated color temperature of 4704 K with minimum self-absorption.

  9. Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light

    SciTech Connect

    Caratto, V.; Aliakbarian, B.; Casazza, A.A.; Setti, L.; Bernini, C.; Perego, P.; Ferretti, M.

    2013-06-01

    Highlights: ► Photocatalytic deactivation of Escherichia coli in presence of TiO{sub 2} nanoparticles ► The presence of catalyst is less important when the radiation is in the UV range ► Rutile has an higher efficiency respect to anatase under visible light. - Abstract: The photocatalytic deactivation of Escherichia coli HB101 by two different structures of TiO{sub 2}, rutile and anatase (used separately and in a 1:1 mixture), was examined. The microorganism was deposited on a filter membrane containing 520 mg/m{sup 2} of TiO{sub 2} and then irradiated by a neon lamp. In order to study the rate of deactivation of the microorganism we studied four different exposure times: 20, 40, 60 and 90 min. The results showed that rutile has an antimicrobial activity higher than anatase, while the mixture had values near to the average between them in every condition. The highest difference in the inactivation capacity of the two structures is observable at shorter times. The effect of the different crystal phases was evaluated by Scanning Electron Microscopy.

  10. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models.

    PubMed

    Parazoo, Nicholas C; Bowman, Kevin; Fisher, Joshua B; Frankenberg, Christian; Jones, Dylan B A; Cescatti, Alessandro; Pérez-Priego, Oscar; Wohlfahrt, Georg; Montagnani, Leonardo

    2014-10-01

    Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr(-1) from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr(-1) ) and enhanced GPP in tropical forests (~3.7 Pg C yr(-1) ). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution.

  11. Open-source products for a lighting experiment device.

    PubMed

    Gildea, Kevin M; Milburn, Nelda

    2014-12-01

    The capabilities of open-source software and microcontrollers were used to construct a device for controlled lighting experiments. The device was designed to ascertain whether individuals with certain color vision deficiencies were able to discriminate between the red and white lights in fielded systems on the basis of luminous intensity. The device provided the ability to control the timing and duration of light-emitting diode (LED) and incandescent light stimulus presentations, to present the experimental sequence and verbal instructions automatically, to adjust LED and incandescent luminous intensity, and to display LED and incandescent lights with various spectral emissions. The lighting device could easily be adapted for experiments involving flashing or timed presentations of colored lights, or the components could be expanded to study areas such as threshold light perception and visual alerting systems.

  12. Plasma fluorescent oxidation products and short-term occupational particulate exposures

    PubMed Central

    Hart, Jaime E; Wu, Tianying; Laden, Francine; Garshick, Eric

    2012-01-01

    Background Evidence suggests that fine particulate air pollution results in oxidative induced tissue damage. Methods A global fluorescent oxidation products (FLOx) assay (fluorescent intensity (FI) units per milliliter of plasma) was measured in blood samples collected from 236 nonsmoking, Caucasian, male trucking industry workers either prior to, during, or after their work shifts. Occupational exposures to PM2.5 were based on job-specific area-level sampling. Generalized linear models were used to determine associations between FLOx levels and PM2.5, adjusted for age, time since last meal, alcohol consumption, aspirin, and cholesterol medications. Results The mean (standard deviation) level of FLOx was 265.9 FI/ml (96.0). Levels of FLOx were higher among older individuals and lower among those who had consumed alcohol in the past 24 hours. However, no associations were observed between FLOx and PM2.5. Conclusions Our results indicate no association between occupational PM2.5 exposure and this marker of global oxidative stress. PMID:22618714

  13. Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai

    2015-12-01

    Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to

  14. Integrating Solar Induced Fluorescence and the Photochemical Reflectance Index for Estimating Gross Primary Production in a Cornfield

    NASA Technical Reports Server (NTRS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Zhang, Qingyuan; Huemmrich, Karl F.; Campbell, Petya K. E.; Corp, Lawrence A.; Cook, Bruce D.; Kustas, William P.; Daughtry, Criag S.

    2013-01-01

    The utilization of remotely sensed observations for light use efficiency (LUE) and tower-based gross primary production (GPP) estimates was studied in a USDA cornfield. Nadir hyperspectral reflectance measurements were acquired at canopy level during a collaborative field campaign conducted in four growing seasons. The Photochemical Reflectance Index (PRI) and solar induced chlorophyll fluorescence (SIF), were derived. SIF retrievals were accomplished in the two telluric atmospheric oxygen absorption features centered at 688 nm (O2-B) and 760 nm (O2-A). The PRI and SIF were examined in conjunction with GPP and LUE determined by flux tower-based measurements. All of these fluxes, environmental variables, and the PRI and SIF exhibited diurnal as well as day-to-day dynamics across the four growing seasons. Consistent with previous studies, the PRI was shown to be related to LUE (r2 = 0.54 with a logarithm fit), but the relationship varied each year. By combining the PRI and SIF in a linear regression model, stronger performances for GPP estimation were obtained. The strongest relationship (r2 = 0.80, RMSE = 0.186 mg CO2/m2/s) was achieved when using the PRI and SIF retrievals at 688 nm. Cross-validation approaches were utilized to demonstrate the robustness and consistency of the performance. This study highlights a GPP retrieval method based entirely on hyperspectral remote sensing observations.

  15. Relationship of light quantity and anthocyanin production in Pennisetum setaceum Cvs. rubrum and red riding hood.

    PubMed

    Beckwith, Andrea G; Zhang, Yanjun; Seeram, Navindra P; Cameron, Arthur C; Nair, Muraleedharan G

    2004-02-11

    Pennisetum setaceum cvs. Rubrum and Red Riding Hood are purple-pigmented ornamental grasses when grown in high-light environments. In low-light environments, foliage appears light purple or green, and as a result, aesthetic appeal is reduced. The impact of light on anthocyanin pigmentation was compared for P. setaceum Rubrum foliage and flowers and Red Riding Hood foliage grown under different light intensities and light sources. Light environments included UV supplemental light in the greenhouse, high-pressure sodium supplemental light in the greenhouse, cool-white fluorescent light in a growth chamber, and full sun outside. Anthocyanins in two cultivars of P. setaceum were analyzed by HPLC and characterized by (1)H and (13)C NMR spectral experiments. Two anthocyanins, cyanidin 3-glucoside and cyanidin 3-rutinoside, were identified in the leaves and flowers of both cultivars and quantified by HPLC analysis. The major anthocyanin in both cultivars was cyanidin 3-glucoside and had highest concentration (0.199% fresh weight) in Rubrum leaves grown under fluorescent lights in the growth chamber with a photoperiod of 24 h and a daily light integral (DLI) of 13.3 mol m(-)(2) day(-)(1) and in Rubrum and Red Riding Hood leaves and flowers (0.097 and 0.12% fresh weight) from plants grown outside in full sun with a photoperiod ranging from 15 to 13.5 h and DLI of 42 mol m(-)(2) day(-)(1). The minor anthocyanin, cyanidin 3-rutinoside, had the highest quantity in plants grown in low-light-intensity greenhouse environments with a photoperiod ranging from 15 to 13.5 h and DLI of 2.3-7.0 mol m(-)(2) day(-)(1). The functional significance of anthocyanins in P. setaceum Rubrum is discussed.

  16. A Fluorescence Approach to Assess the Production of Soluble Microbial Products from Aerobic Granular Sludge Under the Stress of 2,4-Dichlorophenol

    PubMed Central

    Wei, Dong; Dong, Heng; Wu, Na; Ngo, Huu Hao; Guo, Wenshan; Du, Bin; Wei, Qin

    2016-01-01

    In this study, a fluorescence approach was used to evaluate the production of soluble microbial products (SMP) in aerobic granular sludge system under the stress of 2,4-dichlorophenol (2,4-DCP). A combined use of three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM), Parallel factor analysis (PARAFAC), synchronous fluorescence and two-dimensional correlation spectroscopy (2D-COS) were explored to respect the SMP formation in the exposure of different doses of 2,4-DCP. Data implied that the presence of 2,4-DCP had an obvious inhibition on biological nitrogen removal. According to EEM-PARAFAC, two fluorescent components were derived and represented to the presence of fulvic-like substances and humic-like substances in Component 1 and protein-like substances in Component 2. It was found from synchronous fluorescence that protein-like peak presented slightly higher intensity than that of fulvic-like peak. 2D-COS further revealed that fluorescence change took place sequentially in the following order: protein-like fraction > fulvic-like fraction. The obtained results could provide a potential application of fluorescence spectra in the released SMP assessment in the exposure of toxic compound during wastewater treatment. PMID:27075778

  17. Regulation of lipid production by light-emitting diodes in human sebocytes.

    PubMed

    Jung, Yu Ra; Kim, Sue Jeong; Sohn, Kyung Cheol; Lee, Young; Seo, Young Joon; Lee, Young Ho; Whang, Kyu Uang; Kim, Chang Deok; Lee, Jeung Hoon; Im, Myung

    2015-04-01

    Light-emitting diodes (LED) have been used to treat acne vulgaris. However, the efficacy of LED on sebaceous lipid production in vitro has not been examined. This study investigated the efficacy of 415 nm blue light and 630 nm red light on lipid production in human sebocytes. When applied to human primary sebocytes, 415 nm blue light suppressed cell proliferation. Based on a lipogenesis study using Oil Red O, Nile red staining, and thin-layered chromatography, 630 nm red light strongly downregulated lipid production in sebocytes. These results suggest that 415 nm blue light and 630 nm red light influence lipid production in human sebocytes and have beneficial effects on acne by suppressing sebum production.

  18. High-Throughput Fluorescent Tagging of Full-Length Arabidopsis Gene Products in Planta1

    PubMed Central

    Tian, Guo-Wei; Mohanty, Amitabh; Chary, S. Narasimha; Li, Shijun; Paap, Brigitte; Drakakaki, Georgia; Kopec, Charles D.; Li, Jianxiong; Ehrhardt, David; Jackson, David; Rhee, Seung Y.; Raikhel, Natasha V.; Citovsky, Vitaly

    2004-01-01

    We developed a high-throughput methodology, termed fluorescent tagging of full-length proteins (FTFLP), to analyze expression patterns and subcellular localization of Arabidopsis gene products in planta. Determination of these parameters is a logical first step in functional characterization of the approximately one-third of all known Arabidopsis genes that encode novel proteins of unknown function. Our FTFLP-based approach offers two significant advantages: first, it produces internally-tagged full-length proteins that are likely to exhibit native intracellular localization, and second, it yields information about the tissue specificity of gene expression by the use of native promoters. To demonstrate how FTFLP may be used for characterization of the Arabidopsis proteome, we tagged a series of known proteins with diverse subcellular targeting patterns as well as several proteins with unknown function and unassigned subcellular localization. PMID:15141064

  19. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    PubMed Central

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-01-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases. PMID:26935567

  20. Acoustic waves from mechanical impulses due to fluorescence resonant energy (Förster) transfer: Blowing a whistle with light

    NASA Astrophysics Data System (ADS)

    Zurita-Sánchez, J. R.; Henkel, C.

    2012-02-01

    We present a momentum transfer mechanism mediated by electromagnetic fields that originates in a system of two nearby molecules: one excited (donor D*) and the other in ground state (acceptor A). An intermolecular force related to fluorescence resonant energy or Förster transfer (FRET) arises in the unstable D*A molecular system, which differs from the equilibrium van der Waals interaction. Due to the its finite lifetime, a mechanical impulse is imparted to the relative motion in the system. We analyze the FRET impulse when the molecules are embedded in free space and find that its magnitude can be much greater than the single recoil photon momentum, getting comparable with the thermal momentum (Maxwell-Boltzmann distribution) at room temperature. In addition, we propose that this FRET impulse can be exploited in the generation of acoustic waves inside a film containing layers of donor and acceptor molecules, when a picosecond laser pulse excites the donors. This acoustic transient is distinguishable from that produced by thermal stress due to laser absorption, and may therefore play a role in photoacoustic spectroscopy. The effect can be seen as exciting a vibrating system like a string or organ pipe with light; it may be used as an opto-mechanical transducer.

  1. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function.

    PubMed

    Fei, Peng; Lee, Juhyun; Packard, René R Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C-C Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K

    2016-01-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases. PMID:26935567

  2. High-efficiency diphenylsulfon derivative-based organic light-emitting diode exhibiting thermally-activated delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Lee, Geon Hyeong; Kim, Young Sik

    2016-08-01

    A novel thermally-activated delayed fluorescence (TADF) material with diphenyl sulfone (DPS) as an electron acceptor and 3,6-dimethoxycarbazole (DMOC) and 1,3,6,8-Tetramethyl-9H-carbazole (TMC) as electron donors was investigated theoretically for a blue organic light emitting diode (OLED) emitter. We calculated the energies of the first singlet (S1) and the first triplet (T1) excited states of the TADF materials by using the dependence on the charge transfer amounts for the optimal Hartree-Fock percentage in the exchange-correlation of TD-DFT to perform density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations on the ground state. The calculated Δ E ST value, where Δ E ST is the difference in energy between the S1 and T1 states, of TMC-DPS (0.094 eV) was smaller than DMOC-DPS (0.386 eV) because of the large dihedral angles between the donor and the accepter moieties. We show that TMC-DPS would be a suitable blue OLED emitter because it has a large dihedral angle that creates a small spatial overlap between the highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO), consequently, it has a small value of Δ E ST and an emission wavelength of 2.82 eV and 439.9 nm, respectively.

  3. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function

    NASA Astrophysics Data System (ADS)

    Fei, Peng; Lee, Juhyun; Packard, René R. Sevag; Sereti, Konstantina-Ioanna; Xu, Hao; Ma, Jianguo; Ding, Yichen; Kang, Hanul; Chen, Harrison; Sung, Kevin; Kulkarni, Rajan; Ardehali, Reza; Kuo, C.-C. Jay; Xu, Xiaolei; Ho, Chih-Ming; Hsiai, Tzung K.

    2016-03-01

    Light Sheet Fluorescence Microscopy (LSFM) enables multi-dimensional and multi-scale imaging via illuminating specimens with a separate thin sheet of laser. It allows rapid plane illumination for reduced photo-damage and superior axial resolution and contrast. We hereby demonstrate cardiac LSFM (c-LSFM) imaging to assess the functional architecture of zebrafish embryos with a retrospective cardiac synchronization algorithm for four-dimensional reconstruction (3-D space + time). By combining our approach with tissue clearing techniques, we reveal the entire cardiac structures and hypertrabeculation of adult zebrafish hearts in response to doxorubicin treatment. By integrating the resolution enhancement technique with c-LSFM to increase the resolving power under a large field-of-view, we demonstrate the use of low power objective to resolve the entire architecture of large-scale neonatal mouse hearts, revealing the helical orientation of individual myocardial fibers. Therefore, our c-LSFM imaging approach provides multi-scale visualization of architecture and function to drive cardiovascular research with translational implication in congenital heart diseases.

  4. The role of cerebral spinal fluid in light propagation through the mouse head: improving fluorescence tomography with Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2016-03-01

    Optical Neuroimaging is a highly dynamical field of research owing to the combination of many advanced imaging techniques and computational tools that uncovered unexplored paths through the functioning of the brain. Light propagation modelling through such complicated structures has always played a crucial role as the basis for a high resolution and quantitative imaging where even the slightest improvement could lead to significant results. Fluorescence Diffuse Optical Tomography (fDOT), a widely used technique for three dimensional imaging of small animals and tissues, has been proved to be inaccurate for neuroimaging the mouse head without the knowledge of a-priori anatomical information of the subject. Commonly a normalized Born approximation model is used in fDOT reconstruction based on forward photon propagation using Diffusive Equation (DE) which has strong limitations in the optically clear regime. The presence of the Cerebral Spinal Fluid (CSF) instead, a thin optically clear layer surrounding the brain, can be more accurately taken into account using Monte Carlo approaches which nowadays is becoming more usable thanks to parallelized GPU algorithms. In this work we discuss the results of a synthetic experimental comparison, resulting to the increase of the accuracy for the Born approximation by introducing the CSF layer in a realistic mouse head structure with respect to the current model. We point out the importance of such clear layer for complex geometrical models, while for simple slab phantoms neglecting it does not introduce a significant error.

  5. Non-rigid contour-to-pixel registration of photographic and quantitative light-induced fluorescence imaging of decalcified teeth

    NASA Astrophysics Data System (ADS)

    Berkels, Benjamin; Deserno, Thomas; Ehrlich, Eva E.; Fritz, Ulrike B.; Sirazitdinova, Ekaterina; Tatano, Rosalia

    2016-03-01

    Quantitative light-induced fluorescence (QLF) is widely used to assess the damage of a tooth due to decalcification. In digital photographs, decalcification appears as white spot lesions, i.e. white spots on the tooth surface. We propose a novel multimodal registration approach for the matching of digital photographs and QLF images of decalcified teeth. The registration is based on the idea of contour-to-pixel matching. Here, the curve, which represents the shape of the tooth, is extracted from the QLF image using a contour segmentation by binarization and morphological processing. This curve is aligned to the photo with a non-rigid variational registration approach. Thus, the registration problem is formulated as minimization problem with an objective function that consists of a data term and a regularizer for the deformation. To construct the data term, the photo is pointwise classified into tooth and non-tooth regions. Then, the signed distance function of the tooth region allows to measure the mismatch between curve and photo. As regularizer a higher order, linear elastic prior is used. The resulting minimization problem is solved numerically using bilinear Finite Elements for the spatial discretization and the Gauss-Newton algorithm. The evaluation is based on 150 image pairs, where an average of 5 teeth have been captured from 32 subjects. All registrations have been confirmed correctly by a dental expert. The contour-to-pixel methods can directly be used in 3D for surface-to-voxel tasks.

  6. Use of invisible near infrared light fluorescence with indocyanine green and methylene blue in urology. Part 2

    PubMed Central

    Markuszewski, Marcin; Rho, Young Soo; Matuszewski, Marcin

    2014-01-01

    Introduction In the second part of this paper, concerning the use of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urology, other possible uses of this new technique will be presented. In kidney transplantation, this concerns allograft perfusion and real time NIR–guided angiography; moreover, perfusion angiography of tissue flaps, NIRF visualization of ureters, NIR–guided visualization of urinary calcifications, NIRF in male infertility and semen quality assessment. In this part, we have also analysed cancer targeting and imaging fluorophores as well as cost benefits associated with the use of these new techniques. Material and methods PubMed and Medline databases were searched for ICG and MB use in urological settings, along with data published in abstracts of urological conferences. Results Although NIR–guided ICG and MB are still in their initial phases, there have been significant developments in a few more major domains of urology, including 1) kidney transplantation: kidney allograft perfusion and vessel reconstruction; 2) angiography perfusion of tissue flaps; 3) visualization of ureters; 4) visualization of urinary calcifications; and 5) NIRF in male infertility and semen quality assessment. Conclusions Near infrared technology in urology is at its early stages. More studies are needed to assess the true potential and limitations of the technology. Initial studies show that this pioneering tool may influence various aspects of urology. PMID:25247093

  7. The Top 10 Products

    ERIC Educational Resources Information Center

    American School & University, 2008

    2008-01-01

    In 2008, American School & University showcased some of the hottest products in the industry. This article presents the 10 most requested, as determined by readers. Products include fluorescent lighting, concrete floor maintenance and exterior sheathing.

  8. Light-Harvesting Complex Protein LHCBM9 Is Critical for Photosystem II Activity and Hydrogen Production in Chlamydomonas reinhardtii.

    PubMed

    Grewe, Sabrina; Ballottari, Matteo; Alcocer, Marcelo; D'Andrea, Cosimo; Blifernez-Klassen, Olga; Hankamer, Ben; Mussgnug, Jan H; Bassi, Roberto; Kruse, Olaf

    2014-04-01

    Photosynthetic organisms developed multiple strategies for balancing light-harvesting versus intracellular energy utilization to survive ever-changing environmental conditions. The light-harvesting complex (LHC) protein family is of paramount importance for this function and can form light-harvesting pigment protein complexes. In this work, we describe detailed analyses of the photosystem II (PSII) LHC protein LHCBM9 of the microalga Chlamydomonas reinhardtii in terms of expression kinetics, localization, and function. In contrast to most LHC members described before, LHCBM9 expression was determined to be very low during standard cell cultivation but strongly increased as a response to specific stress conditions, e.g., when nutrient availability was limited. LHCBM9 was localized as part of PSII supercomplexes but was not found in association with photosystem I complexes. Knockdown cell lines with 50 to 70% reduced amounts of LHCBM9 showed reduced photosynthetic activity upon illumination and severe perturbation of hydrogen production activity. Functional analysis, performed on isolated PSII supercomplexes and recombinant LHCBM9 proteins, demonstrated that presence of LHCBM9 resulted in faster chlorophyll fluorescence decay and reduced production of singlet oxygen, indicating upgraded photoprotection. We conclude that LHCBM9 has a special role within the family of LHCII proteins and serves an important protective function during stress conditions by promoting efficient light energy dissipation and stabilizing PSII supercomplexes. PMID:24706511

  9. The physics of Cerenkov light production during proton therapy.

    PubMed

    Helo, Y; Kacperek, A; Rosenberg, I; Royle, G; Gibson, A P

    2014-12-01

    There is increasing interest in using Cerenkov emissions for quality assurance and in vivo dosimetry in photon and electron therapy. Here, we investigate the production of Cerenkov light during proton therapy and its potential applications in proton therapy. A primary proton beam does not have sufficient energy to generate Cerenkov emissions directly, but we have demonstrated two mechanisms by which such emissions may occur indirectly: (1) a fast component from fast electrons liberated by prompt gamma (99.13%) and neutron (0.87%) emission; and (2) a slow component from the decay of radioactive positron emitters. The fast component is linear with dose and doserate but carries little spatial information; the slow component is non-linear but may be localised. The properties of the two types of emission are explored using Monte Carlo modelling in GEANT4 with some experimental verification. We propose that Cerenkov emissions could contribute to the visual sensation reported by some patients undergoing proton therapy of the eye and we discuss the feasibility of some potential applications of Cerenkov imaging in proton therapy.

  10. Light Sources and Lighting Circuits

    NASA Astrophysics Data System (ADS)

    Honda, Hisashi; Suwa, Takumi; Yasuda, Takeo; Ohtani, Yoshihiko; Maehara, Akiyoshi; Okada, Atsunori; Komatsu, Naoki; Mannami, Tomoaki

    According to the Machinery Statistics of the Ministry of Economy, Trade and Industry, the production of incandescent lamps in Japan in 2007 was 990 million units (90.0% of the previous year's total), in which the production of incandescent lamps for general lighting was 110 million units (90.0% of the previous year's total) and of tungsten-halogen lamps was 44 million units (96.6% of the previous year's total). The production of fluorescent lamps was 927 million units (93.9% of the previous year's total), in which general fluorescent lamps, excluding those for LCD back lighting, was 320 million units (87.2% of the previous year's total). Also, the production of HID lamps was 10 million units (101.5% of the previous year's total). On the other hand, when the numbers of sales are compared with the sales of the previous year, incandescent lamps for general use was 99.8%, tungsten-halogen lamps was 96.9%, fluorescent lamps was 95.9%, and HID lamps was 98.9%. Self-ballasted fluorescent lamps alone showed an increase in sales as strong as 29 million units, or 121.7% of the previous year's sales. It is considered that the switchover of incandescent lamps to HID lamps was promoted for energy conservation and carbon dioxide reduction with the problem of global warming in the background. In regard to exhibitions, Lighting Fair 2007 was held in Tokyo in March, and LIGHTFAIR INTERNATIONAL 2007 was held in New York in May. Regarding academic conferences, LS:11 (the 11th International Symposium on the Science & Technology of Light Sources) was held in Shanghai in May, and the First International Conference on White LEDs and Solid State Lighting was held in Tokyo in November. Both conferences suggested that there are strong needs and concerns now about energy conservation, saving natural resources, and restrictions of hazardous materials. In regard to incandescent lamps, the development of products aiming at higher efficacy, electric power savings, and longer life was advanced by

  11. Orthogonal Methods for Characterizing the Unfolding of Therapeutic Monoclonal Antibodies: Differential Scanning Calorimetry, Isothermal Chemical Denaturation, and Intrinsic Fluorescence with Concomitant Static Light Scattering.

    PubMed

    Temel, Deniz B; Landsman, Pavel; Brader, Mark L

    2016-01-01

    Evaluating prospective protein pharmaceutical stability from accelerated screening is a critical challenge in biotherapeutic discovery and development. Measurements of protein unfolding transitions are widely employed for comparing candidate molecules and formulations; however, the interrelationships between intrinsic protein conformational stability and pharmaceutical robustness are complex and thermal unfolding measurements can be misleading. Beyond the discovery phase of drug development, astute formulation design is one of the most crucial factors enabling the protein to resist damage to its higher order structure-initially from bioprocessing stresses, then from stresses encountered during its journey from the product manufacturing site to the bloodstream of the patient. Therapeutic monoclonal antibodies are multidomain proteins that represent a large and growing segment of the biotechnology pipeline. In this chapter, we describe how differential scanning calorimetry may be leveraged synergistically with isothermal chemical denaturation and intrinsic fluorescence with concomitant static light scattering to elucidate characteristics of mAb unfolding and aggregation that are helpful toward understanding and designing optimal pharmaceutical compositions for these molecules.

  12. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence.

    PubMed

    Guan, Kaiyu; Berry, Joseph A; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B

    2016-02-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change. PMID:26490834

  13. Analysis of the effects of blue light on morphofunctional status of in vitro cultured blastocysts from mice carrying gene of enhanced green fluorescent protein (EGFP).

    PubMed

    Sakharova, N Yu; Mezhevikina, L M; Smirnov, A A; Vikhlyantseva, E F

    2014-05-01

    We studied the effect of blue light (440-490 nm) on the development of late blastocysts of mice carrying the gene of enhanced green fluorescent protein (EGFP). Exposure to blue light for 20 min reduced adhesive properties of blastocysts and their capacity to form primary colonies consisting of the cells of inner cell mass, trophoblast, and extraembryonic endoderm. The negative effects of blue light manifested in morphological changes in the primary colonies and impairment of differentiation and migration of cells of the trophoblast and extraembryonic endoderm. The problems of cell-cell interaction and inductive influences of the inner cell mass on other cell subpopulations are discussed. EGFP blastocysts were proposed as the model for evaluation of the mechanisms underlying the effects of blue light as the major negative factor of visible light used in in vitro experiments on mammalian embryos.

  14. Rapid virus production and removal as measured with fluorescently labeled viruses as tracers.

    PubMed

    Noble, R T; Fuhrman, J A

    2000-09-01

    Pelagic marine viruses have been shown to cause significant mortality of heterotrophic bacteria, cyanobacteria, and phytoplankton. It was previously demonstrated, in nearshore California waters, that viruses contributed to up to 50% of bacterial mortality, comparable to protists. However, in less productive waters, rates of virus production and removal and estimates of virus-mediated bacterial mortality have been difficult to determine. We have measured rates of virus production and removal, in nearshore and offshore California waters, by using fluorescently labeled viruses (FLV) as tracers. Our approach is mathematically similar to the isotope dilution technique, employed in the past to simultaneously measure the release and uptake of ammonia and amino acids. The results indicated overall virus removal rates in the dark ranging from 1.8 to 6.2% h(-1) and production rates in the dark ranging from 1.9 to 6.1% h(-1), corresponding to turnover times of virus populations of 1 to 2 days, even in oligotrophic offshore waters. Virus removal rates determined by the FLV tracer method were compared to rates of virus degradation, determined at the same locations by radiolabeling methods, and were similar even though the current FLV method is suitable for only dark incubations. Our results support previous findings that virus impacts on bacterial populations may be more important in some environments and less so in others. This new method can be used to determine rates of virus degradation, production, and turnover in eutrophic, mesotrophic, and oligotrophic waters and will provide important inputs for future investigations of microbial food webs.

  15. Advantages of diffuse light for horticultural production and perspectives for further research

    PubMed Central

    Li, Tao; Yang, Qichang

    2015-01-01

    Plants use diffuse light more efficiently than direct light, which is well established due to diffuse light penetrates deeper into the canopy and photosynthetic rate of a single leaf shows a non-linear response to the light flux density. Diffuse light also results in a more even horizontal and temporal light distribution in the canopy, which plays substantial role for crop photosynthesis enhancement as well as production improvement. Here we show some of the recent findings about the effect of diffuse light on light distribution over the canopy and its direct and indirect effects on crop photosynthesis and plant growth, and suggest some perspectives for further research which could strengthen the scientific understanding of diffuse light modulate plant processes and its application in horticultural production. PMID:26388890

  16. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production.

    PubMed

    Mohsenpour, Seyedeh Fatemeh; Richards, Bryce; Willoughby, Nik

    2012-12-01

    The effect of light conditions on the growth of green algae Chlorella vulgaris and cyanobacteria Gloeothece membranacea was investigated by filtering different wavelengths of visible light and comparing against a model daylight source as a control. Luminescent acrylic sheets containing violet, green, orange or red dyes illuminated by a solar simulator produced the desired wavelengths of light for this study. From the experimental results the highest specific growth rate for C. vulgaris was achieved using the orange range whereas violet light promoted the growth of G. membranacea. Red light exhibited the least efficiency in conversion of light energy into biomass in both strains of microalgae. Photosynthetic pigment formation was examined and maximum chlorophyll-a production in C. vulgaris was obtained by red light illumination. Green light yielded the best chlorophyll-a production in G. membranacea. The proposed illumination strategy offers improved microalgae growth without resorting to artificial light sources, reducing energy use and costs of cultivation.

  17. Hypertriton and light nuclei production at Lambda-production subthreshold energy in heavy-ion collisions

    SciTech Connect

    Zhang, S.; Zu, Z.; Chen, J.H., Ma, Y.G., Cai, X-Z, Ma, G.L., Zhong, C.

    2011-08-01

    High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion ({sup 3}He), and hypertriton ({sub {Lambda}}{sup 3}H) at subthreshold energy of Aproduction ({approx} 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor (S{sub 3} = {sup 3}{sub {Lambda}}H/({sup 3}He x {Lambda}/p)) shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few {mu}b in {sup 36}Ar+{sup 36}Ar, {sup 40}Ca+{sup 40}Ca and {sup 56}Ni+{sup 56}Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at {Lambda} subthreshold energy are suitable for breaking new ground in hypernuclear physics.

  18. Tuning the production of variable length, fluorescent polyisoprenoids using surfactant-controlled enzymatic synthesis.

    PubMed

    Troutman, Jerry M; Erickson, Katelyn M; Scott, Phillip M; Hazel, Joseph M; Martinez, Christina D; Dodbele, Samantha

    2015-05-12

    Bactoprenyl diphosphate (BPP), a two-E eight-Z configuration C55 isoprenoid, serves as a critical anchor for the biosynthesis of complex glycans central to bacterial survival and pathogenesis. BPP is formed by the polymerase undecaprenyl pyrophosphate synthase (UppS), which catalyzes the elongation of a single farnesyl diphosphate (FPP) with eight Z-configuration isoprene units from eight isopentenyl diphosphates. In vitro analysis of UppS and other polyprenyl diphosphate synthases requires the addition of a surfactant such as Triton X-100 to stimulate the release of the hydrophobic product from the enzyme for effective and efficient turnover. Here using a fluorescent 2-nitrileanilinogeranyl diphosphate analogue of FPP, we have found that a wide range of surfactants can stimulate release of product from UppS and that the structure of the surfactant has a major impact on the lengths of products produced by the protein. Of particular importance, shorter chain surfactants promote the release of isoprenoids with four to six Z-configuration isoprene additions, while larger chain surfactants promote the formation of natural isoprenoid lengths (8Z) and larger. We have found that the product chain lengths can be readily controlled and coarsely tuned by adjusting surfactant identity, concentration, and reaction time. We have also found that binary mixtures of just two surfactants can be used to fine-tune isoprenoid lengths. The surfactant effects discovered do not appear to be significantly altered with an alternative isoprenoid substrate. However, the surfactant effects do appear to be dependent on differences in UppS between bacterial species. This work provides new insights into surfactant effects in enzymology and highlights how these effects can be leveraged for the chemoenzymatic synthesis of otherwise difficult to obtain glycan biosynthesis probes. This work also provides key reagents for the systematic analysis of structure-activity relationships between glycan

  19. Tuning the Production of Variable Length, Fluorescent Polyisoprenoids Using Surfactant-Controlled Enzymatic Synthesis

    PubMed Central

    Troutman, Jerry M.; Erickson, Katelyn M.; Scott, Phillip M.; Hazel, Joseph M.; Martinez, Christina D.; Dodbele, Samantha

    2015-01-01

    Bactoprenyl diphosphate (BPP), a two-E eight-Z configuration C55 isoprenoid, serves as a critical anchor for the biosynthesis of complex glycans central to bacterial survival and pathogenesis. BPP is formed by the polymerase undecaprenyl pyrophosphate synthase (UppS), which catalyzes the elongation of a single farnesyl diphosphate (FPP) with eight Z-configuration isoprene units from eight isopentenyl diphosphates. In vitro analysis of UppS and other polyprenyl diphosphate synthases requires the addition of a surfactant such as Triton X-100 to stimulate the release of the hydrophobic product from the enzyme for effective and efficient turnover. Here using a fluorescent 2-nitrileanilinogeranyl diphosphate analogue of FPP, we have found that a wide range of surfactants can stimulate release of product from UppS and that the structure of the surfactant has a major impact on the lengths of products produced by the protein. Of particular importance, shorter chain surfactants promote the release of isoprenoids with four to six Z-configuration isoprene additions, while larger chain surfactants promote the formation of natural isoprenoid lengths (8Z) and larger. We have found that the product chain lengths can be readily controlled and coarsely tuned by adjusting surfactant identity, concentration, and reaction time. We have also found that binary mixtures of just two surfactants can be used to fine-tune isoprenoid lengths. The surfactant effects discovered do not appear to be significantly altered with an alternative isoprenoid substrate. However, the surfactant effects do appear to be dependent on differences in UppS between bacterial species. This work provides new insights into surfactant effects in enzymology and highlights how these effects can be leveraged for the chemoenzymatic synthesis of otherwise difficult to obtain glycan biosynthesis probes. This work also provides key reagents for the systematic analysis of structure–activity relationships between glycan

  20. Ultraviolet fluorescence of coelenteramide and coelenteramide-containing fluorescent proteins. Experimental and theoretical study.

    PubMed

    Alieva, Roza R; Tomilin, Felix N; Kuzubov, Alexander A; Ovchinnikov, Sergey G; Kudryasheva, Nadezhda S

    2016-09-01

    Coelenteramide-containing fluorescent proteins are products of bioluminescent reactions of marine coelenterates. They are called 'discharged photoproteins'. Their light-induced fluorescence spectra are variable, depending considerably on external conditions. Current work studies a dependence of light-induced fluorescence spectra of discharged photoproteins obelin, aequorin, and clytin on excitation energy. It was demonstrated that photoexcitation to the upper electron-excited states (260-300nm) of the discharged photoproteins initiates a fluorescence peak in the near UV region, in addition to the blue-green emission. To characterize the UV fluorescence, the light-induced fluorescence spectra of coelenteramide (CLM), fluorophore of the discharged photoproteins, were studied in methanol solution. Similar to photoproteins, the CLM spectra depended on photoexcitation energy; the additional peak (330nm) in the near UV region was observed in CLM fluorescence at higher excitation energy (260-300nm). Quantum chemical calculations by time depending method with B3LYP/cc-pVDZ showed that the conjugated pyrazine-phenolic fragment and benzene moiety of CLM molecule are responsible for the additional UV fluorescence peak. Quantum yields of CLM fluorescence in methanol were 0.028±0.005 at 270-340nm photoexcitation. A conclusion was made that the UV emission of CLM might contribute to the UV fluorescence of the discharged photoproteins. The study develops knowledge on internal energy transfer in biological structures - complexes of proteins with low-weight aromatic molecules. PMID:27400455

  1. [Effects of low temperature- and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence parameters of cut flower chrysanthemum].

    PubMed

    Liang, Fang; Zheng, Cheng-Shu; Sun, Xian-Zhi; Wang, Wen-Li

    2010-01-01

    The cut flower chrysanthemum 'Jinba' was respectively treated with lower temperature and weaker light (16 degrees C/ 12 degrees C, PFD 100 micromol x m(-2) x s(-1)) and critical low temperature and weak light (12 degrees C/8 degrees C, PFD 60 micromol x m(-2) x s(-1)) for 11 days, and then transferred to normal condition (22 degrees C/18 degrees C, PFD 450 micromol x m(-2) x s(-1)) for 11 days, aimed to study the low temperature- and weak light stress and its recovery on the photosynthesis and chlorophyll fluorescence of chrysanthemum leaves. Under the stress of lower temperature and weaker light, the net photosynthetic rate (P(n)) and stomatal limitation (L(s)) of chrysanthemum leaves decreased while the intercellular CO2 concentration (C(i)) increased, the maximal photochemical efficiency of PS II (F(v)/F(m)) in dark and the initial fluorescence (F(o)) had no obvious change, but the maximal photochemical efficiency of PS II (F(v)'/F(m)') in light increased after an initial decrease. Contrarily, under the stress of critical low temperature and weak light, the F(o) increased, and the F(v)/F(m) and F(v)'/F(m)' decreased significantly. The quantum yield of PS II electron transport (phi(PS II)), photochemical quenching (q(p)), and apparent photosynthetic electron transfer rate (ETR) of chrysanthemum leaves decreased with increasing stress and time, and recovered quickly after the release of lower temperature- and weaker light stress but more slowly after the release of critical low temperature- and weak light stress. At the same time, the photochemistry react rate (Prate) decreased, but the hot dissipation of antenna (Drate) and the energy dissipation of PS II (Ex) increased under the stress conditions. Drate was the main pathway of superfluous light allocation.

  2. Lighting.

    SciTech Connect

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  3. Transfer of ultraviolet photon energy into fluorescent light in the visible path represents a new and efficient protection mechanism of sunscreens

    NASA Astrophysics Data System (ADS)

    Vergou, Theognosia; Patzelt, Alexa; Richter, Heike; Schanzer, Sabine; Zastrow, Leonhard; Golz, Karin; Doucet, Olivier; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2011-10-01

    The development of sunscreens with high sun protection factor (SPF) values but low filter concentrations is the ultimate goal. The purpose of the present study was to investigate why a sunscreen spray and cream with different concentrations of the same UV-filters provided the same SPF. Therefore, the homogeneity of the distribution of both sunscreens was investigated by laser scanning microscopy (LSM) and tape stripping (TS). Additionally, the energy transfer mechanisms of the sunscreens on the skin were analyzed. The TS and LSM showed a better homogeneity of the distribution of the spray. With Wood's light, a total absorption of the irradiation was detected in the spray area. In contrast, after cream treatment, an intensive fluorescent signal was observed. It was demonstrated that this fluorescent signal was caused by nonthermal energy transferred from the UV-filters to one compound of the cream releasing its excitation energy by fluorescence. This nonthermal energy transfer seemed to be the reason for the high efficiency of the cream, which is subjected to thermal relaxation. The transfer of UV photon energy into fluorescent light represents a new approach to increase the efficiency of sunscreens and could form the basis for a new generation of sunscreens.

  4. Species-specific and seasonal differences in chlorophyll fluorescence and photosynthetic light response among three evergreen species in a Madrean sky island mixed conifer forest

    NASA Astrophysics Data System (ADS)

    Potts, D. L.; Minor, R. L.; Braun, Z.; Barron-Gafford, G. A.

    2012-12-01

    Unlike the snowmelt-dominated hydroclimate of more northern mountainous regions, the hydroclimate of the Madrean sky islands is characterized by snowmelt and convective storms associated with the North American Monsoon. These mid-summer storms trigger biological activity and are important drivers of primary productivity. For example, at the highest elevations where mixed conifer forests occur, ecosystem carbon balance is influenced by monsoon rains. Whereas these storms' significance is increasingly recognized at the ecosystem scale, species-specific physiological responses to the monsoon are poorly known. Prior to and following monsoon onset, we measured pre-dawn and light-adapted chlorophyll fluorescence as well as photosynthetic light response in southwestern white pine (Pinus strobiformis), ponderosa pine (Pinus ponderosa), and Douglas fir (Pseudotsuga menziesii) in a Madrean sky island mixed conifer forest near Tucson, Arizona. Photochemical quenching (qp), an indicator of the proportion of open PSII reaction centers, was greatest in P. strobiformis and least in P. menziesii and increased in response to monsoon rains (repeated-measures ANOVA; species, F2,14 = 6.17, P = 0.012; time, F2,14= 8.17, P = 0.013). In contrast, non-photochemical quenching (qN), an indicator of heat dissipation ability, was greatest in P. ponderosa and least in P. menziesii, but was not influenced by monsoon onset (repeated-measures ANOVA; species, F2,12 = 4.18, P = 0.042). Estimated from leaf area-adjusted photosynthetic light response curves, maximum photosynthetic rate (Amax) was greatest in P. ponderosa and least in P. menziesii (repeated-measures ANOVA; species, F2,8= 40.8, P = 0.001). Surprisingly, while the monsoon positively influenced Amax among P. ponderosa and P. strobiformis, Amax of P. menziesii declined with monsoon onset (repeated-measures ANOVA; species x time, F2,8 = 13.8, P = 0.002). Calculated as the initial slope of the photosynthetic light response curve, light

  5. Interpretation of Digital Chest Radiographs: Comparison of Light Emitting Diode versus Cold Cathode Fluorescent Lamp Backlit Monitors

    PubMed Central

    Lim, Hyun-ju; Lee, Geewon; Yie, Miyeon; Shin, Kyung Eun; Moon, Jung Won; Lee, Kyung Soo

    2013-01-01

    Objective To compare the diagnostic performance of light emitting diode (LED) backlight monitors and cold cathode fluorescent lamp (CCFL) monitors for the interpretation of digital chest radiographs. Materials and Methods We selected 130 chest radiographs from health screening patients. The soft copy image data were randomly sorted and displayed on a 3.5 M LED (2560 × 1440 pixels) monitor and a 3 M CCFL (2048 × 1536 pixels) monitor. Eight radiologists rated their confidence in detecting nodules and abnormal interstitial lung markings (ILD). Low dose chest CT images were used as a reference standard. The performance of the monitor systems was assessed by analyzing 2080 observations and comparing them by multi-reader, multi-case receiver operating characteristic analysis. The observers reported visual fatigue and a sense of heat. Radiant heat and brightness of the monitors were measured. Results Measured brightness was 291 cd/m2 for the LED and 354 cd/m2 for the CCFL monitor. Area under curves for nodule detection were 0.721 ± 0.072 and 0.764 ± 0.098 for LED and CCFL (p = 0.173), whereas those for ILD were 0.871 ± 0.073 and 0.844 ± 0.068 (p = 0.145), respectively. There were no significant differences in interpretation time (p = 0.446) or fatigue score (p = 0.102) between the two monitors. Sense of heat was lower for the LED monitor (p = 0.024). The temperature elevation was 6.7℃ for LED and 12.4℃ for the CCFL monitor. Conclusion Although the LED monitor had lower maximum brightness compared with the CCFL monitor, soft copy reading of the digital chest radiographs on LED and CCFL showed no difference in terms of diagnostic performance. In addition, LED emitted less heat. PMID:24265575

  6. A dual-mode colorimetric and fluorometric "light on" sensor for thiocyanate based on fluorescent carbon dots and unmodified gold nanoparticles.

    PubMed

    Zhao, Dan; Chen, Chuanxia; Lu, Lixia; Yang, Fan; Yang, Xiurong

    2015-12-21

    A novel, highly sensitive and selective dual-readout (colorimetric and fluorometric) sensor based on fluorescent carbon dots (CDs) and unmodified gold nanoparticles (AuNPs) for the detection of thiocyanate (SCN(-)) was proposed. Amino-functionalized CDs could be readily adsorbed onto the surface of citrate-stabilized AuNPs through Au-N interactions, leading to the aggregation of AuNPs and the nonfluorescent off-state of CDs arising from potential fluorescence resonance energy transfer (FRET). However, SCN(-) had a stronger affinity toward AuNPs and could compete with CDs to bind onto the surface of AuNPs in priority, which prevented the aggregation of AuNPs and fluorescence quenching of CDs. Correspondingly, both the colorimetric and fluorometric signals remained "light-on". The color of the sensing solution remained red and the fluorescence remained unquenched. A distinguishable change in the color was observed at a SCN(-) concentration of 1 μM by the naked eye and a detection limit as low as 0.036 μM was obtained by virtue of fluorescence spectroscopy. Both colorimetric and fluorometric sensors exhibited excellent selectivity toward SCN(-) over other common metallic ions and anions. In addition, such a sensing assay featured simplicity, rapidity, cost-effectiveness and ease of operation without further modification. The accuracy and precision were evaluated based on the quantitative detection of SCN(-) in tap water and saliva samples with satisfactory results. PMID:26567774

  7. Cold-induced sudden reversible lowering of in vivo chlorophyll fluorescence after saturating light pulses : a sensitive marker for chilling susceptibility.

    PubMed

    Larcher, W; Neuner, G

    1989-03-01

    In chilling-sensitive plants (Glycine max, Saintpaulia ionantha, Saccharum officinarum) a sudden reversible drop in chlorophyll fluorescence occurs during photosynthetic induction immediately following saturating light pulses at low temperatures in the range 4 to 8 degrees C. A comparison of two soybean cultivars of different chilling sensitivities revealed that this phenomenon, termed lowwave, indicates specific thresholds of low temperature stress. Its occurrence under controlled chilling can be regarded as a quantitative marker for screening chilling susceptibility in angiosperms. PMID:16666615

  8. Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex.

    PubMed

    Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-11-25

    A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures.

  9. Perceptions of compact fluorescent lamps in the residential market

    SciTech Connect

    Weiner, J.; Campbell, C.J. )

    1992-07-01

    Compact fluorescent lamps offer significant energy savings over other forms of residential lighting and last up to 10 times longer than conventional incandescent bulbs. In order to better understand existing barriers to acceptance and future opportunities for growth of compact fluorescent lighting in the residential retrofit sector, a three stage research project was designed and conducted by MACRO Consulting, Inc. Assessment of whether or not the benefits of compact fluorescent lamps are sufficient to overcome price resistance was one of the major purposes of this project. Residential customers were interviewed in focus group sessions to help determine key issues and motivating forces in the lighting/energy saving/cost saving equation. Residential customers in 5 major market areas were contacted by telephone, and data about their awareness, knowledge and use of compact fluorescent lighting were collected. These customers also participated in an attribute rating exercise in which compact fluorescent lamps were compared with fluorescent tubes and incandescent bulbs on a series of product attributes. A price elasticity exercise was also conducted. Teleconferences with retailers of compact fluorescent lamps were conducted in order to explore their knowledge of and attitudes towards compact fluorescent lamps. Customers agree that energy savings and longer life are both positive attributes for residential lighting products, but they are not yet ready to make the switch away from inexpensive, versatile and readily available incandescent bulbs to compact fluorescent lamps. Compact fluorescent lamps are rated poorly (even by satisfied'' users) on each of seven positive attributes of home lighting. Major barriers to increased use of compact fluorescent lamps include price, convenience, and performance. Prices above $10 are considered outrageous''. Product improvements are needed for appearance, light output and versatility.

  10. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor.

    PubMed

    Sun, Yahui; Huang, Yun; Liao, Qiang; Fu, Qian; Zhu, Xun

    2016-05-01

    To offset the adverse effects of light attenuation on microalgae growth, hollow polymethyl methacrylate (PMMA) tubes were embedded into a flat-plate photobioreactor (PBR) as light guides. In this way, a fraction of incident light could be transmitted and emitted to the interior of the PBR, providing a secondary light source for cells in light-deficient regions. The average light intensity of interior regions 3-6cm from surfaces with 70μmolm(-2)s(-1) incident light was enhanced 2-6.5 times after 3.5days cultivation, resulting in a 23.42% increase in biomass production to that cultivated in PBR without PMMA tubes. The photosynthetic efficiency of microalgae in the proposed PBR was increased to 12.52%. Moreover, the installation of hollow PMMA tubes induced turbulent flow in the microalgae suspension, promoting microalgae suspension mixing. However, the enhanced biomass production was mainly attributed to the optimized light distribution in the PBR.

  11. Effects of fluid and light dynamics on H2 production in a mechanically stirred photobioreactor.

    PubMed

    Zhang, T

    2013-10-01

    Hydrogen productions through biophotolysis by microalgae in photobioreactors (PBRs) were studied using a computational model integrated with fluid dynamics, particle tracking technique, light attenuation dynamics, biochemical kinetics, and mass transport. The trajectories of microalgae entrained in the flow fields within these PBRs were traced by the particle tracking technique and were used to determine the dynamics of light attenuation subjected by the cells, which were analyzed and compared with those obtained from the unstirred PBR under different incident light illuminations. The results show an improvement on the light penetration depth in the mechanically stirred cultures. The dynamics of light attenuation was incorporated into the kinetics equations for the analysis of the inhomogeneous biochemical process for hydrogen production by microalgae. Hydrogen production in the unstirred and the impeller-stirred PBRs were determined under different light illumination conditions and the results show an improvement on hydrogen production in the impeller-stirred PBRs. PMID:23911818

  12. Effects of Light and Salinity Stresses in Production of Mycosporine-Like Amino Acids by Gymnodinium catenatum (Dinophyceae).

    PubMed

    Vale, Paulo

    2015-01-01

    Mycosporine-like amino acids (MAAs) were analyzed in a Portuguese Gymnodinium catenatum strain when transferred to high salinity and high light conditions. Total MAA concentrations increased progressively between 30 and 36 psu, attaining at 36 psu 2.9-fold the 30 psu treatment. When abruptly transferred to solar light in an outdoor shadowed location, MAA concentration increased steadily along the day for most compounds. After 8 h, mycosporine-glycine, palythene and M-319 attained or surpassed 25-fold their initial concentration, while M-370 only attained 4-fold concentration. When transferred from halogen to fluorescent light, polar MAAs such as shinorine and porphyra-334, increased until day two and then declined, while M-370 increase slowly, becoming the dominant compound from the profile after 1 week. These experiments put into evidence the relation of palythene with M-319, which was further identified as its acid degradation product, palythine. Acid degradation of M-370 originated M-324, while M-311 seems to be the precursor of M-370. Under high salinity and high light conditions chain formation was altered toward shorter chains or solitary cells. This alteration can represent a morphological stress sign, which in the natural environment could affect average population speed during daily vertical migrations.

  13. Photosynthetically supplemental lighting for vegetable crop production with super-bright laser diode

    NASA Astrophysics Data System (ADS)

    Hu, Yongguang; Li, Pingping; Shi, Jintong

    2007-02-01

    Although many artificial light sources like high-pressure sodium lamp, metal halide lamp, fluorescent lamp and so on are commonly used in horticulture, they are not widely applied because of the disadvantages of unreasonable spectra, high cost and complex control. Recently new light sources of light-emitting diode (LED) and laser diode (LD) are becoming more and more popular in the field of display and illumination with the improvement of material and manufacturing, long life-span and increasingly low cost. A new type of super-bright red LD (BL650, central wavelength is 650 nm) was selected to make up of the supplemental lighting panel, on which LDs were distributed with regular hexagon array. Drive circuit was designed to power it and adjust light intensity. System performance including temperature rise and light intensity distribution under different vertical/horizontal distances were tested. Photosynthesis of sweet pepper and eggplant leaf under LD was measured with LI-6400 to show the supplemental lighting effects. The results show that LD system can supply the maximum light intensity of 180 μmol/m2 •s at the distance of 50 mm below the panel and the temperature rise is little within 1 °C. Net photosynthetic rate became faster when LD system increased light intensity. Compared with sunlight and LED supplemental lighting system, LD's promotion on photosynthesis is in the middle. Thus it is feasible for LD light source to supplement light for vegetable crops. Further study would focus on the integration of LD and other artificial light sources.

  14. Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans

    PubMed Central

    Atoui, A.; Kastner, C.; Larey, C.M.; Thokala, R.; Etxebeste, O.; Espeso, E.A.; Fischer, R.

    2010-01-01

    Light is a major environmental stimulus that has a broad effect on organisms, triggering a cellular response that results in an optimal adaptation enhancing fitness and survival. In fungi, light affects growth, and causes diverse morphological changes such as those leading to reproduction. Light can also affect fungal metabolism, including the biosynthesis of natural products. In this study we show that in Aspergillus nidulans the effect of light on the production of the sterigmatocystin (ST) toxin depends on the glucose concentration. In cultures grown with 1% glucose and exposed to light, ST production was lower than when grown in the dark. This lower ST production coincided with an elevated rate of cellular damage with partial loss of nuclear integrity and vacuolated cytoplasm. However, in cultures grown with 2% glucose these effects were reversed and light enhanced ST production. Glucose abundance also affected the light-dependent subcellular localization of the VeA (velvet) protein, a key regulator necessary for normal light-dependent morphogenesis and secondary metabolism in Aspergilli and other fungal genera. The role of other VeA-associated proteins, particularly the blue light-sensing proteins LreA and LreB (WC-1 and WC-2 orthologs), on conidiation could also be modified by the abundance of glucose. We also show that LreA and LreB, as well as the phytochrome FphA, modulate not only the synthesis of sterigmatocystin, but also the production of the antibiotic penicillin. PMID:20816830

  15. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products

    NASA Astrophysics Data System (ADS)

    Fery-Forgues*, Suzanne; Lavabre, Dominique

    1999-09-01

    Fluorescence quantum yields are used to quantify the efficiency of the emission process. In spite of the importance of these data, experimental directions for their acquisition are rarely given. A general procedure for determining the relative fluorescence quantum yield of solutions is described here, drawing attention to the many pitfalls that students may encounter. Starting materials are common yellow and pink highlighter pens.

  16. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi.

    PubMed

    Rajamani, Sathish; Sayre, Richard T

    2011-02-01

    Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating

  17. X-ray fluorescence analysis of low concentrations metals in geological samples and technological products

    NASA Astrophysics Data System (ADS)

    Lagoida, I. A.; Trushin, A. V.

    2016-02-01

    For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.

  18. Highly Automated Module Production Incorporating Advanced Light Management

    SciTech Connect

    Perelli-Minetti, Michael; Roof, Kyle

    2015-08-11

    The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF film over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition

  19. Single-tube fluorescent product-enhanced reverse transcriptase assay with Ampliwax (STF-PERT) for retrovirus quantitation.

    PubMed

    Sears, Johnna F; Khan, Arifa S

    2003-03-01

    A TaqMan fluorescent probe-based product enhanced reverse transcriptase (RT) assay is described in which the RT and polymerase chain reaction (PCR) steps are set-up in a single tube, in two compartments separated by Ampliwax (designated as single-tube fluorescent product-enhanced reverse transcriptase assay (STF-PERT)). This simplification of the two-step method resulted in increased assay reproducibility and handling efficiency while maintaining the sensitivity of the PERT assay (<10 virions). The STF-PERT assay can be used to quantitate low amounts of retrovirus in clinical and research materials and to evaluate retrovirus contamination in cell substrates and biological products in human use.

  20. Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments.

    PubMed

    Gittins, John R; D'Angelo, Cecilia; Oswald, Franz; Edwards, Richard J; Wiedenmann, Jörg

    2015-01-01

    The genomic framework that enables corals to adjust to unfavourable conditions is crucial for coral reef survival in a rapidly changing climate. We have explored the striking intraspecific variability in the expression of coral pigments from the green fluorescent protein (GFP) family to elucidate the genomic basis for the plasticity of stress responses among reef corals. We show that multicopy genes can greatly increase the dynamic range over which corals can modulate transcript levels in response to the light environment. Using the red fluorescent protein amilFP597 in the coral Acropora millepora as a model, we demonstrate that its expression increases with light intensity, but both the minimal and maximal gene transcript levels vary markedly among colour morphs. The pigment concentration in the tissue of different morphs is strongly correlated with the number of gene copies with a particular promoter type. These findings indicate that colour polymorphism in reef corals can be caused by the environmentally regulated expression of multicopy genes. High-level expression of amilFP597 is correlated with reduced photodamage of zooxanthellae under acute light stress, supporting a photoprotective function of this pigment. The cluster of light-regulated pigment genes can enable corals to invest either in expensive high-level pigmentation, offering benefits under light stress, or to rely on low tissue pigment concentrations and use the conserved resources for other purposes, which is preferable in less light-exposed environments. The genomic framework described here allows corals to pursue different strategies to succeed in habitats with highly variable light stress levels. In summary, our results suggest that the intraspecific plasticity of reef corals' stress responses is larger than previously thought.