Fluorescence Live Cell Imaging
Ettinger, Andreas
2014-01-01
Fluorescence microscopy of live cells has become an integral part of modern cell biology. Fluorescent protein tags, live cell dyes, and other methods to fluorescently label proteins of interest provide a range of tools to investigate virtually any cellular process under the microscope. The two main experimental challenges in collecting meaningful live cell microscopy data are to minimize photodamage while retaining a useful signal-to-noise ratio, and to provide a suitable environment for cells or tissues to replicate physiological cell dynamics. This chapter aims to give a general overview on microscope design choices critical for fluorescence live cell imaging that apply to most fluorescence microscopy modalities, and on environmental control with a focus on mammalian tissue culture cells. In addition, we provide guidance on how to design and evaluate fluorescent protein constructs by spinning disk confocal microscopy. PMID:24974023
Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores
NASA Technical Reports Server (NTRS)
Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh
2012-01-01
This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.
Agrawalla, Bikram Keshari; Chandran, Yogeswari; Phue, Wut-Hmone; Lee, Sung-Chan; Jeong, Yun-Mi; Wan, Si Yan Diana; Kang, Nam-Young; Chang, Young-Tae
2015-04-29
Two-photon (TP) microscopy has an advantage for live tissue imaging which allows a deeper tissue penetration up to 1 mm comparing to one-photon (OP) microscopy. While there are several OP fluorescence probes in use for pancreatic islet imaging, TP imaging of selective cells in live islet still remains a challenge. Herein, we report the discovery of first TP live pancreatic islet imaging probe; TP-α (Two Photon-alpha) which can selectively stain glucagon secreting alpha cells. Through fluorescent image based screening using three pancreatic cell lines, we discovered TP-α from a TP fluorescent dye library TPG (TP-Green). In vitro fluorescence test showed that TP-α have direct interaction and appear glucagon with a significant fluorescence increase, but not with insulin or other hormones/analytes. Finally, TP-α was successfully applied for 3D imaging of live islets by staining alpha cell directly. The newly developed TP-α can be a practical tool to evaluate and identify live alpha cells in terms of localization, distribution and availability in the intact islets.
Hennig, Simon; van de Linde, Sebastian; Lummer, Martina; Simonis, Matthias; Huser, Thomas; Sauer, Markus
2015-02-11
Labeling internal structures within living cells with standard fluorescent probes is a challenging problem. Here, we introduce a novel intracellular staining method that enables us to carefully control the labeling process and provides instant access to the inner structures of living cells. Using a hollow glass capillary with a diameter of <100 nm, we deliver functionalized fluorescent probes directly into the cells by (di)electrophoretic forces. The label density can be adjusted and traced directly during the staining process by fluorescence microscopy. We demonstrate the potential of this technique by delivering and imaging a range of commercially available cell-permeable and nonpermeable fluorescent probes to cells.
Vegesna, Giri K; Sripathi, Srinivas R; Zhang, Jingtuo; Zhu, Shilei; He, Weilue; Luo, Fen-Tair; Jahng, Wan Jin; Frost, Megan; Liu, Haiying
2013-05-22
A highly water-soluble BODIPY dye bearing electron-rich o-diaminophenyl groups at 2,6-positions was prepared as a highly sensitive and selective fluorescent probe for detection of nitric oxide (NO) in living cells. The fluorescent probe displays an extremely weak fluorescence with fluorescence quantum yield of 0.001 in 10 mM phosphate buffer (pH 7.0) in the absence of NO as two electron-rich o-diaminophenyl groups at 2,6-positions significantly quench the fluorescence of the BODIPY dye via photoinduced electron transfer mechanism. The presence of NO in cells enhances the dye fluorescence dramatically. The fluorescent probe demonstrates excellent water solubility, membrane permeability, and compatibility with living cells for sensitive detection of NO.
USDA-ARS?s Scientific Manuscript database
Glutathione (GSH) plays an important role in maintaining redox homeostasis inside cells. Currently, there are no methods available to quantitatively assess the GSH concentration in live cells. Live cell fluorescence imaging revolutionized the understanding of cell biology and has become an indispens...
NASA Astrophysics Data System (ADS)
Kimura, Hiroaki; Momiyama, Masashi; Tomita, Katsuro; Tsuchiya, Hiroyuki; Hoffman, Robert M.
2010-11-01
We demonstrate the development of a long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular. To observe cytoplasmic and nuclear dynamics of cancer cells in the living mouse, 143B human osteosarcoma cells are labeled with green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm. These dual-color cells are injected by a vascular route in an abdominal skin flap in nude mice. The mice are then imaged with the Olympus MVX10 macroview fluorescence microscope. With the MVX10, the nuclear and cytoplasmic behavior of cancer cells trafficking in blood vessels of live mice is observed. We also image lung metastases in live mice from the macro- to the subcellular level by opening the chest wall and imaging the exposed lung in live mice. Injected splenocytes, expressing cyan fluorescent protein, could also be imaged on the lung of live mice. We demonstrate that the MVX10 microscope offers the possibility of full-range in vivo fluorescence imaging from macro- to subcellular and should enable widespread use of powerful imaging technologies enabled by genetic reporters and other fluorophores.
Li, Yinghong; Yang, Yang; Guan, Xiangming
2012-01-01
Thiol groups play a significant role in various cellular functions. Cellular thiol concentrations can be affected by various physiological or pathological factors. A fluorescence imaging agent that can effectively and specifically image thiols in live cells through fluorescence microscopy is desirable for live cell thiol monitoring. Benzofurazan sulfides 1a–e were synthesized and found to be thiol specific fluorogenic agents except 1d. They are not fluorescent but form strong fluorescent thiol adducts after reacting with thiols through a sulfide-thiol exchange reaction. On the other hand, they exhibit no reaction with other biologically relevant nucleophilic functional groups such as -NH2, -OH, or -COOH revealing the specificity for the detection of thiols. Sulfide 1a was selected to confirm its ability to image cellular thiols through fluorescence microscopy. The compound was demonstrated to effectively image and quantify thiol changes in live cells through fluorescence microscopy using 430 nm and 520 nm as the excitation and emission wavelengths respectively. The quantification results of total thiol in live cells obtained from fluorescence microscopy were validated by an HPLC/UV total thiol assay method. The reagents and method will be of a great value to thiol redox-related research. PMID:22794193
Feng, Shumin; Liu, Dandan; Feng, Weiyong; Feng, Guoqiang
2017-03-21
Recently, the fluorescent detection of carbon monoxide (CO) in living cells has attracted great attention. However, due to the lack of effective ways to construct fluorescent CO probes, fluorescent detection of CO in living cells is still in its infancy. In this paper, we report for the first time the use of allyl ether as a reaction site for construction of fluorescent CO probes. By this way, two readily available allyl fluorescein ethers were prepared, which were found to be highly selective and sensitive probes for CO in the presence of PdCl 2 . These probes have the merits of good stability, good water-solubility, and rapid and distinct colorimetric and remarkable fluorescent turn-on signal changes. Moreover, a very low dose of these two probes can be used to detect and track CO in living cells, indicating that these two probes could be very promising biological tools for CO detection in living systems. Overall, this work provided not only two new promising fluorescent CO probes but also a new way to devise fluorescent CO probes.
Live imaging of apoptotic cells in zebrafish
van Ham, Tjakko J.; Mapes, James; Kokel, David; Peterson, Randall T.
2010-01-01
Many debilitating diseases, including neurodegenerative diseases, involve apoptosis. Several methods have been developed for visualizing apoptotic cells in vitro or in fixed tissues, but few tools are available for visualizing apoptotic cells in live animals. Here we describe a genetically encoded fluorescent reporter protein that labels apoptotic cells in live zebrafish embryos. During apoptosis, the phospholipid phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. The calcium-dependent protein Annexin V (A5) binds PS with high affinity, and biochemically purified, fluorescently labeled A5 probes have been widely used to detect apoptosis in vitro. Here we show that secreted A5 fused to yellow fluorescent protein specifically labels apoptotic cells in living zebrafish. We use this fluorescent probe to characterize patterns of apoptosis in living zebrafish larvae and to visualize neuronal cell death at single-cell resolution in vivo.—Van Ham, T. J., Mapes, J., Kokel, D., Peterson, R. T. Live imaging of apoptotic cells in zebrafish. PMID:20601526
Peng, Tao; Hang, Howard C
2016-11-02
Over the past years, fluorescent proteins (e.g., green fluorescent proteins) have been widely utilized to visualize recombinant protein expression and localization in live cells. Although powerful, fluorescent protein tags are limited by their relatively large sizes and potential perturbation to protein function. Alternatively, site-specific labeling of proteins with small-molecule organic fluorophores using bioorthogonal chemistry may provide a more precise and less perturbing method. This approach involves site-specific incorporation of unnatural amino acids (UAAs) into proteins via genetic code expansion, followed by bioorthogonal chemical labeling with small organic fluorophores in living cells. While this approach has been used to label extracellular proteins for live cell imaging studies, site-specific bioorthogonal labeling and fluorescence imaging of intracellular proteins in live cells is still challenging. Herein, we systematically evaluate site-specific incorporation of diastereomerically pure bioorthogonal UAAs bearing stained alkynes or alkenes into intracellular proteins for inverse-electron-demand Diels-Alder cycloaddition reactions with tetrazine-functionalized fluorophores for live cell labeling and imaging in mammalian cells. Our studies show that site-specific incorporation of axial diastereomer of trans-cyclooct-2-ene-lysine robustly affords highly efficient and specific bioorthogonal labeling with monosubstituted tetrazine fluorophores in live mammalian cells, which enabled us to image the intracellular localization and real-time dynamic trafficking of IFITM3, a small membrane-associated protein with only 137 amino acids, for the first time. Our optimized UAA incorporation and bioorthogonal labeling conditions also enabled efficient site-specific fluorescence labeling of other intracellular proteins for live cell imaging studies in mammalian cells.
Live visualization of genomic loci with BiFC-TALE
Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao
2017-01-01
Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP. PMID:28074901
Live visualization of genomic loci with BiFC-TALE.
Hu, Huan; Zhang, Hongmin; Wang, Sheng; Ding, Miao; An, Hui; Hou, Yingping; Yang, Xiaojing; Wei, Wensheng; Sun, Yujie; Tang, Chao
2017-01-11
Tracking the dynamics of genomic loci is important for understanding the mechanisms of fundamental intracellular processes. However, fluorescent labeling and imaging of such loci in live cells have been challenging. One of the major reasons is the low signal-to-background ratio (SBR) of images mainly caused by the background fluorescence from diffuse full-length fluorescent proteins (FPs) in the living nucleus, hampering the application of live cell genomic labeling methods. Here, combining bimolecular fluorescence complementation (BiFC) and transcription activator-like effector (TALE) technologies, we developed a novel method for labeling genomic loci (BiFC-TALE), which largely reduces the background fluorescence level. Using BiFC-TALE, we demonstrated a significantly improved SBR by imaging telomeres and centromeres in living cells in comparison with the methods using full-length FP.
Stöhr, Katharina; Siegberg, Daniel; Ehrhard, Tanja; Lymperopoulos, Konstantinos; Öz, Simin; Schulmeister, Sonja; Pfeifer, Andrea C; Bachmann, Julie; Klingmüller, Ursula; Sourjik, Victor; Herten, Dirk-Peter
2010-10-01
Recent developments in fluorescence microscopy raise the demands for bright and photostable fluorescent tags for specific and background free labeling in living cells. Aside from fluorescent proteins and other tagging methods, labeling of SNAP-tagged proteins has become available thereby increasing the pool of potentially applicable fluorescent dyes for specific labeling of proteins. Here, we report on novel conjugates of benzylguanine (BG) which are quenched in their fluorescence and become highly fluorescent upon labeling of the SNAP-tag, the commercial variant of the human O(6)-alkylguanosyltransferase (hAGT). We identified four conjugates showing a strong increase, i.e., >10-fold, in fluorescence intensity upon labeling of SNAP-tag in vitro. Moreover, we screened a subset of nine BG-dye conjugates in living Escherichia coli and found them all suited for labeling of the SNAP-tag. Here, quenched BG-dye conjugates yield a higher specificity due to reduced contribution from excess conjugate to the fluorescence signal. We further extended the application of these conjugates by labeling a SNAP-tag fusion of the Tar chemoreceptor in live E. coli cells and the eukaryotic transcription factor STAT5b in NIH 3T3 mouse fibroblast cells. Aside from the labeling efficiency and specificity in living cells, we discuss possible mechanisms that might be responsible for the changes in fluorescence emission upon labeling of the SNAP-tag, as well as problems we encountered with nonspecific labeling with certain conjugates in eukaryotic cells.
In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.
Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao
2017-08-01
Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.
Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.
Yerramilli, V Siddartha; Kim, Kyung Hyuk
2018-03-16
RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA), an RNA aptamer that can specifically bind to malachite green (MG) dye and induces it to emit far-red fluorescence signals. Previous studies on MGA showed a potential for the use of MGA for genetically tagging other RNA molecules in live cells. However, these studies also exhibited low fluorescence signals and high background noise. Here we constructed and tested RNA scaffolds containing multiple tandem repeats of MGA as a strategy to increase the brightness of the MGA aptamer-fluorogen system as well as to make the system fluoresce when tagging various RNA molecules, in live cells. We demonstrate that our MGA scaffolds can induce fluorescence signals by up to ∼20-fold compared to the basal level as a genetic tag for other RNA molecules. We also show that our scaffolds function reliably as genetically encoded fluorescent tags for mRNAs of fluorescent proteins and other RNA aptamers.
Readily Available Fluorescent Probe for Carbon Monoxide Imaging in Living Cells.
Feng, Weiyong; Liu, Dandan; Feng, Shumin; Feng, Guoqiang
2016-11-01
Carbon monoxide (CO) is an important gasotransmitter in living systems and its fluorescent detection is of particular interest. However, fluorescent detection of CO in living cells is still challenging due to lack of effective probes. In this paper, a readily available fluorescein-based fluorescent probe was developed for rapid detection of CO. This probe can be used to detect CO in almost wholly aqueous solution under mild conditions and shows high selectivity and sensitivity for CO with colorimetric and remarkable fluorescent turn-on signal changes. The detection limit of this probe for CO is as low as 37 nM with a linear range of 0-30 μM. More importantly, this probe (1 μM dose) can be conveniently used for fluorescent imaging CO in living cells.
A cancer cell-specific fluorescent probe for imaging Cu2 + in living cancer cells
NASA Astrophysics Data System (ADS)
Wang, Chao; Dong, Baoli; Kong, Xiuqi; Song, Xuezhen; Zhang, Nan; Lin, Weiying
2017-07-01
Monitoring copper level in cancer cells is important for the further understanding of its roles in the cell proliferation, and also could afford novel copper-based strategy for the cancer therapy. Herein, we have developed a novel cancer cell-specific fluorescent probe for the detecting Cu2 + in living cancer cells. The probe employed biotin as the cancer cell-specific group. Before the treatment of Cu2 +, the probe showed nearly no fluorescence. However, the probe can display strong fluorescence at 581 nm in response to Cu2 +. The probe exhibited excellent sensitivity and high selectivity for Cu2 + over the other relative species. Under the guidance of biotin group, could be successfully used for detecting Cu2 + in living cancer cells. We expect that this design strategy could be further applied for detection of the other important biomolecules in living cancer cells.
Live-cell imaging of cell signaling using genetically encoded fluorescent reporters.
Ni, Qiang; Mehta, Sohum; Zhang, Jin
2018-01-01
Synergistic advances in fluorescent protein engineering and live-cell imaging techniques in recent years have fueled the concurrent development and application of genetically encoded fluorescent reporters that are tailored for tracking signaling dynamics in living systems over multiple length and time scales. These biosensors are uniquely suited for this challenging task, owing to their specificity, sensitivity, and versatility, as well as to the noninvasive and nondestructive nature of fluorescence and the power of genetic encoding. Over the past 10 years, a growing number of fluorescent reporters have been developed for tracking a wide range of biological signals in living cells and animals, including second messenger and metabolite dynamics, enzyme activation and activity, and cell cycle progression and neuronal activity. Many of these biosensors are gaining wide use and are proving to be indispensable for unraveling the complex biological functions of individual signaling molecules in their native environment, the living cell, shedding new light on the structural and molecular underpinnings of cell signaling. In this review, we highlight recent advances in protein engineering that are likely to help expand and improve the design and application of these valuable tools. We then turn our focus to specific examples of live-cell imaging using genetically encoded fluorescent reporters as an important platform for advancing our understanding of G protein-coupled receptor signaling and neuronal activity. © 2017 Federation of European Biochemical Societies.
Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications
NASA Astrophysics Data System (ADS)
Bossert, Nelli; de Bruin, Donny; Götz, Maria; Bouwmeester, Dirk; Heinrich, Doris
2016-11-01
DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.
Lü, Rui
2017-09-01
Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.
Ethidium bromide as a marker of mtDNA replication in living cells
NASA Astrophysics Data System (ADS)
Villa, Anna Maria; Fusi, Paola; Pastori, Valentina; Amicarelli, Giulia; Pozzi, Chiara; Adlerstein, Daniel; Doglia, Silvia Maria
2012-04-01
Mitochondrial DNA (mtDNA) in tumor cells was found to play an important role in maintaining the malignant phenotype. Using laser scanning confocal fluorescence microscopy (LSCFM) in a recent work, we reported a variable fluorescence intensity of ethidium bromide (EB) in mitochondria nucleoids of living carcinoma cells. Since when EB is bound to nucleic acids its fluorescence is intensified; a higher EB fluorescence intensity could reflect a higher DNA accessibility to EB, suggesting a higher mtDNA replication activity. To prove this hypothesis, in the present work we studied, by LSCFM, the EB fluorescence in mitochondria nucleoids of living neuroblastoma cells, a model system in which differentiation affects the level of mtDNA replication. A drastic decrease of fluorescence was observed after differentiation. To correlate EB fluorescence intensity to the mtDNA replication state, we evaluated the mtDNA nascent strands content by ligation-mediated real-time PCR, and we found a halved amount of replicating mtDNA molecules in differentiating cells. A similar result was obtained by BrdU incorporation. These results indicate that the low EB fluorescence of nucleoids in differentiated cells is correlated to a low content of replicating mtDNA, suggesting that EB may be used as a marker of mtDNA replication in living cells.
Fluorescent probes for nucleic Acid visualization in fixed and live cells.
Boutorine, Alexandre S; Novopashina, Darya S; Krasheninina, Olga A; Nozeret, Karine; Venyaminova, Alya G
2013-12-11
This review analyses the literature concerning non-fluorescent and fluorescent probes for nucleic acid imaging in fixed and living cells from the point of view of their suitability for imaging intracellular native RNA and DNA. Attention is mainly paid to fluorescent probes for fluorescence microscopy imaging. Requirements for the target-binding part and the fluorophore making up the probe are formulated. In the case of native double-stranded DNA, structure-specific and sequence-specific probes are discussed. Among the latest, three classes of dsDNA-targeting molecules are described: (i) sequence-specific peptides and proteins; (ii) triplex-forming oligonucleotides and (iii) polyamide oligo(N-methylpyrrole/N-methylimidazole) minor groove binders. Polyamides seem to be the most promising targeting agents for fluorescent probe design, however, some technical problems remain to be solved, such as the relatively low sequence specificity and the high background fluorescence inside the cells. Several examples of fluorescent probe applications for DNA imaging in fixed and living cells are cited. In the case of intracellular RNA, only modified oligonucleotides can provide such sequence-specific imaging. Several approaches for designing fluorescent probes are considered: linear fluorescent probes based on modified oligonucleotide analogs, molecular beacons, binary fluorescent probes and template-directed reactions with fluorescence probe formation, FRET donor-acceptor pairs, pyrene excimers, aptamers and others. The suitability of all these methods for living cell applications is discussed.
Liu, Fangchao; Dong, Chaoqing; Ren, Jicun
2018-03-15
Colloidal gold nanospheres (GNSs) have become important nanomaterials in biomedical applications due to their special optical properties, good chemical stability, and biocompatibility. However, measuring the diffusion coefficients or concentration distribution of GNSs within live cells accurately without any extra fluorescent labeling in situ has still not been resolved. In this work, a single particle method is developed to study the concentration distribution of folic acid-modified GNSs (FA-GNSs) internalized via folate receptors, and investigates their diffusion dynamics within live cells using single particle fluorescence correlation spectroscopy (FCS). We optimized the experimental conditions and verified the feasibility of 30 nm GNSs without extra fluorescence labeling being used for single particle detection inside live cells. Then, the FCS characterization strategy was used to measure the concentration and diffusion coefficient distributions of GNSs inside live cells and the obtained results were basically in agreement with those obtained by TEM. The results demonstrate that our strategy is characterized as an in situ, nondestructive, rapid and dynamic method for the assay of live cells, and it may be widely used in the further design of GNP-based drug delivery and therapeutics.
Pan, Deng; Hu, Zhe; Qiu, Fengwu; Huang, Zhen-Li; Ma, Yilong; Wang, Yina; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Zhang, Yu-Hui
2014-11-20
Single-molecule localization microscopy (SMLM) achieves super-resolution imaging beyond the diffraction limit but critically relies on the use of photo-modulatable fluorescent probes. Here we report a general strategy for constructing cell-permeable photo-modulatable organic fluorescent probes for live-cell SMLM by exploiting the remarkable cytosolic delivery ability of a cell-penetrating peptide (rR)3R2. We develop photo-modulatable organic fluorescent probes consisting of a (rR)3R2 peptide coupled to a cell-impermeable organic fluorophore and a recognition unit. Our results indicate that these organic probes are not only cell permeable but can also specifically and directly label endogenous targeted proteins. Using the probes, we obtain super-resolution images of lysosomes and endogenous F-actin under physiological conditions. We resolve the dynamics of F-actin with 10 s temporal resolution in live cells and discern fine F-actin structures with diameters of ~80 nm. These results open up new avenues in the design of fluorescent probes for live-cell super-resolution imaging.
Wang, Chuanxi; Jiang, Kaili; Wu, Qian; Wu, Jiapeng; Zhang, Chi
2016-10-04
Temperature measurements in biology and medical diagnostics, along with sensitive temperature probing of living cells, is of great importance; however, it still faces significant challenges. Herein, a novel "turn-on" carbon-dot-based fluorescent nanothermometry device for spatially resolved temperature measurements in living cells is presented. The carbon nanodots (CNDs) are prepared by a green microwave-assisted method and exhibit red fluorescence (λem =615 nm) with high quantum yields (15 %). Then, an on-off fluorescent probe is prepared for detecting glutathione (GSH) based on aggregation-induced fluorescence quenching. Interestingly, the quenched fluorescence could be recovered by increasing temperature and the CNDs-GSH mixture could behave as an off-on fluorescent probe for temperature. Thus, red-emitting CNDs can be utilized for "turn-on" fluorescent nanothermometry through the fluorescence quenching and recovery processes, respectively. We employ MC3T3-E1 cells as an example model to demonstrate the red-emitting CNDs can function as "non-contact" tools for the accurate measurement of temperature and its gradient inside a living cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tsuji, A; Sato, Y; Hirano, M; Suga, T; Koshimoto, H; Taguchi, T; Ohsuka, S
2001-01-01
We previously showed that a specific kind of mRNA (c-fos) was detected in a living cell under a microscope by introducing two fluorescently labeled oligodeoxynucleotides, each labeled with donor or acceptor, into the cytoplasm, making them hybridize to adjacent locations on c-fos mRNA, and taking images of fluorescence resonance energy transfer (FRET) (A. Tsuji, H. Koshimoto, Y. Sato, M. Hirano. Y. Sei-Iida, S. Kondo, and K. Ishibashi, 2000, Biophys. J. 78:3260-3274). On the formed hybrid, the distance between donor and acceptor becomes close and FRET occurs. To observe small numbers of mRNA in living cells using this method, it is required that FRET fluorescence of hybrid must be distinguished from fluorescence of excess amounts of non-hybridizing probes and from cell autofluorescence. To meet these requirements, we developed a time-resolved method using acceptor fluorescence decays. When a combination of a donor having longer fluorescence lifetime and an acceptor having shorter lifetime is used, the measured fluorescence decays of acceptors under FRET becomes slower than the acceptor fluorescence decay with direct excitation. A combination of Bodipy493/503 and Cy5 was selected as donor and acceptor. When the formed hybrid had a configuration where the target RNA has no single-strand part between the two fluorophores, the acceptor fluorescence of hybrid had a sufficiently longer delay to detect fluorescence of hybrid in the presence of excess amounts of non-hybridizing probes. Spatial separation of 10-12 bases between two fluorophores on the hybrid is also required. The decay is also much slower than cell autofluorescence, and smaller numbers of hybrid were detected with less interference of cell autofluorescence in the cytoplasm of living cells under a time-resolved fluorescence microscope with a time-gated function equipped camera. The present method will be useful when observing induced expressions of mRNA in living cells. PMID:11423432
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-01-01
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712
Wang, Hong; Zhang, Peisheng; Tian, Yong; Zhang, Yuan; Yang, Heping; Chen, Shu; Zeng, Rongjin; Long, Yunfei; Chen, Jian
2018-04-30
A simple and readily available fluorescent probe is needed for the real-time monitoring of endogenous cysteine (Cys) levels in living cells, as such a probe could be used to study the role of Cys in related diseases. Herein, we report the first fluorescent probe based on carbon dots (CDs-FITA) for the selective and ratiometric imaging of endogenous Cys in live cells. In this ratiometric fluorescent probe, a fluorescein derivative (FITA) that recognizes Cys is covalently linked to the surfaces of carbon dots (CDs); employing CDs greatly improves the water solubility of the probe. Acrylate on FITA is selectively cleaved by Cys in aqueous solution under mild conditions, leading to a dramatic increase in the fluorescence from fluorescein. The probe therefore allows the highly selective ratiometric fluorescent detection of Cys even in the presence of various interferents. The as-prepared CDs-FITA showed excellent performance when applied to detect Cys in blood serum. In addition, due to its negligible cytotoxicity, the CDs-FITA can also be utilized for the real-time monitoring of endogenous cysteine (Cys) levels in living cells. Graphical abstract Illustration of the CD-based probe for Cys imaging in living cells.
Higuchi-Sanabria, Ryo; Garcia, Enrique J; Tomoiaga, Delia; Munteanu, Emilia L; Feinstein, Paul; Pon, Liza A
2016-01-01
Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.
Yang, Yang; Guan, Xiangming
2017-05-01
Thiols (-SH) play various roles in biological systems. They are divided into protein thiols (PSH) and non-protein thiols (NPSH). Due to the significant roles thiols play in various physiological/pathological functions, numerous analytical methods have been developed for thiol assays. Most of these methods are developed for glutathione, the major form of NPSH. Majority of these methods require tissue/cell homogenization before analysis. Due to a lack of effective thiol-specific fluorescent/fluorogenic reagents, methods for imaging and quantifying thiols in live cells are limited. Determination of an analyte in live cells can reveal information that cannot be revealed by analysis of cell homogenates. Previously, we reported a thiol-specific thiol-sulfide exchange reaction. Based on this reaction, a benzofurazan sulfide thiol-specific fluorogenic reagent was developed. The reagent was able to effectively image and quantify total thiols (PSH+NPSH) in live cells through fluorescence microscopy. The reagent was later named as GUALY's reagent. Here we would like to report an extension of the work by synthesizing a novel benzofurazan sulfide triphenylphosphonium derivative [(((7,7'-thiobis(benzo[c][1,2,5]oxadiazole-4,4'-sulfonyl))bis(methylazanediyl))bis(butane-4,1-diyl))bis(triphenylphosphonium) (TBOP)]. Like GUALY's reagent, TBOP is a thiol-specific fluorogenic agent that is non-fluorescent but forms fluorescent thiol adducts in a thiol-specific fashion. Different than GUALY's reagent, TBOP reacts only with NPSH but not with PSH. TBOP was effectively used to image and quantify NPSH in live cells using fluorescence microscopy. TBOP is a complementary reagent to GUALY's reagent in determining the roles of PSH, NPSH, and total thiols in thiol-related physiological/pathological functions in live cells through fluorescence microscopy. Graphical Abstract Live cell imaging and quantification of non-protein thiols by TBOP.
Lungu, Cristiana; Pinter, Sabine; Broche, Julian; Rathert, Philipp; Jeltsch, Albert
2017-09-21
Investigation of the fundamental role of epigenetic processes requires methods for the locus-specific detection of epigenetic modifications in living cells. Here, we address this urgent demand by developing four modular fluorescence complementation-based epigenetic biosensors for live-cell microscopy applications. These tools combine engineered DNA-binding proteins with domains recognizing defined epigenetic marks, both fused to non-fluorescent fragments of a fluorescent protein. The presence of the epigenetic mark at the target DNA sequence leads to the reconstitution of a functional fluorophore. With this approach, we could for the first time directly detect DNA methylation and histone 3 lysine 9 trimethylation at endogenous genomic sites in live cells and follow dynamic changes in these marks upon drug treatment, induction of epigenetic enzymes and during the cell cycle. We anticipate that this versatile technology will improve our understanding of how specific epigenetic signatures are set, erased and maintained during embryonic development or disease onset.Tools for imaging epigenetic modifications can shed light on the regulation of epigenetic processes. Here, the authors present a fluorescence complementation approach for detection of DNA and histone methylation at endogenous genomic sites allowing following of dynamic changes of these marks by live-cell microscopy.
Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costantini, Lindsey M.; Irvin, Susan C.; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFPmore » enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.« less
Fixed-Cell Imaging of Schizosaccharomyces pombe.
Hagan, Iain M; Bagley, Steven
2016-07-01
The acknowledged genetic malleability of fission yeast has been matched by impressive cytology to drive major advances in our understanding of basic molecular cell biological processes. In many of the more recent studies, traditional approaches of fixation followed by processing to accommodate classical staining procedures have been superseded by live-cell imaging approaches that monitor the distribution of fusion proteins between a molecule of interest and a fluorescent protein. Although such live-cell imaging is uniquely informative for many questions, fixed-cell imaging remains the better option for others and is an important-sometimes critical-complement to the analysis of fluorescent fusion proteins by live-cell imaging. Here, we discuss the merits of fixed- and live-cell imaging as well as specific issues for fluorescence microscopy imaging of fission yeast. © 2016 Cold Spring Harbor Laboratory Press.
Higuchi-Sanabria, Ryo; Garcia, Enrique J.; Tomoiaga, Delia; Munteanu, Emilia L.; Feinstein, Paul; Pon, Liza A.
2016-01-01
Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging. PMID:26727004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xiaofei; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036; Deng, Ping
Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings themore » split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.« less
Carbon "Quantum" Dots for Fluorescence Labeling of Cells.
Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping
2015-09-02
The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.
RNA aptamers that functionally interact with green fluorescent protein and its derivatives
Shui, Bo; Ozer, Abdullah; Zipfel, Warren; Sahu, Nevedita; Singh, Avtar; Lis, John T.; Shi, Hua; Kotlikoff, Michael I.
2012-01-01
Green Fluorescent Protein (GFP) and related fluorescent proteins (FPs) have been widely used to tag proteins, allowing their expression and subcellular localization to be examined in real time in living cells and animals. Similar fluorescent methods are highly desirable to detect and track RNA and other biological molecules in living cells. For this purpose, we have developed a group of RNA aptamers that bind GFP and related proteins, which we term Fluorescent Protein-Binding Aptamers (FPBA). These aptamers bind GFP, YFP and CFP with low nanomolar affinity and binding decreases GFP fluorescence, whereas slightly augmenting YFP and CFP brightness. Aptamer binding results in an increase in the pKa of EGFP, decreasing the 475 nm excited green fluorescence at a given pH. We report the secondary structure of FPBA and the ability to synthesize functional multivalent dendrimers. FPBA expressed in live cells decreased GFP fluorescence in a valency-dependent manner, indicating that the RNA aptamers function within cells. The development of aptamers that bind fluorescent proteins with high affinity and alter their function, markedly expands their use in the study of biological pathways. PMID:22189104
NASA Astrophysics Data System (ADS)
Oguz, Mehmet; Bhatti, Asif Ali; Karakurt, Serdar; Aktas, Mehmet; Yilmaz, Mustafa
2017-01-01
The present study demonstrates the synthesis of water-soluble fluorescent calix[4]arenes (6 and 7) and its application in living cell imaging for Hg2 + detection at a low level. The synthesized fluorescent ligands 6 and 7 were characterized by 1H NMR technique. The fluorescent study showed both water soluble ligands were Hg2 + selective and follow photo-induced electron transfer (PET) process. From the fluorimeter titration experiment detection limit was calculated as 1.14 × 10- 5 and 3.42 × 10- 5 for ligand 6 and 7, respectively. From the Benesi-Hildebrand plot binding constant values were evaluated as 666.7 and 733.3 M- 1 for 6 and 7, respectively. The interactions between ligands 6 and 7 and Hg2 + were also demonstrated in living cells, SW-620, using Fluorescent Cell Imager. While ligands 6 and 7 alone show fluorescent properties, they loss their action with the presence of Hg2 + in SW-620 cells.
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-10-17
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2008-02-01
fluorescent probes for live cell imaging . PSMA distribution of cells grown on different extracellular matrices will be characterized to provide guidance...PCa migration, using in vitro cell model systems and live - cell imaging methods, we characterized the role of PSMA in cell motility and adhesion. Using...Generated fluorescently conjugated anti-PSMA antibodies for live cell imaging . 2. Optimized the siRNA-PSMA transfection and achieved an approximately
Kerppola, Tom K
2008-01-01
Protein interactions are a fundamental mechanism for the generation of biological regulatory specificity. The study of protein interactions in living cells is of particular significance because the interactions that occur in a particular cell depend on the full complement of proteins present in the cell and the external stimuli that influence the cell. Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the association between two nonfluorescent fragments of a fluorescent protein when they are brought in proximity to each other by an interaction between proteins fused to the fragments. Numerous protein interactions have been visualized using the BiFC assay in many different cell types and organisms. The BiFC assay is technically straightforward and can be performed using standard molecular biology and cell culture reagents and a regular fluorescence microscope or flow cytometer.
The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, Anne-Sophie; Freund, Guillaume; Desplancq, Dominique
2013-04-01
Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and themore » ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM–FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells. Highlights: ► Endogenous GK in living cells was targeted with pairs of fluorescently-tagged scFvs. ► Tri-molecular complexes containing two scFvs and one molecule GK were formed. ► GK was detected using fluorescence lifetime-based FRET imaging. ► GK is monomeric and homogeneously distributed in several cancer cell lines. ► This technique may have many applications in live-cell imaging of endogenous proteins.« less
Liu, Xianjun; Xiang, Meihao; Tong, Zongxuan; Luo, Fengyan; Chen, Wen; Liu, Feng; Wang, Fenglin; Yu, Ru-Qin; Jiang, Jian-Hui
2018-05-01
Histone deacetylases (HDACs) play essential roles in transcription regulation and are valuable theranostic targets. However, there are no activatable fluorescent probes for imaging of HDAC activity in live cells. Here, we develop for the first time a novel activatable two-photon fluorescence probe that enables in situ imaging of HDAC activity in living cells and tissues. The probe is designed by conjugating an acetyl-lysine mimic substrate to a masked aldehyde-containing fluorophore via a cyanoester linker. Upon deacetylation by HDAC, the probe undergoes a rapid self-immolative intramolecular cyclization reaction, producing a cyanohydrin intermediate that is spontaneously rapidly decomposed into the highly fluorescent aldehyde-containing two-photon fluorophore. The probe is shown to exhibit high sensitivity, high specificity, and fast response for HDAC detection in vitro. Imaging studies reveal that the probe is able to directly visualize and monitor HDAC activity in living cells. Moreover, the probe is demonstrated to have the capability of two-photon imaging of HDAC activity in deep tissue slices up to 130 μm. This activatable fluorescent probe affords a useful tool for evaluating HDAC activity and screening HDAC-targeting drugs in both live cell and tissue assays.
Wang, Sheng; Chen, Xuanze; Chang, Lei; Ding, Miao; Xue, Ruiying; Duan, Haifeng; Sun, Yujie
2018-06-05
Fluorescent probes with multimodal and multilevel imaging capabilities are highly valuable as imaging with such probes not only can obtain new layers of information but also enable cross-validation of results under different experimental conditions. In recent years, the development of genetically encoded reversibly photoswitchable fluorescent proteins (RSFPs) has greatly promoted the application of various kinds of live-cell nanoscopy approaches, including reversible saturable optical fluorescence transitions (RESOLFT) and stochastic optical fluctuation imaging (SOFI). However, these two classes of live-cell nanoscopy approaches require different optical characteristics of specific RSFPs. In this work, we developed GMars-T, a monomeric bright green RSFP which can satisfy both RESOLFT and photochromic SOFI (pcSOFI) imaging in live cells. We further generated biosensor based on bimolecular fluorescence complementation (BiFC) of GMars-T which offers high specificity and sensitivity in detecting and visualizing various protein-protein interactions (PPIs) in different subcellular compartments under physiological conditions (e.g., 37 °C) in live mammalian cells. Thus, the newly developed GMars-T can serve as both structural imaging probe with multimodal super-resolution imaging capability and functional imaging probe for reporting PPIs with high specificity and sensitivity based on its derived biosensor.
Evanescent field microscopy techniques for studying dynamics at the surface of living cells
NASA Astrophysics Data System (ADS)
Sund, Susan E.
This thesis presents two distinct optical microscopy techniques for applications in cell biophysics: (a)the extension to living cells of an established technique, total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) for the first time in imaging mode; and (b)the novel development of polarized total internal reflection fluorescence (p- TIRF) to study membrane orientation in living cells. Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about the relevant chemical kinetic rates in vivo. TIR/FRAP, an established technique which can measure reversible biomolecular kinetic rates at surfaces, is extended here to measure kinetic parameters of microinjected rhodamine actin at the cytofacial surface of the plasma membrane of living cultured smooth muscle cells. For the first time, spatial imaging (with a CCD camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging allows production of spatially resolved images of kinetic data, and calculation of correlation distances, cell-wide gradients, and kinetic parameter dependence on initial fluorescence intensity. In living cells, membrane curvature occurs both in easily imaged large scale morphological features, and also in less visualizable submicroscopic regions of activity such as endocytosis, exocytosis, and cell surface ruffling. A fluorescence microscopic method, p-TIRF, is introduced here to visualize such regions. The method is based on fluorescence of the oriented membrane probe diI- C18-(3) (diI) excited by evanescent field light polarized either perpendicular or parallel to the plane of the substrate coverslip. The excitation efficiency from each polarization depends on the membrane orientation, and thus the ratio of the observed fluorescence excited by these two polarizations vividly shows regions of microscopic and submicroscopic curvature of the membrane. A theoretical background of the technique and experimental verifications are presented in samples of protein solutions, model lipid bilayers, and living cells. Sequential digital images of the polarized TIR fluorescence ratios show spatially-resolved time- course maps of membrane orientations on diI labeled macrophages from which low visibility membrane structures can be identified and quantified. The TIR images are sharpened and contrast-enhanced by deconvoluting them with an experimentally-measured point spread function.
Bozhanova, Nina G.; Baranov, Mikhail S.; Klementieva, Natalia V.; Sarkisyan, Karen S.; Gavrikov, Alexey S.; Yampolsky, Ilia V.; Zagaynova, Elena V.; Lukyanov, Sergey A.; Lukyanov, Konstantin A.
2017-01-01
We present protein-PAINT – the implementation of the general principles of PAINT (Point Accumulation for Imaging in Nanoscale Topography) for live-cell protein labeling. Our method employs the specific binding of cell-permeable fluorogenic dyes to genetically encoded protein tags. We engineered three mutants of the bacterial lipocalin Blc that possess different affinities to a fluorogenic dye and exhibit a strong increase in fluorescence intensity upon binding. This allows for rapid labeling and washout of intracellular targets on a time scale from seconds to a few minutes. We demonstrate an order of magnitude higher photostability of the fluorescence signal in comparison with spectrally similar fluorescent proteins. Protein-PAINT ensures prolonged super-resolution fluorescence microscopy of living cells in both single molecule detection and stimulated emission depletion regimes. PMID:29147545
NASA Astrophysics Data System (ADS)
Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang
2018-01-01
To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.
NASA Astrophysics Data System (ADS)
Lv, Jian; Zhao, Li-Jun; Qian, Ruo-Can; Long, Yi-Tao
2017-12-01
Detection of silver ions (Ag+) in living cells has becoming more and more attractive due to the important biological impact of Ag+ on cellular functions. Here, we put forward a new approach to realize the in situ fluorescence imaging and detection of Ag+ in single cells via an ultrasensitive Ag+-responsive probe, 3‧,6‧-bis (diethylamino)-2-(2-iodoethyl) spiro[isoindoline-1,9‧-xanthen]-3-one (BDISIX). In the presence of Ag+, the fluorescence of the probe can be turned ‘on’, generating strong red fluorescence. Using breast cancer cells (MCF-7) as the example, we successfully realize the imaging of intracellular Ag+ through one-step incubation of the probe, which is especially convenient and fast for the in situ intact detection of Ag+ in living cells.
Wu, Luling; Li, Xiaolin; Ling, Yifei; Huang, Chusen; Jia, Nengqin
2017-08-30
The development of a suitable fluorescent probe for the specific labeling and imaging of lysosomes through the direct visual fluorescent signal is extremely important for understanding the dysfunction of lysosomes, which might induce various pathologies, including neurodegenerative diseases, cancer, and Alzheimer's disease. Herein, a new carbon dot-based fluorescent probe (CDs-PEI-ML) was designed and synthesized for highly selective imaging of lysosomes in live cells. In this probe, PEI (polyethylenimine) is introduced to improve water solubility and provide abundant amine groups for the as-prepared CDs-PEI, and the morpholine group (ML) serves as a targeting unit for lysosomes. More importantly, passivation with PEI could dramatically increase the fluorescence quantum yield of CDs-PEI-ML as well as their stability in fluorescence emission under different excitation wavelength. Consequently, experimental data demonstrated that the target probe CDs-PEI-ML has low cytotoxicity and excellent photostability. Additionally, further live cell imaging experiment indicated that CDs-PEI-ML is a highly selective fluorescent probe for lysosomes. We speculate the mechanism for selective staining of lysosomes that CDs-PEI-ML was initially taken up by lysosomes through the endocytic pathway and then accumulated in acidic lysosomes. It is notable that there was less diffusion of CDs-PEI-ML into cytoplasm, which could be ascribed to the presence of lysosome target group morpholine on surface of CDs-PEI-ML. The blue emission wavelength combined with the high photo stability and ability of long-lasting cell imaging makes CDs-PEI-ML become an alternative fluorescent probe for multicolor labeling and long-term tracking of lysosomes in live cells and the potential application in super-resolution imaging. To best of our knowledge, there are still limited carbon dots-based fluorescent probes that have been studied for specific lysosomal imaging in live cells. The concept of surface functionality of carbon dots will also pave a new avenue for developing carbon dots-based fluorescent probes for subcellular labeling.
Goswami, Shyamaprosad; Chakraborty, Shampa; Paul, Sima; Halder, Sandipan; Panja, Sukanya; Mukhopadhyay, Subhra Kanti
2014-05-21
A new pyrene based fluorescence probe has been synthesized for fluorogenic detection of Cu(2+) in acetonitrile-aqueous media (7 : 3 CH3CN-HEPES buffer, v/v, at pH 7.5) with bioimaging in both prokaryotic (Candida albicans cells) and eukaryotic (Tecoma stans pollen cells) living cells. The anion recognition properties of the sensor have also been studied in acetonitrile by fluorescence methods which show remarkable sensitivity toward fluoride over other anions examined.
Miyake, Tetsuaki; McDermott, John C.; Gramolini, Anthony O.
2011-01-01
Identification of differentiating muscle cells generally requires fixation, antibodies directed against muscle specific proteins, and lengthy staining processes or, alternatively, transfection of muscle specific reporter genes driving GFP expression. In this study, we examined the possibility of using the robust mitochondrial network seen in maturing muscle cells as a marker of cellular differentiation. The mitochondrial fluorescent tracking dye, MitoTracker, which is a cell-permeable, low toxicity, fluorescent dye, allowed us to distinguish and track living differentiating muscle cells visually by epi-fluorescence microscopy. MitoTracker staining provides a robust and simple detection strategy for living differentiating cells in culture without the need for fixation or biochemical processing. PMID:22174849
Lu, Mei; Chan, Brian M; Schow, Peter W; Chang, Wesley S; King, Chadwick T
2017-12-01
With current available assay formats using either immobilized protein (ELISA, enzyme-linked immunosorbent assay) or immunostaining of fixed cells for primary monoclonal antibody (mAb) screening, researchers often fail to identify and characterize antibodies that recognize the native conformation of cell-surface antigens. Therefore, screening using live cells has become an integral and important step contributing to the successful identification of therapeutic antibody candidates. Thus the need for developing high-throughput screening (HTS) technologies using live cells has become a major priority for therapeutic mAb discovery and development. We have developed a novel technique called Multiplexed Fluorescent Cell Barcoding (MFCB), a flow cytometry-based method based upon the Fluorescent Cell Barcoding (FCB) technique and the Luminex fluorescent bead array system, but is applicable to high-through mAb screens on live cells. Using this technique in our system, we can simultaneously identify or characterize the antibody-antigen binding of up to nine unique fluorescent labeled cell populations in the time that it would normally take to process a single population. This has significantly reduced the amount of time needed for the identification of potential lead candidates. This new technology enables investigators to conduct large-scale primary hybridoma screens using flow cytometry. This in turn has allowed us to screen antibodies more efficiently than before and streamline identification and characterization of lead molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Nakamura, Akinobu; Takigawa, Kazumasa; Kurishita, Yasutaka; Kuwata, Keiko; Ishida, Manabu; Shimoda, Yasushi; Hamachi, Itaru; Tsukiji, Shinya
2014-06-11
We report a general strategy to create small-molecule fluorescent probes for the nucleus in living cells. Our strategy is based on the attachment of the DNA-binding Hoechst compound to a fluorophore of interest. Using this approach, simple fluorescein, BODIPY, and rhodamine dyes were readily converted to novel turn-on fluorescent nucleus-imaging probes.
Confocal bioimaging the living cornea with autofluorescence and specific fluorescent probes
NASA Astrophysics Data System (ADS)
Masters, Barry R.; Paddock, Stephen W.
1990-08-01
Confocal bioimaging of the fine structure of the living rabbit cornea with both reflected light and fluorescent light has been demonstrated with a laser scanning confocal imaging system. Kalman averaging was used to reduce the noise in the images. Superficial epithelial, basal epithelial cells, stromal keratocytes, and endothelial cells were imaged. These cells and their subcellular structures were imaged in the two modes for comparison. The superficial epithelial cells were imaged by their autofluorescence (488/520 nm). This fluorescence signal may be due to the mitochondrial flavoproteins and can be used as a noninvasive indicator of cellular oxidative function. Thiazole orange was used to stain cell nuclei for fluorescence imaging. DiOC6 was used to stain the endoplasmic reticulum for fluorescence imaging. Fluorescein- conjugated phalloidin was used to stain actin for fluorescence imaging.
Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Zhao, Bo; Wen, Xiangping; Zhang, Guomei; Dong, Chuan; Shuang, Shaomin
2016-03-15
We report a controllable strategy for fabrication of green and blue fluorescent carbon nanodots (CDs), and demonstrate their applications for pH and Cu(2+) sensing in living cells. Green and blue fluorescent CDs have been synthesized by hydrothermal method and pyrolysis of leeks, respectively, providing an easy way for the production of CDs without the request of tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. Green fluorescent CDs (G-CDs) exhibit high tolerance to pH values and external cations. Blue fluorescent CDs (B-CDs) can be applied to pH and Cu(2+) sensing. The linear range of Cu(2+) detection is 0.01-10.00 μM and the detection limit is 0.05 μM. For pH detection, there is a good linearity in the pH range of 3.5-10.0. The linear and rapid response of B-CDs to Cu(2+) and pH is valuable for Cu(2+) and pH sensing in living cells. Confocal fluorescent imaging of human cervical carcinoma cells indicates that B-CDs could visualize Cu(2+) and pH fluctuations in living cells with negligible autofluorescence. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua
2017-01-01
It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.
Tewson, Paul H; Quinn, Anne Marie; Hughes, Thomas E
2013-08-01
There is a growing need in drug discovery and basic research to measure multiple second-messenger components of cell signaling pathways in real time and in relevant tissues and cell types. Many G-protein-coupled receptors activate the heterotrimeric protein, Gq, which in turn activates phospholipase C (PLC). PLC cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two second messengers: diacylglycerol (DAG), which remains in the plasma membrane, and inositol triphosphate (IP3), which diffuses through the cytosol to release stores of intracellular calcium ions (Ca(2+)). Our goal was to create a series of multiplex sensors that would make it possible to simultaneously measure two different components of the Gq pathway in living cells. Here we describe new fluorescent sensors for DAG and PIP2 that produce robust changes in green or red fluorescence and can be combined with one another, or with existing Ca(2+) sensors, in a live-cell assay. These assays can detect multiple components of Gq signaling, simultaneously in real time, on standard fluorescent plate readers or live-cell imaging systems.
NASA Astrophysics Data System (ADS)
Song, Xuezhen; Dong, Baoli; Kong, Xiuqi; Wang, Chao; Zhang, Nan; Lin, Weiying
2018-01-01
Hypochlorite is one of the important reactive oxygen species (ROS) and plays critical roles in many biologically vital processes. Herein, we present a unique ratiometric fluorescent probe (CBP) with an extremely large emission shift for detecting hypochlorite in living cells. Utilizing positively charged α,β-unsaturated carbonyl group as the reaction site, the probe CBP itself exhibited near-infrared (NIR) fluorescence at 662 nm, and can display strong blue fluorescence at 456 nm when responded to hypochlorite. Notably, the extremely large emission shift of 206 nm could enable the precise measurement of the fluorescence peak intensities and ratios. CBP showed high sensitivity, excellent selectivity, desirable performance at physiological pH, and low cytotoxicity. The bioimaging experiments demonstrate the biological application of CBP for the ratiometric imaging of hypochlorite in living cells.
Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging.
Hayashi-Takanaka, Yoko; Stasevich, Timothy J; Kurumizaka, Hitoshi; Nozaki, Naohito; Kimura, Hiroshi
2014-01-01
To optimize live cell fluorescence imaging, the choice of fluorescent substrate is a critical factor. Although genetically encoded fluorescent proteins have been used widely, chemical fluorescent dyes are still useful when conjugated to proteins or ligands. However, little information is available for the suitability of different fluorescent dyes for live imaging. We here systematically analyzed the property of a number of commercial fluorescent dyes when conjugated with antigen-binding (Fab) fragments directed against specific histone modifications, in particular, phosphorylated H3S28 (H3S28ph) and acetylated H3K9 (H3K9ac). These Fab fragments were conjugated with a fluorescent dye and loaded into living HeLa cells. H3S28ph-specific Fab fragments were expected to be enriched in condensed chromosomes, as H3S28 is phosphorylated during mitosis. However, the degree of Fab fragment enrichment on mitotic chromosomes varied depending on the conjugated dye. In general, green fluorescent dyes showed higher enrichment, compared to red and far-red fluorescent dyes, even when dye:protein conjugation ratios were similar. These differences are partly explained by an altered affinity of Fab fragment after dye-conjugation; some dyes have less effect on the affinity, while others can affect it more. Moreover, red and far-red fluorescent dyes tended to form aggregates in the cytoplasm. Similar results were observed when H3K9ac-specific Fab fragments were used, suggesting that the properties of each dye affect different Fab fragments similarly. According to our analysis, conjugation with green fluorescent dyes, like Alexa Fluor 488 and Dylight 488, has the least effect on Fab affinity and is the best for live cell imaging, although these dyes are less photostable than red fluorescent dyes. When multicolor imaging is required, we recommend the following dye combinations for optimal results: Alexa Fluor 488 (green), Cy3 (red), and Cy5 or CF640 (far-red).
Sehgal, Lalit; Budnar, Srikanth; Bhatt, Khyati; Sansare, Sneha; Mukhopadhaya, Amitabha; Kalraiya, Rajiv D; Dalal, Sorab N
2012-10-01
The study of protein-protein interactions, protein localization, protein organization into higher order structures and organelle dynamics in live cells, has greatly enhanced the understanding of various cellular processes. Live cell imaging experiments employ plasmid or viral vectors to express the protein/proteins of interest fused to a fluorescent protein. Unlike plasmid vectors, lentiviral vectors can be introduced into both dividing and non dividing cells, can be pseudotyped to infect a broad or narrow range of cells, and can be used to generate transgenic animals. However, the currently available lentiviral vectors are limited by the choice of fluorescent protein tag, choice of restriction enzyme sites in the Multiple Cloning Sites (MCS) and promoter choice for gene expression. In this report, HIV-1 based bi-cistronic lentiviral vectors have been generated that drive the expression of multiple fluorescent tags (EGFP, mCherry, ECFP, EYFP and dsRed), using two different promoters. The presence of a unique MCS with multiple restriction sites allows the generation of fusion proteins with the fluorescent tag of choice, allowing analysis of multiple fusion proteins in live cell imaging experiments. These novel lentiviral vectors are improved delivery vehicles for gene transfer applications and are important tools for live cell imaging in vivo.
A Critical and Comparative Review of Fluorescent Tools for Live-Cell Imaging.
Specht, Elizabeth A; Braselmann, Esther; Palmer, Amy E
2017-02-10
Fluorescent tools have revolutionized our ability to probe biological dynamics, particularly at the cellular level. Fluorescent sensors have been developed on several platforms, utilizing either small-molecule dyes or fluorescent proteins, to monitor proteins, RNA, DNA, small molecules, and even cellular properties, such as pH and membrane potential. We briefly summarize the impressive history of tool development for these various applications and then discuss the most recent noteworthy developments in more detail. Particular emphasis is placed on tools suitable for single-cell analysis and especially live-cell imaging applications. Finally, we discuss prominent areas of need in future fluorescent tool development-specifically, advancing our capability to analyze and integrate the plethora of high-content data generated by fluorescence imaging.
Live Cell Imaging and Measurements of Molecular Dynamics
Frigault, M.; Lacoste, J.; Swift, J.; Brown, C.
2010-01-01
w3-2 Live cell microscopy is becoming widespread across all fields of the life sciences, as well as, many areas of the physical sciences. In order to accurately obtain live cell microscopy data, the live specimens must be properly maintained on the imaging platform. In addition, the fluorescence light path must be optimized for efficient light transmission in order to reduce the intensity of excitation light impacting the living sample. With low incident light intensities the processes under study should not be altered due to phototoxic effects from the light allowing for the long term visualization of viable living samples. Aspects for maintaining a suitable environment for the living sample, minimizing incident light and maximizing detection efficiency will be presented for various fluorescence based live cell instruments. Raster Image Correlation Spectroscopy (RICS) is a technique that uses the intensity fluctuations within laser scanning confocal images, as well as the well characterized scanning dynamics of the laser beam, to extract the dynamics, concentrations and clustering of fluorescent molecules within the cell. In addition, two color cross-correlation RICS can be used to determine protein-protein interactions in living cells without the many technical difficulties encountered in FRET based measurements. RICS is an ideal live cell technique for measuring cellular dynamics because the potentially damaging high intensity laser bursts required for photobleaching recovery measurements are not required, rather low laser powers, suitable for imaging, can be used. The RICS theory will be presented along with examples of live cell applications.
Schaaf, Marcel J M; Koopmans, Wiepke J A; Meckel, Tobias; van Noort, John; Snaar-Jagalska, B Ewa; Schmidt, Thomas S; Spaink, Herman P
2009-08-19
It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.
Wu, Juanjuan; Ye, Zhuo; Wu, Feng; Wang, Hongying; Zeng, Lintao; Bao, Guang-Ming
2018-05-01
Thiophenols are a class of highly toxic environmental pollutant, hence it is very necessary to monitor thiophenols in environment and living cells with an efficient and reliable method. Herein, a novel fluorescent probe for thiophenols has been developed, which exhibited a colorimetric and fluorescence turn-on dual response towards thiophenols with good selectivity and fast response. The sensing mechanism for thiophenols was attributed to nucleophilic substitution reaction, which was confirmed by HPLC. The probe exhibited good recovery (from 90% to 107%) and low limit of detection for thiophenols (37nM) in industrial wastewater. Moreover, the probe has been successfully employed to visualize thiophenol in living cells. Therefore, the fluorescent probe has good capability for monitoring thiophenols in environmental samples and biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Live Cell Imaging of Alphaherpes Virus Anterograde Transport and Spread
Taylor, Matthew P.; Kratchmarov, Radomir; Enquist, Lynn W.
2013-01-01
Advances in live cell fluorescence microscopy techniques, as well as the construction of recombinant viral strains that express fluorescent fusion proteins have enabled real-time visualization of transport and spread of alphaherpes virus infection of neurons. The utility of novel fluorescent fusion proteins to viral membrane, tegument, and capsids, in conjunction with live cell imaging, identified viral particle assemblies undergoing transport within axons. Similar tools have been successfully employed for analyses of cell-cell spread of viral particles to quantify the number and diversity of virions transmitted between cells. Importantly, the techniques of live cell imaging of anterograde transport and spread produce a wealth of information including particle transport velocities, distributions of particles, and temporal analyses of protein localization. Alongside classical viral genetic techniques, these methodologies have provided critical insights into important mechanistic questions. In this article we describe in detail the imaging methods that were developed to answer basic questions of alphaherpes virus transport and spread. PMID:23978901
Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells
Fruhwirth, Gilbert O.; Ameer-Beg, Simon; Cook, Richard; Watson, Timothy; Ng, Tony; Festy, Frederic
2010-01-01
Development of remote imaging for diagnostic purposes has progressed dramatically since endoscopy began in the 1960’s. The recent advent of a clinically licensed intensity-based fluorescence micro-endoscopic instrument has offered the prospect of real-time cellular resolution imaging. However, interrogating protein-protein interactions deep inside living tissue requires precise fluorescence lifetime measurements to derive the Förster resonance energy transfer between two tagged fluorescent markers. We developed a new instrument combining remote fiber endoscopic cellular-resolution imaging with TCSPC-FLIM technology to interrogate and discriminate mixed fluorochrome labeled beads and expressible GFP/TagRFP tags within live cells. Endoscopic-FLIM (e-FLIM) data was validated by comparison with data acquired via conventional FLIM and e-FLIM was found to be accurate for both bright bead and dim live cell samples. The fiber based micro-endoscope allowed remote imaging of 4 µm and 10 µm beads within a thick Matrigel matrix with confident fluorophore discrimination using lifetime information. More importantly, this new technique enabled us to reliably measure protein-protein interactions in live cells embedded in a 3D matrix, as demonstrated by the dimerization of the fluorescent protein-tagged membrane receptor CXCR4. This cell-based application successfully demonstrated the suitability and great potential of this new technique for in vivo pre-clinical biomedical and possibly human clinical applications. PMID:20588974
NASA Astrophysics Data System (ADS)
Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin
2017-08-01
A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu2 + ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu2 + ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu2 + to probe QP was found to be 2.12 × 104 M- 1. Further, the Cu2 + ensemble of probe QP was found to respond H2PO4- and HPO42 - among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu2 + cation and H2PO4- and HPO42 - anions in living cells.
Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin
2017-08-05
A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu 2+ ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu 2+ ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu 2+ to probe QP was found to be 2.12×10 4 M -1 . Further, the Cu 2+ ensemble of probe QP was found to respond H 2 PO 4 - and HPO 4 2- among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu 2+ cation and H 2 PO 4 - and HPO 4 2- anions in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Guan, Li; Liu, Qi; Zhang, Borui; Wang, Lanying
2017-01-01
Fluorescence pH imaging in living cells is a rapidly expanding research direction, however, it relies on the development of pH-sensitive fluorescent imaging agents. Here four norcyanine dyes with benzo[c,d]indolium moiety, exhibiting high spectral sensitivity with pH changes, were synthesized for fluorescence pH imaging in living cells, and characterized by 1 H NMR, 13 C NMR, IR, UV-Vis and HRMS. The investigation of their spectral properties in methanol and water showed that the absorption and emission maxima were in the region 488-618nm and 583-651nm, respectively, and four dyes exhibited high photostability. The pH spectral titrations showed that selective dye D1 had pH-dependent absorption spectral changes within the pH range of 2.4 to 9.4, and high fluorescent spectral sensitivity at pH5.0-8.0, with a pK a of 5.0. A cell association study indicated that dye D1 exhibited no or mild cytotoxicity at the application dose and duration, and could be accumulated in cells and mainly distributed in the cytoplasm, giving red fluorescence imaging. In particular, dye D1 could achieve pH-dependent fluorescence imaging in living cells with the increase of pH from 3.0 to 8.0, at excitation wavelength of 543nm and receiving wavelength of 655-755nm, which was valuable for studying the weak acidic, neutral and weak alkaline biological tissue compartments. Copyright © 2016 Elsevier B.V. All rights reserved.
Panda, Koustubh; Chawla-Sarkar, Mamta; Santos, Cecile; Koeck, Thomas; Erzurum, Serpil C; Parkinson, John F; Stuehr, Dennis J
2005-07-19
The study of nitric-oxide synthase (NOS) physiology is constrained by the lack of suitable probes to detect NOS in living cells or animals. Here, we characterized a fluorescent inducible NOS (iNOS) inhibitor called PIF (pyrimidine imidazole FITC) and examined its utility for microscopic imaging of iNOS in living cells. PIF binding to iNOS displayed high affinity, isoform selectivity, and heme specificity, and was essentially irreversible. PIF was used to successfully image iNOS expressed in RAW264.7 cells, HEK293T cells, human A549 epithelial cells, and freshly obtained human lung epithelium. PIF was used to estimate a half-life for iNOS of 1.8 h in HEK293T cells. Our work reveals that fluorescent probes like PIF will be valuable for studying iNOS cell biology and in understanding the pathophysiology of diseases that involve dysfunctional iNOS expression.
Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging.
Shuai, Hongyan; Xu, Yunjian; Yu, Qian; Gylfe, Erik; Tengholm, Anders
2016-10-01
The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets.
Johnson, Heath E; Haugh, Jason M
2013-12-02
This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.
Shin, Seungwoo; Kim, Doyeon; Kim, Kyoohyun; Park, YongKeun
2018-06-15
We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.
Live Cell Visualization of Multiple Protein-Protein Interactions with BiFC Rainbow.
Wang, Sheng; Ding, Miao; Xue, Boxin; Hou, Yingping; Sun, Yujie
2018-05-18
As one of the most powerful tools to visualize PPIs in living cells, bimolecular fluorescence complementation (BiFC) has gained great advancement during recent years, including deep tissue imaging with far-red or near-infrared fluorescent proteins or super-resolution imaging with photochromic fluorescent proteins. However, little progress has been made toward simultaneous detection and visualization of multiple PPIs in the same cell, mainly due to the spectral crosstalk. In this report, we developed novel BiFC assays based on large-Stokes-shift fluorescent proteins (LSS-FPs) to detect and visualize multiple PPIs in living cells. With the large excitation/emission spectral separation, LSS-FPs can be imaged together with normal Stokes shift fluorescent proteins to realize multicolor BiFC imaging using a simple illumination scheme. We also further demonstrated BiFC rainbow combining newly developed BiFC assays with previously established mCerulean/mVenus-based BiFC assays to achieve detection and visualization of four PPI pairs in the same cell. Additionally, we prove that with the complete spectral separation of mT-Sapphire and CyOFP1, LSS-FP-based BiFC assays can be readily combined with intensity-based FRET measurement to detect ternary protein complex formation with minimal spectral crosstalk. Thus, our newly developed LSS-FP-based BiFC assays not only expand the fluorescent protein toolbox available for BiFC but also facilitate the detection and visualization of multiple protein complex interactions in living cells.
Lajevardipour, Alireza; Chon, James W M; Chattopadhyay, Amitabha; Clayton, Andrew H A
2016-11-22
Spectral relaxation from fluorescent probes is a useful technique for determining the dynamics of condensed phases. To this end, we have developed a method based on wide-field spectral fluorescence lifetime imaging microscopy to extract spectral relaxation correlation times of fluorescent probes in living cells. We show that measurement of the phase and modulation of fluorescence from two wavelengths permit the identification and determination of excited state lifetimes and spectral relaxation correlation times at a single modulation frequency. For NBD fluorescence in glycerol/water mixtures, the spectral relaxation correlation time determined by our approach exhibited good agreement with published dielectric relaxation measurements. We applied this method to determine the spectral relaxation dynamics in membranes of living cells. Measurements of the Golgi-specific C 6 -NBD-ceramide probe in living HeLa cells revealed sub-nanosecond spectral dynamics in the intracellular Golgi membrane and slower nanosecond spectral dynamics in the extracellular plasma membrane. We interpret the distinct spectral dynamics as a result of structural plasticity of the Golgi membrane relative to more rigid plasma membranes. To the best of our knowledge, these results constitute one of the first measurements of Golgi rotational dynamics.
Live Cell Imaging of a Fluorescent Gentamicin Conjugate
Escobedo, Jorge O.; Chu, Yu-Hsuan; Wang, Qi; Steyger, Peter S.; Strongin, Robert M.
2012-01-01
Understanding cellular mechanisms of ototoxic and nephrotoxic drug uptake, intracellular distribution, and molecular trafficking across cellular barrier systems aids the study of potential uptake blockers that preserve sensory and renal function during critical life-saving therapy. Herein we report the design, synthesis characterization and evaluation of a fluorescent conjugate of the aminoglycoside antibiotic gentamicin. Live cell imaging results show the potential utility of this new material. Related gentamicin conjugates studied to date quench in live kindney cells, and have been largely restricted to use in fixed (delipidated) cells. PMID:22545403
Live CLEM imaging to analyze nuclear structures at high resolution.
Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako
2015-01-01
Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.
Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing
2013-01-01
Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532
Schallek, Jesse; Geng, Ying; Nguyen, HoanVu; Williams, David R.
2013-01-01
Purpose. To noninvasively image retinal pericytes in the living eye and characterize NG2-positive cell topography and morphology in the adult mouse retina. Methods. Transgenic mice expressing fluorescent pericytes (NG2, DsRed) were imaged using a two-channel, adaptive optics scanning laser ophthalmoscope (AOSLO). One channel imaged vascular perfusion with near infrared light. A second channel simultaneously imaged fluorescent retinal pericytes. Mice were also imaged using wide-field ophthalmoscopy. To confirm in vivo imaging, five eyes were enucleated and imaged in flat mount with conventional fluorescent microscopy. Cell topography was quantified relative to the optic disc. Results. We observed strong DsRed fluorescence from NG2-positive cells. AOSLO revealed fluorescent vascular mural cells enveloping all vessels in the living retina. Cells were stellate on larger venules, and showed banded morphology on arterioles. NG2-positive cells indicative of pericytes were found on the smallest capillaries of the retinal circulation. Wide-field SLO enabled quick assessment of NG2-positive distribution, but provided insufficient resolution for cell counts. Ex vivo microscopy showed relatively even topography of NG2-positive capillary pericytes at eccentricities more than 0.3 mm from the optic disc (515 ± 94 cells/mm2 of retinal area). Conclusions. We provide the first high-resolution images of retinal pericytes in the living animal. Subcellular resolution enabled morphological identification of NG2-positive cells on capillaries showing classic features and topography of retinal pericytes. This report provides foundational basis for future studies that will track and quantify pericyte topography, morphology, and function in the living retina over time, especially in the progression of microvascular disease. PMID:24150762
Time-lapse monitoring of TLR2 ligand internalization with newly developed fluorescent probes.
Arai, Yohei; Yokoyama, Kouhei; Kawahara, Yuki; Feng, Qi; Ohta, Ippei; Shimoyama, Atsushi; Inuki, Shinsuke; Fukase, Koichi; Kabayama, Kazuya; Fujimoto, Yukari
2018-05-23
As a mammalian toll-like receptor family member protein, TLR2 recognizes lipoproteins from bacteria and modulates the immune response by inducing the expression of various cytokines. We have developed fluorescence-labeled TLR2 ligands with either hydrophilic or hydrophobic fluorescence groups. The labeled ligands maintained the inflammatory IL-6 induction activity and enabled us to observe the internalization and colocalization of the TLR2 ligands using live-cell imaging. The time-lapse monitoring in the live-cell imaging of the fluorescence-labeled TLR2 ligand showed that TLR2/CD14 expression in the host cells enhanced the internalization of TLR2 ligand molecules.
Ren, Mingguang; Deng, Beibei; Kong, Xiuqi; Tang, Yonghe; Lin, Weiying
2017-01-01
Hydrogen peroxide (H 2 O 2 ) plays important roles in many physiological and pathological processes. At the cellular organelle level, the abnormal concentrations of H 2 O 2 in the lysosomes may cause redox imbalance and the loss of the critical functions of the lysosomes. Herein, we describe the preparation of a potent lysosome-targeted two-photon fluorescent probe (Lyso-HP) for the detection of H 2 O 2 in the lysosomes in the living cells. This unique fluorescent probe can also be employed to effectively detect H 2 O 2 in the living tissues using two-photon fluorescence microscopy.
Single-molecule imaging of cytoplasmic dynein in vivo.
Ananthanarayanan, Vaishnavi; Tolić, Iva M
2015-01-01
While early fluorescence microscopy experiments employing fluorescent probes afforded snapshots of the cell, the power of live-cell microscopy is required to understand complex dynamics in biological processes. The first successful cloning of green fluorescent protein in the 1990s paved the way for development of approaches that we now utilize for visualization in a living cell. In this chapter, we discuss a technique to observe fluorescently tagged single molecules in fission yeast. With a few simple modifications to the established total internal reflection fluorescence microscopy, cytoplasmic dynein molecules in the cytoplasm and on the microtubules can be visualized and their intracellular dynamics can be studied. We illustrate a technique to study motor behavior, which is not apparent in conventional ensemble studies of motors. In general, this technique can be employed to study single-molecule dynamics of fluorescently tagged proteins in the cell interior. Copyright © 2015 Elsevier Inc. All rights reserved.
RNA Imaging with Dimeric Broccoli in Live Bacterial and Mammalian Cells
Filonov, Grigory S.
2016-01-01
RNA spatial dynamics play a crucial role in cell physiology and thus the ability to monitor RNA localization in live cells can provide insight into important biological problems. This article focuses on imaging RNAs using an “RNA mimic of GFP”. This approach relies on a RNA aptamer, called dimeric Broccoli, which binds to and switches on the fluorescence of DFHBI, a small molecule mimicking the fluorophore in GFP. Dimeric Broccoli is tagged to heterologously expressed RNAs and upon DFHBI binding the fluorescent signal of dimeric Broccoli reports the transcript’s localization in cells. This protocol describes the process of validating the fluorescence of dimeric Broccoli-labeled transcripts in vitro and in cells, flow cytometry analysis to determine overall fluorescence levels in cells, and fluorescence imaging in bacterial and mammalian cells. Overall, the current protocol should be useful for researchers seeking to image high abundance RNAs, such as transcribed off the T7 promoter in bacteria or off Pol III-dependent promoters in mammalian cells. PMID:26995352
Jiao, Shu-Yan; Li, Kun; Zhang, Wei; Liu, Yan-Hong; Huang, Zeng; Yu, Xiao-Qi
2015-01-21
The terpyridine anthracene ligand was synthesized and characterized. is a ratiometric fluorescent probe for Cd(2+) with a recognition mechanism based on intramolecular charge transfer (ICT). An complex was isolated, and its structure was established using single-crystal XRD. The complex was able to serve as a novel reversible chemosensing ensemble to allow ratiometric response to pyrophosphate (PPi) in aqueous media. Moreover, the fluorescence imaging in living cells from these two emission channels suggested that was a ratiometric probe for Cd(2+), and the in situ generated complex was also a ratiometric ensemble for PPi detection in living cells.
A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells.
Zhang, Jingtuo; Li, Cong; Dutta, Colina; Fang, Mingxi; Zhang, Shuwei; Tiwari, Ashutosh; Werner, Thomas; Luo, Fen-Tair; Liu, Haiying
2017-05-22
A novel near-infrared fluorescent probe for β-galactosidase has been developed based on a hemicyanine skeleton, which is conjugated with a d-galactose residue via a glycosidic bond. The probe serves as a substrate of β-galactosidase and displays rapid and sensitive turn-on fluorescent responses to β-galactosidase in aqueous solution. A 12.8-fold enhancement of fluorescence intensity at 703 nm was observed after incubation of 10 nM of β-galactosidase with 5 μM probe for 10 min. The probe can sensitively detect as little as 0.1 nM of β-galactosidase and shows linear responses to the enzyme concentration below 1.4 nM. The kinetic study showed that the probe has high binding affinity to β-galactosidase with K m = 3.6 μM. The probe was used to detect β-galactosidase in living cells by employing the premature cell senescence model. The probe exhibited strong fluorescent signals in senescent cells but not in normal cells, which demonstrates that the probe is able to detect the endogenous senescence-associated β-galactosidase in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
A turn-on fluorescent probe for endogenous formaldehyde in the endoplasmic reticulum of living cells
NASA Astrophysics Data System (ADS)
Tang, Yonghe; Ma, Yanyan; Xu, An; Xu, Gaoping; Lin, Weiying
2017-06-01
As the simplest aldehyde compounds, formaldehyde (FA) is implicated in nervous system diseases and cancer. Endoplasmic reticulum is an organelle that plays important functions in living cells. Accordingly, the development of efficient methods for FA detection in the endoplasmic reticulum (ER) is of great biomedical importance. In this work, we developed the first ER-targeted fluorescent FA probe Na-FA-ER. The detection is based on the condensation reaction of the hydrazine group and FA to suppress the photo-induced electron transfer (PET) pathway, resulting in a fluorescence increase. The novel Na-FA-ER showed high sensitivity to FA. In addition, the Na-FA-ER enabled the bio-imaging of exogenous and endogenous FA in living HeLa cells. Most significantly, the new Na-FA-ER was employed to visualize the endogenous FA in the ER in living cells for the first time.
Multispectral Live-Cell Imaging.
Cohen, Sarah; Valm, Alex M; Lippincott-Schwartz, Jennifer
2018-06-01
Fluorescent proteins and vital dyes are invaluable tools for studying dynamic processes within living cells. However, the ability to distinguish more than a few different fluorescent reporters in a single sample is limited by the spectral overlap of available fluorophores. Here, we present a protocol for imaging live cells labeled with six fluorophores simultaneously. A confocal microscope with a spectral detector is used to acquire images, and linear unmixing algorithms are applied to identify the fluorophores present in each pixel of the image. We describe the application of this method to visualize the dynamics of six different organelles, and to quantify the contacts between organelles. However, this method can be used to image any molecule amenable to tagging with a fluorescent probe. Thus, multispectral live-cell imaging is a powerful tool for systems-level analysis of cellular organization and dynamics. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
Li, Long; Ji, Yuzhuo; Tang, Xinjing
2014-10-21
Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.
Imaging of Fluoride Ion in Living Cells and Tissues with a Two-Photon Ratiometric Fluorescence Probe
Zhu, Xinyue; Wang, Jianxi; Zhang, Jianjian; Chen, Zhenjie; Zhang, Haixia; Zhang, Xiaoyu
2015-01-01
A reaction-based two-photon (TP) ratiometric fluorescence probe Z2 has been developed and successfully applied to detect and image fluoride ion in living cells and tissues. The Z2 probe was designed designed to utilize an ICT mechanism between n-butylnaphthalimide as a fluorophore and tert-butyldiphenylsilane (TBDPS) as a response group. Upon addition of fluoride ion, the Si-O bond in the Z2 would be cleaved, and then a stronger electron-donating group was released. The fluorescent changes at 450 and 540 nm, respectively, made it possible to achieve ratiometric fluorescence detection. The results indicated that the Z2 could ratiometrically detect and image fluoride ion in living cells and tissues in a depth of 250 μm by two-photon microscopy (TPM). PMID:25594597
Pratx, Guillem; Chen, Kai; Sun, Conroy; Martin, Lynn; Carpenter, Colin M.; Olcott, Peter D.; Xing, Lei
2012-01-01
Radiotracers play an important role in interrogating molecular processes both in vitro and in vivo. However, current methods are limited to measuring average radiotracer uptake in large cell populations and, as a result, lack the ability to quantify cell-to-cell variations. Here we apply a new technique, termed radioluminescence microscopy, to visualize radiotracer uptake in single living cells, in a standard fluorescence microscopy environment. In this technique, live cells are cultured sparsely on a thin scintillator plate and incubated with a radiotracer. Light produced following beta decay is measured using a highly sensitive microscope. Radioluminescence microscopy revealed strong heterogeneity in the uptake of [18F]fluoro-deoxyglucose (FDG) in single cells, which was found consistent with fluorescence imaging of a glucose analog. We also verified that dynamic uptake of FDG in single cells followed the standard two-tissue compartmental model. Last, we transfected cells with a fusion PET/fluorescence reporter gene and found that uptake of FHBG (a PET radiotracer for transgene expression) coincided with expression of the fluorescent protein. Together, these results indicate that radioluminescence microscopy can visualize radiotracer uptake with single-cell resolution, which may find a use in the precise characterization of radiotracers. PMID:23056276
A new fluorescent pH probe for imaging lysosomes in living cells.
Lv, Hong-Shui; Huang, Shu-Ya; Xu, Yu; Dai, Xi; Miao, Jun-Ying; Zhao, Bao-Xiang
2014-01-15
A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5-4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no 'alkalizing effect' on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rosorius, O; Heger, P; Stelz, G; Hirschmann, N; Hauber, J; Stauber, R H
1999-08-01
We established a straightforward experimental system to investigate directly the requirements for nucleocytoplasmic transport in live cells. For this purpose, substrates were created containing nuclear localization signals (NLS) or nuclear export signals (NES) linked to a chimeric protein composed of the glutathione S-transferase (GST) fused to the green fluorescent protein (GFP). The combination of GST/GFP-tagging allowed us to control protein expression in bacteria and to monitor protein purification during chromatography. Following microinjection into somatic cells, nuclear export/import of the highly fluorescent substrates could be observed directly by fluorescence microscopy. This system sets the stage to quantitate, in real time, the kinetics of nuclear import/export in living cells and to evaluate qualitative differences in various NLS/NES signals and pathways.
ExTzBox: A Glowing Cyclophane for Live-Cell Imaging.
Roy, Indranil; Bobbala, Sharan; Zhou, Jiawang; Nguyen, Minh T; Nalluri, Siva Krishna Mohan; Wu, Yilei; Ferris, Daniel P; Scott, Evan Alexander; Wasielewski, Michael R; Stoddart, J Fraser
2018-06-13
The ideal fluorescent probe for live-cell imaging is bright and non-cytotoxic and can be delivered easily into the living cells in an efficient manner. The design of synthetic fluorophores having all three of these properties, however, has proved to be challenging. Here, we introduce a simple, yet effective, strategy based on well-established chemistry for designing a new class of fluorescent probes for live-cell imaging. A box-like hybrid cyclophane, namely ExTzBox·4X (6·4X, X = PF 6 - , Cl - ), has been synthesized by connecting an extended viologen (ExBIPY) and a dipyridyl thiazolothiazole (TzBIPY) unit in an end-to-end fashion with two p-xylylene linkers. Photophysical studies show that 6·4Cl has a quantum yield Φ F = 1.00. Furthermore, unlike its ExBIPY 2+ and TzBIPY 2+ building units, 6·4Cl is non-cytotoxic to RAW 264.7 macrophages, even with a loading concentration as high as 100 μM, presumably on account of its rigid box-like structure which prevents its intercalation into DNA and may inhibit other interactions with it. After gaining an understanding of the toxicity profile of 6·4Cl, we employed it in live-cell imaging. Confocal microscopy has demonstrated that 6 4+ is taken up by the RAW 264.7 macrophages, allowing the cells to glow brightly with blue laser excitation, without any hint of photobleaching or disruption of normal cell behavior under the imaging conditions. By contrast, the acyclic reference compound Me 2 TzBIPY·2Cl (4·2Cl) shows very little fluorescence inside the cells, which is quenched completely under the same imaging conditions. In vitro cell investigations underscore the significance of using highly fluorescent box-like rigid cyclophanes for live-cell imaging.
Wang, Sheng; Ding, Miao; Chen, Xuanze; Chang, Lei; Sun, Yujie
2017-01-01
Direct visualization of protein-protein interactions (PPIs) at high spatial and temporal resolution in live cells is crucial for understanding the intricate and dynamic behaviors of signaling protein complexes. Recently, bimolecular fluorescence complementation (BiFC) assays have been combined with super-resolution imaging techniques including PALM and SOFI to visualize PPIs at the nanometer spatial resolution. RESOLFT nanoscopy has been proven as a powerful live-cell super-resolution imaging technique. With regard to the detection and visualization of PPIs in live cells with high temporal and spatial resolution, here we developed a BiFC assay using split rsEGFP2, a highly photostable and reversibly photoswitchable fluorescent protein previously developed for RESOLFT nanoscopy. Combined with parallelized RESOLFT microscopy, we demonstrated the high spatiotemporal resolving capability of a rsEGFP2-based BiFC assay by detecting and visualizing specifically the heterodimerization interactions between Bcl-xL and Bak as well as the dynamics of the complex on mitochondria membrane in live cells. PMID:28663931
Chen, Li; Yang, Guancao; Wu, Ping; Cai, Chenxin
2017-10-15
This work reports a convenient and real-time assay of alkaline phosphatase (ALP) in living cells based on a fluorescence quench-recovery process at a physiological pH using the boron-doped graphene quantum dots (BGQDs) as fluorophore. The fluorescence of BGQDs is found to be effectively quenched by Ce 3+ ions because of the coordination of Ce 3+ ions with the carboxyl group of BGQDs. Upon addition of adenosine triphosphate (ATP) into the system, the quenched fluorescence can be recovered by the ALP-positive expressed cells (such as MCF-7 cells) due to the removal of Ce 3+ ions from BGQDs surface by phosphate ions, which are generated from ATP under catalytic hydrolysis of ALP that expressed in cells. The extent of fluorescence signal recovery depends on the level of ALP in cells, which establishes the basis of ALP assay in living cells. This approach can also be used for specific discrimination of the ALP expression levels in different type of cells and thus sensitive detection of those ALP-positive expressed cells (for example MCF-7 cells) at a very low abundance (10±5 cells mL -1 ). The advantages of this approach are that it has high sensitivity because of the significant suppression of the background due to the Ce 3+ ion quenching the fluorescence of BGQDs, and has the ability of avoiding false signals arising from the nonspecific adsorption of non-target proteins because it operates via a fluorescence quench-recovery process. In addition, it can be extended to other enzyme systems, such as ATP-related kinases. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Qiaoyu; Ye, Zhongju; Zhong, Meile; Chen, Bo; Chen, Jian; Zeng, Rongjin; Wei, Lin; Li, Hung-wing; Xiao, Lehui
2016-04-20
In this work, we demonstrated a new ratiometric method for the quantitative analysis of pH inside living cells. The structure of the nanosensor comprises a biofriendly fluorescent bovine serum albumin (BSA) matrix, acting as a pH probe, and pH-insensitive reference dye Alexa 594 enabling ratiometric quantitative pH measurement. The fluorescent BSA matrix was synthesized by cross-linking of the denatured BSA proteins in ethanol with glutaraldehyde. The size of the as-synthesized BSA nanoparticles can be readily manipulated from 30 to 90 nm, which exhibit decent fluorescence at the peak wavelength of 535 nm with a pH response range of 6-8. The potential of this pH sensor for intracellular pH monitoring was demonstrated inside living HeLa cells, whereby a significant change in fluorescence ratio was observed when the pH of the cell was switched from normal to acidic with anticancer drug treatment. The fast response of the nanosensor makes it a very powerful tool in monitoring the processes occurring within the cytosol.
Live-Cell Imaging of Filoviruses.
Schudt, Gordian; Dolnik, Olga; Becker, Stephan
2017-01-01
Observation of molecular processes inside living cells is fundamental to a deeper understanding of virus-host interactions in filoviral-infected cells. These observations can provide spatiotemporal insights into protein synthesis, protein-protein interaction dynamics, and transport processes of these highly pathogenic viruses. Thus, live-cell imaging provides the possibility for antiviral screening in real time and gives mechanistic insights into understanding filovirus assembly steps that are dependent on cellular factors, which then represent potential targets against this highly fatal disease. Here we describe analysis of living filovirus-infected cells under maximum biosafety (i.e., BSL4) conditions using plasmid-driven expression of fluorescently labeled viral and cellular proteins and/or viral genome-encoded expression of fluorescently labeled proteins. Such multiple-color and multidimensional time-lapse live-cell imaging analyses are a powerful method to gain a better understanding of the filovirus infection cycle.
Guan, Mingming; Mi, Hongyu; Xu, Hui; Fei, Qiang; Shan, Hongyan; Huan, Yanfu; Lv, Shaowu; Feng, Guodong
2017-03-01
A highly selective fluorescent probe 2-(2-(2-aminoethylamino)ethyl)-3',6'-bis(ethylamino)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (ABDO) for Se (IV) had been synthesized in our earlier report. In this study, this fluorescent sensor is applied on analysis fluorescent imaging of Se (IV) in Hela cells. The experiment conditions, such as the MTT assay, different concentration of saline, incubated time of Hela cells with ABDO and Se (IV), and intracellular action position of Se (IV), are investigated. Through a series of experiments, the fluorescent image of Se (IV) in Hela cells can be observed when the cells cultured by 2 μM ABDO and 2 μM Se (IV) for 210 min. And the intracellular action position of Se (IV) is verified after the co-localization experiments are done. It is mitochondria. These experimental results show that ABDO will be an eagerly anticipated sensor for fluorescent imaging analysis of selenium ion in living cells. Besides, we also can use the complexes of ABDO-Se to observe morphology and distribution of mitochondria in cells like JG-B.
Gallo, Eugenio; Jarvik, Jonathan W
2017-08-01
A novel bi-partite fluorescence platform exploits the high affinity and selectivity of antibody scaffolds to capture and activate small-molecule fluorogens. In this report, we investigated the property of multi-selectivity activation by a single antibody against diverse cyanine family fluorogens. Our fluorescence screen identified three cell-impermeant fluorogens, each with unique emission spectra (blue, green and red) and nanomolar affinities. Most importantly, as a protein fusion tag to G-protein-coupled receptors, the antibody biosensor retained full activity - displaying bright fluorogen signals with minimal background on live cells. Because fluorogen-activating antibodies interact with their target ligands via non-covalent interactions, we were able to perform advanced multi-color detection strategies on live cells, previously difficult or impossible with conventional reporters. We found that by fine-tuning the concentrations of the different color fluorogen molecules in solution, a user may interchange the fluorescence signal (onset versus offset), execute real-time signal exchange via fluorogen competition, measure multi-channel fluorescence via co-labeling, and assess real-time cell surface receptor traffic via pulse-chase experiments. Thus, here we inform of an innovative reporter technology based on tri-color signal that allows user-defined fluorescence tuning in live-cell applications. © 2017. Published by The Company of Biologists Ltd.
Wang, Peng; Wu, Jiang; Di, Cuixia; Zhou, Rong; Zhang, Hong; Su, Pingru; Xu, Cong; Zhou, Panpan; Ge, Yushu; Liu, Dan; Liu, Weisheng; Tang, Yu
2017-06-15
Hydrogen sulfide (H 2 S) plays an important role as a signaling compound (gasotransmitter) in living systems. However, the development of an efficient imaging chemosensor of H 2 S in live animals is a challenging field for chemists. Herein, a novel peptide-based fluorescence chemosensor L-Cu was designed and synthesized on the basis of the copper chelating with the peptide ligand (FITC-Ahx-Ser-Pro-Gly-His-NH 2 , L), and its H 2 S sensing ability has been evaluated both in living cells and zebrafish. The peptide backbone and Cu 2+ -removal sensing mechanism are used to deliver rapid response time, high sensitivity, and good biocompatibility. After a fast fluorescence quench by Cu 2+ coordinated with L, the fluorescence of L is recovered by adding S 2- to form insoluble copper sulfide in aqueous solution with a detection limit for hydrogen sulfide measured to be 31nM. Furthermore, the fluorescence chemosensor L-Cu showed excellent cell permeation and low biotoxicity to realize the intracellular biosensing, L-Cu has also been applied to image hydrogen sulfide in live zebrafish larvae. We expect that this peptide-based fluorescence chemosensor L-Cu can be used to study H 2 S-related chemical biology in physiological and pathological events. Copyright © 2016 Elsevier B.V. All rights reserved.
Fluorescent kapakahines serve as non-toxic probes for live cell Golgi imaging.
Rocha, Danilo D; Espejo, Vinson R; Rainier, Jon D; La Clair, James J; Costa-Lotufo, Letícia V
2015-09-01
There is an ongoing need for fluorescent probes that specifically-target select organelles within mammalian cells. This study describes the development of probes for the selective labeling of the Golgi apparatus and offers applications for live cell and fixed cell imaging. The kapakahines, characterized by a common C(3)-N(1') dimeric tryptophan linkage, comprise a unique family of bioactive marine depsipeptide natural products. We describe the uptake and subcellular localization of fluorescently-labeled analogs of kapakahine E. Using confocal microscopy, we identify a rapid and selective localization within the Golgi apparatus. Comparison with commercial Golgi stains indicates a unique localization pattern, which differs from currently available materials, therein offering a new tool to monitor the Golgi in live cells without toxic side effects. This study identifies a fluorescent analog of kapakahine E that is rapidly uptaken in cells and localizes within the Golgi apparatus. The advance of microscopic methods is reliant on the parallel discovery of next generation molecular probes. This study describes the advance of stable and viable probe for staining the Golgi apparatus. Copyright © 2015 Elsevier Inc. All rights reserved.
Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana
2015-11-02
In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.
Microfluidics microFACS for Life Detection
NASA Technical Reports Server (NTRS)
Platt, Donald W.; Hoover, Richard B.
2010-01-01
A prototype micro-scale Fluorescent Activated Cell Sorter (microFACS) for life detection has been built and is undergoing testing. A functional miniature microfluidics instrument with the ability to remotely distinguish live or dead bacterial cells from abiotic particulates in ice or permafrost of icy bodies of the solar system would be of fundamental value to NASA. The use of molecular probes to obtain the bio-signature of living or dead cells could answer the most fundamental question of Astrobiology: Does life exist beyond Earth? The live-dead fluorescent stains to be used in the microFACS instrument function only with biological cell walls. The detection of the cell membranes of living or dead bacteria (unlike PAH's and many other Biomarkers) would provide convincing evidence of present or past life. This miniature device rapidly examine large numbers of particulates from a polar ice or permafrost sample and distinguish living from dead bacteria cells and biological cells from mineral grains and abiotic particulates and sort the cells and particulates based on a staining system. Any sample found to exhibit fluorescence consistent with living cells could then be used in conjunction with a chiral labeled release experiment or video microscopy system to seek addition evidence for cellular metabolism or motility. Results of preliminary testing and calibration of the microFACS prototype instrument system with pure cultures and enrichment assemblages of microbial extremophiles will be reported.
Live-cell imaging of cyanobacteria.
Yokoo, Rayka; Hood, Rachel D; Savage, David F
2015-10-01
Cyanobacteria are a diverse bacterial phylum whose members possess a high degree of ultrastructural organization and unique gene regulatory mechanisms. Unraveling this complexity will require the use of live-cell fluorescence microscopy, but is impeded by the inherent fluorescent background associated with light-harvesting pigments and the need to feed photosynthetic cells light. Here, we outline a roadmap for overcoming these challenges. Specifically, we show that although basic cyanobacterial biology creates challenging experimental constraints, these restrictions can be mitigated by the careful choice of fluorophores and microscope instrumentation. Many of these choices are motivated by recent successful live-cell studies. We therefore also highlight how live-cell imaging has advanced our understanding of bacterial microcompartments, circadian rhythm, and the organization and segregation of the bacterial nucleoid.
Homma, Mitsumasa; Takei, Yoshiaki; Murata, Atsushi; Inoue, Takafumi; Takeoka, Shinji
2015-04-11
Mitochondrial thermodynamics is the key to understand cellular activities related to homeostasis and energy balance. Here, we report the first ratiometric fluorescent molecular probe (Mito-RTP) that is selectively localized in the mitochondria and visualize the temperature. We confirmed that Mito-RTP could work as a ratiometric thermometer in a cuvette and living cells.
Chao, Duobin; Ni, Shitan
2016-05-20
Great efforts have been made to develop fluorescent probes for pyrophosphate (PPi) detection. Nucleus staining with fluorescence microscopy has been also widely investigated. But fluorescent probes for PPi detection with high sensitivity in water medium and nucleus staining with low-cost non-precious metal complexes in living cells are still challenging. Herein, we report simple terpyridine-Zn(II) complexes for selective nanomolar PPi detection over ATP and ADP in water based on aggregation induced emission (AIE) and intramolecular charge transfer (ICT). In addition, these terpyridine-Zn(II) complexes were successfully employed for nucleus staining in living cells. These results demonstrated simply obtained terpyridine-Zn(II) complexes are powerful tool for PPi detection and the development of PPi-related studies.
Application of magnetic carriers to two examples of quantitative cell analysis
NASA Astrophysics Data System (ADS)
Zhou, Chen; Qian, Zhixi; Choi, Young Suk; David, Allan E.; Todd, Paul; Hanley, Thomas R.
2017-04-01
The use of magnetophoretic mobility as a surrogate for fluorescence intensity in quantitative cell analysis was investigated. The objectives of quantitative fluorescence flow cytometry include establishing a level of labeling for the setting of parameters in fluorescence activated cell sorters (FACS) and the determination of levels of uptake of fluorescently labeled substrates by living cells. Likewise, the objectives of quantitative magnetic cytometry include establishing a level of labeling for the setting of parameters in flowing magnetic cell sorters and the determination of levels of uptake of magnetically labeled substrates by living cells. The magnetic counterpart to fluorescence intensity is magnetophoretic mobility, defined as the velocity imparted to a suspended cell per unit of magnetic ponderomotive force. A commercial velocimeter available for making this measurement was used to demonstrate both applications. Cultured Gallus lymphoma cells were immunolabeled with commercial magnetic beads and shown to have adequate magnetophoretic mobility to be separated by a novel flowing magnetic separator. Phagocytosis of starch nanoparticles having magnetic cores by cultured Chinese hamster ovary cells, a CHO line, was quantified on the basis of magnetophoretic mobility.
Wang, Dong-En; Yan, Jiahang; Jiang, Jingjing; Liu, Xiang; Tian, Chang; Xu, Juan; Yuan, Mao-Sen; Han, Xiang; Wang, Jinyi
2018-03-01
Sialic acid (SA) located at the terminal end of glycans on cell membranes has been shown to play an important yet distinctive role in various biological and pathological processes. Effective methods for the facile, sensitive and in situ analysis of SA on living cell surfaces are of great significance in terms of clinical diagnostics and therapeutics. Here, a new polydiacetylene (PDA) liposome-based sensor system bearing phenylboronic acid (PBA) and 1,8-naphthalimide derived fluorophore moieties was developed as a fluorescence turn-on sensor for the detection of free SA in aqueous solution and the in situ imaging of SA-terminated glycans on living cell surfaces. In the sensor system, three diacetylene monomers, PCDA-pBA, PCDA-Nap and PCDA-EA, were designed and synthesized to construct the composite PDA liposome sensor. The monomer PCDA-pBA modified with PBA molecules was employed as a receptor for SA recognition, while the monomer PCDA-Nap containing a 1,8-naphthalimide derivative fluorophore was used for fluorescence signaling. When the composite PDA liposomes were formed, the energy transfer between the fluorophore and the conjugated backbone could directly quench the fluorescence of the fluorophore. In the presence of additional SA or SA abundant cells, the strong binding of SA with PBA moieties disturbed the pendent side chain conformation, resulting in the fluorescence restoration of the fluorophore. The proposed methods realized the fluorescence turn-on detection of free SA in aqueous solution and the in situ imaging of SA on living MCF-7 cell surfaces. This work provides a new potential tool for simple and selective analysis of SA on living cell membranes.
Uchiyama, Seiichi; Tsuji, Toshikazu; Kawamoto, Kyoko; Okano, Kentaro; Fukatsu, Eiko; Noro, Takahiro; Ikado, Kumiko; Yamada, Sayuri; Shibata, Yuka; Hayashi, Teruyuki; Inada, Noriko; Kato, Masaru; Koizumi, Hideki; Tokuyama, Hidetoshi
2018-05-04
A cationic fluorescent nanogel thermometer based on thermo-responsive N-isopropylacrylamide and environment-sensitive benzothiadiazole was developed with a new azo compound bearing imidazolium rings as the first cationic radical initiator. This cationic fluorescent nanogel thermometer showed an excellent ability to enter live mammalian cells in a short incubation period (10 min), a high sensitivity to temperature variations in live cells (temperature resolution of 0.02-0.84 °C in the range 20-40 °C), and remarkable non-cytotoxicity, which permitted ordinary cell proliferation and even differentiation of primary cultured cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sen, Bhaskar; Sheet, Sanjoy Kumar; Thounaojam, Romita; Jamatia, Ramen; Pal, Amarta Kumar; Aguan, Kripamoy; Khatua, Snehadrinarayan
2017-02-01
A new coumarin based Schiff base compound, CSB-1 has been synthesized to detect metal ion based on the chelation enhanced fluorescence (CHEF). The cation binding properties of CSB-1 was thoroughly examined in UV-vis and fluorescence spectroscopy. In fluorescence spectroscopy the compound showed high selectivity toward Al3 + ion and the Al3 + can be quantified in mixed aqueous buffer solution (MeOH: 0.01 M HEPES Buffer; 9:1; v/v) at pH 7.4 as well as in BSA media. The fluorescence intensity of CSB-1 was enhanced by 24 fold after addition of only five equivalents of Al3 +. The fluorescence titration of CSB-1 with Al3 + in mixed aqueous buffer afforded a binding constant, Ka = (1.06 ± 0.2) × 104 M- 1. The colour change from light yellow to colourless and the appearance of blue fluorescence, which can be observed by the naked eye, provides a real-time method for Al3 + sensing. Further the live cell imaging study indicated that the detection of intracellular Al3 + ions are also readily possible in living cell.
Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy
Liv, Nalan; van Oosten Slingeland, Daan S. B.; Baudoin, Jean-Pierre; Kruit, Pieter; Piston, David W.; Hoogenboom, Jacob P.
2016-01-01
We present an approach toward dynamic nanoimaging: live fluorescence of cells encapsulated in a bionanoreactor is complemented with in situ scanning electron microscopy (SEM) on an integrated microscope. This allows us to take SEM snapshots on-demand, that is, at a specific location in time, at a desired region of interest, guided by the dynamic fluorescence imaging. We show that this approach enables direct visualization, with EM resolution, of the distribution of bioconjugated quantum dots on cellular extensions during uptake and internalization. PMID:26580231
Imaging the environment of green fluorescent protein.
Suhling, Klaus; Siegel, Jan; Phillips, David; French, Paul M W; Lévêque-Fort, Sandrine; Webb, Stephen E D; Davis, Daniel M
2002-01-01
An emerging theme in cell biology is that cell surface receptors need to be considered as part of supramolecular complexes of proteins and lipids facilitating specific receptor conformations and distinct distributions, e.g., at the immunological synapse. Thus, a new goal is to develop bioimaging that not only locates proteins in live cells but can also probe their environment. Such a technique is demonstrated here using fluorescence lifetime imaging of green fluorescent protein (GFP). We first show, by time-correlated single-photon counting, that the fluorescence decay of GFP depends on the local refractive index. This is in agreement with the Strickler Berg formula, relating the Einstein A and B coefficients for absorption and spontaneous emission in molecules. We then quantitatively image, by wide-field time-gated fluorescence lifetime imaging, the refractive index of the environment of GFP. This novel approach paves the way for imaging the biophysical environment of specific GFP-tagged proteins in live cells. PMID:12496126
A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells
NASA Astrophysics Data System (ADS)
Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian
2018-06-01
A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.
A genetically encoded fluorescent tRNA is active in live-cell protein synthesis
Masuda, Isao; Igarashi, Takao; Sakaguchi, Reiko; Nitharwal, Ram G.; Takase, Ryuichi; Han, Kyu Young; Leslie, Benjamin J.; Liu, Cuiping; Gamper, Howard; Ha, Taekjip; Sanyal, Suparna
2017-01-01
Abstract Transfer RNAs (tRNAs) perform essential tasks for all living cells. They are major components of the ribosomal machinery for protein synthesis and they also serve in non-ribosomal pathways for regulation and signaling metabolism. We describe the development of a genetically encoded fluorescent tRNA fusion with the potential for imaging in live Escherichia coli cells. This tRNA fusion carries a Spinach aptamer that becomes fluorescent upon binding of a cell-permeable and non-toxic fluorophore. We show that, despite having a structural framework significantly larger than any natural tRNA species, this fusion is a viable probe for monitoring tRNA stability in a cellular quality control mechanism that degrades structurally damaged tRNA. Importantly, this fusion is active in E. coli live-cell protein synthesis allowing peptidyl transfer at a rate sufficient to support cell growth, indicating that it is accommodated by translating ribosomes. Imaging analysis shows that this fusion and ribosomes are both excluded from the nucleoid, indicating that the fusion and ribosomes are in the cytosol together possibly engaged in protein synthesis. This fusion methodology has the potential for developing new tools for live-cell imaging of tRNA with the unique advantage of both stoichiometric labeling and broader application to all cells amenable to genetic engineering. PMID:27956502
Wang, Chao; Dong, Baoli; Kong, Xiuqi; Zhang, Nan; Song, Wenhui; Lin, Weiying
2018-06-21
1,4-Dithiothreitol (DTT) has wide applications in cell biology and biochemistry. Development of effective methods for monitoring DTT in biological systems is important for the safe handling and study of toxicity to humans. Herein, we describe a two-photon fluorescence probe (Rh-DTT) to detect DTT in living systems for the first time. Rh-DTT showed high selectivity and sensitivity to DTT. Rh-DTT can be successfully used for the two-photon imaging of DTT in living cells, and also can detect DTT in living tissues and mice. © 2018 John Wiley & Sons, Ltd.
Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie
2017-01-01
Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. PMID:28835375
Live-cell imaging of conidial anastomosis tube fusion during colony initiation in Fusarium oxysporum
Kurian, Smija M.; Di Pietro, Antonio
2018-01-01
Fusarium oxysporum exhibits conidial anastomosis tube (CAT) fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging. PMID:29734342
Kurian, Smija M; Di Pietro, Antonio; Read, Nick D
2018-01-01
Fusarium oxysporum exhibits conidial anastomosis tube (CAT) fusion during colony initiation to form networks of conidial germlings. Here we determined the optimal culture conditions for this fungus to undergo CAT fusion between microconidia in liquid medium. Extensive high resolution, confocal live-cell imaging was performed to characterise the different stages of CAT fusion, using genetically encoded fluorescent labelling and vital fluorescent organelle stains. CAT homing and fusion were found to be dependent on adhesion to the surface, in contrast to germ tube development which occurs in the absence of adhesion. Staining with fluorescently labelled concanavalin A indicated that the cell wall composition of CATs differs from that of microconidia and germ tubes. The movement of nuclei, mitochondria, vacuoles and lipid droplets through fused germlings was observed by live-cell imaging.
Fluorescent speckle microscopy of microtubules: how low can you go?
Waterman-Storer, C M; Salmon, E D
1999-12-01
Fluorescent speckle microscopy (FSM) is a new technique for visualizing the movement, assembly, and turnover of macromolecular assemblies like the cytoskeleton in living cells. In this method, contrast is created by coassembly of a small fraction of fluorescent subunits in a pool of unlabeled subunits. Random variation in association creates a nonuniform "fluorescent speckle" pattern. Fluorescent speckle movements in time-lapse recordings stand out to the eye and can be measured. Because fluorescent speckles represent fiduciary marks on the polymer lattice, FSM provides the opportunity for the first time to see the 2- and 3-dimensional trajectories of lattice movements within large arrays of polymers as well as identifying sites of assembly and disassembly of individual polymers. The technique works with either microinjection of fluorescently labeled subunits or expression of subunits ligated to green fluorescent protein (GFP). We have found for microtubules assembled in vitro that speckles containing one fluorophore can be detected and recorded using a conventional wide-field epi-fluorescence light microscope and digital imaging with a low noise cooled CCD camera. In living cells, optimal speckle contrast occurs at fractions of labeled tubulin of approximately 0.1-0.5% where the fluorescence of each speckle corresponds to one to seven fluorophores per resolvable unit (approximately 0.27 microm) in the microscope. This small fraction of labeled subunits significantly reduces out-of-focus fluorescence and greatly improves visibility of fluorescently labeled structures and their dynamics in thick regions of living cells.
Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E
2016-01-01
Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.
Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.
Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl
2015-01-01
The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells
NASA Astrophysics Data System (ADS)
Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili
2016-07-01
Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines.
Recent advances in live cell imaging of hepatoma cells
2014-01-01
Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127
Fang, Mingxi; Adhikari, Rashmi; Bi, Jianheng; Mazi, Wafa; Dorh, Nethaniah; Wang, Jianbo; Conner, Nathan; Ainsley, Jon; Karabencheva-Christova, Tatyana G; Luo, Fen-Tair; Tiwari, Ashutosh; Liu, Haiying
2017-12-28
We report five fluorescent probes based on coumarin-hybridized fluorescent dyes with spirolactam ring structures (A-E) to detect pH changes in live cell by monitoring visible and near-infrared fluorescence changes. Under physiological or basic conditions, the fluorescent probes A, B, C, D and E preserve their spirolactam ring-closed forms and only display fluorescent peaks in the visible region corresponding to coumarin moieties at 497, 483, 498, 497 and 482 nm, respectively. However, at acidic pH, the rings of the spirolactam forms of the fluorescent probes A, B, C, D and E open up, generating new near-infrared fluorescence peaks at 711, 696, 707, 715, and 697 nm, respectively, through significantly extended π-conjugation to coumarin moieties of the fluorophores. The fluorescent probes B and E can be applied to visualize pH changes by monitoring visible as well as near-infrared fluorescence changes. This helps avoid fluorescence imaging blind spots at neutral or basic pH, which typical pH fluorescent probes encounter. The probes exhibit high sensitivity to pH changes, excellent photostability, low auto-fluorescence background and good cell membrane permeability.
Synthesis, biological evaluation, and live cell imaging of novel fluorescent duocarmycin analogs.
Tietze, Lutz F; Behrendt, Frank; Pestel, Galina F; Schuberth, Ingrid; Mitkovski, Mišo
2012-11-01
For a better understanding of the mode of action of duocarmycin and its analogs, the novel fluorescent duocarmycin derivatives 13-15 and 17b-19b were synthesized, and their bioactivity as well as their cellular uptake investigated using confocal laser scanning microscopy (CLSM) in live-cell imaging experiments. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.
Nedbal, Jakub; Visitkul, Viput; Ortiz-Zapater, Elena; Weitsman, Gregory; Chana, Prabhjoat; Matthews, Daniel R; Ng, Tony; Ameer-Beg, Simon M
2015-01-01
Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5–5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry PMID:25523156
NASA Astrophysics Data System (ADS)
Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping
2018-03-01
Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu Guo; Institute of Neuroscience, Department of Neurobiology, Second Military Medical University, Shanghai 200433; Yang Huayan
Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to {beta}{sub 2} subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasmamore » membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camuzeaux, Barbara; Spriet, Corentin; Heliot, Laurent
2005-07-15
Physical interactions between transcription factors play important roles in modulating gene expression. Previous in vitro studies have shown a transcriptional synergy between Erg protein, an Ets family member, and Jun/Fos heterodimer, members of the bZip family, which requires direct Erg-Jun protein interactions. Visualization of protein interactions in living cells is a new challenge in biology. For this purpose, we generated fusion proteins of Erg, Fos, and Jun with yellow and cyan fluorescent proteins, YFP and CFP, respectively. After transient expression in HeLa cells, interactions of the resulting fusion proteins were explored by fluorescence resonance energy transfer microscopy (FRET) in fixedmore » and living cells. FRET between YFP-Erg and CFP-Jun was monitored by using photobleaching FRET and fluorescence lifetime imaging microscopy. Both techniques revealed the occurrence of intermolecular FRET between YFP-Erg and CFP-Jun. This is stressed by loss of FRET with an YFP-Erg version carrying a point mutation in its ETS domain. These results provide evidence for the interaction of Erg and Jun proteins in living cells as a critical prerequisite of their transcriptional synergy, but also for the essential role of the Y371 residue, conserved in most Ets proteins, in this interaction.« less
Near-IR Two-Photon Fluorescent Sensor for K(+) Imaging in Live Cells.
Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D
2015-08-19
A new two-photon excited fluorescent K(+) sensor is reported. The sensor comprises three moieties, a highly selective K(+) chelator as the K(+) recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (>52-fold) in detecting K(+) over other physiological metal cations. Upon binding K(+), the sensor switches from nonfluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K(+) sensing in living cells.
Yan, Yuling; Petchprayoon, Chutima; Mao, Shu; Marriott, Gerard
2013-01-01
Optical switch probes undergo rapid and reversible transitions between two distinct states, one of which may fluoresce. This class of probe is used in various super-resolution imaging techniques and in the high-contrast imaging technique of optical lock-in detection (OLID) microscopy. Here, we introduce optimized optical switches for studies in living cells under standard conditions of cell culture. In particular, a highly fluorescent cyanine probe (Cy or Cy3) is directly or indirectly linked to naphthoxazine (NISO), a highly efficient optical switch that undergoes robust, 405/532 nm-driven transitions between a colourless spiro (SP) state and a colourful merocyanine (MC) state. The intensity of Cy fluorescence in these Cy/Cy3-NISO probes is reversibly modulated between a low and high value in SP and MC states, respectively, as a result of Förster resonance energy transfer. Cy/Cy3-NISO probes are targeted to specific proteins in living cells where defined waveforms of Cy3 fluorescence are generated by optical switching of the SP and MC states. Finally, we introduce a new imaging technique (called OLID-immunofluorescence microscopy) that combines optical modulation of Cy3 fluorescence from Cy3/NISO co-labelled antibodies within fixed cells and OLID analysis to significantly improve image contrast in samples having high background or rare antigens. PMID:23267183
Zou, Yi; Liu, Qiao; Yang, Xia; Huang, Hua-Chuan; Li, Jiang; Du, Liang-Hui; Li, Ze-Ren; Zhao, Jian-Heng; Zhu, Li-Guo
2017-01-01
We demonstrated that attenuated total reflectance terahertz time-domain spectroscopy (ATR THz-TDS) is able to monitor oxidative stress response of living human cells, which is proven in this work that it is an efficient non-invasive, label-free, real-time and in situ monitoring of cell death. Furthermore, the dielectric constant and dielectric loss of cultured living human breast epithelial cells, and along with their evolution under oxidative stress response induced by high concentration of H2O2, were quantitatively determined in the work. Our observation and results were finally confirmed using standard fluorescence-labeled flow cytometry measurements and visible fluorescence imaging. PMID:29359084
Nygate, Yoav N; Singh, Gyanendra; Barnea, Itay; Shaked, Natan T
2018-06-01
We present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging. We demonstrate the presented technique for imaging fluorescent beads and live biological cells.
Feng, Weiyong; Li, Meixing; Sun, Yao; Feng, Guoqiang
2017-06-06
Selenocysteine (Sec) is the 21st naturally occurring amino acid and has emerged as an important sensing target in recent years. However, fluorescent detection of Sec in living systems is challenging. To date, very few fluorescent Sec probes have been reported and most of them respond fluorescence to Sec in the visible region. In this paper, a very promising near-infrared fluorescent probe for Sec was developed. This probe works in aqueous solution over a wide pH range under mild conditions and can be used for rapid, highly selective and sensitive detection of Sec with significant near-infrared fluorescent turn-on signal changes. In addition, it features a remarkable large Stokes shift (192 nm) and a low detection limit (60 nM) for Sec with a wide linear range (0-70 μM). Moreover, this probe can be conveniently used to detect Sec in serum samples, living cells, and animals, indicating it holds great promise for biological applications.
Shih, Wenting; Yamada, Soichiro
2011-12-22
Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network. By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and morphology of migrating cells. Furthermore, we also combine live-cell imaging with the use of fluorescent tracer particles embedded within the matrix to visualize the matrix deformation during cell migration. Thus, we can visualize how a migrating cell distributes force-generating proteins, and where the traction forces are exerted to the surrounding matrix. Through these techniques, we can gain valuable insight into the roles of specific proteins and their contributions to the mechanisms of cell migration.
Chai, Liuying; Zhang, Jianwei; Zhang, Lili; Chen, Tongsheng
2015-03-01
Spectral measurement of fluorescence resonance energy transfer (FRET), spFRET, is a widely used FRET quantification method in living cells today. We set up a spectrometer-microscope platform that consists of a miniature fiber optic spectrometer and a widefield fluorescence microscope for the spectral measurement of absolute FRET efficiency (E) and acceptor-to-donor concentration ratio (R(C)) in single living cells. The microscope was used for guiding cells and the spectra were simultaneously detected by the miniature fiber optic spectrometer. Moreover, our platform has independent excitation and emission controllers, so different excitations can share the same emission channel. In addition, we developed a modified spectral FRET quantification method (mlux-FRET) for the multiple donors and multiple acceptors FRET construct (mD∼nA) sample, and we also developed a spectra-based 2-channel acceptor-sensitized FRET quantification method (spE-FRET). We implemented these modified FRET quantification methods on our platform to measure the absolute E and R(C) values of tandem constructs with different acceptor/donor stoichiometries in single living Huh-7 cells.
Li, Qian; Chang, Young-Tae
2006-01-01
This protocol outlines a methodology for the preparation and characterization of three RNA-specific fluorescent probes (E36, E144 and F22) and their use in live cell imaging. It describes a detailed procedure for their chemical synthesis and purification; serial product characterization and quality control tests, including measurements of their fluorescence properties in solution, measurement of RNA specificity and analysis of cellular toxicity; and live cell staining and counterstaining with Hoechst or DAPI. Preparation and application of these RNA imaging probes takes 1 week.
Quantitative single-molecule imaging by confocal laser scanning microscopy.
Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf
2008-11-25
A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.
Fluorescent probes for real-time measurement of nitric oxide in living cells.
Li, Huili; Wan, Ajun
2015-11-07
Nitric oxide (NO) is an important signaling molecule in biology. Both NO excess and insufficiency have been implicated in numerous physiological and pathological conditions. In order to study the diverse biological roles of NO in cells and tissues, many techniques have been developed for assaying NO. Recently, new generations of fluorescent probes have become indispensible tools for the study of NO biology because of their sensitivity, selectivity, spatiotemporal resolution, and experimental feasibility. Rational application of these probes in the study requires the understanding of the molecular mechanism that the probes are involved in. In this review, we will present an arsenal of fluorescent probes used to detect NO in living cells and animal tissues. We will also discuss the molecular mechanisms, actualities and prospects of fluorescent probes in detecting NO in cell biology.
Cooper, Mark S; Szeto, Daniel P; Sommers-Herivel, Greg; Topczewski, Jacek; Solnica-Krezel, Lila; Kang, Hee-Chol; Johnson, Iain; Kimelman, David
2005-02-01
Green fluorescent protein (GFP) technology is rapidly advancing the study of morphogenesis, by allowing researchers to specifically focus on a subset of labeled cells within the living embryo. However, when imaging GFP-labeled cells using confocal microscopy, it is often essential to simultaneously visualize all of the cells in the embryo using dual-channel fluorescence to provide an embryological context for the cells expressing GFP. Although various counterstains are available, part of their fluorescence overlaps with the GFP emission spectra, making it difficult to clearly identify the cells expressing GFP. In this study, we report that a new fluorophore, BODIPY TR methyl ester dye, serves as a versatile vital counterstain for visualizing the cellular dynamics of morphogenesis within living GFP transgenic zebrafish embryos. The fluorescence of this photostable synthetic dye is spectrally separate from GFP fluorescence, allowing dual-channel, three-dimensional (3D) and four-dimensional (4D) confocal image data sets of living specimens to be easily acquired. These image data sets can be rendered subsequently into uniquely informative 3D and 4D visualizations using computer-assisted visualization software. We discuss a variety of immediate and potential applications of BODIPY TR methyl ester dye as a vital visualization counterstain for GFP in transgenic zebrafish embryos. Copyright 2004 Wiley-Liss, Inc.
Peng, Shu; Pan, Yu‐Chen; Wang, Yaling; Xu, Zhe; Chen, Chao
2017-01-01
Abstract The introduction of controlled self‐assembly into living organisms opens up desired biomedical applications in wide areas including bioimaging/assays, drug delivery, and tissue engineering. Besides the enzyme‐activated examples reported before, controlled self‐assembly under integrated stimuli, especially in the form of sequential input, is unprecedented and ultimately challenging. This study reports a programmable self‐assembling strategy in living cells under sequentially integrated control of both endogenous and exogenous stimuli. Fluorescent polymerized vesicles are constructed by using cholinesterase conversion followed by photopolymerization and thermochromism. Furthermore, as a proof‐of‐principle application, the cell apoptosis involved in the overexpression of cholinesterase in virtue of the generated fluorescence is monitored, showing potential in screening apoptosis‐inducing drugs. The approach exhibits multiple advantages for bioimaging in living cells, including specificity to cholinesterase, red emission, wash free, high signal‐to‐noise ratio. PMID:29201625
Peng, Shu; Pan, Yu-Chen; Wang, Yaling; Xu, Zhe; Chen, Chao; Ding, Dan; Wang, Yongjian; Guo, Dong-Sheng
2017-11-01
The introduction of controlled self-assembly into living organisms opens up desired biomedical applications in wide areas including bioimaging/assays, drug delivery, and tissue engineering. Besides the enzyme-activated examples reported before, controlled self-assembly under integrated stimuli, especially in the form of sequential input, is unprecedented and ultimately challenging. This study reports a programmable self-assembling strategy in living cells under sequentially integrated control of both endogenous and exogenous stimuli. Fluorescent polymerized vesicles are constructed by using cholinesterase conversion followed by photopolymerization and thermochromism. Furthermore, as a proof-of-principle application, the cell apoptosis involved in the overexpression of cholinesterase in virtue of the generated fluorescence is monitored, showing potential in screening apoptosis-inducing drugs. The approach exhibits multiple advantages for bioimaging in living cells, including specificity to cholinesterase, red emission, wash free, high signal-to-noise ratio.
NASA Astrophysics Data System (ADS)
Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A.; Cao, Derong
2014-07-01
A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg2+, its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K+, Na+, Ca2+, Mg2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Mn2+, Pb2+, Ni2+, Fe3+, Al3+, Cr3+ and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg2+. Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg2+ in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems.
Practical three color live cell imaging by widefield microscopy
Xia, Jianrun; Kim, Song Hon H.; Macmillan, Susan
2006-01-01
Live cell fluorescence microscopy using fluorescent protein tags derived from jellyfish and coral species has been a successful tool to image proteins and dynamics in many species. Multi-colored aequorea fluorescent protein (AFP) derivatives allow investigators to observe multiple proteins simultaneously, but overlapping spectral properties sometimes require the use of sophisticated and expensive microscopes. Here, we show that the aequorea coerulescens fluorescent protein derivative, PS-CFP2 has excellent practical properties as a blue fluorophore that are distinct from green or red fluorescent proteins and can be imaged with standard filter sets on a widefield microscope. We also find that by widefield illumination in live cells, that PS-CFP2 is very photostable. When fused to proteins that form concentrated puncta in either the cytoplasm or nucleus, PSCFP2 fusions do not artifactually interact with other AFP fusion proteins, even at very high levels of over-expression. PSCFP2 is therefore a good blue fluorophore for distinct three color imaging along with eGFP and mRFP using a relatively simple and inexpensive microscope. PMID:16909160
Jia, Ruizhen; Song, Pengfei; Wang, Jingjing; Mai, Hengtang; Li, Sixian; Cheng, Yu; Wu, Song
2018-05-29
Carbon monoxide (CO) is recognized as a biologically essential gaseous neurotransmitter that modulates many physiological processes in living subjects. Currently reported fluorescent probes for CO imaging in cells basically utilize palladium related chemistry which requires complicated synthetic work. Herein we provide a new strategy to construct a fluorescent nanoprobe, NanoCO-1, based on the Forster resonance energy transfer (FRET) mechanism by entrapping the existing dirhodium complex as the energy acceptor and the CO recognition part, and a commonly used nitrobenzoxadiazole (NBD) dye as energy donor into a micelle formed by self-assembly. The exchange of ligands in the dirhodium complex by CO in the nanoprobe disrupts the FRET and leads to the turn-on of fluorescence. The merits of NanoCO-1 including good biocompatibility, selectivity, photostability, and low cytotoxity, render this nanoprobe ability to track CO in living cells, zebrafish embryo, and larvae. Our straightforward approach can be extended to establish the CO fluorescent probes based on adsorption of CO on a variety of metal derivatives.
Visualization of nucleic acids with synthetic exciton-controlled fluorescent oligonucleotide probes.
Wang, Dan Ohtan; Okamoto, Akimitsu
2015-01-01
Engineered probes to adapt new photochemical properties upon recognition of target nucleic acids offer powerful tools to DNA and RNA visualization technologies. Herein, we describe a rapid and effective visualization method of nucleic acids in both fixed and living cells with hybridization-sensitive fluorescent oligonucleotide probes. These probes are efficiently quenched in an aqueous environment due to the homodimeric, excitonic interactions between fluorophores but become highly fluorescent upon hybridization to DNA or RNA with complementary sequences. The fast hybridization kinetics and quick fluorescence activation of the new probes allow applications to simplify the conventional fluorescent in situ hybridization protocols and reduce the amount of time to process the samples. Furthermore, hybridization-sensitive fluorescence emission of the probes allows monitoring dynamic behaviors of RNA in living cells.
[Development of a Fluorescence Probe for Live Cell Imaging].
Shibata, Aya
2017-01-01
Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.
Xie, Xilei; Tang, Fuyan; Shangguan, Xiaoyan; Che, Shiyi; Niu, Jinye; Xiao, Yongsheng; Wang, Xu; Tang, Bo
2017-06-13
Lyso-TPFP presents lysosomal targetability and an acidic pH-activatable response toward formaldehyde. Thus, it exclusively visualizes lysosomal formaldehyde and is immune against it in neutral cytosol and other organelles. In addition, two-photon fluorescence imaging endows Lyso-TPFP with the capability of in situ tracking formaldehyde in live cells and animals.
Near-infrared fluorescent proteins for multicolor in vivo imaging
Shcherbakova, Daria M.; Verkhusha, Vladislav V.
2013-01-01
Near-infrared fluorescent proteins are in high demand for in vivo imaging. We developed four spectrally distinct fluorescent proteins, iRFP670, iRFP682, iRFP702, and iRFP720, from bacterial phytochromes. iRFPs exhibit high brightness in mammalian cells and tissues and are suitable for long-term studies. iRFP670 and iRFP720 enable two-color imaging in living cells and mice using standard approaches. Five iRFPs including previously engineered iRFP713 allow multicolor imaging in living mice with spectral unmixing. PMID:23770755
A Cu-free clickable fluorescent probe for intracellular targeting of small biomolecules.
Yamagishi, Kento; Sawaki, Kazuaki; Murata, Atsushi; Takeoka, Shinji
2015-05-07
We synthesized a novel cyclooctyne-based clickable fluorescent probe with versatile properties such as high cell-membrane permeability and free diffusibility in the cell. Our probe "FC-DBCO" was conjugated to an azide-modified mannose via a Cu-free click reaction in living HeLa cells and displayed intracellular specific fluorescence imaging with low background signals.
Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells.
Day, Richard N; Davidson, Michael W
2012-05-01
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. Copyright © 2012 WILEY Periodicals, Inc.
Spectro-microscopy of living plant cells.
Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank
2012-01-01
Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.
Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions.
Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E; Andrew, Peter W; van Strijp, Jos A G; Nijland, Reindert; Veening, Jan-Willem
2015-03-01
Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Inferring diffusion in single live cells at the single-molecule level
Robson, Alex; Burrage, Kevin; Leake, Mark C.
2013-01-01
The movement of molecules inside living cells is a fundamental feature of biological processes. The ability to both observe and analyse the details of molecular diffusion in vivo at the single-molecule and single-cell level can add significant insight into understanding molecular architectures of diffusing molecules and the nanoscale environment in which the molecules diffuse. The tool of choice for monitoring dynamic molecular localization in live cells is fluorescence microscopy, especially so combining total internal reflection fluorescence with the use of fluorescent protein (FP) reporters in offering exceptional imaging contrast for dynamic processes in the cell membrane under relatively physiological conditions compared with competing single-molecule techniques. There exist several different complex modes of diffusion, and discriminating these from each other is challenging at the molecular level owing to underlying stochastic behaviour. Analysis is traditionally performed using mean square displacements of tracked particles; however, this generally requires more data points than is typical for single FP tracks owing to photophysical instability. Presented here is a novel approach allowing robust Bayesian ranking of diffusion processes to discriminate multiple complex modes probabilistically. It is a computational approach that biologists can use to understand single-molecule features in live cells. PMID:23267182
Kong, Xiuqi; Dong, Baoli; Song, Xuezhen; Wang, Chao; Zhang, Nan; Lin, Weiying
2018-01-01
Controlled release systems with capabilities for direct and real-time monitoring of the release and dynamics of drugs in living systems are of great value for cancer chemotherapy. Herein, we describe a novel dual turn-on fluorescence signal-based controlled release system ( CDox ), in which the chemotherapy drug doxorubicin ( Dox ) and the fluorescent dye ( CH ) are conjugated by a hydrazone moiety, a pH-responsive cleavable linker. CDox itself shows nearly no fluorescence as the fluorescence of CH and Dox is essentially quenched by the C=N isomerization and N-N free rotation. However, when activated under acidic conditions, CDox could be hydrolyzed to afford Dox and CH , resulting in dual turn-on signals with emission peaks at 595 nm and 488 nm, respectively. Notably, CDox exhibits a desirable controlled release feature as the hydrolysis rate is limited by the steric hindrance effect from both the Dox and CH moieties. Cytotoxicity assays indicate that CDox shows much lower cytotoxicity relative to Dox , and displays higher cell inhibition rate to cancer than normal cells. With the aid of the dual turn-on fluorescence at different wavelengths, the drug release dynamics of CDox in living HepG2 and 4T-1 cells was monitored in double channels in a real-time fashion. Importantly, two-photon fluorescence imaging of CDox in living tumor tissues was also successfully performed by high-definition 3D imaging. We expect that the unique controlled release system illustrated herein could provide a powerful means to investigate modes of action of drugs, which is critical for development of much more robust and effective chemotherapy drugs.
NASA Astrophysics Data System (ADS)
Wang, Jiamin; Niu, Linqiang; Huang, Jing; Yan, Zhijie; Wang, Jianhong
2018-03-01
Biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), are involved in a number of biological processes and play crucial roles in biological systems. Thus, the detection of biothiols is highly important for early diagnosis of diseases and evaluation of disease progression. Herein, we developed a new turn-on fluorescent probe 1 based on 7-nitro-2,1,3-benzoxadiazole (NBD) with high selectivity and sensitivity for Cys/Hcy on account of nucleophilic substitution and Smiles rearrangement reaction. The probe could sense Cys/Hcy rapidly, the intensity of fluorescence increased immediately within 1 min. Furthermore, the probe is low toxic and has been successfully applied to detect intracellular Cys/Hcy by cell fluorescence imaging in living normal and cancer cells.
Hebert, Benedict; Costantino, Santiago; Wiseman, Paul W
2005-05-01
We introduce a new extension of image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS) that relies on complete analysis of both the temporal and spatial correlation lags for intensity fluctuations from a laser-scanning microscopy image series. This new approach allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) for fluorescently labeled membrane proteins in living cells through monitoring of the time evolution of the full space-time correlation function. By using filtering in Fourier space to remove frequencies associated with immobile components, we are able to measure the protein transport even in the presence of a large fraction (>90%) of immobile species. We present the background theory, computer simulations, and analysis of measurements on fluorescent microspheres to demonstrate proof of principle, capabilities, and limitations of the method. We demonstrate mapping of flow vectors for mixed samples containing fluorescent microspheres with different emission wavelengths using space time image cross-correlation. We also present results from two-photon laser-scanning microscopy studies of alpha-actinin/enhanced green fluorescent protein fusion constructs at the basal membrane of living CHO cells. Using space-time image correlation spectroscopy (STICS), we are able to measure protein fluxes with magnitudes of mum/min from retracting lamellar regions and protrusions for adherent cells. We also demonstrate the measurement of correlated directed flows (magnitudes of mum/min) and diffusion of interacting alpha5 integrin/enhanced cyan fluorescent protein and alpha-actinin/enhanced yellow fluorescent protein within living CHO cells. The STICS method permits us to generate complete transport maps of proteins within subregions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements.
Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, Conor H.; Hallacy, Timothy M.; Department of Physics and Astronomy, Rice University, Houston, Texas
2016-09-01
Purpose: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies. The technique uses novel fluorescence nuclear track detectors with fluorescence confocal laser scanning microscopy in the beam line to visualize particlemore » track traversals within the subcellular compartments of live cells within seconds after injury. Methods and Materials: We designed and built a portable fluorescence confocal laser scanning microscope for use in the beam path, coated fluorescence nuclear track detectors with fluorescent-tagged live cells (HT1080 expressing enhanced green fluorescent protein tagged to XRCC1, a single-strand break repair protein), placed the entire assembly into a proton therapy beam line, and irradiated the cells with a fluence of ∼1 × 10{sup 6} protons/cm{sup 2}. Results: We successfully obtained confocal images of proton tracks and foci of DNA single-strand breaks immediately after irradiation. Conclusions: This technique represents an innovative method for analyzing biological responses in any HT beam line at energies and dose rates relevant to therapy. It allows precise determination of the number of tracks traversing a subcellular compartment and monitoring the cellular damage therein, and has the potential to measure the linear energy transfer of each track from therapeutic beams.« less
Quantitative live-cell imaging of human immunodeficiency virus (HIV-1) assembly.
Baumgärtel, Viola; Müller, Barbara; Lamb, Don C
2012-05-01
Advances in fluorescence methodologies make it possible to investigate biological systems in unprecedented detail. Over the last few years, quantitative live-cell imaging has increasingly been used to study the dynamic interactions of viruses with cells and is expected to become even more indispensable in the future. Here, we describe different fluorescence labeling strategies that have been used to label HIV-1 for live cell imaging and the fluorescence based methods used to visualize individual aspects of virus-cell interactions. This review presents an overview of experimental methods and recent experiments that have employed quantitative microscopy in order to elucidate the dynamics of late stages in the HIV-1 replication cycle. This includes cytosolic interactions of the main structural protein, Gag, with itself and the viral RNA genome, the recruitment of Gag and RNA to the plasma membrane, virion assembly at the membrane and the recruitment of cellular proteins involved in HIV-1 release to the nascent budding site.
Quantitative Live-Cell Imaging of Human Immunodeficiency Virus (HIV-1) Assembly
Baumgärtel, Viola; Müller, Barbara; Lamb, Don C.
2012-01-01
Advances in fluorescence methodologies make it possible to investigate biological systems in unprecedented detail. Over the last few years, quantitative live-cell imaging has increasingly been used to study the dynamic interactions of viruses with cells and is expected to become even more indispensable in the future. Here, we describe different fluorescence labeling strategies that have been used to label HIV-1 for live cell imaging and the fluorescence based methods used to visualize individual aspects of virus-cell interactions. This review presents an overview of experimental methods and recent experiments that have employed quantitative microscopy in order to elucidate the dynamics of late stages in the HIV-1 replication cycle. This includes cytosolic interactions of the main structural protein, Gag, with itself and the viral RNA genome, the recruitment of Gag and RNA to the plasma membrane, virion assembly at the membrane and the recruitment of cellular proteins involved in HIV-1 release to the nascent budding site. PMID:22754649
ReAsH/FlAsH labeling and image analysis of tetracysteine sensor proteins in cells.
Irtegun, Sevgi; Ramdzan, Yasmin M; Mulhern, Terrence D; Hatters, Danny M
2011-08-31
Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations).
Yan, Yuling; Marriott, M Emma; Petchprayoon, Chutima; Marriott, Gerard
2011-02-01
Few to single molecule imaging of fluorescent probe molecules can provide information on the distribution, dynamics, interactions and activity of specific fluorescently tagged proteins during cellular processes. Unfortunately, these imaging studies are made challenging in living cells because of fluorescence signals from endogenous cofactors. Moreover, related background signals within multi-cell systems and intact tissue are even higher and reduce signal contrast even for ensemble populations of probe molecules. High-contrast optical imaging within high-background environments will therefore require new ideas on the design of fluorescence probes, and the way their fluorescence signals are generated and analysed to form an image. To this end, in the present review we describe recent studies on a new family of fluorescent probe called optical switches, with descriptions of the mechanisms that underlie their ability to undergo rapid and reversible transitions between two distinct states. Optical manipulation of the fluorescent and non-fluorescent states of an optical switch probe generates a modulated fluorescence signal that can be isolated from a larger unmodulated background by using OLID (optical lock-in detection) techniques. The present review concludes with a discussion on select applications of synthetic and genetically encoded optical switch probes and OLID microscopy for high-contrast imaging of specific proteins and membrane structures within living systems.
MacLean, Lorna; Price, Helen; O'Toole, Peter
2016-01-01
Leishmania major is a human-infective protozoan parasite transmitted by the bite of the female phlebotomine sand fly. The L. major hydrophilic acylated surface protein B (HASPB) is only expressed in infective parasite stages suggesting a role in parasite virulence. HASPB is a "nonclassically" secreted protein that lacks a conventional signal peptide, reaching the cell surface by an alternative route to the classical ER-Golgi pathway. Instead HASPB trafficking to and exposure on the parasite plasma membrane requires dual N-terminal acylation. Here, we use live cell imaging methods to further explore this pathway allowing visualization of key events in real time at the individual cell level. These methods include live cell imaging using fluorescent reporters to determine the subcellular localization of wild type and acylation site mutation HASPB18-GFP fusion proteins, fluorescence recovery after photobleaching (FRAP) to analyze the dynamics of HASPB in live cells, and live antibody staining to detect surface exposure of HASPB by confocal microscopy.
Hori, Yuichiro; Otomura, Norimichi; Nishida, Ayuko; Nishiura, Miyako; Umeno, Maho; Suetake, Isao; Kikuchi, Kazuya
2018-02-07
Hybrid probes consisting of synthetic molecules and proteins are powerful tools for detecting biological molecules and signals in living cells. To date, most targets of the hybrid probes have been limited to pH and small analytes. Although biomacromolecules are essential to the physiological function of cells, the hybrid-probe-based approach has been scarcely employed for live-cell detection of biomacromolecules. Here, we developed a hybrid probe with a chemical switch for live-cell imaging of methylated DNA, an important macromolecule in the repression of gene expression. Using a protein labeling technique, we created a hybrid probe containing a DNA-binding fluorogen and a methylated-DNA-binding domain. The hybrid probe enhanced fluorescence intensity upon binding to methylated DNA and successfully monitored methylated DNA during mitosis. The hybrid probe offers notable advantages absent from probes based on small molecules or fluorescent proteins and is useful for live-cell analyses of epigenetic phenomena and diseases related to DNA methylation.
NASA Astrophysics Data System (ADS)
Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi
2012-03-01
Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.
Bing, Qijing; Wang, Lin; Li, Donglin; Wang, Guang
2018-09-05
A new benzimidazole base turn-on fluorescent and ratiometric absorption chemosensor (L) bearing bidentate ligand for detection of Cu 2+ was designed and synthesized. Fluorescence and UV-vis spectra studies demonstrated that L can detect Cu 2+ ions in aqueous solution using fluorescence enhancement and ratiometric absorption sensing over a wide pH range. Both fluorescent and ratiometric absorption sensing of L for Cu 2+ possessed high selectivity and sensitivity over other competitive metal ions and had low detection limit. Job's plot, mass spectra and DFT calculation indicated the sensing mechanism is the complex formation between L and Cu 2+ with 1:2 stoichiometry. Fluorescence images of HepG2 in the absence and presence of Cu 2+ displayed L had cell permeability and detection ability for Cu 2+ in live cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells.
Montoya, Leticia A; Pluth, Michael D
2012-05-16
Hydrogen sulfide (H(2)S) is an important biological messenger but few biologically-compatible methods are available for its detection. Here we report two bright fluorescent probes that are selective for H(2)S over cysteine, glutathione and other reactive sulfur, nitrogen, and oxygen species. Both probes are demonstrated to detect H(2)S in live cells. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Daniel, Jonathan; Godin, Antoine G.; Palayret, Matthieu; Lounis, Brahim; Cognet, Laurent; Blanchard-Desce, Mireille
2016-03-01
Based on an original molecular-based design, we present bright and photostable fluorescent organic nanoparticles (FONs) showing excellent colloidal stability in various aqueous environments. Complementary near-infrared emitting and green emitting FONs were prepared using a simple, fast and robust protocol. Both types of FONs could be simultaneously imaged at the single-particle level in solution as well as in biological environments using a monochromatic excitation and a dual-color fluorescence microscope. No evidence of acute cytotoxicity was found upon incubation of live cells with mixed solutions of FONs, and both types of nanoparticles were found internalized in the cells where their motion could be simultaneously tracked at video-rate up to minutes. These fluorescent organic nanoparticles open a novel non-toxic alternative to existing nanoparticles for imaging biological structures, compatible with live-cell experiments and specially fitted for multicolor single particle tracking.
Modzel, Maciej; Lund, Frederik W; Wüstner, Daniel
2017-01-01
Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol as closely as possible with respect to their biophysical and biochemical properties. Second, the cholesterol analogs should have good fluorescence properties. This interferes, however, often with the first requirement, such that the imaging instrumentation must be optimized to collect photons from suboptimal fluorophores, but good cholesterol mimics, such as the intrinsically fluorescent sterols, cholestatrienol (CTL) or dehydroergosterol (DHE). CTL differs from cholesterol only in having two additional double bonds in the ring system, which is why it is slightly fluorescent in the ultraviolet (UV). In the first part of this protocol, we describe how to synthesize and image CTL in living cells relative to caveolin, a structural component of caveolae. In the second part, we explain in detail how to perform time-lapse experiments of commercially available BODIPY-tagged cholesterol (TopFluor-cholesterol ® ; TF-Chol) in comparison to DHE. Finally, using two-photon time-lapse imaging data of TF-Chol, we demonstrate how to use our imaging toolbox SpatTrack for tracking sterol rich vesicles in living cells over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Li, Zhaohui; Weber, Thomas J.
2013-07-23
Adenosine-5’-triphosphate (ATP) and guanosine-5’-triphosphate (GTP) are primary energy resources and function coordinately for numerous reactions such as microtubule assembly, insulin secretion and ion channel regulation. We have developed a novel DNA/RNA aptamer- graphene oxide nanosheet (GO-nS) sensing platform that can selectively and simultaneously detect ATP and GTP in live cells. A fluorescent tag is covalently attached to aptamers and fluorescence is quenched upon binding of aptamer to the GO-nS. Fluorescently tagged aptamers that selectively bind ATP or GTP were isolated from an aptamer library and were adsorbed onto GO-nS. Upon incubation with targets (ATP and/or GTP), the aptamers readily dissociatedmore » from GO-nS and the fluorescent signal was recovered. By covalently attaching fluorophores, both ATP and GTP sensing aptamers could be exploited to simultaneously visualize aptamer dissociation in live cells. In addition, the GO-nS appear to be biocompatible and protect the adsorbed DNA/RNA aptamers from enzymatic cleavage. Our results support the application of aptamer/GO-nS as a sensing platform for nucleotides in living cells and have implications for the development of additional sensor platforms for other bio-molecules that show selective interactions with aptamers and other biomarkers.« less
Accurate live and dead bacterial cell enumeration using flow cytometry (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ou, Fang; McGoverin, Cushla; Swift, Simon; Vanholsbeeck, Frédérique
2017-03-01
Flow cytometry (FCM) is based on the detection of scattered light and fluorescence to identify cells with particular characteristics of interest. However most FCM cannot precisely control the flow through its interrogation point and hence the volume and concentration of the sample cannot be immediately obtained. The easiest, most reliable and inexpensive way of obtaining absolute counts with FCM is by using reference beads. We investigated a method of using FCM with reference beads to measure live and dead bacterial concentration over the range of 106 to 108 cells/mL and ratio varying from 0 to 100%. We believe we are the first to use this method for such a large cell concentration range while also establishing the effect of varying the live/dead bacteria ratios. Escherichia coli solutions with differing ratios of live:dead cells were stained with fluorescent dyes SYTO 9 and propidium iodide (PI), which label live and dead cells, respectively. Samples were measured using a LSR II Flow Cytometer (BD Biosciences); using 488 nm excitation with 20 mW power. Both SYTO 9 and PI fluorescence were collected and threshold was set to side scatter. Traditional culture-based plate count was done in parallel to the FCM analysis. The concentration of live bacteria from FCM was compared to that obtained by plate counts. Preliminary results show that the concentration of live bacteria obtained by FCM and plate counts correlate well with each other and indicates this may be extended to a wider concentration range or for studying other cell characteristics.
Subach, Fedor V; Patterson, George H; Renz, Malte; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V
2010-05-12
Rapidly emerging techniques of super-resolution single-molecule microscopy of living cells rely on the continued development of genetically encoded photoactivatable fluorescent proteins. On the basis of monomeric TagRFP, we have developed a photoactivatable TagRFP protein that is initially dark but becomes red fluorescent after violet light irradiation. Compared to other monomeric dark-to-red photoactivatable proteins including PAmCherry, PATagRFP has substantially higher molecular brightness, better pH stability, substantially less sensitivity to blue light, and better photostability in both ensemble and single-molecule modes. Spectroscopic analysis suggests that PATagRFP photoactivation is a two-step photochemical process involving sequential one-photon absorbance by two distinct chromophore forms. True monomeric behavior, absence of green fluorescence, and single-molecule performance in live cells make PATagRFP an excellent protein tag for two-color imaging techniques, including conventional diffraction-limited photoactivation microscopy, super-resolution photoactivated localization microscopy (PALM), and single particle tracking PALM (sptPALM) of living cells. Two-color sptPALM imaging was demonstrated using several PATagRFP tagged transmembrane proteins together with PAGFP-tagged clathrin light chain. Analysis of the resulting sptPALM images revealed that single-molecule transmembrane proteins, which are internalized into a cell via endocytosis, colocalize in space and time with plasma membrane domains enriched in clathrin light-chain molecules.
Weiss, Lucien E; Naor, Tal; Shechtman, Yoav
2018-06-19
The structural organization and dynamics of DNA are known to be of paramount importance in countless cellular processes, but capturing these events poses a unique challenge. Fluorescence microscopy is well suited for these live-cell investigations, but requires attaching fluorescent labels to the species under investigation. Over the past several decades, a suite of techniques have been developed for labeling and imaging DNA, each with various advantages and drawbacks. Here, we provide an overview of the labeling and imaging tools currently available for visualizing DNA in live cells, and discuss their suitability for various applications. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Dynamic imaging of protein-protein interactions by MP-FLIM
NASA Astrophysics Data System (ADS)
Ameer-Beg, Simon M.; Peter, Marion; Keppler, Melanie D.; Prag, Soren; Barber, Paul R.; Ng, Tony C.; Vojnovic, Borivoj
2005-03-01
The spatio-temporal localization of molecular interactions within cells in situ is of great importance in elucidating the key mechanisms in regulation of fundamental process within the cell. Measurements of such near-field localization of protein complexes may be achieved by the detection of fluorescence (or Forster) resonance energy transfer (FRET) between protein-conjugated fluorophores. We demonstrate the applicability of time-correlated single photon counting multiphoton microscopy to the spatio-temporal localization of protein-protein interactions in live and fixed cell populations. Intramolecular interactions between protein hetero-dimers are investigated using green fluorescent protein variants. We present an improved monomeric form of the red fluorescent protein, mRFP1, as the acceptor in biological fluorescence resonance energy transfer (FRET) experiments using the enhanced green fluorescent protein as donor. We find particular advantage in using this fluorophore pair for quantitative measurements of FRET. The technique was exploited to demonstrate a novel receptor-kinase interaction between the chemokine receptor (CXCR4) and protein kinase C (PKC) α in carcinoma cells for both live and fixed cell experiments.
Kodaira, Satoshi; Konishi, Teruaki; Kobayashi, Alisa; Maeda, Takeshi; Ahmad, Tengku Ahbrizal Farizal Tengku; Yang, Gen; Akselrod, Mark S.; Furusawa, Yoshiya; Uchihori, Yukio
2015-01-01
Abstract The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080–53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments. PMID:25324538
Li, Dongyu; Li, Zhao; Chen, Weihua; Yang, Xingbin
2017-05-24
A new near-infrared fluorescence off-on probe was developed and applied to fluorescence imaging of carboxylesterase in living HepG-2 cells and zebrafish pretreated with pesticides (carbamate, organophosphorus, and pyrethroid). The probe was readily prepared by connecting (4-acetoxybenzyl)oxy as a quenching and recognizing moiety to a stable hemicyanine skeleton that can be formed via the decomposition of IR-780. The fluorescence off-on response of the probe to carboxylesterase is based on the enzyme-catalyzed spontaneous hydrolysis of the carboxylic ester bond, followed by a further fragmentation of the phenylmethyl unit and thereby the fluorophore release. Compared with the only existing near-infrared carboxylesterase probe, the proposed probe exhibits superior analytical performance, such as near-infrared fluorescence emission over 700 nm as well as high selectivity and sensitivity, with a detection limit of 4.5 × 10 -3 U/mL. More importantly, the probe is cell membrane permeable, and its applicability has been successfully demonstrated for monitoring carboxylesterase activity in living HepG-2 cells and zebrafish pretreated with pesticides, revealing that pesticides can effectively inhibit the activity of carboxylesterase. The superior properties of the probe make it of great potential use in indicating pesticide exposure.
NASA Astrophysics Data System (ADS)
Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.
2012-03-01
The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for Förster resonance energy transfer (FRET) microscopy and fluorescence fluctuation spectroscopy (FFS) provide important tools for monitoring dynamic protein interactions inside living cells. Fluorescence lifetime imaging microscopy (FLIM) quantitatively maps changes in the spatial distribution of donor FP lifetimes that result from FRET with acceptor FPs. FFS probes dynamic protein associations through its capacity to monitor localized protein diffusion. Here, we use FRET-FLIM combined with FFS in living cells to investigate changes in protein mobility due to protein-protein interactions involving transcription factors and chromatin modifying proteins that function in anterior pituitary gene regulation. The heterochromatin protein 1 alpha (HP1α) plays a key role in the establishment and maintenance of heterochromatin through its interactions with histone methyltransferases. Recent studies, however, also highlight the importance of HP1α as a positive regulator of active transcription in euchromatin. Intriguingly, we observed that the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) interacts with HP1α in regions of pericentromeric heterochromatin in mouse pituitary cells. These observations prompted us to investigate the relationship between HP1α dynamic interactions in pituitary specific gene regulation.
Labeling proteins inside living cells using external fluorophores for microscopy.
Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R
2016-12-09
Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.
One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging.
Jana, Jayasmita; Ganguly, Mainak; Das, Bodhisatwa; Dhara, Santanu; Negishi, Yuichi; Pal, Tarasankar
2016-04-01
We report a simple one-pot synthesis of highly fluorescent carbon dots (CDs) via modified hydrothermal (MHT) treatment of alkaline solution of dopamine and cysteine. These CDs (λex=320 nm, λem=390 nm, and quantum yield ∼ 5.1%) are of ∼ 2-3 nm in diameter. Further attempt of synthesizing CDs in some common water-miscible solvents ends up the fact that the MHT product from acetone medium is nonfluorescent. However, CDs, produced in aqueous medium, are so stable that they can be dried as a deliverable solid (WCD) without any alteration of fluorescing property if reversibly dispersed in water. Fluorescence of WCD is quenched selectively in acetone. Quenching occurs presumably due to the disruption of radiative recombination along with the hindrance in quantum confinement of the emissive energy traps to the particle surface. Successive quenching of fluorescence of WCD in different acetone concentration admixed in water paves the way to selective acetone sensing (LOD=8.75 × 10(-7) M). The synthesized CDs (in aqueous medium) are cytocompatible and are efficient fluorescent probe for cell imaging. Only living cells are recognized exclusively from fluorescence imaging leaving aside dead cells, while cells are treated with CDs. Copyright © 2015 Elsevier B.V. All rights reserved.
Sund, S E; Axelrod, D
2000-01-01
Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics. PMID:10969025
Detection of irradiation induced reactive oxygen species production in live cells
NASA Astrophysics Data System (ADS)
Gao, Bo; Zhu, Debin
2006-09-01
Reactive oxygen species (ROS) is thought to play an important role in cell signaling of apoptosis, necrosis, and proliferation. Light irradiation increases mitochondrial reactive oxygen species (ROS) production and mediates its intracellular signaling by adjusting the redox potential in tumor cells. Mitochondria are the main source of ROS in the living cell. Superoxide anions (0 II - are likely the first ROS generated in the mitochondria following radiation damage, and then convert to hydrogen peroxide (H II0 II), hydroxyl radical (•OH), and singlet oxygen (10 II), etc. Conventional methods for research ROS production in mitochondria mostly use isolated mitochondria rather than mitochondria in living cells. In this study, a highly selective probe to detect mitochondrial 0 II - in live cells, MitoSOX TM Red, was applied to quantify the mitochondrial ROS production in human lung adenocarcinoma cells (ASTC-a-1) with laser scanning microscope (LSM) after ultraviolet C (UVC) and He-Ne laser irradiation. Dichiorodihydrofluoresein diacetate (DCFHDA), a common used fluorescent probe for ROS detection without specificity, were used as a comparison to image the ROS production. The fluorescent image of MItoSOX TM Red counterstained with MitoTracker Deep Red 633, a mitochondria selective probe, shows that the mitochondrial ROS production increases distinctly after UVC and He-Ne laser irradiation. DCFH-DA diffuses labeling throughout the cell though its fluorescence increases markedly too. In conclusion, the fluorescent method with MitoSOX TM Red reagent is proved to be a promising technique to research the role of ROS in radiation induced apoptosis.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-07-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.
Chloro-Functionalized Photo-crosslinking BODIPY for Glutathione Sensing and Subcellular Trafficking.
Murale, Dhiraj P; Hong, Seong Cheol; Haque, Md Mamunul; Lee, Jun-Seok
2018-05-18
Glutathione (GSH) is one of major antioxidants inside cells that regulates oxidoreduction homeostasis. Recently, there have been extensive efforts to visualize GSH in live cells, but most of the probes available today are simple detection sensors and do not provide details of cellular localization. A new fluorescent probe (pcBD2-Cl), which is cell permeable and selectively reacts with GSH in situ, has been developed. The in situ GSH-labeled probe (pcBD2-GSH) exhibited quenches fluorescence, but subsequent binding to cellular abundant glutathione S-transferase (GST) recovers the fluorescence intensity, which makes it possible to image the GSH-GST complex in live cells. Interactions between probe and GST were confirmed by means of photo-crosslinking under intact live-cell conditions. Interestingly, isomers of chloro-functionalized 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) compounds behaved very distinctively inside the cells. Following co-staining imaging with MitoTracker and mitochondria fractionation upon lipopolysaccharide-mediated reactive oxygen species induction experiments showed that pcBD2-GSH accumulated in mitochondria. This is the first example of a live-cell imaging probe to visualize translocation of GSH from the cytosol to mitochondria. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shen, Yi; Chen, Yingche; Wu, Jiahui; Shaner, Nathan C.; Campbell, Robert E.
2017-01-01
MCherry, the Discosoma sp. mushroom coral-derived monomeric red fluorescent protein (RFP), is a commonly used genetically encoded fluorophore for live cell fluorescence imaging. We have used a combination of protein design and directed evolution to develop mCherry variants with low cytotoxicity to Escherichia coli and altered excitation and emission profiles. These efforts ultimately led to a long Stokes shift (LSS)-mCherry variant (λex = 460 nm and λem = 610 nm) and a red-shifted (RDS)-mCherry variant (λex = 600 nm and λem = 630 nm). These new RFPs provide insight into the influence of the chromophore environment on mCherry’s fluorescence properties, and may serve as templates for the future development of fluorescent probes for live cell imaging. PMID:28241009
A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell
NASA Astrophysics Data System (ADS)
Liu, Wei-Yong; Li, Hai-Ying; Lv, Hong-Shui; Zhao, Bao-Xiang; Miao, Jun-Ying
We describe the development of a rhodamine chromene-based turn-on fluorescence probe to monitor the intracellular Cu2+ level in living cells. The new fluorescent probe with a chlorine group in chromene moiety exhibits good membrane-permeable property than previous reported because the predicted lipophilicity of present probe 4 is stronger than that of methoxyl substituted probe in our previous work (CLogP of 4: 8.313, CLogP of methoxyl substituted probe: 7.706), and a fluorescence response toward Cu2+ under physiological conditions with high sensitivity and selectivity, and facilitates naked-eye detection of Cu2+. The fluorescence intensity was remarkably increased upon the addition of Cu2+ within 1 or 2 min, while the other sixteen metal ions caused no significant effect.
A Guide to Fluorescent Protein FRET Pairs
Bajar, Bryce T.; Wang, Emily S.; Zhang, Shu; Lin, Michael Z.; Chu, Jun
2016-01-01
Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies. PMID:27649177
NASA Astrophysics Data System (ADS)
Lv, Hongshui; Sun, Haiyan; Wang, Shoujuan; Kong, Fangong
2018-05-01
A novel dicyanoisophorone based fluorescent probe HP was developed to detect hydrazine. Upon the addition of hydrazine, probe HP displayed turn-on fluorescence in the red region with a large Stokes shift (180 nm). This probe exhibited high selectivity and high sensitivity to hydrazine in solution. The detection limit of HP was found to be 3.26 ppb, which was lower than the threshold limit value set by USEPA (10 ppb). Moreover, the probe was successfully applied to detect hydrazine in different water samples and living cells.
The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe
Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong
2017-01-01
Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666
Wang, Qin; Zhang, Shengrui; Zhong, Yaogang; Yang, Xiao-Feng; Li, Zheng; Li, Hua
2017-02-07
Selenocysteine (Sec) carries out the majority of the functions of the various Se-containing species in vivo. Thus, it is of great importance to develop sensitive and selective assays to detect Sec. Herein, a carbon-dot-based fluorescent turn-on probe for highly selective detection of selenol in living cells is presented. The highly photoluminescent carbon dots that emit yellow-green fluorescence (Y-G-CDs; λ max = 520 nm in water) were prepared by using m-aminophenol as carbon precursor through a facile solvothermal method. The surface of Y-G-CDs was then covalently functionalized with 2,4-dinitrobenzenesulfonyl chloride (DNS-Cl) to afford the 2,4-dinitrobenzene-functionalized CDs (CD-DNS) as a nanoprobe for selenol. CD-DNS is almost nonfluorescent. However, upon treating with Sec, the DNS moiety of CD-DNS can be readily cleaved by selenolate through a nucleophilic substitution process, resulting in the formation of highly fluorescent Y-G-CDs and hence leads to a dramatic increase in fluorescence intensity. The proposed nanoprobe exhibits high sensitivity and selectivity toward Sec over biothiols and other biological species. A preliminary study shows that CD-DNS can function as a useful tool for fluorescence imaging of exogenous and endogenous selenol in living cells.
Zhang, Suge; Sun, Hongxia; Chen, Hongbo; Li, Qian; Guan, Aijiao; Wang, Lixia; Shi, Yunhua; Xu, Shujuan; Liu, Meirong; Tang, Yalin
2018-05-01
Direct detection of G-quadruplexes in human cells has become an important issue due to the vital role of G-quadruplex related to biological functions. Despite several probes have been developed for detection of the G-quadruplexes in cytoplasm or whole cells, the probe being used to monitor the nucleolar G-quadruplexes is still lacking. Formation of the nucleolar G-quadruplex structures was confirmed by using circular dichroism (CD) spectroscopy. The binding affinity and selectivity of Thioflavin T (ThT) towards various DNA/RNA motifs in solution and gel system were measured by using fluorescence spectroscopy and polyacrylamide gel electrophoresis (PAGE), respectively. G-quadruplex imaging in live cells was directly captured by using confocal laser scanning microscopy (CLSM). Formation of the rDNA and rRNA G-quadruplex structures is demonstrated in vitro. ThT is found to show much higher affinity and selectivity towards these G-quadruplex structures versus other nucleic acid motifs either in solution or in gel system. The nucleolar G-quadruplexes in living cells are visualized by using ThT as a fluorescent probe. G-quadruplex-ligand treatments in live cells lead to sharp decrease of ThT signal. The natural existence of the G-quadruplexes structure in the nucleoli of living cells is directly visualized by using ThT as an indicator. The research provides substantive evidence for formation of the rRNA G-quadruplex structures, and also offers an effective probe for direct visualization of the nucleolar G-quadruplexes in living cells. Copyright © 2018. Published by Elsevier B.V.
Tiwari, Dhermendra K; Arai, Yoshiyuki; Yamanaka, Masahito; Matsuda, Tomoki; Agetsuma, Masakazu; Nakano, Masahiro; Fujita, Katsumasa; Nagai, Takeharu
2015-06-01
Fluorescence nanoscopy has revolutionized our ability to visualize biological structures not resolvable by conventional microscopy. However, photodamage induced by intense light exposure has limited its use in live specimens. Here we describe Kohinoor, a fast-switching, positively photoswitchable fluorescent protein, and show that it has high photostability over many switching repeats. With Kohinoor, we achieved super-resolution imaging of live HeLa cells using biocompatible, ultralow laser intensity (0.004 J/cm(2)) in reversible saturable optical fluorescence transition (RESOLFT) nanoscopy.
Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).
Giakoumakis, Nickolaos Nikiforos; Rapsomaniki, Maria Anna; Lygerou, Zoi
2017-01-01
Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.
Tao, Rongkun; Shi, Mei; Zou, Yejun; Cheng, Di; Wang, Qiaohui; Liu, Renmei; Wang, Aoxue; Zhu, Jiahuan; Deng, Lei; Hu, Hanyang; Chen, Xianjun; Du, Jiulin; Zhu, Weiping; Zhao, Yuzheng; Yang, Yi
2018-06-01
Engineered fluorescent indicators for visualizing mercury ion (Hg 2+ ) are powerful tools to illustrate the intracellular distribution and serious toxicity of the ion. However, the sensitive and specific detection of Hg 2+ in living cells and in vivo is challenging. This paper reported the development of fluorescent indicators for Hg 2+ in green or red color by inserting a circularly permuted fluorescent protein into a highly mercury-specific repressor. These sensors provided a rapid, sensitive, specific, and real-time read-out of Hg 2+ dynamics in solutions, bacteria, subcellular organelles of mammalian cells, and zebrafish, thereby providing a useful new method for Hg 2+ detection and bioimaging. In conjunction with the hydrogen peroxide sensor HyPer, we found mercury uptake would trigger subcellular oxidative events at the single-cell level, and provided visual evidence of the causality of mercury and oxidative damage. These sensors would paint the landscape of mercury toxicity to cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.
Labeling Thiols on Proteins, Living Cells, and Tissues with Enhanced Emission Induced by FRET
Yuan, Yue; Wang, Xijun; Mei, Bin; Zhang, Dongxin; Tang, Anming; An, Linna; He, Xiaoxiao; Jiang, Jun; Liang, Gaolin
2013-01-01
Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved. PMID:24343586
Labeling Thiols on Proteins, Living Cells, and Tissues with Enhanced Emission Induced by FRET
NASA Astrophysics Data System (ADS)
Yuan, Yue; Wang, Xijun; Mei, Bin; Zhang, Dongxin; Tang, Anming; An, Linna; He, Xiaoxiao; Jiang, Jun; Liang, Gaolin
2013-12-01
Using N-(2-Aminoethyl)maleimide-cysteine(StBu) (Mal-Cys) as a medium, protein thiols were converted into N-terminal cysteines. After a biocompatible condensation reaction between the N-terminal cysteine and fluorescent probe 2-cyanobenzothiazole-Gly-Gly-Gly-fluorescein isothiocyanate (CBT-GGG-FITC), a new fluorogenic structure Luciferin-GGG-FITC was obtained. The latter exhibits near one order of magnitude (7 folds) enhanced fluorescence emission compared to the precursor moiety due to fluorescence resonance energy transfer (FRET) effect between the newly formed luciferin structure and the FITC motif. Theoretical investigations revealed the underlying mechanism that satisfactorily explained the experimental results. With this method, enhanced fluorescence imaging of thiols on proteins, outer membranes of living cells, translocation of membrane proteins, and endothelial cell layers of small arteries was successfully achieved.
Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A; Cao, Derong
2014-07-15
A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg(2+), its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K(+), Na(+), Ca(2+), Mg(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Mn(2+), Pb(2+), Ni(2+), Fe(3+), Al(3+), Cr(3+) and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg(2+). Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg(2+) in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong
2012-05-11
A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012
Umezawa, Keitaro; Kamiya, Mako; Urano, Yasuteru
2018-05-23
The chemical biology of reactive sulfur species, including hydropolysulfides, has been a subject undergoing intense study in recent years, but further understanding of their 'intact' function in living cells has been limited due to a lack of appropriate analytical tools. In order to overcome this limitation, we developed a new type of fluorescent probe which reversibly and selectively reacts to hydropolysulfides. The probe enables live-cell visualization and quantification of endogenous hydropolysulfides without interference from intrinsic thiol species such as glutathione. Additionally, real-time reversible monitoring of oxidative-stress-induced fluctuation of intrinsic hydropolysulfides has been achieved with a temporal resolution in the order of seconds, a result which has not yet been realized using conventional methods. These results reveal the probe's versatility as a new fluorescence imaging tool to understand the function of intracellular hydropolysulfides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kano, Hideaki; Hamaguchi, Hiro-O.
2006-04-01
A supercontinuum light source generated with a femtosecond Ti:Sapphire oscillator has been used to obtain both vibrational and two-photon excitation fluorescence (TPEF) images of a living cell simultaneously at different wavelengths. Owing to an ultrabroadband spectral profile of the supercontinuum, multiple vibrational resonances have been detected through coherent anti-Stokes Raman scattering (CARS) process. In addition to the multiplex CARS process, multiple electronic states can be excited due to the broadband electronic two-photon excitation using the supercontinuum, giving rise to a two-photon excitation fluorescence (TPEF) signal. Using a living yeast cell whose nucleus is labeled by green fluorescent protein (GFP), we have succeeded in visualizing organelles such as mitochondria, septum, and nucleus through the CARS and the TPEF processes. The supercontinuum enables us to perform unique multi-nonlinear optical imaging through two different nonlinear optical processes.
Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels
2014-01-01
Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.
Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping
2018-03-05
Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5×10 -7 to 1.0×10 -5 mol·L -1 and the detection limit is 6.9×10 -8 mol·L -1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols. Copyright © 2017 Elsevier B.V. All rights reserved.
Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru
2017-03-01
Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t 1/2 = 620 ms at [GSH] = 1 mM), as well as appropriate K d values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.
NASA Astrophysics Data System (ADS)
Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru
2017-03-01
Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t1/2 = 620 ms at [GSH] = 1 mM), as well as appropriate Kd values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.
ReAsH/FlAsH Labeling and Image Analysis of Tetracysteine Sensor Proteins in Cells
Irtegun, Sevgi; Ramdzan, Yasmin M.; Mulhern, Terrence D.; Hatters, Danny M.
2011-01-01
Fluorescent proteins and dyes are essential tools for the study of protein trafficking, localization and function in cells. While fluorescent proteins such as green fluorescence protein (GFP) have been extensively used as fusion partners to proteins to track the properties of a protein of interest1, recent developments with smaller tags enable new functionalities of proteins to be examined in cells such as conformational change and protein-association 2, 3. One small tag system involves a tetracysteine motif (CCXXCC) genetically inserted into a target protein, which binds to biarsenical dyes, ReAsH (red fluorescent) and FlAsH (green fluorescent), with high specificity even in live cells 2. The TC/biarsenical dye system offers far less steric constraints to the host protein than fluorescent proteins which has enabled several new approaches to measure conformational change and protein-protein interactions 4-7. We recently developed a novel application of TC tags as sensors of oligomerization in cells expressing mutant huntingtin, which when mutated aggregates in neurons in Huntington disease 7. Huntingtin was tagged with two fluorescent dyes, one a fluorescent protein to track protein location, and the second a TC tag which only binds biarsenical dyes in monomers. Hence, changes in colocalization between protein and biarsenical dye reactivity enabled submicroscopic oligomer content to be spatially mapped within cells. Here, we describe how to label TC-tagged proteins fused to a fluorescent protein (Cherry, GFP or CFP) with FlAsH or ReAsH in live mammalian cells and how to quantify the two color fluorescence (Cherry/FlAsH, CFP/FlAsH or GFP/ReAsH combinations). PMID:21897361
A Sensitive Near-Infrared Fluorescent Sensor for Mitochondrial Hydrogen Sulfide.
Ji, Ao; Fan, Yichong; Ren, Wei; Zhang, Shen; Ai, Hui-Wang
2018-05-03
Hydrogen sulfide (H 2 S) is an important gasotransmitter. Although a large number of fluorescent probes for cellular H 2 S have been reported, only a few can detect H 2 S in mitochondria, a cellular organelle connecting H 2 S with mitochondrial function and metabolic pathways. We hereby describe a novel near-infrared fluorescent probe, nimazide, by introducing sulfonyl azide to the core structure of a QSY-21 dark quencher. Nimazide responded quickly to H 2 S, resulting in robust fluorescence turn-off changes. This conversion displayed high specificity and fast kinetics. More impressively, we observed a robust fluorescence decrease in live cells loaded with mitochondrial nimazide in response to extracellular addition of nanomolar H 2 S, and successfully imaged biologically generated mitochondrial H 2 S in live mammalian cells. Nimazide is one of the most sensitive fluorescent probes for mitochondrial H 2 S.
Liu, Fei; Xu, Meiying; Chen, Xingjuan; Yang, Yonggang; Wang, Haiji; Sun, Guoping
2015-10-06
Direct visualization evidence is important for understanding the microbial degradation mechanisms. To track the microbial degradation pathways of azo dyes with different polar characterizations, sensors based on the fluorescence resonance energy transfer (FRET) from 1,8-naphthalimide to azo dyes were synthesized, in which the quenched fluorescence will recover when the azo bond was cleaved. In living cells, the sensor-tracking experiment showed that the low polarity and hydrophobic azo dye can be taken up into the cells and reduced inside the cells, whereas the high polarity and hydrophilic azo dye can be reduced only outside the cells because of the selective permeability of the cell membranes. These results indicated that there were two different bacterial degradation pathways available for different polarity azo dyes. To our knowledge, no fluorescent sensor has yet been designed for illuminating the microbial degradation mechanisms of organic pollutants with different characteristics.
Ning, Yingying; Tang, Juan; Liu, Yi-Wei; Jing, Jing; Sun, Yuansheng; Zhang, Jun-Long
2018-04-21
Herein, we report the design and synthesis of biocompatible Yb 3+ complexes for near-infrared (NIR) living cell imaging. Upon excitation at either the visible (Soret band) or red region (Q band), these β-fluorinated Yb 3+ complexes display high NIR luminescence (quantum yields up to 23% and 13% in dimethyl sulfoxide and water, respectively) and have higher stabilities and prolonged decay lifetimes (up to 249 μs) compared to the β-non-fluorinated counterparts. This renders the β-fluorinated Yb 3+ complexes as a new class of biological optical probes in both steady-state imaging and time-resolved fluorescence lifetime imaging (FLIM). NIR confocal fluorescence images showed strong and specific intracellular Yb 3+ luminescence signals when the biocompatible Yb 3+ complexes were uptaken into the living cells. Importantly, FLIM measurements showed an intracellular lifetime distribution between 100 and 200 μs, allowing an effective discrimination from cell autofluorescence, and afforded high signal-to-noise ratios as firstly demonstrated in the NIR region. These results demonstrated the prospects of NIR lanthanide complexes as biological probes for NIR steady-state fluorescence and time-resolved fluorescence lifetime imaging.
Iino, R; Koyama, I; Kusumi, A
2001-01-01
Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443
Spatio-temporal imaging of EGF-induced activation of protein kinase A by FRET in living cells
NASA Astrophysics Data System (ADS)
Wang, Jin Jun; Chen, Xiao-Chuan; Xing, Da
2004-07-01
Intracellular molecular interaction is important for the study of cell physiology, yet current relevant methods require fixation or microinjection and lack temporal or spatial resolution. We introduced a new method -- fluorescence resonance energy transfer (FRET) to detect molecular interaction in living cells. On the basis of FRET principle, A-kinase activity reporter (AKAR) protein was designed to consist of the fusions of cyan fluorescent protein (CFP), a phosphoamino acid binding domain, a consensus substrate for protein kinase-A (PKA), and yellow fluorescent protein (YFP). In this study, the designed pAKAR plasmid was used to transfect a human lung cancer cell line (ASTC-a-1). When the AKAR-transfected cells were treated by forskolin (Fsk), we were able to observe the efficient transfer of energy from excited CFP to YFP within the AKAR molecule by fluorescence microcopy, whereas no FRET was detected in the transfected cells without the treatment of Fsk. When the cells were treated by Epidermal growth factor (EGF), the change of FRET was observed at different subcellular locations, reflecting PKA activation inside the cells upon EGF stimulation. The successful design of a fluorescence reporter of PKA activation and its application demonstrated the superiority of this technology in the research of intracellular protein-protein interaction.
A precise pointing nanopipette for single-cell imaging via electroosmotic injection.
Lv, Jian; Qian, Ruo-Can; Hu, Yong-Xu; Liu, Shao-Chuang; Cao, Yue; Zheng, Yong-Jie; Long, Yi-Tao
2016-11-24
The precise transportation of fluorescent probes to the designated location in living cells is still a challenge. Here, we present a new addition to nanopipettes as a powerful tool to deliver fluorescent molecules to a given place in a single cell by electroosmotic flow, indicating favorable potential for further application in single-cell imaging.
Yang, Sunny Y; Amor, Souheila; Laguerre, Aurélien; Wong, Judy M Y; Monchaud, David
2017-05-01
The development of quadruplex-directed molecular diagnostic and therapy rely on mechanistic insights gained at both cellular and tissue levels by fluorescence imaging. This technique is based on fluorescent reporters that label cellular DNA and RNA quadruplexes to spatiotemporally address their complex cell biology. The photophysical characteristics of quadruplex probes usually dictate the modality of cell imaging by governing the selection of the light source (lamp, LED, laser), the optical light filters and the detection modality. Here, we report the characterizations of prototype from a new generation of quadruplex dye termed G4-REP (for quadruplex-specific red-edge probe) that provides fluorescence responses regardless of the excitation wavelength and modality (owing to the versatility gained through the red-edge effect), thus allowing for diverse applications and most imaging facilities. This is demonstrated by cell images (and associated quantifications) collected through confocal and multiphoton microscopy as well as through real-time live-cell imaging system over extended period, monitoring both non-cancerous and cancerous human cell lines. Our results promote a new way of designing versatile, efficient and convenient quadruplex-reporting dyes for tracking these higher-order nucleic acid structures in living human cells. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.
Norcross, Stevie; Trull, Keelan J; Snaider, Jordan; Doan, Sara; Tat, Kiet; Huang, Libai; Tantama, Mathew
2017-11-22
Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.
Adaptive optical imaging through complex living plant cells
NASA Astrophysics Data System (ADS)
Tamada, Yosuke; Hayano, Yutaka; Murata, Takashi; Oya, Shin; Honma, Yusuke; Kanazawa, Minoru; Miura, Noriaki; Hasebe, Mitsuyasu; Kamei, Yasuhiro; Hattori, Masayuki
2017-04-01
Live-cell imaging using fluorescent molecules is now essential for biological researches. However, images of living cells are accompanied with blur, which becomes stronger according to the depth inside the cells and tissues. This image blur is caused by the disturbance on light that goes through optically inhomogeneous living cells and tissues. Here, we show adaptive optics (AO) imaging of living plant cells. AO has been developed in astronomy to correct the disturbance on light caused by atmospheric turbulence. We developed AO microscope effective for the observation of living plant cells with strong disturbance by chloroplasts, and successfully obtained clear images inside plant cells.
Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice
NASA Astrophysics Data System (ADS)
Hoffman, Robert M.
2006-02-01
We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.
Fast-Response Turn-on Fluorescent Probes Based on Thiolysis of NBD Amine for H2 S Bioimaging.
Wang, Runyu; Li, Zhifei; Zhang, Changyu; Li, Yanyan; Xu, Guoce; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen
2016-05-17
Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with multiple biological functions. New selective fluorescent turn-on probes based on fast thiolyling of NBD (7-nitro-1,2,3-benzoxadiazole) amine were explored for sensing H2 S in aqueous buffer and in living cells. The syntheses of both probes are simple and quite straightforward. The probes are highly sensitive and selective toward H2 S over other biologically relevant species. The fluorescein-NBD-based probe showed 65-fold green fluorescent increase upon H2 S activation. The rhodamine-NBD-based probe reacted rapidly with H2 S (t1/2 ≈1 min) to give a 4.5-fold increase in red fluorescence. Moreover, both probes were successfully used for monitoring H2 S in living cells and in mice. Based on such probe-based tools, we could observe H2 O2 -induced H2 S biogenesis in a concentration-dependent and time-dependent fashion in living cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nandi, Sandip; Sahana, Animesh; Sarkar, Bidisha; Mukhopadhyay, Subhra Kanti; Das, Debasis
2015-09-01
Pyridine based fluorescence probe, DFPPIC and its functionalized Merrifield polymer has been synthesized, characterized and used as an arsenate selective fluorescence sensor. Arsenate induced fluorescence enhancement is attributed to inter-molecular H-bonding assisted CHEF process. The detection limit for arsenate is 0.001 μM, much below the WHO recommended tolerance level in drinking water. DFPPIC can detect intracellular arsenate in drinking water of Purbasthali, West Bengal, India efficiently. Graphical Abstract DFPPIC and its Merrifield conjugate polymer are used for selective determination and removal of arsenate from real drinking water samples of Purbasthali, a highly arsenic contaminated region of West Bengal, India. DFPPIC is very promising to imaging arsenate in living cells.
A rhodol-based fluorescent chemosensor for hydrazine and its application in live cell bioimaging
NASA Astrophysics Data System (ADS)
Tiensomjitr, Khomsan; Noorat, Rattha; Wechakorn, Kanokorn; Prabpai, Samran; Suksen, Kanoknetr; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon
2017-10-01
A rhodol cinnamate fluorescent chemosensor (RC) has been developed for selective detection of hydrazine (N2H4). In aqueous medium, the rhodol-based probe exhibited high selectivity for hydrazine among other molecules. The addition of hydrazine triggered a fluorescence emission with 48-fold enhancement based on hydrazinolysis and a subsequent ring-opening process. The chemical probe also displayed a selective colorimetric response toward N2H4 from colorless solution to pink, readily observed by the naked eye. The detection limit of RC for hydrazine was calculated to be 300 nM (9.6 ppb). RC is membrane permeable and was successfully demonstrated to detect hydrazine in live HepG2 cells by confocal fluorescence microscopy.
Effective scheme of photolysis of GFP in live cell as revealed with confocal fluorescence microscopy
NASA Astrophysics Data System (ADS)
Glazachev, Yu I.; Orlova, D. Y.; Řezníčková, P.; Bártová, E.
2018-05-01
We proposed an effective kinetics scheme of photolysis of green fluorescent protein (GFP) observed in live cells with a commercial confocal fluorescence microscope. We investigated the photolysis of GFP-tagged heterochromatin protein, HP1β-GFP, in live nucleus with the pulse position modulation approach, which has several advantages over the classical pump-and-probe method. At the basis of the proposed scheme lies a process of photoswitching from the native fluorescence state to the intermediate fluorescence state, which has a lower fluorescence yield and recovers back to native state in the dark. This kinetics scheme includes four effective parameters (photoswitching, reverse switching, photodegradation rate constants, and relative brightness of the intermediate state) and covers the time scale from dozens of milliseconds to minutes of the experimental fluorescence kinetics. Additionally, the applicability of the scheme was demonstrated in the cases of continuous irradiation and the classical pump-and-probe approach using numerical calculations and analytical solutions. An interesting finding of experimental data analysis was that the overall photodegradation of GFP proceeds dominantly from the intermediate state, and demonstrated approximately the second-order reaction versus irradiation power. As a practical example, the proposed scheme elucidates the artifacts of fluorescence recovery after the photobleaching method, and allows us to propose some suggestions on how to diminish them.
Glazachev, Yu I; Orlova, D Y; Řezníčková, P; Bártová, E
2018-03-23
We proposed an effective kinetics scheme of photolysis of green fluorescent protein (GFP) observed in live cells with a commercial confocal fluorescence microscope. We investigated the photolysis of GFP-tagged heterochromatin protein, HP1β-GFP, in live nucleus with the pulse position modulation approach, which has several advantages over the classical pump-and-probe method. At the basis of the proposed scheme lies a process of photoswitching from the native fluorescence state to the intermediate fluorescence state, which has a lower fluorescence yield and recovers back to native state in the dark. This kinetics scheme includes four effective parameters (photoswitching, reverse switching, photodegradation rate constants, and relative brightness of the intermediate state) and covers the time scale from dozens of milliseconds to minutes of the experimental fluorescence kinetics. Additionally, the applicability of the scheme was demonstrated in the cases of continuous irradiation and the classical pump-and-probe approach using numerical calculations and analytical solutions. An interesting finding of experimental data analysis was that the overall photodegradation of GFP proceeds dominantly from the intermediate state, and demonstrated approximately the second-order reaction versus irradiation power. As a practical example, the proposed scheme elucidates the artifacts of fluorescence recovery after the photobleaching method, and allows us to propose some suggestions on how to diminish them.
Observing the conformation of individual SNARE proteins inside live cells
NASA Astrophysics Data System (ADS)
Weninger, Keith
2010-10-01
Protein conformational dynamics are directly linked to function in many instances. Within living cells, protein dynamics are rarely synchronized so observing ensemble-averaged behaviors can hide details of signaling pathways. Here we present an approach using single molecule fluorescence resonance energy transfer (FRET) to observe the conformation of individual SNARE proteins as they fold to enter the SNARE complex in living cells. Proteins were recombinantly expressed, labeled with small-molecule fluorescent dyes and microinjected for in vivo imaging and tracking using total internal reflection microscopy. Observing single molecules avoids the difficulties of averaging over unsynchronized ensembles. Our approach is easily generalized to a wide variety of proteins in many cellular signaling pathways.
Scanning fluorescence correlation spectroscopy comes full circle.
Gunther, German; Jameson, David M; Aguilar, Joao; Sánchez, Susana A
2018-02-07
In this article, we review the application of fluorescence correlation spectroscopy (FCS) methods to studies on live cells. We begin with a brief overview of the theory underlying FCS, highlighting the type of information obtainable. We then focus on circular scanning FCS. Specifically, we discuss instrumentation and data analysis and offer some considerations regarding sample preparation. Two examples from the literature are discussed in detail. First, we show how this method, coupled with the photon counting histogram analysis, can provide information on yeast ribosomal structures in live cells. The combination of scanning FCS with dual channel detection in the study of lipid domains in live cells is also illustrated. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning
2017-01-01
Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. Three dimensional-Magnetic Twisting Cytometry (3D-MTC) is a technique for applying local mechanical stresses on living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real time acquisition of a living cell’s mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC – microscopy platform takes around 20 days to construct and the experimental procedures require ~4 days when carried out by a life sciences graduate student. PMID:28686583
Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu
2016-12-01
Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.
Systematic characterization of maturation time of fluorescent proteins in living cells
Balleza, Enrique; Kim, J. Mark; Cluzel, Philippe
2017-01-01
Slow maturation time of fluorescent proteins limits accurate measurement of rapid gene expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-precision time-lapse microscopy to characterize, at two different temperatures in E. coli, the maturation kinetics of 50 FPs that span the visible spectrum. We identified fast-maturing FPs that yield the highest signal-to-noise ratio and temporal resolution in individual growing cells. PMID:29320486
Ratiometric Fluorescence Azide-Alkyne Cycloaddition for Live Mammalian Cell Imaging.
Fu, Hongxia; Li, Yanru; Sun, Lingbo; He, Pan; Duan, Xinrui
2015-11-17
Click chemistry with metabolic labeling has been widely used for selectively imaging biomacromolecules in cells. The first example of azide-alkyne cycloaddition for ratiometric fluorescent imaging of live cells is reported. The precursor of the azido fluorophore (cresyl violet) has a fluorescence emission peak at 620 nm. The electron-rich nitrogen of the azido group blue-shifts the emission peak to 566 nm. When the click reaction occurs, an emission peak appears at 620 nm due to the lower electronic density of the newly formed triazole ring, which allows us to ratiometrically record fluorescence signals. This emission shift was applied to ratiometric imaging of propargylcholine- and dibenzocyclooctyne-labeled human breast cancer cells MCF-7 under laser confocal microscopy. Two typical triazole compounds were isolated for photophysical parameter measurements. The emission spectra presented a fluorescence emission peak around 620 nm for both click products. The results further confirmed the emission wavelength change was the result of azide-alkyne cycloaddition reaction. Since nearly all biomolecules can be metabolically labeled by reported alkyne-functionalized derivatives of native metabolites, our method can be readily applied to image these biomacromolecules.
A novel fluorescent probe for rapid and sensitive detection of hydrogen sulfide in living cells
NASA Astrophysics Data System (ADS)
Pan, Jian; Xu, Junchao; Zhang, Youlai; Wang, Liang; Qin, Caiqin; Zeng, Lintao; Zhang, Yue
2016-11-01
A novel fluorescent probe for H2S was developed based on a far-red emitting indole-BODIPY, which was decorated with morpholine and 2,4-dinitrobenzenesulfonyl (DNBS) group. This probe showed rapid response (t1/2 = 3 min), high selectivity and sensitivity for H2S with significant colorimetric and fluorescence OFF-ON signals, which was triggered by cleavage of 2,4-dinitrobenzenesulfonyl group. This probe could quantitatively detect the concentrations of H2S ranging from 0 to 60 μM, and the detection of limit was found to be as low as 26 nM. Cell imaging results indicated that the probe could detect and visualize H2S in the living cells.
A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells
Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae
2016-01-01
Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM). PMID:27589762
A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells.
Su, Dongdong; Teoh, Chai Lean; Gao, Nengyue; Xu, Qing-Hua; Chang, Young-Tae
2016-08-31
Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY)-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM).
NASA Astrophysics Data System (ADS)
Dai, Yanpeng; Fu, Jiaxin; Yao, Kun; Song, Qianqian; Xu, Kuoxi; Pang, Xiaobin
2018-03-01
A quinoline-based fluorescence probe has been prepared and characterized. Probe 1 showed a selective sensing ability for Al3 + and Fe3 + ions through fluorescence enhancement response at 515 nm when it was excited at 360 nm. In the presence of Fe3 + ion, probe 1 exhibited a detection limit of 2.10 × 10- 6 M. As for Al3 +, its detection limit of 3.58 × 10- 7 M was significantly lower than the highest limit of Al3 + in drinking water recommended by the WHO (7.41 μM), representing a rare example in reported fluorescent probe for Al3 + ion. The fluorescence microscopy experiments have demonstrated that probe 1 could be used in live cells for the detection of Al3 + and Fe3 + ions.
Protein subcellular localization assays using split fluorescent proteins
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2009-09-08
The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).
SRB-2: a promiscuous rainbow aptamer for live-cell RNA imaging.
Sunbul, Murat; Jäschke, Andres
2018-06-21
The SRB-2 aptamer originally selected against sulforhodamine B is shown here to promiscuously bind to various dyes with different colors. Binding of SRB-2 to these dyes results in either fluorescence increase or decrease, making them attractive for fluorescence microscopy and biological assays. By systematically varying fluorophore structural elements and measuring dissociation constants, the principles of fluorophore recognition by SRB-2 were analyzed. The obtained structure-activity relationships allowed us to rationally design a novel, bright, orange fluorescent turn-on probe (TMR-DN) with low background fluorescence, enabling no-wash live-cell RNA imaging. This new probe improved the signal-to-background ratio of fluorescence images by one order of magnitude over best previously known probe for this aptamer. The utility of TMR-DN is demonstrated by imaging ribosomal and messenger RNAs, allowing the observation of distinct localization patterns in bacteria and mammalian cells. The SRB-2 / TMR-DN system is found to be orthogonal to the Spinach/DFHBI and MG/Malachite green aptamer/dye systems.
Devauges, Viviane; Matthews, Daniel R.; Aluko, Justin; Nedbal, Jakub; Levitt, James A.; Poland, Simon P.; Coban, Oana; Weitsman, Gregory; Monypenny, James; Ng, Tony; Ameer-Beg, Simon M.
2014-01-01
We present a novel imaging system combining total internal reflection fluorescence (TIRF) microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET) imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor. PMID:25360776
Lei, Kepeng; Sun, Mingtai; Du, Libo; Zhang, Xiaojie; Yu, Huan; Wang, Suhua; Hayat, Tasawar; Alsaedi, Ahmed
2017-08-01
The sensitive and selective fluorescence probe for hydroxyl radical analysis is of significance because hydroxyl radical plays key roles in many physiological and pathological processes. In this work, a novel organic fluorescence molecular probe OHP for hydroxyl radical is synthesized by a two-step route. The probe employs 4-bora-3a,4a-diaza-s-indacene (difluoroboron dipyrromethene, BODIPY) as the fluorophore and possesses relatively high fluorescence quantum yields (77.14%). Hydroxyl radical can rapidly react with the probe and quench the fluorescence in a good linear relationship (R 2 =0.9967). The limit of detection is determined to be as low as 11nM. In addition, it has been demonstrated that the probe has a good stability against pH and light illumination, low cytotoxicity and high biocompatibility. Cell culture experimental results show that the probe OHP is sensitive and selective for imaging and tracking endogenous hydroxyl radical in live cells. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Shiqing; You, Minghai; Chen, Jianling; Zhou, Jie; Xie, Shusen; Yang, Hongqin
2017-06-01
The fluidity of proteins and lipids on cell membrane plays an important role in cell’s physiological functions. Fluorescence correlation spectroscopy (FCS) is an effective technique to detect the rapid dynamic behaviors of proteins and/or lipids in living cells. In this study, we used the rhodamine6G solution to optimize the FCS system. And, cholera toxin B subunit (CT-B) was used to label ganglioside on living Hela cell membranes. The diffusion time and coefficients of ganglioside can be obtained through fitting the autocorrelation curve based on the model of two-dimensional cell membrane. The results showed that the diffusion coefficients of ganglioside distributed within a wide range. It revealed the lateral diffusion of lipids on cell membrane was inhomogeneous, which was due to different microstructures of cytoplasmic membrane. The study provides a helpful method for further studying the dynamic characteristics of proteins and lipids molecules on living cell membrane.
Matsuda, Tomoki; Nagai, Takeharu
2014-12-01
Unlike in vitro protein dynamics, intracellular protein dynamics are intricately regulated by protein-protein interactions or interactions between proteins and other cellular components, including nucleic acids, the plasma membrane and the cytoskeleton. Alteration of these dynamics plays a crucial role in physiological phenomena such as gene expression and cell division. Live-cell imaging via microscopy with the inherent properties of fluorescent proteins, i.e. photobleaching and photoconversion, or fluorescence correlation spectroscopy, provides insight into the movement of proteins and their interactions with cellular components. This article reviews techniques based on photo-induced changes in the physicochemical properties of fluorescent proteins to measure protein dynamics inside living cells, and it also discusses the strengths and weaknesses of these techniques. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Chen, Tongsheng; Xing, Da
2005-01-01
Activation of caspase-3 is a central event in apoptosis. A fluorescence techniques, fluorescence resonance energy transfer (FRET), was used to study the dynamic of caspase-3 activation during apoptosis induced by tumor necrosis factor TNF-α in living cells. The FRET probe consists a CFP (cyan fluorescent protein) and a Venus (YFP mutant, yellow fluorescent protein) with a specialized linker containing the caspase-3 cleavage sequence: DEVD (Luo et al., 2001). Human lung adenocarcinoma cell line (ASTC-a-1) were stably expressed with the FRET probe and then were treated by TNF-α, respectively. Experimental results showed that FRET could monitor more insensitively the dynamic of caspase-3 activation in real-time in vivo, and this technique will be highly useful for correlating the caspase-3 activation with other apoptotic events and for rapid-screening of potential drugs that may target the apoptotic process.
Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.
Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang
2017-09-01
Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.
A hexahistidine-Zn2+-dye label reveals STIM1 surface exposure
Hauser, Christina T.; Tsien, Roger Y.
2007-01-01
Site-specific fluorescent labeling of proteins in vivo remains one of the most powerful techniques for imaging complex processes in live cells. Although fluorescent proteins in many colors are useful tools for tracking expression and localization of fusion proteins in cells, these relatively large tags (>220 aa) can perturb protein folding, trafficking and function. Much smaller genetically encodable domains (<15 aa) offer complementary advantages. We introduce a small fluorescent chelator whose membrane-impermeant complex with nontoxic Zn2+ ions binds tightly but reversibly to hexahistidine (His6) motifs on surface-exposed proteins. This live-cell label helps to resolve a current controversy concerning externalization of the stromal interaction molecule STIM1 upon depletion of Ca2+ from the endoplasmic reticulum. Whereas N-terminal fluorescent protein fusions interfere with surface exposure of STIM1, short His6 tags are accessible to the dye or antibodies, demonstrating externalization. PMID:17360414
NASA Astrophysics Data System (ADS)
Talukder, Muhammad A.; Menyuk, Curtis R.; Kostov, Yordan
2017-02-01
Distinguishing between intact cells, dead but still whole cells, and cell debris is an important but difficult task in life sciences. The most common way to identify dead cells is using a cell-impermeant DNA binding dye, such as propidium iodide. A healthy living cell has an intact cell membrane and will act as a barrier to the dye so that it cannot enter the cell. A dead cell has a compromised cell membrane, and it will allow the dye into the cell to bind to the DNA and become fluorescent. The dead cells therefore will be positive and the live cells will be negative. The dead cells later deteriorate quickly into debris. Different pieces of debris from a single cell can be incorrectly identified as separate dead cells. Although a flow cytometer can quickly perform numerous quantitative, sensitive measurements on each individual cell to determine the viability of cells within a large, heterogeneous population, it is bulky, expensive, and only large hospitals and laboratories can afford them. In this work, we show that the distance-dependent coupling of fluorophore light to surface plasmon coupled emission (SPCE) from fluorescently-labeled cells can be used to distinguish whole cells from cell debris. Once the fluorescent labels are excited by a laser, the fluorescently-labeled whole cells create two distinct intensity rings in the far-field, in contrast to fluorescently-labeled cell debris, which only creates one ring. The distinct far-field patterns can be captured by camera and used to distinguish between whole cells and cell debris.
Ho, Yin Ying; Penno, Megan; Perugini, Michelle; Lewis, Ian; Hoffmann, Peter
2012-01-01
Labeling of exposed cell surface proteins of live cells using CyDye DIGE fluor minimal dyes is an efficient strategy for cell surface proteome profiling and quantifying differentially expressed proteins in diseases. Here we describe a strategy to evaluate a two-step detergent-based protein fractionation method using live cell labeling followed by visualization of the fluorescently labeled cell surface proteins and fractionated proteins within a single 2D gel.
Hirakawa, Takeshi; Matsunaga, Sachihiro
2016-01-01
In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants.
DESIGN, SYNTHESIS, AND APPLICATION OF THE TRIMETHOPRIM-BASED CHEMICAL TAG FOR LIVE CELL IMAGING
Jing, Chaoran; Cornish, Virginia W.
2013-01-01
Over the past decade chemical tags have been developed to complement the use of fluorescent proteins in live cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon-output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E.coli dihydrofolatereductase and the antibiotic trimethoprim and subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live cell imaging. Alternative protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. PMID:23839994
Mendive-Tapia, Lorena; Subiros-Funosas, Ramon; Zhao, Can; Albericio, Fernando; Read, Nick D; Lavilla, Rodolfo; Vendrell, Marc
2017-08-01
Fluorescent peptides are valuable tools for live-cell imaging because of the high specificity of peptide sequences for their biomolecular targets. When preparing fluorescent versions of peptides, labels must be introduced at appropriate positions in the sequences to provide suitable reporters while avoiding any impairment of the molecular recognition properties of the peptides. This protocol describes the preparation of the tryptophan (Trp)-based fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH and its incorporation into peptides for live-cell fluorescence imaging-an approach that is applicable to most peptide sequences. Fmoc-Trp(C 2 -BODIPY)-OH contains a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorogenic core, which works as an environmentally sensitive fluorophore, showing high fluorescence in lipophilic conditions. It is attached to Trp via a spacer-free C-C linkage, resulting in a labeled amino acid that can mimic the molecular interactions of Trp, enabling wash-free imaging. This protocol covers the chemical synthesis of the fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH (3-4 d), the preparation of the labeled antimicrobial peptide BODIPY-cPAF26 by solid-phase synthesis (6-7 d) and its spectral and biological characterization as a live-cell imaging probe for different fungal pathogens. As an example, we include a procedure for using BODIPY-cPAF26 for wash-free imaging of fungal pathogens, including real-time visualization of Aspergillus fumigatus (5 d for culturing, 1-2 d for imaging).
Silver nanoparticle-induced degranulation observed with quantitative phase microscopy
NASA Astrophysics Data System (ADS)
Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung
2010-07-01
Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 μg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca2+]i) and histamine with fluorescent methods.
Thurn, Kenneth T; Paunesku, Tatjana; Wu, Aiguo; Brown, Eric M B; Lai, Barry; Vogt, Stefan; Maser, Jörg; Aslam, Mohammed; Dravid, Vinayak; Bergan, Raymond; Woloschak, Gayle E
2009-06-01
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single-stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photoinducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging with the addition of gadolinium Gd(III) contrast agents. Herein two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents are described. This permits direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>10(4) cells). X-ray fluorescence microscopy (XFM) is combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates and used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell shows an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
Monitoring of nucleophosmin oligomerization in live cells.
Holoubek, Ales; Heřman, Petr; Sýkora, Jan; Brodská, Barbora; Humpolíčková, Jana; Kráčmarová, Markéta; Gášková, Dana; Hof, Martin; Kuželová, Kateřina
2018-06-14
Oligomerization plays a crucial role in the function of nucleophosmin (NPM), an abundant nucleolar phosphoprotein. Two dual-color methods based on modern fluorescence confocal microscopy are applied for tracking NPM aggregates in live cells: cross-correlation Number and Brightness analysis (ccN&B) combined with pulsed interleaved excitation (PIE) and fluorescence-lifetime imaging microscopy (FLIM) utilizing resonance energy transfer (FRET). HEK-293T cells were transfected with mixture of plasmids designed for tagging with fluorescent proteins so that the cells express mixed population of NPM labeled either with eGFP or mRFP1. We observe joint oligomers formed from the fluorescently labeled NPM. Having validated the in vivo methods, we study an effect of substitutions in cysteine 21 (Cys21) of the NPM N-terminus on the oligomerization to demonstrate applicability of the methods. Inhibitory effect of mutations of the Cys21 to nonpolar Ala or to aromatic Phe on the oligomerization was reported in literature using in vitro semi-native electrophoresis. However, we do not detect any break-up of the joint NPM oligomers due to the Cys21 mutations in live cells. In vivo microscopy observations are supported by an in vitro method, the GFP-Trap immunoprecipitation assay. Our results therefore show importance of utilizing several methods for detection of biologically relevant protein aggregates. In vivo monitoring of the NPM oligomerization, a potential cancer therapy target, by the presented methods offers a new way to monitor effects of drugs that are tested as NPM oligomerization inhibitors directly in live cells. © 2018 IOP Publishing Ltd.
Biocompatible yogurt carbon dots: evaluation of utilization for medical applications
NASA Astrophysics Data System (ADS)
Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet
2017-09-01
In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.
Non-fused phospholes as fluorescent probes for imaging of lipid droplets in living cells
NASA Astrophysics Data System (ADS)
Öberg, Elisabet; Appelqvist, Hanna; Nilsson, K. Peter R.
2017-04-01
Molecular tools for fluorescent imaging of specific compartments in cells are essential for understanding the function and activity of cells. Here, we report the synthesis of a series of pyridyl- and thienyl-substituted phospholes and the evaluation of these dyes for fluorescent imaging of cells. The thienyl-substituted phospholes proved to be successful for staining of cultured normal and malignant cells due to their fluorescent properties and low toxicity. Co-staining experiments demonstrated that these probes target lipid droplets, which are, lipid-storage organelles found in the cytosol of nearly all cell types. Our findings confirm that thienyl-substituted phospholes can be utilized as fluorescent tools for vital staining of cells, and we foresee that these fluorescent dyes might be used in studies to unravel the roles that lipid droplets play in cellular physiology and their role in diseases.
Chen, Y-L; Wang, S-Y; Liu, R-S; Wang, H-E; Chen, J-C; Chiou, S-H; Chang, C A; Lin, L-T; Tan, D T W; Lee, Y-J
2012-01-01
A balance between cell proliferation and cell loss is essential for tumor progression. Although up to 90% of cells are lost in late-stage carcinomas, the progression and characteristics of remnant living cells in tumor mass are unclear. Here we used molecular imaging to track the progression of living cells in a syngeneic tumor model, and ex vivo investigated the properties of this population at late-stage tumor. The piggyBac transposon system was used to stably introduce the dual reporter genes, including monomeric red fluorescent protein (mRFP) and herpes simplex virus type-1 thymidine kinase (HSV1-tk) genes for fluorescence-based and radionuclide-based imaging of tumor growth in small animals, respectively. Iodine-123-labeled 5-iodo-2′-fluoro-1-beta-𝒟-arabinofuranosyluracil was used as a radiotracer for HSV1-tk gene expression in tumors. The fluorescence- and radionuclide-based imaging using the single-photon emission computed tomography/computed tomography revealed that the number of living cells reached the maximum at 1 week after implantation of 4T1 tumors, and gradually decreased and clustered near the side of the body until 4 weeks accompanied by enlargement of tumor mass. The remnant living cells at late-stage tumor were isolated and investigated ex vivo. The results showed that these living cells could form mammospheres and express cancer stem cell (CSC)-related biomarkers, including octamer-binding transcription factor 4, SRY (sex-determining region Y)-box 2, and CD133 genes compared with those cultured in vitro. Furthermore, this HSV1-tk-expressing CSC-like population was sensitive to ganciclovir applied for the suicide therapy. Taken together, the current data suggested that cells escaping from cell loss in late-stage tumors exhibit CSC-like characteristics, and HSV1-tk may be considered a theranostic agent for targeting this population in vivo. PMID:23034334
Schvartz, Tomer; Aloush, Noa; Goliand, Inna; Segal, Inbar; Nachmias, Dikla; Arbely, Eyal; Elia, Natalie
2017-10-15
Genetic code expansion and bioorthogonal labeling provide for the first time a way for direct, site-specific labeling of proteins with fluorescent-dyes in live cells. Although the small size and superb photophysical parameters of fluorescent-dyes offer unique advantages for high-resolution microscopy, this approach has yet to be embraced as a tool in live cell imaging. Here we evaluated the feasibility of this approach by applying it for α-tubulin labeling. After a series of calibrations, we site-specifically labeled α-tubulin with silicon rhodamine (SiR) in live mammalian cells in an efficient and robust manner. SiR-labeled tubulin successfully incorporated into endogenous microtubules at high density, enabling video recording of microtubule dynamics in interphase and mitotic cells. Applying this labeling approach to structured illumination microscopy resulted in an increase in resolution, highlighting the advantages in using a smaller, brighter tag. Therefore, using our optimized assay, genetic code expansion provides an attractive tool for labeling proteins with a minimal, bright tag in quantitative high-resolution imaging. © 2017 Schvartz et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Malcova, Ivana; Farkasovsky, Marian; Senohrabkova, Lenka; Vasicova, Pavla; Hasek, Jiri
2016-05-01
Live-imaging analysis is performed in many laboratories all over the world. Various tools have been developed to enable protein labeling either in plasmid or genomic context in live yeast cells. Here, we introduce a set of nine integrative modules for the C-terminal gene tagging that combines three fluorescent proteins (FPs)-ymTagBFP, mCherry and yTagRFP-T with three dominant selection markers: geneticin, nourseothricin and hygromycin. In addition, the construction of two episomal modules for Saccharomyces cerevisiae with photostable yTagRFP-T is also referred to. Our cassettes with orange, red and blue FPs can be combined with other fluorescent probes like green fluorescent protein to prepare double- or triple-labeled strains for multicolor live-cell imaging. Primers for PCR amplification of the cassettes were designed in such a way as to be fully compatible with the existing PCR toolbox representing over 50 various integrative modules and also with deletion cassettes either for single or repeated usage to enable a cost-effective and an easy exchange of tags. New modules can also be used for biochemical analysis since antibodies are available for all three fluorescent probes. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
TCSPC based approaches for multiparameter detection in living cells
NASA Astrophysics Data System (ADS)
Jahn, Karolina; Buschmann, Volker; Koberling, Felix; Hille, Carsten
2014-03-01
In living cells a manifold of processes take place simultaneously. This implies a precise regulation of intracellular ion homeostasis. In order to understand their spatio-temporal pattern comprehensively, the development of multiplexing concepts is essential. Due to the multidimensional characteristics of fluorescence dyes (absorption and emission spectra, decay time, anisotropy), the highly sensitive and non-invasive fluorescence microscopy is a versatile tool for realising multiplexing concepts. A prerequisite are analyte-specific fluorescence dyes with low cross-sensitivity to other dyes and analytes, respectively. Here, two approaches for multiparameter detection in living cells are presented. Insect salivary glands are well characterised secretory active tissues which were used as model systems to evaluate multiplexing concepts. Salivary glands secrete a KCl-rich or NaCl-rich fluid upon stimulation which is mainly regulated by intracellular Ca2+ as second messenger. Thus, pairwise detection of intracellular Na+, Cl- and Ca2+ with the fluorescent dyes ANG2, MQAE and ACR were tested. Therefore, the dyes were excited simultaneously (2-photon excitation) and their corresponding fluorescence decay times were recorded within two spectral ranges using time-correlated singlephoton counting (TCSPC). A second approach presented here is based on a new TCSPC-platform covering decay time detection from picoseconds to milliseconds. Thereby, nanosecond decaying cellular fluorescence and microsecond decaying phosphorescence of Ruthenium-complexes, which is quenched by oxygen, were recorded simultaneously. In both cases changes in luminescence decay times can be linked to changes in analyte concentrations. In consequence of simultaneous excitation as well as detection, it is possible to get a deeper insight into spatio-temporal pattern in living tissues.
NASA Astrophysics Data System (ADS)
Duan, Zhongyu; Gao, Yu-Juan; Qiao, Zeng-Ying; Qiao, Shenglin; Wang, Yongmei; Hou, Chunyuan; Wang, Lei; Wang, Hao
2015-09-01
Supramolecular self-assemblies with various nanostructures in organic and aqueous solutions have been prepared with desired functions. However, in situ construction of self-assembled superstructures in physiological conditions to achieve expected biological functions remains a challenge. Here, we report a supramolecular system to realize the in situ formation of nanoaggregates in living cells. The bis(pyrene) monomers were dispersed inside of hydrophobic domains of pH-sensitive polymeric micelles and delivered to the lysosomes of cells. In the acidic lysosomes, the bis(pyrene) monomers were released and self-aggregated with turn-on fluorescence. We envision this strategy for in situ construction of supramolecular nanostructures in living cells will pave the way for molecular diagnostics in the future.
Spinning Disk Confocal Imaging of Neutrophil Migration in Zebrafish
Lam, Pui-ying; Fischer, Robert S; Shin, William D.; Waterman, Clare M; Huttenlocher, Anna
2014-01-01
Live-cell imaging techniques have been substantially improved due to advances in confocal microscopy instrumentation coupled with ultrasensitive detectors. The spinning disk confocal system is capable of generating images of fluorescent live samples with broad dynamic range and high temporal and spatial resolution. The ability to acquire fluorescent images of living cells in vivo on a millisecond timescale allows the dissection of biological processes that have not previously been visualized in a physiologically relevant context. In vivo imaging of rapidly moving cells such as neutrophils can be technically challenging. In this chapter, we describe the practical aspects of imaging neutrophils in zebrafish embryos using spinning disk confocal microscopy. Similar setups can also be applied to image other motile cell types and signaling processes in translucent animals or tissues. PMID:24504955
Munshi, Soumyabrata; Twining, Robert C; Dahl, Russell
2014-01-01
The cell viability assay by alamar blue is based on the principle of reduction of the non-fluorescent reagent (resazurin) to a fluorescent compound (resarufin) by the intracellular reducing environment of living cells over time. In the present study, we have for the first time shown that even in the absence of cells, there occurs significant interaction between alamar blue and cell-culture media causing an increase in fluorescence. We have used Opti-MEM, DMEM and 1:1 DMEM:Opti-MEM as three different media and determined the changes in their relative fluorescence units (RFUs) over time after the addition of 10% (v/v) alamar blue using two-way repeated measures analysis of variance (RM-ANOVA) followed by Tukey's post-hoc test. Our results show that upon the addition of alamar blue, there occurs a significant increase in RFUs in all the three media over time along with a significantly higher RFU for the Opti-MEM overall (p<0.05). We also show that the time-dependent change in RFU of 1:1 DMEM:Opti-MEM was more gradual compared to that of the other two media. These findings indicate that the reagent can itself interact with the media causing significantly different fluorescence over time in a manner independent from the effect of intracellular reducing environment of living cells on alamar blue. In addition our results indicate that fluorescence varies as a function of incubation time with the reagent. These findings signify the need for routine subtraction of the background fluorescence of media-only with alamar blue reagent during measurement of cell viability by this method in order to determine an accurate measurement of cell viability. Copyright © 2014 Elsevier Inc. All rights reserved.
Tan, Mingqian; Li, Xintong; Wu, Hao; Wang, Beibei; Wu, Jing
2015-12-01
Carbon dots with both one- and two-photon fluorescence have drawn great attention for biomedical imaging. Herein, nitrogen-doped carbon dots were facilely developed by one-pot hydrothermal method using bovine serum albumin and formic acid as carbon sources. They are highly water-soluble with strong fluorescence when excited with ultraviolet or near infrared light. The carbon dots have a diameter of ~8.32 nm and can emit strong two-photon induced fluorescence upon excitation at 750 nm with a femtosecond laser. X-ray photoelectron spectrometer analysis revealed that the carbon dots contained three components, C, N and O, corresponding to the peak at 285, 398 and 532 eV, respectively. The Fourier-transform infrared spectroscopy analysis revealed that there are carboxyl and carboxylic groups on the surface, which allowed further linking of functional molecules. pH stability study demonstrated that the carbon dots are able to be used in a wide range of pH values. The fluorescence mechanism is also discussed in this study. Importantly, these carbon dots are biocompatible and highly photostable, which can be directly applied for both one- and two-photon living cell imaging. After proper surface functionalization with TAT peptide, they can be used as fluorescent probes for live cell nuclear-targeted imaging. Copyright © 2015 Elsevier B.V. All rights reserved.
Two-photon fluorescent sensor for K+ imaging in live cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D.
2016-03-01
It is difficult to overstate the physiological importance of potassium for life as its indispensable roles in a variety of biological processes are widely known. As a result, efficient methods for determining physiological levels of potassium are of paramount importance. Despite this, relatively few K+ fluorescence sensors have been reported, with only one being commercially available. A new two-photon excited fluorescent K+ sensor is reported. The sensor is comprised of three moieties, a highly selective K+ chelator as the K+ recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (<52-fold) in detecting K+ over other physiological metal cations. Upon binding K+, the sensor switches from non-fluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K+ sensing in living cells.
The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.
Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie
2013-05-01
pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.
Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor
NASA Astrophysics Data System (ADS)
Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao
2017-09-01
The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.
Dörlich, René M; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G Ulrich
2015-05-07
Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.
A chromenoquinoline-based fluorescent off-on thiol probe for bioimaging.
Kand, Dnyaneshwar; Kalle, Arunasree Marasanapalli; Varma, Sreejith Jayasree; Talukdar, Pinaki
2012-03-11
A new chromenoquinoline-based fluorescent off-on thiol probe 2 is reported. In aqueous buffer solutions at physiological pH, the probe exhibited 223-fold enhancement in fluorescence intensity by a Michael addition of cysteine to the maleimide appended to a chromenoquinoline. Cell permeability and live cell imaging of thiols are also demonstrated. This journal is © The Royal Society of Chemistry 2012
A new fluorescent test for cell vitality using calcofluor white M2R.
Fischer, J M; Peterson, C A; Bols, N C
1985-03-01
The fluorescent fabric-brightener dye, Calcofluor white M2R (CFW), can be used to distinguish between living and dead cells from a variety of animal and plant sources. CFW does not stain living mouse fibroblasts or trout red blood cells and stains only the cell walls in living cells from the epidermis of onion bulb scale, staminal hairs of Tradescantia, and longitudinal sections of broad bean stems and roots. Heat-killed plant or animal cells are recognized by their lightly stained cytoplasm and brightly stained nuclei. The optimum staining concentrations were very low (0.01% to 0.03%) and nontoxic. Using onion scale epidermis in which some cells had been killed by heating as a test system, and the plasmolysis-deplasmolysis rection as the ultimate test for cell vitality, results from CFW staining correctly predicted cell vitality for about 98% of the cells tested. This success rate was comparable to those for Evans blue, uranin or neutral red in this test system.
Ex vivo Live Imaging of Lung Metastasis and Their Microenvironment
Maynard, Carrie; Plaks, Vicki
2016-01-01
Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment. PMID:26862704
Wang, Xuzhe; Zhou, Li; Qiang, Fei; Wang, Feiyi; Wang, Rui; Zhao, Chunchang
2016-03-10
A BODIPY-based ratiometric fluorescent probe for HOCl has been designed based on the transduction of thioether to sulfoxide function. This probe features a marked absorption and emission blue-shift upon the HOCl-promoted rapid transduction, enabling the highly selective and ratiometric detection. In addition, the probe works excellently within a wide pH range of 4-10, addressing the existing pH dependency issue. Living cells studies demonstrate that the probe is cell membrane permeable and can be employed successfully to image endogenous HOCl generation in macrophage cells. Copyright © 2016 Elsevier B.V. All rights reserved.
A near-infrared fluorescent probe for rapid detection of carbon monoxide in living cells.
Yan, Liqiang; Nan, Ding; Lin, Cheng; Wan, Yi; Pan, Qiang; Qi, Zhengjian
2018-09-05
A near-infrared (NIR) and colorimetric fluorescent probe system was developed for Carbon Monoxide (CO) via a Pd 0 -mediated Tsuji-Trost reaction. In this probe, phenoxide anion formation (DPCO - ) was acted as the signal unit and an allyl carbonate group was used as the recognition unit. This non-fluorescent probe molecule can release the relevant fluorophore after conversion of Pd 2+ to Pd 0 by CO. The probe system including probe 1 and Pd 2+ can be used for "naked-eye" detection of CO, and exhibited high selectivity to CO over various other sensing objects. More importantly, the probe system has great potential for fluorescence imaging of intracellular CO in living cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Frex and FrexH: Indicators of metabolic states in living cells.
Zhao, Yuzheng; Yang, Yi
2012-01-01
Reduced nicotinamide adenine dinucleotide (NADH) and its oxidized form play central roles in energy and redox metabolisms. For many years, researchers have relied on the weak NADH endogenous fluorescence signal to determine the NADH level in living cells. We recently reported a series of genetically encoded fluorescent sensors highly specific for NADH. These sensors allow real-time, quantitative measurement of this significant molecule in different subcellular compartments. In this study, we provide a more detailed discussion of the benefits and limitations of these genetically encoded fluorescent sensors. These sensors are utilized in most laboratories without the need for sophisticated instruments because of their superior sensitivity and specificity. They are also viable alternatives to existing techniques for measuring the endogenous fluorescence of intracellular NAD(P)H.
Improved two-photon imaging of living neurons in brain tissue through temporal gating
Gautam, Vini; Drury, Jack; Choy, Julian M. C.; Stricker, Christian; Bachor, Hans-A.; Daria, Vincent R.
2015-01-01
We optimize two-photon imaging of living neurons in brain tissue by temporally gating an incident laser to reduce the photon flux while optimizing the maximum fluorescence signal from the acquired images. Temporal gating produces a bunch of ~10 femtosecond pulses and the fluorescence signal is improved by increasing the bunch-pulse energy. Gating is achieved using an acousto-optic modulator with a variable gating frequency determined as integral multiples of the imaging sampling frequency. We hypothesize that reducing the photon flux minimizes the photo-damage to the cells. Our results, however, show that despite producing a high fluorescence signal, cell viability is compromised when the gating and sampling frequencies are equal (or effectively one bunch-pulse per pixel). We found an optimum gating frequency range that maintains the viability of the cells while preserving a pre-set fluorescence signal of the acquired two-photon images. The neurons are imaged while under whole-cell patch, and the cell viability is monitored as a change in the membrane’s input resistance. PMID:26504651
Fluoro-luminometric real-time measurement of bacterial viability and killing.
Lehtinen, Janne; Virta, Marko; Lilius, Esa Matti
2003-10-01
The viability and killing of Escherichia coli was measured on a real-time basis using a fluoro-luminometric device, which allows successive measurements of fluorescence and bioluminescence without user intervention. Bacteria were made fluorescent and bioluminescent by expression of gfp and insect luciferase (lucFF) genes. The green fluorescent protein (GFP) is a highly fluorescent, extremely stable protein, which accumulates in cells during growth, and therefore the measured fluorescence signal was proportional to the total number of cells. The luciferase reaction is dependent of ATP produced by living cells, so that the bioluminescence level was a direct measure of the viable cells. In contrast to the bacterial luciferase, the insect luciferase uses a water-soluble and nonvolatile substrate, which makes automated multi-well microplate assay possible. For the validation of the assay, the proportion of living and dead cell populations was experimentally modified by incubating E. coli cells in the presence of various ethanol concentrations. Bacterial viability and killing measured by a fluoro-luminometric assay correlated fairly well with the reference methods: conventional plate counting, optical density measurement and various flow cytometric analyses. The real-time assay described here allows following the changes in bacterial cultures and assessing the bactericidal and other effects of various chemical, immunological and physical agents simultaneously in large numbers of samples.
NASA Astrophysics Data System (ADS)
Shen, Youming; Zhang, Xiangyang; Zhang, Youyu; Zhang, Chunxiang; Jin, Junling; Li, Haitao
2017-10-01
A new turn-on phthalimide fluorescent probe has designed and synthesized for sensing cysteine (Cys) based on excited state intramolecular proton transfer (ESIPT) process. It is consisted of a 3-hydroxyphthalimide derivative moiety as the fluorophore and an acrylic ester group as a recognition receptor. The acrylic ester acts as an ESIPT blocking agent. Upon addition of cystein, intermolecular nucleophilic attack of cysteine on acrylic ester releases the fluorescent 3-hydroxyphthalimide derivative, thereby enabling the ESIPT process and leading to enhancement of fluorescence. The probe displays high sensitivity, excellent selectivity and with large Stokes shift toward cysteine. The linear interval range of the fluorescence titration ranged from 0 to 1.0 × 10- 5 M and detection limit is low (6 × 10- 8 M). In addition, the probe could be used for bio-imaging in living cells.
A new FRET ratiometric fluorescent chemosensor for Hg2+ and its application in living EC 109 cells
NASA Astrophysics Data System (ADS)
Song, Jianhua; Huai, Manxiu; Wang, Cuicui; Xu, Zhanhui; Zhao, Yufen; Ye, Yong
2015-03-01
On the basis of fluorescent resonance energy transfer, a new fluorophore dyad (L) bearing rhodamine B and naphthalimide was developed as fluorescent ratiometric chemosensor for Hg2+ in aqueous solution. L exhibited high selectivity and excellent sensitivity towards Hg2+ with a broad pH span (1.0-8.0) and the detection limit of L was 2.11 × 10-8 M. Sensor L for the detection of Hg2+ was rapid and the recognizing event could complete in 2.5 min. A significant change in the color could be used for naked-eye detection. The selective fluorescence response of L to Hg2+ is due to the Hg2+-promoted ring opening of spirolactam of rhodamine moiety, leading to a cyclization reaction of thiourea moiety. In addition, fluorescence imaging experiments of Hg2+ in living EC 109 cells demonstrated its value of practical applications in biological systems.
Circumventing photodamage in live-cell microscopy
Magidson, Valentin; Khodjakov, Alexey
2013-01-01
Fluorescence microscopy has become an essential tool in cell biology. This technique allows researchers to visualize the dynamics of tissue, cells, individual organelles and macromolecular assemblies inside the cell. Unfortunately, fluorescence microscopy is not completely ‘non-invasive’ as the high-intensity excitation light required for excitation of fluorophores is inherently toxic for live cells. Physiological changes induced by excessive illumination can lead to artifacts and abnormal responses. In this chapter we review major factors that contribute to phototoxicity and discuss practical solutions for circumventing photodamage. These solutions include the proper choice of image acquisition parameters, optimization of filter sets, hardware synchronization, and the use of intelligent illumination to avoid unnecessary light exposure. PMID:23931522
Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion
NASA Astrophysics Data System (ADS)
Manjunath, Rangasamy; Kannan, Palaninathan
2018-05-01
A new rhodamine-based colorimetric and fluorescent turn-on chemosensor (L) has been designed and synthesized for selective and sensitive detection of Al3+ ion. The sensing behavior toward metal ion was investigated by UV/Vis and fluorescence spectroscopy. Upon addition of Al3+ ion to solution of L provided a visual color change as well as significantly fluorescent enhancement, while other metal ions including Na+, Mg2+, K+, Mn2+, Fe3+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+ and Hg2+ ions fails to generate a distinct color and spectral changes, the distinct color change and rapid switch-on fluorescence also provide naked eye detection for Al3+ ion. The mechanism involved equilibrium between non-fluorescent spirocyclic form and highly fluorescent ring open form process was utilized and 1:2 stoichiometry for L-Al3+ complex formed with an association constant of 1.42 × 103 M-1. Moreover, chemosensor L was applied for living cell imaging and confirmed that can be used as a fluorescent probe for monitoring Al3+ ion in living cells.
Wu, Haoxing; Yang, Jun; Šečkutė, Jolita; Devaraj, Neal K
2014-06-02
In spite of the wide application potential of 1,2,4,5-tetrazines, particularly in live-cell and in vivo imaging, a major limitation has been the lack of practical synthetic methods. Here we report the in situ synthesis of (E)-3-substituted 6-alkenyl-1,2,4,5-tetrazine derivatives through an elimination-Heck cascade reaction. By using this strategy, we provide 24 examples of π-conjugated tetrazine derivatives that can be conveniently prepared from tetrazine building blocks and related halides. These include tetrazine analogs of biological small molecules, highly conjugated buta-1,3-diene-substituted tetrazines, and a diverse array of fluorescent probes suitable for live-cell imaging. These highly conjugated probes show very strong fluorescence turn-on (up to 400-fold) when reacted with dienophiles such as cyclopropenes and trans-cyclooctenes, and we demonstrate their application for live-cell imaging. This work provides an efficient and practical synthetic methodology for tetrazine derivatives and will facilitate the application of conjugated tetrazines, particularly as fluorogenic probes for live-cell imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan
2015-08-27
Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.
Live cell imaging of actin dynamics in dexamethasone-treated porcine trabecular meshwork cells.
Fujimoto, Tomokazu; Inoue, Toshihiro; Inoue-Mochita, Miyuki; Tanihara, Hidenobu
2016-04-01
The regulation of the actin cytoskeleton in trabecular meshwork (TM) cells is important for controlling outflow of the aqueous humor. In some reports, dexamethasone (DEX) increased the aqueous humor outflow resistance and induced unusual actin structures, such as cross-linked actin networks (CLAN), in TM cells. However, the functions and dynamics of CLAN in TM cells are not completely known, partly because actin stress fibers have been observed only in fixed cells. We conducted live-cell imaging of the actin dynamics in TM cells with or without DEX treatment. An actin-green fluorescent protein (GFP) fusion construct with a modified insect virus was transfected into porcine TM cells. Time-lapse imaging of live TM cells treated with 25 μM Y-27632 and 100 nM DEX was performed using an inverted fluorescence microscope. Fluorescent images were recorded every 15 s for 30 min after Y-27632 treatment or every 30 min for 72 h after DEX treatment. The GFP-actin was expressed in 22.7 ± 10.9% of the transfected TM cells. In live TM cells, many actin stress fibers were observed before the Y-27632 treatment. Y-27632 changed the cell shape and decreased stress fibers in a time-dependent manner. In fixed cells, CLAN-like structures were seen in 26.5 ± 1.7% of the actin-GFP expressed PTM cells treated with DEX for 72 h. In live imaging, there was 28% CLAN-like structure formation at 72 h after DEX treatment, and the lifetime of CLAN-like structures increased after DEX treatment. The DEX-treated cells with CLAN-like structures showed less migration than DEX-treated cells without CLAN-like structures. Furthermore, the control cells (without DEX treatment) with CLAN-like structures also showed less migration than the control cells without CLAN-like structures. These results suggested that CLAN-like structure formation was correlated with cell migration in TM cells. Live cell imaging of the actin cytoskeleton provides valuable information on the actin dynamics in TM cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emission spectra profiling of fluorescent proteins in living plant cells
2013-01-01
Background Fluorescence imaging at high spectral resolution allows the simultaneous recording of multiple fluorophores without switching optical filters, which is especially useful for time-lapse analysis of living cells. The collected emission spectra can be used to distinguish fluorophores by a computation analysis called linear unmixing. The availability of accurate reference spectra for different fluorophores is crucial for this type of analysis. The reference spectra used by plant cell biologists are in most cases derived from the analysis of fluorescent proteins in solution or produced in animal cells, although these spectra are influenced by both the cellular environment and the components of the optical system. For instance, plant cells contain various autofluorescent compounds, such as cell wall polymers and chlorophyll, that affect the spectral detection of some fluorophores. Therefore, it is important to acquire both reference and experimental spectra under the same biological conditions and through the same imaging systems. Results Entry clones (pENTR) of fluorescent proteins (FPs) were constructed in order to create C- or N-terminal protein fusions with the MultiSite Gateway recombination technology. The emission spectra for eight FPs, fused C-terminally to the A- or B-type cyclin dependent kinases (CDKA;1 and CDKB1;1) and transiently expressed in epidermal cells of tobacco (Nicotiana benthamiana), were determined by using the Olympus FluoView™ FV1000 Confocal Laser Scanning Microscope. These experimental spectra were then used in unmixing experiments in order to separate the emission of fluorophores with overlapping spectral properties in living plant cells. Conclusions Spectral imaging and linear unmixing have a great potential for efficient multicolor detection in living plant cells. The emission spectra for eight of the most commonly used FPs were obtained in epidermal cells of tobacco leaves and used in unmixing experiments. The generated set of FP Gateway entry vectors represents a valuable resource for plant cell biologists. PMID:23552272
Poland, Simon P.; Krstajić, Nikola; Monypenny, James; Coelho, Simao; Tyndall, David; Walker, Richard J.; Devauges, Viviane; Richardson, Justin; Dutton, Neale; Barber, Paul; Li, David Day-Uei; Suhling, Klaus; Ng, Tony; Henderson, Robert K.; Ameer-Beg, Simon M.
2015-01-01
We demonstrate diffraction limited multiphoton imaging in a massively parallel, fully addressable time-resolved multi-beam multiphoton microscope capable of producing fluorescence lifetime images with sub-50ps temporal resolution. This imaging platform offers a significant improvement in acquisition speed over single-beam laser scanning FLIM by a factor of 64 without compromising in either the temporal or spatial resolutions of the system. We demonstrate FLIM acquisition at 500 ms with live cells expressing green fluorescent protein. The applicability of the technique to imaging protein-protein interactions in live cells is exemplified by observation of time-dependent FRET between the epidermal growth factor receptor (EGFR) and the adapter protein Grb2 following stimulation with the receptor ligand. Furthermore, ligand-dependent association of HER2-HER3 receptor tyrosine kinases was observed on a similar timescale and involved the internalisation and accumulation or receptor heterodimers within endosomes. These data demonstrate the broad applicability of this novel FLIM technique to the spatio-temporal dynamics of protein-protein interaction. PMID:25780724
Ghosh, Shirsendu; Nandi, Somen; Ghosh, Catherine; Bhattacharyya, Kankan
2016-09-19
Fluorescence dynamics in the endoplasmic reticulum (ER) of a live non-cancer lung cell (WI38) and a lung cancer cell (A549) are studied by using time-resolved confocal microscopy. To selectively study the organelle, ER, we have used an ER-Tracker dye. From the emission maximum (λmaxem) of the ER-Tracker dye, polarity (i.e. dielectric constant, ϵ) in the ER region of the cells (≈500 nm in WI38 and ≈510 nm in A549) is estimated to be similar to that of chloroform (λmaxem =506 nm, ϵ≈5). The red shift by 10 nm in λmaxem in the cancer cell (A549) suggests a slightly higher polarity compared to the non-cancer cell (WI38). The fluorescence intensity of the ER-Tracker dye exhibits prolonged intermittent oscillations on a timescale of 2-6 seconds for the cancer cell (A549). For the non-cancer cell (WI38), such fluorescence oscillations are much less prominent. The marked fluorescence intensity oscillations in the cancer cell are attributed to enhanced calcium oscillations. The average solvent relaxation time (<τs >) of the ER region in the lung cancer cell (A549, 250±50 ps) is about four times faster than that in the non-cancer cell (WI38, 1000±50 ps). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Shenggang; Yin, Huihui; Huang, Yue; Guan, Xiangming
2018-06-11
Cellular thiols are divided into two major categories: nonprotein thiols (NPSH) and protein thiols (PSH). Thiols are unevenly distributed inside the cell and compartmentalized in subcellular structures. Most of our knowledge on functions/dysfunctions of cellular/subcellular thiols is based on the quantification of cellular/subcellular thiols through homogenization of cellular/subcellular structures followed by a thiol quantification method. We would like to report a thiol-specific mitochondria-selective fluorogenic benzofurazan sulfide {7,7'-thiobis( N-rhodamine-benzo[c][1,2,5]oxadiazole-4-sulfonamide) (TBROS)} that can effectively image and quantify live cell NPSH in mitochondria through fluorescence intensity. Limited methods are available for imaging thiols in mitochondria in live cells especially in a quantitative manner. The thiol specificity of TBROS was demonstrated by its ability to react with thiols and inability to react with biologically relevant nucleophilic functional groups other than thiols. TBROS, with minimal fluorescence, formed strong fluorescent thiol adducts (λ ex = 550 nm, λ em = 580 nm) when reacting with NPSH confirming its fluorogenicity. TBROS failed to react with PSH from bovine serum albumin and cell homogenate proteins. The high mitochondrial thiol selectivity of TBROS was achieved by its mitochondria targeting structure and its higher reaction rate with NPSH at mitochondrial pH. Imaging of mitochondrial NPSH in live cells was confirmed by two colocalization methods and use of a thiol-depleting reagent. TBROS effectively imaged NPSH changes in a quantitative manner in mitochondria in live cells. The reagent will be a useful tool in exploring physiological and pathological roles of mitochondrial thiols.
NASA Astrophysics Data System (ADS)
Eckert, Hann-Jörg; Petrášek, Zdeněk; Kemnitz, Klaus
2006-10-01
Picosecond fluorescence lifetime imaging microscopy (FLIM) provides a most valuable tool to analyze the primary processes of photosynthesis in individual cells and chloroplasts of living cells. In order to obtain correct lifetimes of the excited states, the peak intensity of the exciting laser pulses as well as the average intensity has to be sufficiently low to avoid distortions of the kinetics by processes such as singlet-singlet annihilation, closing of the reaction centers or photoinhibition. In the present study this requirement is achieved by non-scanning wide-field FLIM based on time- and space-correlated single-photon counting (TSCSPC) using a novel microchannel plate photomultiplier with quadrant anode (QA-MCP) that allows parallel acquisition of time-resolved images under minimally invasive low-excitation conditions. The potential of the wide-field TCSPC method is demonstrated by presenting results obtained from measurements of the fluorescence dynamics in individual chloroplasts of moss leaves and living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.
Segmentation and classification of cell cycle phases in fluorescence imaging.
Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan
2009-01-01
Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.
Glycine Insertion Makes Yellow Fluorescent Protein Sensitive to Hydrostatic Pressure
Watanabe, Tomonobu M.; Imada, Katsumi; Yoshizawa, Keiko; Nishiyama, Masayoshi; Kato, Chiaki; Abe, Fumiyoshi; Morikawa, Takamitsu J.; Kinoshita, Miki; Fujita, Hideaki; Yanagida, Toshio
2013-01-01
Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP) by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure. PMID:24014139
Partitioning of the Golgi Apparatus during Mitosis in Living HeLa Cells
Shima, David T.; Haldar, Kasturi; Pepperkok, Rainer; Watson, Rose; Warren, Graham
1997-01-01
The Golgi apparatus of HeLa cells was fluorescently tagged with a green fluorescent protein (GFP), localized by attachment to the NH2-terminal retention signal of N-acetylglucosaminyltransferase I (NAGT I). The location was confirmed by immunogold and immunofluorescence microscopy using a variety of Golgi markers. The behavior of the fluorescent Golgi marker was observed in fixed and living mitotic cells using confocal microscopy. By metaphase, cells contained a constant number of Golgi fragments dispersed throughout the cytoplasm. Conventional and cryoimmunoelectron microscopy showed that the NAGT I–GFP chimera (NAGFP)-positive fragments were tubulo-vesicular mitotic Golgi clusters. Mitotic conversion of Golgi stacks into mitotic clusters had surprisingly little effect on the polarity of Golgi membrane markers at the level of fluorescence microscopy. In living cells, there was little self-directed movement of the clusters in the period from metaphase to early telophase. In late telophase, the Golgi ribbon began to be reformed by a dynamic process of congregation and tubulation of the newly inherited Golgi fragments. The accuracy of partitioning the NAGFP-tagged Golgi was found to exceed that expected for a stochastic partitioning process. The results provide direct evidence for mitotic clusters as the unit of partitioning and suggest that precise regulation of the number, position, and compartmentation of mitotic membranes is a critical feature for the ordered inheritance of the Golgi apparatus. PMID:9182657
Fluorescence Lifetime Imaging Microscopy (FLIM) of quantum dots in living cells
NASA Astrophysics Data System (ADS)
Nadeau, Jay; Carlini, Lina
2013-02-01
Fluorescence lifetime imaging microscopy (FLIM) is an emerging imaging technique that can indicate environmental factors such as pH and redox potential by the effect of these factors on the fluorescence lifetimes of fluorophores. Semiconductor quantum dots (QDs) are highly sensitive to environment and so are ideal for use in FLIM, although certain experimental parameters must be carefully considered for QD imaging to account for their long lifetimes and two-photon behavior. We image the uptake of three types of QDs in cultured fibroblasts and show some preliminary results on the effects of endosomes and lysosomes on QD lifetimes. These results indicate the feasibility of FLIM for studies using QDs in live cells.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-05-05
We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.
Grecco, H E; Lidke, K A; Heintzmann, R; Lidke, D S; Spagnuolo, C; Martinez, O E; Jares-Erijman, E A; Jovin, T M
2004-11-01
In this work, we characterized streptavidin-conjugated quantum dots (QDs) manufactured by Quantum Dot Corporation. We present data on: (1) two-photon excitation; (2) fluorescence lifetimes; (3) ensemble and single QD emission anisotropy; (4) QDs as donors for Forster resonance energy transfer (FRET); and (5) spectral conversion of QDs exposed to high-intensity illumination. We also demonstrate the utility of QDs for (1) imaging the binding and uptake of biotinylated transferrin on living cells, and (2) resolving by fluorescence lifetime imaging microscopy (FLIM) signals originating from QDs from those of spatially and spectrally overlapping visible fluorescent proteins (VFPs). (c) 2005 Wiley-Liss, Inc.
Live-cell Imaging with Genetically Encoded Protein Kinase Activity Reporters.
Maryu, Gembu; Miura, Haruko; Uda, Youichi; Komatsubara, Akira T; Matsuda, Michiyuki; Aoki, Kazuhiro
2018-04-25
Protein kinases play pivotal roles in intracellular signal transduction, and dysregulation of kinases leads to pathological results such as malignant tumors. Kinase activity has hitherto been measured by biochemical methods such as in vitro phosphorylation assay and western blotting. However, these methods are less useful to explore spatial and temporal changes in kinase activity and its cell-to-cell variation. Recent advances in fluorescent proteins and live-cell imaging techniques enable us to visualize kinase activity in living cells with high spatial and temporal resolutions. Several genetically encoded kinase activity reporters, which are based on the modes of action of kinase activation and phosphorylation, are currently available. These reporters are classified into single-fluorophore kinase activity reporters and Förster (or fluorescence) resonance energy transfer (FRET)-based kinase activity reporters. Here, we introduce the principles of genetically encoded kinase activity reporters, and discuss the advantages and disadvantages of these reporters.Key words: kinase, FRET, phosphorylation, KTR.
NASA Astrophysics Data System (ADS)
Gao, Xuejuan; Chen, Tongsheng; Xing, Da; Wang, Fang
2005-01-01
Protein kinase Cs (PKCs) play an important role in cellular proliferation, and low-energy laser irradiation (LELI) can enhance cellular proliferation. The present work contributes to the understanding of the mechanisms of action by studying effects of LELI at the dose of 0.8 J/cm2 on PKCs activities in the single lung adenocarcinoma cell (ASTC-a-1) and in real time by fluorescence resonance energy transfer (FRET) technique. C-kinase activity reporter (CKAR), consisting of a cyan fluorescent protein (CFP), the FHA2 phosphothreonine-binding domain, a PKC substrate sequence, and a yellow fluorescent protein (YFP), was utilized. The living cell imaging showed a decrease in FRET in the cytosol and nucleus after the cells were treated with LELI. These results suggest that PKCs could be activated by LELI throughout the cell, and the proliferation of ASTC-a-1 cells could be modulated by the activated PKCs.
NASA Astrophysics Data System (ADS)
Xin, Xuelian; Wang, Jingxin; Gong, Chuanfang; Xu, Hai; Wang, Rongming; Ji, Shijie; Dong, Hanxiao; Meng, Qingguo; Zhang, Liangliang; Dai, Fangna; Sun, Daofeng
2016-02-01
Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer’s disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2‧ (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2‧ can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time.
Zhao, Yanfei; Ni, Yun; Wang, Liulin; Xu, Chenchen; Xin, Chenqi; Zhang, Chengwu; Zhang, Gaobin; Xie, Xiaoji; Li, Lin; Huang, Wei
2018-06-19
Investigating the change in expression level of mercapto biomolecules (GSH/Cys/Hcy) necessitates a rapid detection method for a series of physiological and pathological processes. Herein, we present a ligand-displacement-based two-photon fluorogenic probe based on an Fe(iii) complex, TPFeS, which is a GSH/Cys/Hcy rapid detection fluorogenic probe for in vitro analysis and live cell/tissue/in vivo imaging. The "in situ" probe is non-fluorescent and was prepared from a 1 : 2 ratio of Fe(iii) and TPS, a novel two-photon (TP) fluorophore with excellent one-photon (OP) and TP properties under physiological conditions, as a fluorescent ligand. This probe shows a rapid and remarkable fluorescence restoration (OFF-ON) property due to the ligand-displacement reaction of mercapto biomolecules in a recyclable manner in vitro. A significant two-photon action cross-section, good selectivity for biothiols, low cytotoxicity, and insensitivity to pH over the biologically relevant pH range allowed the direct visualization of mercapto biomolecules at different levels between normal/drug-treated live cells, as well as in Drosophila brain tissues/zebrafish based on the use of two-photon fluorescence microscopy.
Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno
2010-08-01
In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent alpha also determines the resolution of differences in diffusion times between two components in addition to photophysical parameters well-known for normal motion in dilute solution. The resolution limit between two different kinds of single molecule species is also analyzed under translational anomalous motion with broken ergodicity. We apply our theoretical predictions of diffusion times and lower limits for the time resolution of two components to fluorescence images in human prostate cancer cells transfected with GFP-Ago2 and GFP-Ago1. In order to mimic heterogeneous behavior in crowded environments of living cells, we need to introduce so-called continuous time random walks (CTRW). CTRWs were originally performed on regular lattice. This purely stochastic molecule behavior leads to subdiffusive motion with broken ergodicity in our simulations. For the first time, we are able to quantitatively differentiate between anomalous motion without broken ergodicity and anomalous motion with broken ergodicity in time-dependent fluorescence microscopy data sets of living cells. Since the experimental conditions to measure a selfsame molecule over an extended period of time, at which biology is taken place, in living cells or even in dilute solution are very restrictive, we need to perform the time average over a subpopulation of different single molecules of the same kind. For time averages over subpopulations of single molecules, the temporal auto- and crosscorrelation functions are first found. Knowing the crowding parameter alpha for the cell type and cellular compartment type, respectively, the heterogeneous parameter gamma can be obtained from the measurements in the presence of the interacting reaction partner, e.g. ligand, with the same alpha value. The product alpha x gamma = gamma is not a simple fitting parameter in the temporal auto- and two-color crosscorrelation functions because it is related to the proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in cellular systems.We have already derived an analytical solution gamma for in the special case of gamma = 3/2. In the case of two-color crosscorrelation or/and two-color fluorescence imaging (co-localization experiments), the second component is also a two-color species gr, for example a different molecular complex with an additional ligand. Here, we first show that plausible biological mechanisms from FCS/ FCCS and fluorescence imaging in living cells are highly questionable without proper quantitative physical models of subdiffusive motion and temporal randomness. At best, such quantitative FCS/ FCCS and fluorescence imaging data are difficult to interpret under crowding and heterogeneous conditions. It is challenging to translate proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in living cells and their cellular compartments like the nucleus into biological models of the cell biological process under study testable by single-molecule approaches. Otherwise, quantitative FCS/FCCS and fluorescence imaging measurements in living cells are not well described and cannot be interpreted in a meaningful way.
Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.
Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J
2018-02-13
Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.
NASA Astrophysics Data System (ADS)
Martin-Fernandez, M. L.; Tobin, M. J.; Clarke, D. T.; Gregory, C. M.; Jones, G. R.
1998-02-01
We describe an instrument designed to monitor molecular motions in multiphasic, weakly fluorescent microscopic systems. It combines synchrotron radiation, a low irradiance polarized microfluorimeter, and an automated, multiframing, single-photon-counting data acquisition system, and is capable of continually accumulating subnanosecond resolved anisotropy decays with a real-time resolution of about 60 s. The instrument has initially been built to monitor ligand-receptor interactions in living cells, but can equally be applied to the continual measurement of any dynamic process involving fluorescent molecules, that occurs over a time scale from a few minutes to several hours. As a particularly demanding demonstration of its capabilities, we have used it to monitor the environmental constraints imposed on the peptide hormone epidermal growth factor during its endocytosis and recycling to the cell surface in live cells.
Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin
2016-08-15
A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.
van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees
2008-01-01
We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002
NASA Astrophysics Data System (ADS)
Biteen, Julie
2013-03-01
Single-molecule fluorescence brings the resolution of optical microscopy down to the nanometer scale, allowing us to unlock the mysteries of how biomolecules work together to achieve the complexity that is a cell. This high-resolution, non-destructive method for examining subcellular events has opened up an exciting new frontier: the study of macromolecular localization and dynamics in living cells. We have developed methods for single-molecule investigations of live bacterial cells, and have used these techniques to investigate thee important prokaryotic systems: membrane-bound transcription activation in Vibrio cholerae, carbohydrate catabolism in Bacteroides thetaiotaomicron, and DNA mismatch repair in Bacillus subtilis. Each system presents unique challenges, and we will discuss the important methods developed for each system. Furthermore, we use the plasmon modes of bio-compatible metal nanoparticles to enhance the emissivity of single-molecule fluorophores. The resolution of single-molecule imaging in cells is generally limited to 20-40 nm, far worse than the 1.5-nm localization accuracies which have been attained in vitro. We use plasmonics to improve the brightness and stability of single-molecule probes, and in particular fluorescent proteins, which are widely used for bio-imaging. We find that gold-coupled fluorophores demonstrate brighter, longer-lived emission, yielding an overall enhancement in total photons detected. Ultimately, this results in increased localization accuracy for single-molecule imaging. Furthermore, since fluorescence intensity is proportional to local electromagnetic field intensity, these changes in decay intensity and rate serve as a nm-scale read-out of the field intensity. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging, and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.
Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy
NASA Astrophysics Data System (ADS)
Liang, Lifang; Xing, Da; Chen, Tongshen; Pei, Yihui
2007-11-01
Fluorescence correlation spectroscopy (FCS) is a new kind of real-time, high-speed and single-molecule technique. It is used to detect the kinetic characteristics of fluorescent dye such as diffusion coefficient in the aqueous solution. Combined with confocal microscope optics, it has been now widely applied in cell biological research. Through a time correlation analysis of spontaneous intensity fluctuations, this technique with EGFP as a probe is capable of determining viscosity of fluids according to Stokes-Einstein equation. Nucleoplasmic viscosity is an important physical parameter to quantify the rheological characteristics of the nucleoplasm. Investigation on nucleoplasmic viscosity plays an important role in further understanding intranuclear environment. In this paper, FCS is introduced to noninvasively investigate nucleoplasmic viscosity of living cells. The results show that nucleoplasmic viscosity of lung adenocarcinoma (ASTC-a-1) cells is 2.55+/-0.61 cP and nucleoplasmic viscosity is larger than cytoplasmic viscosity at 37 °C (pH 7.4). In addition, significant changes in nucleoplasmic viscosity are detected by FCS when cells are exposed to hyper or hypotonic medium. Our study suggests that FCS can be used to detect the kinetic characteristics of biomolecules in living cells and thus helps to investigate the dynamic changes of the microenvironment in the cell.
A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...
Bardhan, Munmun; Majumdar, Anupa; Jana, Sayantan; Ghosh, Tapas; Pal, Uttam; Swarnakar, Snehasikta; Senapati, Dulal
2018-01-01
Formulated mesoporous silica nanoparticle (MSN) systems offer the best possible drug delivery system through the release of drug molecules from the accessible pores. In the present investigation, steady state and time resolved fluorescence techniques along with the fluorescence imaging were applied to investigate the interactions of dye loaded MSN with fluorescent unilamellar vesicles and live cells. Here 1,2-dimyristoyl-sn-glycero-3-phospocholine (DMPC) was used to prepare Small Unilamellar Vesicles (SUVs) as the model membrane with fluorescent 1,6-diphenyl-1,3,5-hexatriene (DPH) molecule incorporated inside the lipid bilayer. The interaction of DPH incorporated DMPC membrane with Fluorescein loaded MSN lead to the release of Fluorescein (Fl) dye from the interior pores of MSN systems. The extent of release of Fl and spatial distribution of the DPH molecule has been explored by monitoring steady-state fluorescence intensity and fluorescence lifetime at physiological condition. To investigate the fate of drug molecule released from MSN, fluorescence anisotropy has been used. The drug delivery efficiency of the MSN as a carrier for doxorubicin (DOX), a fluorescent chemotherapeutic drug, has also been investigated at physiological conditions. The study gives a definite confirmation for high uptake and steady release of DOX in primary oral mucosal non-keratinized squamous cells in comparison to naked DOX treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Defining the Subcellular Interface of Nanoparticles by Live-Cell Imaging
Hemmerich, Peter H.; von Mikecz, Anna H.
2013-01-01
Understanding of nanoparticle-bio-interactions within living cells requires knowledge about the dynamic behavior of nanomaterials during their cellular uptake, intracellular traffic and mutual reactions with cell organelles. Here, we introduce a protocol of combined kinetic imaging techniques that enables investigation of exemplary fluorochrome-labelled nanoparticles concerning their intracellular fate. By time-lapse confocal microscopy we observe fast, dynamin-dependent uptake of polystyrene and silica nanoparticles via the cell membrane within seconds. Fluorescence recovery after photobleaching (FRAP) experiments reveal fast and complete exchange of the investigated nanoparticles at mitochondria, cytoplasmic vesicles or the nuclear envelope. Nuclear translocation is observed within minutes by free diffusion and active transport. Fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS) indicate diffusion coefficients of polystyrene and silica nanoparticles in the nucleus and the cytoplasm that are consistent with particle motion in living cells based on diffusion. Determination of the apparent hydrodynamic radii by FCS and RICS shows that nanoparticles exert their cytoplasmic and nuclear effects mainly as mobile, monodisperse entities. Thus, a complete toolkit of fluorescence fluctuation microscopy is presented for the investigation of nanomaterial biophysics in subcellular microenvironments that contributes to develop a framework of intracellular nanoparticle delivery routes. PMID:23637951
Imaging molecular dynamics in vivo--from cell biology to animal models.
Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I
2011-09-01
Advances in fluorescence microscopy have enabled the study of membrane diffusion, cell adhesion and signal transduction at the molecular level in living cells grown in culture. By contrast, imaging in living organisms has primarily been restricted to the localization and dynamics of cells in tissues. Now, imaging of molecular dynamics is on the cusp of progressing from cell culture to living tissue. This transition has been driven by the understanding that the microenvironment critically determines many developmental and pathological processes. Here, we review recent progress in fluorescent protein imaging in vivo by drawing primarily on cancer-related studies in mice. We emphasize the need for techniques that can be easily combined with genetic models and complement fluorescent protein imaging by providing contextual information about the cellular environment. In this Commentary we will consider differences between in vitro and in vivo experimental design and argue for an approach to in vivo imaging that is built upon the use of intermediate systems, such as 3-D and explant culture models, which offer flexibility and control that is not always available in vivo. Collectively, these methods present a paradigm shift towards the molecular-level investigation of disease and therapy in animal models of disease.
Zhao, Yuzheng; Wang, Aoxue; Zou, Yejun; Su, Ni; Loscalzo, Joseph; Yang, Yi
2016-08-01
NADH and its oxidized form NAD(+) have a central role in energy metabolism, and their concentrations are often considered to be among the most important readouts of metabolic state. Here, we present a detailed protocol to image and monitor NAD(+)/NADH redox state in living cells and in vivo using a highly responsive, genetically encoded fluorescent sensor known as SoNar (sensor of NAD(H) redox). The chimeric SoNar protein was initially developed by inserting circularly permuted yellow fluorescent protein (cpYFP) into the NADH-binding domain of Rex protein from Thermus aquaticus (T-Rex). It functions by binding to either NAD(+) or NADH, thus inducing protein conformational changes that affect its fluorescent properties. We first describe steps for how to establish SoNar-expressing cells, and then discuss how to use the system to quantify the intracellular redox state. This approach is sensitive, accurate, simple and able to report subtle perturbations of various pathways of energy metabolism in real time. We also detail the application of SoNar to high-throughput chemical screening of candidate compounds targeting cell metabolism in a microplate-reader-based assay, along with in vivo fluorescence imaging of tumor xenografts expressing SoNar in mice. Typically, the approximate time frame for fluorescence imaging of SoNar is 30 min for living cells and 60 min for living mice. For high-throughput chemical screening in a 384-well-plate assay, the whole procedure generally takes no longer than 60 min to assess the effects of 380 compounds on cell metabolism.
Confocal quantification of cis-regulatory reporter gene expression in living sea urchin.
Damle, Sagar; Hanser, Bridget; Davidson, Eric H; Fraser, Scott E
2006-11-15
Quantification of GFP reporter gene expression at single cell level in living sea urchin embryos can now be accomplished by a new method of confocal laser scanning microscopy (CLSM). Eggs injected with a tissue-specific GFP reporter DNA construct were grown to gastrula stage and their fluorescence recorded as a series of contiguous Z-section slices that spanned the entire embryo. To measure the depth-dependent signal decay seen in the successive slices of an image stack, the eggs were coinjected with a freely diffusible internal fluorescent standard, rhodamine dextran. The measured rhodamine fluorescence was used to generate a computational correction for the depth-dependent loss of GFP fluorescence per slice. The intensity of GFP fluorescence was converted to the number of GFP molecules using a conversion constant derived from CLSM imaging of eggs injected with a measured quantity of GFP protein. The outcome is a validated method for accurately counting GFP molecules in given cells in reporter gene transfer experiments, as we demonstrate by use of an expression construct expressed exclusively in skeletogenic cells.
Green fluorescent protein as a reporter of gene expression and protein localization.
Kain, S R; Adams, M; Kondepudi, A; Yang, T T; Ward, W W; Kitts, P
1995-10-01
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria is rapidly becoming an important reporter molecule for monitoring gene expression and protein localization in vivo, in situ and in real time. GFP emits bright green light (lambda max = 509 nm) when excited with UV or blue light (lambda max = 395 nm, minor peak at 470 nm). The fluorescence excitation and emission spectra of GFP are similar to those of fluorescein, and the conditions used to visualize this fluorophore are also suitable for GFP. Unlike other bioluminescent reporters, the chromophore in GFP is intrinsic to the primary structure of the protein, and GFP fluorescence does not require a substrate or cofactor. GFP fluorescence is stable, species-independent and can be monitored non-invasively in living cells and, in the case of transparent organisms, whole animals. Here we demonstrate GFP fluorescence in bacterial and mammalian cells and introduce our Living Colors line of GFP reporter vectors, GFP protein and anti-GFP antiserum. The reporter vectors for GFP include a promoterless GFP vector for monitoring the expression of cloned promoters/enhancers in mammalian cells and a series of six vectors for creating fusion protein to either the N or C terminus of GFP.
In vivo tomographic imaging of deep seated cancer using fluorescence lifetime contrast
Rice, William L.; Shcherbakova, Daria M; Verkusha, Vladislav V.; Kumar, Anand T.N.
2015-01-01
Preclinical cancer research would benefit from non-invasive imaging methods that allow tracking and visualization of early stage metastasis in vivo. While fluorescent proteins revolutionized intravital microscopy, two major challenges which still remain are tissue autofluorescence and hemoglobin absorption, which act to limit intravital optical techniques to large or subcutaneous tumors. Here we employ time-domain technology for the effective separation of tissue autofluorescence from extrinsic fluorophores, based on their distinct fluorescence lifetimes. Additionally, we employ cancer cells labelled with near infra-red fluorescent proteins (iRFP) to allow deep-tissue imaging. Our results demonstrate that time-domain imaging allows the detection of metastasis in deep-seated organs of living mice with a more than 20-fold increase in sensitivity compared to conventional continuous wave techniques. Furthermore, the distinct fluorescence lifetimes of each iRFP enables lifetime multiplexing of three different tumors, each expressing unique iRFP labels in the same animal. Fluorescence tomographic reconstructions reveal 3D distributions of iRFP720-expressing cancer cells in lungs and brain of live mice, allowing ready longitudinal monitoring of cancer cell fate with greater sensitivity than otherwise currently possible. PMID:25670171
Dey, Biswajit; Mukherjee, Priyanka; Mondal, Ranjan Kumar; Chattopadhyay, Asoke Prasun; Hauli, Ipsit; Mukhopadhyay, Subhra Kanti; Fleck, Michel
2014-12-14
A highly selective femtomolar level sensing of inorganic arsenic(III) as arsenious acid has been accomplished in water medium and in living-systems (on pollen grains of Tecoma stans; Candida albicans cells (IMTECH No. 3018) and Peperomia pellucida stem section) using a non-toxic fluorescent probe of a Cu(II)-complex.
Time-lapse cinematography in living Drosophila tissues: preparation of material.
Davis, Ilan; Parton, Richard M
2006-11-01
The fruit fly, Drosophila melanogaster, has been an extraordinarily successful model organism for studying the genetic basis of development and evolution. It is arguably the best-understood complex multicellular model system, owing its success to many factors. Recent developments in imaging techniques, in particular sophisticated fluorescence microscopy methods and equipment, now allow cellular events to be studied at high resolution in living material. This ability has enabled the study of features that tend to be lost or damaged by fixation, such as transient or dynamic events. Although many of the techniques of live cell imaging in Drosophila are shared with the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties in keeping the cells alive, introducing fluorescent probes, and imaging through thick hazy cytoplasm. This protocol outlines the preparation of major tissue types amenable to study by time-lapse cinematography and different methods for keeping them alive.
Lee, Hyang Yeon; Lee, Jae Jeong; Park, Jongmin; Park, Seung Bum
2011-01-03
We developed a novel fluorescent glucose bioprobe, GB2-Cy3, for the real-time and quantitative monitoring of glucose uptake in living cells. We synthesized a series of fluorescent glucose analogues by adding Cy3 fluorophores to the α-anomeric position of D-glucose through various linkers. Systematic and quantitative analysis of these Cy3-labeled glucose analogues revealed that GB2-Cy3 was the ideal fluorescent glucose bioprobe. The cellular uptake of this probe competed with the cellular uptake of D-glucose in the media and was mediated by a glucose-specific transport system, and not by passive diffusion. Flow cytometry and fluorescence microscopy analyses revealed that GB2-Cy3 is ten times more sensitive than 2-NBDG, a leading fluorescent glucose bioprobe. GB2-Cy3 can also be utilized for the quantitative flow cytometry monitoring of glucose uptake in metabolically active C2C12 myocytes under various treatment conditions. As opposed to a glucose uptake assay performed by using radioisotope-labeled deoxy-D-glucose and a scintillation counter, GB2-Cy3 allows the real-time monitoring of glucose uptake in living cells under various experimental conditions by using fluorescence microscopy or confocal laser scanning microscopy (CLSM). Therefore, we believe that GB2-Cy3 can be utilized in high-content screening (HCS) for the discovery of novel therapeutic agents and for making significant advances in biomedical studies and diagnosis of various diseases, especially metabolic diseases. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells
NASA Astrophysics Data System (ADS)
Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.
2014-12-01
Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.
Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J
2016-06-30
Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.
Keller, Kate E; Bradley, John M; Sun, Ying Ying; Yang, Yong-Feng; Acott, Ted S
2017-10-01
The actin cytoskeleton of trabecular meshwork (TM) cells plays a role in regulating aqueous humor outflow. Many studies have investigated stress fibers, but F-actin also assembles into other supramolecular structures including filopodia. Recently, specialized filopodia called tunneling nanotubes (TNTs) have been described, which communicate molecular signals and organelles directly between cells. Here, we investigate TNT formation by TM cells. Human TM cells were labeled separately with the fluorescent dyes, DiO and DiD, or with mitochondrial dye. Fixed or live TM cells were imaged using confocal microscopy. Image analysis software was used to track fluorescent vesicles and count the number and length of filopodia. The number of fluorescently labeled vesicles transferred between cells was counted in response to specific inhibitors of the actin cytoskeleton. Human TM tissue was stained with phalloidin. Live-cell confocal imaging of cultured TM cells showed transfer of fluorescently labeled vesicles and mitochondria via TNTs. In TM tissue, a long (160 μm) actin-rich cell process bridged an intertrabecular space and did not adhere to the substratum. Treatment of TM cells with CK-666, an Arp2/3 inhibitor, significantly decreased the number and length of filopodia, decreased transfer of fluorescently labeled vesicles and induced thick stress fibers compared to vehicle control. Conversely, inhibiting stress fibers using Y27632 increased transfer of vesicles and induced long cell processes. Identification of TNTs provides a means by which TM cells can directly communicate with each other over long distances. This may be particularly important to overcome limitations of diffusion-based signaling in the aqueous humor fluid environment.
Bai, Jian-Ying; Xie, Yu-Zhong; Wang, Chang-Jiang; Fang, Shu-Qing; Cao, Lin-Nan; Wang, Ling-Li; Jin, Jing-Yi
2018-05-28
As a structural analogue of pyridylthiazole, 2-(2-benzothiazoyl)-phenylethynylquinoline (QBT) was designed as a fluorescent probe for Hg(II) based on an intramolecular charge transfer (ICT) mechanism. The compound was synthesized in three steps starting from 6-bromo-2-methylquinoline, with moderate yield. Corresponding studies on the optical properties of QBT indicate that changes in the fluorescence ratio of QBT in response to Hg(II) could be quantified based on dual-emission changes. More specifically, the emission spectrum of QBT before and after interactions with Hg(II) exhibited a remarkable red shift of about 120 nm, which is rarely reported in ICT-based fluorescent sensors. Finally, QBT was applied in the two-channel imaging of Hg(II) in live HeLa cells.
Raman microscopy of individual living human embryonic stem cells
NASA Astrophysics Data System (ADS)
Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.
2010-04-01
We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.
Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments.
Giarmarco, Michelle M; Cleghorn, Whitney M; Hurley, James B; Brockerhoff, Susan E
2018-05-09
The retina is a complex tissue that initiates and integrates the first steps of vision. Dysfunction of retinal cells is a hallmark of many blinding diseases, and future therapies hinge on fundamental understandings about how different retinal cells function normally. Gaining such information with biochemical methods has proven difficult because contributions of particular cell types are diminished in the retinal cell milieu. Live retinal imaging can provide a view of numerous biological processes on a subcellular level, thanks to a growing number of genetically encoded fluorescent biosensors. However, this technique has thus far been limited to tadpoles and zebrafish larvae, the outermost retinal layers of isolated retinas, or lower resolution imaging of retinas in live animals. Here we present a method for generating live ex vivo retinal slices from adult zebrafish for live imaging via confocal microscopy. This preparation yields transverse slices with all retinal layers and most cell types visible for performing confocal imaging experiments using perfusion. Transgenic zebrafish expressing fluorescent proteins or biosensors in specific retinal cell types or organelles are used to extract single-cell information from an intact retina. Additionally, retinal slices can be loaded with fluorescent indicator dyes, adding to the method's versatility. This protocol was developed for imaging Ca 2+ within zebrafish cone photoreceptors, but with proper markers it could be adapted to measure Ca 2+ or metabolites in Müller cells, bipolar and horizontal cells, microglia, amacrine cells, or retinal ganglion cells. The retinal pigment epithelium is removed from slices so this method is not suitable for studying that cell type. With practice, it is possible to generate serial slices from one animal for multiple experiments. This adaptable technique provides a powerful tool for answering many questions about retinal cell biology, Ca 2+ , and energy homeostasis.
pH and chloride recordings in living cells using two-photon fluorescence lifetime imaging microscopy
NASA Astrophysics Data System (ADS)
Lahn, Mattes; Hille, Carsten; Koberling, Felix; Kapusta, Peter; Dosche, Carsten
2010-02-01
Today fluorescence lifetime imaging microscopy (FLIM) has become an extremely powerful technique in life sciences. The independency of the fluorescence decay time on fluorescence dye concentration and emission intensity circumvents many artefacts arising from intensity based measurements. To minimize cell damage and improve scan depth, a combination with two-photon (2P) excitation is quite promising. Here, we describe the implementation of a 2P-FLIM setup for biological applications. For that we used a commercial fluorescence lifetime microscope system. 2P-excitation at 780nm was achieved by a non-tuneable, but inexpensive and easily manageable mode-locked fs-fiber laser. Time-resolved fluorescence image acquisition was performed by objective-scanning with the reversed time-correlated single photon counting (TCSPC) technique. We analyzed the suitability of the pH-sensitive dye BCECF and the chloride-sensitive dye MQAE for recordings in an insect tissue. Both parameters are quite important, since they affect a plethora of physiological processes in living tissues. We performed a straight forward in situ calibration method to link the fluorescence decay time with the respective ion concentration and carried out spatially resolved measurements under resting conditions. BCECF still offered only a limited dynamic range regarding fluorescence decay time changes under physiologically pH values. However, MQAE proofed to be well suited to record chloride concentrations in the physiologically relevant range. Subsequently, several chloride transport pathways underlying the intracellular chloride homeostasis were investigated pharmacologically. In conclusion, 2P-FLIM is well suited for ion detection in living tissues due to precise and reproducible decay time measurements in combination with reduced cell and dye damages.
Col-F, a fluorescent probe for ex vivo confocal imaging of collagen and elastin in animal tissues.
Biela, Ewa; Galas, Jerzy; Lee, Brian; Johnson, Gary L; Darzynkiewicz, Zbigniew; Dobrucki, Jurek W
2013-06-01
A new low-molecular-weight fluorescent probe, Col-F, that exhibits affinity to collagen and elastin, was used successfully in imaging of extracellular matrix in freshly excised animal tissues. Col-F readily penetrates between live cells into tissues and binds to fibers of collagen and elastin by a noncovalent mechanism. Fibers of collagen and elastin have been stained in a variety of tissues, including tendon, skeletal muscle, connective tissue, and arteries. Cells migrating in a Col-F-stained collagenous biomaterial were also imaged. No phototoxic effects were detected when live keratocytes were imaged in the in vitro culture in the presence of Col-F. In conclusion, Col-F provides a simple and convenient tool for fluorescence three-dimensional imaging of intricate collagenous and elastic structures in live and fixed animal tissues, as well as in collagen-containing biomaterials. Copyright © 2013 International Society for Advancement of Cytometry.
Bioluminescent pathogens as a tool to monitor infection in live animals
NASA Astrophysics Data System (ADS)
Brovko, Lubov Y.
2002-05-01
The study of pathogenic processes is mostly limited to in vitro assays, cell-culture techniques and post mortem examination of infected animals. A better understanding of the infectious process, efficiency of antimicrobial and antibiotic treatment as well as immunomodulatory effects of different food supplements could be achieved by in vivo real-time monitoring of bacterial colonization in live animals. It was proposed recently to use bacterial pathogens with luminescent or fluorescent phenotypes for photonic detection of bacterial cells in living hosts. 14 It was shown that both bacteria transformed with full cassette of luminescent genes from Xenorhabdus luminescens and with Green Fluorescent Protein (GFP) could be visualized in animal using whole-body luminescent or fluorescent imaging techniques with high sensitivity and in real time. We used this approach to investigate the effect of diet on the time-course of infection in mice orally infected with bioluminescent strain of Salmonella enteritidis.
Khang, Chang Hyun; Berruyer, Romain; Giraldo, Martha C; Kankanala, Prasanna; Park, Sook-Young; Czymmek, Kirk; Kang, Seogchan; Valent, Barbara
2010-04-01
Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice.
Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.
2015-01-01
Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241
Wu, Luling; Wang, Yang; James, Tony D; Jia, Nengqin; Huang, Chusen
2018-05-29
Heat stroke is a lethal condition which can cause dysfunction in the central nervous system, multi-organ damage and even death. However, there is still limited knowledge of the detailed mechanism about the roles of lysosomes in heat stroke due to lack of effective tools. Herein, we introduce our previously developed hemicyanine with a large D-π-A structure as the key fluorophore to develop a new fluorescent probe (CPY) for ratiometric mapping of lysosomal pH changes in live cells under a heat shock stimulus.
Design, synthesis, and application of the trimethoprim-based chemical tag for live-cell imaging.
Jing, Chaoran; Cornish, Virginia W
2013-01-01
Over the past decade, chemical tags have been developed to complement the use of fluorescent proteins in live-cell imaging. Chemical tags retain the specificity of protein labeling achieved with fluorescent proteins through genetic encoding, but provide smaller, more robust tags and modular use of organic fluorophores with high photon output and tailored functionalities. The trimethoprim-based chemical tag (TMP-tag) was initially developed based on the high affinity interaction between E. coli dihydrofolate reductase and the antibiotic trimethoprim and was subsequently rendered covalent and fluorogenic via proximity-induced protein labeling reactions. To date, the TMP-tag is one of the few chemical tags that enable intracellular protein labeling and high-resolution live-cell imaging. Here we describe the general design, chemical synthesis, and application of TMP-tag for live-cell imaging. Alternate protocols for synthesizing and using the covalent and the fluorogenic TMP-tags are also included. © 2013 by John Wiley & Sons, Inc.
Wang, Renjie; Normand, Christophe; Gadal, Olivier
2016-01-01
Spatial organization of the genome has important impacts on all aspects of chromosome biology, including transcription, replication, and DNA repair. Frequent interactions of some chromosome domains with specific nuclear compartments, such as the nucleolus, are now well documented using genome-scale methods. However, direct measurement of distance and interaction frequency between loci requires microscopic observation of specific genomic domains and the nucleolus, followed by image analysis to allow quantification. The fluorescent repressor operator system (FROS) is an invaluable method to fluorescently tag DNA sequences and investigate chromosome position and dynamics in living cells. This chapter describes a combination of methods to define motion and region of confinement of a locus relative to the nucleolus in cell's nucleus, from fluorescence acquisition to automated image analysis using two dedicated pipelines.
Fluorescent Quantum Dots for Biological Labeling
NASA Technical Reports Server (NTRS)
McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit
2003-01-01
Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.
Asymmetric rhenium tricarbonyl complexes show superior luminescence properties in live cell imaging.
Raszeja, Lukasz J; Siegmund, Daniel; Cordes, Anna L; Güldenhaupt, Jörn; Gerwert, Klaus; Hahn, Stephan; Metzler-Nolte, Nils
2017-01-16
The synthesis and photophysical properties of a novel series of rhenium tricarbonyl complexes based on tridentate phenanthridinyl-containing ligands are described. Photophysical data reveal beneficial luminescence behaviour especially for compounds with an asymmetric ligand set. These advantageous properties are not limited to organic solvents, but indeed also improved in aqueous solutions. The suitability of our new rhenium complexes as potent imaging agents has been confirmed by fluorescence microscopy on living cancer cells, which also confirms superior long-time stability under fluorescence microscopy conditions. Colocalisation studies with commercial organelle stains reveal an accumulation of the complexes in the endoplasmic reticulum for all tested cell lines.
Franek, Michal; Suchánková, Jana; Sehnalová, Petra; Krejčí, Jana; Legartová, Soňa; Kozubek, Stanislav; Večeřa, Josef; Sorokin, Dmitry V; Bártová, Eva
2016-04-01
Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwari, Manisha; Mikuni, Shintaro; Muto, Hideki
Highlights: •We used two-laser-beam FCCS to determine the dissociation constant (K{sub d}) of IPT domain of p50/p65 heterodimer in living cell. •Interaction of p50 and p65 was analyzed in the cytoplasm and nucleus of single living cell. •Binding affinity of p50/p65 heterodimer is higher in cytoplasm than that of nucleus. -- Abstract: Two-laser-beam fluorescence cross-correlation spectroscopy (FCCS) is promising technique that provides quantitative information about the interactions of biomolecules. The p50/p65 heterodimer is the most abundant and well understood of the NFκB dimers in most cells. However, the quantitative value of affinity, namely the K{sub d}, for the heterodimer inmore » living cells is not known yet. To quantify the heterodimerization of the IPT domain of p50/p65 in the living cell, we used two-laser-beam FCCS. The K{sub d} values of mCherry{sub 2}- and EGFP-fused p50 and p65 were determined to be 0.46 μM in the cytoplasm and 1.06 μM in the nucleus of the living cell. These results suggest the different binding affinities of the p50/p65 heterodimer in the cytoplasm and nucleus of the living cell and different complex formation in each region.« less
A small molecular pH-dependent fluorescent probe for cancer cell imaging in living cell.
Ma, Junbao; Li, Wenqi; Li, Juanjuan; Shi, Rongguang; Yin, Gui; Wang, Ruiyong
2018-05-15
A novel pH-dependent two-photon fluorescent molecular probe ABMP has been prepared based on the fluorophore of 2, 4, 6-trisubstituted pyridine. The probe has an absorption wavelength at 354 nm and corresponding emission wavelength at 475 nm with the working pH range from 2.20 to 7.00, especially owning a good liner response from pH = 2.40 to pH = 4.00. ABMP also has excellent reversibility, photostability and selectivity which promotes its ability in analytical application. The probe can be excited with a two-photon fluorescence microscopy and the fluorescence cell imaging indicated that the probe can distinguish Hela cancer cells out of normal cells with a two-photon fluorescence microscopy which suggested its potential application in tumor cell detection. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Duo; Qiao, Zhenzhen; Yu, Yanru; Tang, Jinlu; He, Xiaoxiao; Shi, Hui; Ye, Xiaosheng; Lei, Yanli; Wang, Kemin
2018-01-25
A facile, general and turn-on nucleus imaging strategy was first developed based on in situ fluorescence activation of C-rich dark silver nanoclusters by G-rich telomeres. After a simple incubation without washing, nanoclusters could selectively stain the nucleus with intense red luminescence, which was confirmed using fixed/living cells and several cell lines.
Yan, Huijuan; He, Leiliang; Zhao, Wenjie; Li, Jishan; Xiao, Yue; Yang, Ronghua; Tan, Weihong
2014-11-18
Two-photon excitation (TPE) with near-infrared (NIR) photons as the excitation source has important advantages over conventional one-photon excitation (OPE) in the field of biomedical imaging. β-cyclodextrin polymer (βCDP)-based two-photon absorption (TPA) fluorescent nanomicelle exhibits desirable two-photon-sensitized fluorescence properties, high photostability, high cell-permeability and excellent biocompatibility. By combination of the nanostructured two-photon dye (TPdye)/βCDP nanomicelle with the TPE technique, herein we have designed a TPdye/βCDP nanomicelle-based TPA fluorescent nanoconjugate for enzymatic activity assay in biological fluids, live cells and tissues. This sensing system is composed of a trans-4-[p-(N,N-diethylamino)styryl]-N-methylpyridinium iodide (DEASPI)/βCDP nanomicelle as TPA fluorophore and carrier vehicle for delivery of a specific peptide sequence to live cell through fast endocytosis, and an adamantine (Ad)-GRRRDEVDK-BHQ2 (black hole quencher 2) peptide (denoted as Ad-DEVD-BHQ2) anchored on the DEASPI/βCDP nanomicelle's surface to form TPA DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate by the βCD/Ad host-guest inclusion strategy. Successful in vitro and in vivo enzymatic activities assay of caspase-3 was demonstrated with this sensing strategy. Our results reveal that this DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate not only is a robust, sensitive and selective sensor for quantitative assay of caspase-3 in the complex biological environment but also can be efficiently delivered into live cells as well as tissues and act as a "signal-on" fluorescent biosensor for specific, high-contrast imaging of enzymatic activities. This DEASPI/βCDP@Ad-DEVD-BHQ2 nanoconjugate provides a new opportunity to screen enzyme inhibitors and evaluate the apoptosis-associated disease progression. Moreover, our design also provides a methodology model scheme for development of future TPdye/βCDP nanomicelle-based two-photon fluorescent probes for in vitro or in vivo determination of biological or biologically relevant species.
Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells
NASA Astrophysics Data System (ADS)
Yan, Zhengyu; Qian, Jing; Gu, Yueqing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei
2014-03-01
A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling.
Techniques for 3D tracking of single molecules with nanometer accuracy in living cells
NASA Astrophysics Data System (ADS)
Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S.
2013-06-01
We describe a microscopy technique that, combining wide-field single molecule microscopy, bifocal imaging and Highly Inclined and Laminated Optical sheet (HILO) microscopy, allows a 3D tracking with nanometer accuracy of single fluorescent molecules in vitro and in living cells.
Wang, Xiao-Ping; Chen, Tong-Sheng; Sun, Lei; Cai, Ji-Ye; Wu, Ming-Qian; Mok, Martin
2008-12-01
Taxol (paclitaxel), one of the most active cancer chemotherapeutic agents, can cause programmed cell death (PCD) and cytoplasmic vacuolization. The objective of this study was to analyze the morphological characteristics induced by taxol. Human lung adenocarcinoma (ASTC-a-1) cells were exposed to various concentration of taxol. CCK-8 was used to assay the cell viability. Atomic force microscopy (AFM), plasmid transfection and confocal fluorescence microscopy were performed to image the cells morphological change induced by taxol. Fluorescence resonance energy transfer (FRET) was used to monitor the caspase-3 activation in living cells during taxol-induced cell death. Cells treated with taxol exhibited significant swelling and cytoplasmic vacuolization which may be due to endoplasmic reticulum (ER) vacuolization. Caspase-3 was not activated during taxol-induced cytoplasmic vacuolization and cell death. These findings suggest that taxol induces caspase-3-independent cytoplasmic vacuolization, cell swelling and cell death through ER vacuolization.
Xiao, Haibin; Wu, Chuanchen; Li, Ping; Tang, Bo
2018-05-15
Diabetic cardiomyopathy (DCM) is a critical complication of diabetes, the accurate pathogenesis of which remains elusive. It is widely accepted that endoplasmic reticulum (ER) stress and abnormal fluctuations of reactive oxygen species (ROS) are considered to be closely associated with progress of DCM. In addition, DCM-induced changes of myocardial tissue and ROS-derived oxidation of proteins will cause changes of the hydrophilic and hydrophobic domains and may further seriously alter the myocardial cell polarity. Thus, real-time detection of ROS and polarity in ER of live cells and in tissue will contribute to revealing the exact molecular mechanisms of DCM. In this article, we first present an ER-targetable fluorogenic probe termed ER-NAPC for sensitive and selective detection of superoxide anion (O 2 •- ). ER-NAPC can precisely target ER and visualize the increase of O 2 •- level in a live H9c2 cardiomyocyte cell during ER stress. Meanwhile, by combining ER-NAPC with a polarity-sensitive probe, ER-P, we accomplish the simultaneous fluorescence visualization of O 2 •- and polarity in ER of live cells and diabetic myocardial tissue. The dual-color fluorescence imaging results indicate that the O 2 •- level and polarity will synergistically rise during ER stress in live cells and diabetic myocardial tissue. The proposed dual-color imaging strategy may offer a proven methodology for studying coordinated variation of different parameters during ER stress oriented disease.
Maity, Shubhra B; Banerjee, Saikat; Sunwoo, Kyoung; Kim, Jong Seung; Bharadwaj, Parimal K
2015-04-20
A new BODIPY derivative with 2,2'-(ethane-1,2-diylbis(oxy))bis(N,N-bis(pyridine-2-ylmethyl)aniline unit as the metal receptor has been designed and synthesized. The dye selectively detects either Cd(2+) or Hg(2+) ions in the presence of hosts of other biologically important and environmentally relevant metal ions in aqueous medium at physiological pH. Binding of metal ions causes a change in the emission behavior of the dye from weakly fluorescent to highly fluorescent. Confocal microscopic experiments validate that the dye can be used to identify changes in either Hg(2+) or Cd(2+) levels in living cells.
Zhao, Ming; Li, Yu; Peng, Leilei
2014-01-01
We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community. PMID:24921725
NASA Astrophysics Data System (ADS)
Lin, Juqiang; Zhang, Zhihong; Yang, Jie; Zeng, Shaoqun; Liu, Bifeng; Luo, Qingming
2006-03-01
Caspase-2 is important for the mitochondrial apoptotic pathway, however, the mechanism by which caspase-2 executes apoptosis remains obscure. We carry out the first measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. Two FRET probes are constructed that each encoded a CRS (caspase-2 or caspase-3 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using these probes, we found that during cisplatin-induced apoptosis, caspase-2 activation occurred more slowly than did activation of caspase-3; additionally, caspase-2 activation was initiated much earlier than that of caspase-3.
Toneff, M J; Sreekumar, A; Tinnirello, A; Hollander, P Den; Habib, S; Li, S; Ellis, M J; Xin, L; Mani, S A; Rosen, J M
2016-06-17
The epithelial to mesenchymal transition (EMT) has been implicated in metastasis and therapy resistance of carcinomas and can endow cancer cells with cancer stem cell (CSC) properties. The ability to detect cancer cells that are undergoing or have completed EMT has typically relied on the expression of cell surface antigens that correlate with an EMT/CSC phenotype. Alternatively these cells may be permanently marked through Cre-mediated recombination or through immunostaining of fixed cells. The EMT process is dynamic, and these existing methods cannot reveal such changes within live cells. The development of fluorescent sensors that mirror the dynamic EMT state by following the expression of bona fide EMT regulators in live cells would provide a valuable new tool for characterizing EMT. In addition, these sensors will allow direct observation of cellular plasticity with respect to the epithelial/mesenchymal state to enable more effective studies of EMT in cancer and development. We generated a lentiviral-based, dual fluorescent reporter system, designated as the Z-cad dual sensor, comprising destabilized green fluorescent protein containing the ZEB1 3' UTR and red fluorescent protein driven by the E-cadherin (CDH1) promoter. Using this sensor, we robustly detected EMT and mesenchymal to epithelial transition (MET) in breast cancer cells by flow cytometry and fluorescence microscopy. Importantly, we observed dynamic changes in cellular populations undergoing MET. Additionally, we used the Z-cad sensor to identify and isolate minor subpopulations of cells displaying mesenchymal properties within a population comprising predominately epithelial-like cells. The Z-cad dual sensor identified cells with CSC-like properties more effectively than either the ZEB1 3' UTR or E-cadherin sensor alone. The Z-cad dual sensor effectively reports the activities of two factors critical in determining the epithelial/mesenchymal state of carcinoma cells. The ability of this stably integrating dual sensor system to detect dynamic fluctuations between these two states through live cell imaging offers a significant improvement over existing methods and helps facilitate the study of EMT/MET plasticity in response to different stimuli and in cancer pathogenesis. Finally, the versatile Z-cad sensor can be adapted to a variety of in vitro or in vivo systems to elucidate whether EMT/MET contributes to normal and disease phenotypes.
NASA Astrophysics Data System (ADS)
Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo
2016-05-01
Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic ‘naphthalene’ moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems.
Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C
2017-03-27
Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.
Hennessy, Rosanna C; Christiansen, Line; Olsson, Stefan; Stougaard, Peter
2018-01-01
Fluorescence-based reporter systems are valuable tools for studying gene expression dynamics in living cells. Here we describe a dual-fluorescence reporter system carrying the red fluorescent marker mCherry and the blue fluorescent protein EBFP2 enabling the simultaneous analysis of two promoters in broad-host range autofluorescent Gram-negative bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.
Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope
Leroux, Charles-Edouard; Grichine, Alexei; Wang, Irène; Delon, Antoine
2013-01-01
We describe the effect of optical aberrations on fluorescence fluctuations microscopy (FFM), when focusing through a single living cell. FFM measurements are performed in an aqueous fluorescent solution, and prove to be a highly sensitive tool to assess the optical aberrations introduced by the cell. We demonstrate an adaptive optics (AO) system to remove the aberration-related bias in the FFM measurements. Our data show that AO is not only useful when imaging deep in tissues, but also when performing FFM measurements through a single cellular layer. PMID:23939061
Engineering of living cells for the expression of holo-phycobiliprotein-based constructs
Glazer, Alexander N.; Tooley, Aaron J.; Cai, Yuping
2004-05-25
Recombinant cells which express a fluorescent holo-phycobiliprotein fusion protein and methods of use are described. The cells comprises a bilin, a recombinant bilin reductase, an apo-phycobiliprotein fusion protein precursor of the fusion protein comprising a corresponding apo-phycobiliprotein domain, and a recombinant phycobiliprotein domain-bilin lyase, which components react to form the holo-phycobiliprotein fusion protein. Also described are holo-phycobiliprotein based transcription reporter cells and assays, which cells conditionally express a heterologous-to-the-cell, fluorescent, first holo-phycobiliprotein domain.
NASA Astrophysics Data System (ADS)
Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.
2010-02-01
As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.
Choi, Chun Kit K; Li, Jinming; Wei, Kongchang; Xu, Yang J; Ho, Lok Wai C; Zhu, Meiling; To, Kenneth K W; Choi, Chung Hang J; Bian, Liming
2015-06-17
The capability of monitoring the differentiation process in living stem cells is crucial to the understanding of stem cell biology and the practical application of stem-cell-based therapies, yet conventional methods for the analysis of biomarkers related to differentiation require a large number of cells as well as cell lysis. Such requirements lead to the unavoidable loss of cell sources and preclude real-time monitoring of cellular events. In this work, we report the detection of microRNAs (miRNAs) in living human mesenchymal stem cells (hMSCs) by using polydopamine-coated gold nanoparticles (Au@PDA NPs). The PDA shell facilitates the immobilization of fluorescently labeled hairpin DNA strands (hpDNAs) that can recognize specific miRNA targets. The gold core and PDA shell quench the fluorescence of the immobilized hpDNAs, and subsequent binding of the hpDNAs to the target miRNAs leads to their dissociation from Au@PDA NPs and the recovery of fluorescence signals. Remarkably, these Au@PDA-hpDNA nanoprobes can naturally enter stem cells, which are known for their poor transfection efficiency, without the aid of transfection agents. Upon cellular uptake of these nanoprobes, we observe intense and time-dependent fluorescence responses from two important osteogenic marker miRNAs, namely, miR-29b and miR-31, only in hMSCs undergoing osteogenic differentiation and living primary osteoblasts but not in undifferentiated hMSCs and 3T3 fibroblasts. Strikingly, our nanoprobes can afford long-term tracking of miRNAs (5 days) in the differentiating hMSCs without the need of continuously replenishing cell culture medium with fresh nanoprobes. Our results demonstrate the capability of our Au@PDA-hpDNA nanoprobes for monitoring the differentiation status of hMSCs (i.e., differentiating versus undifferentiated) via the detection of specific miRNAs in living stem cells. Our nanoprobes show great promise in the investigation of the long-term dynamics of stem cell differentiation, identification and isolation of specific cell types, and high-throughput drug screening.
A rapid and fluorogenic TMP-AcBOPDIPY probe for covalent labeling of proteins in live cells.
Liu, Wei; Li, Fu; Chen, Xi; Hou, Jian; Yi, Long; Wu, Yao-Wen
2014-03-26
Protein labeling is enormously useful for characterizing protein function in cells and organisms. Chemical tagging methods have emerged as a new generation protein labeling strategy in live cells. Here we have developed a novel and versatile TMP-AcBOPDIPY probe for selective and turn-on labeling of proteins in live cells. A small monomeric tag, E. coli dihydrofolate reductase (eDHFR), was rationally designed to introduce a cysteine in the vicinity of the ligand binding site. Trimethoprim (TMP) that specifically binds to eDHFR was linked to the BOPDIPY fluorophore containing a mildly thiol-reactive acrylamide group. TMP-AcBOPDIPY rapidly labeled engineered eDHFR tags via a reaction termed affinity conjugation (a half-life of ca. 2 min), which is one of the top fast chemical probes for protein labeling. The probe displays 2-fold fluorescence enhancement upon labeling of proteins. We showed that the probe specifically labeled intracellular proteins in live cells without and with washing out the dye. We demonstrated its utility in visualizing intracellular processes by fluorescence-lifetime imaging microscopy (FLIM) measurements.
Spectrally And Temporally Resolved Low-Light Level Video Microscopy
NASA Astrophysics Data System (ADS)
Wampler, John E.; Furukawa, Ruth; Fechheimer, Marcus
1989-12-01
The IDG law-light video microscope system was designed to aid studies of localization of subcellular luminescence sources and stimulus/response coupling in single living cells using luminescent probes. Much of the motivation for design of this instrument system came from the pioneering efforts of Dr. Reynolds (Reynolds, Q. Rev. Biophys. 5, 295-347; Reynolds and Taylor, Bioscience 30, 586-592) who showed the value of intensified video camera systems for detection and localizion of fluorescence and bioluminescence signals from biological tissues. Our instrument system has essentially two roles, 1) localization and quantitation of very weak bioluminescence signals and 2) quantitation of intracellular environmental characteristics such as pH and calcium ion concentrations using fluorescent and bioluminescent probes. The instrument system exhibits over one million fold operating range allowing visualization and enhancement of quantum limited images with quantum limited response, spectral analysis of fluorescence signals, and transmitted light imaging. The computer control of the system implements rapid switching between light regimes, spatially resolved spectral scanning, and digital data processing for spectral shape analysis and for detailed analysis of the statistical distribution of single cell measurements. The system design and software algorithms used by the system are summarized. These design criteria are illustrated with examples taken from studies of bioluminescence, applications of bioluminescence to study developmental processes and gene expression in single living cells, and applications of fluorescent probes to study stimulus/response coupling in living cells.
MacIntyre, Hugh L; Cullen, John J
2016-08-01
Regulations for ballast water treatment specify limits on the concentrations of living cells in discharge water. The vital stains fluorescein diacetate (FDA) and 5-chloromethylfluorescein diacetate (CMFDA) in combination have been recommended for use in verification of ballast water treatment technology. We tested the effectiveness of FDA and CMFDA, singly and in combination, in discriminating between living and heat-killed populations of 24 species of phytoplankton from seven divisions, verifying with quantitative growth assays that uniformly live and dead populations were compared. The diagnostic signal, per-cell fluorescence intensity, was measured by flow cytometry and alternate discriminatory thresholds were defined statistically from the frequency distributions of the dead or living cells. Species were clustered by staining patterns: for four species, the staining of live versus dead cells was distinct, and live-dead classification was essentially error free. But overlap between the frequency distributions of living and heat-killed cells in the other taxa led to unavoidable errors, well in excess of 20% in many. In 4 very weakly staining taxa, the mean fluorescence intensity in the heat-killed cells was higher than that of the living cells, which is inconsistent with the assumptions of the method. Applying the criteria of ≤5% false negative plus ≤5% false positive errors, and no significant loss of cells due to staining, FDA and FDA+CMFDA gave acceptably accurate results for only 8-10 of 24 species (i.e., 33%-42%). CMFDA was the least effective stain and its addition to FDA did not improve the performance of FDA alone. © 2016 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.
NASA Astrophysics Data System (ADS)
Wang, Fang; Chen, Xiao-Chuan; Xing, Da
2004-07-01
Low-energy laser irradiation (LELI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. The Ras/Raf/MEK (mitogen-activated protein kinase)ERK kinase)/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that govern proliferation, differentiation and cell survival. Recent studies suggested that Ras/Raf/MEK/ERK pathway is involved in the LELI-induced cell proliferation. Here, we utilized fluorescence resonance energy transfer (FRET) technique to investigate the effect of LELI on Ras/Raf signaling pathway in living cells. Raichu-Ras reporter plasmid was utilized which consisted of fusions of H-ras, the Ras-binding domain of Raf(RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP), so that intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) were transfected with the plasmid (pRaichu-Ras) and then were treated by LELI. The living cell imaging showed the increase of FRET at different time points after LELI at the dose of 1.8 J/cm2, which corresponds to the Ras/Raf activation assayed by Western Blotting. Furthermore, this dose of LELI enhanced the proliferation of ASTC-a-1 cells. Taken together, these in vivo imaging data provide direct evidences with temporal or spatial resolution that Ras/Raf/MEK/ pathway plays an important role in LELI-promoted cell proliferation.
Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity
Kwok, Showming; Lee, Claudia; Sánchez, Susana A.; Hazlett, Theodore L.; Gratton, Enrico; Hayashi, Yasunori
2008-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is highly enriched in excitatory synapses in the central nervous system and is critically involved in synaptic plasticity, learning, and memory. However, the precise temporal and spatial regulation of CaMKII activity in living cells has not been well described, due to lack of a specific method. Here, based on our previous work, we attempted to generate an optical probe for fluorescence lifetime imaging (FLIM) of CaMKII activity by fusing the protein with donor and acceptor fluorescent proteins at its amino- and carboxyl-termini. We first optimized the combinations of fluorescent proteins by taking advantage of expansion of fluorescent proteins towards longer wavelength in fluorospectrometric assay. Then using digital frequency domain FLIM (DFD-FLIM), we demonstrated that the resultant protein can indeed detect CaMKII activation in living cells. These FLIM versions of Camui could be useful for elucidating the function of CaMKII both in vitro and in vivo. PMID:18302935
Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.
Tantama, Mathew; Hung, Yin Pun; Yellen, Gary
2011-07-06
Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.
Mahapatra, Ajit Kumar; Maji, Rajkishor; Maiti, Kalipada; Adhikari, Susanta Sekhar; Das Mukhopadhyay, Chitrangada; Mandal, Debasish
2014-01-07
A new BODIPY-azaindole based fluorescent sensor 1 was designed and synthesized as a new colorimetric and ratiometric fluorescent chemosensor for fluoride. The binding and sensing abilities of sensor 1 towards various anions were studied by absorption, emission and (1)H NMR titration spectroscopies. The spectral responses of 1 to fluoride in acetonitrile-water were studied: an approximately 69 nm red shift in absorption and ratiometric fluorescent response was observed. The striking light yellow to deep brown color change in ambient light and green to blue emission color change are thought to be due to the deprotonation of the indole moiety of the azaindole fluorophore. From the changes in the absorption, fluorescence, and (1)H NMR titration spectra, proton-transfer mechanisms were deduced. Density function theory and time-dependent density function theory calculations were conducted to rationalize the optical response of the sensor. Results were supported by confocal fluorescence imaging and MTT assay of live cells.
Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells
NASA Astrophysics Data System (ADS)
McGuinness, L. P.; Yan, Y.; Stacey, A.; Simpson, D. A.; Hall, L. T.; MacLaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.; Scholten, R. E.; Hollenberg, L. C. L.
2011-06-01
Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.
Nozeret, Karine; Loll, François; Cardoso, Gildas Mouta; Escudé, Christophe; Boutorine, Alexandre S
2018-06-01
Pericentromeric heterochromatin plays important roles in controlling gene expression and cellular differentiation. Fluorescent pyrrole-imidazole polyamides targeting murine pericentromeric DNA (major satellites) can be used for the visualization of pericentromeric heterochromatin foci in live mouse cells. New derivatives targeting human repeated DNA sequences (α-satellites) were synthesized and their interaction with target DNA was characterized. The possibility to use major satellite and α -satellite binding polyamides as tools for staining pericentromeric heterochromatin was further investigated in fixed and living mouse and human cells. The staining that was previously observed using the mouse model was further characterized and optimized, but remained limited regarding the fluorophores that can be used. The promising results regarding the staining in the mouse model could not be extended to the human model. Experiments performed in human cells showed chromosomal DNA staining without selectivity. Factors limiting the use of fluorescent polyamides, in particular probe aggregation in the cytoplasm, were investigated. Results are discussed with regards to structure and affinity of probes, density of target sites and chromatin accessibility in both models. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Fluorescence turn-on detection of Sn2+ in live eukaryotic and prokaryotic cells.
Lan, Haichuang; Wen, Ying; Shi, Yunming; Liu, Keyin; Mao, Yueyuan; Yi, Tao
2014-10-21
Sn(2+) is usually added to toothpaste to prevent dental plaque and oral disease. However, studies of its physiological role and bacteriostatic mechanism are restricted by the lack of versatile Sn(2+) detection methods applicable to live cells, including Streptococcus mutans. Here we report two Sn(2+) fluorescent probes containing a rhodamine B derivative as a fluorophore, linked via the amide moiety to N,N-bis(2-hydroxyethyl)ethylenediamine (R1) and tert-butyl carbazate group (R2), respectively. These probes can selectively chelate Sn(2+) and show marked fluorescence enhancement due to the ring open reaction of rhodamine induced by Sn(2+) chelation. The probes have high sensitivity and selectivity for Sn(2+) in the presence of various relevant metal ions. Particularly, both R1 and R2 can target lysosomes, and R2 can probe Sn concentrations in lysosomes with rather acidic microenvironment. Furthermore, these two probes have low toxicity and can be used as imaging probes for monitoring Sn(2+) not only in live KB cells (eukaryotic) but also in Streptococcus mutans cells (prokaryotic), which is a useful tool to study the physiological function of Sn(2+) in biological systems.
NASA Astrophysics Data System (ADS)
Horilova, Julia; Cunderlikova, Beata; Marcek Chorvatova, Alzbeta
2015-05-01
Early detection of cancer is crucial for the successful diagnostics of its presence and its subsequent treatment. To improve cancer detection, we tested the progressive multimodal optical imaging of U87MG cells in culture. A combination of steady-state spectroscopic methods with the time-resolved approach provides a new insight into the native metabolism when focused on endogenous tissue fluorescence. In this contribution, we evaluated the metabolic state of living U87MG cancer cells in culture by means of endogenous flavin fluorescence. Confocal microscopy and time-resolved fluorescence imaging were employed to gather spectrally and time-resolved images of the flavin fluorescence. We observed that flavin fluorescence in U87MG cells was predominantly localized outside the cell nucleus in mitochondria, while exhibiting a spectral maximum under 500 nm and fluorescence lifetimes under 1.4 ns, suggesting the presence of bound flavins. In some cells, flavin fluorescence was also detected inside the cell nuclei in the nucleoli, exhibiting longer fluorescence lifetimes and a red-shifted spectral maximum, pointing to the presence of free flavin. Extra-nuclear flavin fluorescence was diminished by 2-deoxyglucose, but failed to increase with 2,4-dinitrophenol, the uncoupler of oxidative phosphorylation, indicating that the cells use glycolysis, rather than oxidative phosphorylation for functioning. These gathered data are the first step toward monitoring the metabolic state of U87MG cancer cells.
Nucleocytoplasmic shuttling: the ins and outs of quantitative imaging.
Molenaar, Chris; Weeks, Kate L
2018-05-17
Nucleocytoplasmic protein shuttling is integral to the transmission of signals between the nucleus and the cytoplasm. The nuclear/cytoplasmic distribution of proteins of interest can be determined via fluorescence microscopy, following labelling of the target protein with fluorophore-conjugated antibodies (immunofluorescence) or by tagging the target protein with an autofluorescent protein, such as green fluorescent protein (GFP). The latter enables live cell imaging, a powerful approach that precludes many of the artefacts associated with indirect immunofluorescence in fixed cells. In this review, we discuss important considerations for the design and implementation of fluorescence microscopy experiments to quantify the nuclear/cytoplasmic distribution of a protein of interest. We summarise the pros and cons of detecting endogenous proteins in fixed cells by immunofluorescence and ectopically-expressed fluorescent fusion proteins in living cells. We discuss the suitability of widefield fluorescence microscopy and of 2D, 3D and 4D imaging by confocal microscopy for different applications, and describe two different methods for quantifying the nuclear/cytoplasmic distribution of a protein of interest from the fluorescent signal. Finally, we discuss the importance of eliminating sources of bias and subjectivity during image acquisition and post-imaging analyses. This is critical for the accurate and reliable quantification of nucleocytoplasmic shuttling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Kerppola, Tom K
2006-01-01
Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the discoveries that two non-fluorescent fragments of a fluorescent protein can form a fluorescent complex and that the association of the fragments can be facilitated when they are fused to two proteins that interact with each other. BiFC must be confirmed by parallel analysis of proteins in which the interaction interface has been mutated. It is not necessary for the interaction partners to juxtapose the fragments within a specific distance of each other because they can associate when they are tethered to a complex with flexible linkers. It is also not necessary for the interaction partners to form a complex with a long half-life or a high occupancy since the fragments can associate in a transient complex and un-associated fusion proteins do not interfere with detection of the complex. Many interactions can be visualized when the fusion proteins are expressed at levels comparable to their endogenous counterparts. The BiFC assay has been used for the visualization of interactions between many types of proteins in different subcellular locations and in different cell types and organisms. It is technically straightforward and can be performed using a regular fluorescence microscope and standard molecular biology and cell culture reagents.
Wang, Xiao; Zhou, Yanmei; Xu, Chenggong; Song, Haohan; Li, Li; Zhang, Junli; Guo, Meixia
2018-06-03
A turn-on fluorescent probe (DAME) for sensing hypochlorous acid (HClO) with excellent selectivity was presented. The fluorescent probe was composed of coumarin derivative as the fluorophore and dimethylcarbamothioic chloride group with a sulfide moiety as modulator. Additionally, the sulfide moiety would be oxidized by HClO, and then free dye of coumarin derivate was released and exhibited significant fluorescence. In addition, the probe could respond to HClO in solutions within 60 s and the limit of detection was down to 34.75 nM. Moreover, the probe was used for the detection of HClO in tap water through the home-made test paper. And confocal images confirmed that probe DAME could be used for recognizing HClO in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Live-Cell Imaging of DNA Methylation Based on Synthetic-Molecule/Protein Hybrid Probe.
Kumar, Naresh; Hori, Yuichiro; Kikuchi, Kazuya
2018-06-04
The epigenetic modification of DNA involves the conversion of cytosine to 5-methylcytosine, also known as DNA methylation. DNA methylation is important in modulating gene expression and thus, regulating genome and cellular functions. Recent studies have shown that aberrations in DNA methylation are associated with various epigenetic disorders or diseases including cancer. This stimulates great interest in the development of methods that can detect and visualize DNA methylation. For instance, fluorescent proteins (FPs) in conjugation with methyl-CpG-binding domain (MBD) have been employed for live-cell imaging of DNA methylation. However, the FP-based approach showed fluorescence signals for both the DNA-bound and -unbound states and thus differentiation between these states is difficult. Synthetic-molecule/protein hybrid probes can provide an alternative to overcome this restriction. In this article, we discuss the synthetic-molecule/protein hybrid probe that we developed recently for live-cell imaging of DNA methylation, which exhibited fluorescence enhancement only after binding to methylated DNA. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan; Periasamy, Ammasi; Bloom, George S
2015-06-01
Experiments using live cell 3-color Förster (or fluorescence) resonance energy transfer (FRET) microscopy and corresponding in vitro biochemical reconstitution of the same proteins were conducted to evaluate actin filament nucleation. A novel application of 3-color FRET data is demonstrated, extending the analysis beyond the customary energy-transfer efficiency (E%) calculations. MDCK cells were transfected for coexpression of Teal-N-WASP/Venus-IQGAP1/mRFP1-Rac1, Teal-N-WASP/Venus-IQGAP1/mRFP1-Cdc42, CFP-Rac1/Venus-IQGAP1/mCherry-actin, or CFP-Cdc42/Venus-IQGAP1/mCherry-actin, and with single-label equivalents for spectral bleedthrough correction. Using confirmed E% as an entry point, fluorescence levels and related ratios were correlated at discrete accumulating levels at cell peripheries. Rising ratios of CFP-Rac1:Venus-IQGAP1 were correlated with lower overall actin fluorescence, whereas the CFP-Cdc42:Venus-IQGAP1 ratio correlated with increased actin fluorescence at low ratios, but was neutral at higher ratios. The new FRET analyses also indicated that rising levels of mRFP1-Cdc42 or mRFP1-Rac1, respectively, promoted or suppressed the association of Teal-N-WASP with Venus-IQGAP1. These 3-color FRET assays further support our in vitro results about the role of IQGAP1, Rac1, and Cdc42 in actin nucleation, and the differential impact of Rac1 and Cdc42 on the association of N-WASP with IQGAP1. In addition, this study emphasizes the power of 3-color FRET as a systems biology strategy for simultaneous evaluation of multiple interacting proteins in individual live cells. © 2015 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Biteen, Julie S.; Thompson, Michael A.; Tselentis, Nicole K.; Shapiro, Lucy; Moerner, W. E.
2009-02-01
Recently, photoactivation and photoswitching were used to control single-molecule fluorescent labels and produce images of cellular structures beyond the optical diffraction limit (e.g., PALM, FPALM, and STORM). While previous live-cell studies relied on sophisticated photoactivatable fluorescent proteins, we show in the present work that superresolution imaging can be performed with fusions to the commonly used fluorescent protein EYFP. Rather than being photoactivated, however, EYFP can be reactivated with violet light after apparent photobleaching. In each cycle after initial imaging, only a sparse subset fluorophores is reactivated and localized, and the final image is then generated from the measured single-molecule positions. Because these methods are based on the imaging nanometer-sized single-molecule emitters and on the use of an active control mechanism to produce sparse sub-ensembles, we suggest the phrase "Single-Molecule Active-Control Microscopy" (SMACM) as an inclusive term for this general imaging strategy. In this paper, we address limitations arising from physiologically imposed upper boundaries on the fluorophore concentration by employing dark time-lapse periods to allow single-molecule motions to fill in filamentous structures, increasing the effective labeling concentration while localizing each emitter at most once per resolution-limited spot. We image cell-cycle-dependent superstructures of the bacterial actin protein MreB in live Caulobacter crescentus cells with sub-40-nm resolution for the first time. Furthermore, we quantify the reactivation quantum yield of EYFP, and find this to be 1.6 x 10-6, on par with conventional photoswitchable fluorescent proteins like Dronpa. These studies show that EYFP is a useful emitter for in vivo superresolution imaging of intracellular structures in bacterial cells.
Tracking Image Correlation: Combining Single-Particle Tracking and Image Correlation
Dupont, A.; Stirnnagel, K.; Lindemann, D.; Lamb, D.C.
2013-01-01
The interactions and coordination of biomolecules are crucial for most cellular functions. The observation of protein interactions in live cells may provide a better understanding of the underlying mechanisms. After fluorescent labeling of the interacting partners and live-cell microscopy, the colocalization is generally analyzed by quantitative global methods. Recent studies have addressed questions regarding the individual colocalization of moving biomolecules, usually by using single-particle tracking (SPT) and comparing the fluorescent intensities in both color channels. Here, we introduce a new method that combines SPT and correlation methods to obtain a dynamical 3D colocalization analysis along single trajectories of dual-colored particles. After 3D tracking, the colocalization is computed at each particle’s position via the local 3D image cross correlation of the two detection channels. For every particle analyzed, the output consists of the 3D trajectory, the time-resolved 3D colocalization information, and the fluorescence intensity in both channels. In addition, the cross-correlation analysis shows the 3D relative movement of the two fluorescent labels with an accuracy of 30 nm. We apply this method to the tracking of viral fusion events in live cells and demonstrate its capacity to obtain the time-resolved colocalization status of single particles in dense and noisy environments. PMID:23746509
Pan, Xiaohong; Liang, Ziye; Li, Jing; Wang, Shanshan; Kong, Fanpeng; Xu, Kehua; Tang, Bo
2015-01-26
Vicinal-sulfydryl-containing peptides/proteins (VSPPs) play a crucial role in human pathologies. Fluorescent probes that are capable of detecting intracellular VSPPs in vivo would be useful tools to explore the mechanisms of some diseases. In this study, by regulating the spatial separation of two maleimide groups in a fluorescent dye to match that of two active cysteine residues contained in the conserved amino acid sequence (-CGPC-) of human thioredoxin, two active-site-matched fluorescent probes, o-Dm-Ac and m-Dm-Ac, were developed for real-time imaging of VSPPs in living cells. As a result, the two probes can rapidly respond to small peptide models and reduced proteins, such as WCGPCK (W-6), WCGGPCK (W-7), and WCGGGPCK (W-8), reduced bovine serum albumin (rBSA), and reduced thioredoxin (rTrx). Moreover, o-Dm-Ac displays a higher binding sensitivity with the above-mentioned peptides and proteins, especially with W-7 and rTrx. Furthermore, o-Dm-Ac was successfully used to rapidly and directly detect VSPPs both in vitro and in living cells. Thus, a novel probe-design strategy was proposed and the synthesized probe applied successfully in imaging of target proteins in situ. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis and optical properties of water-soluble biperylene-based dendrimers.
Shao, Pin; Jia, Ningyang; Zhang, Shaojuan; Bai, Mingfeng
2014-05-30
We report the synthesis and photophysical properties of three biperylene-based dendrimers, which show red fluorescence in water. A fluorescence microscopy study demonstrated uptake of biperylene-based dendrimers in living cells. Our results indicate that these biperylene-based dendrimers are promising candidates in fluorescence imaging applications with the potential as therapeutic carriers.
A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions
Eckhardt, Manon; Anders, Maria; Muranyi, Walter; Heilemann, Mike; Krijnse-Locker, Jacomine; Müller, Barbara
2011-01-01
Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches. Here we describe the construction and characterization of the HIV derivative HIVSNAP, which carries the SNAP-tag as an additional domain within the viral structural polyprotein Gag. Introduction of the tag close to the C-terminus of the matrix domain of Gag did not interfere with particle assembly, release or proteolytic virus maturation. The modified virions were infectious and could be propagated in tissue culture, albeit with reduced replication capacity. Insertion of the SNAP domain within Gag allowed specific staining of the viral polyprotein in the context of virus producing cells using a SNAP reactive dye as well as the visualization of individual virions and viral budding sites by stochastic optical reconstruction microscopy. Thus, HIVSNAP represents a versatile tool which expands the possibilities for the analysis of HIV-cell interactions using live cell imaging and sub-diffraction fluorescence microscopy. PMID:21799764
Wang, Liang; Chen, Min; Yang, Jie; Zhang, Zhihong
2013-01-01
LC3 is a marker protein that is involved in the formation of autophagosomes and autolysosomes, which are usually characterized and monitored by fluorescence microscopy using fluorescent protein-tagged LC3 probes (FP-LC3). FP-LC3 and even endogenous LC3 can also be incorporated into intracellular protein aggregates in an autophagy-independent manner. However, the dynamic process of LC3 associated with autophagosomes and autolysosomes or protein aggregates in living cells remains unclear. Here, we explored the dynamic properties of the two types of FP-LC3-containing puncta using fluorescence microscopy techniques, including fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET). The FRAP data revealed that the fluorescent signals of FP-LC3 attached to phagophores or in mature autolysosomes showed either minimal or no recovery after photobleaching, indicating that the dissociation of LC3 from the autophagosome membranes may be very slow. In contrast, FP-LC3 in the protein aggregates exhibited nearly complete recovery (more than 80%) and rapid kinetics of association and dissociation (half-time < 1 sec), indicating a rapid exchange occurs between the aggregates and cytoplasmic pool, which is mainly due to the transient interaction of LC3 and SQSTM1/p62. Based on the distinct dynamic properties of FP-LC3 in the two types of punctate structures, we provide a convenient and useful FRAP approach to distinguish autophagosomes from LC3-involved protein aggregates in living cells. Using this approach, we find the FP-LC3 puncta that adjacently localized to the phagophore marker ATG16L1 were protein aggregate-associated LC3 puncta, which exhibited different kinetics compared with that of autophagic structures. PMID:23482084
González Bardeci, Nicolás; Angiolini, Juan Francisco; De Rossi, María Cecilia; Bruno, Luciana; Levi, Valeria
2017-01-01
Fluorescence fluctuation-based methods are non-invasive microscopy tools especially suited for the study of dynamical aspects of biological processes. These methods examine spontaneous intensity fluctuations produced by fluorescent molecules moving through the small, femtoliter-sized observation volume defined in confocal and multiphoton microscopes. The quantitative analysis of the intensity trace provides information on the processes producing the fluctuations that include diffusion, binding interactions, chemical reactions and photophysical phenomena. In this review, we present the basic principles of the most widespread fluctuation-based methods, discuss their implementation in standard confocal microscopes and briefly revise some examples of their applications to address relevant questions in living cells. The ultimate goal of these methods in the Cell Biology field is to observe biomolecules as they move, interact with targets and perform their biological action in the natural context. © 2016 IUBMB Life, 69(1):8-15, 2017. © 2016 International Union of Biochemistry and Molecular Biology.
Afrin, Rehana; Zohora, Umme Salma; Uehara, Hironori; Watanabe-Nakayama, Takahiro; Ikai, Atsushi
2009-01-01
The atomic force microscope (AFM) is a versatile tool for imaging, force measurement and manipulation of proteins, DNA, and living cells basically at the single molecular level. In the cellular level manipulation, extraction, and identification of mRNA's from defined loci of a cell, insertion of plasmid DNA and pulling of membrane proteins, for example, have been reported. In this study, AFM was used to create holes at defined loci on the cell membrane for the investigation of viability of the cells after hole creation, visualization of intracellular structure through the hole and for targeted gene delivery into living cells. To create large holes with an approximate diameter of 5-10 microm, a phospholipase A(2) coated bead was added to the AFM cantilever and the bead was allowed to touch the cell surface for approximately 5-10 min. The evidence of hole creation was obtained mainly from fluorescent image of Vybrant DiO labeled cell before and after the contact with the bead and the AFM imaging of the contact area. In parallel, cells with a hole were imaged by AFM to reveal intracellular structures such as filamentous structures presumably actin fibers and mitochondria which were identified with fluorescent labeling with rhodamine 123. Targeted gene delivery was also attempted by inserting an AFM probe that was coated with the Monster Green Fluorescent Protein phMGFP Vector for transfection of the cell. Following targeted transfection, the gene expression of green fluorescent protein (GFP) was observed and confirmed by the fluorescence microscope. Copyright (c) 2009 John Wiley & Sons, Ltd.
Fluorescence image-guided photodynamic therapy of cancer cells using a scanning fiber endoscope
NASA Astrophysics Data System (ADS)
Woldetensae, Mikias H.; Kirshenbaum, Mark R.; Kramer, Greg M.; Zhang, Liang; Seibel, Eric J.
2013-03-01
A scanning fiber endoscope (SFE) and the cancer biomarker 5-aminolevulinic acid (5-ALA) were used to fluorescently detect and destroy superficial cancerous lesions, while experimenting with different dosimetry levels for concurrent or sequential imaging and laser therapy. The 1.6-mm diameter SFE was used to fluorescently image a confluent monolayer of A549 human lung cancer cells from culture, previously administered with 5 mM solution of 5-ALA for 4 hours. Twenty hours after therapy, cell cultures were stained to distinguish between living and dead cells using a laser scanning confocal microscope. To determine relative dosimetry for photodynamic therapy (PDT), 405-nm laser illumination was varied from 1 to 5 minutes with power varying from 5 to 18 mW, chosen to compare equal amounts of energy delivered to the cell culture. The SFE produced 500-line images of fluorescence at 15 Hz using the red detection channel centered at 635 nm. The results show that PDT of A549 cancer cell monolayers using 405nm light for imaging and 5-ALAinduced PpIX therapy was possible using the same SFE system. Increased duration and power of laser illumination produced an increased area of cell death upon live/dead staining. The ultrathin and flexible SFE was able to direct PDT using wide-field fluorescence imaging of a monolayer of cultured cancer cells after uptaking 5-ALA. The correlation between light intensity and duration of PDT was measured. Increased length of exposure and decreased light intensity yields larger areas of cell death than decreased length of exposure with increased light intensity.
Dzyubachyk, Oleh; Essers, Jeroen; van Cappellen, Wiggert A; Baldeyron, Céline; Inagaki, Akiko; Niessen, Wiro J; Meijering, Erik
2010-10-01
Complete, accurate and reproducible analysis of intracellular foci from fluorescence microscopy image sequences of live cells requires full automation of all processing steps involved: cell segmentation and tracking followed by foci segmentation and pattern analysis. Integrated systems for this purpose are lacking. Extending our previous work in cell segmentation and tracking, we developed a new system for performing fully automated analysis of fluorescent foci in single cells. The system was validated by applying it to two common tasks: intracellular foci counting (in DNA damage repair experiments) and cell-phase identification based on foci pattern analysis (in DNA replication experiments). Experimental results show that the system performs comparably to expert human observers. Thus, it may replace tedious manual analyses for the considered tasks, and enables high-content screening. The described system was implemented in MATLAB (The MathWorks, Inc., USA) and compiled to run within the MATLAB environment. The routines together with four sample datasets are available at http://celmia.bigr.nl/. The software is planned for public release, free of charge for non-commercial use, after publication of this article.
Visualizing Herpesvirus Procapsids in Living Cells.
Maier, Oana; Sollars, Patricia J; Pickard, Gary E; Smith, Gregory A
2016-11-15
A complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kinetics in vitro and approximated wild-type virulence in vivo The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation. The family Herpesviridae consists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.
Görlitz, Frederik; Kelly, Douglas J; Warren, Sean C; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J; Stuhmeier, Frank; Neil, Mark A A; Tate, Edward W; Dunsby, Christopher; French, Paul M W
2017-01-18
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.
Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy
Warren, Sean C.; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A.; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Tate, Edward W.; Dunsby, Christopher; French, Paul M. W.
2017-01-01
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set. PMID:28190060
Peckys, Diana B; Bandmann, Vera; de Jonge, Niels
2014-01-01
Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.
Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.
Kerppola, Tom K
2008-01-01
A variety of experimental methods have been developed for the analysis of protein interactions. The majority of these methods either require disruption of the cells to detect molecular interactions or rely on indirect detection of the protein interaction. The bimolecular fluorescence complementation (BiFC) assay provides a direct approach for the visualization of molecular interactions in living cells and organisms. The BiFC approach is based on the facilitated association between two fragments of a fluorescent protein when the fragments are brought together by an interaction between proteins fused to the fragments. The BiFC approach has been used for visualization of interactions among a variety of structurally diverse interaction partners in many different cell types. It enables detection of transient complexes as well as complexes formed by a subpopulation of the interaction partners. It is essential to include negative controls in each experiment in which the interface between the interaction partners has been mutated or deleted. The BiFC assay has been adapted for simultaneous visualization of multiple protein complexes in the same cell and the competition for shared interaction partners. A ubiquitin-mediated fluorescence complementation assay has also been developed for visualization of the covalent modification of proteins by ubiquitin family peptides. These fluorescence complementation assays have a great potential to illuminate a variety of biological interactions in the future.
NASA Astrophysics Data System (ADS)
Goldys, Ewa M.; Gosnell, Martin E.; Anwer, Ayad G.; Cassano, Juan C.; Sue, Carolyn M.; Mahbub, Saabah B.; Pernichery, Sandeep M.; Inglis, David W.; Adhikary, Partho P.; Jazayeri, Jalal A.; Cahill, Michael A.; Saad, Sonia; Pollock, Carol; Sutton-Mcdowall, Melanie L.; Thompson, Jeremy G.
2016-03-01
Automated and unbiased methods of non-invasive cell monitoring able to deal with complex biological heterogeneity are fundamentally important for biology and medicine. Label-free cell imaging provides information about endogenous fluorescent metabolites, enzymes and cofactors in cells. However extracting high content information from imaging of native fluorescence has been hitherto impossible. Here, we quantitatively characterise cell populations in different tissue types, live or fixed, by using novel image processing and a simple multispectral upgrade of a wide-field fluorescence microscope. Multispectral intrinsic fluorescence imaging was applied to patient olfactory neurosphere-derived cells, cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast, subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. The versatility of our method is further illustrated by detecting genetic mutations in cancer, non-invasive monitoring of CD90 expression, label-free tracking of stem cell differentiation, identifying stem cell subpopulations with varying functional characteristics, tissue diagnostics in diabetes, and assessing the condition of preimplantation embryos. Our optimal discrimination approach enables statistical hypothesis testing and intuitive visualisations where previously undetectable differences become clearly apparent.
Dong, Chaoqing; Chowdhury, Basudev; Irudayaraj, Joseph
2013-05-21
Understanding the biophysical and chemical interactions of nanoprobes and their fate upon entering live cells is critical for developing fundamental insights related to intracellular diagnostics, drug delivery and targeting. In this article we report herein a single molecule analysis procedure to quantitate site-specific exclusive membrane binding of N-acetyl-L-cysteine (NAC)-capped cadmium telluride (CdTe) quantum dots (QDs) in A-427 lung carcinoma cells (k(eq) = 0.075 ± 0.011 nM(-1)), its relative intracellular distribution and dynamics using fluorescence correlation spectroscopy (FCS) combined with scanning confocal fluorescence lifetime imaging (FLIM). In particular, we demonstrate that the binding efficacy of QDs to the cell membrane is directly related to their size and the targeting of QDs to specific membrane sites is exclusive. We also show that QDs are efficiently internalized by endocytosis and enclosed within the endosome and organelle-dependent diffusion dynamics can be monitored in live cells.
Development of background-free tame fluorescent probes for intracellular live cell imaging
Alamudi, Samira Husen; Satapathy, Rudrakanta; Kim, Jihyo; Su, Dongdong; Ren, Haiyan; Das, Rajkumar; Hu, Lingna; Alvarado-Martínez, Enrique; Lee, Jung Yeol; Hoppmann, Christian; Peña-Cabrera, Eduardo; Ha, Hyung-Ho; Park, Hee-Sung; Wang, Lei; Chang, Young-Tae
2016-01-01
Fluorescence labelling of an intracellular biomolecule in native living cells is a powerful strategy to achieve in-depth understanding of the biomolecule's roles and functions. Besides being nontoxic and specific, desirable labelling probes should be highly cell permeable without nonspecific interactions with other cellular components to warrant high signal-to-noise ratio. While it is critical, rational design for such probes is tricky. Here we report the first predictive model for cell permeable background-free probe development through optimized lipophilicity, water solubility and charged van der Waals surface area. The model was developed by utilizing high-throughput screening in combination with cheminformatics. We demonstrate its reliability by developing CO-1 and AzG-1, a cyclooctyne- and azide-containing BODIPY probe, respectively, which specifically label intracellular target organelles and engineered proteins with minimum background. The results provide an efficient strategy for development of background-free probes, referred to as ‘tame' probes, and novel tools for live cell intracellular imaging. PMID:27321135
Noninvasive imaging of protein-protein interactions in living animals
NASA Astrophysics Data System (ADS)
Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David
2002-05-01
Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.
Pécot, Thierry; Bouthemy, Patrick; Boulanger, Jérôme; Chessel, Anatole; Bardin, Sabine; Salamero, Jean; Kervrann, Charles
2015-02-01
Image analysis applied to fluorescence live cell microscopy has become a key tool in molecular biology since it enables to characterize biological processes in space and time at the subcellular level. In fluorescence microscopy imaging, the moving tagged structures of interest, such as vesicles, appear as bright spots over a static or nonstatic background. In this paper, we consider the problem of vesicle segmentation and time-varying background estimation at the cellular scale. The main idea is to formulate the joint segmentation-estimation problem in the general conditional random field framework. Furthermore, segmentation of vesicles and background estimation are alternatively performed by energy minimization using a min cut-max flow algorithm. The proposed approach relies on a detection measure computed from intensity contrasts between neighboring blocks in fluorescence microscopy images. This approach permits analysis of either 2D + time or 3D + time data. We demonstrate the performance of the so-called C-CRAFT through an experimental comparison with the state-of-the-art methods in fluorescence video-microscopy. We also use this method to characterize the spatial and temporal distribution of Rab6 transport carriers at the cell periphery for two different specific adhesion geometries.
Regmi, Raju; Winkler, Pamina M; Flauraud, Valentin; Borgman, Kyra J E; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F
2017-10-11
Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 μs. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.
NASA Astrophysics Data System (ADS)
Regmi, Raju; Winkler, Pamina M.; Flauraud, Valentin; Borgman, Kyra J. E.; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F.
2017-10-01
Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 {\\mu}s. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.
McCranor, Bryan J.; Szmacinski, Henryk; Zeng, Hui Hui; Stoddard, A.K.; Hurst, Tamiika; Fierke, Carol A.; Lakowicz, J.R.
2014-01-01
Copper is a required trace element that plays key roles in a number of human enzymes, such that copper deficiency or genetic defects in copper transport lead to serious or fatal disease. Rae, et al., had famously predicted that free copper ion levels in the cell cytoplasm were extremely low, typically too low to be observable. We recently developed a variant of human apocarbonic anhydrase II for sensing metal ions that exhibits 25-fold better selectivity for Cu(II) over Zn(II) than the wild type protein, enabling us to accurately measure Cu(II) in the presence of ordinary cellular (picomolar) concentrations of free zinc. We inserted a fluorescent labeled Cu(II)-specific variant of human apocarbonic anhydrase into PC-12 cells and found that the levels are indeed extremely low (in the femtomolar range). We imaged the free Cu(II) levels in living cells by means of frequency-domain fluorescence lifetime microscopy. Implications of this finding are discussed. PMID:24671220
Development and critical evaluation of fluorescent chloride nanosensors.
Graefe, Anja; Stanca, Sarmiza E; Nietzsche, Sandor; Kubicova, Lenka; Beckert, Rainer; Biskup, Christoph; Mohr, Gerhard J
2008-09-01
In this study, we describe the preparation and evaluation of new fluorescent sensor nanoparticles for the ratiometric measurement of chloride concentrations. Both a chloride-sensitive dye (lucigenin) and a reference dye (sulforhodamine derivative) were incorporated into polyacrylamide nanoparticles via inverse microemulsion polymerization and investigated for their response to chloride ions in buffered suspension as well as in living cells. The fluorescence intensity of lucigenin reversibly decreased in the presence of chloride ions due to a collisional quenching process, which can be described with the Stern-Volmer equation. The determined Stern-Volmer constant K SV for the quenching of lucigenin incorporated into particles was found to be 53 M (-1) and is considerably smaller than the Stern-Volmer constant for quenching of free lucigenin ( K SV = 250 M (-1)) under the same conditions. To test the nanosensors in living cells, we incorporated them into Chinese hamster ovary cells and mouse fibroblasts by using the conventional lipofectamin technique and monitored the response to changing chloride concentrations in the cell.
Monsma, Paula C.; Brown, Anthony
2012-01-01
FluoroMyelin™ Red is a commercially available water-soluble fluorescent dye that has selectivity for myelin. This dye is marketed for the visualization of myelin in brain cryosections, though it is also used widely to stain myelin in chemically fixed tissue. Here we have investigated the suitability of FluoroMyelin™ Red as a vital stain for live imaging of myelin in myelinating co-cultures of Schwann cells and dorsal root ganglion neurons. We show that addition of FluoroMyelin™ Red to the culture medium results in selective staining of myelin sheaths, with an optimal staining time of 2 hours, and has no apparent adverse effect on the neurons, their axons, or the myelinating cells at the light microscopic level. The fluorescence is bright and photostable, permitting long-term time-lapse imaging. After rinsing the cultures with medium lacking FluoroMyelin™ Red, the dye diffuses out of the myelin with a half life of about 130 minutes resulting in negligible fluorescence remaining after 18–24 hours. In addition, the large Stokes shift exhibited by FluoroMyelin™ Red makes it possible to readily distinguish it from popular and widely used green and red fluorescent probes such as GFP and mCherry. Thus FluoroMyelin™ Red is a useful reagent for live fluorescence imaging studies on myelinated axons. PMID:22743799
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, C; Flint, D; Grosshans, D
Purpose: To construct a custom and portable fluorescence confocal laser-scanning microscope (FCLSM) that can be placed in the path of therapeutic radiation beams to study real-time radiation-induced damage response in live cells. Methods: We designed and constructed a portable FCLSM with three laser diodes for excitation (405, 488, and 635 nm). An objective lens focuses the excitation light and collects fluorescence from the sample. A pair of galvanometer mirrors scans/collects the laser beam/fluorescence along the focal plane (x/y-directions). A stepper motor stage scans in the axial direction and positions the x/y of the image field. Barrier filters and dichroic mirrorsmore » are used to route the spectral emission bands to the appropriate photodetector. An avalanche photodiode collects near-infrared fluorescence; a photodiode collects back-reflected 635 nm light; and a photomultiplier tube collects green fluorescence in the range of eGFP/eYFP. A 200-µm diameter pinhole was used to implement the confocal geometry for near-infrared and red channels and a 150-µm diameter pinhole for the green channel. Data acquisition and system control were achieved using a high-throughput data acquisition card. In-house software developed in LabVIEW was used to control the hardware, collect data from the photodetectors and reconstruct the confocal images. Results: 6 frames/s can be acquired for a 25 µm{sup 2} (128×128 pixels) field of view, visualizing the entire volume of the cell nucleus (∼10 µm depth) in <10 s. To demonstrate the usefulness of our FCLSM, we imaged gold nanoshells in live cells, radiation-induced damage in fibrosarcoma cells expressing eGFP tagged to a DNA repair protein, and neurons expressing eGFP. The system can also image particle tracks in fluorescent nuclear track detectors. Conclusion: We developed a versatile and portable FCLSM that allows radiobiology studies in live cells exposed to therapeutic radiation. The FCLSM can be placed in any vertical beam line for top-to-bottom exposures. This research was supported by the Sister Institution Network Fund and the Center for Radiation Oncology Research at The University of Texas MD Anderson Cancer Center and Cancer Prevention and Research Institute of Texas. Gabriel Sawakuchi has research support from Elekta Inc.« less
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W; Gautier, Virginie W
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip.
Courtney, Jane; Woods, Elena; Scholz, Dimitri; Hall, William W.; Gautier, Virginie W.
2015-01-01
We introduce here MATtrack, an open source MATLAB-based computational platform developed to process multi-Tiff files produced by a photo-conversion time lapse protocol for live cell fluorescent microscopy. MATtrack automatically performs a series of steps required for image processing, including extraction and import of numerical values from Multi-Tiff files, red/green image classification using gating parameters, noise filtering, background extraction, contrast stretching and temporal smoothing. MATtrack also integrates a series of algorithms for quantitative image analysis enabling the construction of mean and standard deviation images, clustering and classification of subcellular regions and injection point approximation. In addition, MATtrack features a simple user interface, which enables monitoring of Fluorescent Signal Intensity in multiple Regions of Interest, over time. The latter encapsulates a region growing method to automatically delineate the contours of Regions of Interest selected by the user, and performs background and regional Average Fluorescence Tracking, and automatic plotting. Finally, MATtrack computes convenient visualization and exploration tools including a migration map, which provides an overview of the protein intracellular trajectories and accumulation areas. In conclusion, MATtrack is an open source MATLAB-based software package tailored to facilitate the analysis and visualization of large data files derived from real-time live cell fluorescent microscopy using photoconvertible proteins. It is flexible, user friendly, compatible with Windows, Mac, and Linux, and a wide range of data acquisition software. MATtrack is freely available for download at eleceng.dit.ie/courtney/MATtrack.zip. PMID:26485569
Essary, Brandin D; Marshall, Pamela A
2009-08-01
FUN-1 [2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-phenylquinolinium iodide] is a fluorescent dye used in studies of yeast and other fungi to monitor cell viability in the research lab and to assay for active fungal infection in the clinical setting. When the plasma membrane is intact, fungal cells internalize FUN-1 and the dye is seen as diffuse green cytosolic fluorescence. FUN-1 is then transported to the vacuole in metabolically active wild type cells and subsequently is compacted into fluorescent red cylindrical intravacuolar structures (CIVS) by an unknown transport pathway. This dye is used to determine yeast viability, as only live cells form CIVS. However, in live Saccharomyces cerevisiae with impaired protein sorting to the yeast vacuole, we report decreased to no CIVS formation, depending on the cellular location of the block in the sorting pathway. Cells with a block in vesicle-mediated transport from the Golgi to prevacuolar compartment (PVC) or with a block in recycling from the PVC to the Golgi demonstrate a substantial impairment in CIVS formation. Instead, the FUN-1 dye is seen either in small punctate structures under fluorescence or as diffuse red cytosol under white light. Thus, researchers using FUN-1 should be cognizant of the limitations of this procedure in determining cell viability as there are viable yeast mutants with impaired CIVS formation.
Feder, Denise; Gomes, Suzete A O; de Thomaz, André A; Almeida, Diogo B; Faustino, Wagner M; Fontes, Adriana; Stahl, Cecília V; Santos-Mallet, Jacenir R; Cesar, Carlos L
2009-12-01
Semiconductor quantum dots (QDs) are highly fluorescent nanocrystals markers that allow long photobleaching and do not destroy the parasites. In this paper, we used fluorescent core shell quantum dots to perform studies of live parasite-vector interaction processes without any observable effect on the vitality of parasites. These nanocrystals were synthesized in aqueous medium and physiological pH, which is very important for monitoring live cells activities, and conjugated with molecules such as lectins to label specific carbohydrates involved on the parasite-vector interaction. These QDs were successfully used for the study of in vitro and in vivo interaction of Trypanosoma cruzi and the triatomine Rhodnius prolixus. These QDs allowed us to acquire real time confocal images sequences of live T. cruzi-R. prolixus interactions for an extended period, causing no damage to the cells. By zooming to the region of interest, we have been able to acquire confocal images at the three to four frames per second rate. Our results show that QDs are physiological fluorescent markers capable to label living parasites and insect vector cells. QDs can be functionalized with lectins to specifically mark surface carbohydrates on perimicrovillar membrane of R. prolixus to follow, visualize, and understand interaction between vectors and its parasites in real-time.
Long term imaging of living brain cancer cells
NASA Astrophysics Data System (ADS)
Farias, Patricia M. A.; Galembeck, André; Milani, Raquel; Andrade, Arnaldo C. D. S.; Stingl, Andreas
2018-02-01
QDs synthesized in aqueous medium and functionalized with polyethylene glycol were used as fluorescent probes. They label and monitor living healthy and cancer brain glial cells in culture. Physical-chemical characterization was performed. Toxicological studies were performed by in vivo short and long-term inhalation in animal models. Healthy and cancer glial living cells were incubated in culture media with highly controlled QDs. Specific features of glial cancer cells were enhanced by QD labelling. Cytoplasmic labelling pattern was clearly distinct for healthy and cancer cells. Labelled cells kept their normal activity for same period as non-labelled control samples.
Behavior of a fluorescent analogue of calmodulin in living 3T3 cells.
Luby-Phelps, K; Lanni, F; Taylor, D L
1985-10-01
We have prepared and partially characterized a lissamine-rhodamine B fluorescent analogue of calmodulin, LRB-CM. The analogue had a dye/protein ratio of approximately 1.0 and contained no free dye or contaminating labeled proteins. LRB-CM was indistinguishable from native calmodulin upon SDS PAGE and in assays of phosphodiesterase and myosin light chain kinase. The emission spectrum of LRB-CM was insensitive to changes in pH, ionic strength, and temperature over the physiological range, but the apparent quantum yield was influenced somewhat by divalent cation concentration. LRB-CM injected into living Swiss 3T3 fibroblasts became associated with nitrobenzoxadiazole-phallacidin staining stress fibers in some interphase cells. LRB-CM and acetamidofluorescein-labeled actin co-injected into the same cell both became associated with fibers in some cells, but in most cases association of the two analogues with fibers was mutually exclusive. This suggests that calmodulin may differ from actin in the timing of incorporation into stress fibers or that we have distinguished distinct populations of stress fibers. We were able to detect no direct interaction of LRB-CM with actin by fluorescence photobleaching recovery (FRAP) of aqueous solutions. Interaction of LRB-CM with myosin light chain kinase also was not detected by FRAP. This suggests that the mean lifetime of the calmodulin-myosin light chain kinase complex is too short to affect the diffusion coefficient of calmodulin. We examined various fluorescent derivatives of proteins and dextrans as suitable control molecules for quantitative fluorescent analogue cytochemistry in living cells. Fluorescein isothiocyanate-dextrans were found to be preferable to all the proteins tested, since their mobilities in cytoplasm were inversely dependent on molecular size and there was no evidence of binding to intracellular components. In contrast, FRAP of LRB-CM in the cytoplasm of living 3T3 cells suggested that the analogue interacts with intracellular components with a range of affinities. The mobility of LRB-CM in the cytoplasm was sensitive to treatment of the cells with trifluoperazine, which suggests that at least some of the intracellular binding sites are specific for calmodulin in the calcium-bound form. FRAP of LRB-CM in the nuclei of living 3T3 cells indicated that the analogue was highly mobile within the nucleus but entered the nucleus from the cytoplasm much more slowly than fluorescein isothiocyanate-dextran of comparable molecular size and much more slowly than predicted from its mobility in cytoplasm.
Behavior of a fluorescent analogue of calmodulin in living 3T3 cells
1985-01-01
We have prepared and partially characterized a lissamine-rhodamine B fluorescent analogue of calmodulin, LRB-CM. The analogue had a dye/protein ratio of approximately 1.0 and contained no free dye or contaminating labeled proteins. LRB-CM was indistinguishable from native calmodulin upon SDS PAGE and in assays of phosphodiesterase and myosin light chain kinase. The emission spectrum of LRB-CM was insensitive to changes in pH, ionic strength, and temperature over the physiological range, but the apparent quantum yield was influenced somewhat by divalent cation concentration. LRB-CM injected into living Swiss 3T3 fibroblasts became associated with nitrobenzoxadiazole- phallacidin staining stress fibers in some interphase cells. LRB-CM and acetamidofluorescein-labeled actin co-injected into the same cell both became associated with fibers in some cells, but in most cases association of the two analogues with fibers was mutually exclusive. This suggests that calmodulin may differ from actin in the timing of incorporation into stress fibers or that we have distinguished distinct populations of stress fibers. We were able to detect no direct interaction of LRB-CM with actin by fluorescence photobleaching recovery (FRAP) of aqueous solutions. Interaction of LRB-CM with myosin light chain kinase also was not detected by FRAP. This suggests that the mean lifetime of the calmodulin-myosin light chain kinase complex is too short to affect the diffusion coefficient of calmodulin. We examined various fluorescent derivatives of proteins and dextrans as suitable control molecules for quantitative fluorescent analogue cytochemistry in living cells. Fluorescein isothiocyanate-dextrans were found to be preferable to all the proteins tested, since their mobilities in cytoplasm were inversely dependent on molecular size and there was no evidence of binding to intracellular components. In contrast, FRAP of LRB-CM in the cytoplasm of living 3T3 cells suggested that the analogue interacts with intracellular components with a range of affinities. The mobility of LRB-CM in the cytoplasm was sensitive to treatment of the cells with trifluoperazine, which suggests that at least some of the intracellular binding sites are specific for calmodulin in the calcium-bound form. FRAP of LRB-CM in the nuclei of living 3T3 cells indicated that the analogue was highly mobile within the nucleus but entered the nucleus from the cytoplasm much more slowly than fluorescein isothiocyanate-dextran of comparable molecular size and much more slowly than predicted from its mobility in cytoplasm. PMID:4044638
Day, Richard N.; Booker, Cynthia F.; Periasamy, Ammasi
2008-01-01
The genetically encoded fluorescent proteins (FP), used in combination with Förster resonance energy transfer (FRET) microscopy, provide the tools necessary for the direct visualization of protein interactions inside living cells. Typically, the Cerulean and Venus variants of the cyan and yellow FPs are used for FRET studies, but there are limitations to their use. Here, Cerulean and the newly developed monomeric Teal FP (mTFP) are compared as FRET donors for Venus using spectral and fluorescence lifetime measurements from living cells. The results demonstrate that when compared to Cerulean, mTFP has increased brightness, optimal excitation using the standard 458-nm laser line, increased photostability, and improved spectral overlap with Venus. In addition, the two-photon excitation and fluorescence lifetime characteristics are determined for mTFP. Together, these measurements indicate that mTFP is an excellent donor fluorophore for FRET studies, and that its use may improve the detection of interactions involving proteins that are difficult to express, or that need to be produced at low levels in cells. PMID:18601527
Wang, Yunxia; Li, Shengliang; Feng, Liheng; Nie, Chenyao; Liu, Libing; Lv, Fengting; Wang, Shu
2015-11-04
A new water-soluble conjugated poly(fluorene-co-phenylene) derivative (PFP-FB) modified with boronate-protected fluorescein (peroxyfluor-1) via PEG linker has been designed and synthesized. In the presence of H2O2, the peroxyfluor-1 group can transform into green fluorescent fluorescein by deprotecting the boronate protecting groups. In this case, upon selective excitation of PFP-FB backbone at 380 nm, efficient fluorescence resonance energy transfer (FRET) from PFP-FB backbone to fluorescein occurs, and accordingly, the fluorescence color of PFP-FB changes from blue to green. Furthermore, the emission color of PFP-FB and the FRET ratio change in a concentration-dependent manner. By taking advantage of PFP-FB, ratiometric detection of choline and acetylcholine (ACh) through cascade enzymatic reactions and further dynamic monitoring of the choline consumption process of cancer cells have been successfully realized. Thus, this new polymer probe promotes the development of enzymatic biosensors and provides a simpler and more effective way for detecting the chemical transmitter of living cells.
Imaging intracellular protein dynamics by spinning disk confocal microscopy
Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten
2012-01-01
The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541
Recent advancements in structured-illumination microscopy toward live-cell imaging.
Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi
2015-08-01
Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genetically encoded fluorescent tags
Thorn, Kurt
2017-01-01
Genetically encoded fluorescent tags are protein sequences that can be fused to a protein of interest to render it fluorescent. These tags have revolutionized cell biology by allowing nearly any protein to be imaged by light microscopy at submicrometer spatial resolution and subsecond time resolution in a live cell or organism. They can also be used to measure protein abundance in thousands to millions of cells using flow cytometry. Here I provide an introduction to the different genetic tags available, including both intrinsically fluorescent proteins and proteins that derive their fluorescence from binding of either endogenous or exogenous fluorophores. I discuss their optical and biological properties and guidelines for choosing appropriate tags for an experiment. Tools for tagging nucleic acid sequences and reporter molecules that detect the presence of different biomolecules are also briefly discussed. PMID:28360214
Molecular imaging of labile iron(II) pools in living cells with a turn-on fluorescent probe.
Au-Yeung, Ho Yu; Chan, Jefferson; Chantarojsiri, Teera; Chang, Christopher J
2013-10-09
Iron is an essential metal for living organisms, but misregulation of its homeostasis at the cellular level can trigger detrimental oxidative and/or nitrosative stress and damage events. Motivated to help study the physiological and pathological consequences of biological iron regulation, we now report a reaction-based strategy for monitoring labile Fe(2+) pools in aqueous solution and living cells. Iron Probe 1 (IP1) exploits a bioinspired, iron-mediated oxidative C-O bond cleavage reaction to achieve a selective turn-on response to Fe(2+) over a range of cellular metal ions in their bioavailable forms. We show that this first-generation chemical tool for fluorescence Fe(2+) detection can visualize changes in exchangeable iron stores in living cells upon iron supplementation or depletion, including labile iron pools at endogenous, basal levels. Moreover, IP1 can be used to identify reversible expansion of labile iron pools by stimulation with vitamin C or the iron regulatory hormone hepcidin, providing a starting point for further investigations of iron signaling and stress events in living systems as well as future probe development.
Brooker, Holly R; Gyamfi, Irene A; Wieckowska, Agnieszka; Brooks, Nicholas J; Mulvihill, Daniel P; Geeves, Michael A
2018-06-21
Life is dependent upon the ability of a cell to rapidly respond to changes in environment. Small perturbations in local environments change the ability of molecules to interact and hence communicate. Hydrostatic pressure provides a rapid non-invasive, fully-reversible method for modulating affinities between molecules both in vivo and in vitro We have developed a simple fluorescence imaging chamber that allows intracellular protein dynamics and molecular events to be followed at pressures up to 200 bar in living cells. Using yeast we investigate the impact of hydrostatic pressure upon cell growth and cell cycle progression. While 100 bar has no affect upon viability, it induces a delay in chromosome segregation, resulting in the accumulation of long-undivided-bent cells, consistent with disruption of the cytoskeletons. This delay is independent of stress signalling and induces synchronisation of cell-cycle progression. Equivalent affects were observed in Candida albicans , with pressure inducing a reversible cell-cycle delay and hyphal growth. We present a simple novel non-invasive fluorescence microscopy based approach to transiently impact molecular dynamics to visualise, dissect and study signalling pathways and cellular processes in living cells. © 2018. Published by The Company of Biologists Ltd.
Nanoscale Label-free Bioprobes to Detect Intracellular Proteins in Single Living Cells
Hong, Wooyoung; Liang, Feng; Schaak, Diane; Loncar, Marko; Quan, Qimin
2014-01-01
Fluorescent labeling techniques have been widely used in live cell studies; however, the labeling processes can be laborious and challenging for use in non-transfectable cells, and labels can interfere with protein functions. While label-free biosensors have been realized by nanofabrication, a method to track intracellular protein dynamics in real-time, in situ and in living cells has not been found. Here we present the first demonstration of label-free detection of intracellular p53 protein dynamics through a nanoscale surface plasmon-polariton fiber-tip-probe (FTP). PMID:25154394
Imaging cell biology in live animals: ready for prime time.
Weigert, Roberto; Porat-Shliom, Natalie; Amornphimoltham, Panomwat
2013-06-24
Time-lapse fluorescence microscopy is one of the main tools used to image subcellular structures in living cells. Yet for decades it has been applied primarily to in vitro model systems. Thanks to the most recent advancements in intravital microscopy, this approach has finally been extended to live rodents. This represents a major breakthrough that will provide unprecedented new opportunities to study mammalian cell biology in vivo and has already provided new insight in the fields of neurobiology, immunology, and cancer biology.
Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.
Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki
2009-01-01
A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.
Fluorescent Proteins: A Cell Biologist's User Guide
Snapp, Erik Lee
2009-01-01
Fluorescent Proteins (FPs) have revolutionized cell biology. The value of labeling and visualizing proteins in living cells is evident from thousands of publications since the cloning of Green Fluorescent Protein (GFP). Biologists have been flooded with a cornucopia of FPs; however, the FP toolbox has not necessarily been optimized for cell biologists. Common FP plasmids are suboptimal for FP-fusion protein construction. More problematic are commercial and investigator-constructed FP-fusion proteins that disrupt important cellular targeting information. Even when cell biologists correctly construct FP-fusion proteins, it is rarely self-evident which FP should be used. Important FP information, such as oligomer formation or photostability, is often unsearchable or anecdotal. This brief guide is offered to assist in correctly exploiting FPs in cells. PMID:19819147
Wang, Jianbo; Xia, Shuai; Bi, Jianheng; Fang, Mingxi; Mazi, Wafa; Zhang, Yibin; Conner, Nathan; Luo, Fen-Tair; Lu, H Peter; Liu, Haiying
2018-04-18
In this paper, we present three ratiometric near-infrared fluorescent probes (A-C) for accurate, ratiometric detection of intracellular pH changes in live cells. Probe A consists of a tetraphenylethene (TPE) donor and near-infrared hemicyanine acceptor in a through-bond energy transfer (TBET) strategy, while probes B and C are composed of TPE and hemicyanine moieties through single and double sp 2 carbon-carbon bond connections in a π-conjugation modulation strategy. The specific targeting of the probes to lysosomes in live cells was achieved by introducing morpholine residues to the hemicyanine moieties to form closed spirolactam ring structures. Probe A shows aggregation-induced emission (AIE) property at neutral or basic pH, while probes B and C lack AIE properties. At basic or neutral pH, the probes only show fluorescence of TPE moieties with closed spirolactam forms of hemicyanine moieties, and effectively avoid blind fluorescence imaging spots, an issue which typical intensity-based pH fluorescent probes encounter. Three probes show ratiometric fluorescence responses to pH changes from 7.0 to 3.0 with TPE fluorescence decreases and hemicyanine fluorescence increases, because acidic pH makes the spirolactam rings open to enhance π-conjugation of hemicyanine moieties. However, probe A shows much more sensitive ratiometric fluorescence responses to pH changes from 7.0 to 3.0 with remarkable ratio increase of TPE fluorescence to hemicyanine fluorescence up to 238-fold than probes B and C because of its high efficiency of energy transfer from TPE donor to the hemicyanine acceptor in the TBET strategy. The probe offers dual Stokes shifts with a large pseudo-Stokes shift of 361 nm and well-defined dual emissions, and allows for colocalization of the imaging readouts of visible and near-infrared fluorescence channels to achieve more precisely double-checked ratiometric fluorescence imaging. These platforms could be employed to develop a variety of novel ratiometric fluorescent probes for accurate detection of different analytes in applications of chemical and biological sensing, imaging, and diagnostics by introducing appropriate sensing ligands to hemicyanine moieties to form on-off spirolactam switches.
Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, Sheikh; Aravind, Athulya; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi
2012-03-01
The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.
Gurskaya, N G; Staroverov, D B; Lukyanov, K A
2016-01-01
Alternative splicing is an important mechanism of regulation of gene expression and expansion of proteome complexity. Recently we developed a new fluorescence reporter for quantitative analysis of alternative splicing of a target cassette exon in live cells (Gurskaya et al., 2012). It consists of a specially designed minigene encoding red and green fluorescent proteins (Katushka and TagGFP2) and a fragment of the target gene between them. Skipping or inclusion of the alternative exon induces a frameshift; ie, alternative exon length must not be a multiple of 3. Finally, red and green fluorescence intensities of cells expressing this reporter are used to estimate the percentage of alternative (exon-skipped) and normal (exon-retained) transcripts. Here, we provide a detailed description of design and application of the fluorescence reporter of a target alternative exon splicing in mammalian cell lines. © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, Elizabeth Myhra
The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.
Ou-Yang, Juan; Li, Yong-Fei; Wu, Ping; Jiang, Wen-Li; Liu, Hong-Wen; Li, Chun-Yan
2018-06-20
γ-Glutamytranspeptidase (GGT) is a significant tumor-related biomarker that overexpresses in several tumor cells. Accurate detection and imaging of GGT activity in serum, live cells, and pathological tissues hold great significance for cancer diagnosis, treatment, and management. Recently developed small molecule fluorescent probes for GGT tend to diffuse to the whole cytoplasm and then translocate out of live cells after enzymatic reaction, which make them fail to provide high spatial resolution and long-term imaging in biological systems. To address these problems, a novel fluorescent probe (HPQ-PDG) which releases a precipitating fluorochrome upon the catalysis of GGT is designed and synthesized. HPQ-PDG is able to detect GGT activity with high spatial resolution and good signal-stability. The large Stokes shift of the probe enables it to detect the activity of GGT in serum samples with high sensitivity. To our delight, the probe is used for imaging GGT activity in live cells with the ability of discriminating cancer cells from normal cells. What's more, we successfully apply it for pathological tissues imaging, with the results indicating that the potential application of HPQ-PDG in histopathological examination. All these results demonstrate the potential application of HPQ-PDG in the clinic.
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert
2013-01-01
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703
Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).
Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert
2013-05-07
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Krönig, Malte; Walter, Max; Drendel, Vanessa; Werner, Martin; Jilg, Cordula A.; Richter, Andreas S.; Backofen, Rolf; McGarry, David; Follo, Marie; Schultze-Seemann, Wolfgang; Schüle, Roland
2015-01-01
A lack of cell surface markers for the specific identification, isolation and subsequent analysis of living prostate tumor cells hampers progress in the field. Specific characterization of tumor cells and their microenvironment in a multi-parameter molecular assay could significantly improve prognostic accuracy for the heterogeneous prostate tumor tissue. Novel functionalized gold-nano particles allow fluorescence-based detection of absolute mRNA expression levels in living cells by fluorescent activated flow cytometry (FACS). We use of this technique to separate prostate tumor and benign cells in human prostate needle biopsies based on the expression levels of the tumor marker alpha-methylacyl-CoA racemase (AMACR). We combined RNA and protein detection of living cells by FACS to gate for epithelial cell adhesion molecule (EPCAM) positive tumor and benign cells, EPCAM/CD45 double negative mesenchymal cells and CD45 positive infiltrating lymphocytes. EPCAM positive epithelial cells were further sub-gated into AMACR high and low expressing cells. Two hundred cells from each population and several biopsies from the same patient were analyzed using a multiplexed gene expression profile to generate a cell type resolved profile of the specimen. This technique provides the basis for the clinical evaluation of cell type resolved gene expression profiles as pre-therapeutic prognostic markers for prostate cancer. PMID:25514598
Kurokawa, Hiroshi; Sakaue-Sawano, Asako; Imamura, Takeshi; Miyawaki, Atsushi; Iimura, Tadahiro
2014-01-01
In multicellular organism development, a stochastic cellular response is observed, even when a population of cells is exposed to the same environmental conditions. Retrieving the spatiotemporal regulatory mode hidden in the heterogeneous cellular behavior is a challenging task. The G1/S transition observed in cell cycle progression is a highly stochastic process. By taking advantage of a fluorescence cell cycle indicator, Fucci technology, we aimed to unveil a hidden regulatory mode of cell cycle progression in developing zebrafish. Fluorescence live imaging of Cecyil, a zebrafish line genetically expressing Fucci, demonstrated that newly formed notochordal cells from the posterior tip of the embryonic mesoderm exhibited the red (G1) fluorescence signal in the developing notochord. Prior to their initial vacuolation, these cells showed a fluorescence color switch from red to green, indicating G1/S transitions. This G1/S transition did not occur in a synchronous manner, but rather exhibited a stochastic process, since a mixed population of red and green cells was always inserted between newly formed red (G1) notochordal cells and vacuolating green cells. We termed this mixed population of notochordal cells, the G1/S transition window. We first performed quantitative analyses of live imaging data and a numerical estimation of the probability of the G1/S transition, which demonstrated the existence of a posteriorly traveling regulatory wave of the G1/S transition window. To obtain a better understanding of this regulatory mode, we constructed a mathematical model and performed a model selection by comparing the results obtained from the models with those from the experimental data. Our analyses demonstrated that the stochastic G1/S transition window in the notochord travels posteriorly in a periodic fashion, with doubled the periodicity of the neighboring paraxial mesoderm segmentation. This approach may have implications for the characterization of the pathophysiological tissue growth mode. PMID:25474567
Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.
Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina
2016-01-01
The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide.
The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2
Kerr, Niall; Holmes, Fiona E.; Hobson, Sally-Ann; Vanderplank, Penny; Leard, Alan; Balthasar, Nina; Wynick, David
2015-01-01
The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs). PMID:26292267
Reducing background noise in near-infrared medical imaging: Routes to activated fluorescing
NASA Astrophysics Data System (ADS)
Burdette, Mary K.; Bandera, Yuriy; Powell, Rhonda R.; Bruce, Terri F.; Foulger, Stephen H.
2016-03-01
Activated fluorescence was achieved for nanoparticle based systems. One particulate system consisting of a poly(propargyl acrylate) (PA) core with covalently attached derivatized fluorescein and modified bovine serum albumin covalently conjugated to a cyanine 3 derivative was initially nonfluorescent. Upon trypsin addition and subsequent proteolytic digestion, Förster resonance energy transfer (FRET) was induced. The other particulate system consisted of a PA core with covalently attached azide modified BSA, which was covalently attached to a silicon phthalocyanine derivative (PA/BSA/akSiPc600). Both systems were biocompatible. To investigate activated fluorescence with the PA/BSA/akSiPc600 system in cancer cells, human non-small cell lung cancer cells (A549 cell line) were used as a model system. The PA/BSA/akSiPc600 system was incubated with the cells at varying time points in an effort to see a fluorescence increase over time as the cells uptake the particles and as they digest the BSA, most probably, via endocytosis. It was seen, through live cell scanning confocal microscopy, that the fluorescence was activated in the cell.
Fang, Yu; Shi, Wen; Hu, Yiming; Li, Xiaohua; Ma, Huimin
2018-05-24
A new dual-function fluorescent probe is developed for detecting nitroreductase (NTR) and adenosine triphosphate (ATP) with different responses. Imaging application of the probe reveals that intracellular NTR and ATP display an adverse changing trend during a hypoxic process and ATP can serve as a new sign for cell hypoxia.
Dai, Chun-Guang; Du, Xiao-Jiao; Song, Qin-Hua
2015-12-18
A Michael addition is usually taken as a base-catalyzed reaction. Most fluorescent probes have been designed to detect thiols in slightly alkaline solutions (pH 7-9). The sensing reactions of almost all Michael-type fluorescent probes for thiols are faster in a high pH solution than in a low pH solution. In this work, we synthesized a series of 7-substituted 2-(quinolin-2-ylmethylene)malonic acids (QMAs, substituents: NEt2, OH, H, Cl, or NO2) and their ethyl esters (QMEs) as Michael-type fluorescent probes for thiols. The sensing reactions of QMAs and QMEs occur in distinct pH ranges, pH < 7 for QMAs and pH > 7 for QMEs. On the basis of experimental and theoretic studies, we have clarified the distinct pH effects on the sensing reactivity between QMAs and QMEs and demonstrated that two QMAs (NEt2, OH) are highly sensitive and selective fluorescent probes for thiols in acidic solutions (pH < 7) and promising dyes that can label lysosomes in live cells.
Zhu, Dan; Zhao, Dongxia; Huang, Jiaxuan; Zhu, Yu; Chao, Jie; Su, Shao; Li, Jiang; Wang, Lihua; Shi, Jiye; Zuo, Xiaolei; Weng, Lixing; Li, Qian; Wang, Lianhui
2018-05-16
Identification of tumor-related mRNA in living cells hold great promise for early cancer diagnosis and pathological research. Herein, we present poly-adenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) probes for intracellular mRNA detection with regulable sensitivities by programmably adjusting the loading density of DNA on gold nano-interface. Gold nanoparticles (AuNPs) functionalized with polyA-tailed recognition sequences were hybridized to fluorescent "reporter" strands to fabricate fluorescence-quenched FSNA probes. While exposed to target gene, the "reporter" strands were released from FSNA through strand displacement and fluorescence was recovered. With polyA20 tail as the attaching block, the detection limit of FSNA probes was calculated to be 0.31 nM, which is ~55 fold lower than that of thiolated probes without surface density regulation. Quantitative intracellular mRNA detection and imaging could be achieved with polyA-mediated FSNA probes within 2 hours, indicating their application potential in rapid and sensitive intracellular target imaging. Copyright © 2018. Published by Elsevier Inc.
Kumari, Pratibha; Verma, Sanjay K; Mobin, Shaikh M
2018-01-11
The morphological alteration of lysosomes is a powerful indicator of various pathological disorders. In this regard, we have designed and synthesized a new water soluble fluorescent Schiff-base ligand (L-lyso) containing two hydroxyl groups. L-lyso exhibits excellent two-photon properties with tracking of lysosomes in live cells as well as in 3D tumor spheroids. Furthermore, it can label lysosomes for more than 3 days. Thus, L-lyso has an edge over the commercially available expensive LysoTracker probes and also over other reported probes in terms of its long-term imaging, water solubility and facile synthesis.
NASA Astrophysics Data System (ADS)
Xu, Wen-Zhi; Liu, Wei-Yan; Zhou, Ting-Ting; Yang, Yu-Tao; Li, Wei
2018-03-01
We constructed a novel probe for hydrazine detection based on ICT and PET mechanism. Phthalimide and acetyl ester groups were used as the recognition units. Addition of hydrazine produced a turn-on fluorescence at 525 nm along with the fluorescent color change from dark to yellow. The probe could selectively detect hydrazine over other related interfering species. The detection limit of the probe for hydrazine was calculated to be 0.057 μM which was lower than the EPA standard (0.320 μM). Furthermore, the probe could also be applied for the imaging of hydrazine in living cells.
Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.
Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O
2010-12-22
The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.
Huang, Jin; Ying, Le; Yang, Xiaohai; Yang, Yanjing; Quan, Ke; Wang, He; Xie, Nuli; Ou, Min; Zhou, Qifeng; Wang, Kemin
2015-09-01
We designed a new ratiometric fluorescent nanoprobe for sensing pH values in living cells. Briefly, the nanoprobe consists of a gold nanoparticle (AuNP), short single-stranded oligonucleotides, and dual-fluorophore-labeled i-motif sequences. The short oligonucleotides are designed to bind with the i-motif sequences and immobilized on the AuNP surface via Au-S bond. At neutral pH, the dual fluorophores are separated, resulting in very low fluorescence resonance energy transfer (FRET) efficiency. At acidic pH, the i-motif strands fold into a quadruplex structure and leave the AuNP, bringing the dual fluorophores into close proximity, resulting in high FRET efficiency, which could be used as a signal for pH sensing. The nanoprobe possesses abilities of cellular transfection, enzymatic protection, fast response and quantitative pH detection. The in vitro and intracellular applications of the nanoprobe were demonstrated, which showed excellent response in the physiological pH range. Furthermore, our experimental results suggested that the nanoprobe showed excellent spatial and temporal resolution in living cells. We think that the ratiometric sensing strategy could potentially be applied to create a variety of new multicolor sensors for intracellular detection.
Fluorescent protein Dendra2 as a ratiometric genetically encoded pH-sensor.
Pakhomov, Alexey A; Martynov, Vladimir I; Orsa, Alexander N; Bondarenko, Alena A; Chertkova, Rita V; Lukyanov, Konstantin A; Petrenko, Alexander G; Deyev, Igor E
2017-12-02
Fluorescent protein Dendra2 is a monomeric GFP-like protein that belongs to the group of Kaede-like photoconvertible fluorescent proteins with irreversible photoconversion from a green- to red-emitting state when exposed to violet-blue light. In an acidic environment, photoconverted Dendra2 turns green due to protonation of the phenolic group of the chromophore with pKa of about 7.5. Thus, photoconverted form of Dendra2 can be potentially used as a ratiometric pH-sensor in the physiological pH range. However, incomplete photoconversion makes ratiometric measurements irreproducible when using standard filter sets. Here, we describe the method to detect fluorescence of only photoconverted Dendra2 form, but not nonconverted green Dendra2. We show that the 350 nm excitation light induces solely the fluorescence of photoconverted protein. By measuring the red to green fluorescence ratio, we determined intracellular pH in live CHO and HEK 293 cells. Thus, Dendra2 can be used as a novel ratiometric genetically encoded pH sensor with emission maxima in the green-red spectral region, which is suitable for application in live cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Monomeric red fluorescent proteins with a large Stokes shift.
Piatkevich, Kiryl D; Hulit, James; Subach, Oksana M; Wu, Bin; Abdulla, Arian; Segall, Jeffrey E; Verkhusha, Vladislav V
2010-03-23
Two-photon microscopy has advanced fluorescence imaging of cellular processes in living animals. Fluorescent proteins in the blue-green wavelength range are widely used in two-photon microscopy; however, the use of red fluorescent proteins is limited by the low power output of Ti-Sapphire lasers above 1,000 nm. To overcome this limitation we have developed two red fluorescent proteins, LSS-mKate1 and LSS-mKate2, which possess large Stokes shifts with excitation/emission maxima at 463/624 and 460/605 nm, respectively. These LSS-mKates are characterized by high pH stability, photostability, rapid chromophore maturation, and monomeric behavior. They lack absorbance in the green region, providing an additional red color to the commonly used red fluorescent proteins. Substantial overlap between the two-photon excitation spectra of the LSS-mKates and blue-green fluorophores enables multicolor imaging using a single laser. We applied this approach to a mouse xenograft model of breast cancer to intravitally study the motility and Golgi-nucleus alignment of tumor cells as a function of their distance from blood vessels. Our data indicate that within 40 mum the breast cancer cells show significant polarization towards vessels in living mice.
Rapid labeling of intracellular His-tagged proteins in living cells.
Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe
2015-03-10
Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.
Mahapatra, Ajit Kumar; Manna, Saikat Kumar; Maiti, Kalipada; Mondal, Sanchita; Maji, Rajkishor; Mandal, Debasish; Mandal, Sukhendu; Uddin, Md Raihan; Goswami, Shyamaprosad; Quah, Ching Kheng; Fun, Hoong-Kun
2015-02-21
Azodye-rhodamine hybrid colorimetric fluorescent probe (L) has been designed and synthesized. The structure of L has been established based on single crystal XRD. It has been shown to act as a selective turn-on fluorescent chemosensor for Pd(2+) with >40 fold enhancement by exhibiting red emission among the other 27 cations studied in aqueous ethanol. The coordination features of the species of recognition have been computationally evaluated by DFT methods and found to have a distorted tetrahedral Pd(2+) center in the binding core. The probe (L) has been shown to detect Pd up to 0.45 μM at pH 7.4. Furthermore, the probe can be used to image Pd(2+) in living cells.
Effect of probe diffusion on the SOFI imaging accuracy.
Vandenberg, Wim; Dedecker, Peter
2017-03-23
Live-cell super-resolution fluorescence imaging is becoming commonplace for exploring biological systems, though sample dynamics can affect the imaging quality. In this work we evaluate the effect of probe diffusion on super-resolution optical fluctuation imaging (SOFI), using a theoretical model and numerical simulations based on the imaging of live cells labelled with photochromic fluorescent proteins. We find that, over a range of physiological conditions, fluorophore diffusion results in a change in the amplitude of the SOFI signal. The magnitude of this change is approximately proportional to the on-time ratio of the fluorophores. However, for photochromic fluorescent proteins this effect is unlikely to present a significant distortion in practical experiments in biological systems. Due to this lack of distortions, probe diffusion strongly enhances the SOFI imaging by avoiding spatial undersampling caused by the limited labeling density.
Microscopie de fluorescence de protéines autofluorescentes uniques pour la biologie cellulaire
NASA Astrophysics Data System (ADS)
Cognet, Laurent; Coussen, Françoise; Choquet, Daniel; Lounis, Brahim
In this paper we review the applicability of autofluorescent proteins for single-molecule imaging in biology. The photophysical characteristics of several mutants of the Green Fluorescent Protein (GFP) and those of DsRed are compared and critically discussed for their use in cellular biology. The alternative use of two-photon excitation at the single-molecule level or Fluorescence Correlation Spectroscopy is envisaged for the study of individual autofluorescent proteins. Single-molecule experiments performed in live cells using eGFP and preferably eYFP fusion proteins are reviewed. Finally, the first use at the single-molecule level of citrine, a more photostable variant of the eYFP is reported when fused to a receptor for neurotransmitter in live cells. To cite this article: L. Cognet et al., C. R. Physique 3 (2002) 645-656.
Anderson, J L; Carten, J D; Farber, S A
2016-01-01
Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.
Sedgwick, Adam C; Gardiner, Jordan E; Kim, Gyoungmi; Yevglevskis, Maksims; Lloyd, Matthew D; Jenkins, A Toby A; Bull, Steven D; Yoon, Juyoung; James, Tony D
2018-05-08
Two 'turn on' TCF-based fluorescence probes were developed for the detection of biological thiols (TCF-GSH and TCFCl-GSH). TCF-GSH was shown to have a high sensitivity towards glutathione (GSH) with a 0.28 μM limit of detection. Unfortunately, at higher GSH concentrations the fluorescence intensity of TCF-GSH decreased and toxicity was observed for TCF-GSH in live cells. However, TCFCl-GSH was shown to be able to detect GSH at biologically relevant concentrations with a 0.45 μM limit of detection. No toxicity was found for TCFCl-GSH and a clear 'turn on' with good photostability was observed for the exogenous addition of GSH, Cys and HCys. Furthermore, TCFCl-GSH was used to evaluate the effects of drug treatment on the levels of GSH in live cells.
Guo, Ting; Cui, Lei; Shen, Jiaoning; Wang, Rui; Zhu, Weiping; Xu, Yufang; Qian, Xuhong
2013-03-04
A novel dual-emission fluorescence probe has been developed for specific and sensitive detection of hypochlorite (ClO(-)). Upon addition of ClO(-), significant changes in fluorescence emission intensity at two discrete wavelengths were observed. Meanwhile OONO(-) led to only a single-channel fluorescence enhancement. This feature makes it a clear advantage in distinguishing ClO(-), RNS from other ROS.
Yue, Yongkang; Huo, Fangjun; Zhang, Yongbin; Chao, Jianbin; Martínez-Máñez, Ramón; Yin, Caixia
2016-11-01
We report herein a highly selective and sensitive turn-on fluorescent probe (compound 1) with a fast response time (less than 2 min) for thiophenol detection based on an "enhanced S N Ar" reaction between thiophenols and a sulfonyl-ester moiety covalently attach to curcumin. Reaction of 1 in Hepes-MeOH (1:1, v/v, pH 7.4) in the presence of 4-methylthiophenol (MTP) resulted in a remarkable enhancement of the fluorescence. A linear response in the presence of MTP of the relative fluorescent intensity (F - F 0 ) of 1 at 536 nm in the 0-40 μM MTP concentration range was found. A limit of detection (LOD) for the detection of MTP of 26 nM, based on the definition by IUPAC (C DL = 3 Sb/m), was calculated. Probe 1 was applied to monitor and imaging exogenous MTP in live cells and to the detection of MTP in real water samples.
A fast-response two-photon fluorescent probe for imaging endogenous H2O2 in living cells and tissues
NASA Astrophysics Data System (ADS)
Lu, Yanan; Shi, Xiaomin; Fan, Wenlong; Black, Cory A.; Lu, Zhengliang; Fan, Chunhua
2018-02-01
As a second messenger, hydrogen peroxide plays significant roles in numerous physiological and pathological processes and is related to various diseases including inflammatory disease, diabetes, neurodegenerative disorders, cardiovascular disease and Alzheimer's disease. Two-photon (TP) fluorescent probes reported for the detection of endogenous H2O2 are rare and most have drawbacks such as slow response and low sensitivity. In this report, we demonstrate a simple H2O2-specific TP fluorescent probe (TX-HP) containing a two-photon dye 6-hydroxy-2,3,4,4a-tetrahydro-1H-xanthen-1-one (TX) on the modulation of the ICT process. The probe exhibits a rapid fluorescent response to H2O2 in 9 min with both high sensitivity and selectivity. The probe can detect exogenous H2O2 in living cells. Furthermore, the probe is successfully utilized for imaging H2O2 in liver tissues.
Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.
Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming
2015-06-01
pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tiensomjitr, Khomsan; Noorat, Rattha; Chomngam, Sinchai; Wechakorn, Kanokorn; Prabpai, Samran; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon
2018-04-01
A rhodol-based fluorescent probe has been developed as a selective hydrazine chemosensor using levulinate as a recognition site. The rhodol levulinate probe (RL) demonstrated high selectivity and sensitivity toward hydrazine among other molecules. The chromogenic response of RL solution to hydrazine from colorless to pink could be readily observed by the naked eye, while strong fluorescence emission could be monitored upon excitation at 525 nm. The detection process occurred via a ring-opening process of the spirolactone initiated by hydrazinolysis, triggering the fluorescence emission with a 53-fold enhancement. The probe rapidly reacted with hydrazine in aqueous medium with the detection limit of 26 nM (0.83 ppb), lower than the threshold limit value (TLV) of 10 ppb suggested by the U.S. Environmental Protection Agency. Furthermore, RL-impregnated paper strips could detect hydrazine vapor. For biological applicability of RL, its membrane-permeable property led to bioimaging of hydrazine in live HepG2 cells by confocal fluorescence microscopy.
McQuilken, Molly; La Riviere, Patrick J.; Occhipinti, Patricia; Verma, Amitabh; Oldenbourg, Rudolf; Gladfelter, Amy S.; Tani, Tomomi
2016-01-01
Regulation of order, such as orientation and conformation, drives the function of most molecular assemblies in living cells but remains difficult to measure accurately through space and time. We built an instantaneous fluorescence polarization microscope, which simultaneously images position and orientation of fluorophores in living cells with single-molecule sensitivity and a time resolution of 100 ms. We developed image acquisition and analysis methods to track single particles that interact with higher-order assemblies of molecules. We tracked the fluctuations in position and orientation of molecules from the level of an ensemble of fluorophores down to single fluorophores. We tested our system in vitro using fluorescently labeled DNA and F-actin, in which the ensemble orientation of polarized fluorescence is known. We then tracked the orientation of sparsely labeled F-actin network at the leading edge of migrating human keratinocytes, revealing the anisotropic distribution of actin filaments relative to the local retrograde flow of the F-actin network. Additionally, we analyzed the position and orientation of septin-GFP molecules incorporated in septin bundles in growing hyphae of a filamentous fungus. Our data indicate that septin-GFP molecules undergo positional fluctuations within ∼350 nm of the binding site and angular fluctuations within ∼30° of the central orientation of the bundle. By reporting position and orientation of molecules while they form dynamic higher-order structures, our approach can provide insights into how micrometer-scale ordered assemblies emerge from nanoscale molecules in living cells. PMID:27679846
Guyochin, Aurélia; Maenner, Sylvain; Chu, Erin Tsi-Jia; Hentati, Asma; Attia, Mikael; Avner, Philip; Clerc, Philippe
2014-01-01
Random X-chromosome inactivation ensures dosage compensation in mammals through the transcriptional silencing of one of the two X chromosomes present in each female cell. Silencing is initiated in the differentiating epiblast of the mouse female embryos through coating of the nascent inactive X chromosome by the non-coding RNA Xist, which subsequently recruits the Polycomb Complex PRC2 leading to histone H3-K27 methylation. Here we examined in mouse ES cells the early steps of the transition from naive ES cells towards epiblast stem cells as a model for inducing X chromosome inactivation in vitro. We show that these conditions efficiently induce random XCI. Importantly, in a transient phase of this differentiation pathway, both X chromosomes are coated with Xist RNA in up to 15% of the XX cells. In an attempt to determine the dynamics of this process, we designed a strategy aimed at visualizing the nascent inactive X-chromosome in live cells. We generated transgenic female XX ES cells expressing the PRC2 component Ezh2 fused to the fluorescent protein Venus. The fluorescent fusion protein was expressed at sub-physiological levels and located in nuclei of ES cells. Upon differentiation of ES cell towards epiblast stem cell fate, Venus-fluorescent territories appearing in interphase nuclei were identified as nascent inactive X chromosomes by their association with Xist RNA. Imaging of Ezh2-Venus for up to 24 hours during the differentiation process showed survival of some cells with two fluorescent domains and a surprising dynamics of the fluorescent territories across cell division and in the course of the differentiation process. Our data reveal a strategy for visualizing the nascent inactive X chromosome and suggests the possibility for a large plasticity of the nascent inactive X chromosome. PMID:25546018
NASA Astrophysics Data System (ADS)
Hun, Xu; Zhang, Zhujun
2009-10-01
Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.
Song, Xinyu; Han, Xiaoyue; Yu, Fabiao; Zhang, Jinjin; Chen, Lingxin; Lv, Changjun
2018-01-15
Formaldehyde (FA) is an endogenously produced reactive carbonyl species (RCS) through biological metabolic processes whose concentration is closely related to human health and disease. Noninvasive and real-time detection of FA concentration in organisms is very important for revealing the physiological and pathological functions of FA. Herein, we design and synthesize a reversible fluorescent probe BOD-NH 2 for the detection of FA in living cells and in vivo. The probe is composed of two moieties: the BODIPY fluorophore and the primary amino group response unit. The probe undergoes an intracellular aldimine condensation reaction with FA and forms imine (C[double bond, length as m-dash]N) which will result in C[double bond, length as m-dash]N isomerization and rotation to turn-off the fluorescence of the probe. It is important that the probe can show a reversible response to FA. The probe BOD-NH 2 has been successfully applied for detecting and imaging FA in the cytoplasm of living cells. BOD-NH 2 is capable of detecting fluctuations in the levels of endogenous and exogenous FA in different types of living cells. The probe can be used to visualize the FA concentration in fresh hippocampus and the probe can further qualitatively evaluate the FA concentrations in ex vivo-dissected organs. Moreover, BOD-NH 2 can also be used for imaging in mice. The above applications make our new probe a potential chemical tool for the study of physiological and pathological functions of FA in cells and in vivo.
Live imaging of dense-core vesicles in primary cultured hippocampal neurons.
Kwinter, David M; Silverman, Michael A; Kwinter, David; Michael, Silverman
2009-05-29
Observing and characterizing dynamic cellular processes can yield important information about cellular activity that cannot be gained from static images. Vital fluorescent probes, particularly green fluorescent protein (GFP) have revolutionized cell biology stemming from the ability to label specific intracellular compartments and cellular structures. For example, the live imaging of GFP (and its spectral variants) chimeras have allowed for a dynamic analysis of the cytoskeleton, organelle transport, and membrane dynamics in a multitude of organisms and cell types [1-3]. Although live imaging has become prevalent, this approach still poses many technical challenges, particularly in primary cultured neurons. One challenge is the expression of GFP-tagged proteins in post-mitotic neurons; the other is the ability to capture fluorescent images while minimizing phototoxicity, photobleaching, and maintaining general cell health. Here we provide a protocol that describes a lipid-based transfection method that yields a relatively low transfection rate (~0.5%), however is ideal for the imaging of fully polarized neurons. A low transfection rate is essential so that single axons and dendrites can be characterized as to their orientation to the cell body to confirm directionality of transport, i.e., anterograde v. retrograde. Our approach to imaging GFP expressing neurons relies on a standard wide-field fluorescent microscope outfitted with a CCD camera, image capture software, and a heated imaging chamber. We have imaged a wide variety of organelles or structures, for example, dense-core vesicles, mitochondria, growth cones, and actin without any special optics or excitation requirements other than a fluorescent light source. Additionally, spectrally-distinct, fluorescently labeled proteins, e.g., GFP and dsRed-tagged proteins, can be visualized near simultaneously to characterize co-transport or other coordinated cellular events. The imaging approach described here is flexible for a variety of imaging applications and can be adopted by a laboratory for relatively little cost provided a microscope is available.
Kong, Lin; Yang, Jia-xiang; Li, Sheng-li; Zhang, Qiong; Xue, Zhao-ming; Zhou, Hong-ping; Wu, Jie-ying; Jin, Bao-kang; Tian, Yu-peng
2013-12-02
A fluorophore-phenylamine derivative (L) has been coupled with silver nanocrystals (NCs) to construct an L-Ag nanohybrid. Owing to synergic effects of the L and Ag components, the exciton-plasmon interactions between L and Ag increase the strength of the donor-acceptor interaction within the nanohybrid, a fact that results in an energy-transfer process and further brings about a dramatic redshift of single-photon absorption and fluorescence, and a decreased fluorescence FL lifetime. The coupling effect also leads to enhancement of a series of nonlinear optical properties, including two-photon-excited fluorescence (TPEF), two-photon-absorption (TPA) cross section (δ), two-photon-absorption coefficient (β), nonlinear refractive index (γ), and third order nonlinear optical susceptibility (χ((3))). The enhanced two-photon fluorescence of the nanohybrid is proven to be potentially useful for two-photon microscopy of live cells, such as HepG2. Moreover, cytotoxicity tests show that the low-micromolar concentrations of the nanohybrid do not cause significant reduction in cell viability over a period of at least 24 h and should be safe for further biological studies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Toxicological evaluation of Cd-based fluorescent nanoprobes by means of in vivo studies
NASA Astrophysics Data System (ADS)
Farias, Patricia M. A.; Ma-Hock, Lan; Landsiedel, Robert; van Ravenzwaay, Bennard
2018-02-01
Cadmium still represents a stigma for many research- and/or industrial applications. Some deleterious effects are attributed to Cadmium. In the present work, highly fluorescent Cadmium sulfide quantum dots are investigated by e.g. physical-chemical characterization. Most important however is their application as fluorescent probes for bio-imaging in living cells and tissues. This work presents their toxicological evaluation by means of in vivo studies. Bio-imaging experiments are performed without any pre-treatment. The toxicological studies performed, strongly indicate that the use of Cadmium based nanoparticles as fluorescent probes may be nonhazardous and not induce side effects for cells/tissues.
Near-Membrane Refractometry Using Supercritical Angle Fluorescence.
Brunstein, Maia; Roy, Lopamudra; Oheim, Martin
2017-05-09
Total internal reflection fluorescence (TIRF) microscopy and its variants are key technologies for visualizing the dynamics of single molecules or organelles in live cells. Yet truly quantitative TIRF remains problematic. One unknown hampering the interpretation of evanescent-wave excited fluorescence intensities is the undetermined cell refractive index (RI). Here, we use a combination of TIRF excitation and supercritical angle fluorescence emission detection to directly measure the average RI in the "footprint" region of the cell during image acquisition. Our RI measurement is based on the determination on a back-focal plane image of the critical angle separating evanescent and far-field fluorescence emission components. We validate our method by imaging mouse embryonic fibroblasts and BON cells. By targeting various dyes and fluorescent-protein chimeras to vesicles, the plasma membrane, as well as mitochondria and the endoplasmic reticulum, we demonstrate local RI measurements with subcellular resolution on a standard TIRF microscope, with a removable Bertrand lens as the only modification. Our technique has important applications for imaging axial vesicle dynamics and the mitochondrial energy state or detecting metabolically more active cancer cells. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Das, Poushali; Bose, Madhuparna; Ganguly, Sayan; Mondal, Subhadip; Das, Amit Kumar; Banerjee, Susanta; Das, Narayan Chandra
2017-05-01
Fluorescent carbon dots, zero-dimensional nanomaterials with surface ligands, have been studied extensively over the past few years in biolabelling or fluorescence-based live cell assays. In the past, synthetic organic dyes have been used as cell tracking materials, but they have severe limitations; fluorescent carbon dots may pave the way to biolabelling and cell imaging. In this work, green fluorescent carbon dots have been synthesized from a green source, gram, without any sort of covalent or ionic modifications. These gram-derived carbon dots are unique with respect to synthetic commercial cell-tracking dyes as they are non-toxic, cell internalization occurs quickly, and they have excellent bioconjugation with bacterial cells. Our aim is to establish these carbon dots in a biolabelling assay with its other physicochemical features like the tunable luminescence property, high degree of water solubility and low toxicity, towards various environments (wide range of pH, high ionic strength). Our study introduces a new perspective on the commercialization of carbon dots as a potential alternative to synthetic organic dyes for fluorescence-based cell-labelling assays.
Live-cell Imaging of Platelet Degranulation and Secretion Under Flow.
Barendrecht, Arjan D; Verhoef, Johan J F; Pignatelli, Silvia; Pasterkamp, Gerard; Heijnen, Harry F G; Maas, Coen
2017-07-10
Blood platelets are essential players in hemostasis, the formation of thrombi to seal vascular breaches. They are also involved in thrombosis, the formation of thrombi that occlude the vasculature and injure organs, with life-threatening consequences. This motivates scientific research on platelet function and the development of methods to track cell-biological processes as they occur under flow conditions. A variety of flow models are available for the study of platelet adhesion and aggregation, two key phenomena in platelet biology. This work describes a method to study real-time platelet degranulation under flow during activation. The method makes use of a flow chamber coupled to a syringe-pump setup that is placed under a wide-field, inverted, LED-based fluorescence microscope. The setup described here allows for the simultaneous excitation of multiple fluorophores that are delivered by fluorescently labeled antibodies or fluorescent dyes. After live-cell imaging experiments, the cover glasses can be further processed and analyzed using static microscopy (i.e., confocal microscopy or scanning electron microscopy).
Taniyama, Toshiyuki; Tsuda, Natsumi; Sueda, Shinji
2018-06-15
The nuclear envelope (NE) is a double membrane that segregates nuclear components from the cytoplasm in eukaryotic cells. It is well-known that the NE undergoes a breakdown and reformation during mitosis in animal cells. However, the detailed mechanisms of the NE dynamics are not yet fully understood. Here, we propose a method for the fluorescent labeling of the NE in living cells, which enables the tracing of the NE dynamics during cell division under physiological conditions. In our method, labeling of the NE is accomplished by fixing green fluorescent protein carrying the nuclear localization signal on the inner nuclear membrane based on a unique biotinylation reaction from the archaeon Sulfolobus tokodaii. With this method, we observed HeLa cells during mitosis by confocal laser scanning microscopy and succeeded in clearly visualizing the difference in the timing of the formation of the NE and the nuclear lamina.
A selective colorimetric and fluorescent sensor for Al3+ ion and its application to cellular imaging
NASA Astrophysics Data System (ADS)
Manjunath, Rangasamy; Hrishikesan, Elango; Kannan, Palaninathan
2015-04-01
A new rhodamine-based fluorescent turn-on chemosensor (L) for selective detection of Al3+ ion has been developed and characterized. The fluorescent chemosensor L was synthesized by the reaction of intermediate (4) with 2,5-bis (4-phenylacyl chloride)-1,3,4-oxadiazole (3). The chemosensor L displays an excellent selective and sensitive response to Al3+ ion over other metal ions, in which the spirocyclic (non-fluorescent) to ring opened amide (fluorescent) process was utilized and a 1:2 stoichiometry for L-Al3+ complex was formed with an association constant of 2.03 × 103 M-1. Furthermore, chemosensor L can be applied as a fluorescent probe for monitoring Al3+ in living cells by performing cell imaging studies.
Xing, Yun; Smith, Andrew M; Agrawal, Amit; Ruan, Gang; Nie, Shuming
2006-01-01
Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens. PMID:17722280
Synchronous Bioimaging of Intracellular pH and Chloride Based on LSS Fluorescent Protein.
Paredes, Jose M; Idilli, Aurora I; Mariotti, Letizia; Losi, Gabriele; Arslanbaeva, Lyaysan R; Sato, Sebastian Sulis; Artoni, Pietro; Szczurkowska, Joanna; Cancedda, Laura; Ratto, Gian Michele; Carmignoto, Giorgio; Arosio, Daniele
2016-06-17
Ion homeostasis regulates critical physiological processes in the living cell. Intracellular chloride concentration not only contributes in setting the membrane potential of quiescent cells but it also plays a role in modulating the dynamic voltage changes during network activity. Dynamic chloride imaging demands new tools, allowing faster acquisition rates and correct accounting of concomitant pH changes. Joining a long-Stokes-shift red-fluorescent protein to a GFP variant with high sensitivity to pH and chloride, we obtained LSSmClopHensor, a genetically encoded fluorescent biosensor optimized for the simultaneous chloride and pH imaging and requiring only two excitation wavelengths (458 and 488 nm). LSSmClopHensor allowed us to monitor the dynamic changes of intracellular pH and chloride concentration during seizure like discharges in neocortical brain slices. Only cells with tightly controlled resting potential revealed a narrow distribution of chloride concentration peaking at about 5 and 8 mM, in neocortical neurons and SK-N-SH cells, respectively. We thus showed that LSSmClopHensor represents a new versatile tool for studying the dynamics of chloride and proton concentration in living systems.
Vertical nanopillars for highly localized fluorescence imaging
Xie, Chong; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao
2011-01-01
Observing individual molecules in a complex environment by fluorescence microscopy is becoming increasingly important in biological and medical research, for which critical reduction of observation volume is required. Here, we demonstrate the use of vertically aligned silicon dioxide nanopillars to achieve below-the-diffraction-limit observation volume in vitro and inside live cells. With a diameter much smaller than the wavelength of visible light, a transparent silicon dioxide nanopillar embedded in a nontransparent substrate restricts the propagation of light and affords evanescence wave excitation along its vertical surface. This effect creates highly confined illumination volume that selectively excites fluorescence molecules in the vicinity of the nanopillar. We show that this nanopillar illumination can be used for in vitro single-molecule detection at high fluorophore concentrations. In addition, we demonstrate that vertical nanopillars interface tightly with live cells and function as highly localized light sources inside the cell. Furthermore, specific chemical modification of the nanopillar surface makes it possible to locally recruit proteins of interest and simultaneously observe their behavior within the complex, crowded environment of the cell. PMID:21368157
Live Cell Imaging of Viscosity in 3D Tumour Cell Models.
Shirmanova, Marina V; Shimolina, Lubov' E; Lukina, Maria M; Zagaynova, Elena V; Kuimova, Marina K
2017-01-01
Abnormal levels of viscosity in tissues and cells are known to be associated with disease and malfunction. While methods to measure bulk macroscopic viscosity of bio-tissues are well developed, imaging viscosity at the microscopic scale remains a challenge, especially in vivo. Molecular rotors are small synthetic viscosity-sensitive fluorophores in which fluorescence parameters are strongly correlated to the microviscosity of their immediate environment. Hence, molecular rotors represent a promising instrument for mapping of viscosity in living cells and tissues at the microscopic level. Quantitative measurements of viscosity can be achieved by recording time-resolved fluorescence decays of molecular rotor using fluorescence lifetime imaging microscopy (FLIM), which is also suitable for dynamic viscosity mapping, both in cellulo and in vivo. Among tools of experimental oncology, 3D tumour cultures, or spheroids, are considered a more adequate in vitro model compared to a cellular monolayer, and represent a less labour-intensive and more unified approach compared to animal tumour models. This chapter describes a methodology for microviscosity imaging in tumour spheroids using BODIPY-based molecular rotors and two photon-excited FLIM.
A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation
NASA Astrophysics Data System (ADS)
Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.
2017-03-01
Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial stages of mechanotransduction.
A biosensor generated via high throughput screening quantifies cell edge Src dynamics
Gulyani, Akash; Vitriol, Eric; Allen, Richard; Wu, Jianrong; Gremyachinskiy, Dmitriy; Lewis, Steven; Dewar, Brian; Graves, Lee M.; Kay, Brian K.; Kuhlman, Brian; Elston, Tim; Hahn, Klaus M.
2011-01-01
Fluorescent biosensors for living cells currently require laborious optimization and a unique design for each target. They are limited by the availability of naturally occurring ligands with appropriate target specificity. Here we describe a biosensor based on an engineered fibronectin monobody scaffold that can be tailored to bind different targets via high throughput screening. This Src family kinase (SFK) biosensor was made by derivatizing a monobody specific for activated SFK with a bright dye whose fluorescence increases upon target binding. We identified sites for dye attachment and alterations to eliminate vesiculation in living cells, providing a generalizable scaffold for biosensor production. This approach minimizes cell perturbation because it senses endogenous, unmodified target, and because sensitivity is enhanced by direct dye excitation. Automated correlation of cell velocities and SFK activity revealed that SFK are activated specifically during protrusion. Activity correlates with velocity, and peaks 1–2 microns from the leading edge. PMID:21666688
Live-Cell Imaging of Auxin and Cytokinin Signaling in Maize Female Gametophytes.
Chettoor, Antony M; Evans, Matthew M S
2017-01-01
The plant life cycle is characterized by the alternation of generations between genetically active diploid sporophytes and haploid gametophytes. The gametophytes of flowering plants are sexually dimorphic. While the male gametophyte consists of only three cells (two sperm and a vegetative cell) and is released by the parent sporophyte, the female gametophyte (or embryo sac) is more complex and remains imbedded within diploid sporophyte tissues. In maize, the female gametophyte is embedded in a large ovule surrounded with multiple nucellar cell layers impeding live-cell imaging approaches to study embryo sac functions. Here, we describe a simple protocol to visualize embryo sacs with hormonal fluorescent reporters by increasing accessibility of the female gametophyte. The method described is applicable for visualization of any fluorescent embryo sac reporter. The embryo sacs visualization method developed for maize could be extended to facilitate visualization of embryos sac in other important cereals like wheat, rice, and oats.
Abalymov, Аnatoly A; Verhovskiy, Roman A; Novoselova, Marina V; Parakhonskiy, Bogdan V; Gorin, Dmitry A; Yashchenok, Alexey M; Sukhorukov, Gleb B
2018-06-19
Porous calcium carbonate (CaCO 3 ) vaterite particles are very attractive templates for the encapsulation of pharmaceuticals and for the construction of hollow polyelectrolyte capsules, sensors, and enzyme-catalyzed reactors. Although CaCO 3 is biocompatible and biodegradable, little is known about the intercellular behavior and properties of vaterite particles in the cytoplasm of cells. In this work, we combined confocal Raman and fluorescent microscopy for the imaging of porous CaCO 3 vaterite particles in HeLa cells to study the uptake and status of the particles inside the cells in real time. Analysis of the fluorescence images showed that the particles penetrated the plasma membrane 3 h after being added to the cell culture and that the internalization of the particles continued up to 48 h. The crystal structure of individual vaterite particles in the cytoplasm of HeLa cells did not obviously change for 144 h. For clusters of particles, however, we identified Raman spectroscopic signatures of the stable calcite phase after 72 h of incubation, confirming an ion-exchange mechanism of vaterite transformation to calcite. The results indicate that our imaging approach to examining inorganic particles in living cells may have theranostic applications. This article is protected by copyright. All rights reserved.
Kavishwar, Amol; Medarova, Zdravka
2016-01-01
The ability to detect miRNA expression in live cells would leave these cells available for further manipulation or culture. Here, we describe the design of a miRNA sensor oligonucleotide whose sequence mimics the target mRNA. The sensor has a fluorescent label on one end of the oligo and a quencher on the other. When inside the cell, the sensor is recognized by its cognate miRNA-RISC and gets cleaved, setting the fluorophore free from its quencher. This results in fluorescence "turn on." Since cleavage by the RISC complex is an enzymatic process, the described approach has a very high level of sensitivity (nM). The rate of nonspecific cleavage of the sensor is very slow permitting the collection of meaningful signal over a long period of time.
Potocký, Martin; Pleskot, Roman; Pejchar, Přemysl; Vitale, Nicolas; Kost, Benedikt; Zárský, Viktor
2014-07-01
Although phosphatidic acid (PA) is structurally the simplest membrane phospholipid, it has been implicated in the regulation of many cellular events, including cytoskeletal dynamics, membrane trafficking and stress responses. Plant PA shows rapid turnover but the information about its spatio-temporal distribution in plant cells is missing. Here we demonstrate the use of a lipid biosensor that enables us to monitor PA dynamics in plant cells. The biosensor consists of a PA-binding domain of yeast SNARE Spo20p fused to fluorescent proteins. Live-cell imaging of PA dynamics in transiently transformed tobacco (Nicotiana tabacum) pollen tubes was performed using confocal laser scanning microscopy. In growing pollen tubes, PA shows distinct annulus-like fluorescence pattern in the plasma membrane behind the extreme tip. Coexpression studies with markers for other plasmalemma signaling lipids phosphatidylinositol 4,5-bisphosphate and diacylglycerol revealed limited colocalization at the shoulders of the apex. PA distribution and concentrations show distinct responses to various lipid signaling inhibitors. Fluorescence recovery after photobleaching (FRAP) analysis suggests high PA turnover in the plasma membrane. Our data show that a biosensor based on the Spo20p-PA binding domain is suitable for live-cell imaging of PA also in plant cells. In tobacco pollen tubes, distinct subapical PA maximum corroborates its involvement in the regulation of endocytosis and actin dynamics. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Mechanical dynamics in live cells and fluorescence-based force/tension sensors
Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun
2016-01-01
Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals. PMID:25958335
Tracking Single Cells in Live Animals Using a Photoconvertible Near-Infrared Cell Membrane Label
Wu, Juwell; Runnels, Judith M.; Turcotte, Raphaël; Celso, Cristina Lo; Scadden, David T.; Strom, Terry B.; Lin, Charles P.
2013-01-01
We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4+ T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution. PMID:23990881
Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label.
Carlson, Alicia L; Fujisaki, Joji; Wu, Juwell; Runnels, Judith M; Turcotte, Raphaël; Spencer, Joel A; Celso, Cristina Lo; Scadden, David T; Strom, Terry B; Lin, Charles P
2013-01-01
We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion) after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4(+) T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution.
Axial tomography in live cell laser microscopy
NASA Astrophysics Data System (ADS)
Richter, Verena; Bruns, Sarah; Bruns, Thomas; Weber, Petra; Wagner, Michael; Cremer, Christoph; Schneckenburger, Herbert
2017-09-01
Single cell microscopy in a three-dimensional (3-D) environment is reported. Cells are grown in an agarose culture gel, located within microcapillaries and observed from different sides after adaptation of an innovative device for sample rotation. Thus, z-stacks can be recorded by confocal microscopy in different directions and used for illustration in 3-D. This gives additional information, since cells or organelles that appear superimposed in one direction, may be well resolved in another one. The method is tested and validated with single cells expressing a membrane or a mitochondrially associated green fluorescent protein, or cells accumulating fluorescent quantum dots. In addition, axial tomography supports measurements of cellular uptake and distribution of the anticancer drug doxorubicin in the nucleus (2 to 6 h after incubation) or the cytoplasm (24 h). This paper discusses that upon cell rotation an enhanced optical resolution in lateral direction compared to axial direction can be utilized to obtain an improved effective 3-D resolution, which represents an important step toward super-resolution microscopy of living cells.
NASA Astrophysics Data System (ADS)
Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui
2017-03-01
Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.
Adie, E J; Kalinka, S; Smith, L; Francis, M J; Marenghi, A; Cooper, M E; Briggs, M; Michael, N P; Milligan, G; Game, S
2002-11-01
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in transmembrane signal transduction and are actively studied because of their suitability as therapeutic small-molecule drug targets. Agonist activation of GPCRs almost invariably results in the receptor being desensitized. One of the key events in receptor desensitization is the sequestration of the receptor from the cell surface into acidic intracellular endosomes. Therefore, a convenient, generic, and noninvasive monitor of this process is desirable. A novel, pH-sensitive, red-excited fluorescent dye, CypHer 5, was synthesized. This dye is non-fluorescent at neutral pH and is fluorescent at acidic pH. Anti-epitope antibodies labeled with this dye were internalized in an agonist concentration- and time-dependent manner, following binding on live cells to a range of GPCRs that had been modified to incorporate the epitope tags in their extracellular N-terminal domain. This resulted in a large signal increase over background. When protonated, the red fluorescence of CypHer 5 provides a generic reagent suitable for monitoring the internalization of GPCRs into acidic vesicles. This approach should be amenable to the study of many other classes of cell surface receptors that also internalize following stimulation.
Detection of Mitochondrial Caspase Activity in Real Time In Situ in Live Cells
NASA Astrophysics Data System (ADS)
Zhang, Yingpei; Haskins, Catherine; Lopez-Cruzan, Marisa; Zhang, Jianhua; Centonze, Victoria E.; Herman, Brian
2004-08-01
Apoptosis plays an important role in many physiological and pathological processes. The initiation and execution of the cell death program requires activation of multiple caspases in a stringently temporal order. Here we describe a method that allows real-time observation of caspase activation in situ in live cells based on fluorescent resonance energy transfer (FRET) measurement using the prism and reflector imaging spectroscopy system (PARISS). When a fusion protein consisting of CFP connected to YFP via an intervening caspase substrate that has been targeted to a specific subcellular location is excited with a light source whose wavelength matches the cyan fluorescent protein (CFP) excitation peak, the energy absorbed by the CFP fluorophore is not emitted as fluorescence. Instead, the excitation energy is absorbed by the nearby yellow fluorescent protein (YFP) fluorophore that is covalently linked to CFP through a short peptide containing the caspase substrate. Cleavage of the linker peptide by caspases results in loss of FRET due to the separation of CFP and YFP fluorophores. Using a mitochondrially targeted CFP caspase 3 substrate YFP construct (mC3Y), we demonstrate for the first time that there is caspase-3-like activity in the mitochondrial matrix of some cells at very late stage of apoptosis.
Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun
2014-07-09
Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.
Live-Cell Imaging of the Adult Drosophila Ovary Using Confocal Microscopy.
Shalaby, Nevine A; Buszczak, Michael
2017-01-01
The Drosophila ovary represents a key in vivo model used to study germline stem cell (GSC) maintenance and stem cell daughter differentiation because these cells and their somatic cell neighbors can be identified at single-cell resolution within their native environment. Here we describe a fluorescent-based technique for the acquisition of 4D datasets of the Drosophila ovariole for periods that can exceed 12 consecutive hours. Live-cell imaging facilitates the investigation of molecular and cellular dynamics that were not previously possible using still images.
NASA Astrophysics Data System (ADS)
Malik, Zvi; Dishi, M.
1995-05-01
The subcellular localization of endogenous protoporphyrin (endo- PP) during photosensitization in B-16 melanoma cells was analyzed by a novel spectral imaging system, the SpectraCube 1000. The melanoma cells were incubated with 5-aminolevulinic acid (ALA), and then the fluorescence of endo-PP was recorded in individual living cells by three modes: conventional fluorescence imaging, multipixel point by point fluorescence spectroscopy, and image processing, by operating a function of spectral similarity mapping and reconstructing new images derived from spectral information. The fluorescence image of ALA-treated cells revealed vesicular distribution of endo-PP all over the cytosol, with mitochondrial, lysosomal, as well as endoplasmic reticulum cisternael accumulation. Two main spectral fluorescence peaks were demonstrated at 635 and 705 nm, with intensities that differed from one subcellular site to another. Photoirradiation of the cells included point-specific subcellular fluorescence spectrum changes and demonstrated photoproduct formation. Spectral image reconstruction revealed the local distribution of a chosen spectrum in the photosensitized cells. On the other hand, B 16 cells treated with exogenous protoporphyrin (exo-PP) showed a dominant fluorescence peak at 670 nm and a minor peak at 630 nm. Fluorescence was localized at a perinuclear=Golgi region. Light exposure induced photobleaching and photoproduct-spectral changes followed by relocalization. The new localization at subcellular compartments showed pH dependent spectral shifts and photoproduct formation on a subcellular level.
Suzuki, Kenichi G N; Ando, Hiromune; Komura, Naoko; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Fujiwara, Takahiro K; Kusumi, Akihiro
2018-01-01
Gangliosides have been implicated in a variety of physiological processes, particularly in the formation and function of raft domains in the plasma membrane. However, the scarcity of suitable fluorescent ganglioside analogs had long prevented us from determining exactly how gangliosides perform their functions in the live-cell plasma membrane. With the development of new fluorescent ganglioside analogs, as described by Komura et al. (2017), this barrier has been broken. We can now address the dynamic behaviors of gangliosides in the live-cell plasma membrane, using fluorescence microscopy, particularly by single-fluorescent molecule imaging and tracking. Single-molecule tracking of fluorescent GM1 and GM3 revealed that these molecules are transiently and dynamically recruited to monomers (monomer-associated rafts) and homodimer rafts of the raftophilic GPI-anchored protein CD59 in quiescent cells, with exponential residency times of 12 and 40ms, respectively, in a manner dependent on raft-lipid interactions. Upon CD59 stimulation, which induces CD59-cluster signaling rafts, the fluorescent GM1 and GM3 analogs were recruited to the signaling rafts, with a lifetime of 48ms. These results represent the first direct evidence that GPI-anchored receptors and gangliosides interact in a cholesterol-dependent manner. Furthermore, they show that gangliosides continually move in and out of rafts that contain CD59 in an extremely dynamic manner, with much higher frequency than expected previously. Such studies would not have been possible without fluorescent ganglioside probes, which exhibit native-like behavior and single-molecule tracking. In this chapter, we review the methods for single-molecule tracking of fluorescent ganglioside analogs and the results obtained by applying these methods. © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Krmpot, Aleksandar J.; Nikolić, Stanko N.; Vitali, Marco; Papadopoulos, Dimitrios K.; Oasa, Sho; Thyberg, Per; Tisa, Simone; Kinjo, Masataka; Nilsson, Lennart; Gehring, Walter J.; Terenius, Lars; Rigler, Rudolf; Vukojevic, Vladana
2015-07-01
Quantitative confocal fluorescence microscopy imaging without scanning is developed for the study of fast dynamical processes. The method relies on the use of massively parallel Fluorescence Correlation Spectroscopy (mpFCS). Simultaneous excitation of fluorescent molecules across the specimen is achieved by passing a single laser beam through a Diffractive Optical Element (DOE) to generate a quadratic illumination matrix of 32×32 light sources. Fluorescence from 1024 illuminated spots is detected in a confocal arrangement by a matching matrix detector consisting of the same number of single-photon avalanche photodiodes (SPADs). Software was developed for data acquisition and fast autoand cross-correlation analysis by parallel signal processing using a Graphic Processing Unit (GPU). Instrumental performance was assessed using a conventional single-beam FCS instrument as a reference. Versatility of the approach for application in biomedical research was evaluated using ex vivo salivary glands from Drosophila third instar larvae expressing a fluorescently-tagged transcription factor Sex Combs Reduced (Scr) and live PC12 cells stably expressing the fluorescently tagged mu-opioid receptor (MOPeGFP). We show that quantitative mapping of local concentration and mobility of transcription factor molecules across the specimen can be achieved using this approach, which paves the way for future quantitative characterization of dynamical reaction-diffusion landscapes across live cells/tissue with a submillisecond temporal resolution (presently 21 μs/frame) and single-molecule sensitivity.
Lowder, M.; Unge, A.; Maraha, N.; Jansson, J. K.; Swiggett, J.; Oliver, J. D.
2000-01-01
The green fluorescent protein (GFP) gene, gfp, of the jellyfish Aequorea victoria is being used as a reporter system for gene expression and as a marker for tracking prokaryotes and eukaryotes. Cells that have been genetically altered with the gfp gene produce a protein that fluoresces when it is excited by UV light. This unique phenotype allows gfp-tagged cells to be specifically monitored by nondestructive means. In this study we determined whether a gfp-tagged strain of Pseudomonas fluorescens continued to fluoresce under conditions under which the cells were starved, viable but nonculturable (VBNC), or dead. Epifluorescent microscopy, flow cytometry, and spectrofluorometry were used to measure fluorescence intensity in starved, VBNC, and dead or dying cells. Results obtained by using flow cytometry indicated that microcosms containing VBNC cells, which were obtained by incubation under stress conditions (starvation at 37.5°C), fluoresced at an intensity that was at least 80% of the intensity of nonstressed cultures. Similarly, microcosms containing starved cells incubated at 5 and 30°C had fluorescence intensities that were 90 to 110% of the intensity of nonstressed cells. VBNC cells remained fluorescent during the entire 6-month incubation period. In addition, cells starved at 5 or 30°C remained fluorescent for at least 11 months. Treatment of the cells with UV light or incubation at 39 or 50°C resulted in a loss of GFP from the cells. There was a strong correlation between cell death and leakage of GFP from the cells, although the extent of leakage varied depending on the treatment. Most dead cells were not GFP fluorescent, but a small proportion of the dead cells retained some GFP at a lower concentration than the concentration in live cells. Our results suggest that gfp-tagged cells remain fluorescent following starvation and entry into the VBNC state but that fluorescence is lost when the cells die, presumably because membrane integrity is lost. PMID:10919764
Chemical biology-based approaches on fluorescent labeling of proteins in live cells.
Jung, Deokho; Min, Kyoungmi; Jung, Juyeon; Jang, Wonhee; Kwon, Youngeun
2013-05-01
Recently, significant advances have been made in live cell imaging owing to the rapid development of selective labeling of proteins in vivo. Green fluorescent protein (GFP) was the first example of fluorescent reporters genetically introduced to protein of interest (POI). While GFP and various types of engineered fluorescent proteins (FPs) have been actively used for live cell imaging for many years, the size and the limited windows of fluorescent spectra of GFP and its variants set limits on possible applications. In order to complement FP-based labeling methods, alternative approaches that allow incorporation of synthetic fluorescent probes to target POIs were developed. Synthetic fluorescent probes are smaller than fluorescent proteins, often have improved photochemical properties, and offer a larger variety of colors. These synthetic probes can be introduced to POIs selectively by numerous approaches that can be largely categorized into chemical recognition-based labeling, which utilizes metal-chelating peptide tags and fluorophore-carrying metal complexes, and biological recognition-based labeling, such as (1) specific non-covalent binding between an enzyme tag and its fluorophore-carrying substrate, (2) self-modification of protein tags using substrate variants conjugated to fluorophores, (3) enzymatic reaction to generate a covalent binding between a small molecule substrate and a peptide tag, and (4) split-intein-based C-terminal labeling of target proteins. The chemical recognition-based labeling reaction often suffers from compromised selectivity of metal-ligand interaction in the cytosolic environment, consequently producing high background signals. Use of protein-substrate interactions or enzyme-mediated reactions generally shows improved specificity but each method has its limitations. Some examples are the presence of large linker protein, restriction on the choice of introducible probes due to the substrate specificity of enzymes, and competitive reaction mediated by an endogenous analogue of the introduced protein tag. These limitations have been addressed, in part, by the split-intein-based labeling approach, which introduces fluorescent probes with a minimal size (~4 amino acids) peptide tag. In this review, the advantages and the limitations of each labeling method are discussed.
Bis-reaction-trigger as a strategy to improve the selectivity of fluorescent probes.
Li, Dan; Cheng, Juan; Wang, Cheng-Kun; Ying, Huazhou; Hu, Yongzhou; Han, Feng; Li, Xin
2018-06-01
By the strategy of equipping a fluorophore with two reaction triggers that are tailored to the specific chemistry of peroxynitrite, we have developed a highly selective probe for detecting peroxynitrite in live cells. Sequential response by the two triggers enabled the probe to reveal various degrees of nitrosative stress in live cells via a sensitive emission colour change.
Barlag, Britta; Beutel, Oliver; Janning, Dennis; Czarniak, Frederik; Richter, Christian P.; Kommnick, Carina; Göser, Vera; Kurre, Rainer; Fabiani, Florian; Erhardt, Marc; Piehler, Jacob; Hensel, Michael
2016-01-01
The investigation of the subcellular localization, dynamics and interaction of proteins and protein complexes in prokaryotes is complicated by the small size of the cells. Super-resolution microscopy (SRM) comprise various new techniques that allow light microscopy with a resolution that can be up to ten-fold higher than conventional light microscopy. Application of SRM techniques to living prokaryotes demands the introduction of suitable fluorescent probes, usually by fusion of proteins of interest to fluorescent proteins with properties compatible to SRM. Here we describe an approach that is based on the genetically encoded self-labelling enzymes HaloTag and SNAP-tag. Proteins of interest are fused to HaloTag or SNAP-tag and cell permeable substrates can be labelled with various SRM-compatible fluorochromes. Fusions of the enzyme tags to subunits of a type I secretion system (T1SS), a T3SS, the flagellar rotor and a transcription factor were generated and analysed in living Salmonella enterica. The new approach is versatile in tagging proteins of interest in bacterial cells and allows to determine the number, relative subcellular localization and dynamics of protein complexes in living cells. PMID:27534893
NASA Astrophysics Data System (ADS)
Cao, Duojun; Qian, Ying
2016-07-01
A novel pyridyltriphenylamine-rhodamine dye PTRh and a pyridyltriphenylamine derivative PTO were synthesized and characterized by 1H NMR and HRMS-MALDI-TOF. PTRh performed typical fluorescence resonance energy transfer (FRET) signal from pyridyltriphenylamine to rhodamine along with notable color change from green to rose when interacting with Hg2+ in EtOH/H2O. And PTRh as a ratiometric probe for Hg2+ based on FRET could achieve a very low detection limit of 32 nM and energy transfer efficiency of 83.7% in aqueous organic system. On the other hand, spectra properties of PTO in its aggregates, THF/H2O mixed solution and silica nanoparticles (Si-NPs) dispersed in water were investigated. And the results indicated PTO exhibited bright green fluorescence in solid state, and PTO was successfully encapsulated in silica matrix (30-40 nm), emitting bright blue fluorescence with 11.7% quantum yield. Additionally, living cell imaging experiments demonstrated that PTRh could effectively response to intracellular Hg2+ and PTO-doped Si-NPs were well uptaken by MCF-7 breast cancer cells. It could be concluded that the chromophores are promising materials used as biosensors.
Liu, Keyin; Kong, Xiuqi; Ma, Yanyan; Lin, Weiying
2018-05-01
Carbon monoxide (CO) is a key gaseous signaling molecule in living cells and organisms. This protocol illustrates the synthesis of a highly sensitive Nile Red (NR)-Pd-based fluorescent probe, NR-PdA, and its applications for detecting endogenous CO in tissue culture cells, ex vivo organs, and zebrafish embryos. In the NR-PdA synthesis process, 3-diethylamine phenol reacts with sodium nitrite in the acidic condition to afford 5-(diethylamino)-2-nitrosophenol hydrochloride (compound 1), which is further treated with 1-naphthalenol at a high temperature to provide the NR dye via a cyclization reaction. Finally, NR is reacted with palladium acetate to obtain the desired Pd-based fluorescent probe NR-PdA. NR-PdA possesses excellent two-photon excitation and near-IR emission properties, high stability, low background fluorescence, and a low detection limit. In addition to the chemical synthesis procedures, we provide step-by-step procedures for imaging endogenous CO in RAW 264.7 cells, mouse organs ex vivo, and live zebrafish embryos. The synthesis process for the probe requires ∼4 d, and the biological imaging experiments take ∼14 d.
A Novel System for Visualizing Alphavirus Assembly
Steel, J. Jordan; Geiss, Brian J.
2015-01-01
Alphaviruses are small, enveloped RNA viruses that form infectious particles by budding through the cellular plasma membrane. To help visualize and understand the intracellular assembly of alphavirus virions we have developed a bimolecular fluorescence complementation-based system (BiFC) that allows visualization of capsid and E2 subcellular localization and association in live cells. In this system, N- or C-terminal Venus fluorescent protein fragments (VN- and VC-) are fused to the N-terminus of the capsid protein on the Sindbis virus structural polyprotein, which results in the formation of fluorescent capsid-like structures in the absence of viral genomes that associate with the plasma membrane of cells. Mutation of the capsid autoprotease active site blocks structural polyprotein processing and alters the subcellular distribution of capsid fluorescence. Incorporating mCherry into the extracellular domain of the E2 glycoprotein allows the visualization of E2 glycoprotein localization and showed a close association of the E2 and capsid proteins at the plasma membrane as expected. These results suggest that this system is a useful new tool to study alphavirus assembly in live cells and may be useful in identifying molecules that inhibit alphavirus virion formation. PMID:26122073
Hirabayashi, Kazuhisa; Hanaoka, Kenjiro; Egawa, Takahiro; Kobayashi, Chiaki; Takahashi, Shodai; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Ikegaya, Yuji; Nagano, Tetsuo; Urano, Yasuteru
2016-10-01
Fluorescence imaging of calcium ions (Ca(2+)) has become an essential technique for investigation of signaling pathways involving Ca(2+) as a second messenger. But, Ca(2+) signaling is involved in many biological phenomena, and therefore simultaneous visualization of Ca(2+) and other biomolecules (multicolor imaging) would be particularly informative. For this purpose, we set out to develop a fluorescent probe for Ca(2+) that would operate in a different color region (red) from that of probes for other molecules, many of which show green fluorescence, as exemplified by green fluorescent protein (GFP). We previously developed a red fluorescent probe for monitoring cytoplasmic Ca(2+) concentration, based on our established red fluorophore, TokyoMagenta (TM), but there remained room for improvement, especially as regards efficiency of introduction into cells. We considered that this issue was probably mainly due to limited water solubility of the probe. So, we designed and synthesized a red-fluorescent probe with improved water solubility. We confirmed that this Ca(2+) red-fluorescent probe showed high cell-membrane permeability with bright fluorescence. It was successfully applied to fluorescence imaging of not only live cells, but also brain slices, and should be practically useful for multicolor imaging studies of biological mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hoischen, Christian; Monajembashi, Shamci; Weisshart, Klaus; Hemmerich, Peter
2018-01-01
The promyelocytic leukemia ( pml ) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.
Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T
2015-03-26
Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.
Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH.
Schäferling, Michael
2016-05-01
Fluorescence imaging microscopy is an essential tool in biomedical research. Meanwhile, various fluorescent probes are available for the staining of cells, cell membranes, and organelles. Though, to monitor intracellular processes and dysfunctions, probes that respond to ubiquitous chemical parameters determining the cellular function such as pH, pO2 , and Ca(2+) are required. This review is focused on the progress in the design, fabrication, and application of photoluminescent nanoprobes for sensing and imaging of pH in living cells. The advantages of using nanoprobes carrying fluorescent pH indicators compared to single molecule probes are discussed as well as their limitations due to the mostly lysosomal uptake by cells. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Referencing and proper calibration procedures are basic prerequisites to carry out reliable quantitative pH determinations in complex samples such as living cells. A variety of examples will be presented that highlight the diverseness of nanocarrier materials (polymers, micelles, silica, quantum dots, carbon dots, gold, photon upconversion nanocrystals, or bacteriophages), fluorescent pH indicators for the weak acidic range, and referenced sensing mechanisms, that have been applied intracellularly up to now. WIREs Nanomed Nanobiotechnol 2016, 8:378-413. doi: 10.1002/wnan.1366 For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Du, Zhixue; Dong, Chaoqing; Ren, Jicun
2017-06-01
PTEN (phosphatase and tensin homolog on chromosome 10) is one of the most important tumor-suppressor proteins, which plays a key role in negative regulation of the PI3K/AKT pathway, and governs many cellular processes including growth, proliferation, survival and migration. The dynamics of PTEN proteins in single living cells is as yet unclear owing to a shortage of suitable in vivo approaches. Here, we report a single-molecule method for in vivo study of the dynamics of PTEN proteins in living cells using fluorescence correlation spectroscopy (FCS). First, we established a monoclonal H1299 stable cell line expressing enhanced green fluorescent protein (EGFP) and PTEN (EGFP-PTEN) fusion proteins; we then developed an in vivo FCS method to study the dynamics of EGFP-PTEN both in the nucleus and the cytoplasm. We investigated the diffusion behaviors of EGFP and EGFP-PTEN in solution, nucleus and cytosol, and observed that the motion of PTEN in living cells was restricted compared with EGFP. Finally, we investigated the protein dynamics in living cells under oxidative stress stimulation and a cellular ATP depletion treatment. Under oxidative stress stimulation, the EGFP-PTEN concentration increased in the nucleus, but slightly decreased in the cytoplasm. The diffusion coefficient and alpha value of EGFP-PTEN reduced significantly both in the nucleus and cytoplasm; the significantly decreased alpha parameter indicates a more restricted Brownian diffusion behavior. Under the cellular ATP depletion treatment, the concentration of EGFP-PTEN remained unchanged in the nucleus and decreased significantly in cytosol. The diffusion coefficient of EGFP-PTEN decreased significantly in cytosol, but showed no significant change in the nucleus; the alpha value decreased significantly in both the nucleus and cytoplasm. These results suggest that the concentration and mobility of PTEN in the nucleus and cytoplasm can be regulated by stimulation methods. Our approach provides a unique method for real-time monitoring of protein dynamics in different subcellular compartments under different stimulation treatments.
Morikawa, Takamitsu J.; Fujita, Hideaki; Kitamura, Akira; Horio, Takashi; Yamamoto, Johtaro; Kinjo, Masataka; Sasaki, Akira; Machiyama, Hiroaki; Yoshizawa, Keiko; Ichimura, Taro; Imada, Katsumi; Nagai, Takeharu; Watanabe, Tomonobu M.
2016-01-01
Fluorescent proteins have been widely used in biology because of their compatibility and varied applications in living specimens. Fluorescent proteins are often undesirably sensitive to intracellular conditions such as pH and ion concentration, generating considerable issues at times. However, harnessing these intrinsic sensitivities can help develop functional probes. In this study, we found that the fluorescence of yellow fluorescent protein (YFP) depends on the protein concentration in the solution and that this dependence can be enhanced by adding a glycine residue in to the YFP; we applied this finding to construct an intracellular protein-crowding sensor. A Förster resonance energy transfer (FRET) pair, involving a cyan fluorescent protein (CFP) insensitive to protein concentration and a glycine-inserted YFP, works as a genetically encoded probe to evaluate intracellular crowding. By measuring the fluorescence of the present FRET probe, we were able to detect dynamic changes in protein crowding in living cells. PMID:26956628
Jiao, Yang; Yin, Jiqiu; He, Haiyang; Peng, Xiaojun; Gao, Qianmiao; Duan, Chunying
2018-05-09
Molecules capable of monitoring receptor protein-tyrosine kinase expression could potentially serve as useful tools for cancer diagnosis due to the overexpression of tyrosine kinases during tumor growth and metastasis. In this work, a conformationally induced "off-on" tyrosine kinase cell membrane fluorescent sensor (SP1) was designed and evaluated for the detection and imaging of receptor protein-tyrosine kinases in vivo and in vitro. SP1 consists of sunitinib and pyrene linked via hexamethylenediamine and displays quenched fluorescence as a dimer. The fluorescence of SP1 is restored in the presence of receptor protein-tyrosine kinases upon strong interaction with SP1 at the target terminal. The unique signal response mechanism enables SP1 use for fluorescence microscopy imaging of receptor protein-tyrosine kinases in the cell membranes of living cells, allowing for the rapid differentiation of cancer cells from normal cells. SP1 can be used to visualize the chick embryo chorioallantoic membrane and mouse model tumors, suggesting its possible application for early cancer diagnosis.
Marking cell lineages in living tissues.
Kurup, Smita; Runions, John; Köhler, Uwe; Laplaze, Laurent; Hodge, Sarah; Haseloff, Jim
2005-05-01
We have generated a novel genetic system to visualize cell lineages in living tissues at high resolution. Heat shock was used to trigger the excision of a specific transposon and activation of a fluorescent marker gene. A histone-YFP marker was used to allow identification of cell lineages and easy counting of cells. Constitutive expression of a green fluorescent membrane protein was used to provide a precise outline of all surrounding cells. Marked lineages can be induced from specific cells within the organism by targeted laser irradiation, and the fate of the marked cells can be followed non-invasively. We have used the system to map cell lineages originating from the initials of primary and lateral roots in Arabidopsis. The lineage marking technique enabled us to measure the differential contribution of primary root pericycle cell files to developing lateral root primordia. The majority of cells in an emerging lateral root primordium derive from the central file of pericycle founder cells while off-centre founder cells contribute only a minor proliferation of tissue near the base of the root. The system shows great promise for the detailed study of cell division during morphogenesis.
Screening of cardiomyocyte fluorescence during cell contraction by multi-dimensional TCSPC
NASA Astrophysics Data System (ADS)
Chorvat, D., Jr.; Abdulla, S.; Elzwiei, F.; Mateasik, A.; Chorvatova, A.
2008-02-01
Autofluorescence is one of the most versatile non-invasive tools for mapping the metabolic state of living tissues, such as the heart. We present a new approach to the investigation of changes in endogenous fluorescence during cardiomyocyte contraction - by spectrally-resolved, time correlated, single photon counting (TCSPC). Cell contraction is stimulated by external platinum electrodes, incorporated in a home-made bath and triggered by a pulse generator at a frequency of 0.5 Hz (to stabilize sarcoplasmic reticulum loading), or 5 Hz (the rat heart rate). Cell illumination by the laser is synchronized with cell contraction, using TTL logic pulses operated by a stimulator and delayed to study mitochondrial metabolism at maximum contraction (10-110 ms) and/or at steady state (1000-1100 ms at 0.5 Hz). To test the setup, we recorded calcium transients in cells loaded with the Fluo-3 fluorescent probe (excited by 475 nm pulsed picosecond diode laser). We then evaluated recordings of flavin AF (excited by 438 nm pulsed laser) at room and physiological temperatures. Application of the presented approach will shed new insight into metabolic changes in living, contracting myocytes and, therefore, regulation of excitation-contraction coupling and/or ionic homeostasis and, thus, heart excitability.
9 CFR 113.300 - General requirements for live virus vaccines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... control cells shall remain free of such fluorescence. (2) Serum neutralization test. The serum... fungi in accordance with the test provided in § 113.27. (2) Mycoplasma. Final container samples of... inoculated cells and uninoculated control cells. Cells shall be stained with fluorochrome conjugated specific...
NASA Astrophysics Data System (ADS)
Hao, Yuanqiang; Zhang, Yintang; Ruan, Kehong; Meng, Fanteng; Li, Ting; Guan, Jinsheng; Du, Lulu; Qu, Peng; Xu, Maotian
2017-09-01
A highly selective long-wavelength turn-on fluorescent probe has been developed for the detection of N2H4. The probe was prepared by conjugation the tricyanofuran-based D-π-A system with a recognizing moiety of acetyl group. In the presence of N2H4, the probe can be effectively hydrazinolysized and produce a turn-on fluorescent emission at 610 nm as well as a large red-shift in the absorption spectrum corresponding to a color change from yellow to blue. The sensing mechanism was confirmed by HPLC, MS, UV-vis, emission spectroscopic and theoretical calculation studies. The probe displayed high selectivity and sensitivity for N2H4 with a LOD (limit of detection) of 0.16 μM. Moreover, the probe was successfully utilized for the detection of hydrazine in living cells.
Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen
2016-08-01
Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kishimoto, Tatsunori; Maezawa, Yasuyo; Kudoh, Suguru N.; Taguchi, Takahisa; Hosokawa, Chie
2017-04-01
Molecular dynamics of glutamate receptor, which is major neurotransmitter receptor at excitatory synapse located on neuron, is essential for synaptic plasticity in the complex neuronal networks. Here we studied molecular dynamics in an optical trap of AMPA-type glutamate receptor (AMPAR) labeled with quantum-dot (QD) on living neuronal cells with fluorescence imaging and fluorescence correlation spectroscopy (FCS). When a 1064-nm laser beam for optical trapping was focused on QD-AMPARs located on neuronal cells, the fluorescence intensity of QD-AMPARs gradually increased at the focal spot. Using single-particle tracking of QD-AMPARs on neurons, the average diffusion coefficient decreased in an optical trap. Moreover, the decay time obtained from FCS analysis increased with the laser power and the initial assembling state of AMPARs depended on culturing day, suggesting that the motion of QD-AMPAR was constrained in an optical trap.
Plasma Membrane Sterol Distribution Resembles the Surface Topography of Living Cells
2007-01-01
Cholesterol is an important constituent of cellular membranes. It has been suggested that cholesterol segregates into sterol-rich and -poor domains in the plasma membrane, although clear evidence for this is lacking. By fluorescence imaging of the natural sterol dehydroergosterol (DHE), the lateral sterol distribution has been visualized in living cells. The spatial labeling pattern of DHE coincided with surface structures such as ruffles, microvilli, and filopodia with correlation lengths in the range of 0.8–2.5 μm. DHE staining of branched tubules and of nanotubes connecting two cells was detected. Dynamics of DHE in folded and plane membrane regions was comparable as determined by fluorescence recovery after photobleaching. DHE colocalized with fluid membrane-preferring phospholipids in surface structures and at sites of cell attachment as well as in the cleavage furrow of dividing cells, but it was not particularly enriched in those regions. Fluorescent sterol showed homogeneous staining in membrane blebs induced by F-actin disruption. Cross-linking the ganglioside GM1—a putative raft marker—did not affect the cell surface distribution of DHE. The results suggest that spatial heterogeneities of plasma membrane staining of DHE resolvable by light microscopy reflect the cell surface topography but not phase-separated sterol domains in the bilayer plane. PMID:17065557
Ganeva, V; Galutzov, B; Teissié, J
1995-12-13
The mechanism of electric field mediated macromolecule transfer inside an intact yeast cell was investigated by observing, under a microscope, the fluorescence associated to cells after pulsation in a buffer containing two different hydrophilic fluorescent dyes. In the case of a small probe such as propidium iodide, a long lived permeabilized state was induced by the field as classically observed on wall free systems. Penetration of a 70 kDa FITC dextran was obtained only by using drastic conditions and only a very limited number of yeast cells which took up macromolecules remained viable. Most dextrans were trapped in the wall. A dramatic improvement in transfer of dextrans was observed when the cells were treated by dithiothreitol before pulsation. A cytoplasmic protein leakage was detected after the electric treatment suggesting that an irreversible damage took place in the walls of many pulsed cells. Electroloading of macromolecules in intact yeast cells appears to be controlled by a field induced short lived alteration of the envelope organization.
Dardikman, Gili; Nygate, Yoav N; Barnea, Itay; Turko, Nir A; Singh, Gyanendra; Javidi, Barham; Shaked, Natan T
2018-03-01
We suggest a new multimodal imaging technique for quantitatively measuring the integral (thickness-average) refractive index of the nuclei of live biological cells in suspension. For this aim, we combined quantitative phase microscopy with simultaneous 2-D fluorescence microscopy. We used 2-D fluorescence microscopy to localize the nucleus inside the quantitative phase map of the cell, as well as for measuring the nucleus radii. As verified offline by both 3-D confocal fluorescence microscopy and 2-D fluorescence microscopy while rotating the cells during flow, the nucleus of cells in suspension that are not during division can be assumed to be an ellipsoid. The entire shape of a cell in suspension can be assumed to be a sphere. Then, the cell and nucleus 3-D shapes can be evaluated based on their in-plain radii available from the 2-D phase and fluorescent measurements, respectively. Finally, the nucleus integral refractive index profile is calculated. We demonstrate the new technique on cancer cells, obtaining nucleus refractive index values that are lower than those of the cytoplasm, coinciding with recent findings. We believe that the proposed technique has the potential to be used for flow cytometry, where full 3-D refractive index tomography is too slow to be implemented during flow.
Macdonald, Patrick J.; Chen, Yan; Mueller, Joachim D.
2012-01-01
Cell-free synthesis, a method for the rapid expression of proteins, is increasingly used to study interactions of complex biological systems. GFP and its variants have become indispensable for fluorescence studies in live cells and are equally attractive as reporters for cell-free systems. This work investigates the use of fluorescence fluctuation spectroscopy (FFS) as a tool for quantitative analysis of protein interactions in cell-free expression systems. We also explore chromophore maturation of fluorescent proteins, which is of crucial importance for fluorescence studies. A droplet sample protocol was developed that ensured sufficient oxygenation for chromophore maturation and ease of manipulation for titration studies. The kinetics of chromophore maturation of EGFP, EYFP, and mCherry were analyzed as a function of temperature. A strong increase in the rate from room temperature to 37 °C was observed. We further demonstrate that all EGFP proteins fully mature in the cell-free solution and that brightness is a robust parameter specifying stoichiometry. Finally, FFS is applied to study the stoichiometry of the nuclear transport factor 2 in a cell-free system over a broad concentration range. We conclude that combining cell-free expression and FFS provides a powerful technique for quick, quantitative study of chromophore maturation and protein-protein interaction. PMID:22093611
3D fluorescence anisotropy imaging using selective plane illumination microscopy.
Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico
2015-08-24
Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.
Ogawa, H; Inouye, S; Tsuji, F I; Yasuda, K; Umesono, K
1995-01-01
The localization, trafficking, and fluorescence of Aequorea green fluorescent protein (GFP) in cultured vertebrate cells transiently transfected with GFP cDNA were studied. Fluorescence of GFP in UV light was found to be strongest when cells were incubated at 30 degrees C but was barely visible at an incubation temperature of 37 degrees C. COS-1 cells, primary chicken embryonic retina cells, and carp epithelial cells were fluorescently labeled under these conditions. GFP was distributed uniformly throughout the cytoplasm and nucleus independent of cell type examined. When GFP was fused to PML protooncogene product, fluorescence was detected in a unique nuclear organelle pattern indistinguishable from that of PML protein, showing the potential use of GFP as a fluorescent tag. To analyze both function and intracellular trafficking of proteins fused to GFP, a GFP-human glucocorticoid receptor fusion construct was prepared. The GFP-human glucocorticoid receptor efficiently transactivated the mouse mammary tumor virus promoter in response to dexamethasone at 30 degrees C but not at 37 degrees C, indicating that temperature is important, even for function of the GFP fusion protein. The dexamethasone-induced translocation of GFP-human glucocorticoid receptor from cytoplasm to nucleus was complete within 15 min; the translocation could be monitored in a single living cell in real time. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:8524871
Dynamics of diamond nanoparticles in solution and cells.
Neugart, Felix; Zappe, Andrea; Jelezko, Fedor; Tietz, C; Boudou, Jean Paul; Krueger, Anke; Wrachtrup, Jörg
2007-12-01
The fluorescence and motional dynamics of single diamond nanocrystals in buffer solution and in living cells is investigated. Stable hydrosols of nanodiamonds in buffer solutions are investigated by fluorescence correlation spectroscopy. Measurement of the effective hydrodynamic radius yields particles of 48 nm diameter, which is in excellent agreement with atomic force microscopy measurements made on the same particles. Fluorescence correlation spectroscopy measurements indicate that nanocrystals easily form aggregates when the buffer pH is changed. This tendency is reduced when the surface of the diamonds is covered with surfactants. Upon incubation, cells spontaneously take up nanocrystals that uniformly distribute in cells. Most of the particles get immobilized within a few minutes. The binding of streptavidin to biotinylated aggregates of 4 nm diameter nanodiamonds is demonstrated.
NASA Astrophysics Data System (ADS)
Xu, Gaoping; Tang, Yonghe; Ma, Yanyan; Xu, An; Lin, Weiying
2018-01-01
The biological activity of nitroreductase (NTR) is closely related to biological hypoxia status in organisms. The development of effective methods for monitoring the activity of NTR is of great significance for medical diagnosis and tumor research. Toward this goal, we have developed a new aggregation-induced emission (AIE) fluorescence NTR probe TPE-HY used the tetraphenylethene as the fluorophore, and used the nitro group as the NTR recognition site. The probe TPE-HY has many excellent properties, including rapid response, AIE characteristics, high sensitivity and selectivity, and low cytotoxicity. Importantly, the probe TPE-HY is successfully applied to monitor endogenous NTR in living HeLa cells.
NASA Astrophysics Data System (ADS)
Wu, Yafeng; Han, Jianyu; Xue, Peng; Xu, Rong; Kang, Yuejun
2015-01-01
MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression.MiRNAs are an emerging type of biomarker for diagnostics and prognostics. A reliable sensing strategy that can monitor miRNA expression in living cancer cells would be critical in view of its extensive advantages for fundamental research related to miRNA-associated bioprocesses and biomedical applications. Conventional miRNA sensing methods include northern blot, microarrays and real-time quantitative PCR. However, none of them is able to monitor miRNA levels expressed in living cancer cells in a real-time fashion. Some fluorescennt biosensors developed recently from carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs), graphene oxide (GO), and carbon nanoparticles, have been successfully used for assaying miRNA in vitro; however the preparation processes are often expensive, complicated and time-consuming, which have motivated the research on other substitute and novel materials. Herein we present a novel sensing strategy based on peptide nucleic acid (PNA) probes labeled with fluorophores and conjugated with an NMOF vehicle to monitor multiplexed miRNAs in living cancer cells. The NMOF works as a fluorescence quencher of the labelled PNA that is firmly bound with the metal center. In the presence of a target miRNA, PNA is hybridized and released from the NMOF leading to the recovery of fluorescence. This miRNA sensor not only enables the quantitative and highly specific detection of multiplexed miRNAs in living cancer cells, but it also allows the precise and in situ monitoring of the spatiotemporal changes of miRNA expression. Electronic supplementary information (ESI) available: Extra figures and tables. See DOI: 10.1039/c4nr05447d