Science.gov

Sample records for fluorescent metal halide

  1. X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence

    SciTech Connect

    Curry, John J.; Lapatovich, Walter P.; Henins, Albert

    2011-12-09

    We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

  2. Minority additive distributions in a ceramic metal-halide arc lamp using high-energy x-ray induced fluorescence

    NASA Astrophysics Data System (ADS)

    Curry, J. J.; Adler, H. G.; Shastri, S. D.; Lawler, J. E.

    2001-09-01

    X-ray induced fluorescence is used to measure the elemental densities of minority additives in a metal-halide arc contained inside a translucent ceramic envelope. A monochromatic x-ray beam from the Sector 1 Insertion Device beamline at the Advanced Photon Source is used to excite K-shell x-ray fluorescence in the constituents of a ceramic metal-halide arc lamp dosed with DyI3 and CsI. Fluorescence and scattered photons are collected by a cryogenic energy-resolving Ge detector. The high signal-to-noise spectra show strong fluorescence from Dy, Cs, and I, as well as elastic scattering from Hg. Radial distributions of the absolute elemental densities of Dy, Cs, and I are obtained.

  3. Minority additive distributions in a ceramic metal-halide arc lamp using high-energy x-ray induced fluorescence

    SciTech Connect

    Curry, J. J.; Adler, H. G.; Shastri, S. D.; Lawler, J. E.

    2001-09-24

    X-ray induced fluorescence is used to measure the elemental densities of minority additives in a metal-halide arc contained inside a translucent ceramic envelope. A monochromatic x-ray beam from the Sector 1 Insertion Device beamline at the Advanced Photon Source is used to excite K-shell x-ray fluorescence in the constituents of a ceramic metal-halide arc lamp dosed with DyI{sub 3} and CsI. Fluorescence and scattered photons are collected by a cryogenic energy-resolving Ge detector. The high signal-to-noise spectra show strong fluorescence from Dy, Cs, and I, as well as elastic scattering from Hg. Radial distributions of the absolute elemental densities of Dy, Cs, and I are obtained.

  4. Radiochemical synthesis of pure anhydrous metal halides

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  5. Growth and yield characteristics of 'Waldmann's Green' leaf lettuce under different photon fluxes from metal halide or incandescent + fluorescent radiation

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Growth of 'Waldmann's Green' leaf lettuce under metal halide radiation was compared with that under In = Fl at the same photosynthetic photon flux (920 micromol/s/sq m) to evaluate the influence of lamp type on growth. No differences in leaf dry weight, leaf area, relative growth rate or photosynthesis occurred after 8 days of exposure to these radiation treatments for 20 h/day.

  6. Growth and yield characteristics of 'Waldmann's Green' leaf lettuce under different photon fluxes from metal halide or incandescent + fluorescent radiation

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Growth of 'Waldmann's Green' leaf lettuce under metal halide radiation was compared with that under In = Fl at the same photosynthetic photon flux (920 micromol/s/sq m) to evaluate the influence of lamp type on growth. No differences in leaf dry weight, leaf area, relative growth rate or photosynthesis occurred after 8 days of exposure to these radiation treatments for 20 h/day.

  7. Metal halide perovskite light emitters

    PubMed Central

    Kim, Young-Hoon; Cho, Himchan; Lee, Tae-Woo

    2016-01-01

    Twenty years after layer-type metal halide perovskites were successfully developed, 3D metal halide perovskites (shortly, perovskites) were recently rediscovered and are attracting multidisciplinary interest from physicists, chemists, and material engineers. Perovskites have a crystal structure composed of five atoms per unit cell (ABX3) with cation A positioned at a corner, metal cation B at the center, and halide anion X at the center of six planes and unique optoelectronic properties determined by the crystal structure. Because of very narrow spectra (full width at half-maximum ≤20 nm), which are insensitive to the crystallite/grain/particle dimension and wide wavelength range (400 nm ≤ λ ≤ 780 nm), perovskites are expected to be promising high-color purity light emitters that overcome inherent problems of conventional organic and inorganic quantum dot emitters. Within the last 2 y, perovskites have already demonstrated their great potential in light-emitting diodes by showing high electroluminescence efficiency comparable to those of organic and quantum dot light-emitting diodes. This article reviews the progress of perovskite emitters in two directions of bulk perovskite polycrystalline films and perovskite nanoparticles, describes current challenges, and suggests future research directions for researchers to encourage them to collaborate and to make a synergetic effect in this rapidly emerging multidisciplinary field. PMID:27679844

  8. Metal Halide Optical Glasses.

    DTIC Science & Technology

    1988-01-01

    HEAVY METAL FLUORIDE GLASSES C. T. Moynihan, R. Mossadegh and S. N. Crichton Materials Engineering Department, Rensselaer Polytechnic Institute Troy...and Tesar, A. A., J. Am. Ceram. Soc., 67, p. C-164 (1984). 11. Crichton , S. N., Mossadegh, R., Schroeder, J., and Moynihan, C. T., unpublished data. 12...FLUORIDE GLASSES C. T. Moynihan, S. M. Opalka, R. Mossadegh, S. N. Crichton and A. J. Bruce Center for Glass Science and Technology Materials Engineering

  9. Multiple-Wavelength Metal/Halide Laser

    NASA Technical Reports Server (NTRS)

    Nerheim, N. M.

    1984-01-01

    Single device produces multiple lasing lines. Laser capable of producing many lasing lines has several reservoirs of halide lasant mixed with chlorides of copper, manganese and iron. Convection-control technique possible to rapidly change from one metal halide to another at maximum energy.

  10. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    DOEpatents

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  11. Dimming of metal halide lamps

    NASA Astrophysics Data System (ADS)

    Schurer, Kees

    1994-03-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  12. Dimming of metal halide lamps

    NASA Technical Reports Server (NTRS)

    Schurer, Kees

    1994-01-01

    We ran some tests on the effect of dimming of metal halide (MH) lamps upon the stability and the spectral quality of the light output. Lamps used were a new Philips lamp HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram lamp HQI-T 250W/D. The ballast was a BBC type DJ 250/2KS, the starter a BAS TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 250. Power was derived from a Philips stabilizer, type PE 1602. Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% output as measured with the PAR meter. Lamps were allowed to stabilize at any setting for 30 minutes before measurements were made. Lamp manufacturers advise against dimming for fear of poor stability and intolerable changes of the spectrum. However, none of the lamps showed a decrease in stability, no flicker or wandering of the discharge, and the changes of the spectrum were not negligible, but certainly not dramatic. Lamps of either manufacture retain their white color, relative peak heights of spectral lines did shift, but no gaps in the spectrum occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between the new and the older Philips lamp were noticeable, but not really significant.

  13. METHOD OF PREPARING METAL HALIDES

    DOEpatents

    Hendrickson, A.V.

    1958-11-18

    The conversion of plutonium halides from plutonium peroxide can be done by washing the peroxide with hydrogen peroxide, drying the peroxide, passing a dry gaseous hydrohalide over the surface of the peroxide at a temperature of about lOO icient laborato C until the reaction rate has stabillzed, and then ralsing the reaction temperature to between 400 and 600 icient laborato C until the conversion to plutonium halide is substantially complete.

  14. Structural effects in molecular metal halides.

    PubMed

    Hargittai, Magdolna

    2009-03-17

    Metal halides are a relatively large class of inorganic compounds that participate in many industrial processes, from halogen metallurgy to the production of semiconductors. Because most metal halides are ionic crystals at ambient conditions, the term "molecular metal halides" usually refers to vapor-phase species. These gas-phase molecules have a special place in basic research because they exhibit the widest range of chemical bonding from the purely ionic to mostly covalent bonding through to weakly interacting systems. Although our focus is basic research, knowledge of the structural and thermodynamic properties of gas-phase metal halides is also important in industrial processes. In this Account, we review our most recent work on metal halide molecular structures. Our studies are based on electron diffraction and vibrational spectroscopy, and increasingly, we have augmented our experimental work with quantum chemical computations. Using both experimental and computational techniques has enabled us to determine intriguing structural effects with better accuracy than using either technique alone. We loosely group our discussion based on structural effects including "floppiness", relativistic effects, vibronic interactions, and finally, undiscovered molecules with computational thermodynamic stability. Floppiness, or serious "nonrigidity", is a typical characteristic of metal halides and makes their study challenging for both experimentalists and theoreticians. Relativistic effects are mostly responsible for the unique structure of gold and mercury halides. These molecules have shorter-than-expected bonds and often have unusual geometrical configurations. The gold monohalide and mercury dihalide dimers and the molecular-type crystal structure of HgCl(2) are examples. We also examined spin-orbit coupling and the possible effect of the 4f electrons on the structure of lanthanide trihalides. Unexpectedly, we found that the geometry of their dimers depends on the f

  15. Method for recovering hydrocarbons from molten metal halides

    DOEpatents

    Pell, Melvyn B.

    1979-01-01

    In a process for hydrocracking heavy carbonaceous materials by contacting such carbonaceous materials with hydrogen in the presence of a molten metal halide catalyst to produce hydrocarbons having lower molecular weights and thereafter recovering the hydrocarbons so produced from the molten metal halide, an improvement comprising injecting into the spent molten metal halide, a liquid low-boiling hydrocarbon stream is disclosed.

  16. Alkali metal and alkali earth metal gadolinium halide scintillators

    DOEpatents

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  17. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    SciTech Connect

    Curry, J. J.; Henins, A.; Hardis, J. E.; Estupinan, E. G.; Lapatovich, W. P.; Shastri, S. D.

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  18. Intriguing Optoelectronic Properties of Metal Halide Perovskites.

    PubMed

    Manser, Joseph S; Christians, Jeffrey A; Kamat, Prashant V

    2016-11-09

    A new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewed with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH3NH3PbI3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2-dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.

  19. Intriguing optoelectronic properties of metal halide perovskites

    DOE PAGES

    Manser, Joseph S.; Christians, Jeffrey A.; Kamat, Prashant V.

    2016-06-21

    Here, a new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewed withmore » an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH3NH3PbI3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2- dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.« less

  20. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  1. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  2. 10 CFR 429.54 - Metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Metal halide lamp ballasts and fixtures. 429.54 Section... CONSUMER PRODUCTS AND COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.54 Metal halide lamp ballasts... are applicable to metal halide lamp ballasts; and (2) For each basic model of metal halide...

  3. Metal halide perovskites for energy applications

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Eperon, Giles E.; Snaith, Henry J.

    2016-06-01

    Exploring prospective materials for energy production and storage is one of the biggest challenges of this century. Solar energy is one of the most important renewable energy resources, due to its wide availability and low environmental impact. Metal halide perovskites have emerged as a class of semiconductor materials with unique properties, including tunable bandgap, high absorption coefficient, broad absorption spectrum, high charge carrier mobility and long charge diffusion lengths, which enable a broad range of photovoltaic and optoelectronic applications. Since the first embodiment of perovskite solar cells showing a power conversion efficiency of 3.8%, the device performance has been boosted up to a certified 22.1% within a few years. In this Perspective, we discuss differing forms of perovskite materials produced via various deposition procedures. We focus on their energy-related applications and discuss current challenges and possible solutions, with the aim of stimulating potential new applications.

  4. Electrolytic systems and methods for making metal halides and refining metals

    SciTech Connect

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  5. Metal halide perovskite nanomaterials: synthesis and applications.

    PubMed

    Ha, Son-Tung; Su, Rui; Xing, Jun; Zhang, Qing; Xiong, Qihua

    2017-04-01

    Nanomaterials refer to those with at least one dimension being at the nanoscale (i.e. <100 nm) such as quantum dots, nanowires, and nanoplatelets. These types of materials normally exhibit optical and electrical properties distinct from their bulk counterparts due to quantum confinement or strong anisotropy. In this perspective, we will focus on a particular material family: metal halide perovskites, which have received tremendous interest recently in photovoltaics and diverse photonic and optoelectronic applications. The different synthesis approaches and growth mechanisms will be discussed along with their novel characteristics and applications. Taking perovskite quantum dots as an example, the quantum confinement effect and high external quantum efficiency are among these novel properties and their excellent performance in applications, such as single photon emitters and LEDs, will be discussed. Understanding the mechanism behind the formation of these nanomaterial forms of perovskite will help researchers to come up with effective strategies to combat the emerging challenges of this family of materials, such as stability under ambient conditions and toxicity, towards next generation applications in photovoltaics and optoelectronics.

  6. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  7. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts and Fixtures § 431.322 Definitions concerning metal halide lamp ballasts and fixtures. Ballast efficiency means, in the case of...

  8. 75 FR 5544 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures: Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... for Metal Halide Lamp Fixtures: Public Meeting and Availability of the Framework Document AGENCY... conservation standards for certain metal halide lamp fixtures. This document announces that the period for... metal halide lamp fixtures and provide docket number EERE-2009-BT-STD-0018 and/or RIN number 1904-...

  9. Formation of autocomplexes in halide melts of trivalent metals

    NASA Astrophysics Data System (ADS)

    Peshkina, K. G.; Tkachev, N. K.

    2014-09-01

    Chemical equilibrium with respect to the dissociation of charged autocomplexes (MX6)3- in ionic melts of the MX3 type is analyzed. The chemical equilibrium M3+ + 6X- = (MX6)3- in salt melts of trivalent metal halides shifts strongly toward dissociation, due to the electrostatic interactions between charged particles in the melts.

  10. Chemical Reactivity Perspective into the Group 2B Metals Halides.

    PubMed

    Özen, Alimet Sema; Akdeniz, Zehra

    2016-06-30

    Chemical reactivity descriptors within the conceptual density functional theory can be used to understand the nature of the interactions between two monomers of the Group 2B metal halides. This information might be valuable in the development of adequate force law parameters for simulations in the liquid state. In this study, MX2 monomers and dimers, where M = Zn, Cd, Hg and X = F, Cl, Br, I, were investigated in terms of chemical reactivity descriptors. Relativistic effects were taken into account using the effective core potential (ECP) approach. Correlations were produced between global and local reactivity descriptors and dimerization energies. Results presented in this work represent the first systematic investigation of Group 2B metal halides in the literature from a combined point of view of both relativistic effects and chemical reactivity descriptors. Steric effects were found to be responsible for the deviation from the chemical reactivity principles. They were introduced into the chemical reactivity descriptors such as local softness.

  11. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  12. Halide (Cl(super -)) Quenching of Quinine Sulfate Fluorescence: A Time-Resolved Fluorescence Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Gutow, Jonathan H.

    2005-01-01

    The time-resolved fluorescence experiment investigating the halide quenching of fluorescence from quinine sulfate in water is described. The objectives of the experiment include reinforcing student understanding of the kinetics of competing pathways, making connections with microscopic theories of kinetics through comparison of experimental and…

  13. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  14. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  15. Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

  16. Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals

    PubMed Central

    2014-01-01

    Lead halide perovskites (CH3NH3PbX3, where X = I, Br) and other metal halide complexes (MXn, where M = Pb, Cd, In, Zn, Fe, Bi, Sb) have been studied as inorganic capping ligands for colloidal nanocrystals. We present the methodology for the surface functionalization via ligand-exchange reactions and the effect on the optical properties of IV–VI, II–VI, and III–V semiconductor nanocrystals. In particular, we show that the Lewis acid–base properties of the solvents, in addition to the solvent dielectric constant, must be properly adjusted for successful ligand exchange and colloidal stability. High luminescence quantum efficiencies of 20–30% for near-infrared emitting CH3NH3PbI3-functionalized PbS nanocrystals and 50–65% for red-emitting CH3NH3CdBr3- and (NH4)2ZnCl4-capped CdSe/CdS nanocrystals point to highly efficient electronic passivation of the nanocrystal surface. PMID:24746226

  17. Sodium-metal halide and sodium-air batteries.

    PubMed

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems.

  18. 10 CFR Appendix A to Subpart S of... - Compliance Statement for Metal Halide Lamp Ballasts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Appendix A to Subpart S of Part 431 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY..., Subpt. S, App. A Appendix A to Subpart S of Part 431—Compliance Statement for Metal Halide Lamp Ballasts Equipment: Metal Halide Lamp Ballasts Manufacturer's or Private Labeler's Name and Address: (“the company...

  19. 10 CFR 431.324 - Uniform test method for the measurement of energy efficiency of metal halide ballasts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... energy efficiency of metal halide ballasts. (b) Testing and Calculations. Energy Conservation Standards ... efficiency of metal halide ballasts. 431.324 Section 431.324 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Metal Halide Lamp Ballasts...

  20. Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts

    DOEpatents

    Gorin, Everett

    1979-01-01

    In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

  1. Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids.

    PubMed

    Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu

    2016-11-01

    The reaction of manganese (II) halides MnX2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz)2(MnX4)]·2H2O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn(2+) ion. Two organic - inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.

  2. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... metallic vapors. Metal halide lamp fixture means a light fixture for general lighting application designed... providing any standby or active mode function. PLC control signal means a power line carrier (PLC)...

  3. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... metallic vapors. Metal halide lamp fixture means a light fixture for general lighting application designed... providing any standby or active mode function. PLC control signal means a power line carrier (PLC)...

  4. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... metallic vapors. Metal halide lamp fixture means a light fixture for general lighting application designed... providing any standby or active mode function. PLC control signal means a power line carrier (PLC)...

  5. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    DOEpatents

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  6. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    SciTech Connect

    Wang Lamei; Fan Yong; Wang Yan; Xiao Lina; Hu Yangyang; Peng Yu; Wang Tiegang; Gao Zhongmin; Zheng Dafang; Cui Xiaobing; Xu Jiqing

    2012-07-15

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW{sub 12}O{sub 40}]{sub 2}[Cu{sub 2}(Phen){sub 4}Cl](H{sub 2}4, 4 Prime -bpy){sub 4}{center_dot}H{sub 3}O{center_dot}5H{sub 2}O (1) and [HPW{sub 12}O{sub 40}][Cd{sub 2}(Phen){sub 4}Cl{sub 2}](4, 4 Prime -bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW{sub 12}O{sub 40}]{sup 5-}, metal halide clusters [Cu{sub 2}(Phen){sub 4}Cl]{sup +}and 4, 4 Prime -bpy ligands, while compound 2 is constructed from [PW{sub 12}O{sub 40}]{sup 3-}, metal halide cluster [Cd{sub 2}(Phen){sub 4}Cl{sub 2}]{sup 2+} and 4, 4 Prime -bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. - Graphical Abstract: Two new compounds have been synthesized and characterized. Structure analyses revealed that the two compounds are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Highlights: Black-Right-Pointing-Pointer First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Two different kinds of metal halide clusters. Black-Right-Pointing-Pointer Supramolecular structures based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Hybridization of three different of building blocks.

  7. Spectroscopic effects of disorder and vibrational localization in mixed-halide metal-halide chain solids

    SciTech Connect

    Love, S.P.; Scott, B.; Worl, L.A.; Huckett, S.C.; Saxena, A.; Huang, X.Z.; Bishop, A.R.; Swanson, B.I.

    1993-02-01

    Resonance Raman techniques, together with lattice-dynamics and Peierls-Hubbard modelling, are used to explore the electronic and vibrational dynamics of the quasi-one-dimensional metal-halogen chain solids [Pt(en){sub 2}][R(en){sub 2}X{sub 2}](ClO{sub 4}){sub 4}, (en = C{sub 2}H{sub 8}N{sub 2} and X=Cl, Br), abbreviated ``PLX.`` The mixed-halide materials PtCl{sub 1-x}Br{sub x} and PtCl{sub 1-x}I{sub x} consist of long mixed chains with heterojunctions between segments of the two constituent materials. Thus, in addition to providing mesoscale modulation of the chain electronic states, they serve as prototypes for elucidating the properties to be expected for macroscopic heterojunctions of these highly nonlinear materials. Once a detailed understanding of the various local vibrational modes occurring in these disordered solids is developed, the electronic structure of the chain segments and junctions can be probed by tuning the Raman excitation through their various electronic resonances.

  8. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  9. Direct current ballast circuit for metal halide lamp

    NASA Technical Reports Server (NTRS)

    Lutus, P. (Inventor)

    1981-01-01

    A direct current ballast circuit for a two electrode metal halide lamp is described. Said direct current ballast circuit includes a low voltage DC input and a high frequency power amplifier and power transformer for developing a high voltage output. The output voltage is rectified by diodes and filtered by inductor and capacitor to provide a regulated DC output through commutating diodes to one terminal of the lamp at the output terminal. A feedback path from the output of the filter capacitor through the bias resistor to power the high frequency circuit which includes the power amplifier and the power transformer for sustaining circuit operations during low voltage transients on the input DC supply is described. A current sensor connected to the output of the lamp through terminal for stabilizing lamp current following breakdown of the lamp is described.

  10. Optical and Spectral Studies on β Alanine Metal Halide Hybrid Crystals

    NASA Astrophysics Data System (ADS)

    Sweetlin, M. Daniel; Selvarajan, P.; Perumal, S.; Ramalingom, S.

    2011-10-01

    We have synthesized and grown β alanine metal halide hybrid crystals viz. β alanine cadmium chloride (BACC), an amino acid transition metal halide complex crystal and β alanine potassium chloride (BAPC), an amino acid alkali metal halide complex crystal by slow evaporation method. The grown crystals were found to be transparent and have well defined morphology. The optical characteristics of the grown crystals were carried out with the help of UV-Vis Spectroscopy. The optical transmittances of the spectrums show that BAPC is more transparent than BACC. The Photoluminescence of the materials were determined by the Photoluminescent Spectroscopy

  11. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... fixture means a light fixture for general lighting application designed to be operated with a metal halide... function. PLC control signal means a power line carrier (PLC) signal that is supplied to the ballast...

  12. Reactivity of halide and pseudohalide ligands in transition-metal complexes

    SciTech Connect

    Kukushkin, Yu.N.; Kukushkin, V.Yu.

    1985-10-01

    The experimental material on the reactions of coordinated halide ligands, as well as cyanide, azido, thiocyanato, and cyanato ligands, in transition-metal complexes has been generalized in this review.

  13. High power metallic halide laser. [amplifying a copper chloride laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J. (Inventor)

    1982-01-01

    A laser amplification system is disclosed whereby a metallic halide vapor such as copper chloride is caused to flow through a laser amplifier and a heat exchanger in a closed loop system so that the flow rate is altered to control the temperature rise across the length of the laser amplifier. The copper atoms within the laser amplifier should not exceed a temperature of 3000 K, so that the number of copper atoms in the metastable state will not be high enough to prevent amplification in the amplifier. A molecular dissociation apparatus is provided at the input to the laser amplifier for dissociating the copper chloride into copper atoms and ions and chlorine atoms and ions. The dissociation apparatus includes a hollow cathode tube and an annular ring spaced apart from the tube end. A voltage differential is applied between the annular ring and the hollow cathode tube so that as the copper chloride flows through, it is dissociated into copper and chlorine ions and atoms.

  14. Quantum anomalous Hall effect in ferromagnetic transition metal halides

    NASA Astrophysics Data System (ADS)

    Huang, Chengxi; Zhou, Jian; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2017-01-01

    The quantum anomalous Hall (QAH) effect is a novel topological spintronic phenomenon arising from inherent magnetization and spin-orbit coupling. Various theoretical and experimental efforts have been devoted in search of intrinsic QAH insulators. However, up to now, it has only been observed in Cr or V doped (Bi,Sb ) 2T e3 film in experiments with very low working temperature. Based on the successful synthesis of transition metal halides, we use first-principles calculations to predict that the Ru I3 monolayer is an intrinsic ferromagnetic QAH insulator with a topologically nontrivial global band gap of 11 meV. This topologically nontrivial band gap at the Fermi level is due to its crystal symmetry, thus the QAH effect is robust. Its Curie temperature, estimated to be ˜360 K using Monte Carlo simulation, is above room temperature and higher than most two-dimensional ferromagnetic thin films. The inclusion of Hubbard U in the Ru-d electrons does not affect this result. We also discuss the manipulation of its exchange energy and nontrivial band gap by applying in-plane strain. Our work adds an experimentally feasible member to the QAH insulator family, which is expected to have broad applications in nanoelectronics and spintronics.

  15. Spectroscopic imaging of metal halide high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Bonvallet, Geoffrey A.

    The body of this work consists of three main research projects. An optical- and near-ultraviolet-wavelength absorption study sought to determine absolute densities of ground and excited level Sc atoms, ground level Sc + ions, and ground level Na atoms in a commercial 250 W metal halide high intensity discharge lamp during operation. These measurements also allowed the determination of the arc temperature and absolute electron density as functions of radius. Through infrared emission spectroscopy, relative densities of sodium and scandium were determined as functions of radius. Using the absolute densities gained from the optical experiment, these relative densities were calibrated. In addition, direct observation of the infrared emission allowed us to characterize the infrared power losses of the lamp. When considered as a fraction of the overall power consumption, the near-infrared spectral power losses were not substantial enough to warrant thorough investigation of their reduction in these lamps. The third project was an attempt to develop a portable x-ray diagnostic experiment. Two-dimensional spatial maps of the lamps were analyzed to determine absolute elemental mercury densities and the arc temperature as a function of radius. Two methods were used to improve the calibration of the density measurements and to correct for the spread in x-ray energy: known solutions of mercury in nitric acid, and an arc lamp which was uniformly heated to evaporate the mercury content. Although many complexities arose in this experiment, its goal was successfully completed.

  16. Confining metal-halide perovskites in nanoporous thin films

    PubMed Central

    Demchyshyn, Stepan; Roemer, Janina Melanie; Groiß, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Böhm, Anton; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus Clark; Sariciftci, Niyazi Serdar; Nickel, Bert; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2017-01-01

    Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices. PMID:28798959

  17. Confining metal-halide perovskites in nanoporous thin films.

    PubMed

    Demchyshyn, Stepan; Roemer, Janina Melanie; Groiß, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Böhm, Anton; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus Clark; Sariciftci, Niyazi Serdar; Nickel, Bert; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2017-08-01

    Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices.

  18. Theoretical study of noble-gas containing metal halides

    NASA Astrophysics Data System (ADS)

    Mou, Chun-Hao; Witek, Henryk A.

    2008-12-01

    Equilibrium structures, energetic stability, and vibrational frequencies of noble-gas containing metal halides, MNgX and NgMX (Ng=Ar,Kr,Xe; M=Cu,Ag,Au; X=F,Cl,Br) have been studied computationally using coupled cluster, density functional, and perturbation techniques. The NgMX species have been found to be stable with the Ng-M bond dissociation energy of 2-22 kcal/mol. Our calculations indicate that the argon-containing MNgX compounds are unstable or very weakly bound. For most of the krypton- and xenon-containing species, well-defined (MNg)δ+Xδ- equilibrium structures have been located. Large MNgX-->Ng+MX reorganization barriers for some of the MNgX molecules (e.g., AuXeF and AuXeCl) indicate their considerable kinetic stability. The presented results suggest that direct observation of the most stable of the MNgX molecules might be possible in experiment.

  19. Transition metal-substituted lead halide perovskite absorbers

    DOE PAGES

    Sampson, M. D.; Park, J. S.; Schaller, R. D.; ...

    2017-01-27

    Here, lead halide perovskites have proven to be a versatile class of visible light absorbers that allow rapid access to the long minority carrier lifetimes and diffusion lengths desirable for traditional single-junction photovoltaics. We explore the extent to which the attractive features of these semiconductors may be extended to include an intermediate density of states for future application in multi-level solar energy conversion systems capable of exceeding the Shockley–Queisser limit. We computationally and experimentally explore the substitution of transition metals on the Pb site of MAPbX3 (MA = methylammonium, X = Br or Cl) to achieve a tunable density ofmore » states within the parent gap. Computational screening identified both Fe- and Co-substituted MAPbBr3 as promising absorbers with a mid-gap density of states, and the later films were synthesized via conventional solution-based processing techniques. First-principles density functional theory (DFT) calculations support the existence of mid-gap states upon Co incorporation and enhanced sub-gap absorption, which are consistent with UV-visible-NIR absorption spectroscopy. Strikingly, steady state and time-resolved PL studies reveal no sign of self-quenching for Co-substitution up to 25%, which suggest this class of materials to be a worthy candidate for future application in intermediate band photovoltaics.« less

  20. The effect of illumination on the formation of metal halide perovskite films

    NASA Astrophysics Data System (ADS)

    Ummadisingu, Amita; Steier, Ludmilla; Seo, Ji-Youn; Matsui, Taisuke; Abate, Antonio; Tress, Wolfgang; Grätzel, Michael

    2017-04-01

    Optimizing the morphology of metal halide perovskite films is an important way to improve the performance of solar cells when these materials are used as light harvesters, because film homogeneity is correlated with photovoltaic performance. Many device architectures and processing techniques have been explored with the aim of achieving high-performance devices, including single-step deposition, sequential deposition and anti-solvent methods. Earlier studies have looked at the influence of reaction conditions on film quality, such as the concentration of the reactants and the reaction temperature. However, the precise mechanism of the reaction and the main factors that govern it are poorly understood. The consequent lack of control is the main reason for the large variability observed in perovskite morphology and the related solar-cell performance. Here we show that light has a strong influence on the rate of perovskite formation and on film morphology in both of the main deposition methods currently used: sequential deposition and the anti-solvent method. We study the reaction of a metal halide (lead iodide) with an organic compound (methylammonium iodide) using confocal laser scanning fluorescence microscopy and scanning electron microscopy. The lead iodide crystallizes before the intercalation of methylammonium iodide commences, producing the methylammonium lead iodide perovskite. We find that the formation of perovskite via such a sequential deposition is much accelerated by light. The influence of light on morphology is reflected in a doubling of solar-cell efficiency. Conversely, using the anti-solvent method to form methyl ammonium lead iodide perovskite in a single step from the same starting materials, we find that the best photovoltaic performance is obtained when films are produced in the dark. The discovery of light-activated crystallization not only identifies a previously unknown source of variability in opto-electronic properties, but also opens up

  1. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    NASA Astrophysics Data System (ADS)

    Wang, La-Mei; Fan, Yong; Wang, Yan; Xiao, Li-Na; Hu, Yang-Yang; Peng, Yu; Wang, Tie-Gang; Gao, Zhong-Min; Zheng, Da-Fang; Cui, Xiao-Bing; Xu, Ji-Qing

    2012-07-01

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW12O40]2[Cu2(Phen)4Cl](H24, 4'-bpy)4·H3O·5H2O (1) and [HPW12O40][Cd2(Phen)4Cl2](4, 4'-bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW12O40]5-, metal halide clusters [Cu2(Phen)4Cl]+and 4, 4'-bpy ligands, while compound 2 is constructed from [PW12O40]3-, metal halide cluster [Cd2(Phen)4Cl2]2+ and 4, 4'-bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands.

  2. 10 CFR Appendix C to Subpart S of... - Enforcement for Performance Standards; Compliance Determination Procedure for Metal Halide Lamp...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Determination Procedure for Metal Halide Lamp Ballasts C Appendix C to Subpart S of Part 431 Energy DEPARTMENT... EQUIPMENT Metal Halide Lamp Ballasts and Fixtures Pt. 431, Subpt. S, App. C Appendix C to Subpart S of Part... additional units DOE has tested at the manufacturer's request.) DOE will determine compliance or...

  3. 10 CFR Appendix B to Subpart S to... - Certification Report for Metal Halide Lamp Ballasts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Appendix B to Subpart S to Part 431 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY..., Subpt. S, App. B Appendix B to Subpart S to Part 431—Certification Report for Metal Halide Lamp Ballasts All information reported in this Certification Report(s) is true, accurate, and complete. The company...

  4. Spectroscopic effects of disorder and vibrational localization in mixed-halide metal-halide chain solids

    SciTech Connect

    Love, S.P.; Scott, B.; Worl, L.A.; Huckett, S.C.; Saxena, A.; Huang, X.Z.; Bishop, A.R.; Swanson, B.I.

    1993-01-01

    Resonance Raman techniques, together with lattice-dynamics and Peierls-Hubbard modelling, are used to explore the electronic and vibrational dynamics of the quasi-one-dimensional metal-halogen chain solids [Pt(en)[sub 2

  5. Chemical bonding and aromaticity in trinuclear transition-metal halide clusters.

    PubMed

    Weck, Philippe F; Sergeeva, Alina P; Kim, Eunja; Boldyrev, Alexander I; Czerwinski, Kenneth R

    2011-02-07

    Trinuclear transition-metal complexes such as Re(3)X(9) (X = Cl, Br, I), with their uniquely featured structure among metal halides, have posed intriguing questions related to multicenter electron delocalization for several decades. Here we report a comprehensive study of the technetium halide clusters [Tc(3)(μ-X)(3)X(6)](0/1-/2-) (X = F, Cl, Br, I), isomorphous with their rhenium congeners, predicted from density functional theory calculations. The chemical bonding and aromaticity in these clusters are analyzed using the recently developed adaptive natural density partitioning method, which indicates that only [Tc(3)X(9)](2-) clusters exhibit aromatic character, stemming from a d-orbital-based π bond delocalized over the three metal centers. We also show that standard methods founded on the nucleus-independent chemical shift concept incorrectly predict the neutral Tc(3)X(9) clusters to be aromatic.

  6. Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts

    SciTech Connect

    Akdeniz, Z. Istanbul Univ. . Dept. of Physics); Tosi, M.P. . Dipt. di Fisica Teorica Argonne National Lab., IL )

    1988-11-01

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudopotential radii or Zunger and Cohen. As a third alternative a classification based on Pettifor's phenomenological chemical scale of the elements is also considered. The alternative structural classification schemes that are developed from these elemental properties are generally successfully in distinguishing molten mixtures in which the available experimental evidence indicates long-lived fourfold coordination of polyvalent metal ions. In addition, Pettifor's chemical scale scheme is useful in sorting out finer details of local coordination in the liquid state. 3 figs., 71 refs.

  7. Promotion of Organic Reactions by Ultrasound: Coupling of Alkyl and Aryl Halides in the Presence of Lithium Metal and Ultrasound.

    ERIC Educational Resources Information Center

    Lash, Timothy D.; Berry, Donna

    1985-01-01

    Experiments involving the coupling of alkyl and aryl halides in the presence of lithium metal and ultrasound are described. The experiments illustrate classical Wurtz and Fittig reactions in addition to being a convenient application of organic sonochemistry. (JN)

  8. Promotion of Organic Reactions by Ultrasound: Coupling of Alkyl and Aryl Halides in the Presence of Lithium Metal and Ultrasound.

    ERIC Educational Resources Information Center

    Lash, Timothy D.; Berry, Donna

    1985-01-01

    Experiments involving the coupling of alkyl and aryl halides in the presence of lithium metal and ultrasound are described. The experiments illustrate classical Wurtz and Fittig reactions in addition to being a convenient application of organic sonochemistry. (JN)

  9. Steric engineering of metal-halide perovskites with tunable optical band gaps.

    PubMed

    Filip, Marina R; Eperon, Giles E; Snaith, Henry J; Giustino, Feliciano

    2014-12-15

    Owing to their high energy-conversion efficiency and inexpensive fabrication routes, solar cells based on metal-organic halide perovskites have rapidly gained prominence as a disruptive technology. An attractive feature of perovskite absorbers is the possibility of tailoring their properties by changing the elemental composition through the chemical precursors. In this context, rational in silico design represents a powerful tool for mapping the vast materials landscape and accelerating discovery. Here we show that the optical band gap of metal-halide perovskites, a key design parameter for solar cells, strongly correlates with a simple structural feature, the largest metal-halide-metal bond angle. Using this descriptor we suggest continuous tunability of the optical gap from the mid-infrared to the visible. Precise band gap engineering is achieved by controlling the bond angles through the steric size of the molecular cation. On the basis of these design principles we predict novel low-gap perovskites for optimum photovoltaic efficiency, and we demonstrate the concept of band gap modulation by synthesising and characterising novel mixed-cation perovskites.

  10. Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst

    DOEpatents

    Gorin, Everett

    1981-01-01

    A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

  11. Reactions between cold methyl halide molecules and alkali-metal atoms

    SciTech Connect

    Lutz, Jesse J.; Hutson, Jeremy M.

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH{sub 3}X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH{sub 3}X + A → CH{sub 3} + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  12. Reactions between cold methyl halide molecules and alkali-metal atoms.

    PubMed

    Lutz, Jesse J; Hutson, Jeremy M

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  13. Theory of metal atom-water interactions and alkali halide dimers

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  14. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  15. Sub-millimeter Spectroscopy of Astrophysically Important Molecules and Ions: Metal Hydrides, Halides, and Cyanides

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Flory, M. A.; Halfen, D. T.

    2006-01-01

    With the advent of SOFIA, Herschel, and SAFIR, new wavelength regions will become routinely accessible for astronomical spectroscopy, particularly at submm frequencies (0.5-1.1 THz). Molecular emission dominates the spectra of dense interstellar gas at these wavelengths. Because heterodyne detectors are major instruments of these missions, accurate knowledge of transition frequencies is crucial for their success. The Ziurys spectroscopy laboratory has been focusing on the measurement of the pure rotational transitions of astrophysically important molecules in the sub-mm regime. Of particular interest have been metal hydride species and their ions, as well as metal halides and cyanides. A new avenue of study has included metal bearing molecular ions.

  16. Photonic Nanostructures Patterned by Thermal Nanoimprint Directly into Organo-Metal Halide Perovskites.

    PubMed

    Pourdavoud, Neda; Wang, Si; Mayer, André; Hu, Ting; Chen, Yiwang; Marianovich, André; Kowalsky, Wolfgang; Heiderhoff, Ralf; Scheer, Hella-Christin; Riedl, Thomas

    2017-03-01

    Photonic nanostructures are created in organo-metal halide perovskites by thermal nanoimprint lithography at a temperature of 100 °C. The imprinted layers are significantly smoothened compared to the initially rough, polycrystalline layers and the impact of surface defects is substantially mitigated upon imprint. As a case study, 2D photonic crystals are shown to afford lasing with ultralow lasing thresholds at room temperature.

  17. Development of processes for the production of solar grade silicon from halides and alkali metals

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  18. Photokeratitis Linked to Metal Halide Bulbs in Two Gymnasiums - Philadelphia, Pennsylvania, 2011 and 2013.

    PubMed

    Finn, Lauren E; Gutowski, Jennifer; Alles, Steve; Mirowitz, Naomi; Johnson, Caroline; Osterhoudt, Kevin C; Patel, Ami

    2016-03-25

    In December 2011 and December 2013, the Philadelphia Department of Public Health (PDPH) received separate reports of clusters of photokeratitis linked to gymnasium events. Photokeratitis, a painful eye condition resulting from unprotected exposure to ultraviolet radiation, has previously been linked to metal halide lamps with broken outer envelopes (1,2). To investigate the cause of these clusters and further characterize patients with photokeratitis, PDPH administered questionnaires to potentially exposed persons, established a case definition, and conducted environmental assessments of both gymnasiums. Because event attendee registration information was available, a cohort study was conducted to evaluate the 2011 cluster of 242 persons who met the photokeratitis case definition. A case-series investigation was conducted to evaluate the 2013 cluster of 20 persons who met the photokeratitis case definition for that event. These investigations indicated that Type R metal halide bulbs with broken outer envelopes found in both gymnasiums were the probable cause of the photokeratitis. The Food and Drug Administration has made a number of recommendations regarding the use of metal halide bulbs in facilities where bulbs are at elevated risk for breaking, such as schools and indoor sports facilities (3). Because Type R metal halide lamps do not self-extinguish once the outer envelope is broken, these bulbs should be removed from settings with a high risk for outer envelope rupture, such as gymnasiums, or should be placed within enclosed fixtures. In instances where these bulbs cannot be exchanged for self-extinguishing lamps, Type R lamps with a broken outer envelope should be replaced immediately to limit exposure to ultraviolet radiation. A broken outer envelope can be detected by the presence of glass on the floor, or visual examination of the bulb when the power is turned off. A broken outer envelope is difficult to detect when the lamp is emitting light.

  19. Interface Engineering in Metal Halides Perovskites: From molecules to devices

    NASA Astrophysics Data System (ADS)

    Petrozza, Annamaria

    In this talk we review our recent studies which aim to clarify the relationship between structural and electronic properties from a molecular to mesoscopic level. First we identify the markers for local disorder at molecular level by using Raman Spectroscopy as a probe. Then, we exploit such a tool to explore the role of microstructure on the absorption and emission properties of the semiconductor looking both at polycrystalline thin films and single crystals. We address the controversy surrounding electron - hole interactions and excitonic effects. We show that in hybrid lead-halide perovskites dielectric screening also depends on the local microstructure of the hybrid crystals and not only on its chemical composition. This leads to the possibility of band gap engineering and the consequent control of the elementary photo-excitation dynamics that determine the perovskites' performances in different optoelectronic devices. Finally, the role of interface engineering, the effect of ion migration, and interface doping on charge extraction will be elucidated to provide a guideline for the design of hysteresis free solar cells. 1)G. Grancini & AR Srimath Kandada et al., Nature Photonics, 9 (10), 695-701, 2015 2) C. Tao et al,'' Energy Environ. Sci.,8, 2365-2370, 2015

  20. Homoepitaxial growth of metal halide crystals investigated by reflection high-energy electron diffraction

    DOE PAGES

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; ...

    2017-01-10

    Here, we report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flowmore » growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications.« less

  1. Homoepitaxial Growth of Metal Halide Crystals Investigated by Reflection High-Energy Electron Diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; Lunt, Richard R.

    2017-01-01

    We report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flow growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications.

  2. Homoepitaxial Growth of Metal Halide Crystals Investigated by Reflection High-Energy Electron Diffraction

    PubMed Central

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; Lunt, Richard R.

    2017-01-01

    We report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flow growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications. PMID:28071732

  3. Effect of metal halide light source on hardness, water sorption and solubility of indirect composite material.

    PubMed

    Koizumi, Hiroyasu; Satsukawa, Hidetada; Tanoue, Naomi; Ogino, Tomohisa; Nishiyama, Minoru; Matsumura, Hideo

    2005-12-01

    This study evaluates the effects of a metal halide light source on the post-polymerization properties of the Sinfony indirect composite material. Two polymerization systems were employed: the Hyper LII system, comprising a metal halide polymerization unit, and the Visio system, comprising two proprietary units designed for polymerizing the Sinfony composite. The composite material was polymerized for 60, 120 or 180 s with the LII system. As a control, the composite was polymerized for 15 min with the Visio system. Knoop hardness, water sorption and solubility were determined. The results were analyzed by Dunnett's T3 multiple comparison test (P<0.05). Knoop hardness was greater for polymerization with the LII unit than for that with the Visio system. Water sorption was greater for polymerization with the Visio system than that with the LII unit. For polymerization with the LII unit for 180 s, solubility was significantly reduced as compared with the Visio system. Within the limitations of the current experiment, it can be concluded that the metal halide unit exhibited better polymerizing performance for the composite material than the proprietary units.

  4. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3

    DOE PAGES

    Jaffe, Adam; Lin, Yu; Mao, Wendy L.; ...

    2017-03-14

    We report the metallization of the hybrid perovskite semiconductor (MA)PbI3 (MA = CH3NH3+) with no apparent structural transition. We tracked its bandgap evolution during compression in diamond-anvil cells using absorption spectroscopy and observed strong absorption over both visible and IR wavelengths at pressures above ca. 56 GPa, suggesting the imminent closure of its optical bandgap. The metallic character of (MA)PbI3 above 60 GPa was confirmed using both IR reflectivity and variable-temperature dc conductivity measurements. The impressive semiconductor properties of halide perovskites have recently been exploited in a multitude of optoelectronic applications. Meanwhile, the study of metallic properties in oxide perovskitesmore » has revealed diverse electronic phenomena. Importantly, the mild synthetic routes to halide perovskites and the templating effects of the organic cations allow for fine structural control of the inorganic lattice. Lastly, pressure-induced closure of the 1.6 eV bandgap in (MA)PbI3 demonstrates the promise of the continued study of halide perovskites under a range of thermodynamic conditions, toward realizing wholly new electronic properties.« less

  5. Progress on lead-free metal halide perovskites for photovoltaic applications: a review.

    PubMed

    Hoefler, Sebastian F; Trimmel, Gregor; Rath, Thomas

    2017-01-01

    Metal halide perovskites have revolutionized the field of solution-processable photovoltaics. Within just a few years, the power conversion efficiencies of perovskite-based solar cells have been improved significantly to over 20%, which makes them now already comparably efficient to silicon-based photovoltaics. This breakthrough in solution-based photovoltaics, however, has the drawback that these high efficiencies can only be obtained with lead-based perovskites and this will arguably be a substantial hurdle for various applications of perovskite-based photovoltaics and their acceptance in society, even though the amounts of lead in the solar cells are low. This fact opened up a new research field on lead-free metal halide perovskites, which is currently remarkably vivid. We took this as incentive to review this emerging research field and discuss possible alternative elements to replace lead in metal halide perovskites and the properties of the corresponding perovskite materials based on recent theoretical and experimental studies. Up to now, tin-based perovskites turned out to be most promising in terms of power conversion efficiency; however, also the toxicity of these tin-based perovskites is argued. In the focus of the research community are other elements as well including germanium, copper, antimony, or bismuth, and the corresponding perovskite compounds are already showing promising properties.

  6. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    PubMed

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  7. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.

    PubMed

    Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu

    2017-05-24

    Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.

  8. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    SciTech Connect

    Wang, Peng; Bai, Xue E-mail: yuzhang@jlu.edu.cn; Sun, Chun; Zhang, Xiaoyu; Zhang, Yu E-mail: yuzhang@jlu.edu.cn; Zhang, Tieqiang

    2016-08-08

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  9. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Bai, Xue; Sun, Chun; Zhang, Xiaoyu; Zhang, Tieqiang; Zhang, Yu

    2016-08-01

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow full width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.

  10. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning.

    PubMed

    Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V

    2016-06-14

    Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  11. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    NASA Astrophysics Data System (ADS)

    Shmyreva, Anna A.; Safdari, Majid; Furó, István; Dvinskikh, Sergey V.

    2016-06-01

    Orders of magnitude decrease of 207Pb and 199Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  12. Metal-Catalyzed Carboxylation of Organic (Pseudo)halides with CO2

    PubMed Central

    2016-01-01

    The recent years have witnessed the development of metal-catalyzed reductive carboxylation of organic (pseudo)halides with CO2 as C1 source, representing potential powerful alternatives to existing methodologies for preparing carboxylic acids, privileged motifs in a myriad of pharmaceuticals and molecules displaying significant biological properties. While originally visualized as exotic cross-coupling reactions, a close look into the literature data indicates that these processes have become a fertile ground, allowing for the utilization of a variety of coupling partners, even with particularly challenging substrate combinations. As for other related cross-electrophile scenarios, the vast majority of reductive carboxylation of organic (pseudo)halides are characterized by their simplicity, mild conditions, and a broad functional group compatibility, suggesting that these processes could be implemented in late-stage diversification. This perspective describes the evolution of metal-catalyzed reductive carboxylation of organic (pseudo)halides from its inception in the pioneering stoichiometric work of Osakada to the present. Specific emphasis is devoted to the reactivity of these coupling processes, with substrates ranging from aryl-, vinyl-, benzyl- to unactivated alkyl (pseudo)halides. Despite the impressive advances realized, a comprehensive study detailing the mechanistic intricacies of these processes is still lacking. Some recent empirical evidence reveal an intriguing dichotomy exerted by the substitution pattern on the ligands utilized; still, however, some elementary steps within the catalytic cycle of these reactions remain speculative, in many instances invoking a canonical cross-coupling process. Although tentative, we anticipate that these processes might fall into more than one distinct mechanistic category depending on the substrate utilized, suggesting that investigations aimed at unraveling the mechanistic underpinnings of these processes will likely

  13. Anion-π interaction in metal-organic networks formed by metal halides and tetracyanopyrazine

    NASA Astrophysics Data System (ADS)

    Rosokha, Sergiy V.; Kumar, Amar

    2017-06-01

    Co-crystallization of tetracyanopyrazine, TCP, with the tetraalkylammonium salts of linear [CuBr2]-, planar [PtCl4]2- or [Pt2Br6]2-, or octahedral [PtBr6]2- complexes resulted in formation of the alternating [MlXn]m-/TCP stacks separated by the Alk4N+ cations. These hybrid stacks showed multiple short contacts between halide ligands of the [MlXn]m- complexes and carbon atoms of the TCP acceptor indicating strong anion-π bonding between these species. It confirmed that the anion-π interaction is sufficiently strong to bring together such disparate components as ionic metal complexes and neutral aromatic molecules regardless of the geometry of the coordination compound. Structural features of the solid-state stacks and [MlXn]m-·TCP dyads resulted from the quantum-mechanical computations suggests that the molecular-orbital (weakly-covalent) component play an important role in association of the [MlXn]m- complexes with the TCP acceptor.

  14. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    NASA Astrophysics Data System (ADS)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at

  15. Metal halide solid-state surface treatment for nanocrystal materials

    DOEpatents

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  16. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions.

    PubMed

    Guo, Yongming; Zhang, Lianfeng; Zhang, Shushen; Yang, Yan; Chen, Xihan; Zhang, Mingchao

    2015-01-15

    Fluorescent carbon nanoparticles (F-CNPs) as a new kind of fluorescent nanoparticles, have recently attracted considerable research interest in a wide range of applications due to their low-cost and good biocompatibility. The fluorescent detection of metal ions is one of the most important applications. In this review, we first present the general detection mechanism of F-CNPs for the fluorescent detection of metal ions, including fluorescence turn-off, fluorescence turn-on, fluorescence resonance energy transfer (FRET) and ratiometric response. We then focus on the recent advances of F-CNPs in the fluorescent detection of metal ions, including Hg(2+), Cu(2+), Fe(3+), and other metal ions. Further, we discuss the research trends and future prospects of F-CNPs. We envision that more novel F-CNPs-based nanosensors with more accuracy and robustness will be widely used to assay and remove various metal ions, and there will be more practical applications in coming years. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals.

    PubMed

    Volonakis, George; Filip, Marina R; Haghighirad, Amir Abbas; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry J; Giustino, Feliciano

    2016-04-07

    Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV.

  18. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE PAGES

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; ...

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  19. Metallotropic liquid crystals formed by surfactant templating of molten metal halides

    NASA Astrophysics Data System (ADS)

    Martin, James D.; Keary, Cristin L.; Thornton, Todd A.; Novotnak, Mark P.; Knutson, Jeremey W.; Folmer, Jacob C. W.

    2006-04-01

    Liquid crystals consist of anisotropic molecular units, and most are organic molecules. Materials incorporating metals into anisotropic molecules, described as metallomesogens, have been prepared. Anisotropic structures such as one-dimensional chains and two-dimensional layers are frequently observed in solid-state inorganic materials, however, little is understood about structural organization in melts of such materials. Achieving liquid-crystalline behaviour in inorganic fluids should be possible if the anisotropic structure can be retained or designed into the molten phase. We demonstrated the ability to engineer zeolite-type structures into metal halide glasses and liquids. In this work we have engineered lamellar, cubic and hexagonal liquid-crystalline structure in metal-halide melts by controlling the volume fraction and nature of the inorganic block (up to 80 mol%) with respect to alkylammonium surfactants. The high metal content of these liquid-crystalline systems significantly advances the field of metallomesogens, which seeks to combine magnetic, electronic, optical, redox and catalytic properties common to inorganic materials with the fluid properties of liquid crystals.

  20. Alkali metal/halide thermal energy storage systems performance evaluation

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1986-01-01

    A pseudoheat-pipe heat transfer mechanism has been demonstrated effective in terms of both total heat removal efficiency and rate, on the one hand, and system isothermal characteristics, on the other, for solar thermal energy storage systems of the kind being contemplated for spacecraft. The selection of appropriate salt and alkali metal substances for the system renders it applicable to a wide temperature range. The rapid heat transfer rate obtainable makes possible the placing of the thermal energy storage system around the solar receiver canister, and the immersing of heat transfer fluid tubes in the phase change salt to obtain an isothermal heat source.

  1. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    PubMed

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-07

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  2. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition

    DOE PAGES

    Weidman, Mark C.; Seitz, Michael; Stranks, Samuel D.; ...

    2016-07-29

    Here, colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is themore » number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.« less

  3. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.

    PubMed

    Weidman, Mark C; Seitz, Michael; Stranks, Samuel D; Tisdale, William A

    2016-08-23

    Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

  4. Lighting Systems For High Speed Photography Applying Special Metal Halide Discharge Lamps

    NASA Astrophysics Data System (ADS)

    Gillum, Keith M.; Steuernagel, K. H.

    1983-03-01

    High speed photography requires, in addition to a good color quality of the light source, a very high level of illumination. Conventional lighting systems utilizing incandescent lamps or other metal halide lamp types has inherent problems of inefficient light output or poor color quality. Heat generated by incandescent lamps and the power these sources require drive up operating and installation costs. A most economical and practical solution was devised by using the metal halide discharge lamp developed by OSRAM, GmbH of Munich, West Germany. This lamp trade marked the HMITM Metallogen was primarily developed for the needs of the television and motion picture film industry. Due to their high efficiency and other consistent operating qualities these lamps also fulfill the needs of high speed photography, e.g. in crash test facilities, when special engineering activities are carried out. The OSRAM HMITM lamp is an AC discharge metal halide lamp with rare earth additives to increase both the efficiency and light output qualities. Since the lamp is an AC source, a special method had to be developed to overcome the strobing effect, which is normal for AC lamps given their modulated light output, when used with high speed cameras, (e.g. with >1000 fps). This method is based on an increased frequency for the lamp supply voltage coupled with a mix of the light output achieved using a multiphase mains power supply. First developed in 1977, this system using the OSRAM HMITM lamps was installed in a crash test facility of a major automotive manufacturer in West Germany. The design resulted in the best lighting and performance ever experienced. Since that time several other motor companies have made use of this breakthrough. Industrial and scientific users are now considering additional applications use of this advanced high speed lighting system.

  5. Capacitance of the double electrical layer on the copper-group metals in molten alkali metal halides

    NASA Astrophysics Data System (ADS)

    Kirillova, E. V.; Stepanov, V. P.

    2016-08-01

    The electrochemical impedance is measured to study the capacitance of the double electrical layer of metallic Au, Ag, and Cu as a function of potential and temperature in nine molten salts, namely, the chlorides, bromides, and iodides of sodium, potassium, and cesium. The C- E curve of a gold electrode has an additional minimum in the anodic branch. This minimum for silver is less pronounced and is only observed at low ac signal frequencies in cesium halides. The additional minimum is not detected for copper in any salt under study. This phenomenon is explained on the assumption that the adsorption of halide anions on a positively charged electrode surface has a predominantly chemical rather than an electrostatic character. The specific adsorption in this case is accompanied by charge transfer through the interface and the formation of an adsorbent-adsorbate covalent bond.

  6. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  7. Transition Metal-Free C3 Arylation of Indoles with Aryl Halides.

    PubMed

    Chen, Ji; Wu, Jimmy

    2017-03-03

    We report an unprecedented transition metal-free coupling of indoles with aryl halides. The reaction is promoted by KOtBu and is regioselective for C3 over N. The use of degassed solvents devoid of oxygen is necessary for the success of the transformation. Preliminary studies implicate a hybrid mechanism that involves both aryne intermediates and non-propagative radical processes. Electron transfer is also a distinct possibility. These conclusions were substantiated by EPR data, isotopic labeling studies, and the use of radical scavengers and electron transfer inhibitors.

  8. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  9. Light emission of metal halide lamps under micro- and hypergravity conditions

    SciTech Connect

    Stoffels, W.W.; Kemps, P.C.M.; Beckers, J.; Kroesen, G.M.W.; Haverlag, M.

    2005-12-12

    The wavelength-integrated light output from a metal halide discharge lamp is measured for gravity conditions varying from 0 to 1.8 g during parabolic flights. The results show that the changing gravity affects the convection flow in the lamp, which in turn changes the total light output. For vertically burning lamps, the sign and magnitude of the effect can be predicted using the demixing parameter: the ratio of typical diffusion to convection times. In horizontally burning lamps at 0 g, the absence of convective mixing results in a reduced light emission.

  10. Helical instability in metal halide lamps under micro and hypergravity conditions

    SciTech Connect

    Stoffels, W.W.; Hout, F. van den; Kroesen, G.M.W.; Haverlag, M.; Keijser, R.

    2006-02-27

    The onset and rotation frequency of a helical instability in a metal halide lamp is studied for gravity conditions varying from microgravity to 1.8g during parabolic flights and at microgravity in the International Space Station. The results show that gravity-induced convection seriously alters the onset and behavior of the instability. Hypergravity and low lamp power increase the rotation frequency of the instability, which seems independent of the arc pressure. At microgravity conditions, only arc bending and no rotation has been observed. The arc bending increases with lamp power, allowing one to monitor the driving and damping forces of the instability.

  11. An insight into fluorescent transition metal complexes.

    PubMed

    Chia, Y Y; Tay, M G

    2014-09-21

    The emission from transition metal complexes is usually produced from triplet excited states. Owing to strong spin-orbit coupling (SOC), the fast conversion of singlet to triplet excited states via intersystem crossing (ISC) is facilitated. Hence, in transition metal complexes, emission from singlet excited states is not favoured. Nevertheless, a number of examples of transition metal complexes that fluoresce with high intensity have been found and some of them were even comprehensively studied. In general, three common photophysical characteristics are used for the identification of fluorescent emission from a transition metal complex: emission lifetimes on the nanosecond scale; a small Stokes shift; and intense emission under aerated conditions. For most of the complexes reviewed here, singlet emission is the result of ligand-based fluorescence, which is the dominant emission process due to poor metal-ligand interactions leading to a small metal contribution in the excited states, and a competitive fluorescence rate constant when compared to the ISC rate constant. In addition to the pure fluorescence from metal complexes, another two types of fluorescent emissions were also reviewed, namely, delayed fluorescence and fluorescence-phosphorescence dual emissions. Both emissions also have their respective unique characteristics, and thus they are discussed in this perspective.

  12. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    PubMed

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.

  13. Pd-Metalated Conjugated Nanoporous Polycarbazoles for Additive-Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation

    DOE PAGES

    Ding, Shunmin; Tian, Chengcheng; Zhu, Xiang; ...

    2017-03-23

    Transition-metal-catalyzed cyanation of aryl halides is a common route to benzonitriles, which are integral to many industrial procedures. However, traditional homogeneous catalysts for such processes are expensive and suffer poor recyclability, so a heterogeneous analogue is highly desired. A novel spatial modulation approach has been developed in this paper to fabricate a heterogeneous Pd-metalated nanoporous polymer, which catalyzes the cyanation of aryl halides without need for ligands. Finally, the catalyst displays high activity in the synthesis of benzonitriles, including high product yields, excellent stability and recycling, and broad functional-group tolerance.

  14. High Performance Metal Halide Perovskite Light-Emitting Diode: From Material Design to Device Optimization.

    PubMed

    Shan, Qingsong; Song, Jizhong; Zou, Yousheng; Li, Jianhai; Xu, Leimeng; Xue, Jie; Dong, Yuhui; Han, Boning; Chen, Jiawei; Zeng, Haibo

    2017-09-29

    Metal halide perovskites have drawn significant interest in the past decade. Superior optoelectronic properties, such as a narrow bandwidth, precise and facile tunable luminance over the entire visible spectrum, and high photoluminescence quantum yield of up to ≈100%, render metal halide perovskites suitable for next-generation high-definition displays and healthy lighting systems. The external quantum efficiency of perovskite light-emitting diodes (LEDs) increases from 0.1 to 11.7% in three years; however, the energy conversion efficiency and the long-term stability of perovskite LEDs are inadequate for practical application. Strategies to optimize the emitting layer and the device structure, with respect to material design, synthesis, surface passivation, and device optimization, are reviewed and highlighted. The long-term stability of perovskite LEDs is evaluated as well. Meanwhile, several challenges and prospects for future development of perovskite materials and LEDs are identified. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Determination of gas-discharge plasma parameters in powerful metal halide vapor lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, Krassimir A.; Slaveeva, Stefka I.; Fedchenko, Yulian I.

    2016-01-01

    Powerful metal halide vapor lasers are excited with nanosecond pulsed longitudinal discharge in complex multicomponent gas mixtures. Using a new method, thermal conductivity of various 5- and 6-component gas mixtures is obtained under gas-discharge conditions, which are optimal for laser operation on the corresponding metal atom and ion transitions. Assuming that the gas temperature varies only in the radial direction and using the calculated thermal conductivities, an analytical solution of the steady-state heat conduction equation is found for uniform and radially nonuniform power input in various laser tube constructions. Using the results obtained for time-resolved electron temperature by measurement of electrical discharge characteristics and analytically solving steady-state heat conduction equation for electrons as well, radial distribution of electron temperature is also obtained for the discharge period.

  16. Transition metal ion-assisted photochemical generation of alkyl halides and hydrocarbons from carboxylic acids

    SciTech Connect

    Carraher, Jack; Pestovsky, Oleg; Bakac, Andreja

    2012-03-14

    Near-UV photolysis of aqueous solutions of propionic acid and aqueous Fe3+ in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. The reaction becomes mildly catalytic (about five turnovers) in the presence of oxygen which converts a portion of alkyl radicals to oxidizing intermediates that reoxidize Fe2+. The photochemistry in the presence of halide ions (X− = Cl−, Br−) generates ethyl halides via halogen atom abstraction from FeXn3−n by ethyl radicals. Near-quantitative yields of C2H5X are obtained at ≥0.05 M X−. Competition experiments with Co(NH3)5Br2+ provided kinetic data for the reaction of ethyl radicals with FeCl2+ (k = (4.0 ± 0.5) × 106 M−1 s−1) and with FeBr2+ (k = (3.0 ± 0.5) × 107 M−1 s−1). Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu+. Longer-chain acids also yield alpha olefins as exclusive products. These reactions become catalytic under constant purge with oxygen which plays a dual role. It reoxidizes Cu+ to Cu2+, and removes gaseous olefins to prevent accumulation of Cu+(olefin) complexes and depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids.

  17. 40 CFR Table 3 to Subpart Ffff of... - Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP Metals Emissions From...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Halogen HAP Emissions or HAP Metals Emissions From Process Vents 3 Table 3 to Subpart FFFF of Part.... FFFF, Table 3 Table 3 to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP... limit in the following table that applies to your process vents that contain hydrogen halide and...

  18. 40 CFR Table 3 to Subpart Ffff of... - Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP Metals Emissions From...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Halogen HAP Emissions or HAP Metals Emissions From Process Vents 3 Table 3 to Subpart FFFF of Part.... FFFF, Table 3 Table 3 to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP... limit in the following table that applies to your process vents that contain hydrogen halide and...

  19. 40 CFR Table 3 to Subpart Ffff of... - Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP Metals Emissions From...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Halogen HAP Emissions or HAP Metals Emissions From Process Vents 3 Table 3 to Subpart FFFF of Part 63..., Table 3 Table 3 to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions... limit in the following table that applies to your process vents that contain hydrogen halide and...

  20. 40 CFR Table 3 to Subpart Ffff of... - Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP Metals Emissions From...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Halogen HAP Emissions or HAP Metals Emissions From Process Vents 3 Table 3 to Subpart FFFF of Part 63... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions...

  1. 40 CFR Table 3 to Subpart Ffff of... - Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP Metals Emissions From...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Halogen HAP Emissions or HAP Metals Emissions From Process Vents 3 Table 3 to Subpart FFFF of Part 63... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions...

  2. Promotion of the halide effect in the formation of shaped metal nanocrystals via a hybrid cationic, polymeric stabilizer: Octahedra, cubes, and anisotropic growth

    NASA Astrophysics Data System (ADS)

    Sneed, Brian T.; Golden, Matthew C.; Liu, Yejing; Lee, Hiang K.; Andoni, Ilektra; Young, Allison P.; McMahon, Greg; Erdman, Natasha; Shibata, Masateru; Ling, Xing Yi; Tsung, Chia-Kuang

    2016-06-01

    To promote the effect of halide ions (Cl-, Br-, and I-) in facet-selective growth of {111} and {100} of shaped metal nanocrystals, we utilize PDADMAC, a hybrid cationic, polymeric stabilizer. SERS and synthesis experiments provide evidence supporting that the higher amount of PDADMA+ at surfaces promotes the local adsorption of halides, allowing the creation of Pd cubes, octahedra, and cuboctopods.

  3. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    PubMed

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-09

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance.

  4. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma

    NASA Astrophysics Data System (ADS)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges

    2016-07-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  5. Silicon Halide-alkali Metal Flames as a Source of Solar Grade Silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Gould, R. K.

    1979-01-01

    A program is presented which was aimed at determining the feasibility of using high temperature reactions of alkali metals and silicon halides to produce low cost solar-grade silicon. Experiments are being conducted to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, and determine the effects of the reactants and/or products on materials of reactor construction. During the current reporting period, the results of heat release experiments were used to design and construct a new type of thick-wall graphite reactor to produce larger quantities of silicon. A reactor test facility was constructed. Material compatibility tests were performed for Na in contact with graphite and several coated graphites. All samples were rapidly degraded at T = 1200K, while samples retained structural strength at 1700K. Pyrolytic graphite coatings cracked and separated from substances in all cases.

  6. Double-ended metal halide arc discharge lamp with electrically isolated containment shroud

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin M. (Inventor)

    1994-01-01

    A double-ended arc discharge lamp includes a sealed, light-transmissive outer jacket, a light-transmissive shroud mounted within the outer jacket and directly supported by the outer jacket, and an arc discharge tube mounted within the shroud. The arc tube is typically a metal halide arc discharge tube. In a preferred embodiment, the shroud includes an outwardly flared portion at each end. The outwardly flared portions space the shroud from the outer jacket and support the shroud within the outer jacket. The outwardly flared portions of the shroud can be affixed to the outer jacket by fusing. The outer jacket can be provided with inwardly extending dimples for locating the shroud with respect to the outer jacket. In another embodiment, the outer jacket includes reduced diameter portions near each end which are attached to the shroud.

  7. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    NASA Astrophysics Data System (ADS)

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F.; Friend, Richard H.; Reisner, Erwin

    2016-09-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm-2 at 0 V versus RHE with an onset potential as positive as 0.95+/-0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ~1 h under continuous illumination.

  8. Metal-halide perovskites for photovoltaic and light-emitting devices

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Snaith, Henry J.

    2015-05-01

    Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.

  9. Metal-halide perovskites for photovoltaic and light-emitting devices.

    PubMed

    Stranks, Samuel D; Snaith, Henry J

    2015-05-01

    Metal-halide perovskites are crystalline materials originally developed out of scientific curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to over 20% in just four years of academic research. Here, we review the rapid progress in perovskite solar cells, as well as their promising use in light-emitting devices. In particular, we describe the broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and we highlight the properties that have delivered light-emitting diodes and lasers. We discuss key thermal and operational stability challenges facing perovskites, and give an outlook of future research avenues that might bring perovskite technology to commercialization.

  10. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    PubMed

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter DB (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > DB (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than DB show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  11. Fabrication of metallic microstructures using exposed, developed silver halide-based photographic film

    PubMed

    Deng; Arias; Ismagilov; Kenis; Whitesides

    2000-02-15

    This paper demonstrates that the pattern of silver particles embedded in the gelatin matrix of exposed and developed silver halide-based photographic film can serve as a template in a broadly applicable method for the microfabrication of metallic microstructures. In this method, a CAD file is reproduced in the photographic film by exposure and developing. The resulting pattern of discontinuous silver grains is augmented and made electrically continuous by electroless deposition of silver, and the electrically continuous structure is then used as the cathode for electrochemical deposition of an additional layer of the same or different metal. The overall process can be completed within 2 h, starting from a CAD file, and can generate electrically continuous structures with the smallest dimension in the plane of the film of approximately 30 microns. Structures with aspect ratio of up to 5 can also be obtained by using the metallic structures as photomasks in photolithography using SU-8 photoresist on the top of the electroplated pattern and exposed from the bottom, followed by development and electroplating through the patterned photoresist. This method of fabrication uses readily available equipment and makes it possible to develop prototypes of a wide variety of metallic structures and devices. The resulting structures--either supported on the film backing or freed from it--are appropriate for use as passive, structural materials such as wire frames or meshes and can also be used in microfluidic, microanalytical, and microelectromechanical systems.

  12. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas.

  13. Fluorescence enhancement of photoswitchable metal ion sensors

    NASA Astrophysics Data System (ADS)

    Sylvia, Georgina; Heng, Sabrina; Abell, Andrew D.

    2016-12-01

    Spiropyran-based fluorescence sensors are an ideal target for intracellular metal ion sensing, due to their biocompatibility, red emission frequency and photo-controlled reversible analyte binding for continuous signal monitoring. However, increasing the brightness of spiropyran-based sensors would extend their sensing capability for live-cell imaging. In this work we look to enhance the fluorescence of spiropyran-based sensors, by incorporating an additional fluorophore into the sensor design. We report a 5-membered monoazacrown bearing spiropyran with metal ion specificity, modified to incorporate the pyrene fluorophore. The effect of N-indole pyrene modification on the behavior of the spiropyran molecule is explored, with absorbance and fluorescence emission characterization. This first generation sensor provides an insight into fluorescence-enhancement of spiropyran molecules.

  14. Comparison between alkalimetal and group 11 transition metal halide and hydride tetramers: molecular structure and bonding.

    PubMed

    El-Hamdi, Majid; Solà, Miquel; Frenking, Gernot; Poater, Jordi

    2013-08-22

    A comparison between alkalimetal (M = Li, Na, K, and Rb) and group 11 transition metal (M = Cu, Ag, and Au) (MX)4 tetramers with X = H, F, Cl, Br, and I has been carried out by means of the Amsterdam Density Functional software using density functional theory at the BP86/QZ4P level of theory and including relativistic effects through the ZORA approximation. We have obtained that, in the case of alkalimetals, the cubic isomer of Td geometry is more stable than the ring structure with D4h symmetry, whereas in the case of group 11 transition metal tetramers, the isomer with D4h symmetry (or D2d symmetry) is more stable than the Td form. To better understand the results obtained we have made energy decomposition analyses of the tetramerization energies. The results show that in alkalimetal halide and hydride tetramers, the cubic geometry is the most stable because the larger Pauli repulsion energies are compensated by the attractive electrostatic and orbital interaction terms. In the case of group 11 transition metal tetramers, the D4h/D2d geometry is more stable than the Td one due to the reduction of electrostatic stabilization and the dominant effect of the Pauli repulsion.

  15. Charge-carrier dynamics in hybrid metal halide perovskites (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Milot, Rebecca L.; Rehman, Waqaas; Eperon, Giles E.; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.

    2016-09-01

    Hybrid metal halide perovskites are attractive components for many optoelectronic applications due to a combination of their superior charge transport properties and relative ease of fabrication. A complete understanding of the nature of charge transport in these materials is therefore essential for current and future device development. We have evaluated two systems - the standard perovskite methylammonium lead triiodide (CH3NH3PbI3) and a series of mixed-iodide/bromide formamidinium lead perovskites - in an effort to determine what effect structural and chemical composition have on optoelectronic properties including mobility, charge-carrier recombination dynamics, and charge-carrier diffusion length. The photoconductivity in thin films of CH3NH3PbI3was investigated from 8 K to 370 K across three structural phases [1]. While the monomolecular charge-carrier recombination rate was found to increase with rising temperature indicating a mechanism dominated by ionized impurity mediated recombination, the bimolecular rate constant decreased with rising temperature as charge-carrier mobility declined. The Auger rate constant was highly phase specific, suggesting a strong dependence on electronic band structure. For the mixed-halide formamidinuim lead bromide-iodide perovskites, HC(NH2)2Pb(BryI1-y)3, bimolecular and Auger charge-carrier recombination rate constants strongly correlated with bromide content, which indicated a link with electronic structure [2]. Although HC(NH2)2PbBr3 and HC(NH2)2PbI3 exhibited high charge-carrier mobilities and diffusion lengths exceeding 1 μm, mobilities for mixed Br/I perovskites were all lower as a result of crystalline phase disorder.

  16. Metal-enhanced fluorescence of carbon nanotubes.

    PubMed

    Hong, Guosong; Tabakman, Scott M; Welsher, Kevin; Wang, Hailiang; Wang, Xinran; Dai, Hongjie

    2010-11-17

    The photoluminescence (PL) quantum yield of single-walled carbon nanotubes (SWNTs) is relatively low, with various quenching effects by metallic species reported in the literature. Here, we report the first case of metal enhanced fluorescence (MEF) of surfactant-coated carbon nanotubes on nanostructured gold substrates. The photoluminescence quantum yield of SWNTs is observed to be enhanced more than 10-fold. The dependence of fluorescence enhancement on metal-nanotube distance and on the surface plasmon resonance (SPR) of the gold substrate for various SWNT chiralities is measured to reveal the mechanism of enhancement. Surfactant-coated SWNTs in direct contact with metal exhibit strong MEF without quenching, suggesting a small quenching distance for SWNTs on the order of the van der Waals distance, beyond which the intrinsically fast nonradiative decay rate in nanotubes is little enhanced by metal. The metal enhanced fluorescence of SWNTs is attributed to radiative lifetime shortening through resonance coupling of SWNT emission to the reradiating dipolar plasmonic modes in the metal.

  17. Metal-enhanced fluorescence of single green fluorescent protein (GFP).

    PubMed

    Fu, Yi; Zhang, Jian; Lakowicz, Joseph R

    2008-11-28

    The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer duration time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.

  18. Metal-enhanced fluorescence of single green fluorescent protein (GFP)

    SciTech Connect

    Fu Yi; Zhang Jian; Lakowicz, Joseph R.

    2008-11-28

    The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer duration time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.

  19. Silicon halide-alkali metal flames as a source of solar grade silicon. Final report

    SciTech Connect

    Olson, D.B.; Miller, W.J.; Gould, R.K.

    1980-01-01

    The object of this program was to determine the feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells. Equilibrium calculations showed that a range of conditions were available where silicon was produced as a condensed phase but the byproduct alkali metal salt was a vapor. A process was proposed using the vapor phase reaction of Na with SiCl/sub 4/. Low pressure experiments were performed demonstrating that free silicon was produced and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents. Relatively pure silicon was produced in these experiments. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger-scaled well-stirred reactor was built. Experiments were performed to investigate the compatibility of graphite-based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  20. Dependence of the density of solutions of alkali metal halides on the composition of methylpyrrolidone-water mixed solvents

    NASA Astrophysics Data System (ADS)

    Novikov, A. N.; Lenina, O. F.; Vasilev, V. A.

    2008-07-01

    The densities of solutions of alkali metal halides in methylpyrrolidone (MP)-water mixtures were measured at 298.15 K over the entire range of mixed solvent compositions. The standard partial molar volumes of the electrolytes overline {V_2^ circ } were calculated. The overline {V_2^ circ } values of alkali metal halides in MP-H2O mixtures were related linearly to the overline {V_2^ circ } values in aqueous solutions. These dependences were used to determine the standard partial molar volumes of ions overline {V_i^ circ } in the mixtures studied. The standard partial molar volumes of transfer of the ions from water into MP-water mixtures were calculated.

  1. Composite Hybrid Cluster Built from the Integration of Polyoxometalate and a Metal Halide Cluster: Synthetic Strategy, Structure, and Properties.

    PubMed

    Li, Xin-Xiong; Ma, Xiang; Zheng, Wen-Xu; Qi, Yan-Jie; Zheng, Shou-Tian; Yang, Guo-Yu

    2016-09-06

    A step-by-step synthetic strategy, setting up a bridge between the polyoxometalate (POM) and metal halide cluster (MHC) systems, is demonstrated to construct an unprecedented composite hybrid cluster built up from one high-nuclearity cationic MHC [Cu8I6](2+) and eight Anderson-type anionic POMs [HCrMo6O18(OH)6](2-) cross-linked by a tripodal alcohol derivative.

  2. Metallic halide lights and lighting systems. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations of selected patents concerning the design and operation of metallic halide lights and lighting systems. High pressure, high intensity, and low wattage discharge lamps are described. Citations discuss power sources, lamp life, lamp control circuits, thermal switches, and heat reflective coatings. Applications in sport stadium lighting, vehicle headlights, and crop-lighting are included. (Contains a minimum of 170 citations and includes a subject term index and title list.)

  3. Highly Fluorescent Noble Metal Quantum Dots

    PubMed Central

    Zheng, Jie; Nicovich, Philip R.; Dickson, Robert M.

    2009-01-01

    Highly fluorescent, water-soluble, few-atom noble metal quantum dots have been created that behave as multi-electron artificial atoms with discrete, size-tunable electronic transitions throughout the visible and near IR. These “molecular metals” exhibit highly polarizable transitions and scale in size according to the simple relation, Efermi/N1/3, predicted by the free electron model of metallic behavior. This simple scaling indicates that fluorescence arises from intraband transitions of free electrons and that these conduction electron transitions are the low number limit of the plasmon – the collective dipole oscillations occurring when a continuous density of states is reached. Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these emissive, water-soluble Au nanoclusters open new opportunities for biological labels, energy transfer pairs, and light emitting sources in nanoscale optoelectronics. PMID:17105412

  4. Silver nanorod structures for metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Lu, Xun; Ju, Jonghyun; Kim, Seok-min

    2016-09-01

    Fluorescence based detection is a commonly used methodology in biotechnology and medical diagnostics. Metalenhanced fluorescence (MEF) becomes a promising strategy to improve the sensitivity of fluorescence detection, where fluorophores coupling with surface plasmon on metallic structures results fluorescence enhancement. To apply the MEF methodology in real medical diagnostics, especially for protein or DNA microarray detection, a large area (e.g., slide glass, 75 × 25 mm2) with uniform metallic nanostructures is required. In this study, we fabricated a large area MEF substrates using oblique angle deposition (OAD), which is a single step, inexpensive large area fabrication method of nanostructures. To optimize the morphological effect, Ag-nanorods with various lengths were fabricated on the conventional slide glass substrates. Streptavidin-Cy5 dissolved in buffer solution with different concentration (100ng/ml 100μg/ml) were applied to MEF substrates using a pipette, and the fluorescence signals were measured. The enhancement factor increased with the increase in length of Ag-nanorods and maximum enhancement factor 91x was obtained from Ag-nanorods 750nm length compare to bare glass due to higher surface Plasmon effect.

  5. Polarizable intermolecular potentials for water and benzene interacting with halide and metal ions

    PubMed Central

    Archambault, Fabien; Soteras, Ignacio; Luque, F. Javier; Schulten, Klaus

    2010-01-01

    A complete derivation of polarizable intermolecular potentials based on high-level, gas-phase quantum-mechanical calculations is proposed. The importance of appreciable accuracy together with inherent simplicity represents a significant endeavor when enhancement of existing force fields for biological systems is sought. Toward this end, symmetry-adapted perturbation theory (SAPT) can provide an expansion of the total interaction energy into physically meaningful e.g. electrostatic, induction and van der Waals terms. Each contribution can be readily compared with its counterpart in classical force fields. Since the complexity of the different intermolecular terms cannot be fully embraced using a minimalist description, it is necessary to resort to polyvalent expressions capable of encapsulating overlooked contributions from the quantum-mechanical expansion. This choice results in consistent force field components that reflect the underlying physical principles of the phenomena. This simplified potential energy function is detailed and definitive guidelines are drawn. As a proof of concept, the methodology is illustrated through a series of test cases that include the interaction of water and benzene with halide and metal ions. In each case considered, the total energy is reproduced accurately over a range of biologically relevant distances. PMID:21113276

  6. Assessment of metal halide lamp for the illumination of LCD-based projection display

    NASA Astrophysics Data System (ADS)

    Wang, K. C.; Huang, C. H.; Chen, How-More; Chiang, Cyril C.

    1995-04-01

    Apparatus consists of a short-arc metal halide lamp and a dichroic mirror in parabolic-like shape has been widely employed in portable projection TV (PTV) as the light source to illuminate liquid crystal display (LCD) panels. Advantages include high luminous efficacy, near-daylight color temperature, and superior color rendering index. At MRL or ITRI we have successfully developed such light sources of 150 W input power, using Dy-Nd-Cs iodides in appropriate amount. Nominal efficiency exceeds 73 lm/w with color temperature of 6500 K. Higher efficiency better than 80 lm/w was possible at the cost of color temperature. Continuous lifetime test has been conducted for 3000 hours, compared to effective `ON' history in ON/OFF start-ups longer than 2300 hours. Luminous decay in the ON/OFF test was observed lower than 35%. A 70% reduction of the initial value is estimated around 2000 hours, better than most of the commercial counterparts. Quality of image in display is improved by matching illumination spectrum to the characteristics of flat panel devices. Monochromes after being projected are compared using (u,v) coordinates against NTSC data. Computer simulation was integrated to resolve the brightness distribution on a 3.6-inch (diagonal) LCD panel, with which lamp fixture was precisely determined. Know-hows leading to more favorable PTV systems lie in the combination of lamp spectra and color filters that comprises of the core interests in lamp assessment.

  7. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water

    PubMed Central

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M.; Warnan, Julien; Kuehnel, Moritz F.; Friend, Richard H.; Reisner, Erwin

    2016-01-01

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of −9.8 mA cm−2 at 0 V versus RHE with an onset potential as positive as 0.95±0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ∼1 h under continuous illumination. PMID:27595974

  8. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olsen, D. B.; Miller, W. J.

    1979-01-01

    The feasibility of using alkali metal-silicon halide diffusion flames to produce solar-grade silicon in large quantities and at low cost is demonstrated. Prior work shows that these flames are stable and that relatively high purity silicon can be produced using Na + SiCl4 flames. Silicon of similar purity is obtained from Na + SiF4 flames although yields are lower and product separation and collection are less thermochemically favored. Continuous separation of silicon from the byproduct alkali salt was demonstrated in a heated graphite reactor. The process was scaled up to reduce heat losses and to produce larger samples of silicon. Reagent delivery systems, scaled by a factor of 25, were built and operated at a production rate of 0.5 kg Si/h. Very rapid reactor heating rates are observed with wall temperatures reaching greater than 2000 K. Heat release parameters were measured using a cooled stainless steel reactor tube. A new reactor was designed.

  9. Enhanced Organo-Metal Halide Perovskite Photoluminescence from Nanosized Defect-Free Crystallites and Emitting Sites.

    PubMed

    Tian, Yuxi; Merdasa, Aboma; Unger, Eva; Abdellah, Mohamed; Zheng, Kaibo; McKibbin, Sarah; Mikkelsen, Anders; Pullerits, Tõnu; Yartsev, Arkady; Sundström, Villy; Scheblykin, Ivan G

    2015-10-15

    Photoluminescence (PL) of organo-metal halide perovskite semiconductors can be enhanced by several orders of magnitude by exposure to visible light. We applied PL microscopy and super-resolution optical imaging to investigate this phenomenon with spatial resolution better than 10 nm using films of CH3NH3PbI3 prepared by the equimolar solution-deposition method, resulting in crystals of different sizes. We found that PL of ∼100 nm crystals enhances much faster than that of larger, micrometer-sized ones. This crystal-size dependence of the photochemical light passivation of charge traps responsible for PL quenching allowed us to conclude that traps are present in the entire crystal volume rather than at the surface only. Because of this effect, "dark" micrometer-sized perovskite crystals can be converted into highly luminescent smaller ones just by mechanical grinding. Super-resolution optical imaging shows spatial inhomogeneity of the PL intensity within perovskite crystals and the existence of <100 nm-sized localized emitting sites. The possible origin of these sites is discussed.

  10. Silicon halide-alkali metal flames as a source of solar grade silicon

    NASA Technical Reports Server (NTRS)

    Olson, D. B.; Miller, W. J.; Gould, R. K.

    1980-01-01

    The feasibility of using continuous high-temperature reactions of alkali metals and silicon halides to produce silicon in large quantities and of suitable purity for use in the production of photovoltaic solar cells was demonstrated. Low pressure experiments were performed demonstrating the production of free silicon and providing experience with the construction of reactant vapor generators. Further experiments at higher reagent flow rates were performed in a low temperature flow tube configuration with co-axial injection of reagents and relatively pure silicon was produced. A high temperature graphite flow tube was built and continuous separation of Si from NaCl was demonstrated. A larger scaled well stirred reactor was built. Experiments were performed to investigate the compatability of graphite based reactor materials of construction with sodium. At 1100 to 1200 K none of these materials were found to be suitable. At 1700 K the graphites performed well with little damage except to coatings of pyrolytic graphite and silicon carbide which were damaged.

  11. Axial segregation in metal halide lamps under varying gravity conditions during parabolic flights

    NASA Astrophysics Data System (ADS)

    Flikweert, A. J.; van Kemenade, M.; Nimalasuriya, T.; Haverlag, M.; Kroesen, G. M. W.; Stoffels, W. W.

    2006-04-01

    Metal-halide lamps have high efficiencies. These lamps often contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently in the visible spectrum. Colour separation is a problem in these lamps; this is caused by axial segregation of these additives as a result of diffusion and convection. To vary the effect of convection, parabolic flights were performed with micro-gravity (0g) and hyper-gravity (~1.8g) phases. During these flights, the atomic dysprosium density was measured by means of laser absorption spectroscopy. In addition, the lamp voltage, which is strongly influenced by the total amount of Dy in the lamp, was measured. The Dy density and axial segregation are dependent on the gravity. The dynamic lamp behaviour during the parabolas was investigated: the dysprosium density and lamp voltage followed the gravity variations. When entering the micro-gravity phase, the axial diffusion time constant is the slowest time constant; it is proportional to the mercury pressure in the lamp.

  12. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water.

    PubMed

    Crespo-Quesada, Micaela; Pazos-Outón, Luis M; Warnan, Julien; Kuehnel, Moritz F; Friend, Richard H; Reisner, Erwin

    2016-09-06

    Lead-halide perovskites have triggered the latest breakthrough in photovoltaic technology. Despite the great promise shown by these materials, their instability towards water even in the presence of low amounts of moisture makes them, a priori, unsuitable for their direct use as light harvesters in aqueous solution for the production of hydrogen through water splitting. Here, we present a simple method that enables their use in photoelectrocatalytic hydrogen evolution while immersed in an aqueous solution. Field's metal, a fusible InBiSn alloy, is used to efficiently protect the perovskite from water while simultaneously allowing the photogenerated electrons to reach a Pt hydrogen evolution catalyst. A record photocurrent density of -9.8 mA cm(-2) at 0 V versus RHE with an onset potential as positive as 0.95±0.03 V versus RHE is obtained. The photoelectrodes show remarkable stability retaining more than 80% of their initial photocurrent for ∼1 h under continuous illumination.

  13. Spectral Changes in Metal Halide and High-Pressure Sodium Lamps Equipped with Electronic Dimming

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Sargis, Raman; Wilson, David

    1995-01-01

    Electronic dimming of high-intensity discharge lamps offers control of Photosynthetic Photon Flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400-W Metal Halide (MH) and High-Pressure Sodium (HPS) lamps were equipped with a dimmer system using Silicon-Controlled Rectifiers (SCR) as high-speed switches. Phase control operation turned the line power off for some period of the alternating current cycle. At full power, the electrical input to HPS and MH lamps was 480 W (root mean squared) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased, the 589-nm peak remained constant while the 595-nm peak decreased, equaling the 589-nm peak at 345-W input, and 589-nm peak was almost absent at 270-W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another smaller peak at 545 nm. As input power approached 428 W, the 589-nm peak shifted to 570 nm. While the spectrum changed as input power was decreased in the MH and HPS lamps, the phytochrome equilibrium ratio (P(sub ft):P(sub tot)) remains unchanged for both lamp types.

  14. Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures.

    PubMed

    Abbott, Andrew P; Capper, Glen; Davies, David L; Rasheed, Raymond

    2004-05-31

    The synthesis of ionic liquids based upon functionalized quaternary ammonium salts and metal salts of zinc, tin, or iron is demonstrated. The freezing point of these ionic liquids was studied as a function of the quaternary ammonium cation. The complex anions were identified and quantified using mass spectrometry and potentiometry. It is shown that the primary zinc anion is Zn(2)Cl(5)(-) with Zn(3)Cl(7)(-) becoming more abundant in more Lewis basic solutions. Similar results were observed for ionic liquids containing SnCl(2). The surface tension was also measured and was used to explain the high viscosity of the ionic liquids in terms of the large ion:hole size ratio and the small probability of finding a hole of suitable dimensions adjacent to a given ion to permit movement. The phase behavior of a variety of quaternary ammonium halides/ZnCl(2) mixtures is characterized and it is shown that the depression of freezing point is related to the increase in size of the component ions.

  15. Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental-Theoretical Study.

    PubMed

    Endres, James; Egger, David A; Kulbak, Michael; Kerner, Ross A; Zhao, Lianfeng; Silver, Scott H; Hodes, Gary; Rand, Barry P; Cahen, David; Kronik, Leeor; Kahn, Antoine

    2016-07-21

    We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites.

  16. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    SciTech Connect

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 times better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.

  17. Quasi-epitaxial Metal-Halide Perovskite Ligand Shells on PbS Nanocrystals.

    PubMed

    Sytnyk, Mykhailo; Yakunin, Sergii; Schöfberger, Wolfgang; Lechner, Rainer T; Burian, Max; Ludescher, Lukas; Killilea, Niall A; YousefiAmin, AmirAbbas; Kriegner, Dominik; Stangl, Julian; Groiss, Heiko; Heiss, Wolfgang

    2017-02-28

    Epitaxial growth techniques enable nearly defect free heterostructures with coherent interfaces, which are of utmost importance for high performance electronic devices. While high-vacuum technology-based growth techniques are state-of-the art, here we pursue a purely solution processed approach to obtain nanocrystals with eptaxially coherent and quasi-lattice matched inorganic ligand shells. Octahedral metal-halide clusters, respectively 0-dimensional perovskites, were employed as ligands to match the coordination geometry of the PbS cubic rock-salt lattice. Different clusters (CH3NH3(+))(6-x)[M((x+))Hal6]((6-x)-) (M(x+) = Pb(II), Bi(III), Mn(II), In(III), Hal = Cl, I) were attached to the nanocrystal surfaces via a scalable phase transfer procedure. The ligand attachment and coherence of the formed PbS/ligand core/shell interface was confirmed by combining the results from transmission electron microscopy, small-angle X-ray scattering, nuclear magnetic resonance spectroscopy and powder X-ray diffraction. The lattice mismatch between ligand shell and nanocrystal core plays a key role in performance. In photoconducting devices the best performance (detectivity of 2 × 10(11) cm Hz (1/2)/W with > 110 kHz bandwidth) was obtained with (CH3NH3)3BiI6 ligands, providing the smallest relative lattice mismatch of ca. -1%. PbS nanocrystals with such ligands exhibited in millimeter sized bulk samples in the form of pressed pellets a relatively high carrier mobility for nanocrystal solids of ∼1.3 cm(2)/(V s), a carrier lifetime of ∼70 μs, and a low residual carrier concentration of 2.6 × 10(13) cm(-3). Thus, by selection of ligands with appropriate geometry and bond lengths optimized quasi-epitaxial ligand shells were formed on nanocrystals, which are beneficial for applications in optoelectronics.

  18. Spectral Changes in Metal Halide and High-pressure Sodium Lamps Equipped with Electronic Dimming

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Sargis, Raman; Wilson, David

    1995-01-01

    Electronic dimming of high-intensity discharge lamps offers control of photosynthetic photon flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400-W metal halide (MH) and high-pressure sodium (HPS) lamps were equipped with a dimmer system using silicon-controlled rectifiers (SCR) as high-speed switches. Phase control operation turned the line power off for some period of the alternating current cycle. At full power, the electrical input to HPS and MH lamps was 480 W (root mean squared) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased, the 589-nm peak remained constant while the 595-nm peak decreased, equaling the 589-nm peak at 345-W input, and the 589-nm peak was almost absent at 270-W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another smaller peak at 545 nm. As input power to the MH lamps decreased, the peak at 589 diminished to equal the 545-nm peak. As input power approached 428 W, the 589-nm peak shifted to 570 nm. While the spectrum changed as input power was decreased in the MH and HPS lamps, the phytochrome equilibrium ratio (P(sub fr):P(sub tot)) remains unchanged for both lamp types.

  19. Technetium Dichloride: A New Binary Halide Containing Metal-Metal Multiple Bonds

    SciTech Connect

    Poineau, Frederic; Malliakas, Christos D.; Weck, Philippe F.; Scott, Brian L.; Johnstone, Erik V.; Forster, Paul M.; Kim, Eunja; Kanatzidis, Mercouri G.; Czerwinski, Kenneth R.; Sattelberge, Alfred P.

    2011-10-19

    Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc{sub 2}Cl{sub 8}] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) {angstrom}, a distance consistent with the presence of a Tc {triple_bond} Tc triple bond that is also supported by electronic structure calculations.

  20. Technetium dichloride : a new binary halide containing metal-metal multiple bonds.

    SciTech Connect

    Poineau, F.; Malliakas, C. D.; Weck, P. F.; Scott, B. L.; Johnstone, E. V.; Forster, P. M.; Kim, E.; Kanatzidis, M. G.; Czerwinski, K. R.; Sattelberger, A. P.

    2011-06-15

    Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc{sub 2}Cl{sub 8}] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) {angstrom}, a distance consistent with the presence of a Tc {triple_bond} Tc triple bond that is also supported by electronic structure calculations.

  1. Technetium dichloride: a new binary halide containing metal-metal multiple bonds.

    PubMed

    Poineau, Frederic; Malliakas, Christos D; Weck, Philippe F; Scott, Brian L; Johnstone, Erik V; Forster, Paul M; Kim, Eunja; Kanatzidis, Mercouri G; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2011-06-15

    Technetium dichloride has been discovered. It was synthesized from the elements and characterized by several physical techniques, including single crystal X-ray diffraction. In the solid state, technetium dichloride exhibits a new structure type consisting of infinite chains of face sharing [Tc(2)Cl(8)] rectangular prisms that are packed in a commensurate supercell. The metal-metal separation in the prisms is 2.127(2) Å, a distance consistent with the presence of a Tc≡Tc triple bond that is also supported by electronic structure calculations.

  2. Radiative properties of Ceramic Metal-Halide High Intensity Discharge lamps (CMH) containing additives in argon plasma

    NASA Astrophysics Data System (ADS)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges; Laplace Team

    2015-09-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The Ceramic Metal-Halide High Intensity Lamps (CMH) are one of the options for illuminating very high area. The new CMH lamps are mercury free and contain additives species which lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the Net Emission Coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, thallium or strontium).

  3. Electro-optic response of metal halide CsPbI_3: A first-principles study

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Khare, Preeti; Gaur, N. K.

    2017-08-01

    A theoretical study of electronic and optical properties of metal-halide cubic perovskite, CsPbI_3, is presented, using first-principles calculations with plane-wave pseudopotential method as implemented in the PWSCF code. In this approach, local density approximation (LDA) is used for exchange-correlation potential. A strong ionic bonding is observed between Cs and I orbitals and a weak covalent bonding is found between Pb-I and Cs-Pb orbitals. The optical properties of this compound are interesting and it has many applications in optoelectronic devices.

  4. Competition between convection and diffusion in a metal halide lamp, investigated by numerical simulations and imaging laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Beks, M. L.; Flikweert, A. J.; Nimalasuriya, T.; Stoffels, W. W.; van der Mullen, J. J. A. M.

    2008-07-01

    The effect of the competition between convection and diffusion on the distribution of metal halide additives in a high pressure mercury lamp has been examined by placing COST reference lamps with mercury fillings of 5 and 10 mg in a centrifuge. By subjecting them to different accelerational conditions the convection speed of the mercury buffer gas is affected. The resulting distribution of the additives, in this case dysprosium iodide, has been studied by numerical simulations and measurements of the density of dysprosium atoms in the ground state using imaging laser spectroscopy. The competition between axial convection and radial diffusion determines the degree of axial segregation of the dysprosium additives.

  5. Focused fluorescent probe library for metal cations and biological anions.

    PubMed

    Rhee, Hyun-Woo; Lee, Sang Wook; Lee, Jun-Seok; Chang, Young-Tae; Hong, Jong-In

    2013-09-09

    A focused fluorescent probe library for metal cations was developed by combining metal chelators and picolinium/quinolinium moieties as combinatorial blocks connected through a styryl group. Furthermore, metal complexes derived from metal chelators having high binding affinities for metal cations were used to construct a focused probe library for phosphorylated biomolecules. More than 250 fluorescent probes were screened for identifying an ultraselective probe for dTTP.

  6. Combinatorial Approach to Studying Metal Enhanced Fluorescence from Quantum Dots

    NASA Astrophysics Data System (ADS)

    Le, Nguyet; Corrigan, Timothy; Norton, Michael; Neff, David

    2013-03-01

    Fluorescence is extensively used in biochemistry for determining the concentration or purity of molecules in a biological environment. In metal-enhanced fluorescence (MEF), the fluorescence molecules separated from a metal surface by several nanometers can be enhanced. The fluorescent enhancement is dependent on the size and spacing of the nanoparticles, as has been shown previously for a number of fluorophore molecules. Fluorescence from quantum dots is of particular interest because the quantum dots do not lose fluorescence ability when exposed to light and they have higher intensity of fluorescence. The purpose of this study is to determine the effect of size and spacing on fluorescence intensity when coupling gold nano-particles with quantum dots. We employ a combinatorial approach, depositing gold particles ranging in diameter from 30 nm to 130 nm with varied spacings onto the substrate, followed by a protein spacer-layer and quantum dots. The fluorescence signal from the metal enhanced quantum dots were determined by confocal microscopy.

  7. Further Insights into Metal-DOM Interaction: Consideration of Both Fluorescent and Non-Fluorescent Substances

    PubMed Central

    Xu, Huacheng; Zhong, Jicheng; Yu, Guanghui; Wu, Jun; Jiang, Helong; Yang, Liuyan

    2014-01-01

    Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D–COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D–COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm−1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential. PMID:25380246

  8. Further insights into metal-DOM interaction: consideration of both fluorescent and non-fluorescent substances.

    PubMed

    Xu, Huacheng; Zhong, Jicheng; Yu, Guanghui; Wu, Jun; Jiang, Helong; Yang, Liuyan

    2014-01-01

    Information on metal binding with fluorescent substances has been widely studied. By contrast, information on metal binding with non-fluorescent substances remains lacking despite the dominance of these substances in aquatic systems. In this study, the metal binding properties of both fluorescent and non-fluorescent substances were investigated by using metal titration combined with two-dimensional correlation spectroscopy (2D-COS) analysis. The organic matters in the eutrophic algae-rich lake, including natural organic matters (NOM) and algae-induced extracellular polymeric substances (EPS), both contained fluorescent and non-fluorescent substances. The peaks in the one-dimensional spectra strongly overlapped, while 2D-COS can decompose the overlapped peaks and thus enhanced the spectral resolution. Moreover, 2D FTIR COS demonstrated that the binding susceptibility of organic ligands in both NOM and algal EPS matrices followed the order: 3400>1380>1650 cm-1, indicative the significant contribution of non-fluorescent ligands in metal binding. The modified Stern-Volmer equation also revealed a substantial metal binding potential for the non-fluorescent substances (logKM: 3.57∼4.92). As for the effects of organic ligands on metal binding, EPS was characterized with higher binding ability than NOM for both fluorescent and non-fluorescent ligands. Algae-induced EPS and the non-fluorescent substances in eutrophic algae-rich lakes should not be overlooked because of their high metal binding potential.

  9. Antenna induced hot restrike of a ceramic metal halide lamp recorded by high-speed photography

    NASA Astrophysics Data System (ADS)

    Hermanns, P.; Hoebing, T.; Bergner, A.; Ruhrmann, C.; Awakowicz, P.; Mentel, J.

    2016-03-01

    The hot restrike is one of the biggest challenges in operating ceramic metal halide lamps with mercury as buffer gas. Compared to a cold lamp, the pressure within a ceramic burner is two orders of magnitude higher during steady state operation due to the high temperature of the ceramic tube and the resulting high mercury vapour pressure. Room temperature conditions are achieved after 300 s of cooling down in a commercial burner, enclosed in an evacuated outer bulb. At the beginning of the cooling down, ignition voltage rises up to more than 14 kV. A significant reduction of the hot-restrike voltage can be achieved by using a so called active antenna. It is realized by a conductive sleeve surrounding the burner at the capillary of the upper electrode. The antenna is connected to the lower electrode of the lamp, so that its potential is extended to the vicinity of the upper electrode. An increased electric field in front of the upper electrode is induced, when an ignition pulse is applied to the lamp electrodes. A symmetrically shaped ignition pulse is applied with an amplitude, which is just sufficient to re-ignite the hot lamp. The re-ignition, 60 s after switching off the lamp, when the mercury pressure starts to be saturated, is recorded for both polarities of the ignition pulse with a high-speed camera, which records four pictures within the symmetrically shaped ignition pulse with exposure times of 100 ns and throws of 100 ns. The pictures show that the high electric field and its temporal variation establish a local dielectric barrier discharge in front of the upper electrode inside the burner, which covers the inner wall of the burner with a surface charge. It forms a starting point of streamers, which may induce the lamp ignition predominantly within the second half cycle of the ignition pulse. It is found out that an active antenna is more effective when the starting point of the surface streamer in front of the sleeve is a negative surface charge on the

  10. Universal scaling of potential energy functions describing intermolecular interactions. II. The halide-water and alkali metal-water interactions

    SciTech Connect

    Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.

    2014-08-14

    The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X-(H2O), X = F, Cl, Br, I, and alkali metal-water, M+(H2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits to the ab initio data that are between one and two orders of magnitude better in the χ2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.

  11. Spectral variation of fluorescence lifetime near single metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jia; Krasavin, Alexey V.; Webster, Linden; Segovia, Paulina; Zayats, Anatoly V.; Richards, David

    2016-02-01

    We explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations. The explicit comparison between experiment and simulation, that we obtain, offers an insight into the spectral engineering of LSP mediated fluorescence and may lead to optimized application in sensing and biomedicine.

  12. Cross coupling of magnesium diacetylenides with functional allylic and halide-containing compounds catalyzed by transition metal complexes

    SciTech Connect

    Dzhemilev, U.M.; Ibragimov, A.G.; Saraev, R.A.

    1986-08-20

    An efficient method has been developed for the synthesis of 1,4-enynes, conjugated acetylenes and aryl acetylenes by the cross coupling of magnesium diacetylenides with allyl ethers and esters, alkyl halides, allyl halides, aryl halides, allyl sulfides, and allylsulfones, using Ni and Pd complexes as the catalyst.

  13. The impacts of new street light technologies: experimentally testing the effects on bats of changing from low-pressure sodium to white metal halide.

    PubMed

    Stone, Emma Louise; Wakefield, Andrew; Harris, Stephen; Jones, Gareth

    2015-05-05

    Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercury vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale.

  14. The impacts of new street light technologies: experimentally testing the effects on bats of changing from low-pressure sodium to white metal halide

    PubMed Central

    Stone, Emma Louise; Wakefield, Andrew; Harris, Stephen; Jones, Gareth

    2015-01-01

    Artificial light at night is a major feature of anthropogenic global change and is increasingly recognized as affecting biodiversity, often negatively. On a global scale, newer technology white lights are replacing orange sodium lights to reduce energy waste. In 2009, Cornwall County Council (UK) commenced replacement of existing low-pressure sodium (LPS) high intensity discharge (HID) street lights with new Phillips CosmoPolis white ceramic metal halide street lights to reduce energy wastage. This changeover provided a unique collaborative opportunity to implement a before-after-control-impact field experiment to investigate the ecological effects of newly installed broad spectrum light technologies. Activity of the bat species Pipistrellus pipistrellus, P. pygmaeus and Nyctalus/Eptesicus spp. was significantly higher at metal halide than LPS lights, as found in other studies of bat activity at old technology (i.e. mercury vapour) white light types. No significant difference was found in feeding attempts per bat pass between light types, though more passes overall were recorded at metal halide lights. Species-specific attraction of bats to the metal halide lights could have cascading effects at lower trophic levels. We highlight the need for further research on possible ecosystem-level effects of light technologies before they are installed on a wide scale. PMID:25780239

  15. Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells

    DOE PAGES

    Crisp, R. W.; Kroupa, D. M.; Marshall, A. R.; ...

    2015-04-24

    We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting a deeper work function and bandmore » positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%.« less

  16. Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells

    SciTech Connect

    Crisp, R. W.; Kroupa, D. M.; Marshall, A. R.; Miller, E. M.; Zhang, J.; Beard, M. C.; Luther, J. M.

    2015-04-24

    We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl- with I-. The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%.

  17. Mesoscopic photosystems for solar light harvesting and conversion: facile and reversible transformation of metal-halide perovskites.

    PubMed

    Harms, Hauke Arne; Tétreault, Nicolas; Pellet, Norman; Bensimon, Michaël; Grätzel, Michael

    2014-01-01

    Recently, hybrid organic-inorganic metal halide perovskites have gained prominence as potent light harvesters in thin film solid-state photovoltaics. In particular the solar-to-electric power conversion efficiency (PCE) of devices using CH(3)NH(3)PbI(3) as sensitizer has increased from 3 to 20.1% within only a few years. This key material can be prepared by solution processing from PbI(2) and CH(3)NH(3)I in one step or by sequential deposition. In the latter case an electron capturing support such as TiO(2) is first covered with PbI(2), which upon exposure to a CH(3)NH(3)I solution is converted to the perovskite. Here we apply for the first time quartz crystal microbalance (QCMD) measurements in conjunction with X-ray diffraction and scanning electron microscopy to analyse the dynamics of the conversion of PbI(2) to CH(3)NH(3)PbI(3). Employing 200 nm thick PbI(2) films as substrates we discover that the CH(3)NH(3)I insertion in the PbI(2) is reversible, with the extraction into the solvent isopropanol occurring on the same time scale of seconds as the intercalation process. This offers an explanation for the strikingly rapid and facile exchange of halide ions in CH(3)NH(3)PbX(3) by solution processing at room temperature.

  18. Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells.

    PubMed

    Crisp, Ryan W; Kroupa, Daniel M; Marshall, Ashley R; Miller, Elisa M; Zhang, Jianbing; Beard, Matthew C; Luther, Joseph M

    2015-04-24

    We developed a layer-by-layer method of preparing PbE (E = S or Se) quantum dot (QD) solar cells using metal halide (PbI2, PbCl2, CdI2, or CdCl2) salts dissolved in dimethylformamide to displace oleate surface ligands and form conductive QD solids. The resulting QD solids have a significant reduction in the carbon content compared to films treated with thiols and organic halides. We find that the PbI2 treatment is the most successful in removing alkyl surface ligands and also replaces most surface bound Cl(-) with I(-). The treatment protocol results in PbS QD films exhibiting a deeper work function and band positions than other ligand exchanges reported previously. The method developed here produces solar cells that perform well even at film thicknesses approaching a micron, indicating improved carrier transport in the QD films. We demonstrate QD solar cells based on PbI2 with power conversion efficiencies above 7%.

  19. Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study

    PubMed Central

    2016-01-01

    We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites. PMID:27364125

  20. New Family of Quantum Spin Hall Insulators in Two-dimensional Transition-Metal Halide with Large Nontrivial Band Gaps.

    PubMed

    Zhou, Liujiang; Kou, Liangzhi; Sun, Yan; Felser, Claudia; Hu, Feiming; Shan, Guangcun; Smith, Sean C; Yan, Binghai; Frauenheim, Thomas

    2015-12-09

    Topological insulators (TIs) are promising for achieving dissipationless transport devices due to the robust gapless states inside the insulating bulk gap. However, currently realized two-dimensional (2D) TIs, quantum spin Hall (QSH) insulators, suffer from ultrahigh vacuum and extremely low temperature. Thus, seeking for desirable QSH insulators with high feasibility of experimental preparation and large nontrivial gap is of great importance for wide applications in spintronics. On the basis of the first-principles calculations, we predict a novel family of 2D QSH insulators in transition-metal halide MX (M = Zr, Hf; X = Cl, Br, and I) monolayers, especially, which is the first case based on transition-metal halide-based QSH insulators. MX family has the large nontrivial gaps of 0.12-0.4 eV, comparable with bismuth (111) bilayer (0.2 eV), stanene (0.3 eV), and larger than ZrTe5 (0.1 eV) monolayers and graphene-based sandwiched heterstructures (30-70 meV). Their corresponding 3D bulk materials are weak topological insulators from stacking QSH layers, and some of bulk compounds have already been synthesized in experiment. The mechanism for 2D QSH effect in this system originates from a novel d-d band inversion, significantly different from conventional band inversion between s-p, p-p, or d-p orbitals. The realization of pure layered MX monolayers may be prepared by exfoliation from their 3D bulk phases, thus holding great promise for nanoscale device applications and stimulating further efforts on transition metal-based QSH materials.

  1. Binary technetium halides

    NASA Astrophysics Data System (ADS)

    Johnstone, Erik Vaughan

    In this work, the synthetic and coordination chemistry as well as the physico-chemical properties of binary technetium (Tc) chlorides, bromides, and iodides were investigated. Resulting from these studies was the discovery of five new binary Tc halide phases: alpha/beta-TcCl3, alpha/beta-TcCl 2, and TcI3, and the reinvestigation of the chemistries of TcBr3 and TcX4 (X = Cl, Br). Prior to 2009, the chemistry of binary Tc halides was poorly studied and defined by only three compounds, i.e., TcF6, TcF5, and TcCl4. Today, ten phases are known (i.e., TcF6, TcF5, TcCl4, TcBr 4, TcBr3, TcI3, alpha/beta-TcCl3 and alpha/beta-TcCl2) making the binary halide system of Tc comparable to those of its neighboring elements. Technetium binary halides were synthesized using three methods: reactions of the elements in sealed tubes, reactions of flowing HX(g) (X = Cl, Br, and I) with Tc2(O2CCH3)4Cl2, and thermal decompositions of TcX4 (X = Cl, Br) and alpha-TcCl 3 in sealed tubes under vacuum. Binary Tc halides can be found in various dimensionalities such as molecular solids (TcF6), extended chains (TcF5, TcCl4, alpha/beta-TcCl2, TcBr 3, TcI3), infinite layers (beta-TcCl3), and bidimensional networks of clusters (alpha-TcCl3); eight structure-types with varying degrees of metal-metal interactions are now known. The coordination chemistry of Tc binary halides can resemble that of the adjacent elements: molybdenum and ruthenium (beta-TcCl3, TcBr3, TcI 3), rhenium (TcF5, alpha-TcCl3), platinum (TcCl 4, TcBr4), or can be unique (alpha-TcCl2 and beta-TcCl 2) in respect to other known transition metal binary halides. Technetium binary halides display a range of interesting physical properties that are manifested from their electronic and structural configurations. The thermochemistry of binary Tc halides is extensive. These compounds can selectively volatilize, decompose, disproportionate, or convert to other phases. Ultimately, binary Tc halides may find application in the nuclear fuel

  2. Development of processes for the production of solar grade silicon from halides and alkali metals, phase 1 and phase 2

    NASA Technical Reports Server (NTRS)

    Dickson, C. R.; Gould, R. K.; Felder, W.

    1981-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  3. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  4. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    SciTech Connect

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, J.J.A.M. van der; Pupat, N.B.M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg{sup +}/Dy{sup +}, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  5. Assessment of swelling-activated Cl- channels using the halide-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl)quinolinium.

    PubMed Central

    Srinivas, S P; Bonanno, J A; Hughes, B A

    1998-01-01

    This study describes a quantitative analysis of the enhancement in anion permeability through swelling-activated Cl- channels, using the halide-sensitive fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). Cultured bovine corneal endothelial monolayers perfused with NO3- Ringer's were exposed to I- pulses under isosmotic and, subsequently, hyposmotic conditions. Changes in SPQ fluorescence due to I- influx were significantly faster under hyposmotic than under isosmotic conditions. Plasma membrane potential (Em) was -58 and -32 mV under isosmotic and hyposmotic conditions, respectively. An expression for the ratio of I- permeability under hyposmotic condition to that under isosmotic condition (termed enhancement ratio or ER) was derived by combining the Stern-Volmer equation (for modeling SPQ fluorescence quenching by I-) and the Goldman flux equation (for modeling the electrodiffusive unidirectional I- influx). The fluorescence values and slopes at the inflection points of the SPQ fluorescence profile during I- influx, together with Em under isosmotic and hyposmotic conditions, were used to calculate ER. Based on this approach, endothelial cells were shown to express swelling-activated Cl- channels with ER = 4.9 when the hyposmotic shock was 110 +/- 10 mosM. These results illustrate the application of the SPQ-based method for quantitative characterization of swelling-activated Cl- channels in monolayers. PMID:9649372

  6. An Engineered Palette of Metal Ion Quenchable Fluorescent Proteins

    PubMed Central

    Yu, Xiaozhen; Strub, Marie-Paule; Barnard, Travis J.; Noinaj, Nicholas; Piszczek, Grzegorz; Buchanan, Susan K.; Taraska, Justin W.

    2014-01-01

    Many fluorescent proteins have been created to act as genetically encoded biosensors. With these sensors, changes in fluorescence report on chemical states in living cells. Transition metal ions such as copper, nickel, and zinc are crucial in many physiological and pathophysiological pathways. Here, we engineered a spectral series of optimized transition metal ion-binding fluorescent proteins that respond to metals with large changes in fluorescence intensity. These proteins can act as metal biosensors or imaging probes whose fluorescence can be tuned by metals. Each protein is uniquely modulated by four different metals (Cu2+, Ni2+, Co2+, and Zn2+). Crystallography revealed the geometry and location of metal binding to the engineered sites. When attached to the extracellular terminal of a membrane protein VAMP2, dimeric pairs of the sensors could be used in cells as ratiometric probes for transition metal ions. Thus, these engineered fluorescent proteins act as sensitive transition metal ion-responsive genetically encoded probes that span the visible spectrum. PMID:24752441

  7. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    PubMed

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH3NH3PbI3 and CH3NH3PbBr3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH3NH3PbI3 red/near-infrared LEDs and CH3NH3PbBr3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  8. Methods for producing single crystal mixed halide perovskites

    DOEpatents

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  9. Impact of halides on the simultaneous separation of aromatic amines and their acidic metabolites by capillary electrophoresis with laser-induced native fluorescence detection under acidic conditions.

    PubMed

    Hsieh, Ming-Mu; Chang, Huan-Tsung

    2006-01-13

    This paper describes a simple, sensitive, efficient, and rapid method for simultaneous analysis of biologically active amines and acids by capillary electrophoresis in conjunction with laser-induced native fluorescence detection (CE-LINF) using a diode pumped solid state nanolaser at 266 nm. In order to optimize resolution of the amines that were prepared in 10.0 mM formate-Tris (FT) solutions, 10.0 mM FT solutions with and without containing halides were used to fill the capillary and reservoirs, respectively. The electrophoretic mobilities of tryptamine (TA) and serotonin (5-HT) at pH 4.0 decrease with the increase in halide concentration (0-10.0 mM). Taken together with a great effect of iodide than other halides, we suggest that the formation of ion pairs is a main contributor for altering the migration of the amines. In order to simultaneously analyze the amines and their metabolites (acids) at low pH, a high bulk EOF is required. The analysis of 10 anlytes including amines and acids was completed within 12 min by CE-LINF using a capillary treated with 0.5M NaOH and then filled with 10.0 mM FT solutions (pH 4.0) containing 10.0 mM KCl prior to analysis. The limits of detection for TA and 5-hydroxyindole-3-acetic acid (5-HIAA) are 0.12 and 6.0 nM, respectively. The present method has been further validated by analyzing urine samples, with an RSD less than 3.1% (migration times) and 3.9% (concentration).

  10. Polyethyleneimine-templated Ag nanoclusters: a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength.

    PubMed

    Qu, Fei; Li, Nian Bing; Luo, Hong Qun

    2012-12-04

    Ag nanoclusters functioned by hyperbranched polyethyleneimine have been developed as a new fluorescent and colorimetric platform for sensitive and selective recognition of halide ions (e.g., Cl(-), Br(-), and I(-)). The recognition mechanism is based on the unique reactions between halide ions and the silver atoms. In particular, halide-induced oxidative etching and aggregation can produce a strong fluorescence quenching of Ag nanoclusters. This sensing system exhibits a remarkably high selectivity toward halide ions over most of anions and cations and shows good linear ranges and lower detection limits: the linear ranges are 0.5-80 μM for Cl(-), 0.1-14 μM for Br(-), and 0.05-6 μM for I(-), respectively; the limits of detection for Cl(-), Br(-), and I(-), at a signal-to-noise ratio of 3, are estimated to be 200, 65, and 40 nM, respectively. Specifically, Br(-) and I(-) could be recognized selectively in the coexistence with Cl(-) under the condition of higher ionic strength, which is a significant advantage in the detection of Br(-) and I(-) in real samples. In addition, the recognition of halide could be performed by the colorimetric method, which is also attractive and promising because of its simplicity, rapidity, reliability, and low cost. Furthermore, this sensing system has been applied successfully to the detection of Cl(-) in real water samples.

  11. Dependence of metal-enhanced fluorescence on surface roughness

    NASA Astrophysics Data System (ADS)

    François, Alexandre; Sciacca, Beniamino; Zuber, Agnieszka; Klantsataya, Elizaveta; Monro, Tanya M.

    2014-03-01

    Metal Enhanced Fluorescence (MEF) takes advantage of the coupling between surface plasmons, in either a metallic thin film or metallic nanoparticles, and fluorophores located in proximity of the metal, yielding an increase of the fluorophore emission. While MEF has been widely studied on metallic nanoparticles with the emphasis on creating brighter fluorescent labels, planar surfaces have not benefitted from the same attention. Here we investigate the influence of the surface roughness of a thin metallic film on the fluorescence enhancement. 50nm thick silver films were deposited on glass slides using either thermal evaporation with different evaporation currents or an electroless plating method based on the Tollens reaction to vary the surface roughness. Multiple layers of positively and negatively charged polyelectrolytes were deposited on top of the metallic coating to map out the enhancement factor as function of the gap between the metallic coating and fluorophore molecules covalently bound to the last polyelectrolyte layer. We show that fluorescence is enhanced by the presence of the metallic film, and in particular that the enhancement increases by a factor 3 to 40 for roughness ranging from 3 nm to 8 nm. Although these enhancement factors are modest compared to the enhancement produced by complex metallic nanoparticles or nano-patterned metallic thin films, the thin films used here are capable of supporting a plasmonic wave and offer the possibility of combining different techniques, such as surface plasmon resonance (with its higher refractive index sensitivity compared to localized plasmons) and MEF within a single device.

  12. On the transfer of protective coating elements on a metal surface from halide gaseous media

    NASA Astrophysics Data System (ADS)

    Abraimov, N. V.

    2016-06-01

    The processes occurring during the formation of multicomponent diffusion coatings on nickel alloys at the stage of delivery of elements on the article surface when chlorine, bromine, and iodine halides are used as activators are considered. Balance equations and calculated values are given for the partial pressures in the composition of a gas phase of components participating in chemical transport reaction; the possible reactions of delivering elements on the article surfaces and the structures of Ni-Al, Ni-Cr, Ni-Cr-Al, Co-Cr-Al coatings deposited on the ZhS26, ZhS6U, ZhS32, and VZhL12U alloys are presented.

  13. Heavy metal ternary halides for room-temperature x-ray and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Peters, John A.; Stoumpos, Constantinos C.; Sebastian, Maria; Wessels, Bruce W.; Im, Jino; Freeman, Arthur J.; Kanatzidis, Mercouri G.

    2013-09-01

    We report our recent progress on wide bandgap ternary halide compounds CsPbBr3 and CsPbCl3 for room temperature x-ray and gamma-ray detectors. Their bandgaps are measured to be 2.24 eV and 2.86 eV, respectively. The measured mobility-lifetime products of CsPbBr3 are 1.7×10-3, 1.3×10-3 cm2/V, for electron and hole carriers, respectively, comparable to those of CdTe. We measured the room temperature spectral response of CsPbBr3 sample to Ag x-ray radiation. It has a well-resolved spectral response to the 22.4 keV Kα radiation peak and detector efficiency comparable to that of CdZnTe detector at 295 K.

  14. From metal-organic framework to intrinsically fluorescent carbon nanodots.

    PubMed

    Amali, Arlin Jose; Hoshino, Hideto; Wu, Chun; Ando, Masanori; Xu, Qiang

    2014-07-01

    Highly photoluminescent carbon nanodots (CNDs) were synthesized for the first time from metal-organic framework (MOF, ZIF-8) nanoparticles. Coupled with fluorescence and non-toxic characteristics, these carbon nanodots could potentially be used in biosafe color patterning.

  15. Heavy metal contaminants can eliminate quantum dot fluorescence.

    PubMed

    Zarkowsky, David; Lamoreaux, Laurie; Chattopadhyay, Pratip; Koup, Richard A; Perfetto, Stephen P; Roederer, Mario

    2011-01-01

    Quantum dots (QD) are fluorescent nanocrystals that are highly useful in imaging and flow cytometric analyses. During routine use of monoclonal antibody conjugates of QD, we have occasionally seen partial or total loss of fluorescence when using certain lots of fixative solutions. We hypothesized that a low level contamination with heavy metal cations was responsible, since low level metal contaminants are not uncommon in formalin solutions. By titrating known concentrations of heavy metal cations into staining solutions, we found that millimolar concentrations of ferrous and zinc ions, and as low as 50 nanomolar cupric ions, completely eliminated QD fluorescence. By mass spectroscopic quantification of metals in commercial fixative solutions previously shown to perform poorly or well with regard to QD fluorescence, we confirmed that the presence of copper in solution was correlated with poor performance. Notably, prior addition of EDTA to chelate the divalent cations in these solutions prevented the inhibition of QD fluorescence. Finally, the copper-induced loss of QD fluorescence is irreversible: cells labeled with QD are highly fluorescent and can be rendered nonfluorescent by the addition of cupric sulfate, even after washing extensively. Indeed, these cells can then be successfully stained with other QD reagents, providing a method for immunofluorescence restaining of cells without contaminating fluorescence from the first stain.

  16. Ternary Silver Halide Nanocrystals.

    PubMed

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang

    2017-07-18

    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  17. Recent advances in tailoring the aggregation of heavier alkaline earth metal halides, alkoxides and aryloxides from non-aqueous solvents.

    PubMed

    Fromm, Katharina M

    2006-11-21

    This overview on one of the subjects treated in our group deals with the synthesis and study of low-dimensional polymer and molecular solid state structures formed with alkaline earth metal ions in non-aqueous solvents. We have chosen several synthetic approaches in order to obtain such compounds. The first concept deals with the "cutting out" of structural fragments from a solid state structure of a binary compound, which will be explained with reference to BaI2. Depending on the size and concentration of oxygen donor ligands, used as chemical scissors on BaI2, three-, two-, one- and zero-dimensional derived adducts of BaI2 are obtained, comparable to a structural genealogy tree for BaI2. A second part deals with the supramolecular approach for the synthesis of low dimensional polymeric compounds based on alkaline earth metal iodides, obtained by the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Certain circumstances allow rules to be established for the prediction of the dimensionality of a given compound, contributing to the fundamental problem of structure prediction in crystal engineering. A third section describes a synthetic approach for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. A first step deals with different molecular solvated alkaline earth metal iodides which are investigated as a function of the ligand size in non-aqueous solvents. These are then reacted with some alkali metal compound in order to partially or totally eliminate alkali iodide and to form the targeted clusters. These unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials and as catalysts. Approaches to two synthetic methods of the latter, sol-gel and (MO)CVD (metal-organic chemical vapour deposition), are investigated with some of our compounds. (D

  18. Spectral variation of fluorescence lifetime near single metal nanoparticles

    PubMed Central

    Li, Jia; Krasavin, Alexey V.; Webster, Linden; Segovia, Paulina; Zayats, Anatoly V.; Richards, David

    2016-01-01

    We explore the spectral dependence of fluorescence enhancement and the associated lifetime modification of fluorescent molecules coupled to single metal nanoparticles. Fluorescence lifetime imaging microscopy and single-particle dark-field spectroscopy are combined to correlate the dependence of fluorescence lifetime reduction on the spectral overlap between the fluorescence emission and the localised surface plasmon (LSP) spectra of individual gold nanoparticles. A maximum lifetime reduction is observed when the fluorescence and LSP resonances coincide, with good agreement provided by numerical simulations. The explicit comparison between experiment and simulation, that we obtain, offers an insight into the spectral engineering of LSP mediated fluorescence and may lead to optimized application in sensing and biomedicine. PMID:26876780

  19. Phosphenium Hydride Reduction of [(cod)MX2] (M = Pd, Pt; X = Cl, Br): Snapshots on the Way to Phosphenium Metal(0) Halides and Synthesis of Metal Nanoparticles.

    PubMed

    Nickolaus, Jan; Imbrich, Dominik A; Schlindwein, Simon H; Geyer, Adrian H; Nieger, Martin; Gudat, Dietrich

    2017-03-06

    The outcome of the reduction of [(cod)PtX2] (X = Cl, Br; cod = 1,5-cyclooctadiene) with N-heterocyclic phosphenium hydrides (R)NHP-H depends strongly on the steric demand of the N-aryl group R and the nature of X. Reaction of [(cod)PtCl2] with (Dipp)NHP-H featuring bulky N-Dipp groups produced an unprecedented monomeric phosphenium metal(0) halide [((Dipp)NHP)((Dipp)NHP-H)PtCl] stabilized by a single phosphine ligand. The phosphenium unit exhibits a pyramidal coordination geometry at the phosphorus atom and may according to DFT calculations be classified as a Z-type ligand. In contrast, reaction of [(cod)PtBr2] with the sterically less protected (Mes)NHP-H afforded a mixture of donor-ligand free oligonuclear complexes [{((Mes)NHP)PtBr}n] (n = 2, 3), which are structural analogues of known palladium complexes with μ2-bridging phosphenium units. All reductions studied proceed via spectroscopically detectable intermediates, several of which could be unambiguously identified by means of multinuclear ((1)H, (31)P, (195)Pt) NMR spectroscopy and computational studies. The experimental findings reveal that the phosphenium hydrides in these multistep processes adopt a dual function as ligands and hydride transfer reagents. The preference for the observed intricate pathways over seemingly simpler ligand exchange processes is presumably due to kinetic reasons. The attempt to exchange the bulky phosphine ligand in [((Dipp)NHP)((Dipp)NHP-H)PtCl] by Me3P resulted in an unexpected isomerization to a platinum(0) chlorophosphine complex via a formal chloride migration from platinum to phosphorus, which accentuates the electrophilic nature of the phosphenium ligand. Phosphenium metal(0) halides of platinum further show a surprising thermal stability, whereas the palladium complexes easily disintegrate upon gentle heating in dimethyl sulfoxide to yield metal nanoparticles, which were characterized by TEM and XRD studies.

  20. Photodeposition of Silver Can Result in Metal-Enhanced Fluorescence

    PubMed Central

    GEDDES, CHRIS D.; PARFENOV, ALEXANDR

    2009-01-01

    Chemically deposited silver particles are widely used for surface-enhanced Raman scattering (SERS) and more recently for surface-enhanced fluorescence (SEF), also known as metal-enhanced fluorescence (MEF). We now show that metallic silver deposited by laser illumination results in an ~7-fold increased intensity of locally bound indocyanine green. The increased intensity is accompanied by a decreased lifetime and increased photostability. These results demonstrate the possibility of photolithographic preparation of surfaces for enhanced fluorescence in microfluidics, medical diagnostics, and other applications. PMID:14658678

  1. Metal Enhanced Fluorescence on Silicon Wafer Substrates

    PubMed Central

    Gryczynski, I.; Matveeva, E.G.; Sarkar, P.; Bharill, S.; Borejdo, J.; Mandecki, W.; Akopova, I.; Gryczynski, Z.

    2008-01-01

    We report on the fluorescence enhancement induced by silver island film (SIF) deposited on a silicon wafer. The model immunoassay was studied on silvered and unsilvered wafers. The fluorescence brightness of Rhodamine Red X increased about 300% on the SIF, while the lifetime was reduced by several fold and the photostability increased substantially. We discuss potential uses of silicon wafer substrates in multiplex assays in which the fluorescence is enhanced due to the SIF, and the multiplexing is achieved by using micro transponders. PMID:19137060

  2. Infiltration of methylammonium metal halide in highly porous membranes using sol-gel-derived coating method

    NASA Astrophysics Data System (ADS)

    Kwon, Seung Lee; Jin, Young Un; Kim, Byeong Jo; Han, Man Hyung; Han, Gill Sang; Shin, Seunghak; Lee, Sangwook; Jung, Hyun Suk

    2017-09-01

    Organic-inorganic halide perovskites (OIHPs) has emerged as promising optoelectronic materials for solar cells and light-emitting diodes. OIHPs are usually coated on a flat surface or mesoporous scaffold for the applications. Herein, we report a facile sol-gel-derived solution route for coating methylammonium lead iodide (MAPbI3) perovskite layers onto various nanoporous structures. We found that lead-acetate solution has superior infiltration property onto surface of oxide membranes, and it can easily be converted to MAPbI3 by sequential transform to PbO, PbI2, and finally MAPbI3. Excellent pore-filling and full coverage of the nanostructures with the final MAPbI3 perovskite material are demonstrated via this sol-gel-derived solution route, using mesoporous TiO2, TiO2 nanorods, and high-aspect ratio nanopores in anodic aluminum oxide membranes. Given that this sol-gel-based method fills nanopores better than other conventional coating methods for OIHPs, this method may find wide applications in nanostructured OIHPs-based optoelectronic systems.

  3. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    PubMed

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  4. Charge-transfer gap closure in transition-metal halides under pressure

    SciTech Connect

    Chen, A.L.; Yu, P.Y.

    1995-01-01

    Insulator-to-metal transition induced by pressure has been studied in three transition metal iodides: NiI{sub 2}, CoI{sub 2} and FeI{sub 2} using optical absorption and resistivity measurements at room temperature. Comparisons between the results obtained by these two techniques suggested that the closure of the charge-transfer gap is the principal mechanism responsible for the insulator-to-metal transition in these materials.

  5. Single molecule fluorescence studies of ribosome dynamics: An application of metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Bharill, Shashank

    Metal enhanced fluorescence (MEF), in which a surface plasmon near a noble metal alters the spectral properties of an organic fluorophore, has been reported to increase fluorescence intensity without a concomitant increase in photobleaching rate. The fluorescence intensities of Cy3- and Cy5-labeled ribosomal initiation complexes (ICs) near 50 nm silver particles were increased 4 - 7-fold compared to ICs in the absence of silver colloids. Photobleaching lifetime was not significantly decreased, resulting in 4 - 5.5-fold enhancement in total photon emission prior to photobleaching. Fluorophores showing enhanced fluorescence were located within ˜280 nm of the colloidal particles, as detected by light scattering and scanning probe microscopy. Aggregates of silver particles or larger colloids themselves produced wavelength-shifted luminescence similar to fluorescence, presumably due to resonant extinction between nearby metal particles. Intensity fluctuations above shot noise, at 0.1 - 5 Hz, were greater from slides containing colloidal particles than from plain glass. Overall signal to noise ratio was similar or slightly better near the silver particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA to the A site of fluorescent labeled ribosomes, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosomal A and P sites, and elongation factor G catalyzed translocation.

  6. Studies on crystal structures, optical and electrical properties of viologen cation salts of d10 metal halide anions

    NASA Astrophysics Data System (ADS)

    Du, Haijuan; Li, Yaru; Xu, Manman; Niu, Yunyin; Hou, Hongwei

    2017-04-01

    Construction of viologen cation salts of d10 metal halide anions (inorganic-organic hybrid materials) with semiconducting properties via supramolecular design and aggregate enable the hybrid materials multifunctionality. Our interest focused on the use of the viologen derivatives as the building units because they were redox-active units and more suited to yield new generation of multifunctional networks. In the present investigation, three new inorganic-organic hybrid semiconductors {[bbpyb]·[AgBr3]}n (1) [1, 3-PMBP][Zn2Cl5.1Br0.9] (2) and [1, 3-PMBP][Zn2Br6] (3) (bbpyb = 1,1″-(1,4-butanediyl)bis[4,4‧-bipyridinium]bis[bromide], 1,3-PMBP = 1,1″-[1,3-phenylene-bis(methylene)]bis-4,4‧-bipyridinium-bisbromide) were synthesized. More importantly, great efforts were devoted to investigate their properties, such as optical and electrical properties. 1-3 exhibited photochromism, which can be ascribed to the intermolecular charge transfer to yield radicals. Fabricating the appropriate inorganic and organic units controllably within photosensitive materials at a molecular level is critical for the development of new photochromic inorganic-organic hybrids.

  7. Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator.

    PubMed

    Jia, Yufei; Kerner, Ross A; Grede, Alex J; Brigeman, Alyssa N; Rand, Barry P; Giebink, Noel C

    2016-07-13

    Organic-inorganic lead halide perovskite semiconductors have recently reignited the prospect of a tunable, solution-processed diode laser, which has the potential to impact a wide range of optoelectronic applications. Here, we demonstrate a metal-clad, second-order distributed feedback methylammonium lead iodide perovskite laser that marks a significant step toward this goal. Optically pumping this device with an InGaN diode laser at low temperature, we achieve lasing above a threshold pump intensity of 5 kW/cm(2) for durations up to ∼25 ns at repetition rates exceeding 2 MHz. We show that the lasing duration is not limited by thermal runaway and propose instead that lasing ceases under continuous pumping due to a photoinduced structural change in the perovskite that reduces the gain on a submicrosecond time scale. Our results indicate that the architecture demonstrated here could provide the foundation for electrically pumped lasing with a threshold current density Jth < 5 kA/cm(2) under sub-20 ns pulsed drive.

  8. Thermodynamics of small alkali metal halide cluster ions: comparison of classical molecular simulations with experiment and quantum chemistry.

    PubMed

    Vlcek, Lukas; Uhlik, Filip; Moucka, Filip; Nezbeda, Ivo; Chialvo, Ariel A

    2015-01-22

    We evaluate the ability of selected classical molecular models to describe the thermodynamic and structural aspects of gas-phase hydration of alkali metal halide ions and the formation of small water clusters. To understand the effect of many-body interactions (polarization) and charge penetration effects on the accuracy of a force field, we perform Monte Carlo simulations with three rigid water models using different functional forms to account for these effects: (i) point charge nonpolarizable SPC/E, (ii) Drude point charge polarizable SWM4-DP, and (iii) Drude Gaussian charge polarizable BK3. Model predictions are compared with experimental Gibbs free energies and enthalpies of ion hydration, and with microscopic structural properties obtained from quantum DFT calculations. We find that all three models provide comparable predictions for pure water clusters and cation hydration but differ significantly in their description of anion hydration. None of the investigated classical force fields can consistently and quantitatively reproduce the experimental gas-phase hydration thermodynamics. The outcome of this study highlights the relation between the functional form that describes the effective intermolecular interactions and the accuracy of the resulting ion hydration properties.

  9. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  10. Interface Energetics in Organo-Metallic Halide Perovskite-based Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Schulz, Philip

    2015-03-01

    In my presentation I will talk about the most recent findings on the electronic structure of methylammonium lead tri-halide (MAPbX3, X =I, Br) perovskite films and their interfaces to adjacent transport layers. Intricate knowledge of the electronic alignment at the contact interfaces in perovskite solar cells is essential for the understanding of the working principle as well as improving design and thus performance of respective devices. In our studies we employ ultra-violet, X-ray and inverse photoemission spectroscopy (UPS, XPS, IPES) to directly determine valence and conduction band offsets. In this way we are able to report a direct measurement of the electronic band gap as well as ionization energy and electron affinity found for perovskite surfaces. Furthermore, our findings indicate that the electronic energy level alignment of adjacent organic hole transport layers, such as spiro-MeOTAD, can limit the maximum attainable open circuit voltage (Voc) in solar cells if the highest occupied molecular orbital of the hole transport material is not well aligned to the valence band maximum of the perovskite layer. Using better suited hole transporters, like CBP, values for Voc larger than 1.5 V could be achieved in the case of MAPbBr3 based devices. More recently, inverted perovskite solar cells based on nickel oxide bottom anodes have been reported to yield viable power conversion efficiencies and stability. We find that the interface between the p-doped NiO surface and the MAPbI3 layer on top lead to p-type perovskite filsm while the same material deposited on TiO2 in the conventional cell geometry turns out to be n-type. A further investigation of a C60 layer deposited on top of p-type perovskite films reveals an ideal alignment between the lowest unoccupied molecular orbital of the organic electron transport materials and the conduction band minimum of the perovskite film underneath. These results explain why the inverted solar cell structure could achieve

  11. Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence

    PubMed Central

    Geddes, Chris D.; Parfenov, Alexandr; Roll, David; Uddin, Md. Jamal; Lakowicz, Joseph R.

    2009-01-01

    The interactions of fluorophores with noble metal particles can modify their emission spectral properties, a relatively new phenomenon in fluorescence. We subsequently examined indocyanine green (ICG), which is widely used in medical testing and imaging, in close proximity to an electrically roughened platinum electrode. The emission intensity and lifetimes were decreased about 2-fold on the roughened surface as compared to a smooth Pt surface, and the photostability about the same. Platinum does not appear promising for metal enhanced fluorescence, at least for long wavelength fluorophores. PMID:20740066

  12. Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells.

    PubMed

    Peng, Jiajun; Chen, Yani; Zheng, Kaibo; Pullerits, Tõnu; Liang, Ziqi

    2017-08-03

    Organo-metal halide perovskites have recently obtained world-wide attention as promising solar cell materials. They have broad and strong light absorption along with excellent carrier transport properties which partially explain their record power conversion efficiencies above 22%. However, the basic understanding of the underlying physical mechanisms is still limited and there remain large discrepancies among reported transport characteristics of perovskite materials. Notably, the carrier mobility of perovskite samples either in thin films or within solar cells obtained using different techniques can vary by up to 7-8 orders of magnitude. This tutorial review aims to offer insights into the scope, advantages, limitations and latest developments of the techniques that have been applied for studying charge carrier dynamics in perovskites. We summarize a comprehensive set of measurements including (1) time-resolved laser spectroscopies (transient absorption, time-resolved photoluminescence, terahertz spectroscopy and microwave conductivity); (2) electrical transient techniques (charge extraction by linearly increasing voltage and time-of-flight); and (3) steady-state methods (field-effect transistor, Hall effect and space charge limited current). Firstly, the basics of the above measurements are described. We then comparatively summarize the charge carrier characteristics of perovskite-based neat films, bilayer films and solar cells. Finally, we compare the different approaches in evaluating the key parameters of transport dynamics and unravel the reasons for the large discrepancies among these methods. We anticipate that this tutorial review will serve as the entry point for understanding the experimental results from the above techniques and provide insights into charge carrier dynamics in perovskite materials and devices.

  13. Enhanced Fluorescence Cell Imaging with Metal-Coated Slides

    PubMed Central

    Moal, E. Le; Fort, E.; Lévêque-Fort, S.; Cordelières, F. P.; Fontaine-Aupart, M.-P.; Ricolleau, C.

    2007-01-01

    Fluorescence labeling is the prevailing imaging technique in cell biology research. When they involve statistical investigations on a large number of cells, experimental studies require both low magnification to get a reliable statistical population and high contrast to achieve accurate diagnosis on the nature of the cells' perturbation. Because microscope objectives of low magnification generally yield low collection efficiency, such studies are limited by the fluorescence signal weakness. To overcome this technological bottleneck, we proposed a new method based on metal-coated substrates that enhance the fluorescence process and improve collection efficiency in epifluorescence observation and that can be directly used with a common microscope setup. We developed a model based on the dipole approximation with the aim of simulating the optical behavior of a fluorophore on such a substrate and revealing the different mechanisms responsible for fluorescence enhancement. The presence of a reflective surface modifies both excitation and emission processes and additionally reshapes fluorescence emission lobes. From both theoretical and experimental results, we found the fluorescence signal emitted by a molecular cyanine 3 dye layer to be amplified by a factor ∼30 when fluorophores are separated by a proper distance from the substrate. We then adapted our model to the case of homogeneously stained micrometer-sized objects and demonstrated mean signal amplification by a factor ∼4. Finally, we applied our method to fluorescence imaging of dog kidney cells and verified experimentally the simulated results. PMID:17172306

  14. Metal-enhanced fluorescence: effect of surface coating

    NASA Astrophysics Data System (ADS)

    Lismont, M.; François, A.; Dreesen, L.; Monro, T. M.

    2014-03-01

    Metal Enhanced Fluorescence (MEF), a phenomenon arising when a fluorophore is in closed proximity to a metallic structure such as metallic films or nanostructures, is seen as a way to increase the amount of reactive oxygen species produced by the irradiation of the protoporphyrin IX (PpIX), a photosensitizer commonly used in photodynamic therapy. Here, we show a study of the distance-dependent of MEF by applying multiple layers of polyelectrolyte (PE) on silver nanoparticles (AgNPs) to progressively increase the distance between AgNPs and PpIX, covalently bond to the last polyelectrolyte layer as well as exploring the use of AgNPs of different sizes ranging from 40 to 100 nm. Up to four fold increase of PpIX fluorescence was observed when this photosensitizing agent is bounded onto 100 nm sized Ag NPs. The effective corresponding distance between AgNPs and PpIX is three layers of PE.

  15. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Song, Zhaoning; Watthage, Suneth C.; Phillips, Adam B.; Heben, Michael J.

    2016-04-01

    Organo-metal halide perovskite-based solar cells have been the focus of intense research over the past five years, and power conversion efficiencies have rapidly been improved from 3.8 to >21%. This article reviews major advances in perovskite solar cells that have contributed to the recent efficiency enhancements, including the evolution of device architecture, the development of material deposition processes, and the advanced device engineering techniques aiming to improve control over morphology, crystallinity, composition, and the interface properties of the perovskite thin films. The challenges and future directions for perovskite solar cell research and development are also discussed.

  16. A study of the convective flow as a function of external parameters in a high-pressure metal halide discharge lamp (HgDyI3)

    NASA Astrophysics Data System (ADS)

    Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.

    2016-06-01

    This paper deals with the modelling of the convection processes in metal-halide lamp discharges (HgDyI3). For this, we realized a 3D model, a steady, direct current powered and time-depending model for the solution of conservation equations relative to mass, momentum, and energy. After validation, this model was applied to the study of the effect of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp. Indeed, the electric current, the atomic ratio (Hg/Dy), and the effect of the convective transport have been studied.

  17. Interactions between natural organic ligands and trace metals studied by fluorescence lifetime and fluorescence quenching

    NASA Astrophysics Data System (ADS)

    Nouhi, Ayoub; Hajjoul, Houssam; Redon, Roland; Gagné, Jean-Pierre; Mounier, Stéphane

    2017-04-01

    Improved insight on the interactions between natural organic ligands and trace metals is of paramount importance for better understanding transport and toxicity pathways of metal ions in the environment. Fluorescence spectroscopy allows introspecting ligands-metals interactions. Time-resolved laser fluorescence spectroscopy (TRLFS) measures fluorophore lifetime probing the local molecular environment. Excitation Emission Fluorescence Matrices (EEFMs) and their statistical treatment : parallel factor analysis (PARAFAC) using PROGMEEF Matlab homemade program, can give insight on the number or nature of organic fluorophores involved in the interactions. Quenching of fluorescence by metals can occur following two processes: dynamic and static quenching (Lakowicz, 2013). In the first case, quenching is caused by physical collisions among molecules and in the second case fluorophores can form nonfluorescent complexes with quenchers. It is possible to identify the different mechanisms because each type of quenching corresponds to a different mathematical model (Lakowicz, 2013; Valeur and Berberan-Santos, 2012). In TRLFS, the study of fluorescence decay's laws induced by nanosecond pulsed laser will allow to exactly qualify the type of interaction. The crucial point of the temporal deconvolution will be the evaluation of the best fitting between the different physical models and the decays measured. From the most suitable time decay model, it will be possible to deduce the quenching which modifies the fluorescence. The aim of this study was to characterize interactions between natural organic ligands and trace metals using fluorescence tools to evaluate the fluorescence lifetime of the fluorophore, the occurrence of quenching in presence of metal, discuss its mechanism and estimate conditional stability constants if a complex organic ligand-metal is formed. This study has been done in two steps. First, we have examined the interactions between salicylic acid and copper in

  18. The tuning of metal enhanced fluorescence for sensing applications.

    PubMed

    Ganguly, Mainak; Mondal, Chanchal; Chowdhury, Joydeep; Pal, Jaya; Pal, Anjali; Pal, Tarasankar

    2014-01-21

    Stable coinage metal nanoparticles (NPs) have been synthesized individually in an aqueous alkaline solution from the corresponding metal salts as precursors using the condensation product (CP) of salicylaldehyde and triethylenetetramine as a reagent. Silver and gold NPs are obtained with and without light illumination but UV irradiation is essential for Cu(0)NP formation. During nanoparticle formation the CP is oxidized to OCP which eventually becomes a fluorophore and also a stabilizer for the in situ produced NPs. It has been observed that silver and gold particle formation kinetics is accelerated by UV exposure. Thus the ease of evolution of coinage metal NP formation relates to their nobility. The as prepared OCP solutions containing coinage metals exhibit a fluorescence contrast behaviour (fluorescence enhancement by Cu and Ag; quenching by AuNP) due to the match and mismatch of wave vectors. The electric field evident from the FDTD simulation abreast of the scattering cross section of the NPs governed from Mie theory as a consequence of surface plasmon coupled emission (SPCE), near field electromagnetic intensity enhancement and lightening rod effect concentrating the electric field around the fluorophore are responsible for the Cu and AgNPs stimulated fluorescence. Again, lossy surface waves are anticipated for efficient quenching by the AuNPs. The most unprecedented observation is 'Turn On' fluorescence which is reported here as a result of the substitution of Au(0) or Cu(0) by Ag(0). Finally, the preferential fluorescence enhancement helps the selective detection of Ag(i) and Cu(ii) well below the US Environmental Protection Agency (EPA) permissible level by tuning the experimental conditions.

  19. Spectral dependence of fluorescence near plasmon resonant metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yeechi

    The optical properties of fluorophores are significantly modified when placed within the near field (0--100 nm) of plasmon resonant metal nanostructures, due to the competition between increased decay rates and "hotspots" of concentrated electric fields. The decay rates and effective electric field intensities are highly dependent on the relative position of dye and metal and the overlap between plasmon resonance and dye absorption and emission. Understanding these dependencies can greatly improve the performance of biosensing and nanophotonic devices. In this dissertation, the fluorescence intensity of organic dyes and CdSe quantum dots near single metal nanoparticles is studied as a function of the local surface plasmon resonance (LSPR) of the nanoparticle. Single metal nanoparticles have narrow, well-defined, intense local surface plasmon resonances that are tunable across the visible spectrum by changes in size and shape. First, we show that organic dyes can be self-assembled on single silver nanoprisms into known configurations by the hybridization of thiolated DNA oligomers. We correlate the fluorescence intensity of the dyes to the LSPR of the individual nanoprism to which they are attached. For each of three different organic dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak 40--120 meV higher in energy than the emission peak of the fluorophore. Second, the plasmon-enhanced fluorescence from CdSe/CdS/CdZnS/ZnS core/shell quantum dots is studied near a variety of silver and gold nanoparticles. With single-particle scattering spectroscopy, the localized surface plasmon resonance spectra of single metal nanoparticles is correlated with the photoluminescence excitation (PLE) spectra of the nearby quantum dots. The PLE

  20. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  1. Metal-atom fluorescence from the quenching of metastable rare gases by metal carbonyls

    SciTech Connect

    Hollingsworth, W.E.

    1982-11-01

    A flowing afterglow apparatus was used to study the metal fluorescence resulting from the quenching of metastable rare-gas states by metal carbonyls. The data from the quenching or argon, neon, and helium by iron and nickel carbonyl agreed well with a restricted degree of freedom model indicating a concerted bond-breaking dissociation.

  2. Sensing metal ions with DNA building blocks: fluorescent pyridobenzimidazole nucleosides.

    PubMed

    Kim, Su Jeong; Kool, Eric T

    2006-05-10

    We describe novel fluorescent N-deoxyribosides (1 and 2) having 2-pyrido-2-benzimidazole and 2-quino-2-benzimidazole as aglycones. The compounds were prepared from the previously unknown heterocyclic precursors and Hoffer's chlorosugar, yielding alpha anomers as the chief products. X-ray crystal structures confirmed the geometry and showed that the pyridine and benzimidazole ring systems deviated from coplanarity in the solid state by 154 degrees and 140 degrees , respectively. In methanol compounds 1 and 2 had absorption maxima at 360 and 370 nm, respectively, and emission maxima at 494 and 539 nm. Experiments revealed varied fluorescence responses of the nucleosides to a panel of 17 monovalent, divalent, and trivalent metal ions in methanol. One or both of the nucleosides showed significant changes with 10 of the metal ions. The most pronounced spectral changes for ligand-nucleoside 1 included red shifts in fluorescence (Au(+), Au(3+)), strong quenching (Cu(2+), Ni(2+), Pt(2+)), and substantial enhancements in emission intensity coupled with red shifts (Ag(+), Cd(2+), Zn(2+)). The greatest spectral changes for ligand-nucleoside 2 included a red shift in fluorescence (Ag(+)), a blue shift (Cd(2+)), strong quenching (Pd(2+), Pt(2+)), and substantial enhancements in emission intensity coupled with a blue shift (Zn(2+)). The compounds could be readily incorporated into oligodeoxynucleotides, where an initial study revealed that they retained sensitivity to metal ions in aqueous solution and demonstrated possible cooperative sensing behavior with several ions. The two free nucleosides alone can act as differential sensors for multiple metal ions, and they are potentially useful monomers for contributing metal ion sensing capability to DNAs.

  3. Sensing Metal Ions with DNA Building Blocks: Fluorescent Pyridobenzimidazole Nucleosides

    PubMed Central

    Kim, Su Jeong; Kool, Eric T.

    2008-01-01

    We describe novel fluorescent N-deoxyribosides (1 and 2) having 2-pyrido-2-benzimidazole and 2-quino-2-benzimidazole as aglycones. The compounds were prepared from the previously unknown heterocyclic precursors and Hoffer’s chlorosugar, yielding alpha anomers as the chief products. X-ray crystal structures confirmed the geometry, and showed that the pyridine and benzimidazole ring systems deviated from coplanarity in the solid state by 154° and 140°, respectively. In methanol the compounds 1 and 2 had absorption maxima at 360 and 370 nm respectively, and emission maxima at 494 and 539 nm. Experiments revealed varied fluorescence responses of the nucleosides to a panel of seventeen monovalent, divalent and trivalent metal ions in methanol. One or both of the nucleosides showed significant changes with ten of the metal ions. The most pronounced spectral changes for ligand-nucleoside 1 included red shifts in fluorescence (Au+, Au3+), strong quenching (Cu2+, Ni2+, Pt2+), and in substantial enhancements in emission intensity coupled with redshifts (Ag+, Cd2+, Zn2+). The greatest spectral changes for ligand-nucleoside 2 included a redshift in fluorescence (Ag+), a blueshift (Cd2+), strong quenching (Pd2+, Pt2+), and in substantial enhancements in emission intensity coupled with a blueshift (Zn2+). The compounds could be readily incorporated into oligodeoxynucleotides, where an initial study revealed that they retained sensitivity to metal ions in aqueous solution, and demonstrated possible cooperative sensing behavior with several ions. The two free nucleosides alone can act as differential sensors for at multiple metal ions, and they are potentially useful monomers for contributing metal ion sensing capability to DNAs. PMID:16669686

  4. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    PubMed

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  5. Designer metal-nanoantennae/dye complexes for maximum fluorescence enhancement

    NASA Astrophysics Data System (ADS)

    Meng, Xiang; Yang, Hao; Grote, Richard R.; Dadap, Jerry I.; Panoiu, Nicolae C.; Osgood, Richard M.

    2015-09-01

    We theoretically investigate the fluorescence enhancement of a representative set of dye-molecules excited by three classes of nanoantennae, using a fully vectorial three-dimensional finite-difference time-domain (3D FDTD) method. Through these 3D FDTD calculations, in conjunction with analytic guidance using temporal coupled-mode (TCM) theory, we develop a design procedure for antennae assemblies that allow achieving fluorescence enhancements of 200-900 over the emission intensity in the bare dye molecule. The enhancement from these commercially available fluorochrome conjugates, namely, CFTM568, CFTM660R and CFTM790 are fully investigated using spherical-dimer, elliptical-dimer, and bowtie nanoantennae. These results demonstrate a method for rationally designing arbitrary metallic nanoparticle/emitter assemblies prior to their synthesis and assembly to achieve optimum fluorescence enhancement.

  6. Interpulse kinetics in copper and copper halide lasers

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1983-01-01

    The various rate processes that govern the interpulse relaxation in metal vapor and metal halide vapor lasers are considered. Computer calculations indicate that the rapid metastable levels relaxation observed in copper and copper halide laser experiments requires the existence of a relatively small resonance in the cross section for metastable excitation or deexcitation near threshold. The accurate calculation of interpulse relaxation requires knowledge of rate constants presently not well known; this is especially so for metal halide lasers.

  7. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  8. Noble metal superparticles and methods of preparation thereof

    DOEpatents

    Sun, Yugang; Hu, Yongxing

    2016-07-12

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.

  9. Enhanced fluorescence cell imaging with metal-coated slides

    NASA Astrophysics Data System (ADS)

    Le Moal, Eric; Fort, Emmanuel; Lévêque-Fort, Sandrine; Janin, Anne; Murata, Hideyuki; Cordelières, Fabrice P.

    2007-07-01

    The last decade has witnessed momentous advances in fluorescence microscopy. The introduction of novel fluorescent markers, together with the development of original microscopy techniques, made it possible to study biomolecular interactions in living cells and to examine the structure and function of living tissues. The emergence of these innovative techniques had a remarkable impact on all the life sciences. However, many biological and medical applications involve the detection of minute quantities of biomolecules, and are limited by the signal weakness in common observation conditions. Here, we show that silver and gold-coated microscope slides can be used as mirror substrates to efficiently improve detection sensitivity when fluorescence microscopy is applied to micrometer-thick biological samples. We report a fourfold enhancement of the fluorescence signal and a noticeable strengthening of the image contrast, when mirror substrates are used with standard air microscope objectives. We demonstrate that metal-coated substrates provide the means to get sensitivity-enhanced fluorescence detection with dry optics, while keeping a wide field observation and a large depth of field. This is a crucial advantage for automated and high-throughput applications to cell and tissue diagnostic analysis.

  10. Rb2SeOCl4·H2O: a polar material among the alkali metal selenite halides with a strong SHG response.

    PubMed

    Wu, Qi; Liu, Hongming; Kang, Lei; Lin, Zheshuai; Meng, Xianggao; Chen, Xingguo; Qin, Jingui

    2016-11-28

    An alkali metal selenite chloride, Rb2SeOCl4·H2O, has been hydrothermally synthesized and structurally characterized. It is the first example of an alkali metal selenite halide in the literature. The compound crystallizes in the noncentrosymmetric (NCS) space group, Cmc21(36), of the orthorhombic system with a = 10.342(3) Å, b = 10.124(3) Å, c = 9.158(3) Å, and α = β = γ = 90°. The anionic [SeOCl4](2-) groups are arranged in the crystal in nearly the same direction, giving rise to a relatively large macroscopic dipole moment, causing the compound to display second harmonic generation (SHG) eight times as strong as that of KDP, measured using the Kurtz-Perry method on powders. First-principle density functional theory (DFT) calculations were carried out to interpret the relationship between the crystal structure and properties.

  11. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells.

    PubMed

    Dymshits, Alex; Henning, Alex; Segev, Gideon; Rosenwaks, Yossi; Etgar, Lioz

    2015-03-03

    Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realized with the CH3NH3PbI3 that functions both as light harvester and hole conductor in combination with a metal oxide. The band diagrams were estimated from the measured potential profile at the interfaces, and are critical findings for a better understanding and further improvement of perovskite based solar cells.

  12. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells

    PubMed Central

    Dymshits, Alex; Henning, Alex; Segev, Gideon; Rosenwaks, Yossi; Etgar, Lioz

    2015-01-01

    Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realized with the CH3NH3PbI3 that functions both as light harvester and hole conductor in combination with a metal oxide. The band diagrams were estimated from the measured potential profile at the interfaces, and are critical findings for a better understanding and further improvement of perovskite based solar cells. PMID:25731963

  13. L-subshell fluorescence yields for metallic uranium and thorium

    NASA Astrophysics Data System (ADS)

    Xu, J. Q.; Xu, X. J.

    1995-03-01

    The L x-ray spectra induced by ~50-keV electron impact on metallic targets of uranium and thorium have been analyzed and the relative fluorescence yields of the L1, L2, and L3 subshell of the two elements, ω2/ω3 and ω1/ω3, have been derived. The present values of ω2/ω3 and ω2 are notably different from the latest theoretical calculations and semiempirically compiled data, and also from the previous measurements using radionuclide decays to produce initial inner vacancies in the atoms. However, they are reasonable for the theoretical computation of U L x-ray relative intensities induced by a few-MeV proton bombardment on metallic uranium. The deviation is discussed and attributed mainly to an enhancement of the total relaxation effect and the shakeup process in metals with respect to those in the corresponding atomic systems as well as in the chemical compounds.

  14. Formation of Metal Clusters or Nitrogen-Bridged Adducts by Reaction of a Bis(amino)stannylene with Halides of Two-Valent Transition Metals.

    PubMed

    Veith, Michael; Müller, Alice; Stahl, Lothar; Nötzel, Martin; Jarczyk, Maria; Huch, Volker

    1996-06-19

    When the cyclic bis(amino)stannylene Me(2)Si(NtBu)(2)Sn is allowed to react with metal halides MX(2) (M = Cr, Fe, Co, Zn; X = Cl, Br [Zn]) adducts of the general formula [Me(2)Si(NtBu)(2)Sn.MX(2)](n) are obtained. The compounds are generally dimeric (n = 2) except the ZnBr(2) adduct, which is monomeric in benzene. The crystal structures of [Me(2)Si(NtBu)(2)Sn.CoCl(2)](2) (triclinic, space group &Pmacr;1; a = 8.620(9) Å, b = 9.160(9) Å, c = 12.280(9) Å, alpha = 101.2(1) degrees, beta = 97.6(1) degrees, gamma = 105.9(1) degrees, Z = 1) and of [Me(2)Si(NtBu)(2)Sn.ZnCl(2)](2) (monoclinic, space group P2(1)/c; a = 8.156(9) Å, b = 16.835(12) Å, c = 13.206(9) Å, beta = 94.27(6) degrees, Z = 2) were determined by X-ray diffraction techniques. The two compounds form similar polycyclic, centrosymmetrical assemblies of metal atoms bridged by chlorine or nitrogen atoms. While in the case of the cobalt compound Co is pentacoordinated by three chlorine and two nitrogen atoms, in the zinc derivative Zn is almost tetrahedrally coordinated by three chlorine atoms and one nitrogen atom. The iron derivative [Me(2)Si(NtBu)(2)Sn.FeCl(2)](2) seems to be isostructural with the cobalt compound as can be deduced from the crystal data (triclinic, a = 8.622(7) Å, b = 9.158(8) Å, c = 12.353(8) Å, alpha = 101.8(1) degrees, beta = 96.9(1) degrees, gamma = 105.9(1) degrees, Z = 1). If NiBr(2), PdCl(2), or PtCl(2) is combined with the stannylene, the reaction product is totally different: 4 equiv of the stannylene are coordinating per metal halide, forming the molecular compound [Me(2)Si(NtBu)(2)Sn](4)MX(2), which crystallizes with half a mole of benzene per molecular formula. The crystal structures of [Me(2)Si(NtBu)(2)Sn](4).NiBr(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.86(4) Å, c = 14.32(2) Å, Z = 16) and [Me(2)Si(NtBu)(2)Sn](4).PdCl(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.99(4) Å, c = 14.318(14) Å, Z = 16) reveal the two compounds to

  15. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    SciTech Connect

    Schindel, Daniel G.; Singh, Mahi R.

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  16. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    NASA Astrophysics Data System (ADS)

    Schindel, Daniel G.; Singh, Mahi R.

    2014-03-01

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  17. Development of processes for the production of solar grade silicon from halides and alkali metals, Phase 1 and Phase 2. Final report, October 1979 - February 1981

    SciTech Connect

    Dickson, C.R.; Gould, R.K.; Felder, W.

    1981-03-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon are described. Product separation and collection processes were evaluated, measure heat release parameters for scaling purposes and effects of reactants and/or products on materials of reactor construction were determined, and preliminary engineering and economic analysis of a scaled up process were made. The feasibility of the basic process to make and collect silicon was demonstrated. The jet impaction/separation process was demonstrated to be a purification process. The rate at which gas phase species from silicon particle precursors, the time required for silane decomposition to produce particles, and the competing rate of growth of silicon seed particles injected into a decomposing silane environment were determined. The extent of silane decomposition as a function of residence time, temperature, and pressure was measured by infrared absorption spectroscopy. A simplistic model is presented to explain the growth of silicon in a decomposing silane enviroment.

  18. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals

    NASA Astrophysics Data System (ADS)

    Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2016-04-01

    Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large

  19. Fluorescent bioassays for toxic metals in milk and yoghurt.

    PubMed

    Siddiki, Mohammad Shohel Rana; Ueda, Shunsaku; Maeda, Isamu

    2012-10-25

    From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow's milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.

  20. Fluorescent bioassays for toxic metals in milk and yoghurt

    PubMed Central

    2012-01-01

    Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products. PMID:23098077

  1. Actinide halide complexes

    SciTech Connect

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1991-02-07

    A compound of the formula MX{sub n}L{sub m} wherein M = Th, Pu, Np,or Am thorium, X = a halide atom, n = 3 or 4, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is 3 or 4 for monodentate ligands or is 2 for bidentate ligands, where n + m = 7 or 8 for monodentate ligands or 5 or 6 for bidentate ligands, a compound of the formula MX{sub n} wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  2. Solution-based metal enhanced fluorescence with gold and gold/silver core-shell nanorods

    NASA Astrophysics Data System (ADS)

    Ren, Zebin; Li, Xiaoyi; Guo, Jingxia; Wang, Ruibo; Wu, Yanni; Zhang, Mingdi; Li, Caixia; Han, Qingyan; Dong, Jun; Zheng, Hairong

    2015-12-01

    Metal enhanced fluorescence of Oxazine720 fluorophore with gold and gold/silver core-shell nanorods is investigated experimentally in aqueous solution system. Metallic nanorods are synthesized for providing proper localized surface plasmon resonance and necessary enhancement to the fluorophore molecule. The experimental observation shows that the fluorescence enhancement increases firstly and then decreases when the concentration of metallic nanorods increases, which is resulted by the competition between enhanced emission and inner-filtering effect. Further investigation with different amounts of metallic nanorods shows that the relationship between metal enhanced fluorescence and spectral correlation strongly depends on the concentration of metallic nanorods.

  3. Process and composition for drying of gaseous hydrogen halides

    DOEpatents

    Tom, Glenn M.; Brown, Duncan W.

    1989-08-01

    A process for drying a gaseous hydrogen halide of the formula HX, wherein X is selected from the group consisting of bromine, chlorine, fluorine, and iodine, to remove water impurity therefrom, comprising: contacting the water impurity-containing gaseous hydrogen halide with a scavenger including a support having associated therewith one or more members of the group consisting of: (a) an active scavenging moiety selected from one or more members of the group consisting of: (i) metal halide compounds dispersed in the support, of the formula MX.sub.y ; and (ii) metal halide pendant functional groups of the formula -MX.sub.y-1 covalently bonded to the support, wherein M is a y-valent metal, and y is an integer whose value is from 1 to 3; (b) corresponding partially or fully alkylated compounds and/or pendant functional groups, of the metal halide compounds and/or pendant functional groups of (a); wherein the alkylated compounds and/or pendant functional groups, when present, are reactive with the gaseous hydrogen halide to form the corresponding halide compounds and/or pendant functional groups of (a); and M being selected such that the heat of formation, .DELTA.H.sub.f of its hydrated halide, MX.sub.y.(H.sub.2 O).sub.n, is governed by the relationship: .DELTA.H.sub.f .gtoreq.n.times.10.1 kilocalories/mole of such hydrated halide compound wherein n is the number of water molecules bound to the metal halide in the metal halide hydrate. Also disclosed is an appertaining scavenger composition and a contacting apparatus wherein the scavenger is deployed in a bed for contacting with the water impurity-containing gaseous hydrogen halide.

  4. The Silver Halides

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1977-01-01

    Illustrates the type of fractional bonding for solid silver halides. Treats the silver halides as electron excess compounds, and develops a model of a localized bonding unit that may be iterated in three dimensions to describe the bulk phase. (MLH)

  5. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  6. Metal enhanced fluorescence of Ag-nanoshell dimer

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Chen, Huang-Chih; Chen, Bae-Renn; Kuo, Mao-Kuen

    2014-04-01

    The plasmon modes of Ag-nanoshell dimer on metal enhanced fluorescence (MEF) are studied theoretically. The amplified excitation rate of a dimer (two identical Ag nanoshells) illuminated by a plane wave for exciting a molecule located at the gap center is calculated. Subsequently, the apparent quantum yield of the emission of the excited molecule affected by the dimer is investigated. The multiple multipole method is used for the both simulations. Finally, the enhancement factor of the dimer on the overall photoluminescence of the molecule in terms of the two parameters is evaluated. Our results show that Ag-nanoshell dimer is a dual-band photoluminescence enhancer for MEF at the bonding dipole and quadrupole modes. The former is broadband, and the latter narrowband. Both bands depend on the gap size. Moreover, the average enhancement factor of Ag-nanoshell dimer for MEF with a Stokes shift is discussed.

  7. Containerless study of metal evaporation by laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, Robert A.; Nordine, Paul C.

    1987-01-01

    Laser induced fluorescence (LIF) detection of atomic vapors was used to study evaporation from electromagnetically levitated and CW CO2 laser-heated molybdenum spheres and resistively-heated tungsten filaments. Electromagnetic (EM) levitation in combination with laser heating of tungsten, zirconium, and aluminum specimens was also investigated. LIF intensity vs temperature data were obtained for molybdenum atoms and six electronic states of atomic tungsten, at temperatures up to the melting point of each metal. The detected fraction of the emitted radiation was reduced by self-absorption effects at the higher experimental temperatures. Vaporization enthalpies derived from data for which less than half the LIF intensity was self-absorbed were -636 + or - 24 kJ/g-mol for Mo and 831 + or - 32 kJ/g-mol for W. Space-based applications of EM levitation in combination with radiative heating are discussed.

  8. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    SciTech Connect

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J.; Denissen, C.; Suijker, J.

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  9. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    NASA Astrophysics Data System (ADS)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Denissen, C.; Suijker, J.; Awakowicz, P.; Mentel, J.

    2015-08-01

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  10. Chemoselective Coupling of 1,1-Bis[(pinacolato)boryl]alkanes for the Transition-Metal-Free Borylation of Aryl and Vinyl Halides: A Combined Experimental and Theoretical Investigation.

    PubMed

    Lee, Yeosan; Baek, Seung-Yeol; Park, Jinyoung; Kim, Seoung-Tae; Tussupbayev, Samat; Kim, Jeongho; Baik, Mu-Hyun; Cho, Seung Hwan

    2017-01-18

    A new transition-metal-free borylation of aryl and vinyl halides using 1,1-bis[(pinacolato)boryl]alkanes as boron sources is described. In this transformation one of the boron groups from 1,1-bis[(pinacolato)boryl]alkanes is selectively transferred to aryl and vinyl halides in the presence of sodium tert-butoxide as the only activator to form organoboronate esters. Under the developed borylation conditions, a broad range of organohalides are borylated with excellent chemoselectivity and functional group compatibility, thus offering a rare example of a transition-metal-free borylation protocol. Experimental and theoretical studies have been performed to elucidate the reaction mechanism, revealing the unusual formation of Lewis acid/base adduct between organohalides and α-borylcarbanion, generated in situ from the reaction of 1,1-bis[(pinacolato)boryl]alkanes with an alkoxide base, to facilitate the borylation reactions.

  11. Analysis of molecular structure, spectroscopic properties (FT-IR, micro-Raman and UV-vis) and quantum chemical calculations of free and ligand 2-thiopheneglyoxylic acid in metal halides (Cd, Co, Cu, Ni and Zn).

    PubMed

    Gökce, Halil; Bahçeli, Semiha

    2013-12-01

    In this study, molecular geometries, experimental vibrational wavenumbers, electronic properties and quantum chemical calculations of 2-thiopheneglyoxylic acid molecule, (C6H4O3S), and its metal halides (Cd, Co, Cu, Ni and Zn) which are used as pharmacologic agents have been investigated experimentally by FT-IR, micro-Raman and UV-visible spectroscopies and elemental analysis. Meanwhile the vibrational calculations were verified by DFT/B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets in the ground state, for free TPGA molecule and its metal halide complexes, respectively, for the first time. The calculated fundamental vibrational frequencies for the title compounds are in a good agreement with the experimental data.

  12. Fluorescence quenching of water-soluble conjugated polymer by metal cations and its application in sensor.

    PubMed

    Chen, Yan-Guo; Zhao, Dan; He, Zhi-Ke; Ai, Xin-Ping

    2007-02-01

    The effects of different metal cations on the fluorescence of water-soluble conjugated polymer (CP) and their quenching mechanism have been explored. Most transition metal cations, especially noble metal cations, such as Pd2+, Ru3+, and Pt2+ possessed higher quenching efficiency to CP fluorescence than that of the main group metal cations and other transition metal cations, which have filled or half-full outmost electron layer configurations. Base on this, rapid, sensitive detection of noble metal cations can be realized and a novel quencher-tether-ligand (QTL) probe was developed to detect avidin and streptavidin.

  13. Metal accumulation and toxicity measured by PAM--chlorophyll fluorescence in seven species of marine macroalgae.

    PubMed

    Baumann, Hans A; Morrison, Liam; Stengel, Dagmar B

    2009-05-01

    The effects of five metals, copper (Cu), chromium (Cr), Zinc (Zn), cadmium (Cd) and lead (Pb), on photosynthetic activity, measured as pulse amplitude modulation (PAM) chlorophyll fluorescence yield, was monitored in seven species of green, red and brown macroalgae over a 14d period. The 10micromoll(-1) of Cr and Zn reduced chlorophyll fluorescence of all species by day 4, and 10micromoll(-1) of Cu and Cd reduced the fluorescence of some species; however, fluorescence yields of all species were unaffected by 10micromoll(-1) of Pb. Metals were generally accumulated in the order of Cu>Pb>Zn>Cr>Cd. Ulva intestinalis accumulated the highest amounts of all metals, and Cladophora rupestris the lowest. A relationship between internal metal concentration and fluorescence was not always evident as in some cases fluorescence was reduced at low metal contents. In the case of Zn, fluorescence was lowest in plants which contained lowest concentrations after 14d-exposure, possibly because plants had died and Zn leached out of the algal cells. The relationship between internal metal concentration and fluorescence was algal species and metal-specific.

  14. A combined metal-halide/metal flux synthetic route towards type-I clathrates: crystal structures and thermoelectric properties of A8Al8Si38 (A = K, Rb, and Cs).

    PubMed

    Baran, Volodymyr; Senyshyn, Anatoliy; Karttunen, Antti J; Fischer, Andreas; Scherer, Wolfgang; Raudaschl-Sieber, Gabriele; Fässler, Thomas F

    2014-11-10

    Single-phase samples of the compounds K8Al8Si38 (1), Rb8Al8Si38 (2), and Cs7.9Al7.9Si38.1 (3) were obtained with high crystallinity and in good quantities by using a novel flux method with two different flux materials, such as Al and the respective alkali-metal halide salt (KBr, RbCl, and CsCl). This approach facilitates the removal of the product mixture from the container and also allows convenient extraction of the flux media due to the good solubility of the halide salts in water. The products were analyzed by means of single-crystal X-ray structure determination, powder X-ray and neutron diffraction experiments, (27)Al-MAS NMR spectroscopy measurements, quantum chemical calculations, as well as magnetic and transport measurements (thermal conductivity, electrical resistivity, and Seebeck coefficient). Due to the excellent quality of the neutron diffraction data, the difference between the nuclear scattering factors of silicon and aluminum atoms was sufficient to refine their mixed occupancy at specific sites. The role of variable-range hopping for the interpretation of the resistivity and the Seebeck coefficient is discussed.

  15. Actinide halide complexes

    DOEpatents

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  16. Actinide halide complexes

    DOEpatents

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  17. Recent advances in technetium halide chemistry.

    PubMed

    Poineau, Frederic; Johnstone, Erik V; Czerwinski, Kenneth R; Sattelberger, Alfred P

    2014-02-18

    Transition metal binary halides are fundamental compounds, and the study of their structure, bonding, and other properties gives chemists a better understanding of physicochemical trends across the periodic table. One transition metal whose halide chemistry is underdeveloped is technetium, the lightest radioelement. For half a century, the halide chemistry of technetium has been defined by three compounds: TcF6, TcF5, and TcCl4. The absence of Tc binary bromides and iodides in the literature was surprising considering the existence of such compounds for all of the elements surrounding technetium. The common synthetic routes that scientists use to obtain binary halides of the neighboring elements, such as sealed tube reactions between elements and flowing gas reactions between a molecular complex and HX gas (X = Cl, Br, or I), had not been reported for technetium. In this Account, we discuss how we used these routes to revisit the halide chemistry of technetium. We report seven new phases: TcBr4, TcBr3, α/β-TcCl3, α/β-TcCl2, and TcI3. Technetium tetrachloride and tetrabromide are isostructural to PtX4 (X = Cl or Br) and consist of infinite chains of edge-sharing TcX6 octahedra. Trivalent technetium halides are isostructural to ruthenium and molybdenum (β-TcCl3, TcBr3, and TcI3) and to rhenium (α-TcCl3). Technetium tribromide and triiodide exhibit the TiI3 structure-type and consist of infinite chains of face-sharing TcX6 (X = Br or I) octahedra. Concerning the trichlorides, β-TcCl3 crystallizes with the AlCl3 structure-type and consists of infinite layers of edge-sharing TcCl6 octahedra, while α-TcCl3 consists of infinite layers of Tc3Cl9 units. Both phases of technetium dichloride exhibit new structure-types that consist of infinite chains of [Tc2Cl8] units. For the technetium binary halides, we studied the metal-metal interaction by theoretical methods and magnetic measurements. The change of the electronic configuration of the metal atom from d(3) (Tc

  18. Metal-clad optical waveguide fluorescence device for the detection of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Margheri, Giancarlo; Giorgetti, Emilia; Marsili, Paolo; Zoppi, Angela; Lascialfari, Luisa; Cicchi, Stefano

    2014-07-01

    We developed Hg-sensing chips by decorating the external surface of metal-clad optical waveguides with a monolayer of Hg-sensitive fluorescent molecular probes. The emission properties of the original water-soluble form of the molecule were previously found to be selectively quenched in the presence of Hg ions. The fabricated samples were tested with optical waveguide fluorescence spectroscopy by putting them in contact with a 5-μM water solution of Hg ions and recording the emission spectra versus incubation time. The estimate of the limit of detection was 150 nM. A preliminary evaluation of the selectivity of the structure was also performed by using Cd as possible interfering analytes.

  19. Chemistry of soluble β-diketiminatoalkaline-earth metal complexes with M-X bonds (M=Mg, Ca, Sr; X=OH, Halides, H).

    PubMed

    Sarish, Sankaranarayana Pillai; Nembenna, Sharanappa; Nagendran, Selvarajan; Roesky, Herbert W

    2011-03-15

    Victor Grignard's Nobel Prize-winning preparation of organomagnesium halides (Grignard reagents) marked the formal beginning of organometallic chemistry with alkaline earth metals. Further development of this invaluable synthetic route, RX+Mg→RMgX, with the heavier alkaline earth metals (Ca and Sr) was hampered by limitations in synthetic methodologies. Moreover, the lack of suitable ligands for stabilizing the reactive target molecules, particularly with the more electropositive Ca and Sr, was another obstacle. The absence in the literature, until just recently, of fundamental alkaline earth metal complexes with M-H, M-F, and M-OH (where M is the Group 2 metal Mg, Ca, or Sr) bonds amenable for organometallic reactions is remarkable. The progress in isolating various unstable compounds of p-block elements with β-diketiminate ligands was recently applied to Group 2 chemistry. The monoanionic β-diketiminate ligands are versatile tools for addressing synthetic challenges, as amply demonstrated with alkaline earth complexes: the synthesis and structural characterization of soluble β-diketiminatocalcium hydroxide, β-diketiminatostrontium hydroxide, and β-diketiminatocalcium fluoride are just a few examples of our contribution to this area of research. To advance the chemistry beyond synthesis, we have investigated the reactivity and potential for applications of these species, for example, through the demonstration of dip coating surfaces with CaCO(3) and CaF(2) with solutions of the calcium hydroxide and calcium fluoride complexes, respectively. In this Account, we summarize some recent developments in alkaline earth metal complex chemistry, particularly of Mg, Ca, and Sr, through the utilization of β-diketiminate ligands. We focus on results generated in our laboratory but give due mention to work from other groups as well. We also highlight the closely related chemistry of the Group 12 element Zn, as well as the important chemistry developed by other groups

  20. Complete-velocity-range description of negative-ion conversion of neutral atoms on an alkali-metal-halide surface under grazing geometry

    NASA Astrophysics Data System (ADS)

    Zhou, Hu; Zhou, Wang; Zhang, Meixiao; Zhou, Lihua; Ma, Yulong; Wang, Guangyi; Wu, Yong; Li, Bowen; Chen, Ximeng

    2016-06-01

    We propose a simple theoretical approach to consider negative-ion conversion of neutral atoms grazing on alkali-metal-halide crystal surfaces over the complete velocity range. The conversion process is viewed as a series of successive binary collisions between the projectile and the negatively charged sites on the surface along their trajectories due to localization of valence-band electrons at the anionic sites of the crystal. Conversion from F0 to F- via grazing scattering in LiF(100) and KI(100) is demonstrated with this model, which incorporates the key factors of image interaction and Mott-Littleton polarization interaction for electron capture. It also incorporates the decrease in the electron affinity due to Coulomb barrier tunneling of large-velocity negative ions to the vacuum level near surface anion sites. The pronounced differences in the efficiency of F- formation at LiF(100) and KI(100) surfaces are well explained by the proposed model. The relative efficiency and related saturation of the negative-ion formation for LiF and KI crystals compare well with experimental results.

  1. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    SciTech Connect

    Yu, Zongchao; Wang, Fengqin; Lin, Xiangyi; Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun; Zhao, Yongnan; Li, Guodong

    2015-12-15

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)–based metal-organic frameworks, Zn{sub 3}L{sub 3}(DMF){sub 2} (1) and Zn{sub 3}L{sub 3}(DMA){sub 2}(H{sub 2}O){sub 3} (2) (L=4,4′-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe{sup 3+} and Al{sup 3+} by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe{sup 3+}. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity. - Graphical abstract: Two MOFs have been selected as the fluorescence sensing materials for selectively sensing mitroaromatic compounds and metal ions. The high selectivity makes them promising fluorescence sensors for detecting and recognizing nitroaniline and Fe{sup 3+} or Al{sup 3+}.

  2. Metallic Nanomaterials for Sensitivity Enhancement of Fluorescence Detection

    PubMed Central

    Goldys, Ewa M.; Xie, Fang

    2008-01-01

    Utrasensitive detection of trace analytes by fluorescence benefits for fluorescence amplifying substrates. We review here our recent work concerned with understanding of enhancement mechanisms and formation of three such substrates: silver fractals, silver coated gold nanoparticles deposited on glass and fluorescence enhancing gold colloids. PMID:27879741

  3. APPARATUS FOR THE PRODUCTION OF LITHIUM METAL

    DOEpatents

    Baker, P.S.; Duncan, F.R.; Greene, H.B.

    1961-08-22

    Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

  4. Rigidifying Fluorescent Linkers by Metal-Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement

    SciTech Connect

    Wei, ZW; Gu, ZY; Arvapally, RK; Chen, YP; McDougald, RN; Ivy, JF; Yakovenko, AA; Feng, DW; Omary, MA; Zhou, HC

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 +/- 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  5. Fluorescent metal nanoshell and CK19 detection on single cell image

    SciTech Connect

    Zhang, Jian; Fu, Yi; Li, Ge; Lakowicz, Joseph R.; Zhao, Richard Y.

    2011-09-16

    Highlights: {yields} Novel metal nanoshell as fluorescence imaging agent. {yields} Fluorescent mAb-metal complex with enhanced intensity and shortened lifetime. {yields} Immuno-interactions of mAb-metal complexes with CK19 molecules on CNCAP and HeLa cell surfaces. {yields} Isolation of conjugated mAb-metal complexes from cellular autofluorescence on cell image. -- Abstract: In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10 nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.

  6. Highly sensitive C-reactive protein (CRP) assay using metal-enhanced fluorescence (MEF)

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Keegan, Gemma L.; Stranik, Ondrej; Brennan-Fournet, Margaret E.; McDonagh, Colette

    2015-07-01

    Fluorescence has been extensively employed in the area of diagnostic immunoassays. A significant enhancement of fluorescence can be achieved when noble metal nanoparticles are placed in close proximity to fluorophores. This effect, referred to as metal-enhanced fluorescence (MEF), has the potential to produce immunoassays with a high sensitivity and a low limit of detection (LOD). In this study, we investigate the fluorescence enhancement effect of two different nanoparticle systems, large spherical silver nanoparticles (AgNPs) and gold edge-coated triangular silver nanoplates, and both systems were evaluated for MEF. The extinction properties and electric field enhancement of both systems were modeled, and the optimum system, spherical AgNPs, was used in a sandwich immunoassay for human C-reactive protein with a red fluorescent dye label. A significant enhancement in the fluorescence was observed, which corresponded to an LOD improvement of 19-fold compared to a control assay without AgNPs.

  7. A highly stable dynamic fluorescent metal-organic framework for selective sensing of nitroaromatic explosives.

    PubMed

    Gong, Yun-Nan; Jiang, Long; Lu, Tong-Bu

    2013-12-07

    A dynamic fluorescent metal-organic framework has been constructed using triphenylene-2,6,10-tricarboxylate and Tb(3+) as building blocks, which exhibits guest-responsive structural dynamism and selective sensing of nitroaromatic explosives.

  8. Reduced lifetimes are directly correlated with excitation irradiance in metal-enhanced fluorescence (MEF).

    PubMed

    Karolin, Jan O; Geddes, Chris D

    2012-11-01

    We describe a fundamental observation in Metal-Enhanced Fluorescence (MEF), which has become a leading technology in the life sciences today, namely, how the lifetime of fluorophores near-to metallic plasmon-supporting silver islands/nanoparticles, modulates as a function of excitation power irradiance. This finding is in stark contrast to that observed in classical far-field fluorescence spectroscopy, where excitation power does not influence fluorophore radiative decay/lifetime.

  9. An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions.

    PubMed

    Xu, Wang; Ren, Changliang; Teoh, Chai Lean; Peng, Juanjuan; Gadre, Shubhankar Haribhau; Rhee, Hyun-Woo; Lee, Chi-Lik Ken; Chang, Young-Tae

    2014-09-02

    Herein, a small-molecule fluorescent sensor array for rapid identification of seven heavy metal ions was designed and synthesized, with its sensing mechanism mimicking that of a tongue. The photoinduced electron transfer and intramolecular charge transfer mechanism result in combinatorial interactions between sensor array and heavy metal ions, which lead to diversified fluorescence wavelength shifts and emission intensity changes. Upon principle component analysis (PCA), this result renders clear identification of each heavy metal ion on a 3D spatial dispersion graph. Further exploration provides a concentration-dependent pattern, allowing both qualitative and quantitative measurements of heavy metal ions. On the basis of this information, a "safe-zone" concept was proposed, which provides rapid exclusion of versatile hazardous species from clean water samples based on toxicity characteristic leaching procedure standards. This type of small-molecule fluorescent sensor array could open a new avenue for multiple heavy metal ion detection and simplified water quality analysis.

  10. Molecular compressibility of some halides in alcohols

    NASA Technical Reports Server (NTRS)

    Serban, C.; Auslaender, D.

    1974-01-01

    After measuring ultrasonic velocity and density, the molecular compressibility values from Wada's formula were calculated, for alkali metal halide solutions in methyl, ethyl, butyl, and glycol alcohol. The temperature and concentration dependence were studied, finding deviations due to the hydrogen bonds of the solvent.

  11. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    Metallic particles and surfaces display diverse and complex optical properties. Examples include the intense colors of noble metal colloids, surface plasmon resonance absorption by thin metal films, and quenching of excited fluorophores near the metal surfaces. Recently, the interactions of fluorophores with metallic particles and surfaces (metals) have been used to obtain increased fluorescence intensities, to develop assays based on fluorescence quenching by gold colloids, and to obtain directional radiation from fluorophores near thin metal films. For metal-enhanced fluorescence it is difficult to predict whether a particular metal structure, such as a colloid, fractal, or continuous surface, will quench or enhance fluorescence. In the present report we suggest how the effects of metals on fluorescence can be explained using a simple concept, based on radiating plasmons (RPs). The underlying physics may be complex but the concept is simple to understand. According to the RP model, the emission or quenching of a fluorophore near the metal can be predicted from the optical properties of the metal structures as calculated from electrodynamics, Mie theory, and/or Maxwell’s equations. For example, according to Mie theory and the size and shape of the particle, the extinction of metal colloids can be due to either absorption or scattering. Incident energy is dissipated by absorption. Far-field radiation is created by scattering. Based on our model small colloids are expected to quench fluorescence because absorption is dominant over scattering. Larger colloids are expected to enhance fluorescence because the scattering component is dominant over absorption. The ability of a metal’s surface to absorb or reflect light is due to wavenumber matching requirements at the metal–sample interface. Wavenumber matching considerations can also be used to predict whether fluorophores at a given distance from a continuous planar surface will be emitted or quenched. These

  12. Process for Making a Semiconductor Device with Barrier Film Formation Using a Metal Halide and Products Thereof

    DTIC Science & Technology

    1998-08-20

    under development within the semiconductor industry the most prevalent is the use of nitrides of the transition metals titanium and tungsten. The...processing tool. The pressure within the deposition chamber 30 should be 10Ŝ mbar or less, more preferably 10ŝ mbar or less, and still more...precursor in forming the diffusion barrier film, the precursor, e.g., BaF2 or SrF2 , can be deposited for a sufficient duration of time to ensure

  13. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    PubMed

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  14. Recognition- and Reactivity-Based Fluorescent Probes for Studying Transition Metal Signaling in Living Systems

    PubMed Central

    2015-01-01

    Conspectus Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed “recognition” and “reactivity”. Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give

  15. Fluorescent metal nanoshell and CK19 detection on single cell image.

    PubMed

    Zhang, Jian; Fu, Yi; Li, Ge; Lakowicz, Joseph R; Zhao, Richard Y

    2011-09-16

    In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.

  16. Floating AC-DEP (dielectrophoretic) manipulations of fluorescent nanoparticle at metal nanostructure for plasmonic applications

    NASA Astrophysics Data System (ADS)

    Kim, J.; Shin, H. J.; Hwang, K. S.; Park, J. H.

    2014-11-01

    We propose the fluorescent nanoparticle manipulations at nano-metal structures with floating AC-DEP force for plasmonic applications. The electrode gap was optimized to induce enough DEP force around the nano-structure for manipulation of the nanoparticles. 10um wide gap of electrode was acquired to apply the floating AC-DEP force at various designed metal nano-structure such as nanowire, y-branch and vortex. The all shape of nano-metal structures are formed at the gap of microelectrode and not connected with microelectrode. The gold nano-structures in the gap of microelectrode were fabricated with e-beam lithography and lift-off process. Before the formation of metal nanostructure, micro electrodes for applying the electric field around the metal nano-structures were fabricated with photolithography and lift-off process. Cadmium selenide (CdSe/ZnS) QDs (0.8 nM, emission wavelength of 605 nm) with a 25 nm zinc sulfide capping layer and 100nm polystyrene nano bead (1 nM, emission wavelength of 610nm) were used as fluorescent nanoparticles. We applied the 8 Vpp, 3 MHz sine wave for the positive DEP force, and it resulted in 108 V/m electric field and 1011 V/m electric field gradient around gold nanowire with floating AC. The fluorescent nanoparticle's attachment at the nanowire is confirmed by the fluorescent optical analysis. The fluorescent nanoparticles are located successfully at designed metal nano-structures for plasmonic applications.

  17. Determination of metal ions by fluorescence anisotropy exhibits a broad dynamic range

    NASA Astrophysics Data System (ADS)

    Thompson, Richard B.; Maliwal, Badri P.; Fierke, Carol A.

    1998-05-01

    Recently, we have shown that metal ions free in solution may be determined at low levels by fluorescence anisotropy (polarization) measurements. Anisotropy measurements enjoy the advantages of wavelength ratiometric techniques for determining metal ions such as calcium, because anisotropy measurements are ratiometric as well. Furthermore, fluorescence anisotropy may be imaged in the microscope. An advantage of anisotropy not demonstrated for wavelength ratiometric approaches using indicators such as Fura-2 and Indo-1 is that under favorable circumstances anisotropy-based determinations exhibit a much broader dynamic range in metal ion concentration. Determinations of free Zn(II) in the picomolar range are demonstrated.

  18. Dense Heavy Metal Aerosol Monitoring by Direct X-Ray Fluorescence

    DTIC Science & Technology

    1989-06-01

    TECHNICAL REPORT BRL-TR-3003 BRL 0 sDENSE HEAVY METAL AEROSOL MONITORING BY DIRECT X-RAY FLUORESCENCE I GEORGE M. THOMSON flgDTIC ELF% CTE b JUN 16...21005-5066 /F 6261A jIN8 1001I 11. TITLE (-’mi- Sawt Cauif&aan)II DENSE HEAVY METAL AEROSOL MONITORMN BY DIRECT X-RAY FLUORESCENCE 12. PERSONAL AUTHOR(S...Before proceeding, a definition of the term "dense, heavy - metal aerosol" is in order. For present purposes, it is an aerosol in which the suspended

  19. Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide.

    PubMed

    Neupane, Lok Nath; Thirupathi, Ponnaboina; Jang, Sujung; Jang, Min Jung; Kim, Jung Hwa; Lee, Keun-Hyeung

    2011-09-15

    Fluorescent sensor (DMH) based on dipeptide was efficiently synthesized in solid phase synthesis. The dipeptide sensor shows sensitive response to Ag(I), Hg(II), and Cu(II) among 14 metal ions in 100% aqueous solution. The fluorescent sensor differentiates three heavy metal ions by response type; turn on response to Ag(I), ratiometric response to Hg(II), and turn off detection of Cu(II). The detection limits of the sensor for Ag(I) and Cu(II) were much lower than the EPA's drinking water maximum contaminant levels (MCL). Specially, DMH penetrated live cells and detected intracellular Ag(+) by turn on response. We described the fluorescent change, binding affinity, detection limit for the metal ions. The study of a heavy metal-responsive sensor based on dipeptide demonstrates its potential utility in the environment field.

  20. Insight into the Unique Fluorescence Quenching Property of Metal-Organic Frameworks upon DNA Binding.

    PubMed

    Wang, Huai-Song; Liu, Hai-Ling; Wang, Kang; Ding, Ya; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan

    2017-10-12

    Metal-organic frameworks (MOFs) have been successfully used as efficient quenchers for fluorescent DNA detection. However, the surface charge property of MOFs can inevitably affect their fluorescence quenching behavior. Herein, nanoscale MOFs (NMOFs), including MOF nanosheets and nanoparticles, have been employed to investigate the relationship between the fluorescence quenching and surface properties of NMOFs. We find that the positively and negatively charged NMOFs exhibited totally opposite fluorescence quenching properties toward negatively charged FAM-labeled double-stranded DNA (dsDNA). On the contrast, they show negligible influence on the sensing of positively charged TAMRA-labeled dsDNA. This study provides a new insight of the fluorescence quenching property of NMOFs and offers a new concept for construction of ratiometric fluorescence DNA biosensors.

  1. Measuring and Imaging Metal Ions With Fluorescence-Based Biosensors: Speciation, Selectivity, Kinetics, and Other Issues.

    PubMed

    Thompson, Richard B; Fierke, Carol A

    2017-01-01

    Fluorescence-based biosensors have shown themselves to be a powerful tool for the study of a variety of chemical species in biological systems, notably including metal ions. This chapter provides an overview of several important issues in using such sensors to study metallobiochemistry. These issues include selectivity for the analyte over potential interferents, including those that do not themselves induce a signal, the different forms in which metal ions are found (speciation), the utility of metal ion buffers, and the importance of kinetics in studying metal ion binding reactions. Finally, the chapter briefly discusses some of the issues in understanding whole-organism distribution of metal ions and its control.

  2. Strong dependence of fluorescence quenching on the transition metal in layered transition metal dichalcogenide nanoflakes for nucleic acid detection.

    PubMed

    Loo, Adeline Huiling; Bonanni, Alessandra; Pumera, Martin

    2016-08-07

    In recent years, the application of transition metal dichalcogenides for the development of biosensors has been receiving widespread attention from researchers, as demonstrated by the surge in studies present in the field. While different transition metal dichalcogenide materials have been employed for the fabrication of fluorescent biosensors with superior performance, no research has been conducted to draw comparisons across materials containing different transition metals. Herein, the performance of MoS2 and WS2 nanoflakes for the fluorescence detection of nucleic acids is assessed. It is discovered that, at the optimal amount, MoS2 and WS2 nanoflakes exhibit a similar degree of fluorescence quenching, at 75% and 71% respectively. However, MoS2 nanoflakes have better performance in the areas of detection range and selectivity than WS2 nanoflakes. The detection range achieved with MoS2 nanoflakes is 9.60-366 nM while 13.3-143 nM with WS2 nanoflakes. In the context of selectivity, MoS2 nanoflakes display a signal difference of 97.8% between complementary and non-complementary DNA targets, whereas WS2 nanoflakes only exhibit 44.3%. Such research is highly beneficial as it delivers vital insights on how the performance of a fluorescent biosensor can be affected by the transition metal present. Furthermore, these insights can assist in the selection of suitable transition metal dichalcogenide materials for utilization in biosensor development.

  3. Metal-enhanced chemiluminescence from chromium, copper, nickel, and zinc nanodeposits: Evidence for a second enhancement mechanism in metal-enhanced fluorescence

    SciTech Connect

    Weisenberg, Micah; Zhang Yongxia; Geddes, Chris D.

    2010-09-27

    Over the past decade metal-fluorophore interactions, metal-enhanced fluorescence, have attracted significant research attention, with the technology now becoming common place in life science applications. In this paper, we address the underlying mechanisms of metal-enhanced fluorescence (MEF) and experimentally show using chemiluminescence solutions that MEF is indeed underpinned by two complimentary mechanisms, consistent with the recent reports by Geddes and co-workers [Zhang et al., J. Phys. Chem. C 113, 12095 (2009)] and their enhanced fluorescence hypothesis.

  4. Metal-enhanced chemiluminescence from chromium, copper, nickel, and zinc nanodeposits: Evidence for a second enhancement mechanism in metal-enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Weisenberg, Micah; Zhang, Yongxia; Geddes, Chris D.

    2010-09-01

    Over the past decade metal-fluorophore interactions, metal-enhanced fluorescence, have attracted significant research attention, with the technology now becoming common place in life science applications. In this paper, we address the underlying mechanisms of metal-enhanced fluorescence (MEF) and experimentally show using chemiluminescence solutions that MEF is indeed underpinned by two complimentary mechanisms, consistent with the recent reports by Geddes and co-workers [Zhang et al., J. Phys. Chem. C 113, 12095 (2009)] and their enhanced fluorescence hypothesis.

  5. Heavy metal chelator TPEN attenuates fura-2 fluorescence changes induced by cadmium, mercury and methylmercury.

    PubMed

    Ohkubo, Masato; Miyamoto, Atsushi; Shiraishi, Mitsuya

    2016-06-01

    Stimulation with heavy metals is known to induce calcium (Ca(2+)) mobilization in many cell types. Interference with the measurement of intracellular Ca(2+) concentration by the heavy metals in cells loaded with Ca(2+) indicator fura-2 is an ongoing problem. In this study, we analyzed the effect of heavy metals on the fura-2 fluorescence ratio in human SH-SY5Y neuroblastoma cells by using TPEN, a specific cell-permeable heavy metal chelator. Manganese chloride (30-300 µM) did not cause significant changes in the fura-2 fluorescence ratio. A high concentration (300 µM) of lead acetate induced a slight elevation in the fura-2 fluorescence ratio. In contrast, stimulation with cadmium chloride, mercury chloride or MeHg (3-30 µM) elicited an apparent elevation of the fura-2 fluorescence ratio in a dose-dependent manner. In cells stimulated with 10 or 30 µM cadmium chloride, the addition of TPEN decreased the elevated fura-2 fluorescence ratio to basal levels. In cells stimulated with mercury or MeHg, the addition of TPEN significantly decreased the elevation of the fura-2 fluorescence ratio induced by lower concentrations (10 µM) of mercury or MeHg, but not by higher concentrations (30 µM). Pretreatment with Ca(2+) channel blockers, such as verapamil, 2-APB or lanthanum chloride, resulted in different effects on the fura-2 fluorescence ratio. Our study provides a characterization of the effects of several heavy metals on the mobilization of divalent cations and the toxicity of heavy metals to neuronal cells.

  6. Microwave Assisted Synthesis, Characterisation and Fluorescence Studies of some Transition Metal Complexes with a Luminol Derivative.

    PubMed

    Aswathy, R; Mohanan, K

    2017-03-07

    A novel heterocyclic luminol derivative was synthesized by coupling diazotized 5-aminophthalhydrazide with 2-naphthol. This compound viz., Phthalhydrazide-5-azo-2-naphthol is versatile in forming stable metal complexes with cobalt(II), nickel(II), copper(II) and zinc(II) ions under microwave assisted solvent free conditions. The ligand and the metal complexes were characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, UV-Visible, IR, (1)H NMR, and ESR spectral studies wherever possible and applicable. The fluorescence spectra of the ligand and its metal complexes were also recorded. The fluorescence life time measurements were conducted and it was observed that binding of the ligand to the metal ion decreases the average life time of the metal complexes.

  7. Quenching of tryptophan fluorescence of bovine serum albumin under the effect of ions of heavy metals

    NASA Astrophysics Data System (ADS)

    Plotnikova, O. A.; Mel'nikov, A. G.; Mel'nikov, G. V.; Gubina, T. I.

    2016-01-01

    The interaction of heavy metals with bovine serum albumin (BSA) has been studied using data of quenching of intrinsic fluorescence of the protein by the ions of the heavy metals. Under the assumption of static quenching with formation of nonfluorescent complexes of fluorophores of BSA with heavy metals, conclusions have been drawn on the peculiarities of binding of the heavy metals to the protein. The values of the Stern-Volmer constants of association and those of the constants of BSA binding to the heavy metals decrease in the order Cu(II) > Pb(II) > Cd(II). It has been experimentally found that the copper ions have greater capacity to bind to the protein with the formation of the nonfluorescent complexes, which results in a significant decrease in the fluorescence intensity of the protein.

  8. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters.

    PubMed

    Zhang, Hui; Huang, Xin; Li, Luo; Zhang, Gaowen; Hussain, Irshad; Li, Zhen; Tan, Bien

    2012-01-14

    Water-soluble fluorescent copper, silver and gold nanoclusters with quantum yields of 2.2, 6.8 and 5.3%, respectively, are prepared by a robust photoreduction of their inorganic precursors in the presence of poly (methacrylic acid) functionalized with pentaerythritol tetrakis 3-mercaptopropionate. This journal is © The Royal Society of Chemistry 2012

  9. New-coated fluorescent silver nanoparticles with a fluorescein thiol esther derivative: fluorescent enhancement upon interaction with heavy metal ions

    NASA Astrophysics Data System (ADS)

    Fernández-Lodeiro, Javier; Nuñez, Cristina; Lodeiro, Adrián Fernández; Oliveira, Elisabete; Rodríguez-González, Benito; Dos Santos, Alcindo A.; Capelo, José Luis; Lodeiro, Carlos

    2014-03-01

    A new fluorescein thiol esther derivative L was successfully synthesized and fully characterized. The interaction of compound L with spherical silver nanoparticles (AgNPs) was explored in toluene, through the exchange of the tetraoctylammonium bromated (TOAB) molecules stabilizing the silver nanoparticle surface (AgNPs@TOAB). A new hybrid system AgNPs@ L was obtained in which an intense metal-enhancement fluorescence phenomenon takes place. The behaviour of the new-coated AgNPs@ L system was explored in the presence of silent toxic metal ions, such as Hg2+, Pb2+ and Tl+ in organic phase. Surprisingly, system AgNPs@ L reveals to be sensitive to Hg2+ ions over the other heavy metal ions studied.

  10. Silicon Quantum Dot-Based Fluorescence Turn-On Metal Ion Sensors in Live Cells.

    PubMed

    Dhenadhayalan, Namasivayam; Lee, Hsin-Lung; Yadav, Kanchan; Lin, King-Chuen; Lin, Yih-Tyng; Chang, A H H

    2016-09-14

    Multiple sensor systems are designed by varying aza-crown ether moiety in silicon quantum dots (SiQDs) for detecting individual Mg(2+), Ca(2+), and Mn(2+) metal ions with significant selectivity and sensitivity. The detection limit of Mg(2+), Ca(2+), and Mn(2+) can reach 1.81, 3.15, and 0.47 μM, respectively. Upon excitation of the SiQDs which are coordinated with aza-crown ethers, the photoinduced electron transfer (PET) takes place from aza-crown ether moiety to the valence band of SiQDs core such that the reduced probability of electron-hole recombination may diminish the subsequent fluorescence. The fluorescence suppression caused by such PET effect will be relieved after selective metal ion is added. The charge-electron binding force between the metal ion and aza-crown ether hinders the PET and thereby restores the fluorescence of SiQDs. The design of sensor system is based on the fluorescence "turn-on" of SiQDs while in search of the appropriate metal ion. For practical application, the sensing capabilities of metal ions in the live cells are performed and the confocal image results reveal their promising applicability as an effective and nontoxic metal ion sensor.

  11. Novel aspects of fluorescence lifetime for molecules positioned close to metal surfaces

    NASA Astrophysics Data System (ADS)

    Aussenegg, F. R.; Leitner, A.; Lippitsch, M. E.; Reinisch, H.; Riegler, M.

    1987-10-01

    On metal surfaces with submicroscopic corrugations, surface-enhanced optical processes can be observed. Results obtained by picosecond time-resolved fluorescence spectroscopy for dye molecules in the proximity (0-50 nm) of silver islands films are reported. It is demonstrated how the rather complex dependence of the integral fluorescence intensity on the distance dye-islands, can be resolved in the contributions of different mechanisms by analysing the fluorescence decay curves at various distances. It turns out, that the enhancement of absorption influences only the peak fluorescence intensity without changing the decay time, while the enhancement of emission and dissipative losses reduces the decay time. Thus time-resolved spectroscopy opens the possibility to test theoretical concepts on surface enhancement and provides basic data for tailoring molecule-metal structures with well-defined surface-enhancement properties.

  12. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    PubMed

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications.

  13. Control of fluorescence in quantum emitter and metallic nanoshell hybrids for medical applications

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.; Guo, Jiaohan; J. Cid, José M.; De Hoyos Martinez, Jesús E.

    2017-03-01

    We study the light emission from a quantum emitter and double metallic nanoshell hybrid systems. Quantum emitters act as local sources which transmit their light efficiently due to a double nanoshell near field. The double nanoshell consists of a dielectric core and two outer nanoshells. The first nanoshell is made of a metal, and the second spacer nanoshell is made of a dielectric material or human serum albumin. We have calculated the fluorescence emission for a quantum emitter-double nanoshell hybrid when it is injected in an animal or a human body. Surface plasmon polariton resonances in the double nanoshell are calculated using Maxwell's equations in the quasi-static approximation, and the fluorescence emission is evaluated using the density matrix method in the presence of dipole-dipole interactions. We have compared our theory with two fluorescence experiments in hybrid systems in which the quantum emitter is Indocyanine Green or infrared fluorescent molecules. The outer spacer nanoshell of double metallic nanoshells consists of silica and human serum albumin with variable thicknesses. Our theory explains the enhancement of fluorescence spectra in both experiments. We find that the thickness of the spacer nanoshell layer increases the enhancement when the fluorescence decreases. The enhancement of the fluorescence depends on the type of quantum emitter, spacer layer, and double nanoshell. We also found that the peak of the fluorescence spectrum can be shifted by changing the shape and the size of the nanoshell. The fluorescence spectra can be switched from one peak to two peaks by removing the degeneracy of excitonic states in the quantum emitter. Hence, using these properties, one can use these hybrids as sensing and switching devices for applications in medicine.

  14. The Nature of Metal-Metal Interactions in Dimeric Hydrides and Halides of Group 11 Elements in the Light of High Level Relativistic Calculations.

    PubMed

    Dem'yanov, Piotr I; Polestshuk, Pavel M; Kostin, Vladimir V

    2017-03-08

    The titular calculations show that charges at metal atoms M are apparently the main factor governing the nature of M⋅⋅⋅M interactions in two-nuclear coinage-metal complexes, and there are certain critical values of positive charges on M atoms, on exceeding which the pair-wise M⋅⋅⋅M interactions and/or the binding between M atoms in such complexes become repulsive despite negative formation energies of such complexes, short M-M internuclear distances, and the existence of a bond critical point (BCP) between M atoms.

  15. UV-Fluorescent Sensing for Primary Selection of Metal-rich Seafloor Massive Sulfide Ore

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Nakatani, T.; Nakatani, N.; Arai, R.

    2012-12-01

    Seafloor massive sulfides (SMS) in the western Pacific have received much attention as resources for Au, Ag, Cu, Zn, and Pb. Because of the higher metal contents, the venture commercial mining project may start in 2013 in the East Manus Basin, Papua New Guinea. One of important problems to be solved is reducing the waste rock disposal costs for the economy. The best location for the reducing is on seafloor just after the excavation of SMS ores. The authors select UV-fluorescent sensing for primary selection of the ores, because no additional environmental impact is created with the application of the method. First of all, the effectiveness of the UV-fluorescent sensing by a combination system with a UV-light and a camera (See attached figure) in deep water condition is clarified. Then many UV-fluorescent data of SMS ore, SMS accompanied rock, and seafloor rock samples are collected. In the analyses phase, the ore and rock samples are classified into some groups by applying the cluster analysis to the metal contents at first. Then, using the UV fluorescent color brightness and contrasts of the ore and rock samples, the discriminant analysis based on Mahalanobis distance is applied. The higher possibility to identify the SMS ores containing valuable metals from camera image is suggested from the analyses. When additional UV-fluorescent and chemical assay data are obtained, the renewal of discriminant analysis is necessary. Therefore, the results and conclusions described in this study are tentative ones.; UV-fluorescent sensing

  16. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP,...

  17. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP,...

  18. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... hydrogen halide and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this...) of this section. (b) If any process vents within a process emit hydrogen halide and halogen HAP,...

  19. Metal-enhanced intrinsic fluorescence of nucleic acids using platinum nanostructured substrates

    NASA Astrophysics Data System (ADS)

    Akbay, Nuriye; Mahdavi, Farhad; Lakowicz, Joseph R.; Ray, Krishanu

    2012-10-01

    We investigated the feasibility of using platinum nanostructures to accomplish the metal-enhanced fluorescence (MEF) in the UV spectral region. We examine the possibility for detection of the intrinsic fluorescence from nucleotides and G-quadruplex DNA on platinum nanoparticles. Guanosine monophosphate (GMP) showed significant increases (˜20-fold) in fluorescence intensities in the presence of platinum nanostructures when compared to quartz controls. G-quadruplex DNA demonstrated ˜5-fold increase in fluorescence intensity and higher photostability in the presence of Pt nanostructures. We performed Finite Element Method simulations to explore how Pt nanoparticles interact with plane waves and conformed that the Pt nanostructures are promising for enhancing the fluorescence emission in the UV region.

  20. Metal-enhanced intrinsic fluorescence of nucleic acids using platinum nanostructured substrates

    PubMed Central

    Akbay, Nuriye; Mahdavi, Farhad; Lakowicz, Joseph R.; Ray, Krishanu

    2012-01-01

    We investigated the feasibility of using platinum nanostructures to accomplish the metal-enhanced fluorescence (MEF) in the UV spectral region. We examine the possibility for detection of the intrinsic fluorescence from nucleotides and G-quadruplex DNA on platinum nanoparticles. Guanosine monophosphate (GMP) showed significant increases (~20-fold) in fluorescence intensities in the presence of platinum nanostructures when compared to quartz controls. G-quadruplex DNA demonstrated ~5-fold increase in fluorescence intensity and higher photostability in the presence of Pt nanostructures. We performed finite element method simulations to explore how Pt nanoparticles interact with plane waves and conformed that the Pt nanostructures are promising for enhancing the fluorescence emission in the UV region. PMID:23002289

  1. Large-Scale Detection of Metals with a Small Set of Fluorescent DNA-Like Chemosensors

    PubMed Central

    2015-01-01

    An important advantage of pattern-based chemosensor sets is their potential to detect and differentiate a large number of analytes with only few sensors. Here we test this principle at a conceptual limit by analyzing a large set of metal ion analytes covering essentially the entire periodic table, employing fluorescent DNA-like chemosensors on solid support. A tetrameric “oligodeoxyfluoroside” (ODF) library of 6561 members containing metal-binding monomers was screened for strong responders to 57 metal ions in solution. Our results show that a set of 9 chemosensors could successfully discriminate the 57 species, including alkali, alkaline earth, post-transition, transition, and lanthanide metals. As few as 6 ODF chemosensors could detect and differentiate 50 metals at 100 μM; sensitivity for some metals was achieved at midnanomolar ranges. A blind test with 50 metals further confirmed the discriminating power of the ODFs. PMID:25255102

  2. Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake.

    PubMed

    Xu, Huacheng; Yan, Zaisheng; Cai, Haiyuan; Yu, Guanghui; Yang, Liuyan; Jiang, Helong

    2013-12-01

    Dissolved organic matter (DOM) affects the toxicity, mobility and bioavailability of metals in aquatic environment. In this study, the interactions between two metals of environmental concern [Cu(II) and Fe(III)] with DOM in a euthrophic algae-rich lake (Lake Taihu, China), including dissolved natural organic matter (NOM) and algal extracellular polymeric substance (EPS), were studied using fluorescence excitation-emission matrix (EEM) quenching titration combined with parallel factor (PARAFAC) analysis. Obvious protein-like peaks were detected in algal EPS matrix, while both protein- and humic-like peaks can be found in NOM. PARAFAC analysis identified four fluorescent components, including one humic-, one tryptophan- and two tyrosine-like components, from 114 EEM samples. It was shown that fluorescent tyrosine- (log K(M) > 5.21) and humic-like substances (log K(M) > 4.84) in NOM fraction exhibited higher metal binding capacities than those in EPS matrix, while algal EPS was characterized with a high metal-tryptophan-like substances affinity (log K(M) > 5.08). Moreover, for the eutrophic algae-rich lakes, fluorescent tryptophan- and humic-like substances were responsible for Cu transportation, whereas the mobility of Fe would be related with the tyrosine-like substances. The results facilitate a further insight into the biogeochemical behaviors of metals in eutrophic algae-rich ecosystems as well as other related aquatic environments. © 2013 Elsevier Inc. All rights reserved.

  3. An Investigation of Ion-Pairing of Alkali Metal Halides in Aqueous Solutions Using the Electrical Conductivity and the Monte Carlo Computer Simulation Methods

    PubMed Central

    Gujt, Jure; Bešter-Rogač, Marija; Hribar-Lee, Barbara

    2013-01-01

    The ion pairing is, in very dilute aqueous solutions, of rather small importance for solutions’ properties, which renders its precise quantification quite a laborious task. Here we studied the ion pairing of alkali halides in water by using the precise electric conductivity measurements in dilute solutions, and in a wide temperature range. The low-concentration chemical model was used to analyze the results, and to estimate the association constant of different alkali halide salts. It has been shown that the association constant is related to the solubility of salts in water and produces a ’volcano relationship’, when plotted against the difference between the free energy of hydration of the corresponding individual ions. The computer simulation, using the simple MB+dipole water model, were used to interprete the results, to find a microscopic basis for Collins’ law of matching water affinities. PMID:24526801

  4. An Investigation of Ion-Pairing of Alkali Metal Halides in Aqueous Solutions Using the Electrical Conductivity and the Monte Carlo Computer Simulation Methods.

    PubMed

    Gujt, Jure; Bešter-Rogač, Marija; Hribar-Lee, Barbara

    2014-02-01

    The ion pairing is, in very dilute aqueous solutions, of rather small importance for solutions' properties, which renders its precise quantification quite a laborious task. Here we studied the ion pairing of alkali halides in water by using the precise electric conductivity measurements in dilute solutions, and in a wide temperature range. The low-concentration chemical model was used to analyze the results, and to estimate the association constant of different alkali halide salts. It has been shown that the association constant is related to the solubility of salts in water and produces a 'volcano relationship', when plotted against the difference between the free energy of hydration of the corresponding individual ions. The computer simulation, using the simple MB+dipole water model, were used to interprete the results, to find a microscopic basis for Collins' law of matching water affinities.

  5. Resonance Fluorescence of Many Interacting Adatoms at a Metal Surface.

    DTIC Science & Technology

    1983-06-01

    a series of experiments in which the fluores - cence of an excited atom or molecule at a fixed distance from a metal surface (gold, silver and cooper...Theodore E. Madey Surface Chemistry Section Dr. Chia -wel Woo Department of Commerce Department of Physics National Bureau of Standards Northwestern

  6. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Popescu, Bogdan F. Gh; George, Martin J.; Bergmann, Uwe; Garachtchenko, Alex V.; Kelly, Michael E.; McCrea, Richard P. E.; Lüning, Katharina; Devon, Richard M.; George, Graham N.; Hanson, Akela D.; Harder, Sheri M.; Chapman, L. Dean; Pickering, Ingrid J.; Nichol, Helen

    2009-02-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  7. Metal-enhanced fluorescence of chlorophylls in light-harvesting complexes coupled to silver nanowires.

    PubMed

    Kowalska, Dorota; Krajnik, Bartosz; Olejnik, Maria; Twardowska, Magdalena; Czechowski, Nikodem; Hofmann, Eckhard; Mackowski, Sebastian

    2013-01-01

    We investigate metal-enhanced fluorescence of peridinin-chlorophyll protein coupled to silver nanowires using optical microscopy combined with spectrally and time-resolved fluorescence techniques. In particular we study two different sample geometries: first, in which the light-harvesting complexes are deposited onto silver nanowires, and second, where solution of both nanostructures are mixed prior deposition on a substrate. The results indicate that for the peridinin-chlorophyll complexes placed in the vicinity of the silver nanowires we observe higher intensities of fluorescence emission as compared to the reference sample, where no nanowires are present. Enhancement factors estimated for the sample where the light-harvesting complexes are mixed together with the silver nanowires prior deposition on a substrate are generally larger in comparison to the other geometry of a hybrid nanostructure. While fluorescence spectra are identical both in terms of overall shape and maximum wavelength for peridinin-chlorophyll-protein complexes both isolated and coupled to metallic nanostructures, we conclude that interaction with plasmon excitations in the latter remains neutral to the functionality of the biological system. Fluorescence transients measured for the PCP complexes coupled to the silver nanowires indicate shortening of the fluorescence lifetime pointing towards modifications of radiative rate due to plasmonic interactions. Our results can be applied for developing ways to plasmonically control the light-harvesting capability of photosynthetic complexes.

  8. Metal chelate fluorescence enhancement in micellar media and its applications to niobium and tantalum ultratrace determinations

    SciTech Connect

    Sanz-Medel, A.; Alonso, J.I.G.; Gonzalez, E.B.

    1985-07-01

    The fluorescence intensities of niobium and tantalum complexes with several fluorimetric organic reagents enhanced by micellar solutions have been examined. Flavone derivatives (morin and quercetin) produced the more intense fluorescing reactions in a cationic micellar medium and are studied in detail. Effects upon fluorescence of the nature of the tensoactive material used have been investigated. The charge of the micelle, presence of homomicelles in solution, and chemical structure of the cationic surfactant and lumophoric reagent proved to be the decisive factors which influence enhancement of fluorescence of a metal chelate by a surfactant. The dramatic effects of the appropriate organizing medium and of sulfate ions on fluorescence of the Nb(V) and Ta(V) complexes with morin and quercetin are discussed in an effort to elucidate what trends may exist in the fluorescence enhancement of metal chelates by micelles. A general reaction mechanism, for those systems studied, is proposed. Analytical applications of such micelle-enhanced reactions to the fluorimetric determination of ultratraces of Nb(V) and Ta(V) are also shown. 24 references, 10 figures, 3 tables.

  9. A fluorescent, photochromic and thermochromic trifunctional material based on a layered metal-viologen complex.

    PubMed

    Wan, Fang; Qiu, Li-Xia; Zhou, Liang-Liang; Sun, Yan-Qiong; You, Yi

    2015-11-14

    The azide anion as an energy acceptor and an electron donor has been introduced into a metal-viologen compound to form a 2D layered viologen-based trifunctional material, which exhibits the rare discolored function of reversible photochromism and thermochromism. Interestingly, its fluorescence can be switched by visible light irradiation and heating in air.

  10. Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals

    NASA Astrophysics Data System (ADS)

    Gérard, Davy; Wenger, Jérôme; Bonod, Nicolas; Popov, Evgeni; Rigneault, Hervé; Mahdavi, Farhad; Blair, Steve; Dintinger, José; Ebbesen, Thomas W.

    2008-01-01

    A bare nanometric aperture milled in a metallic film forms a simple nanophotonic device that can strongly enhance the optical properties of nearby emitters such as fluorescent molecules. In this paper, we experimentally and numerically compare the properties of circular apertures milled in gold and aluminum, and discuss the influence of a noble metal holding plasmonic resonances in the visible range such as gold. We report that nanometric apertures milled in gold exhibit significantly higher fluorescence enhancement factors than apertures in aluminum. We relate this effect to a larger enhancement of the excitation intensity and radiative rate for an aperture milled in gold. A spectrally resolved analysis of the fluorescence emission from apertures is also presented. Comparison with numerical simulations shows that the enhancement factor is maximum when the photonic density of modes is maximum. Altogether, these results provide crucial knowledge for the design of nanoapertures towards high-efficiency single-molecule analysis.

  11. Metal-Enhanced Fluorescence (MEF): Physical Characterization of Siver-Island Films and Exploring Sample Geometries.

    PubMed

    Pribik, R; Dragan, A I; Zhang, Y; Gaydos, C; Geddes, C D

    2009-08-01

    In this study we have analyzed metal-enhanced fluorescence (MEF) effects from different density silver island films (SiFs) and the effects of sample geometry on the observed enhancement of fluorescence (EF). It is shown that silver islands grow exponentially with SiF deposition time (DT<7min), optical density of SiFs almost linearly depends on DT; electrical conductivity is zero. At DT>7 min, silver islands merge, exhibiting a sharp increase in electrical conductivity. It has been shown that the newly proposed SiF-Glass sample geometry exhibits higher EF values than the commonly used in MEF studies SiF-SiF sample geometry. The SiF-Glass geometry demonstrates high sensitivity for surface immunoassays, a growing application of metal-enhanced fluorescence.

  12. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    SciTech Connect

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.

  13. An Evanescent Wave Fiber Optic Biosensor Based on Metal-Enhanced Fluorescence (MEF)

    NASA Astrophysics Data System (ADS)

    Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng

    Fiber-optic biosensors play a significant role in the development of biosensors because they can provide miniaturized and lowcost systems. Recently, there have been explosive developments in the Metal-Enhanced Fluorescence (MEF) technology to favorably modify the spectral properties and to alleviate photo-physical constraints. We report the development of core/shell nanoparticles with the silver core and silica shell for potential applications in fiber optic biosensor. The fluorescence intensity of the fluorescence probe doped core/shell nanoparticles is approximately 40-fold higher than that without core/shell nanoparticles doping. In addition, the enhanced emission of fluorescence intensity in different solvents changes from 1.2-to 100-fold as compared to the control sample.

  14. Use of algal fluorescence for determination of phytotoxicity of heavy metals and pesticides as environmental pollutants

    SciTech Connect

    Samson, G.; Popovic, R.

    1988-12-01

    The phytotoxicity of heavy metals and pesticides was studied by using the fluorescence induction from the alga Dunaliella tertiolecta. The complementary area calculated from the variable fluorescence induction was used as a direct parameter to estimate phytotoxicity. The value of this parameter was affected when algae were treated with different concentrations of mercury, copper, atrazine, DCMU, Dutox, and Soilgard. The toxic effect of these pollutants was estimated by monitoring the decrease in the complementary area, which reflects photosystem II photochemistry. Further, the authors have demonstrated the advantage of using the complementary area as a parameter of phytotoxicity over using variable fluorescence yield. The complementary area of algal fluorescence can be used as a simple and sensitive parameter in the estimation of the phytotoxicity of polluted water.

  15. Synthesis, metal coordination, and cellular internalization of a siderophore-bearing NIR fluorescent carbocyanine probe

    NASA Astrophysics Data System (ADS)

    Ye, Yunpeng; Xu, Baogang; Bloch, Sharon; Achilefu, Samuel

    2006-02-01

    In order to explore novel NIR fluorescent probes for optical imaging in biomedicines, one desferrioxamine (DFO)-bearing NIR fluorescent probe was designed and synthesized based on a dicarboxylic acid-containing carbocyanine (Cypate). Similar to the free DFO, the resulting conjugate Cypate-DFO showed high binding affinity with Fe(III) and Ga(III) as identified by ES-MS. Nevertheless, the iron binding was found to quench its fluorescent emission significantly, suggesting that the siderophore moiety might perturb the spectroscopic properties of the attached carbocyanine fluorophore through metal binding. As observed by fluorescence microscopy, Cypate-DFO showed significant cellular internalization in A549 cells in vitro. Further studies on novel Cypate-DFO derivatives of this type may reveal some exciting properties and biological activities.

  16. Versatile structures of group 13 metal halide complexes with 4,4'-bipy: from 1D coordination polymers to 2D and 3D metal-organic frameworks.

    PubMed

    Sevastianova, Tatiana N; Bodensteiner, Michael; Maulieva, Albina F; Davydova, Elena I; Virovets, Alexander V; Peresypkina, Eugenia V; Balázs, Gábor; Graßl, Christian; Seidl, Michael; Scheer, Manfred; Frenking, Gernot; Berezovskaya, Ekaterina A; Kazakov, Igor V; Khoroshilova, Olesya V; Timoshkin, Alexey Y

    2015-12-21

    A systematic structural study of complexes formed by aluminium and gallium trihalides with 4,4'-bipyridine (bipy) in 2 : 1, 1 : 1, and 1 : 2 stoichiometric ratios has been performed. Molecular structures of 11 complexes in the solid state have been determined for the first time. Complexes of 2 : 1 composition are molecular, while complexes of 1 : 1 composition form metal-organic frameworks of different kinds: an ionic 3D network (three interpenetrated lvt nets for AlCl3bipy), an ionic 2D network for AlBr3bipy and GaBr3bipy and a 1D coordination polymer in the case of GaCl3bipy. Thus, the nature of the Lewis acid plays a critical role in the structural type of the complex in the solid state. Incorporation of excess bipy molecules into (GaCl3bipy)∞ (formation of crystallosolvate) leads to an unprecedented change of the molecular structure from a non-ionic 1D coordination polymer to an ionic 2D metal organic framework [GaCl2bipy2](+)[GaCl4](-)·2bipy. As indicated by the temperature-dependent XRD study, removal of bipy by heating in a vacuum restores the non-ionic 1D structure. Quantum chemical computations for simple cluster model systems (up to eight Al and Ga atoms) reveal that ionic forms are slightly favourable, although the energy differences between the ionic and non-ionic structures are not large. These theoretical predictions are in good agreement with experimental findings. Thus, even relatively simple cluster models may be used to indicate the structural preferences in the solid state. Both experimental and computational IR frequency shifts of the in-plane ring bending mode of bipy upon complexation correlate well with the M-N bond distances in the complexes.

  17. Chelation-enhanced fluorescence detection of metal and nonmetal ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Czarnik, Anthony W.

    1992-04-01

    Our group has previously described large chelation-enhanced fluorescence (CHEF) effects upon the binding of metal ions, phosphates, and carboxylates to conjugate probes, providing large, readily measurable signals to these molecular recognition events. In understanding the structural requirements for CHEF, it is now possible to use the vast body of information on selective binding by azacrowns and cryptands in the synthesis of selective fluorescence probes. For example, a conjugate probe that allows for the selective, simultaneous assay of Zn(II) and Cd(II) ions has been synthesized and is described. In the homologous series of anthrylazamacrocycles that demonstrate chelation-enhanced fluorescence (CHEF) upon Zn(II) or Cd(II) binding in water, the pentacyclen derivative uniquely complexes Cd(II) with perturbation of the emission spectrum. The binding of anions such as phosphate and citrate give rise to fluorescence enhancements as large as six-fold; an observed pH dependence on the magnitude of fluorescence enhancements upon phosphate binding points to intracomplex protonation of the benzylic nitrogen by the HPO42- ion as the origin of this CHEF effect. Anthrylpolyamine conjugate probes yield large (up to 80-fold) changes in fluorescence upon binding to biological polyanions (e.g., DNA, heparin, and polyglutamate) at 1 M concentrations. These fluorescence changes have been used as the basis for a fluorometric assay of heparinase activity; the enzymatic hydrolysis of ATP can also be monitored conveniently using anthrylpolyamine fluoroionophores.

  18. Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology.

    PubMed

    Darvill, Daniel; Centeno, Anthony; Xie, Fang

    2013-10-14

    This review focuses on metal enhanced fluorescence (MEF) and its current and future applications in biotechnology. The mechanisms of MEF are discussed in terms of the additional radiative and nonradiative decay rates caused by the close proximity of the metal. We then review the current MEF materials and structures that show promise in bioapplications. The use of electromagnetic modelling to predict fluorescent rate enhancement is then considered. We then give particular focus to the recent work carried out in the homogeneous fabrication of metal nanoparticles using colloidal lithography. It is concluded that the use of computational electromagnetic modelling alongside homogeneous fabrication techniques will lead to predictable and controllable MEF, paving the way for increased applications in biotechnology.

  19. Determination of catalyst metal residues in polymers by X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Bichinho, Kátia M.; Pires, Gilvan Pozzobon; Stedile, Fernanda C.; dos Santos, João Henrique Z.; Wolf, Carlos Rodolfo

    2005-06-01

    Commercial polyethylenes produced by Ziegler-Natta, Philips and metallocene technology were analyzed by X-ray fluorescence spectroscopy. Synthetic standards using wax matrix was shown to be suitable for the calibration curve in comparison to those prepared by milling and grinding virgin polymer mixed with standard metal oxide as matrix. The detection limits obtained for the studied metal in the different polymers were: 12 mg kg -1 for Mg, 0.8 mg kg -1 for Ti, 1.6 mg kg -1 for Cr, 1.2 mg kg -1 for Zr and 1.9 mg kg -1 for V. For comparative reasons, the determination of residual metal content by Rutherford backscattering spectrometry (RBS) and total-reflection X-ray fluorescence spectrometry (TXRF) is also discussed.

  20. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  1. A coupled-cluster study on the noble gas binding ability of metal cyanides versus metal halides (metal = Cu, Ag, Au).

    PubMed

    Pan, Sudip; Gupta, Ashutosh; Saha, Ranajit; Merino, Gabriel; Chattaraj, Pratim K

    2015-11-05

    A coupled-cluster study is carried out to investigate the efficacy of metal(I) cyanide (MCN; M = Cu, Ag, Au) compounds to bind with noble gas (Ng) atoms. The M-Ng bond dissociation energy, enthalpy change, and Gibbs free energy change for the dissociation processes producing Ng and MCN are computed to assess the stability of NgMCN compounds. The Ng binding ability of MCN is then compared with the experimentally detected NgMX (X = F, Cl, Br) compounds. While CuCN and AgCN have larger Ng binding ability than those of MCl and MBr (M = Cu, Ag), AuCN shows larger efficacy toward bond formation with Ng than that of AuBr. Natural bond orbital analysis, energy decomposition analysis in conjunction with the natural orbital for chemical valence theory, and the topological analysis of the electron density are performed to understand the nature of interaction occurring in between Ng and MCN. The Ng-M bonds in NgMCN are found comprise an almost equal contribution from covalent and electrostatic types of interactions. The different electron density descriptors also reveal the partial covalent character in the concerned bonds.

  2. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.

    2015-12-01

    We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.

  3. A study of the convective flow as a function of external parameters in a high-pressure metal halide discharge lamp (HgDyI{sub 3})

    SciTech Connect

    Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.

    2016-06-15

    This paper deals with the modelling of the convection processes in metal–halide lamp discharges (HgDyI{sub 3}). For this, we realized a 3D model, a steady, direct current powered and time-depending model for the solution of conservation equations relative to mass, momentum, and energy. After validation, this model was applied to the study of the effect of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp. Indeed, the electric current, the atomic ratio (Hg/Dy), and the effect of the convective transport have been studied.

  4. Utilizing higher order surface plasmon modes on wire gratings for metal enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Steele, J. M.; Gagnidze, Iuri

    2010-08-01

    Metal enhanced fluorescence (MEF) has received much attention because of possible biomedical and sensing applications. MEF includes two mechanisms for fluorescence enhancement: (1) the enhanced electromagnetic field associated with surface plasmons increasing the excitation of fluorophores and (2) excited fluorophores radiating via induced surface plasmons. The second mechanism results in enhanced directional emission when fluorophores are located near a metal film or grating. This work focuses on gold wire gratings fabricated on a silica substrate coated with a layer of fluorophores. Previous studies on corrugated film gratings show that coupling to higher order as well as substrate side plasmon modes occurs with lower efficiency. We find for wire gratings, fluorophores couple to higher order plasmon modes on both the active and substrate side of the gold wires with uniform efficiency. We also measure directional enhanced fluorescence on both the active (reflection) and substrate (transmission) side of the gratings. Utilizing higher order modes allows gratings with micron and larger sized features to enhance fluorescence wavelengths in the visible range, greatly loosening fabrication requirements for potential applications. The ability to measure enhanced fluorescence in transmission also makes wire gratings appropriate for applications favoring a linear optical set up.

  5. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells.

    PubMed

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y

    2012-08-31

    Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.

  6. Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells

    PubMed Central

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.

    2013-01-01

    Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent, but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells. PMID:22713456

  7. Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays.

    PubMed

    Aslan, Kadir; Geddes, Chris D

    2005-12-15

    We describe an exciting assay platform technology that promises to fundamentally address two underlying physical constraints of modern assays and immunoassays, namely, assay sensitivity and rapidity. By combining the use of metal-enhanced fluorescence with low-power microwave heating, we can indeed significantly increase the sensitivity of surface assays as well as >95 % kinetically complete the assay within a few seconds. Subsequently, this new technology promises to fundamentally change the way we currently employ immunoassays in clinical medicine. This new model platform system can be potentially applied to many other important assays, such as to the clinical assessment of myoglobin, where both assay speed and sensitivity is paramount for the assessment and treatment of acute myocardial infarction. To demonstrate the utility of microwave-accelerated metal-enhanced fluorescence (MAMEF), we show that a simple protein-based assay system can be optically amplified approximately 10-fold by using silver nanostructures, while being kinetically complete in less than 20 s. This new platform approach is subsequently over 10-fold more sensitive and approximately 90 times faster than a control assay that operates both at room temperature and without the use of metal-enhanced fluorescence. Finally, we show that low-power heating by microwaves in our model system does not denature proteins, as evidenced by no protein structural changes, probed by fluorescence resonance energy transfer.

  8. FT-IR, micro-Raman and UV-vis spectroscopic and quantum chemical investigations of free 2,2'-dithiodipyridine and its metal (Co, Cu and Zn) halide complexes.

    PubMed

    Gökce, Halil; Bahçeli, Semiha

    2013-10-01

    In this study the elemental analysis results, molecular geometries, vibrational and electronic absorption spectra of free 2,2'-dithiodipyridine(C10H8N2S2), (or DTDP) (with synonym, 2,2'-dipyridyl disulfide) and M(C10H8N2S2)Cl2 (M=Co, Cu and Zn) complexes have been reported. Vibrational wavenumbers of free DTDP and its metal halide complexes have been calculated by using DFT/B3LYP calculation method with 6-31++G(d,p) and Lanl2DZ basis sets, respectively, in the ground state, for the first time. The calculated fundamental vibrational frequencies are in a good agreement with experimental data. The HOMO, LUMO and MEP analyses of all compounds are performed by DFT method.

  9. In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy.

    PubMed

    Burghardt, Thomas P; Charlesworth, Jon E; Halstead, Miriam F; Tarara, James E; Ajtai, Katalin

    2006-06-15

    Fluorescence detection of single molecules provides a means to investigate protein dynamics minus ambiguities introduced by ensemble averages of unsynchronized protein movement or of protein movement mimicking a local symmetry. For proteins in a biological assembly, taking advantage of the single molecule approach could require single protein isolation from within a high protein concentration milieu. Myosin cross-bridges in a muscle fiber are proteins attaining concentrations of approximately 120 muM, implying single myosin detection volume for this biological assembly is approximately 1 attoL (10(-18) L) provided that just 2% of the cross-bridges are fluorescently labeled. With total internal reflection microscopy (TIRM) an exponentially decaying electromagnetic field established on the surface of a glass-substrate/aqueous-sample interface defines a subdiffraction limit penetration depth into the sample that, when combined with confocal microscopy, permits image formation from approximately 3 attoL volumes. Demonstrated here is a variation of TIRM incorporating a nanometer scale metal film into the substrate/glass interface. Comparison of TIRM images from rhodamine-labeled cross-bridges in muscle fibers contacting simultaneously the bare glass and metal-coated interface show the metal film noticeably reduces both background fluorescence and the depth into the sample from which fluorescence is detected. High contrast metal film-enhanced TIRM images allow secondary label visualization in the muscle fibers, facilitating elucidation of Z-disk structure. Reduction of both background fluorescence and detection depth will enhance TIRM's usefulness for single molecule isolation within biological assemblies.

  10. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    SciTech Connect

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-12-08

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10{sup 25}/m{sup 3}. The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics.

  11. Wavelength-dependent metal-enhanced fluorescence using synchronous spectral analysis

    NASA Astrophysics Data System (ADS)

    Dragan, Anatoliy I.; Mali, Buddha; Geddes, Chris D.

    2013-01-01

    The fluorescence spectrum of Au-clusters (8- and 25-atom), which covers the spectral range 350-900 nm, is dramatically enhanced in the presence of plasmon supporting plate-well deposited nanoparticles. The wavelength-dependent metal-enhanced fluorescence (MEF spectrum) correlates well with the plasmon specific scattering spectrum, i.e. the synchronous scatter spectrum of the silver surface of plate wells. Our findings suggest that the synchronous scatter spectra of plasmon enhancing substrates is a good indicator of both the magnitude and the wavelength-dependence of MEF.

  12. Effective fluorescent chemosensors for the detection of Zn2+ metal ion

    NASA Astrophysics Data System (ADS)

    Jayabharathi, J.; Thanikachalam, V.; Jayamoorthy, K.

    2012-09-01

    Benzimidazole derivatives synthesized from three components assembling condensation reaction behaves as a selective fluorescent sensor for Zn2+ metal ion. These benzimidazole derivatives were characterized by 1H, 13C NMR, mass and elemental analysis. XRD analysis was carried out for 1-(4-methylbenzyl)-2-p-tolyl-1H-benzo[d]imidazole. The increase in the fluorescence enhancement can be explained on the basis of photo induced electron transfer (PET) mechanism. The blockage of the photoinduced electron transfer process from benzimidazole ring to aryl fluorophore induced by Zn2+ co-ordination induced emission enhancement.

  13. A distance-dependent metal-enhanced fluorescence sensing platform based on molecular beacon design.

    PubMed

    Zhou, Zhenpeng; Huang, Hongduan; Chen, Yang; Liu, Feng; Huang, Cheng Zhi; Li, Na

    2014-02-15

    A new metal-enhanced fluorescence (MEF) based platform was developed on the basis of distance-dependent fluorescence quenching-enhancement effect, which combined the easiness of Ag-thiol chemistry with the MEF property of noble-metal structures as well as the molecular beacon design. For the given sized AgNPs, the fluorescence enhancement factor was found to increase with a d(6) dependency in agreement with fluorescence resonance energy transfer mechanism at shorter distance and decrease with a d(-3) dependency in agreement with plasmonic enhancement mechanism at longer distance between the fluorophore and the AgNP surface. As a proof of concept, the platform was demonstrated by a sensitive detection of mercuric ions, using thymine-containing molecular beacon to tune silver nanoparticle (AgNP)-enhanced fluorescence. Mercuric ions were detected via formation of a thymine-mercuric-thymine structure to open the hairpin, facilitating fluorescence recovery and AgNP enhancement to yield a limit of detection of 1 nM, which is well below the U.S. Environmental Protection Agency regulation of the Maximum Contaminant Level Goal (10nM) in drinking water. Since the AgNP functioned as not only a quencher to reduce the reagent blank signal but also an enhancement substrate to increase fluorescence of the open hairpin when target mercuric ions were present, the quenching-enhancement strategy can greatly improve the detection sensitivity and can in principle be a universal approach for various targets when combined with molecular beacon design. © 2013 Elsevier B.V. All rights reserved.

  14. Mapping Metal Elements of Shuangbai Dinosaur Fossil by Synchrotron X-ray Fluorescence Microprobe

    SciTech Connect

    Wang, Y.; Qun, Y; Ablett, J

    2008-01-01

    The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mn are accrete, and the same is true for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.

  15. [Mapping metal elements of Shuangbai dinosaur fossil by synchrotron X-ray fluorescence microprobe].

    PubMed

    Wang, Yi-Lin; Yang, Qun; Ablett, J M

    2008-05-01

    The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mn are accrete, and the same is ture for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.

  16. Quenching of photoexcited states of the proteins chromophores and introduced into the protein macromolecules fluorescent probes by heavy metal ions

    NASA Astrophysics Data System (ADS)

    Melnikov, A. G.; Dyachuk, O. A.; Melnikov, G. V.

    2015-03-01

    We have studied the processes of quenching of photoexcited states of fluorescent probes and quenching of the fluorescence of the chromophores of human serum albumin (HSA) by heavy metal ions (HM): cations Tl+, Pb2+, Cu2+, Cd2+, and the anion of iodine (I-). We used the dye from xanthene series - eosin as a fluorescent probe. By quenching of the fluorescence of protein chromophores we found an influence of HM on the structure of proteins, resulting in a shift of the peak of the fluorescence of HSA tryptophanyl. This can be explained by proteins denaturation under the influence of heavy metals and penetration of water into the inner environment of HSA tryptophan. It was established that the constant of the quenching of the probe phosphorescence is much higher than the fluorescence, which is explained by significantly longer lifetime of the photoexcited states of fluorescent probes in the triplet state than in the singlet.

  17. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence

    PubMed Central

    2016-01-01

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganese were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2–3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region. PMID:27434052

  18. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence

    DOE PAGES

    Colvin, Robert A.; Jin, Qiaoling; Lai, Barry; ...

    2016-07-19

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Also, comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganesemore » were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2-3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region.« less

  19. Epi-Fluorescence Microscopy

    PubMed Central

    Webb, Donna J.; Brown, Claire M.

    2012-01-01

    Epi-fluorescence microscopy is available in most life sciences research laboratories, and when optimized can be a central laboratory tool. In this chapter, the epi-fluorescence light path is introduced and the various components are discussed in detail. Recommendations are made for incident lamp light sources, excitation and emission filters, dichroic mirrors, objective lenses, and charge-coupled device (CCD) cameras in order to obtain the most sensitive epi-fluorescence microscope. The even illumination of metal-halide lamps combined with new “hard” coated filters and mirrors, a high resolution monochrome CCD camera, and a high NA objective lens are all recommended for high resolution and high sensitivity fluorescence imaging. Recommendations are also made for multicolor imaging with the use of monochrome cameras, motorized filter turrets, individual filter cubes, and corresponding dyes that are the best choice for sensitive, high resolution multicolor imaging. Images should be collected using Nyquist sampling and should be corrected for background intensity contributions and nonuniform illumination across the field of view. Photostable fluorescent probes and proteins that absorb a lot of light (i.e., high extinction co-efficients) and generate a lot of fluorescence signal (i.e., high quantum yields) are optimal. A neuronal immune-fluorescence labeling protocol is also presented. Finally, in order to maximize the utility of sensitive wide-field microscopes and generate the highest resolution images with high signal-to-noise, advice for combining wide-field epi-fluorescence imaging with restorative image deconvolution is presented. PMID:23026996

  20. Metal nanoparticle fluorophore: a powerful fluorescence probe in single cell imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Fu, Yi; Zhao, Richard Y.; Lakowicz, Joseph R.

    2010-02-01

    Metal nanoparticle fluorophores have been developed using metal-enhanced fluorescence (MEF) principle. Compared with the conventional organic fluorophores, the metal fluorophores display the increasing brightness and shortening lifetime as well as the lengthening photostability and reducing photoblinking. Conjugated the metal fluorophores on the surfaces of cell lines, the cell images were recorded on a scanning confocal microscopy in the either emission intensity or lifetime. The emission spots by the conjugated metal fluorophores were isolated distinctly from the cell images because of their brighter signals and shorter lifetimes. Collected in the three-dimension, the total number of emission signals could be counted quantitatively and the distribution could be described on the cell surfaces. It was noticed that the emission intensity over the cell image was increased with an increase of the number of metal fluorophore on the cell surface and simultaneously the lifetime was altered. A quantitative regression curve was achieved between the amount of metal fluorophore on the cell surface and the emission intensity or lifetime over the entire cell image. Based on this regression curve, the target molecules on the cell surfaces could be quantified readily through the cell intensity and/or lifetime at the single cell level instead of the direct count to the emission spots. As novel molecule imaging agents, these metal fluorophores are being applied in the quantification and distribution of target molecule on the cell surface for the clinical diagnostic research.

  1. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols

    PubMed Central

    Hyman, Lynne M.; Franz, Katherine J.

    2013-01-01

    Oxidative stress is a common feature shared by many diseases, including neurodegenerative diseases. Factors that contribute to cellular oxidative stress include elevated levels of reactive oxygen species, diminished availability of detoxifying thiols, and the misregulation of metal ions (both redox-active iron and copper as well as non-redox active calcium and zinc). Deciphering how each of these components interacts to contribute to oxidative stress presents an interesting challenge. Fluorescent sensors can be powerful tools for detecting specific analytes within a complicated cellular environment. Reviewed here are several classes of small molecule fluorescent sensors designed to detect several molecular participants of oxidative stress. We focus our review on describing the design, function and application of probes to detect metal cations, reactive oxygen species, and intracellular thiol-containing compounds. In addition, we highlight the intricacies and complications that are often faced in sensor design and implementation. PMID:23440254

  2. Detection of fluorophore-labeled antibodies by surface-enhanced fluorescence on metal nanoislands

    NASA Astrophysics Data System (ADS)

    Schalkhammer, Thomas G. M.; Aussenegg, Franz R.; Leitner, Alfred; Brunner, Harald; Hawa, Gerhard; Lobmaier, Christina; Pittner, Fritz

    1997-06-01

    In fluorescence labelled immunosensing the discrimination of labels remaining in the bulk solution from labels bound to the analyte at the sensor surface is a basic optical problem. It is shown that application of surface enhanced fluorescence at a layer of noble metal nano-particles can increase the surface-to-background signal ratio. We explain the enhancement mechanism by an electrodynamic model and discuss the interaction between metal particle and fluorophore for the excitation and emission process. We show the principal guidelines for optimization of that processes. We find that the obtained discrimination power increases with decreasing intrinsic quantum efficiency of the fluorophore, suggesting the application of new classes of labels, namely low-quantum efficiency fluorophores. This theoretical finding is shown by a practical model experiment.

  3. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles.

    PubMed

    Derom, S; Berthelot, A; Pillonnet, A; Benamara, O; Jurdyc, A M; Girard, C; Colas des Francs, G

    2013-12-13

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion's excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.

  4. [Radionuclide X-ray fluorescence as an alternative method to pharmacopeial tests for heavy metals].

    PubMed

    Jánosová, V; Sýkorová, M; Stroffeková, O; Havránek, E

    2006-09-01

    Pharmacopeial tests for heavy metals require comparisons between test solution's colour after addition of thioacetamide and a control solution containing a known quantity of Pb. As this test neither informs about the type of heavy metals, nor about the concentrations of each of them, there is a reason for more frequent employment of instrumental methods such as AAS and AES, as well as ICP, NAA, and X-ray fluorescence. These methods provide us with quick and exact elemental analyses of impurities, thus becoming more and more important in the quality control of drugs and medicinal plants.

  5. X-Ray Fluorescence Spectrometric Analysis of Wear Metals in used Lubricating Oils.

    DTIC Science & Technology

    1980-12-01

    34Sea King". On a comparg les valeurs obtenues A l’aide de cette uithode avec celles obtenues par absorption atomique aur des 6chantillons...contaminantes et permettraient de d~celer plus t8t que l’analyse par absorption atomique une usure anormale d’apras le changement plus marqug des quantit~s de...ray fluorescence wear metal levels were compared to the atomic absorption wear metal levels determined on corresponding samples. In general, the x-ray

  6. Entrapment of fluorescence signaling DNA enzymes in sol-gel-derived materials for metal ion sensing.

    PubMed

    Shen, Yutu; Mackey, Gillian; Rupcich, Nicholas; Gloster, Darin; Chiuman, William; Li, Yingfu; Brennan, John D

    2007-05-01

    Three fluorescence signaling DNA enzymes (deoxyribozymes or DNAzymes) were successfully immobilized within a series of sol-gel-derived matrixes and used for sensing of various metal ions. The DNAzymes are designed such that binding of appropriate metal ions induces the formation of a catalytic site that cleaves a ribonucleotide linkage within a DNA substrate. A fluorophore (fluorescein) and a quencher (DABCYL, [4-(4-dimethylaminophenylazo)benzoic acid]) were placed on the two deoxythymidines flanking the ribonucleotide to allow the generation of fluorescence upon the catalytic cleavage at the RNA linkage. In general, all DNAzymes retained at least partial catalytic function when entrapped in either hydrophilic or hydrophobic silica-based materials, but displayed slower response times and lower overall signal changes relative to solution. Interestingly, it was determined that maximum sensitivity toward metal ions was obtained when DNAzymes were entrapped into composite materials containing approximately 40% of methyltrimethoxysilane (MTMS) and approximately 60% tetramethoxysilane (TMOS). Highly polar materials derived from sodium silicate, diglycerylsilane, or TMOS had relatively low signal enhancements, while materials with very high levels of MTMS showed significant leaching and low signal enhancements. Entrapment into the hybrid silica material also reduced signal interferences that were related to metal-induced quenching; such interferences were a significant problem for solution-based assays and for polar materials. Extension of the solid-phase DNAzyme assay toward a multiplexed assay format for metal detection is demonstrated, and shows that sol-gel technology can provide new opportunities for the development of DNAzyme-based biosensors.

  7. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  8. Metal-enhanced intrinsic fluorescence of proteins and label-free bioassays

    NASA Astrophysics Data System (ADS)

    Ray, Krishanu; Szmacinski, Henryk; Chowdhury, Mustafa H.; Lakowicz, Joseph R.

    2010-02-01

    Most of the applications of fluorescence require the use of labeled drugs and labeled biomolecules. Due to the need of labeling biomolecules with extrinsic fluorophores, there is a rapidly growing interest in methods which provide label-free detection (LFD). Proteins are highly fluorescent, which is due primarily to tryptophan residues. However, since most proteins contain tryptophan, this emission is not specific for proteins of interest in a biological sample. This is one of the reasons of not utilizing intrinsic tryptophan emission from proteins to detect specific proteins. Here, we present the intrinsic fluorescence for several proteins bound to the silver or aluminum metal nanostructured surfaces. We demonstrate the metal enhanced fluorescence (MEF) of proteins with different numbers of tryptophan residues. Large increases in fluorescence intensity and decreases in lifetime provide the means of direct detection of bound protein without separation from the unbound. We present specific detection of individual types of proteins and measure the binding kinetics of proteins such as IgG and streptavidin. Additionally, specific detection of IgG and streptavidin has been accomplished in the presence of large concentrations of other proteins in sample solutions. These results will allow design of surface-based assays with biorecognitive layer that specifically bind the protein of interest and thus enhance its intrinsic fluorescence. The present study demonstrates the occurrence of MEF in the UV region and thus opens new possibilities to study tryptophan-containing proteins without labeling with longer wavelength fluorophores and provides an approach to label-free detection of biomolecules.

  9. Fluorescent derivatives of nucleotides. Metal ion interactions and pH dependency.

    PubMed Central

    Vanderkooi, J M; Weiss, C J; Woodrow, G V

    1979-01-01

    The fluorescence parameters of ethenoadenosine derivatives are influenced by metal cations and pH, as summarized here. The pH profile of ethenoadenosine determined by fluorescence intensity gives a normal titration curve and is not affected by ionic strength. In contrast, the pH titration curves of etheno-ATP, etheno ADP, and etheno AMP depend upon ionic strength. At high ionic strength normal curves are obtained, whereas at low ionic strength anomalies are obtained; this suggests that the phosphates can interact with the ring, possibly by hydrogen binding to the ring nitrogens. The room temperature fluorescence of ethenoadenosine occurs from the base form, although excitation of either the acid or base forms can contribute to the emission. This result can be explained if the excited state pK is lower than the ground state pK, and if deprotonation occurs within the time scale of the excited state. At low pH values the fluorescence lifetime of the base form is dependent upon the buffer concentration, indicating that the reverse reaction, protonation, occurs. The affinity constants for the binding of metals to the ethenoadenosine phosphates resemble those for the corresponding adenosine phosphates. Ni(II) and Co(II) are more effective than Mn(II) in quenching the fluorescence of ethenoadenosine phosphates; this result is predicted by Förster's theory for energy transfer based upon the overlap between donor emission spectrum and acceptor absorption spectrum. The diamagnetic ions Mg(II), Ca(II), and Zn(II) do not appear to affect the fluorescence of the ethenoadenosine phosphates directly, but rather to affect the conformation of the molecule, thereby affecting the quantum yield. PMID:45395

  10. Fluorescent properties of some transition metals complexes with the new podand containing hydrazide groups

    NASA Astrophysics Data System (ADS)

    Tsvirko, M.; Meshkova, S.; Chebotarska, I.; Kiriiak, G.; Gorodnyuk, V.

    2007-08-01

    The influence of some transition metal ions— Mn(II), Cu(II), Zn(II), Ga(III), Ag(I), Cd(II), In(III), Hg(II), Tl(I,III), Au(I) on spectral-fluorescent properties of their complexes with new podand 1,17-bis-[(2-hydrazinocarbo)phenoxy]-3,6,9,12,15-pentaoxaheptadecane in solution was studied.

  11. Light trapping to amplify metal enhanced fluorescence with application for sensing TNT.

    PubMed

    Matoian, Meredith A; Sweetman, Richard; Hall, Emily C; Albanese, Shayna; Euler, William B

    2013-09-01

    Metal Enhanced Fluorescence (MEF) typically produces enhancement factors of 10 to 50. By using a polymer layer as the dielectric spacer enhancements as high as 1,600 can be observed. The effect occurs with a variety of different polymers and substrates, all of which act to trap light in the dielectric layer. This allows the fabrication of sensors with improved sensitivity as demonstrated for detection of trinitrotoluene (TNT).

  12. Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination

    PubMed Central

    Tantimongcolwat, Tanawut; Isarankura-Na-Ayudhya, Chartchalerm; Srisarin, Apapan; Galla, Hans-Joachim; Prachayasittikul, Virapong

    2014-01-01

    A simple, inexpensive and field applicable metal determination system would be a powerful tool for the efficient control of metal ion contamination in various sources e.g. drinking-water, water reservoir and waste discharges. In this study, we developed a cell-based metal sensor for specific and real-time detection of copper ions. E. coli expressing metal-sensing green fluorescent protein (designated as TG1/(CG)6GFP and TG1/H6CdBP4GFP) were constructed and served as a metal analytical system. Copper ions were found to exert a fluorescence quenching effect, while zinc and cadmium ions caused minor fluorescence enhancement in the engineered bacterial suspension. To construct a user-friendly and reagentless metal detection system, TG1/H6CdBP4GFP and TG1/(CG)6GFP were encapsulated in polyacrylamide hydrogels that were subsequently immobilized on an optical fiber equipped with a fluorescence detection module. The sensor could be applied to measure metal ions by simply dipping the encapsulated bacteria into a metal solution and monitoring fluorescence changes in real time as a function of the metal concentration in solution. The sensor system demonstrated high specificity toward copper ions. The fluorescence intensities of the encapsulated TG1/(CG)6GFP and TG1/H6CdBP4GFP were quenched by approximately 70 % and 80 % by a high-dose of copper ions (50 mM), respectively. The level of fluorescence quenching exhibited a direct correlation with the copper concentration, with a linear correlation coefficient (r) of 0.99. The cell-based metal sensor was able to efficiently monitor copper concentrations ranging between 5 M and 50 mM, encompassing the maximum allowed copper contamination in drinking water (31.15 M) established by the WHO. Furthermore, the cell-based metal sensor could undergo prolonged storage for at least 2 weeks without significantly influencing the copper sensitivity. PMID:26417267

  13. Indium nanodeposits: A substrate for metal-enhanced fluorescence in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Dragan, Anatoliy I.; Geddes, Chris D.

    2010-11-01

    We have studied a metallic substrate, composed of indium nanodeposits, for metal-enhanced fluorescence (MEF) in the ultraviolet (UV) spectral region. Indium coated slides were prepared using the thermal vapor deposition technique. Theoretical finite difference time domain simulations and experimental studies show that plasmon enhanced absorption and coupled radiation through the scattering component of the extinction spectra of indium nanoparticles, lie in UV region, and are sensitive to the size and density of the nanoparticles, the thickness of the indium film, and polarity of the medium. The MEF effect, measured for intrinsic protein tryptophan and tyrosine residues, loaded onto indium films of different thickness, changes in a wavelike fashion, reflecting changes in the metal film landscape and, consequently, the chromophores coupling with surface plasmons. Indium films also significantly enhance intrinsic fluorescence of proteins themselves [bovine serum albumin]. In this case the wavelength dependence of MEF shows different emission enhancements of protein Tyr and Trp residues. Subsequently, indium-enhanced intrinsic protein fluorescence in the UV spectral region can be of great potential importance for quantitation assays as well as for the labeless detection of biomolecules in the biosciences.

  14. Fluorescence quenching and excitation transfer between semiconducting and metallic organic layers

    NASA Astrophysics Data System (ADS)

    Åsberg, Peter; Nilsson, Peter; Inganäs, Olle

    2004-09-01

    Here we present a simple approach to study the interaction of singlet excitons with polarons in conjugated polymers in organic electronic devices. Interlayer quenching constants KIL of 1.5M-1 between a fluorescent molecule and a doped polymer in a layered sample demonstrates the importance of understanding the quenching of excited states in polymeric devices. A combination of Förster resonance energy transfer and quenching of photoluminescence between a fluorescent molecule and a conjugated polymer in its semiconducting and metallic states were studied. The polymer is a chiral 3-substituted polythiophene (POWT) and the fluorescent molecule is fluorescein bound to dextran (D-FITC). Bilayer samples with fluorescein on top of the POWT were fabricated and studied with absorption spectroscopy, fluorescence microscopy, and electrochemical doping methods. When POWT is electrochemically dedoped it is possible to enhance the photoluminescence in the polymer layer by excitation transfer from the fluorescein layer. Our results demonstrate that PL from the polythiophene disappears rapidly as soon as the layer is doped. As the doping of polymer layer increases the fluorescence from the fluorescein on top of the polymer decreases, due to excitation quenching. Models for excitation transfer and excitation quenching in POWT/FITC bilayer devices have been developed. This model predicts a linear relationship between the PL from the two molecules, in agreement with our experimental findings. These results are relevant for the development of electroluminescent devices or solar cells based on conjugated polymers.

  15. Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein.

    PubMed

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Gu, Dahai; Yang, Yukun; Wang, Shuo

    2016-05-15

    A novel fluorescence material with thermo-sensitive for the enrichment and sensing of protein was successfully prepared by combining molecular imprinting technology with upconversion nanoparticles (UCNPs) and metal-organic frameworks (MOFs). Herein, the UCNPs acted as signal reporter for composite materials because of its excellent fluorescence property and chemical stability. MOFs were introduced to molecularly imprinted polymer (MIP) due to its high specific surface area which increases the rate of mass transfer relative to that of traditional bulk MIP. The thermo-sensitive imprinted material which allows for swelling and shrinking with response to temperature changes was prepared by choosing Bovine hemoglobin (BHB) as the template, N-isopropyl acrylamide (NIPAAM) as the temperature-sensitive functional monomer and N,N-methylenebisacrylamide (MBA) as the cross-linker. The recognition characterizations of imprinted material-coated UCNPs/MOFs (UCNPs/MOFs/MIP) were evaluated, and the results showed that the fluorescence intensity of UCNPs/MOFs/MIP reduced gradually with the increase of BHB concentration. The fluorescence material was response to the temperature. The adsorption capacity was as much as 167.6 mg/g at 28°C and 101.2mg/g at 44°C, which was higher than that of traditional MIP. Therefore, this new fluorescence material for enrichment and sensing protein is very promising for future applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence.

    PubMed

    Kumar, K Suresh; Dahms, Hans-Uwe; Lee, Jae-Seong; Kim, Hyung Chul; Lee, Won Chan; Shin, Kyung-Hoon

    2014-06-01

    Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Using Synchrotron X-ray Fluorescence Microprobes in the Study of Metal Homeostasis in Plants

    SciTech Connect

    Punshon, T.; Guerinot, M; Lanzirotti, A

    2009-01-01

    Background and Aims: This Botanical Briefing reviews the application of synchrotron X-ray fluorescence (SXRF) microprobes to the plant sciences; how the technique has expanded our knowledge of metal(loid) homeostasis, and how it can be used in the future. Scope: The use of SXRF microspectroscopy and microtomography in research on metal homeostasis in plants is reviewed. The potential use of SXRF as part of the ionomics toolbox, where it is able to provide fundamental information on the way that plants control metal homeostasis, is recommended. Conclusions: SXRF is one of the few techniques capable of providing spatially resolved in-vivo metal abundance data on a sub-micrometre scale, without the need for chemical fixation, coating, drying or even sectioning of samples. This gives researchers the ability to uncover mechanisms of plant metal homeostasis that can potentially be obscured by the artefacts of sample preparation. Further, new generation synchrotrons with smaller beam sizes and more sensitive detection systems will allow for the imaging of metal distribution within single living plant cells. Even greater advances in our understanding of metal homeostasis in plants can be gained by overcoming some of the practical boundaries that exist in the use of SXRF analysis.

  18. Detection of CXCR4 receptors on cell surface using a fluorescent metal nanoshell

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Fu, Yi; Li, Ge; Zhao, Richard Y.; Lakowicz, Joseph R.

    2011-01-01

    Fluorescence cell imaging can be used for disease diagnosis and cellular signal transduction. Using a metal nanoshell as molecular imaging agent, we develop a cellular model system to detect CXCR4 chemokine receptor on T-lymphatic cell surface. These metal nanoshells are observed to express enhanced emission intensity and shortened lifetimes due to the near-field interactions. They are covalently bound with anti-CXCR4 monoclonal antibodies for immunoreactions with the target sites of the CXCR4 receptors on the CEM-SS cells. The fluorescence intensity and lifetime cell images are recorded with a time-resolved confocal microscopy. As expected, the emission signals from the metal nanoshells are clearly isolated from the cellular autofluorescence due to strong intensities and distinctive lifetimes. The number of emission spots on the single cell image is estimated by direct count to the emission signals. Analyzing a pool of cell images, a maximal count number is obtained in a range of 200+/-50. Because there is an average of ~6000 binding sites on the cell surface, we estimate that one emission spot from the metal nanoshell may represent ~30 CXCR5 receptors. In addition, the CXCR4 receptors are estimated to distribute on ~70% area of the cell surface.

  19. Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis.

    PubMed

    Md Khudzari, Jauharah; Wagiran, Husin; Hossain, I; Ibrahim, Noorddin

    2013-01-01

    This work presents a study of human hair as a bio-indicator for detection of heavy metals as part of environmental health surveillance programs project to develop a subject of interest in the biomedical and environmental sciences. A total of 34 hair samples were analyzed that consisting of 29 samples from sanitation workers and five samples from students. The hair samples were prepared and treated in accordance to the International Atomic Energy Agency (IAEA) recommendations. The concentrations of heavy metals were analyzed using the energy dispersive X-ray fluorescence (EDXRF) technique by X-50 Mobile X-ray Fluorescence (XRF) at Oceanography Institute, Universiti Malaysia Terengganu. The performance of EDXRF analyzer was tested by Standard Reference Material (SRM 2711) Montana Soil which was in good agreement with certified value within 14% deviations except for Hg. While seven heavy metals: Mn, Fe, Ni, Cu, Zn, Se, and Sb were detected in both groups, three additional elements, i.e. As, Hg and Pb, were detected only in sanitation workers group. For sanitation workers group, the mean concentration of six elements, Mn, Fe, Cu, Zn, Se, and Sb, shows elevated concentration as compared to the control samples concentration. Results from both groups were compared and discussed in relation to their respective heavy metals concentrations.

  20. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  1. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay.

  2. Mapping of heavy metal ion sorption to cell-extracellular polymeric substance-mineral aggregates by using metal-selective fluorescent probes and confocal laser scanning microscopy.

    PubMed

    Hao, Likai; Li, Jianli; Kappler, Andreas; Obst, Martin

    2013-11-01

    Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe(3+), Cu(2+), Zn(2+), and Hg(2+), illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems.

  3. Bimetallic Nanoshells for Metal – Enhanced Fluorescence with Broad Band Fluorophores

    PubMed Central

    Zhang, Jian; Fu, Yi; Mahdavi, Farhad

    2012-01-01

    In this article, we reported the near-field interactions between the Ru(bpy)32+ complexes and plasmon resonances from the bimetallic nanoshells. The metallic nanoshells were fabricated on 20 nm silica spheres as cores by depositing 10 nm monometallic or bimetallic shells. There were approx. 15 Ru(bpy)32+ complexes in the silica core. The metal shells were constituted of silver or/and gold. The bimetallic shells could be generated in homogeneous or heterogeneous geometries. The homogeneous bimetallic shells contained 10 nm silver-gold alloys. The heterogeneous bimetallic shells contained successive 5 nm gold and 5 nm silver shells, or alternatively, 5 nm silver and 5 nm gold shells. Optical properties of metal nanoshells were studied on both the ensemble spectra and single nanoparticle imaging measurements. The heterogeneous bimetallic shells were found to have a large scale of metal-enhanced emission relative to the monometallic or homogeneous bimetallic shells. It is because the heterogeneous bimetallic shells may display split dual plasmon resonances which can interact with the excitation and emission bands of the Ru(bpy)32+ complexes in the silica cores leading to more efficient near-field interactions. The prediction can be demonstrated by the lifetimes. Therefore, it is suggested that both the compositions and geometries of the metal shells can influence the interactions with the fluorophores in the cores. This observation also offers us an opportunity for developing plasmon-based fluorescence metal nanoparticles as novel nanoparticle imaging agents which have high performances in fluorescence cell or tissue imaging. PMID:23230456

  4. Differentiating between fluorescence-quenching metal ions with polyfluorophore sensors built on a DNA backbone.

    PubMed

    Tan, Samuel S; Kim, Su Jeong; Kool, Eric T

    2011-03-02

    A common problem in detecting metal ions with fluorescentchemosensors is the emission-suppressing effects of fluorescence-quenching metal ions. This quenching tendency makes it difficult to design sensors with turn-on signal, and differentiate between several metal ions that may yield a strong quenching response. To address these challenges, we investigate a new sensor design strategy, incorporating fluorophores and metal ligands as DNA base replacements in DNA-like oligomers, for generating a broader range of responses for quenching metal ions. The modular molecular design enabled rapid synthesis and discovery of sensors from libraries on PEG-polystyrene beads. Using this approach, water-soluble sensors 1-5 were identified as strong responders to a set of eight typically quenching metal ions (Co(2+), Ni(2+), Cu(2+), Hg(2+), Pb(2+), Ag(+), Cr(3+), and Fe(3+)). They were synthesized and characterized for sensing responses in solution. Cross-screening with the full set of metal ions showed that they have a wide variety of responses, including emission enhancements and red- and blue-shifts. The diversity of sensor responses allows as few as two sensors (1 and 2) to be used together to successfully differentiate these eight metals. As a test, a set of unknown metal ion solutions in blind studies were also successfully identified based on the response pattern of the sensors. The modular nature of the sensor design strategy suggests a broadly applicable approach to finding sensors for differentiating many different cations by pattern-based recognition, simply by varying the sequence and composition of ligands and fluorophores on a DNA synthesizer.

  5. Near-infrared fluorescence goggle system with complementary metal-oxide-semiconductor imaging sensor and see-through display.

    PubMed

    Liu, Yang; Njuguna, Raphael; Matthews, Thomas; Akers, Walter J; Sudlow, Gail P; Mondal, Suman; Tang, Rui; Gruev, Viktor; Achilefu, Samuel

    2013-10-01

    We have developed a near-infrared (NIR) fluorescence goggle system based on the complementary metal-oxide-semiconductor active pixel sensor imaging and see-through display technologies. The fluorescence goggle system is a compact wearable intraoperative fluorescence imaging and display system that can guide surgery in real time. The goggle is capable of detecting fluorescence of indocyanine green solution in the picomolar range. Aided by NIR quantum dots, we successfully used the fluorescence goggle to guide sentinel lymph node mapping in a rat model. We further demonstrated the feasibility of using the fluorescence goggle in guiding surgical resection of breast cancer metastases in the liver in conjunction with NIR fluorescent probes. These results illustrate the diverse potential use of the goggle system in surgical procedures.

  6. Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell.

    PubMed

    Zhang, Jian; Fu, Yi; Mei, Yuping; Jiang, Feng; Lakowicz, Joseph R

    2010-06-01

    In this study, fluorescent metal nanoshells were synthesized as a molecular imaging agent to detect single microRNA (miRNA) molecules in the cells positive to lung cancer. These metal nanoshells were composed of silica spheres with encapsulated Ru(bpy)(3)(2+) complexes as cores and thin silver layers as shells. Compared with the silica spheres in the absence of metal, the metal nanoshells displayed an enhanced emission intensity, shortened lifetime, and extended photostability. The single-stranded probe oligonucleotides were covalently bound on the metal nanoshells to hybridize with the target miRNA-486 molecules in the cells. It was shown that with stronger emission intensity and longer lifetime, the conjugated metal nanoshells were isolated distinctly from the cellular autofluorescence on the cell images. These emission spots on the cell images were counted accurately and analyzed with a pool of cells representing the miRNA-486 expression levels in the cells. The results may reflect a genomic signal change and provide a reference to lung cancer early diagnosis as well as other diseases.

  7. Imaging metals in proteins by combining electrophoresis with rapid x-ray fluorescence mapping.

    SciTech Connect

    Finney, L.; Chishti, Y.; Khare, T.; Giometti, C.; Levina, A.; Lay, P. A.; Vogt, S.; Univ. of Sydney; Northwestern Univ.

    2010-01-01

    Growing evidence points toward a very dynamic role for metals in biology. This suggests that physiological circumstance may mandate metal ion redistribution among ligands. This work addresses a critical need for technology that detects, identifies, and measures the metal-containing components of complex biological matrixes. We describe a direct, user-friendly approach for identifying and quantifying metal?protein adducts in complex samples using native- or SDS-PAGE, blotting, and rapid synchrotron X-ray fluorescence mapping with micro-XANES (X-ray absorption near-edge structure) of entire blots. The identification and quantification of each metal bound to a protein spot has been demonstrated, and the technique has been applied in two exemplary cases. In the first, the speciation of the in vitro binding of exogenous chromium to blood serum proteins was influenced markedly by both the oxidation state of chromium exposed to the serum proteins and the treatment conditions, which is of relevance to the biochemistry of Cr dietary supplements. In the second case, in vivo changes in endogenous metal speciation were examined to probe the influence of oxygen depletion on iron speciation in Shewanella oneidensis.

  8. Halide laser glasses

    SciTech Connect

    Weber, M.J.

    1982-01-14

    Energy storage and energy extraction are of prime importance for efficient laser action and are affected by the line strengths and linewidths of optical transitions, excited-state lifetimes, nonradiative decay processes, spectroscopic inhomogeneities, nonlinear refractive index, and damage threshold. These properties are all host dependent. To illustrate this, the spectroscopic properties of Nd/sup 3 +/ have been measured in numerous oxide, oxyhalide, and halide glasses. A table summarizes the reported ranges of stimulated emission cross sections, peak wavelengths, linewidths, and radiative lifetimes associated with the /sup 4/F/sub 3/2/ ..-->.. /sup 4/I/sub 11/2/ lasing transition.

  9. Resonant halide perovskite nanoparticles

    NASA Astrophysics Data System (ADS)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  10. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  11. Two Dimensional Organometal Halide Perovskite Nanorods with Tunable Optical Properties.

    PubMed

    Aharon, Sigalit; Etgar, Lioz

    2016-05-11

    Organo-metal halide perovskite is an efficient light harvester in photovoltaic solar cells. Organometal halide perovskite is used mainly in its "bulk" form in the solar cell. Confined perovskite nanostructures could be a promising candidate for efficient optoelectronic devices, taking advantage of the superior bulk properties of organo-metal halide perovskite, as well as the nanoscale properties. In this paper, we present facile low-temperature synthesis of two-dimensional (2D) lead halide perovskite nanorods (NRs). These NRs show a shift to higher energies in the absorbance and in the photoluminescence compared to the bulk material, which supports their 2D structure. X-ray diffraction (XRD) analysis of the NRs demonstrates their 2D nature combined with the tetragonal 3D perovskite structure. In addition, by alternating the halide composition, we were able to tune the optical properties of the NRs. Fast Fourier transform, and electron diffraction show the tetragonal structure of these NRs. By varying the ligands ratio (e.g., octylammonium to oleic acid) in the synthesis, we were able to provide the formation mechanism of these novel 2D perovskite NRs. The 2D perovskite NRs are promising candidates for a variety of optoelectronic applications, such as light-emitting diodes, lasing, solar cells, and sensors.

  12. A computational insight into a metal mediated pathway for the ring-opening polymerization (ROP) of lactides by an ionic {(NHC)2Ag}(+)X(-) (X = halide) type N-heterocyclic carbene (NHC) complex.

    PubMed

    Stephen, Raji; Sunoj, Raghavan B; Ghosh, Prasenjit

    2011-10-21

    A metal mediated coordination-insertion pathway for the ring-opening polymerization (ROP) of L-lactide by an ionic {(NHC)(2)Ag}(+)X(-) (X = halide) type silver complex of N-heterocyclic carbene (NHC) has been investigated using the density functional theory (DFT) method. A clear insight into the lactide insertion process could be obtained by modeling two consecutive monomer addition steps with the first one mimicking chain initiation with the second representing a propagation step. In particular, in each of the cycles, the reaction initiates with the formation of a lactide coordinated species, [1+LL] and [2+LL] that transforms into a metal bound cyclic lactide intermediate, I([1+LL]→2) and I([2+LL]→3), which subsequently ring opens to give the lactide inserted products, 2 and 3. The estimated overall activation barrier for the initiation step is 42.0 kcal mol(-1) while the same for the propagation step is 31.5 kcal mol(-1). Studies on higher monomer insertions showed a decrease in the relative product energies as anticipated for an addition polymerization pathway.

  13. Metal containing cryptands as hosts for anions: evaluation of Cu(I)···X and π···X interactions in halide-tricopper(I) complexes through relativistic DFT calculations.

    PubMed

    Ponce-Vargas, Miguel; Muñoz-Castro, Alvaro

    2015-07-28

    More selective than crown ethers, cryptands arise as suitable hosts for several ions, with the size of the cavity and the behavior of the atoms belonging to the structure being the main factors governing their selectivity. Similar to metallacrowns, inorganic counterparts of crown ethers, the presence of metal centers in cryptands can offer significant advantages in terms of ion recognition as they provide positively charged sites, which allow them to encapsulate anions. Here, through density functional methodologies, we evaluate the preference of a tricopper(I) cryptand host toward a series of halide ions ranging from the hard fluoride to the soft iodide, where the more intense interactions are established with the hardest one, and the electrostatic term is the more relevant contributor to total interaction energy. Upon exploration of this electrostatic contribution in more detail, it is observed that as the guest becomes softer, the increase of higher order Coulombic terms, such as dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole, acquires more relevance on going from 9.22% to 41.25%, denoting the key role and variation of such forces in inclusion systems with metal-containing hosts.

  14. Effect of hydrogen bonding and complexation with metal ions on the fluorescence of luotonin A.

    PubMed

    Miskolczy, Zsombor; Biczók, László

    2013-05-01

    Fluorescence characteristics of a biologically active natural alkaloid, luotonin A (LuA), were studied by steady-state and time-resolved spectroscopic methods. The rate constant of the radiationless deactivation from the singlet-excited state diminished by more than one order of magnitude when the solvent polarity was changed from toluene to water. Dual emission was found in polyfluorinated alcohols of large hydrogen bond donating ability due to photoinitiated proton displacement along the hydrogen bond. In CH2Cl2, LuA produced both 1 : 1 and 1 : 2 hydrogen-bonded complexes with hexafluoro-2-propanol (HFIP) in the ground state. Photoexcitation of the 1 : 2 complex led to protonated LuA, whose fluorescence appeared at a long wavelength. LuA served as a bidentate ligand forming 1 : 1 complexes with metal ions in acetonitrile. The stability of the complexes diminished in the series of Cd(2+) > Zn(2+) > Ag(+), and upon competitive binding of water to the metal cations. The effect of chelate formation on the fluorescent properties was revealed.

  15. Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages

    PubMed Central

    2015-01-01

    In metal-enhanced fluorescence (MEF), the localized surface plasmon resonances of metallic nanostructures amplify the absorption of excitation light and assist in radiating the consequent fluorescence of nearby molecules to the far-field. This effect is at the base of various technologies that have strong impact on fields such as optics, medical diagnostics, and biotechnology. Among possible emission bands, those in the near-infrared (NIR) are particularly intriguing and widely used in proteomics and genomics due to its noninvasive character for biomolecules, living cells, and tissues, which greatly motivates the development of effective and, eventually, multifunctional NIR-MEF platforms. Here, we demonstrate NIR-MEF substrates based on Au nanocages micropatterned with a tight spatial control. The dependence of the fluorescence enhancement on the distance between the nanocage and the radiating dipoles is investigated experimentally and modeled by taking into account the local electric field enhancement and the modified radiation and absorption rates of the emitting molecules. At a distance around 80 nm, a maximum enhancement up to 2–7 times with respect to the emission from pristine dyes (in the region 660–740 nm) is estimated for films and electrospun nanofibers. Due to their chemical stability, finely tunable plasmon resonances, and large light absorption cross sections, Au nanocages are ideal NIR-MEF agents. When these properties are integrated with the hollow interior and controllable surface porosity, it is feasible to develop a nanoscale system for targeted drug delivery with the diagnostic information encoded in the fluorophore. PMID:26397166

  16. Metal-organic framework-based molecular beacons for multiplexed DNA detection by synchronous fluorescence analysis.

    PubMed

    Ye, Tai; Liu, Yufei; Luo, Ming; Xiang, Xia; Ji, Xinghu; Zhou, Guohua; He, Zhike

    2014-04-07

    We report a new sensor combined two dimensional metal-organic framework (MOF), N,N-bis(2-hydroxy-ethyl)dithiooxamidato copper(II) (H2dtoaCu), with the hairpin-structured oligonucleotides and demonstrate its feasibility in detecting multiplexed sequence-specific DNA. The key component of this sensor (MOF-MBs) is the hairpin-structured fluorescent oligonucleotide that allows the MOFs to function as both a "nanoscaffold" for the oligonucleotide and a "nanoquencher" of the fluorophore. An oligonucleotide sequence fragment of wild-type HBV (T1) and a reverse-transcription oligonucleotide sequence of RNA fragment of HIV (T2) were used as model systems. While in the presence of the targets, the fluorescence of dyes was recovered by forming a double strand structure. Multiplex DNA detection can be realized by synchronous scanning fluorescence spectrometry, and there was no cross reaction between the two probes. Under the optimum conditions, the fluorescence intensities of two dyes all exhibit good linear dependence on their target DNA concentration in the range of 1-10 nM with the detection limit of 0.87 nM and 0.22 nM for T1 and T2, respectively. As a proof of concept, the MOF-MBs have been successfully used as a potential sensing platform for simultaneous detection of multiplexed DNA.

  17. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds

    NASA Astrophysics Data System (ADS)

    Guo, Mao Xia; Yang, Liu; Jiang, Zhong Wei; Peng, Zhe Wei; Li, Yuan Fang

    2017-12-01

    The novel class of luminescent Al3 +-based metal-organic gels (Al-MOGs) have been developed by mix 4-[2,2‧:6‧,2″-terpyridine]-4‧-ylbenzoic acid (Hcptpy) with Al3 + under mild condition. The as-prepared Al-MOGs have not only multiple stimuli-responsive properties, but selective recognition of hydroxyl nitro aromatic compounds, which can quench the fluorescence of the Al-MOGs, while other nitro aromatic analogues without hydroxyl substitutes cannot. The fluorescence of Al-MOGs at 467 nm was seriously quenched by picric acid (PA) whose lowest unoccupied molecular orbital (LUMO) energy levels are lower than those of three other hydroxyl nitro aromatic compounds including 4-nitrophenol (4-NP), 3,5-dinitrosalicylic acid (3,5-DNTSA) and 2,4-dinitrophenol (2,4-DNP). Thus, PA was chosen as a model compound under optimal conditions and the relative fluorescence intensity of Al-MOGs was proportional to the concentration of PA in the range of 5.0-320.0 μM with a detection limit of 4.64 μM. Furthermore, the fluorescence quenching mechanism has also been investigated and revealed that the quenching was attributed to inner filter effects (IFEs), as well as electron transfer (ET) between Al-MOGs and PA.

  18. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    PubMed Central

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-01-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions. PMID:25394493

  19. Site-specific Fluorescent Labeling of Poly-histidine Sequences Using a Metal-chelating Cysteine

    PubMed Central

    Krishnan, Beena; Szymanska, Aneta; Gierasch, Lila M.

    2010-01-01

    Coupling genetically encoded target sequences with specific and selective labeling strategies has made it possible to utilize fluorescence spectroscopy in complex mixtures to investigate the structure, function, and dynamics of proteins. Thus, there is a growing need for a repertoire of such labeling approaches to deploy based on a given application and to utilize in combination with one another by orthogonal reactivity. We have developed a simple approach to synthesize a fluorescent probe that binds to a poly-histidine sequence. The amino group of cysteine was converted into nitrilotriacetate to create a metal-chelating cysteine molecule, Cys-nitrilotriacetate. Two Cys-nitrilotriacetate molecules were then cross-linked using dibromobimane to generate a fluorophore capable of binding a His-tag on a protein, NTA2-BM. NTA2-BM is a potential fluorophore for selective tagging of proteins in vivo. PMID:17313455

  20. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide.

    PubMed

    Nagarkar, Sanjog S; Saha, Tanmoy; Desai, Aamod V; Talukdar, Pinaki; Ghosh, Sujit K

    2014-11-14

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions.

  1. Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses.

    PubMed

    Żurek, Grzegorz; Rybka, Krystyna; Pogrzeba, Marta; Krzyżak, Jacek; Prokopiuk, Kamil

    2014-01-01

    Chlorophyll a fluorescence gives information about the plant physiological status due to its coupling to the photosynthetic electron transfer chain and to the further biochemical processes. Environmental stresses, which acts synergistically, disturbs the photosynthesis. The OJIP test, elaborated by Strasser and co-workers, enables comparison of the physiological status of plants grown on polluted vs. control areas. The paper shows that the Chl a measurements are very useful tool in evaluating of heavy metal ions influence on perennial grasses, tested as potential phytoremediators. Among 5 cultivars tested, the highest concentration of Cd and Zn ions, not associated with the yield reduction, was detected in the biomass of tall fescue cv. Rahela. Chl a fluorescence interpreted as double normalized curves pointed out Rahela as the outstanding cultivar under the HM ions stress.

  2. Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses

    PubMed Central

    Żurek, Grzegorz; Rybka, Krystyna; Pogrzeba, Marta; Krzyżak, Jacek; Prokopiuk, Kamil

    2014-01-01

    Chlorophyll a fluorescence gives information about the plant physiological status due to its coupling to the photosynthetic electron transfer chain and to the further biochemical processes. Environmental stresses, which acts synergistically, disturbs the photosynthesis. The OJIP test, elaborated by Strasser and co-workers, enables comparison of the physiological status of plants grown on polluted vs. control areas. The paper shows that the Chl a measurements are very useful tool in evaluating of heavy metal ions influence on perennial grasses, tested as potential phytoremediators. Among 5 cultivars tested, the highest concentration of Cd and Zn ions, not associated with the yield reduction, was detected in the biomass of tall fescue cv. Rahela. Chl a fluorescence interpreted as double normalized curves pointed out Rahela as the outstanding cultivar under the HM ions stress. PMID:24633293

  3. Hybrid silver nanoparticle/conjugated polyelectrolyte nanocomposites exhibiting controllable metal-enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; He, Fang; Zhu, Xi; Tang, Fu; Li, Lidong

    2014-03-01

    Metal-enhanced fluorescence of conjugated polyelectrolytes (CPs) is realized using a simple, green hybrid Ag nanocomposite film. Ag nanoparticles (Ag NPs) are pre-prepared by sodium citrate reduction and incorporated into agarose by mixing to form an Ag-containing agarose film (Ag@agarose). Through variation of the amount of Ag NPs in the Ag@agarose film as well as the thickness of the interlayer between CPs and the Ag@agarose film prepared of layer-by-layer assembly of chitosan and sodium alginate, a maximum 8.5-fold increase in the fluorescence of CPs is obtained. After introducing tyrosinase, this system also can be used to detect phenolic compounds with high sensitivity and good visualization under ultraviolet light.

  4. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    NASA Astrophysics Data System (ADS)

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-11-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions.

  5. Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor.

    PubMed

    Joshi, Bishnu Prasad; Park, Junwon; Lee, Wan In; Lee, Keun-Hyeung

    2009-05-15

    A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg(2+), Cd(2+), Pb(2+), Zn(2+), and Ag(+) in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd(2+), Pb(2+), Zn(2+), and Ag(+) were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.

  6. Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer.

    PubMed

    Choi, Bongseok; Iwanaga, Masanobu; Miyazaki, Hideki T; Sugimoto, Yoshimasa; Ohtake, Akihiro; Sakoda, Kazuaki

    2015-07-21

    We have experimentally shown significant suppression of metal-induced fluorescence (FL) quenching on plasmo-photonic metasurfaces by incorporating a self-assembled monolayer (SAM) of sub-nm thickness. The FL signals of rhodamine dye molecules have been several-ten-fold enhanced by introducing the SAM, in comparison with the previous configuration contacting molecules and metal surfaces.

  7. International Symposium on Halide Glasses (2nd) (Extended Abstracts).

    DTIC Science & Technology

    1983-08-05

    Rennes, France The structural studies carried out so far upon heavy metal flouride glasses (Raman, I.R., NMR and X-ray diffraction) indicate that there...Poulain, U. Rennes, Rennes, France The glass forming ability of cadmium halides CdF 2 and CdCI2 has been demonstrated in flouride , chloride and mixed

  8. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    NASA Astrophysics Data System (ADS)

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-07-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting.

  9. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis.

    PubMed

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-07-26

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting.

  10. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    PubMed Central

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-01-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting. PMID:27456167

  11. Investigation of metal ion accumulation in Euglena gracilis by fluorescence methods

    NASA Astrophysics Data System (ADS)

    Shen, H.; Ren, Q. G.; Mi, Y.; Shi, X. F.; Yao, H. Y.; Jin, C. Z.; Huang, Y. Y.; He, W.; Zhang, J.; Liu, B.

    2002-04-01

    Single cell synchrotron X-ray fluorescence (SXRF) microprobe measurements as well as X-ray absorption near edge structure experiments have been done at Beijing Synchrotron Radiation Facility on Euglena Gracilis cells. Concentrations of the metal ions Mn 2+, Nd 3+, Ce 3+ and other trace elements, such as Ca, Fe, Zn, etc. have been measured both by single cell SXRF and bulk PIXE technique. It was found that the content of Ca, Fe and Zn was lower after the uptake of rare earths or Mn by the cells, while the valence states of Mn 2+, Ce 3+ and Nd 3+ were unaltered. The results related to cytochemistry are also discussed.

  12. Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    PubMed Central

    Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.

    2002-01-01

    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each manifold and results are presented for the determination of the four trace metals in seawater reference materials (NASS-5, SLEW-2) and Scheldt estuarine water samples. PMID:18924742

  13. Gadolinium(III)-sensitized fluorescence of europium in its mixed-metal compounds with trifluroacetate

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2017-04-01

    The fluorescence properties of mixed-metal compounds of Eu(III) and Gd(III) with trifluoroacetic acid, Eu1-xGdx(C2F3O2)3·yD·zH2O, where D - 1,10-phenanthroline, 2,2-dipyridil, diphenylguanidine, x = 0, 0.25, 0.5, or 0.7, were studied. Luminescence spectroscopic evidence and the examination of excitation spectra indicate the occurrence of efficient energy transfer from the gadolinium to the europium ion. The greatest promotion of Eu3+ photoluminescence at 615 nm is observed when Eu:Gd = 1:1.

  14. Silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Chang, B. J.; Winick, K.

    1980-05-01

    The use of a silver-halide gelatin for volume phase holograms having a wide spectral response and lower exposure requirements than alternatives and using commercially available silver salts, is proposed. The main difference between the dichromated gelatin and silver-halide processes is the creation of a hologram latent image, which is given in the form of a hardness differential between exposed and unexposed regions in the silver halide hologram; the differential is in turn created by the reaction products of either tanning development or tanning bleach, which harden the gelatin with link-bonds between molecules.

  15. Release of the self-quenching of fluorescence near silver metallic surfaces

    PubMed Central

    Lakowicz, Joseph R.; Malicka, Joanna; D’Auria, Sabato; Gryczynski, Ignacy

    2009-01-01

    Fluorescein is one of the most widely used fluorescent probes in microscopy, biotechnology, and clinical assays. One dificulty with fluorescein is its self-quenching, which results in decreased intensities with increasing labeling density. In this study we examined human serum albumin (HSA), which contained one to nine covalently linked fluorescein molecules per molecule of HSA. The occurrence of homo resonance energy transfer for labeling ratios greater than 1 were confirmed by decreases in the relative quantum yields, anisotropies, and lifetimes. We found that most of the self-quenching can be partially eliminated by proximity of the labeled protein to metallic silver particles. These results suggest the use of heavily labeled proteins and metallic colloids to obtain ultrabright reagents for use in immunoassays, imaging, and other applications. PMID:12895465

  16. Control of photoinduced fluorescence enhancement of colloidal quantum dots using metal oxides

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed M.; Wing, Waylin J.; Patty, Kira; Campbell, Quinn

    2015-10-01

    It is well known that irradiation of colloidal quantum dots can dramatically enhance their emission efficiencies, leading to so-called photoinduced fluorescence enhancement (PFE). This process is the result of the photochemical and photophysical properties of quantum dots and the way they interact with the environment in the presence of light. It has been shown that such properties can be changed significantly using metal oxides. Using spectroscopic techniques, in this paper we investigate emission of different types of quantum dots (with and without shell) in the presence of metal oxides with opposing effects. We observed significant increase of PFE when quantum dots are deposited on about one nanometer of aluminum oxide, suggesting such oxide can profoundly increase quantum yield of such quantum dots. On the other hand, copper oxide can lead to significant suppression of emission of quantum dots, making them nearly completely dark instantly.

  17. ELECTROLYTIC PROCESS FOR PRODUCING METALS

    DOEpatents

    Kopelman, B.; Holden, R.B.

    1961-06-01

    A method is described for reducing beryllium halides to beryllium. The beryllfum halide fs placed in an eutectic mixture of alkali halides and alkaline earth halides. The constituents of this eutectic bath are so chosen that it has a melting point less than the boiling point of mercury, which acts as a cathode for the system. The beryllium metal is then deposited in the mercury upon electrolysis.

  18. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  19. Giant increase in the metal-enhanced fluorescence of organic molecules in nanoporous alumina templates and large molecule-specific red/blue-shift of the fluorescence peak.

    PubMed

    Sarkar, S; Kanchibotla, B; Nelson, J D; Edwards, J D; Anderson, J; Tepper, G C; Bandyopadhyay, S

    2014-10-08

    The fluorescence of organic fluorophore molecules is enhanced when they are placed in contact with certain metals (Al, Ag, Cu, Au, etc.) whose surface plasmon waves couple into the radiative modes of the molecules and increase the radiative efficiency. Here, we report a hitherto unknown size dependence of this metal-enhanced fluorescence (MEF) effect in the nanoscale. When the molecules are deposited in nanoporous anodic alumina films with exposed aluminum at the bottom of the pores, they form organic nanowires standing on aluminum nanoparticles whose plasmon waves have much larger amplitudes. This increases the MEF strongly, resulting in several orders of magnitude increase in the fluorescence intensity of the organic fluorophores. The increase in intensity shows an inverse superlinear dependence on nanowire diameter because the nanowires also act as plasmonic "waveguides" that concentrate the plasmons and increase the coupling of the plasmons with the radiative modes of the molecules. Furthermore, if the nanoporous template housing the nanowires has built-in electric fields due to space charges, a strong molecule-specific red- or blue-shift is induced in the fluorescence peak owing to a renormalization of the dipole moment of the molecule. This can be exploited to detect minute amounts of target molecules in a mixture using their optical signature (fluorescence) despite the presence of confounding background signals. It can result in a unique new technology for biosensing and chemical sensing.

  20. Hazardous metals in vintage plastic toys measured by a handheld X-ray fluorescence spectrometer.

    PubMed

    Miller, Gillian Zaharias; Harris, Zoe E

    2015-01-01

    Over 100 plastic toys from the 1970s and 1980s, both polyvinyl chloride ("vinyl") and nonvinyl, were analyzed in the study described here using a handheld X-ray fluorescence spectrometer to quantify hazardous metal content. A sampling of recent vinyl toys was also tested. The majority of nonvinyl samples were Fisher Price brand toys. The vinyl toys consisted largely of Barbie dolls and other dolls. Overall, lead or cadmium was found in 67% of vintage plastic toys, frequently at concentrations exceeding current U.S. and European limits. Arsenic was detected at levels of concern in 16% of the samples. In the nonvinyl toys, heavy metal content was found to correlate with certain colors of plastic. The likely sources of the detected metals are discussed. None of the contemporary vinyl toys contained detectable cadmium, lead, or arsenic. Given that vintage toys remain in widespread use by children in homes and other locations, the results illuminate a potential source of heavy metal exposure for children.

  1. Interfacial Clustering-Triggered Fluorescence-Phosphorescence Dual Solvoluminescence of Metal Nanoclusters.

    PubMed

    Yang, Taiqun; Dai, Shan; Yang, Songqiu; Chen, Li; Liu, Pengcheng; Dong, Kailong; Zhou, Jiasheng; Chen, Yuting; Pan, Haifeng; Zhang, Sanjun; Chen, Jinquan; Zhang, Kun; Wu, Peng; Xu, Jianhua

    2017-09-07

    The fluorescence-phosphorescence dual solvoluminescence (SL) of water-soluble metal nanoclusters (NCs) at room temperature was successfully achieved by a simple solvent-stimulated strategy. The strong interaction between carboxylate ligands and the metal core at the nanoscale interface not only induces rigid conformations of carbonyl groups but also affords a perfect carbonyl cluster that acts as an exact chromophore of metal NCs for aggregation-induced emission (AIE) mechanics. The clustering of carbonyl groups bearing on the polymer backbone chain is promoted by newly discovered n → π* noncovalent interactions. The efficient delocalization of electrons in overlapped C═O double bonds between neighboring carbonyl groups triggered by strong n → π* interactions in the polymer cluster accounts for its unique SL properties, especially the abnormal phosphorescence. This was further confirmed by controlled experiments for the presence of intersystem crossing (ISC) transitions. The results provide novel insights for understanding the complex SL process and open up a new way to study the inherent mechanism of SL by broadening the application of metal NCs.

  2. Photophysical characterization of fluorescent metal nanoclusters sythesized using oligonucleotides, proteins and small reagent moleucles

    SciTech Connect

    Yeh, Hsin-chih; Jaswinder, Sharma K; Martinez, Jennifer S; Werner, James H; Yoo, Hyojong

    2009-01-01

    The size transition from bulk metals to insulating nanoparticles and eventually to single atoms passes through the relatively unexplored few-atom nanocluster region. With climensions close to the Fermi wavelength, these nanoclusters demonstrate molecule-like properties distinct from bulk metals or atoms, such as discrete and size-tunable electronic transitions which lead to photoluminescence. Current research aims to elucidate the fundamental photophysical properties of the existing metal nanoclusters made by different means and based on different encapsulation agents. Here, we report the study of the photophysical properties, including quantum yields, lifetimes, extinction coefficients, blinking dynamics and sizes, of silver and gold nanoclusters synthesized using oligonucleotides, a protein (bovine serum albumin) and a Good's buffer molecule (MES, 2-(N-morpholino)ethanesulfonic acid) as encapsulation agents. We also investigate the change of photoluminescence under varying conditions (time, temperature and salt). Furthermore, it is demonstrated here that fluorescent metal clusters can be used as a donor in forming resonance energy transfer pairs with a commercial organic quenching dye.

  3. Distance-dependent metal enhanced fluorescence by flowerlike silver nanostructures fabricated in liquid crystalline phase

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Yang, Chengliang; Zhang, Guiyang; Peng, Zenghui; Yao, Lishuang; Wang, Qidong; Cao, Zhaoliang; Mu, Quanquan; Xuan, Li

    2017-10-01

    Flowerlike silver nanostructure substrates were fabricated in liquid crystalline phase and the distance dependent property of metal enhanced fluorescence for such substrate was studied for the first time. The distance between silver nanostructures and fluorophore was controlled by the well-established layer-by-layer (LbL) technique constructing alternate layers of poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS). The Rhodamine 6G (R6G) molecules were electrostatically attached to the outmost negative charged PSS layer. The fluorescence enhancement factor of flowerlike nanostructure substrate increased firstly and then decreased with the distance increasing. The best enhanced fluorescence intensity of 71 fold was obtained at a distance of 5.2 nm from the surface of flowerlike silver nanostructure. The distance for best enhancement effect is an instructive parameter for the applications of such substrates and could be used in the practical MEF applications with the flowerlike nanostructure substrates fabricated in such way which is simple, controllable and cost-effective.

  4. Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps.

    PubMed

    Rabah, Mahmoud A

    2008-01-01

    Europium and yttrium metals and some valuable salts were recovered from the powder coating the inner surface of the glass tubes of fluorescent lamps. The tubes were broken under 30% aqueous acetone to avoid emission of mercury vapor to the atmosphere, and the powder was collected by brushing. Metals available in the powder were pressure leached using sulfuric/nitric acid mixture. Sulphate salt of europium and yttrium so obtained was converted to thiocyanate. Trimethyl-benzylammonium chloride solvent was used to selectively extract Eu and Y from the thiocyanate solution. The metal loaded in the organic solvent was recovered by N-tributylphosphate in 1M nitric acid to produce nitrate salts of Eu and Y. Europium nitrate was separated from yttrium nitrate by dissolving in ethyl alcohol. The isolated powder contained 1.62% europium oxide, 1.65% yttrium oxide, 34.48% calcium sulphate, 61.52% Ca orthophosphate and 0.65% other impurity metals by weight. Autoclave digestion of the powder in the acid mixture for 4h at approximately 125 degrees C and 5 MPa dissolved 96.4% of the yttrium and 92.8% of the europium. Conversion of the sulphate to thiocyanate is favoured at low temperature. Extraction of Eu and Y from the thiocyanate solution attained its maximum at approximately 80 degrees C. N-tributylphosphate in 1N nitric acid at 125 degrees C achieved a stripping extent of 99%. Thermal reduction using hydrogen gas at 850 degrees C and 1575 degrees C produced europium and yttrium metals, respectively. A metal separation factor of 9.4 was achieved. Economic estimation revealed that the suggested method seemed feasible for industrial applications.

  5. Metal enhanced fluorescence improved protein and DNA detection by zigzag Ag nanorod arrays.

    PubMed

    Ji, Xiaofan; Xiao, Chenyu; Lau, Wai-Fung; Li, Jianping; Fu, Junxue

    2016-08-15

    As metal nano-arrays show great potential on metal enhanced fluorescence (MEF) than random nanostructures, MEF of Ag zigzag nanorod (ZNR) arrays made by oblique angle deposition has been studied for biomolecule-protein interaction and DNA hybridization. By changing the folding number and the deposition substrate temperature, a 14-fold enhancement factor (EF) is obtained for biotin-neutravidin detection. The optimal folding number is decided as Z=7, owing to the high scattering intensity of Ag ZNRs. The substrate temperature T=25°C and 0°C slightly alters the morphology of Ag ZNRs but has no big difference in EF. Further, Ag ZNRs deposited on a layer of Ag film have been introduced to the DNA hybridization and a significant signal enhancement has been observed through the fluorescence microscope. Through a detailed quantitative EF analysis, which excludes the enhancing effect from the increased surface area of ZNRs and only considers the contribution of MEF, an EF of 28 is achieved for the hybridization of two single-stranded oligonucleotides with 33 bases. Furthermore, a limit of detection is determined as 0.01pM. We believe that the Ag ZNR arrays can serve as a universal and sensitive bio-detection platform.

  6. Heavy-Metal-Free Fluorescent ZnTe/ZnSe Nanodumbbells.

    PubMed

    Ji, Botao; Panfil, Yossef E; Banin, Uri

    2017-07-25

    For visible range emitting particles, which are relevant for display and additional applications, Cd-chalcogenide nanocrystals have reached the highest degree of control and performance. Considering potential toxicity and regulatory limitations, there is a challenge to successfully develop Cd-free emitting nanocrystals and, in particular, heterostructures with desirable properties. Herein, we report a colloidal synthesis of fluorescent heavy-metal-free Zn-chalcogenide semiconductor nanodumbbells (NDBs), in which ZnSe tips were selectively grown on the apexes of ZnTe rods, as evidenced by a variety of methods. The fluorescence of the NDBs can be tuned between ∼500 and 585 nm by changing the ZnSe tip size. The emission quantum yield can be greatly increased through chloride surface treatment and reaches more than 30%. Simulations within an effective-mass-based model show that the hole wave function is spread over the ZnTe nanorods, while the electron wave function is localized on the ZnSe tips. Quantitative agreement for the red-shifted emission wavelength is obtained between the simulations and the experiments. Additionally, the changes in radiative lifetimes correlate well with the calculated decrease in electron-hole overlap upon growth of larger ZnSe tips. The heavy-metal-free ZnTe/ZnSe NDBs may be relevant for optoelectronic applications such as displays or light-emitting diodes.

  7. Silver-Halide Gelatin Holograms.

    DTIC Science & Technology

    1980-02-01

    PREPARATION OF R-10 TYPE BLEACHES Stock Solution A: Distilled water - 500 ml Ammonium dichromate - 20g Concentrated sulfuric acid - 14 ml Distilled water to...for the preparation of a bleach solution 5 Rinse in running water for 15 seconds Red Light 6 Soak in 0.5% ammonium dichromate for 5 minutes Red Light...those of con- ventional dichromated gelatin holograms, can be formed employing commercial silver-halide films. Major advantages of silver-halide

  8. In-situ early detection of metal corrosion via "turn-on" fluorescence in "smart" epoxy coatings

    NASA Astrophysics Data System (ADS)

    Augustyniak, Anita

    Organic coatings (e.g., epoxy coatings) have been widely used to protect metal and metal alloys against corrosion. However protective coating fails with time, leading to corrosion of the metal substrate. When localized corrosion occurs, without being detected, it can result in disastrous failure of the metal structure. The purpose of this thesis is to develop a "smart" epoxy coating system that detects early stages of metal corrosion via indicators molecules embedded in the coating that fluoresce when triggered by ions liberated from corrosion. This fluorescence can be easily and non-destructively detected and thus further material damage can be prevented by providing necessary maintenance. In this thesis a spirolactam, [1H-isoindole- 1,91'-[9H]xanthen]-3(2H)-one, 3'6'-bis(diethylamino)- 2-[(1 methylethylidene) amino] (FD1), was successfully used to sense early stages of metal corrosion, when embedded in the epoxy coating, via "turn-on" fluorescence. Despite that we unambiguously confirmed that FD1 forms a fluorescent complex with Fe3+ in a nonaqueous solution by using electrospray ionization mass spectrometry (ESI-MS), the predominant mechanism that FD1 is capable of detecting early metal corrosion is due to its acid-catalyzed hydrolysis to fluorescent protonated Rhodamine B hydrazide, as the consequence of the local pH decrease at the anodic sites of both steel and aluminum corrosion (water is always present). The "turn-on" FD1 fluorescence was easily, non-destructively detected under UV light before any visible sign of corrosion appeared. In addition, only a low FD1 concentration (0.5 wt%) in the coating was needed for effective corrosion detection. FM did not prematurely interact with the coating formulation components and was able to "report" early corrosion even when embedded in the filled epoxy coating in the presence of pigments.

  9. Multicomponent assembly of fluorescent-tag functionalized ligands in metal-organic frameworks for sensing explosives.

    PubMed

    Gole, Bappaditya; Bar, Arun Kumar; Mukherjee, Partha Sarathi

    2014-10-06

    Detection of trace amounts of explosive materials is significantly important for security concerns and pollution control. Four multicomponent metal-organic frameworks (MOFs-12, 13, 23, and 123) have been synthesized by employing ligands embedded with fluorescent tags. The multicomponent assembly of the ligands was utilized to acquire a diverse electronic behavior of the MOFs and the fluorescent tags were strategically chosen to enhance the electron density in the MOFs. The phase purity of the MOFs was established by PXRD, NMR spectroscopy, and finally by single-crystal XRD. Single-crystal structures of the MOFs-12 and 13 showed the formation of three-dimensional porous networks with the aromatic tags projecting inwardly into the pores. These electron-rich MOFs were utilized for detection of explosive nitroaromatic compounds (NACs) through fluorescence quenching with high selectivity and sensitivity. The rate of fluorescence quenching for all the MOFs follows the order of electron deficiency of the NACs. We also showed the detection of picric acid (PA) by luminescent MOFs is not always reliable and can be misleading. This attracts our attention to explore these MOFs for sensing picryl chloride (PC), which is as explosive as picric acid and used widely to prepare more stable explosives like 2,4,6-trinitroaniline from PA. Moreover, the recyclability and sensitivity studies indicated that these MOFs can be reused several times with parts per billion (ppb) levels of sensitivity towards PC and 2,4,6-trinitrotoluene (TNT). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Significant metal enhanced fluorescence of Ag2S quantum dots in the second near-infrared window

    NASA Astrophysics Data System (ADS)

    Theodorou, I. G.; Jawad, Z. A. R.; Qin, H.; Aboagye, E. O.; Porter, A. E.; Ryan, M. P.; Xie, F.

    2016-06-01

    The amplification of light in NIR-II from Ag2S QDs via metal enhanced fluorescence (MEF) is reported for the first time. Significant fluorescence enhancement of over 100 times for Ag2S QDs deposited on Au-nanostructured arrays, paves the way for novel sensing and imaging applications based on Ag2S QDs, with improved detection sensitivity and contrast enhancement.The amplification of light in NIR-II from Ag2S QDs via metal enhanced fluorescence (MEF) is reported for the first time. Significant fluorescence enhancement of over 100 times for Ag2S QDs deposited on Au-nanostructured arrays, paves the way for novel sensing and imaging applications based on Ag2S QDs, with improved detection sensitivity and contrast enhancement. Electronic supplementary information (ESI) available: Detailed description of experimental methods. See DOI: 10.1039/c6nr03220f

  11. Dependence of Purcell effect on fluorescence wavelength in dye molecules on metal-dielectric multilayer hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Tsurumachi, Noriaki; Izawa, Hayato; Tomioka, Ryo; Sakata, Tomohiro; Suzuki, Makoto; Tanaka, Yasuhiro; Shimokawa, Fusao; Nakanishi, Shunsuke

    2016-02-01

    Recently, the enhancement of spontaneous emission, i.e., broadband Purcell effect, has been achieved using hyperbolic metamaterials. Hyperbolic metamaterials, which can be realized using a metal-dielectric multilayer structure, have an extremely large optical anisotropy of permittivity in both the parallel and perpendicular directions to the propagation of light, especially when the signs of permittivities in both directions differ. In this study, we investigated the conditions for realizing the broadband Purcell effect using dye molecules with different fluorescence wavelengths. Our fabricated metal-dielectric multilayer structure exhibited hyperbolic dispersion at wavelengths beyond 500 nm. In the case of coumarin 500 whose fluorescence peak is located at 500 nm, no broadband Purcell effect was observed. However, in the case of pyridine 1 whose fluorescence peak is located at 650 nm, we observed the successfull fluorescence lifetime shortening, i.e., the broadband Purcell effect.

  12. High-Temperature Ionic Epitaxy of Halide Perovskite Thin Film and the Hidden Carrier Dynamics.

    PubMed

    Wang, Yiping; Sun, Xin; Chen, Zhizhong; Sun, Yi-Yang; Zhang, Shengbai; Lu, Toh-Ming; Wertz, Esther; Shi, Jian

    2017-09-01

    High-temperature vapor phase epitaxy (VPE) has been proved ubiquitously powerful in enabling high-performance electro-optic devices in III-V semiconductor field. A typical example is the successful growth of p-type GaN by VPE for blue light-emitting diodes. VPE excels as it controls film defects such as point/interface defects and grain boundary, thanks to its high-temperature processing condition and controllable deposition rate. For the first time, single-crystalline high-temperature VPE halide perovskite thin film has been demonstrated-a unique platform on unveiling previously uncovered carrier dynamics in inorganic halide perovskites. Toward wafer-scale epitaxial and grain boundary-free film is grown with alkali halides as substrates. It is shown the metal alkali halides could be used as universal substrates for VPE growth of perovskite due to their similar material chemistry and lattice constant. With VPE, hot photoluminescence and nanosecond photo-Dember effect are revealed in inorganic halide perovskite. These two phenomena suggest that inorganic halide perovskite could be as compelling as its organic-inorganic counterpart regarding optoelectronic properties and help explain the long carrier lifetime in halide perovskite. The findings suggest a new avenue on developing high-quality large-scale single-crystalline halide perovskite films requiring precise control of defects and morphology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Morishita, Kiyoshi; Maclean, James L.; Liu, Biwu; Jiang, Hui; Liu, Juewen

    2013-03-01

    Few-atom noble metal nanoclusters have attracted a lot of interest due to their potential applications in biosensor development, imaging and catalysis. DNA-templated silver nanoclusters (AgNCs) are of particular interest as different emission colors can be obtained by changing the DNA sequence. A popular analytical application is fluorescence quenching by Hg2+, where d10-d10 metallophilic interaction has often been proposed for associating Hg2+ with nanoclusters. However, it cannot explain the lack of response to other d10 ions such as Zn2+ and Cd2+. In our effort to elucidate the quenching mechanism, we studied a total of eight AgNCs prepared by different hairpin DNA sequences; they showed different sensitivity to Hg2+, and DNA with a larger cytosine loop size produced more sensitive AgNCs. In all the cases, samples strongly quenched by Hg2+ were also more easily photobleached. Light of shorter wavelengths bleached AgNCs more potently, and photobleached samples can be recovered by NaBH4. Strong fluorescence quenching was also observed with high redox potential metal ions such as Ag+, Au3+, Cu2+ and Hg2+, but not with low redox potential ions. Such metal induced quenching cannot be recovered by NaBH4. Electronic absorption and mass spectrometry studies offered further insights into the oxidation reaction. Our results correlate many important experimental observations and will fuel the further growth of this field.Few-atom noble metal nanoclusters have attracted a lot of interest due to their potential applications in biosensor development, imaging and catalysis. DNA-templated silver nanoclusters (AgNCs) are of particular interest as different emission colors can be obtained by changing the DNA sequence. A popular analytical application is fluorescence quenching by Hg2+, where d10-d10 metallophilic interaction has often been proposed for associating Hg2+ with nanoclusters. However, it cannot explain the lack of response to other d10 ions such as Zn2+ and Cd2+. In

  14. Making and Breaking of Lead Halide Perovskites.

    PubMed

    Manser, Joseph S; Saidaminov, Makhsud I; Christians, Jeffrey A; Bakr, Osman M; Kamat, Prashant V

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80-150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic-inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  15. Simulated 'On-Line' Wear Metal Analysis of Lubricating Oils by X-Ray Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Partos, Richard D.; Nelson, Irina

    1996-01-01

    The objective of this project was to assess the sensitivity of X-ray Fluorescence Spectroscopy (XFS) for quantitative evaluation of metal particle content in engine oil suspensions and the feasibility of real-time, dynamic wear metal analysis. The study was focused on iron as the majority wear metal component. Variable parameters were: particle size, particle concentration and oil velocity. A commercial XFS spectrometer equipped with interchangeable static/dynamic (flow cell) sample chambers was used. XFS spectra were recorded for solutions of Fe-organometallic standard and for a series of DTE oil suspensions of high purity spherical iron particles of 2g, 4g, and 8g diameter, at concentrations from 5 ppm to 5,000 ppm. Real contaminated oil samples from Langley Air Force Base aircraft engines and NASA Langley Research Center wind tunnels were also analyzed. The experimental data conform the reliability of XFS as the analytical method of choice for this project. Intrinsic inadequacies of the instrument for precise analytic work at low metal concentrations were identified as being related to the particular x-ray beam definition, system geometry, and flow-cell materials selection. This work supports a proposal for the design, construction and testing of a conceptually new, miniature XFS spectrometer with superior performance, dedicated to on-line, real-time monitoring of lubricating oils in operating engines. Innovative design solutions include focalization of the incident x-ray beam, non-metal sample chamber, and miniaturization of the overall assembly. The instrument would contribute to prevention of catastrophic engine failures. A proposal for two-year funding has been presented to NASA Langley Research Center Internal Operation Group (IOG) Management, to continue the effort begun by this summer's project.

  16. Simulated 'On-Line' Wear Metal Analysis of Lubricating Oils by X-Ray Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Partos, Richard D.; Nelson, Irina

    1996-01-01

    The objective of this project was to assess the sensitivity of X-ray Fluorescence Spectroscopy (XFS) for quantitative evaluation of metal particle content in engine oil suspensions and the feasibility of real-time, dynamic wear metal analysis. The study was focused on iron as the majority wear metal component. Variable parameters were: particle size, particle concentration and oil velocity. A commercial XFS spectrometer equipped with interchangeable static/dynamic (flow cell) sample chambers was used. XFS spectra were recorded for solutions of Fe-organometallic standard and for a series of DTE oil suspensions of high purity spherical iron particles of 2g, 4g, and 8g diameter, at concentrations from 5 ppm to 5,000 ppm. Real contaminated oil samples from Langley Air Force Base aircraft engines and NASA Langley Research Center wind tunnels were also analyzed. The experimental data conform the reliability of XFS as the analytical method of choice for this project. Intrinsic inadequacies of the instrument for precise analytic work at low metal concentrations were identified as being related to the particular x-ray beam definition, system geometry, and flow-cell materials selection. This work supports a proposal for the design, construction and testing of a conceptually new, miniature XFS spectrometer with superior performance, dedicated to on-line, real-time monitoring of lubricating oils in operating engines. Innovative design solutions include focalization of the incident x-ray beam, non-metal sample chamber, and miniaturization of the overall assembly. The instrument would contribute to prevention of catastrophic engine failures. A proposal for two-year funding has been presented to NASA Langley Research Center Internal Operation Group (IOG) Management, to continue the effort begun by this summer's project.

  17. Metal-Enhanced Fluorescence from Silver Nanowires with High Aspect Ratio on Glass Slides for Biosensing Applications

    PubMed Central

    2015-01-01

    High enhancement of fluorescence emission, improved fluorophore photostability, and significant reduction of fluorescence lifetimes have been obtained from high aspect ratio (>100) silver (Ag) nanowires. These quantities are found to depend on the surface loading of Ag nanowires on glass slides, where the enhancement of fluorescence emission increases with the density of nanowires. The surface loading dependence was attributed to the creation of intense electric fields around the network of Ag nanowires and to the coupling of fluorophore excited states that takes place efficiently at a distance of 10 nm from the surface of nanowires, which was confirmed by theoretical calculations. The enhancement of fluorescence emission of fluorescein isothiocyanate (FITC) was assessed by fluorescence spectroscopy and fluorescence-lifetime imaging microscopy (FLIM) to demonstrate the potential of high aspect ratio Ag nanowires. Fluorescence enhancement factors exceeding 14 were observed on Ag nanowires with high loading by FLIM. The photostability of FITC was the highest on nanowires with medium loading under continuous laser excitation for 10 min because of the significant reduction in the fluorescence lifetime of FITC on these surfaces. These results clearly demonstrate the potential of Ag nanowires in metal-enhanced fluorescence-based applications of biosensing on planar surfaces and cellular imaging. PMID:25598859

  18. Fabrication and characterization of mono-layered polystyrene beads using nanosphere lithography (NSL) for metal-enhanced fluorescence (MEF)

    NASA Astrophysics Data System (ADS)

    Kannadorai, Ravi Kumar; Dinish, U. S.; Fu, Chit Yaw; Olivo, Malini; Asundi, Anand

    2010-03-01

    Fluorescence spectroscopy is a powerful and widely used technique, which finds extensive applications in biochemistry and molecular biology. In many cases, detection of fluorescence from biological samples at low concentration demands for a sensitive technique that can enhance the weak fluorescence signal. In order to realize this, metal enhanced fluorescence technique is employed where an increase in fluorescence is observed when the fluorophore is in close proximity to a metallic surface. In order to achieve this, nano-roughened silver surfaces such as fractal structures or silver colloid-coated surfaces can be employed. However, preparation of such surfaces not only involves lengthy chemical procedures but also result in poor reproducibility. To overcome these limitations, nanosphere lithography (NSL) is proposed, which is an inexpensive, simple to implement and high throughput nanofabrication technique. In this technique, polystyrene (PS) nano-beads are used to form a 2D monolayer of nanoparticle array followed by deposition of silver to form a roughened metallic surface. The surface roughness of the silver coating is determined by the close packing and arrangement of the nanobeads. In this work, substrates are fabricated using different sizes of PS beads to result in different nanometric surface roughening for silver layer and its optimization to achieve better fluorescence enhancement is carried out.

  19. Mapping of Heavy Metal Ion Sorption to Cell-Extracellular Polymeric Substance-Mineral Aggregates by Using Metal-Selective Fluorescent Probes and Confocal Laser Scanning Microscopy

    PubMed Central

    Li, Jianli; Kappler, Andreas; Obst, Martin

    2013-01-01

    Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141

  20. RARE-EARTH METAL FISSION PRODUCTS FROM LIQUID U-Bi

    DOEpatents

    Wiswall, R.H.

    1960-05-10

    Fission product metals can be removed from solution in liquid bismuth without removal of an appreciable quantity of uranium by contacting the liquid metal solution with fused halides, as for example, the halides of sodium, potassium, and lithium and by adding to the contacted phases a quantity of a halide which is unstable relative to the halides of the fission products, a specific unstable halide being MgCl/sub 3/.

  1. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays.

    PubMed

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-06

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  2. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays

    NASA Astrophysics Data System (ADS)

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-01

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  3. Highly Fluorescent Group 13 Metal Complexes with Cyclic, Aromatic Hydroxamic Acid Ligands

    SciTech Connect

    Seitz, Michael; Moore, Evan G.; Raymond, Kenneth N.

    2008-02-11

    The neutral complexes of two ligands based on the 1-oxo-2-hydroxy-isoquinoline (1,2-HOIQO) motif with group 13 metals (Al, Ga, In) show bright blue-violet luminescence in organic solvents. The corresponding transition can be attributed to ligand-centered singlet emission, characterized by a small Stokes shifts of only a few nm combined with lifetimes in the range between 1-3 ns. The fluorescence efficiency is high, with quantum yields of up to 37% in benzene solution. The crystal structure of one of the indium(III) complexes (trigonal space group R-3, a = b = 13.0384(15) {angstrom}, c = 32.870(8) {angstrom}, ? = {beta} = 90{sup o}, {gamma} = 120{sup o}, V = 4839.3(14) {angstrom}{sup 3}, Z = 6) shows a six-coordinate geometry around the indium center which is close to trigonal-prismatic, with a twist angle between the two trigonal faces of 20.7{sup o}. Time-dependent density functional theory (TD-DFT) calculations (Al and Ga: B3LYP/6-31G(d)); In: B3LYP/LANL2DZ of the fac and mer isomers with one of the two ligands indicate that there is no clear preference for either one of the isomeric forms of the metal complexes. In addition, the metal centers do not have a significant influence on the electronic structure, and as a consequence, on the predominant intraligand optical transitions.

  4. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  5. Methyl Halide Production by Fungi

    NASA Astrophysics Data System (ADS)

    Dailey, G. D.; Varner, R. K.; Blanchard, R. O.; Sive, B. C.; Crill, P. M.

    2005-12-01

    Methyl chloride (CH3Cl), methyl bromide (CH3Br) and methyl iodide (CH3I) are methyl halide gases that contribute significant amounts of halogen radicals to the atmosphere. In an effort to better understand the global budget of methyl halides and their impact on the atmosphere, we need to identify the natural sources in addition to the known anthropogenic sources of these compounds. We are investigating the role of fungi in the production of methyl halides in the soils and wetlands in southern New Hampshire, USA. Previous research has shown that wood decay fungi and ectomycorrhizal fungi, which are within a group of fungi called basidiomycetes, emit methyl halides. In our study, measurements of headspace gas extracted from flasks containing fungi grown in culture demonstrate that a variety of fungi, including basidiomycetes and non-basidiomycetes, emit methyl halides. Our research sites include four ecosystems: an agricultural field, a temperate forest, a fresh water wetland, and coastal salt marshes. We have collected and isolated fungi at each site by culturing tissue samples of fruiting bodies and plant material, by using wood baits, and from the direct culture of soil. We compared the rates of methyl halide emissions from the fungi in the four ecosystems. In addition, we measured emissions from previously assayed fungal isolates after reintroducing them to sterilized soils that were collected from their original environments. Fungal biomass was determined by substrate-induced respiration (SIR). The emission rate by the fungus was determined by a linear regression of the concentration of methyl halide in the sample headspace over time divided by the fungal biomass.

  6. Using X-Ray Fluorescence Technique to Quantify Metal Concentration in Coral Cores from Belize

    NASA Astrophysics Data System (ADS)

    Kingsley, C.; Bhattacharya, A.; Hangsterfer, A.; Carilli, J.; Field, D. B.

    2016-12-01

    Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research appears to suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Sedimentation can stunt coral growth, reduce its resilience, and it is possible that trapped material could render coral skeletons brittle (personal discussions). Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here explores the usefulness of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. The coral cores together cover a period of 1862-2006. Trace, major, and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core to characterize materials present in coral skeletons. We compared the results from XRF to solution-based ICP-MS - that involves dissolving subsamples of coral skeleton to measure metal content. Overall, it appears that the non-destructive XRF technique is a viable supplement in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully

  7. The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors.

    PubMed

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2015-10-20

    The recent re-emergence of the halide perovskites, of the type AMX3, derives from a sea-changing breakthrough in the field of photovoltaics that has led to a whole new generation of solar devices with remarkable power conversion efficiency. The success in the field of photovoltaics has led to intense, combined research efforts to better understand these materials both from the fundamental chemistry and physics points of view and for the improvement of applied functional device engineering. This groundswell of activity has breathed new life into this long-known but largely "forgotten" class of perovskites. The impressive achievements of halide perovskites in photovoltaics, as well as other optoelectronic applications, stem from an unusually favorable combination of optical and electronic properties, with the ability to be solution processed into films. This defines them as a brand new class of semiconductors that can rival or exceed the performance of the venerable classes of III-V and II-IV semiconductors, which presently dominate the industries of applied optoelectronics. Our aim in this Account is to highlight the basic pillars that define the chemistry of the halide perovskites and their unconventional electronic properties through the prism of structure-property relationships. We focus on the synthetic requirements under which a halide perovskite can exist and emphasize how the synthetic conditions can determine the structural integrity and the bulk properties of the perovskites. Then we proceed to discuss the origins of the optical and electronic phenomena, using the perovskite crystal structure as a guide. Some of the most remarkable features of the perovskites dealt with in this Account include the evolution of a unique type of defect, which gives rise to superlattices. These can enhance or diminish the fluorescence properties of the perovskites. For example, the exotic self-doping ability of the Sn-based perovskites allows them to adopt electrical

  8. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this subpart that... section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you...

  9. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF).

    PubMed

    Pang, Yuanfeng; Rong, Zhen; Wang, Junfeng; Xiao, Rui; Wang, Shengqi

    2015-04-15

    A fluorescent aptasensor system has been designed for the sensitive detection of recombinant hemagglutinin (rHA) protein of the H5N1 influenza virus in human serum. Guanine-richen anti-rHA aptamers by SELEX were immobilized on the surface of the Ag@SiO2 nanoparticles which performed as a metal-enhanced fluorescence (MEF) sensing platform. Thiazole orange (TO) was used as fluorescent tag which reported to the G-quadruplex secondary structural induced by aptamer-rHA binding event. In the absence of rHA protein, TO was free in the solution with almost no fluorescence emission. When rHA protein was added to the solution, the aptamer strand bound rHA protein to form a stable G-quadruplex complex, which can bind TO and excite the fluorescence emission of TO. Moreover, the excited-state TO captured by the G-quadruplex complex was forced to the surface of the Ag@SiO2 nanoparticles and could experience a surface plasmon resonance enhancement which can be transformed into more efficient fluorescence emission signals, therefore, the fluorescence signal of TO can be amplified largely. This system does not require covalent labeling with fluorophores to the aptamer and the background noise is very low. The detection of rHA protein of the H5N1 influenza virus could be operated both in aqueous buffer and human serum with the detection limit of 2 and 3.5ng/mL respectively. More important, the whole detection process can be finished in a PE tube within 30min, which makes it suitable as a self-contained diagnostic kit for H5N1 influenza virus point-of-care (POC) diagnostic.

  10. Construction of a low-cost detector to identify dissolved metals in aqueous media by fluorescence spectroscopy: design and perspectives.

    NASA Astrophysics Data System (ADS)

    González, M.; Montaño, M.; Hoyo, C.

    2017-01-01

    We have constructed a low cost fluorescence detector model to determine the presence of some heavy metals in an aqueous medium. In particular, we focus on metals which cause public health problems in our country. We did the first tests with standard samples of Hg (II). The innovative features of this instrument are its small dimensions (9 dm3) and the low cost of materials used in its construction.

  11. The study of metal enhanced fluorescence property of Ag/ZnO composite structure

    NASA Astrophysics Data System (ADS)

    Liu, Xingzuo; Chen, Zhuo; Zhao, Yue; Shen, Yue; Guo, Yun; Huang, Jian; Min, Jiahua; Wang, Linjun

    2017-03-01

    In this paper, Ag nanoparticles were successfully prepared by chemical reduction, and then Ag/ZnO composite particles were successfully prepared and deposited onto glass substrates to form Ag/ZnO thin films. Hereafter, the structure, the morphology and the metal enhanced fluorescence (MEF) property of Ag nanoparticles and ZnO/Ag composite particles were studied by XRD, SEM, EDS, TEM, UV-vis absorption and fluorescence (FL) spectrometer. The results showed that the average size of Ag nanoparticles increased with the increase of prepared time. Moreover, ZnO layer consisted of polycrystalline structure and amorphous interface layer, but nano-Ag particle was polycrystalline structure. Annealing process was carried out to investigate the influence of annealing process parameters on MEF property of Ag/ZnO composite structure. Due to annealing treatment, the amorphous component of Ag/ZnO thin films was reduced, which might improve the density of Ag/ZnO thin films and the diameter of composite particles. Furthermore, FL enhancement phenomenon of fluorescein isothiocyanate (FITC) molecules might be attributed to the joint influence of the roughness and the density of these films and the average diameter of composite particles.

  12. Metal-Enhanced Fluorescence of Silver Island Associated with Silver Nanoparticle

    NASA Astrophysics Data System (ADS)

    Liaw, Jiunn-Woei; Wu, Hsin-Yu; Huang, Chu-Chuan; Kuo, Mao-Kuen

    2016-01-01

    The coupling plasmon of a hybrid nanostructure, silver island (SI) associated with silver nanoparticle (SNP), on metal-enhanced fluorescence (MEF) was studied theoretically. We used the multiple multipole method to analyze the plasmon-mediated enhancement factor on the fluorescence of a molecule immobilized on SNP and located in the gap zone between SI and SNP; herein, the SI was modeled as an oblate spheroid. Numerical results show that the enhancement factor of the hybrid nanostructure is higher than that of a SNP or a SI alone due to the coupled gap mode. This finding is in agreement with the previous experimental results. In addition, the plasmon band of the structure is broadband and tunable, which can be red-shifted and broadened by flattening or enlarging SI. Based on this property, the hybrid nanostructure can be tailored to obtain the optimal enhancement factor on a specific molecule according to its excitation spectrum. Moreover, we found that there is an induced optical force allowing SNP be attracted by SI. Consequently, the gap is reduced gradually to perform a stronger MEF effect.

  13. Temperature dependence of metal-enhanced fluorescence of photosystem I from Thermosynechococcus elongatus.

    PubMed

    Ashraf, Imran; Konrad, Alexander; Lokstein, Heiko; Skandary, Sepideh; Metzger, Michael; Djouda, Joseph M; Maurer, Thomas; Adam, Pierre M; Meixner, Alfred J; Brecht, Marc

    2017-03-23

    We report the temperature dependence of metal-enhanced fluorescence (MEF) of individual photosystem I (PSI) complexes from Thermosynechococcus elongatus (T. elongatus) coupled to gold nanoparticles (AuNPs). A strong temperature dependence of shape and intensity of the emission spectra is observed when PSI is coupled to AuNPs. For each temperature, the enhancement factor (EF) is calculated by comparing the intensity of individual AuNP-coupled PSI to the mean intensity of 'uncoupled' PSI. At cryogenic temperature (1.6 K) the average EF was 4.3-fold. Upon increasing the temperature to 250 K the EF increases to 84-fold. Single complexes show even higher EFs up to 441.0-fold. At increasing temperatures the different spectral pools of PSI from T. elongatus become distinguishable. These pools are affected differently by the plasmonic interactions and show different enhancements. The remarkable increase of the EFs is explained by a rate model including the temperature dependence of the fluorescence yield of PSI and the spectral overlap between absorption and emission spectra of AuNPs and PSI, respectively.

  14. Tuning the Spectroscopic Properties of Ratiometric Fluorescent Metal Indicators: Experimental and Computational Studies on Mag-fura-2 and Analogues.

    PubMed

    Zhang, Guangqian; Jacquemin, Denis; Buccella, Daniela

    2017-02-02

    In this joint theoretical and experimental work, we investigate the properties of Mag-fura-2 and seven structurally related fluorescent sensors designed for the ratiometric detection of Mg(2+) cations. The synthesis of three new compounds is described, and the absorption and emission spectra of all of the sensors in both their free and metal-bound forms are reported. A time-dependent density functional theory approach accounting for hydration effects using a hybrid implicit/explicit model is employed to calculate the absorption and fluorescence emission wavelengths, study the origins of the hypsochromic shift caused by metal binding for all of the sensors in this family, and investigate the auxochromic effects of various modifications of the "fura" core. The metal-free forms of the sensors are shown to undergo a strong intramolecular charge transfer upon light absorption, which is largely suppressed by metal complexation, resulting in predominantly locally excited states upon excitation of the metal complexes. Our computational protocol might aid in the design of new generations of fluorescent sensors with low-energy excitation and enhanced properties for ratiometric imaging of metal cations in biological samples.

  15. Syntheses and structures of alkyl and aryl halide complexes of the type [(PiPr{sub 3}){sub 2}PtH({eta}{sup 1}-XR)]BAr{sub f} and analogues with Et{sub 2}O, THF, and H{sub 2} ligands. Halide-to-metal {pi}-bonding in halocarbon complexes

    SciTech Connect

    Butts, M.D.; Scott, B.L.; Kubas, G.J.

    1996-11-27

    The reaction of Pt(PiPr{sub 3}){sub 3} with SO{sub 2} led to the formation of (PiPr{sub 3}){sub 2}Pt(SO{sub 2}) (1), isolated in 93% yield. The addition of [H(OEt{sub 2}){sub 2}]{sup +}BAr{sub f} (BAr{sub f} = B(3,5-(CF{sub 3}){sub 2}C{sub 6}H{sub 3}){sub 4}) to 1 in ether at -78 {degree}C afforded the solved complex trans-[(PiPr{sub 3}){sub 2}Pt(H)(OEt{sub 2})]BAr{sub f}(2) in 85% isolated yield. Complex 2 served as a precursor to monodentate halocarbon complexes of the type Pt({eta}{sup 1}-XR). The dichloromethane complex trans-[(PiPr{sub 3}){sub 2}Pt(H)({eta}{sup 1} -ClCH{sub 2}Cl)]BAr{sub f} (3) was isolated in 80% yield by the recrystallization of 2 from CH{sub 2}Cl{sub 2}/hexane. TR spectroscopy suggested the existence of dichloromethane binding which was confirmed by X-ray crystallography. The reaction of 2 or 3 with iodo- or bromobenzene led to the isolation of the haloarene complexes trans-[(PiPr{sub 3}){sub 2}Pt(H)({eta}{sup 1}-XPh)]BAr{sub f}, where X = I (4, 87% yield) or Br (5, 60% yield). An unexpected steric interaction in 4, suggested by molecular mechanics calculations to be significant, was rationalized in terms of halide-to-metal {pi} bonding. The PhI complex 4 decomposed under harsh conditions to the bridging iodide compound [trans-[(PiPr{sub 3}){sub 2}Pt(H)]{sub 2}({mu}-I)] Ar{sub f} (6) which was structurally characterized. The THF adduct [(PiPr{sub 3}){sub 2}-Pt(H)(THF)]Ar{sub f} (7) was formed when any of the compounds 2,3,4, or 5 was dissolved in THF. 58 refs., 8 figs., 5 tabs.

  16. Theoretical analysis of NMR shieldings of group-11 metal halides on MX (M = Cu, Ag, Au; X = H, F, Cl, Br, I) molecular systems, and the appearance of quasi instabilities on AuF.

    PubMed

    Maldonado, Alejandro F; Melo, Juan I; Aucar, Gustavo A

    2015-10-14

    Accurate calculations of nuclear magnetic shieldings of group-11 metal halides, σ(M; MX) (M = Cu, Ag, Au; X = H, F, Cl, Br, I), were performed with relativistic and nonrelativistic theoretical schemes in order to learn more about the importance of the involved electronic mechanisms that underlie such shieldings. We applied state of the art schemes: polarization propagators at a random phase level of approach (PP-RPA); spin-free Hamiltonian (SF); linear response elimination of small component (LRESC) and density functional theory (DFT) with two different functionals: B3LYP and PBE0. The results from DFT calculations are not close to those from the relativistic polarization propagator calculations at the RPA level of approach (RelPP-RPA), in line with previous results. The spin-orbit (SO) contribution to a shielding constant is important only for MF molecules (M = Cu, Ag, Au). Different electronic mechanisms are considered within the LRESC method, bunched into two groups: core- and ligand-dependent. For the analysed shieldings the core-dependent electronic mechanisms are the most important ones; the ligand-dependent being only important for MF molecules. An out of range value for σ(Au) is found in AuF. It was previously reported in the literature, either originated in the large fluorine electronegativity together with large spin-orbit coupling contributions; or, due to Fermi-contact contributions. We argue here that such an unexpected large value is an artifact originated in the appearance of quasi instabilities, and show how to handle this apparent problem.

  17. Molecules for Fluorescence Detection of Specific Chemicals

    NASA Technical Reports Server (NTRS)

    Fedor, Steve

    2008-01-01

    A family of fluorescent dye molecules has been developed for use in on-off fluorescence detection of specific chemicals. By themselves, these molecules do not fluoresce. However, when exposed to certain chemical analytes in liquid or vapor forms, they do fluoresce (see figure). These compounds are amenable to fixation on or in a variety of substrates for use in fluorescence-based detection devices: they can be chemically modified to anchor them to porous or non-porous solid supports or can be incorporated into polymer films. Potential applications for these compounds include detection of chemical warfare agents, sensing of acidity or alkalinity, and fluorescent tagging of proteins in pharmaceutical research and development. These molecules could also be exploited for use as two-photon materials for photodynamic therapy in the treatment of certain cancers and other diseases. A molecule in this family consists of a fluorescent core (such as an anthracene or pyrene) attached to two end groups that, when the dye is excited by absorption of light, transfer an electron to the core, thereby quenching the fluorescence. The end groups can be engineered so that they react chemically with certain analytes. Upon reaction, electrons on the end groups are no longer available for transfer to the core and, consequently, the fluorescence from the core is no longer quenched. The chemoselectivity of these molecules can be changed by changing the end groups. For example, aniline end groups afford a capability for sensing acids or acid halides (including those contained in chemical warfare agents). Pyridine or bipyridyl end groups would enable sensing of metal ions. Other chemicals that can be selectively detected through suitable choice of end groups include glucose and proteins. Moreover, the fluorescent cores can be changed to alter light-absorption and -emission characteristics: anthracene cores fluoresce at wavelengths around 500 nm, whereas perylene cores absorb and emit at

  18. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  19. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  20. Ultrafast fluorescent decay induced by metal-mediated dipole-dipole interaction in two-dimensional molecular aggregates.

    PubMed

    Hu, Qing; Jin, Dafei; Xiao, Jun; Nam, Sang Hoon; Liu, Xiaoze; Liu, Yongmin; Zhang, Xiang; Fang, Nicholas X

    2017-09-19

    Two-dimensional molecular aggregate (2DMA), a thin sheet of strongly interacting dipole molecules self-assembled at close distance on an ordered lattice, is a fascinating fluorescent material. It is distinctively different from the conventional (single or colloidal) dye molecules and quantum dots. In this paper, we verify that when a 2DMA is placed at a nanometric distance from a metallic substrate, the strong and coherent interaction between the dipoles inside the 2DMA dominates its fluorescent decay at a picosecond timescale. Our streak-camera lifetime measurement and interacting lattice-dipole calculation reveal that the metal-mediated dipole-dipole interaction shortens the fluorescent lifetime to about one-half and increases the energy dissipation rate by 10 times that expected from the noninteracting single-dipole picture. Our finding can enrich our understanding of nanoscale energy transfer in molecular excitonic systems and may designate a unique direction for developing fast and efficient optoelectronic devices.

  1. A facile route towards large area self-assembled nanoscale silver film morphologies and their applications towards metal enhanced fluorescence

    DOE PAGES

    Hohenberger, Erik; Freitag, Nathan; Rosenmann, Daniel; ...

    2017-04-19

    Here, we present a facile method for fabricating nanostructured silver films containing a high density of nanoscopic gap features through a surface directed phenomenon utilizing nanoporous scaffolds rather than through traditional lithographic patterning processes. This method enables tunability of the silver film growth by simply adjusting the formulation and processing conditions of the nanoporous film prior to metallization. We further demonstrate that this process can produce nanoscopic gaps in thick (100 nm) silver films supporting localized surface plasmon resonance with large field amplification within the gaps while enabling launching of propagating surface plasmons within the silver grains. These enhanced fieldsmore » provide metal enhanced fluorescence with enhancement factors as high as 21 times compared to glass, as well as enable visualization of single fluorophore emission. This work provides a low-cost rapid approach for producing novel nanostructures capable of broadband fluorescence amplification, with potential applications including plasmonic and fluorescence based optical sensing and imaging applications.« less

  2. FerriBRIGHT: a rationally designed fluorescent probe for redox active metals.

    PubMed

    Kennedy, Daniel P; Kormos, Chad M; Burdette, Shawn C

    2009-06-24

    ))(3), a redox-inactive analogue of Fe(III), provided conditional binding constant log beta(12)' = 13.3 +/- 0.2 for a [Ga(FerriBRIGHT)(2)](-) complex. A 2.8-fold enhancement of fluorescence intensity upon addition of Ga(III) to FerriBRIGHT suggests the possibility of metal ion sensing with this new class of compounds.

  3. Microwave-accelerated metal-enhanced fluorescence: an ultra-fast and sensitive DNA sensing platform.

    PubMed

    Aslan, Kadir; Malyn, Stuart N; Bector, Geetika; Geddes, Chris D

    2007-11-01

    In this paper, we investigated the effects of low-power microwave heating on the components of the recently described new approach to surface DNA hybridization assays, based on the Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF) platform technology. Thiolated oligonucleotides have been linked to surface-bound silver nanostructures which partially coat a glass slide. The addition of a complementary fluorescein-labeled oligonucleotide results in metal-enhanced fluorescein emission as the probe is brought into close proximity to the silver upon hybridization. In addition, the combined use with low-power microwave heating, which is thought to locally heat around the silvered surface, affords for both the assay kinetics and optical amplification to also be localized to the surface. In our model DNA target assay reported here, we can detect 23-mer targets in less than 20 s, up to a 600-fold decrease in the assay run time as compared to control samples hybridized to completion at room temperature. Importantly, the use of MAMEF also reduces the extent of unwanted non-specific DNA absorption, further increasing specific DNA target detection limits. It was also found that low-power microwave heating did not denature DNA and the bulk temperature increase near to silver nanoparticles was only ca. 1 degrees C.

  4. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer.

    PubMed

    Yuan, Xun; Luo, Zhentao; Zhang, Qingbo; Zhang, Xinhai; Zheng, Yuangang; Lee, Jim Yang; Xie, Jianping

    2011-11-22

    This paper reports a simple and scalable method for the synthesis of highly fluorescent Ag, Au, Pt, and Cu nanoclusters (NCs) based on a mild etching environment made possible by phase transfer via electrostatic interactions. Using Ag as a model metal, a simple and fast (total synthesis time < 3 h) phase transfer cycle (aqueous → organic (2 h incubation) → aqueous) has been developed to process originally polydisperse, nonfluorescent, and unstable Ag NCs into monodisperse, highly fluorescent, and extremely stable Ag NCs in the same phase (aqueous) and protected by the same thiol ligand. The synthetic protocol was successfully extended to fabricate highly fluorescent Ag NCs protected by custom-designed peptides with desired functionalities (e.g., carboxyl, hydroxyl, and amine). The facile synthetic method developed in this study should largely contribute to the practical applications of this new class of fluorescence probes.

  5. Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment

    NASA Astrophysics Data System (ADS)

    Singh, V.; Joshi, G. C.; Bisht, D.

    2017-05-01

    The soil of two agricultural sites near an industrial area was investigated for heavy metal pollution using energy dispersive X-ray fluorescence (EDXRF). The concentration values for 17 elements were determined in the soil samples including eight heavy metal elements, i.e., Fe, Ni, As, Pb, Mn, Cr, Cu, and Zn. The soil near a pulp and paper mill was found to be highly polluted by the heavy metals. The concentration data obtained by EDXRF were further examined by calculating the pollution index and Nemerow integrated pollution index.

  6. Fast Monitoring Soil Environmental Qualities of Heavy Metal by Portable X-Ray Fluorescence Spectrometer.

    PubMed

    Wang, Bao; Yu, Jian-xin; Huang, Biao; Hu, Wen-you; Chang, Qing

    2015-06-01

    Portable X-ray fluorescence (PXRF) spectrometer as a new type of equipment for quick test has a prominent prospect, but there are also shortcomings of detection range and limition, therefore this paper studied the suitability of PXRF spectrometer in monitoring soil environmental qualities of heavy metals included Cr, Ni, Cu, Zn, Pb, Cd, As and Hg, the aim of this paper is to screen elements which can be detected by this kind of instrument and evaluate the accuracy of test results. The research method is to test heavy metals contaminated soil samples by PXRF spectrometer, evaluate the accuracy of test results of PXRF compared with inductively coupled plasma mass(ICP-MS), then establish linear regression relationship between analysis results of PXRF and ICP-MS method. The results show that, (1) When measuring the soil environmental quality, PXRF spectrometer is appropriate to measure the content of Pb, Zn, Cr and Cu, except Ni, Cd, As and Hg. (2) Compared with the test value of ICP-MS, the test value of Pb and Zn is lower, the test value of Cu is higher, the test value of Cr is too high, all the results of PXRF spectrometer should be linear corrected according to standard analysis method. In conclusion, PXRF spectrometer is suitable for monitoring environmental quality of soil which is polluted by heavy metal such as Pb, Zn, Cr and Cu, it is an analysis means with characteristics of simple and rapid, accurate and reliable. The innovation of this article is that reasonable avoiding the shortcomings of PXRF spectrometer as using the instrument to monitor soil environmental quality, at last improved the application value of test results.

  7. Melt synthesis of inorganic nitrides and halides

    NASA Astrophysics Data System (ADS)

    Molstad, Jay Clark

    Novel halide chlorides Sr7Cl2H12, Sr 7Br2H12, and Ba2ClH3 were formed from sodium chloride and strontium metal in sodium metal melts at 900°C. Sr7Br2H12 crystallizes in the anti-Fe 12Zr2P7 structure type, and Sr7Cl 2H12 crystallizes in a slightly distorted variant of this structure. Ba2ClH3 crystallizes in a structure containing infinite two-dimensional sheets of edge-sharing Ba6Cl chlorine-centered octahedra. Single crystals of gallium nitride can be obtained by reaction of gallium metal and dinitrogen gas at 750°C. Small amounts of alkaline earth metals added to the reaction mixture promote the formation of large crystals. Polycrystalline GaN nucleates rapidly under these conditions on the surface of a stainless steel autoclave; nucleation is far less pronounced on tungsten surfaces. Trace concentrations of hydrogen greatly enhance GaN nucleation. Melts of magnesium metal with cerium, gadolinium, and lanthanum were exposed to ammonia and nitrogen gas at temperatures from 700°C to 900°C. Binary rare earth and magnesium nitrides and hydrides are formed, but no ternary compounds are seen. The absence of ternary compounds is discussed in the light of a thermodynamic model predicting ternary formation in these systems.

  8. Study of heavy metals and other elements in macrophyte algae using energy-dispersive X-ray fluorescence

    SciTech Connect

    Carvalho, M.L.; Amorim, P.; Marques, M.I.M.; Ramos, M.T.; Ferreira, J.G.

    1997-04-01

    Fucus vesiculosus L. seaweeds from three estuarine stations were analyzed by X-ray fluorescence, providing results for the concentration of total K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Sr, and Pb. Four different structures of the algae (base, stipe, reproductive organs, and growing tips) were analyzed to study the differential accumulation of heavy metals by different parts of Fucus. Some elements (e.g., Cu and Fe) are preferentially accumulated in the base of the algae, whereas others (e.g., As) exhibit higher concentrations in the reproductive organs and growing tips. The pattern of accumulation in different structures is similar for Cu, Zn, and Pb, but for other metals there is considerable variability in accumulation between parts of the plant. This is important in determining which structures of the plant should be used for biomonitoring. For samples collected at stations subject to differing metal loads, the relative elemental composition is approximately constant, notwithstanding significant variation in absolute values. The proportion of metals in Fucus is similar to that found in other estuaries, where metal concentrations are significantly lower. Energy-dispersive X-ray fluorescence has been shown to be a suitable technique for multielement analysis in this type of sample. No chemical pretreatment is required, minimizing sample contamination. The small amount of sample required, and the wide range of elements that can be detected simultaneously make energy-dispersive X-ray fluorescence a valuable tool for pollution studies.

  9. Hydrogel-based protein and oligonucleotide microchips on metal-coated surfaces: enhancement of fluorescence and optimization of immunoassay.

    PubMed

    Zubtsova, Zh I; Zubtsov, D A; Savvateeva, E N; Stomakhin, A A; Chechetkin, V R; Zasedatelev, A S; Rubina, A Yu

    2009-10-26

    Manufacturing of hydrogel-based microchips on metal-coated substrates significantly enhances fluorescent signals upon binding of labeled target molecules. This observation holds true for both oligonucleotide and protein microchips. When Cy5 is used as fluorophore, this enhancement is 8-10-fold in hemispherical gel elements and 4-5-fold in flattened gel pads, as compared with similar microchips manufactured on uncoated glass slides. The effect also depends on the hydrophobicity of metal-coated substrate and on the presence of a layer of liquid over the gel pads. The extent of enhancement is insensitive to the nature of formed complexes and immobilized probes and remains linear within a wide range of fluorescence intensities. Manufacturing of gel-based protein microarrays on metal-coated substrates improves their sensitivity using the same incubation time for immunoassay. Sandwich immunoassay using these microchips allows shortening the incubation time without loss of sensitivity. Unlike microchips with probes immobilized directly on a surface, for which the plasmon mechanism is considered responsible for metal-enhanced fluorescence, the enhancement effect observed using hydrogel-based microchips on metal-coated substrates might be explained within the framework of geometric optics.

  10. Fluorescence sensor array based on amino acids-modulating quantum dots for the discrimination of metal ions.

    PubMed

    Jing, Wenjie; Lu, Yuexiang; Yang, Guangcai; Wang, Feiyang; He, Liuying; Liu, Yueying

    2017-09-08

    We developed an easily extensible fluorescence sensor array based on amino acids-modulating QDs for the discrimination of nine metal ions. Two amino acids (Glutamine and Arginine) were assembled with two quantum dots including 3-mercaptopropionic acid capped Mn-ZnS QDs (MPA-QDs) and alpha-thioglycerol capped Mn-ZnS QDs (TG-QDs), achieving six across-reactive sensing elements. Amino acids as the modulators imparted the diversity and differential detection of metal ions, because they could bind QDs and also form complexes with metal ions through their carboxyl, amino, and hydroxyl groups. Therefore, the fluorescence response signals for metal ions could be either enhanced or decreased. This sensing system allowed the accurate classification of nine metal ions in pure water at 0.5 μM and tap water at 3.0 μM. Moreover, two metal ions with different oxidation state Fe(3+) and Fe(2+), as well as their binary mixtures were well distinguished. Our sensor array was capable of the quantitative analysis of metal ions, showing a linear range from 0.5 μM to 20 μM for Co(2+), Ni(2+), Mn(2+), and Fe(2+). The results demonstrated that the number of sensing elements was easily extensible by using amino acids as QDs regulators. This strategy will provide a new direction to establish the sensitive array sensing systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Asymmetri Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    SciTech Connect

    Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.; Ovsenek, N.; Nichol, H.; /Saskatchewan U. /SLAC, SSRL

    2009-04-29

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was also concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.

  12. Asymmetric Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    SciTech Connect

    Popescu, B.F.Gh.; Belak, Z.R.; Ignatyev, K.; Ovsenek, N.; Nichol, H.

    2009-06-04

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was also concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.

  13. Real-time thermal imaging of microwave accelerated metal-enhanced fluorescence (MAMEF) based assays on sapphire plates.

    PubMed

    Previte, Michael J R; Zhang, Yongxia; Aslan, Kadir; Geddes, Chris D

    2007-11-01

    In this paper, we describe an optical geometry that facilitates our further characterization of the temperature changes above silver island films (SiFs) on sapphire plates, when exposed to microwave radiation. Since sapphire transmits IR, we designed an optical scheme to capture real-time temperature images of a thin water film on sapphire plates with and without SiFs during the application of a short microwave pulse. Using this optical scheme, we can accurately determine the temperature profile of solvents in proximity to metal structures when exposed to microwave irradiation. We believe that this optical scheme will provide us with a basis for further studies in designing metal structures to further improve plasmonic-fluorescence clinical sensing applications, such as those used in microwave accelerated metal-enhanced fluorescence (MAMEF).

  14. Performance of a Cyanobacteria Whole Cell-Based Fluorescence Biosensor for Heavy Metal and Pesticide Detection

    PubMed Central

    Shing, Wong Ling; Heng, Lee Yook; Surif, Salmijah

    2013-01-01

    Whole cell biosensors always face the challenge of low stability of biological components and short storage life. This paper reports the effects of poly(2-hydroxyethyl methacrylate) (pHEMA) immobilization on a whole cell fluorescence biosensor for the detection of heavy metals (Cu, Pb, Cd), and pesticides (dichlorophenoxyacetic acid (2,4-D), and chlorpyrifos). The biosensor was produced by entrapping the cyanobacterium Anabaena torulosa on a cellulose membrane, followed by applying a layer of pHEMA, and attaching it to a well. The well was then fixed to an optical probe which was connected to a fluorescence spectrophotometer and an electronic reader. The optimization of the biosensor using several factors such as amount of HEMA and drying temperature were undertaken. The detection limits of biosensor without pHEMA for Cu, Cd, Pb, 2,4-D and chlorpyrifos were 1.195, 0.027, 0.0100, 0.025 and 0.025 μg/L respectively. The presence of pHEMA increased the limits of detection to 1.410, 0.250, 0.500, 0.235 and 0.117 μg/L respectively. pHEMA is known to enhance the reproducibility of the biosensor with average relative standard deviation (RSD) of ±1.76% for all the pollutants tested, 48% better than the biosensor without pHEMA (RSD = ±3.73%). In storability test with Cu 5 μg/L, the biosensor with pHEMA performed 11.5% better than the test without pHEMA on day-10 and 5.2% better on day-25. pHEMA is therefore a good candidate to be used in whole cell biosensors as it increases reproducibility and enhances biosensor storability. PMID:23673679

  15. Organometal Halide Perovskite Artificial Synapses.

    PubMed

    Xu, Wentao; Cho, Himchan; Kim, Young-Hoon; Kim, Young-Tae; Wolf, Christoph; Park, Chan-Gyung; Lee, Tae-Woo

    2016-07-01

    Organometal halide perovskite synaptic devices are fabricated; they emulate important working principles of a biological synapse, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, long-term plasticity, and spike-timing dependent plasticity. These properties originate from possible ion migration in the ion-rich perovskite matrix. This work has extensive applicability and practical significance in neuromorphic electronics.

  16. Quantification and localization of trace metals in natural plancton using a synchrotron x-ray fluorescence microprobe.

    SciTech Connect

    Twining, B. S.; Baines, S. B.; Fisher, N. S.; Jacobsen, C.; Maser, J.; State Univ. of New York at Stony Brook

    2003-03-01

    The accumulation of trace metals by planktonic protists influences the growth of primary producers, metal biogeochemical cycling, and metal bioaccumulation in aquatic food chains. Despite their importance, unequivocal measurements of trace element concentrations in individual plankton cells have not been possible to date. We have used the 2-ID-E side-branch hard x-ray microprobe at the Advanced Photon Source to measure trace elements in individual marine plankton cells. This microprobe employs zoneplate optics to produce the sub-micron spatial resolution and low background fluorescence required to produce trace element maps of planktonic protist cells ranging in size from 3 to >50 {micro}m. We have developed preservation, rinsing, and mounting protocols that remove most of the salt from our marine samples, thus simplifying the identification of unknown cells and reducing high Cl-related background fluorescence. We have also developed spectral modeling techniques that account for the frequent overlap of adjacent fluorescence peaks and non-uniform detector response. Finally, we have used parallel soft x-ray transmission and epifluorescence microscopy images to estimate C normalized trace element concentrations, identify functional cell types (e.g., photosynthetic vs. non-photosynthetic), and correlate cell structures with spatial patterns in trace element fluorescence.

  17. PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS

    DOEpatents

    Moore, R.H.

    1962-10-01

    A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

  18. METHOD OF ALLOYING REACTIVE METALS WITH ALUMINUM OR BERYLLIUM

    DOEpatents

    Runnalls, O.J.C.

    1957-10-15

    A halide of one or more of the reactive metals, neptunium, cerium and americium, is mixed with aluminum or beryllium. The mass is heated at 700 to 1200 deg C, while maintaining a substantial vacuum of above 10/sup -3/ mm of mercury or better, until the halide of the reactive metal is reduced and the metal itself alloys with the reducing metal. The reaction proceeds efficiently due to the volatilization of the halides of the reducing metal, aluminum or beryllium.

  19. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.

    PubMed

    Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V

    2014-05-06

    The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).

  20. Atomic structure of metal-halide perovskites from first principles: The chicken-and-egg paradox of the organic-inorganic interaction

    NASA Astrophysics Data System (ADS)

    Li, Jingrui; Rinke, Patrick

    2016-07-01

    We have studied the prototype hybrid organic-inorganic perovskite CH3NH3PbI3 and its three close relatives, CH3NH3SnI3 ,CH3NH3PbCl3 , and CsPbI3, using relativistic density function theory. The long-range van der Waals (vdW) interactions were incorporated into the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional using the Tkatchenko-Scheffler pairwise scheme. Our results reveal that hydrogen bonding, which is well described by the PBE functional, plays a decisive role for the structural parameters of these systems, including the position and orientation of the organic cation as well as the deformation of the inorganic framework. The magnitude of the inorganic-framework deformation depends sensitively on the orientation of the organic cation, and directly influences the stability of the hybrid perovskites. Our results suggest that the organic and the inorganic components complement each other; the low symmetry of the organic cation is the origin of the inorganic-framework deformation, which then aids the overall stabilization of the hybrid perovskite structure. This stabilization is indirectly affected by vdW interactions, which lead to smaller unit-cell volumes than in PBE and therefore modulate the interaction between the organic cation and the inorganic framework. The vdW-induced lattice-constant corrections are system dependent and lead to PBE+vdW lattice constants in good agreement with experiment. Further insight is gained by analyzing the vdW contributions. In all iodide-based hybrid perovskites, the interaction between the organic cation and the iodide anions provides the largest lattice-constant change, followed by iodine-iodine and the organic cation—heavy-metal cation interaction. These corrections follow an almost linear dependence on the lattice constant within the range considered in our study and are therefore approximately additive.

  1. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites.

    PubMed

    Glaser, Tobias; Müller, Christian; Sendner, Michael; Krekeler, Christian; Semonin, Octavi E; Hull, Trevor D; Yaffe, Omer; Owen, Jonathan S; Kowalsky, Wolfgang; Pucci, Annemarie; Lovrinčić, Robert

    2015-08-06

    The organic cation and its interplay with the inorganic lattice underlie the exceptional optoelectronic properties of organo-metallic halide perovskites. Herein we report high-quality infrared spectroscopic measurements of methylammonium lead halide perovskite (CH3NH3Pb(I/Br/Cl)3) films and single crystals at room temperature, from which the dielectric function in the investigated spectral range is derived. Comparison with electronic structure calculations in vacuum of the free methylammonium cation allows for a detailed peak assignment. We analyze the shifts of the vibrational peak positions between the different halides and infer the extent of interaction between organic moiety and the surrounding inorganic cage. The positions of the NH3(+) stretching vibrations point to significant hydrogen bonding between the methylammonium and the halides for all three perovskites.

  2. DEPOSITION OF METAL ON NONMETAL FILAMENT

    DOEpatents

    Magel, T.T.

    1959-02-10

    A method is described for purifying metallic uranium by passing a halogen vapor continuously over the impure uranium to form uranium halide vapor and immediately passing the halide vapor into contact with a nonmetallic refractory surface which is at a temperature above the melting point of uranium metal. The halide is decomposed at the heated surface depositing molten metal, which collects and falls into a receiver below.

  3. α-Regioselective Barbier Reaction of Carbonyl Compounds and Allyl Halides Mediated by Praseodymium.

    PubMed

    Wu, San; Li, Ying; Zhang, Songlin

    2016-09-02

    The first utility of praseodymium as a mediating metal in the Barbier reaction of carbonyl compounds with allyl halides was reported in this paper. In contrast to the traditional metal-mediated or catalyzed Barbier reactions, exclusive α-adducts were obtained in this one-pot reaction with a broad scope of substrates and feasible reaction conditions.

  4. 3D Imaging of Transition Metals in the Zebrafish Embryo by X-ray Fluorescence Microtomography

    PubMed Central

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Yi, Hong; Will, Fabian; Richter, Heiko; Shin, Chong Hyun; Fahrni, Christoph J.

    2014-01-01

    Synchrotron X-ray fluorescence (SXRF) microtomography has emerged as a powerful technique for the 3D visualization of the elemental distribution in biological samples. The mechanical stability, both of the instrument and the specimen, is paramount when acquiring tomographic projection series. By combining the progressive lowering of temperature method (PLT) with femtosecond laser sectioning, we were able to embed, excise, and preserve a zebrafish embryo at 24 hours post fertilization in an X-ray compatible, transparent resin for tomographic elemental imaging. Based on a data set comprised of 60 projections, acquired with a step size of 2 μm during 100 hours of beam time, we reconstructed the 3D distribution of zinc, iron, and copper using the iterative maximum likelihood expectation maximization (MLEM) reconstruction algorithm. The volumetric elemental maps, which entail over 124 million individual voxels for each transition metal, revealed distinct elemental distributions that could be correlated with characteristic anatomical features at this stage of embryonic development. PMID:24992831

  5. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence.

    PubMed

    Aslan, Kadir; Leonenko, Zoya; Lakowicz, Joseph R; Geddes, Chris D

    2005-03-03

    Two methods have been considered for the deposition of silver nanorods onto conventional glass substrates. In the first method, silver nanorods were deposited onto 3-(aminopropyl)triethoxysilane-coated glass substrates simply by immersing the substrates into the silver nanorod solution. In the second method, spherical silver seeds that were chemically attached to the surface were subsequently converted and grown into silver nanorods in the presence of a cationic surfactant and silver ions. The size of the silver nanorods was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration of immersion, ranging from tens of nanometers to a few micrometers. Atomic force microscopy and optical density measurements were used to characterize the silver nanorods deposited onto the surface of the glass substrates. The application of these new surfaces is for metal-enhanced fluorescence (MEF), whereby the close proximity of silver nanostructures can alter the radiative decay rate of fluorophores, producing enhanced signal intensities and an increased fluorophore photostability. In this paper, it is indeed shown that irregularly shaped silver nanorod-coated surfaces are much better MEF surfaces as compared to traditional silver island or colloid films. Subsequently, these new silver nanorod preparation procedures are likely to find a common place in MEF, as they are a quicker and much cheaper alternative as compared to surfaces fabricated by traditional nanolithographic techniques.

  6. Sensitive detection of Ochratoxin A in food and drinks using metal-enhanced fluorescence.

    PubMed

    Todescato, Francesco; Antognoli, Agnese; Meneghello, Anna; Cretaio, Erica; Signorini, Raffaella; Bozio, Renato

    2014-07-15

    Easy, sensitive, rapid and low cost ochratoxin biosensors are strongly demanded in food analysis since Ochratoxin A (OTA) is a widely diffused food contaminant, highly detrimental for human health. In this work, a novel plasmonic based optical biosensor prototype for ochratoxin A is described. It exploits the metal-enhanced fluorescence phenomenon due to the silver film over nanosphere plasmonic substrate. Since ochratoxin A could be present in different food commodities, sensor performances have been tested on three different matrices (dried milk, juices, and wheat mix). Firstly, a common OTA extraction solvent and a labeling and detection protocol were defined for the analyzed matrices. Then, the efficiency of the Ag-FON surfaces in signal amplification for the detection of low ochratoxin A concentrations was defined. Using samples spiked with OTA-AF 647 or with unlabeled OTA we were able to detect the mycotoxin at concentrations lower than E.U. specifications of 0.5 μg/kg in wheat, milk and apple juice. The test performances are comparable to those of ELISA kits but the platform presented here, once optimized, present some perspective advantages, such as: low cost and time consuming, versatility of the protocol for the investigation of different matrices, employment also in non-qualified laboratories, small dimensions that allow its integration in a compact device for OTA on-site detection.

  7. Fast and sensitive DNA hybridization assays using microwave-accelerated metal-enhanced fluorescence.

    PubMed

    Aslan, Kadir; Malyn, Stuart N; Geddes, Chris D

    2006-09-22

    A new, fast, and sensitive DNA hybridization assay platform based on microwave-accelerated metal-enhanced fluorescence (MAMEF) is presented. Thiolated oligonucleotide anchors were immobilized onto silver nanoparticles on a glass substrate. The hybridization of the complementary fluorescein-labeled DNA target with the surface-bound oligonucleotides was completed within 20 s upon heating with low-power microwaves. In addition, the signal is optically amplified, a consequence of close proximity of the fluorophore to the silvered substrate. In this proof-of-principle methodology, as low as 50 nM of a target DNA was detected, although we envisage far-lower detection limits. Control experiments, where the surface-bound oligonucleotide was omitted, were also performed to determine the extent of non-specific binding. In these studies a significantly reduced non-specific adsorption was found when using microwave heating near to silvered structures as compared to room temperature incubation. These findings suggest that MAMEF could be a most useful alternative to the DNA hybridization assays used today, especially with regard to substantially increasing both the assay rapidity and sensitivity.

  8. Metal-Enhanced Ratiometric Fluorescence/Naked Eye Bimodal Biosensor for Lead Ions Analysis with Bifunctional Nanocomposite Probes.

    PubMed

    Liang, Linlin; Lan, Feifei; Ge, Shenguang; Yu, Jinghua; Ren, Na; Yan, Mei

    2017-03-21

    A novel metal-enhanced ratiometric fluorescence/naked eye bimodal biosensor based on ZnFe2O4@Au-Ag bifunctional nanocomposite and DNA/CeO2 complex for lead ions (Pb(2+)) has been successfully developed. The nanocomposite probe was composed of a magnetic ZnFe2O4 core and a Au-Ag hollow nanocube shell. Upon bioconjugation, bifunctional magnetic nanocomposites could not only make the probe possess excellent recyclability but also provide an enrichment of "hot spots" for surface enhanced fluorescence detection of Pb(2+) by a metal-enhanced fluorescence effect. Typically, the bifunctional nanocomposites conjugated with double-stranded DNA (included Pb(2+)-specific DNAzyme strand and corresponding substrate strand) to form a Pb(2+) biosensor. Nanoceria as a fluorescence quencher strongly adsorbed DNA. Therefore, the formation of double-stranded DNA brought the labeled nitrogen sulfur doped carbon dots (N,S-CDs) and CeO2 into close proximity, which significantly quenched the fluorescence of N,S-CDs. The presence of Pb(2+) led to the breakage of the DNAzyme strand, resulting in the fluorescence signal of Cy3 decreasing, while the fluorescence intensity of N,S-CDs aggrandized. First, a preliminary test of Pb(2+) was performed by the naked eye. The disengaged DNA/CeO2 complex could result in color change after adding H2O2 because of autocatalysis of CeO2, resulting in real-time visual detection of Pb(2+). If further accurate determination was required, the fluorescence intensity ratio of these two fluorescence indicators was measured at 562 and 424 nm (I562/I424). A good linear correlation exists between the log(I562/I424) and the logarithm of Pb(2+) concentrations ranging from 10(-12) to 3 × 10(-6) M. Remarkably, the detection limit of this ratiometric biosensor was 3 × 10(-13) M, which ascribed to its superior fluorescence enhancement. Interestingly, the developed bifunctional nanocomposite probe manifests good recyclability and selectivity. More importantly, the

  9. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    PubMed

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications.

  10. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Martin, Leigh R.; Johnson, Aaron T.; Pfeiffer, Jana; Finck, Martha R.

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  11. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  12. Temperature controlled fluorescence on Au@Ag@PNIPAM-PTEBS microgels: effect of the metal core size on the MEF extension.

    PubMed

    Contreras-Caceres, Rafael; Alonso-Cristobal, Paulino; Mendez-Gonzalez, Diego; Laurenti, Marco; Maldonado-Valdivia, Ana; Garcia-Blanco, Francisco; López Cabarcos, Enrique; Fernandez-Barbero, Antonio; Lopez-Romero, José Manuel; Rubio-Retama, Jorge

    2014-12-30

    In this work, we present a novel method to produce thermoresponsive, monodisperse microgels which display temperature-dependent photoluminescence. The system is based on bimetallic cores of Au@Ag encapsulated within thermoresponsive poly(N-isopropylacrylamide) microgels and coated with a photoluminescent polymer (poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (PTEBS) using the Layer-by-Layer technique. The electromagnetic radiation used to excite the PTEBS induces a local electromagnetic field on the surface of the bimetallic cores that enhances the excitation and emission rates of the PTEBS, yielding a metal enhanced fluorescence (MEF). This effect was studied as a function of the bimetallic core size and the separation distance between the PTEBS and the bimetallic cores. Our results permit evaluation of the effect that the metallic core size of colloidal particles exerts on the MEF for the first time, and prove the relevance of the metallic cores to extend the effect far away from the metallic surface.

  13. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system.

    PubMed

    Yang, Fan; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2013-06-15

    The recycling of rare earth metals from phosphor powders in waste fluorescent lamps by solvent extraction using ionic liquids was studied. Acid leaching of rare earth metals from the waste phosphor powder was examined first. Yttrium (Y) and europium (Eu) dissolved readily in the acid solution; however, the leaching of other rare earth metals required substantial energy input. Ionization of target rare earth metals from the waste phosphor powders into the leach solution was critical for their successful recovery. As a high temperature was required for the complete leaching of all rare earth metals, ionic liquids, for which vapor pressure is negligible, were used as an alternative extracting phase to the conventional organic diluent. An extractant, N, N-dioctyldiglycol amic acid (DODGAA), which was recently developed, showed a high affinity for rare earth metal ions in liquid-liquid extraction although a conventional commercial phosphonic extractant did not. An effective recovery of the rare earth metals, Y, Eu, La and Ce, from the metal impurities, Fe, Al and Zn, was achieved from the acidic leach solution of phosphor powders using an ionic liquid containing DODGAA as novel extractant system. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Detecting weak fluorescence turn-on in the presence of Pb2+ heavy metal ion using coaxial fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Chiniforooshan, Yasser; Hao, Wenhui; Bock, Wojtek J.; Wang, Zhi Yuan

    2013-10-01

    This paper is devoted to examining the ability of a coaxial fiber-optic sensor (FOS) in detecting weak fluorescent light and weak fluorescence "turn-on" in the presence of trace heavy metal ion Pb2+. The captured fluorescent signal is detected by the Ocean Optics QE65000 spectrometer. The stock solutions include Pb2+ acetate in water (0.01 M) and a small molecule probe in water. The preliminary experiment shows that this FOS offers the Pb2+ detection limit (DL) of 1.26×10-4 mg/mL. The advantages, limitations and further improvements of this coaxial FOS are discussed in comparison with the bench-top instruments in terms of the abilities of signal light capture and stray excitation light suppression.

  15. Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in <30 seconds.

    PubMed

    Aslan, Kadir; Zhang, Yongxia; Hibbs, Stephen; Baillie, Les; Previte, Michael J R; Geddes, Chris D

    2007-11-01

    We describe the ultra-fast and sensitive detection of the gene encoding the protective antigen of Bacillus anthracis the causative agent of anthrax. Our approach employs a highly novel platform technology, Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF), which combines the use of Metal-Enhanced Fluorescence to enhance assay sensitivity and focused microwave heating to spatially and kinetically accelerate DNA hybridization. Genomic and exosporium target DNA of Bacillus anthracis spores was detected within a minute in the nanograms per microliter concentration range using low-power focused microwave heating. The MAMEF technology was able to distinguish between B. anthracis and B. cereus, a non-virulent close relative. We believe that this study has set the stage and indeed provides an opportunity for the ultra-fast and specific detection of B. anthracis spores with minimal pre-processing steps using a relatively simple but cost-effective technology that could minimize casualties in the event of another anthrax attack.

  16. Determination of metal components in marine sediments using energy-dispersive X-ray fluorescence (ED-XRF) spectrometry.

    PubMed

    Tung, Joanne Wai Ting

    2004-11-01

    A rapid energy-dispersive X-ray fluorescence (ED-XRF) spectrometric method for the analysis of metal components of marine sediments has been presented. Calibrations were made using synthetic matrix. The agreement of the results for sediment standard reference materials with reference values is satisfactory. Major advantages of the non-destructive ED-XRF technique over conventional chemical digestion methods include the applicability to analyzing the major oxide components, as well as to trace metals, and the avoidance of hazardous chemicals. The method has been applied to the routine analysis of Hong Kong marine sediment.

  17. Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale.

    PubMed

    McNear, David H; Peltier, Edward; Everhart, Jeff; Chaney, Rufus L; Sutton, Steve; Newville, Matt; Rivers, Mark; Sparks, Donald L

    2005-04-01

    This paper shows that synchrotron-based fluorescence and absorption-edge computed microtomographies (CMT) are well-suited for determining the compartmentalization and concentration of metals in hyperaccumulating plant tissues. Fluorescence CMT of intact leaf, stem, and root samples revealed that Ni concentrated in stem and leaf dermal tissues and, together with Mn, in distinct regions associated with the Ca-rich trichomes on the leaf surface of the nickel hyperaccumulator Alyssum murale "Kotodesh". Metal enrichment was also observed within the vascular system of the finer roots, stem, and leaves but absent from the coarser root, which had a well-correlated metal coating. Absorption-edge CMT showed the three-dimensional distribution of the highest metal concentrations and verified that epidermal localization and Ni and Mn co-localization at the trichome base are phenomena that occurred throughout the entire leaf and may contribute significantly to metal detoxification and storage. Ni was also observed in the leaf tips, possibly resulting from release of excess Ni with guttation fluids. These results are consistent with a transport model where Ni is removed from the soil by the finer roots, carried to the leaves through the stem xylem, and distributed throughout the leaf by the veins to the dermal tissues, trichome bases, and in some cases the leaf tips.

  18. A library-screening approach for developing a fluorescence sensing array for the detection of metal ions.

    PubMed

    Smith, David G; Sajid, Naveed; Rehn, Simone; Chandramohan, Ramya; Carney, Isaac J; Khan, Misbahul A; New, Elizabeth J

    2016-08-07

    Detection of individual metal ions is of importance across a range of fields of chemistry including environmental monitoring, and health and disease. Fluorescence is a highly sensitive technique and small fluorescent molecules are widely used for the detection and quantification of metal ions in various applications. Achieving specificity for a single metal from a single sensor is always a challenge. An alternative to selective sensing is the use of a number of non-specific sensors, in an array, which together respond in a unique pattern to each analyte. Here we show that screening a library of compounds can give a small sensor set that can be used to identify a range of metal ions following PCA and LDA. We explore a method for screening the initial compounds to identify the best performing sensors. We then present our method for reducing the size of the sensor array, resulting in a four-membered system, which is capable of identifying nine distinct metal ion species in lake water.

  19. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen.

    PubMed

    Xu, Dang-Dang; Deng, Yun-Liang; Li, Cheng-Yu; Lin, Yi; Tang, Hong-Wu

    2017-01-15

    The world health organization figures show prostate cancer in developed countries has been the second primary cause of cancer mortality following lung cancer for the men. So, early and sensitive diagnosis of cancer is very important before it spreads out to the other organs of the body. It is well-known that prostate-specific antigen (PSA) is the most specific and efficient tumor marker for the diagnosis of prostate cancer. Herein, we successfully fabricated core-shell composite fluorescent nanoparticle Ag@SiO2@SiO2-RuBpy which provide a photoluminescence enhancement of up to ~3-fold when the separation distance between the surface of silver core and the center of the third RuBpy doped silica shell is about 10nm. These core-shell MEF-capable nanoparticles have obvious advantages. The interaction between the doped RuBpy molecules in the outer silica layer and the silver core, greatly improves the excitation efficiency and enhances the fluorescence intensity. Importantly, the presence of silica can reduce the self-quenching of RuBpy, which makes larger amounts of RuBpy incorporated into the silica shell. In addition, the shell protects the RuBpy against collisional quenching and irreversible photodegradation and provides abundant hydroxyl for easy conjugation. After that a highly sensitive, specific and reliable strategy based on metal-enhanced fluorescence and magnetic separation was applied for the detection of PSA in both buffer and serum. The process could be rapidly accomplished, in which the immunomagnetic nanospheres (IMNs) and immunofluorescent nanoparticles (IFNs) were used to capture and identify the target molecules simultaneously. A good linear relationship between the fluorescence intensity and the concentration of PSA (0.1-100ng/mL) with a detection limit 27pg/mL was obtained.

  20. An Optical Biosensor from Green Fluorescent Escherichia coli for the Evaluation of Single and Combined Heavy Metal Toxicities

    PubMed Central

    Futra, Dedi; Heng, Lee Yook; Ahmad, Asmat; Surif, Salmijah; Ling, Tan Ling

    2015-01-01

    A fluorescence-based fiber optic toxicity biosensor based on genetically modified Escherichia coli (E. coli) with green fluorescent protein (GFP) was developed for the evaluation of the toxicity of several hazardous heavy metal ions. The toxic metals include Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III). The optimum fluorescence excitation and emission wavelengths of the optical biosensor were 400 ± 2 nm and 485 ± 2 nm, respectively. Based on the toxicity observed under optimal conditions, the detection limits of Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(III) that can be detected using the toxicity biosensor were at 0.04, 0.32, 0.46, 2.80, 100, 250, 400, 720 and 2600 μg/L, respectively. The repeatability and reproducibility of the proposed biosensor were 3.5%–4.8% RSD (relative standard deviation) and 3.6%–5.1% RSD (n = 8), respectively. The biosensor response was stable for at least five weeks, and demonstrated higher sensitivity towards metal toxicity evaluation when compared to a conventional Microtox assay. PMID:26029952

  1. Facile access to potent antiviral quinazoline heterocycles with fluorescence properties via merging metal-free domino reactions

    NASA Astrophysics Data System (ADS)

    Held, Felix E.; Guryev, Anton A.; Fröhlich, Tony; Hampel, Frank; Kahnt, Axel; Hutterer, Corina; Steingruber, Mirjam; Bahsi, Hanife; von Bojničić-Kninski, Clemens; Mattes, Daniela S.; Foertsch, Tobias C.; Nesterov-Mueller, Alexander; Marschall, Manfred; Tsogoeva, Svetlana B.

    2017-05-01

    Most of the known approved drugs comprise functionalized heterocyclic compounds as subunits. Among them, non-fluorescent quinazolines with four different substitution patterns are found in a variety of clinically used pharmaceuticals, while 4,5,7,8-substituted quinazolines and those displaying their own specific fluorescence, favourable for cellular uptake visualization, have not been described so far. Here we report the development of a one-pot synthetic strategy to access these 4,5,7,8-substituted quinazolines, which are fluorescent and feature strong antiviral properties (EC50 down to 0.6+/-0.1 μM) against human cytomegalovirus (HCMV). Merging multistep domino processes in one-pot under fully metal-free conditions leads to sustainable, maximum efficient and high-yielding organic synthesis. Furthermore, generation of artesunic acid-quinazoline hybrids and their application against HCMV (EC50 down to 0.1+/-0.0 μM) is demonstrated. Fluorescence of new antiviral hybrids and quinazolines has potential applications in molecular imaging in drug development and mechanistic studies, avoiding requirement of linkage to external fluorescent markers.

  2. Gaseous NH3 Confers Porous Pt Nanodendrites Assisted by Halides

    PubMed Central

    Lu, Shuanglong; Eid, Kamel; Li, Weifeng; Cao, Xueqin; Pan, Yue; Guo, Jun; Wang, Liang; Wang, Hongjing; Gu, Hongwei

    2016-01-01

    Tailoring the morphology of Pt nanocrystals (NCs) is of great concern for their enhancement in catalytic activity and durability. In this article, a novel synthetic strategy is developed to selectively prepare porous dendritic Pt NCs with different structures for oxygen reduction reaction (ORR) assisted by NH3 gas and halides (F−, Cl−, Br−). The NH3 gas plays critical roles on tuning the morphology. Previously, H2 and CO gas are reported to assist the shape control of metallic nanocrystals. This is the first demonstration that NH3 gas assists the Pt anisotropic growth. The halides also play important role in the synthetic strategy to regulate the formation of Pt NCs. As-made porous dendritic Pt NCs, especially when NH4F is used as a regulating reagent, show superior catalytic activity for ORR compared with commercial Pt/C catalyst and other previously reported Pt-based NCs. PMID:27184228

  3. CFTR-mediated halide transport in phagosomes of human neutrophils

    PubMed Central

    Painter, Richard G.; Marrero, Luis; Lombard, Gisele A.; Valentine, Vincent G.; Nauseef, William M.; Wang, Guoshun

    2010-01-01

    Chloride serves as a critical component of innate host defense against infection, providing the substrate for MPO-catalyzed production of HOCl in the phagosome of human neutrophils. Here, we used halide-specific fluorescent sensors covalently coupled to zymosan particles to investigate the kinetics of chloride and iodide transport in phagosomes of human neutrophils. Using the self-ratioable fluorescent probe specific for chloride anion, we measured chloride dynamics within phagosomes in response to extracellular chloride changes by quantitative fluorescence microscopy. Under the experimental conditions used, normal neutrophils showed rapid phagosomal chloride uptake with an initial influx rate of 0.31 ± 0.04 mM/s (n=5). GlyH-101, a CFTRinh, decreased the rate of uptake in a dose-dependent manner. Neutrophils isolated from CF patients showed a significantly slower rate of chloride uptake by phagosomes, having an initial influx rate of 0.043 ± 0.012 mM/s (n=5). Interestingly, the steady-state level of chloride in CF phagosomes was ∼26 mM, significantly lower than that of the control (∼68 mM). As CFTR transports chloride as well as other halides, we conjugated an iodide-sensitive probe as an independent approach to confirm the results. The dynamics of iodide uptake by neutrophil phagosomes were monitored by flow cytometry. CFTRinh172 blocked 40–50% of the overall iodide uptake by phagosomes in normal neutrophils. In a parallel manner, the level of iodide uptake by CF phagosomes was only 20–30% of that of the control. Taken together, these results implicate CFTR in transporting halides into the phagosomal lumen. PMID:20089668

  4. Halide Welding for Silver Nanowire Network Electrode.

    PubMed

    Kang, Hyungseok; Kim, Yeontae; Cheon, Siuk; Yi, Gi-Ra; Cho, Jeong Ho

    2017-09-13

    We developed a method of chemically welding silver nanowires (AgNWs) using an aqueous solution containing sodium halide salts (NaF, NaCl, NaBr, or NaI). The halide welding was performed simply by immersing the as-coated AgNW film into the sodium halide solution, and the resulting material was compared with those obtained using two typical thermal and plasmonic welding techniques. The halide welding dramatically reduced the sheet resistance of the AgNW electrode because of the strong fusion among nanowires at each junction while preserving the optical transmittance. The dramatic decrease in the sheet resistance was attributed to the autocatalytic addition of dissolved silver ions to the nanowire junction. Unlike thermal and plasmonic welding methods, the halide welding could be applied to AgNW films with a variety of deposition densities because the halide ions uniformly contacted the surface or junction regions. The optimized AgNW electrodes exhibited a sheet resistance of 9.3 Ω/sq at an optical transmittance of 92%. The halide welding significantly enhanced the mechanical flexibility of the electrode compared with the as-coated AgNWs. The halide-welded AgNWs were successfully used as source-drain electrodes in a transparent and flexible organic field-effect transistor (OFET). This simple, low-cost, and low-power consumption halide welding technique provides an innovative approach to preparing transparent electrodes for use in next-generation flexible optoelectronic devices.

  5. ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM METAL.

    SciTech Connect

    WORLEY, CHRISTOPHER GORDON

    2002-09-04

    Determining the concentration of gallium in plutonium metal is imperative in manufacturing nuclear weapons. X-ray fluorescence (XRF) is an effective method used to quantify the gallium content in plutonium; however, the sample and specimen preparation methods currently employed could be improved from a time and safety standpoint. Recently, a dried residue specimen preparation method was developed as an alternative to the established aqueous approach. The method currently certified to prepare plutonium for gallium analysis by XRF involves dissolving the sample and removing the plutonium with ion exchange chromatography. The gallium remaining in solution is then analyzed. This method has been thoroughly developed, and relative accuracy and precision values less than 1% can be achieved. However, this process is time consuming, and the specimen solution is radioactive due to the presence of residual plutonium and trace americium. Thus, an alternate process was developed to avoid these issues in which the plutonium solution is cast in {mu}L spots on Mylar XRF film, dried, and sealed inside a sample cell for analysis. This specimen preparation method is considerably faster and also safer than the solution process. Previous studies have demonstrated that a very linear calibration can be obtained from dried residue standards. In the present work, accuracy and precision results will be compared from using the aqueous and dried residue specimen preparation methods. The strengths and limitations of each method will also be discussed. In summary, this work will illustrate both the challenges faced with analyzing radioactive materials by XRF and the high accuracy and precision achievable with proper sample and specimen preparation.

  6. [Energy dispersive x-ray fluorescence spectrometry--a forensic chemistry method for detection of bullet metal residue in gunshot wounds].

    PubMed

    Havel, J; Zelenka, K

    2003-04-01

    The article describes using of energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic method as the tool for detection of metals (gunshot residues--GSR) in connection with gunshot-wounds of persons.

  7. Heavy metal stress detection and monitoring via LED-induced chlorophyll fluorescence analysis of Zea mays L. seedlings aimed at polluted soil phytoremediation

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2012-03-01

    Chlorophyll fluorescence spectroscopy is employed to detect and study the time evolution of metal stress of Zea mays L. seedlings aiming polluted soil phytoremediation. The chlorophyll fluorescence spectra of intact leaves are analyzed using 405 nm LED excitation. Red (Fr) and far-red (FFr) emissions around 685 nm and 735 nm, respectively, are examined as a function of the heavy metal concentration. The fluorescence ratio Fr/FFr was employed to monitor the effect of heavy metal upon the physiological state of the plants before signs of visual stress became apparent. The chlorophyll fluorescence analysis permitted detection and evaluation of the damage caused by heavy metal soil contamination in the early stages of the plants growing process, which is not feasible using conventional in vitro spectral analysis.

  8. Quenching and enhancement of single-molecule fluorescence under metallic and dielectric tips

    NASA Astrophysics Data System (ADS)

    Azoulay, J.; Débarre, A.; Richard, A.; Tchénio, P.

    2000-08-01

    We report on fluorescence experiments by apertureless near-field optical microscopy. We develop a simple model that demonstrates the importance of non-radiative transfer and that takes into account the dependence of non-radiative transfer on tip geometry. This process is in competition with field enhancement and it is a key process to understand the observed fluorescence enhancement factors. The analysis of the different factors involved in the global fluorescence enhancement or quenching leads to new strategies to reach resolution down to a few nanometers by apertureless fluorescence microscopy.

  9. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  10. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  11. Structures, Metal Ion Affinities, and Fluorescence Properties of Soluble Derivatives of Tris((6-phenyl-2-pyridyl)methyl)amine

    PubMed Central

    Liang, Jian; Zhang, Jing; Zhu, Lei; Duarandin, Alexander; Young, Victor G.; Geacintov*, Nicholas; Canary, James W.

    2009-01-01

    Metal complexes of tris((6-phenyl-2-pyridyl)methyl)amine (2) have hydrophobic cavities that potentially accommodate small molecules. However, the utility of this attractive motif has been hampered by the poor solubility of such complexes in many common solvents. In this study, two tripodal ligands (3, tris-[6-(3,4,5-trimethoxy-phenyl)-pyridin-2-ylmethyl]-amine, and 4, tris((6-(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)pyridin-2-yl)methyl)amine) derived from 2 were prepared with enhanced solubility in organic and aqueous solvents. The X-ray crystallographic analyses of selected ligands and complexes revealed that the hydrophobic cavities inside the zinc complexes were retained after derivatization. Fluorescence, NMR, and potentiometric titration studies, which were enabled by the improved solubility, were performed to investigate the binding properties of the soluble ligands (3, 4) with metal ions such as Zn2+ and Cu2+. When saturating quantities of Zn2+ ions are added to ligand 3 in acetonitrile, the fluorescence emission maximum exhibits a pronounced red shift of ~ 80 nm (from 376 to 457 nm) and is enhanced by a factor of > 100 when measured at 520 nm. The fluorescence properties of the Zn2+ ion-coordinated ligands in the Zn(3) complex are consistent with a charge-transfer character in the excited state, with possible contributions from a planarization of the pyridyl-trimethoxyphenyl groups in the excited state, and from excitonic interactions. PMID:19877674

  12. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles

    PubMed Central

    Rennhak, Markus; Reller, Armin

    2014-01-01

    Summary The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core–shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh) are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4–260 ± 40 nm diameter) can be prepared and decorated with noble metal nanoparticles (2–5 nm diameter). Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation. PMID:25671137

  13. Heterogeneous nano metal-organic framework fluorescence probe for highly selective and sensitive detection of hydrogen sulfide in living cells.

    PubMed

    Ma, Yu; Su, Hao; Kuang, Xuan; Li, Xiangyuan; Zhang, Tingting; Tang, Bo

    2014-11-18

    Hydrogen sulfide (H2S) has been regarded as the third important gaseous signaling molecule involved in human physiological and pathological processes. Due to the high reactive and diffusible properties of H2S, real-time detection of H2S fluctuations in living biological specimens is crucial. Here, we present a Cu(II)-metalated 3D porous nanoscale metal-organic framework (nano-MOF) {CuL[AlOH]2}n (PAC; H6L = meso-tetrakis(4-carboxylphenyl)porphyrin) and successfully employ this nano-MOF as a novel heterogeneous fluorescence probe for H2S detection. As far as we know, nano-MOFs have never been used as selective fluorescence probes for H2S detection. On the basis of the advantages of nano-MOF materials, this biocompatible nano-MOF probe exhibits rapid response, excellent selectivity, and hypotoxicity in in situ detection of H2S and represents the most sensitive fluorescence probe for selective H2S detection under physiological pH. In addition, confocal imaging was achieved successfully in living cells.

  14. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles.

    PubMed

    Herrmann, Rudolf; Rennhak, Markus; Reller, Armin

    2014-01-01

    The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core-shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh) are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4-260 ± 40 nm diameter) can be prepared and decorated with noble metal nanoparticles (2-5 nm diameter). Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation.

  15. APPARATUS FOR HIGH PURITY METAL RECOVERY

    DOEpatents

    Magel, T.T.

    1959-02-10

    An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

  16. Synthesis of aryl halides via organoborane chemistry

    SciTech Connect

    Kabalka, G.W.; Sastry, K.A.R.; Sastry, U.; Somayaji, V.

    1982-01-01

    A method for the rapid synthesis of a variety of substituted aryl halides by the reaction of organoboranes with halide ions in the presence of chloramine-T is described in detail. The products were purified by column chromatography on silica gel using a mixture of petroleum ether-ethyl acetate as eluent.

  17. Properties of volume reflection silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Kosobokova, N. L.; Usanov, Yuri E.; Shevtsov, Michail K.

    1991-02-01

    Three schemes of realization of micro-cavity method of processing silver halide photomaterials for silver-halide gelatin holograms (SHG) generation are proposed. Factors affecting diffraction efficiency replay wavelength shift and selectivity are discussed. 2. EXPERIMENTAL RESULTS In the previous paper on this issue the principle of SHG hologram formation based on a difference of speed hardening of gelatin mass in a photolayer and in a thin cover of gelatin absorbed on silver or silver halide grains was formulated. The investigation of " swelling" factor for layers both containing and not containing solid grains verified the difference in the hardening degree of these layers and demonstrated a possibility of using this phenomenon for the generation of SHG holograms. As a result we proposed three methods of transforming the structure of distribution of solid particles of a layer into the structure of micro-cavity distribution. Processing procedures realizing the micro-cavity (MC) methods are presented in Fig. l. As seen in Fig. l the differentiating feature of each method is the type of grain in a layer during its hardening. In the course of realization of methods MC-l MC-2 and MC-3 a layer to be hardened contains metallic developed silver rehalogenated silver and silver resulting after reversal bleaching of developed silver respectively. The common feature of all methods is dehydration procedure which results in producing micro cavities in the places of removed silver or silver salt grains.

  18. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Abu Serea, Maha R.; Sayed, Abeer S. S.

    2015-02-01

    A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV-Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats-Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes exhibited intraligand (π-π∗) fluorescence and can potentially serve as photoactive materials. Both the ligand and its complexes have been screened for antibacterial activities.

  19. Efficient stray-light suppression for resonance fluorescence in quantum dot micropillars using self-aligned metal apertures

    NASA Astrophysics Data System (ADS)

    Hopfmann, Caspar; Musiał, Anna; Maier, Sebastian; Emmerling, Monika; Schneider, Christian; Höfling, Sven; Kamp, Martin; Reitzenstein, Stephan

    2016-09-01

    Within this work we propose and demonstrate a technological approach to efficiently suppress excitation laser stray-light in resonance fluorescence experiments on quantum dot micropillars. To ensure efficient stray-light suppression, their fabrication process includes a planarization step and subsequent covering with a titanium mask to fabricate self-aligned apertures at the micropillar positions. These apertures aim to limit laser stray-light in the side-excitation vertical-detection configuration, while enabling detection of the optical signal through the top facet of the micropillars. The beneficial effects of these apertures are proven and quantitatively evaluated within a statistical study in which we determine and compare the stray-light suppression of 48 micropillars with and without metal apertures. Actual resonance fluorescence experiments on single quantum dots coupled to the cavity mode prove the relevance of the proposed approach and demonstrate that it will foster further studies on cavity quantum electrodynamics phenomena under coherent optical excitation.

  20. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).