Science.gov

Sample records for fluorescent multiplex linkage

  1. Fluorescent multiplex linkage analysis and carrier detection for Duchenne/Becker muscular dystrophy

    SciTech Connect

    Schwartz, L.S.; Hoffman, E.P. ); Tarleton, J. ); Popovich, B. ); Seltzer, W.K. )

    1992-10-01

    The authors have developed a fast and accurate PCR-based linkage and carrier detection protocol for families of Duchenne muscular dystrophy (DMD)/Becker muscular dystrophy (BMD) patients with or without detectable deletions of the dystrophin gene, using fluorescent PCR products analyzed on an automated sequencer. When a deletion is found in the affected male DMD/BMD patient by standard multiplex PCR, fluorescently labeled primers specific for the deleted and nondeleted exon(s) are used to amplify the DNA of at-risk female relatives by using multiplex PCR at low cycle number (20 cycles). The products are then quantitatively analyzed on an automatic sequencer to determine whether they are heterozygous for the deletion and thus are carriers. As a confirmation of the deletion data, and in cases in which a deletion is not found in the proband, fluorescent multiplex PCR linkage is done by using four previously described polymorphic dinucleotide sequences. The four (CA)[sub n] repeats are located throughout the dystrophin gene, making the analysis highly informative and accurate. The authors present the successful application of this protocol in families who proved refractory to more traditional analyses. 22 refs., 3 figs.

  2. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

  3. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  4. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, E.S.; Taylor, J.A.

    1994-06-28

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figures.

  5. Multiplexed fluorescence detector system for capillary electrophoresis

    DOEpatents

    Yeung, Edward S.; Taylor, John A.

    1996-03-12

    A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis.

  6. Microgels for multiplex and direct fluorescence detection

    NASA Astrophysics Data System (ADS)

    Causa, Filippo; Aliberti, Anna; Cusano, Angela M.; Battista, Edmondo; Netti, Paolo A.

    2015-05-01

    Blood borne oligonucleotides fragments contain useful clinical information whose detection and monitoring represent the new frontier in liquid biopsy as they can transform the current diagnosis procedure. For instance, recent studies have identified a new class of circulating biomarkers such as s miRNAs, and demonstrated that changes in their concentration are closely associated with the development of cancer and other pathologies. However, direct detection of miRNAs in body fluids is particularly challenging and demands high sensitivity -concentration range between atto to femtomolarspecificity, and multiplexing Here we report on engineered multifunctional microgels and innovative probe design for a direct and multiplex detection of relevant clinical miRNAs in fluorescence by single particle assay. Polyethyleneglycol-based microgels have a coreshell architecture with two spectrally encoded fluorescent dyes for multiplex analyses and are endowed with fluorescent probes for miRNA detection. Encoding and detection fluorescence signals are distinguishable by not overlapping emission spectra. Tuneable fluorescence probe conjugation and corresponding emission confinement on single microgel allows for enhanced target detection. Such suspension array has indeed high selectivity and sensitivity with a detection limit of 10-15 M and a dynamic range from 10-9 to 10-15 M. We believe that sensitivity in the fM concentration range, signal background minimization, multiplexed capability and direct measurement of such microgels will translate into diagnostic benefits opening up new roots toward liquid biopsy in the context of point-of-care testing through an easy and fast detection of sensitive diagnostic biomarkers directly in serum.

  7. Multiplexing Fluorescence Anisotropy Using Frequency Encoding.

    PubMed

    Schrell, Adrian M; Mukhitov, Nikita; Roper, Michael G

    2016-08-16

    In this report, a method to multiplex fluorescence anisotropy measurements is described using frequency encoding. As a demonstration of the method, simultaneous competitive immunoassays for insulin and glucagon were performed by measuring the ratio of bound and free Cy5-insulin and FITC-glucagon in the presence of their respective antibodies. A vertically polarized 635 nm laser was pulsed at 73 Hz and used to excite Cy5-insulin, while a vertically polarized 488 nm laser pulsed at 137 Hz excited FITC-glucagon. The total emission was split into parallel and perpendicular polarizations and collected onto separate photomultiplier tubes. The signals from each channel were demodulated using a fast Fourier transform, resolving the contributions from each fluorophore. Anisotropy calculations were carried out using the magnitude of the peaks in the frequency domain. The method produced the expected shape of the calibration curves with limits of detection of 0.6 and 5 nM for insulin and glucagon, respectively. This methodology could readily be expanded to other biological systems and further multiplexed to monitor increased numbers of analytes. PMID:27440478

  8. DNA-templated silver nanoclusters for multiplexed fluorescent DNA detection.

    PubMed

    Zhang, Ying; Zhu, Changfeng; Zhang, Lei; Tan, Chaoliang; Yang, Jian; Chen, Bo; Wang, Lianhui; Zhang, Hua

    2015-03-25

    Novel label-free/conjugation-free molecular beacons are designed based on DNA templated-silver nanoclusters for multiplexed DNA detection. The assay is implemented in solution, which makes it easy for the in-situ and real-time analysis. This study demonstrates a new method for multiplexd detection of biological molecules by using fluorescent Ag nanocluster-based molecular beacon probes.

  9. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.

    1995-01-01

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

  10. Automated hybridization/imaging device for fluorescent multiplex DNA sequencing

    DOEpatents

    Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

    1995-11-28

    A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

  11. Fluorescence-based multiplex protein detection using optically encoded microbeads.

    PubMed

    Jun, Bong-Hyun; Kang, Homan; Lee, Yoon-Sik; Jeong, Dae Hong

    2012-01-01

    Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.

  12. Enhanced speed in fluorescence imaging using beat frequency multiplexing

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Kobayashi, Hirofumi; Wang, Yisen; Hamad, Syed; Ozeki, Yasuyuki; Goda, Keisuke

    2016-03-01

    Fluorescence imaging using radiofrequency-tagged emission (FIRE) is an emerging technique that enables higher imaging speed (namely, temporal resolution) in fluorescence microscopy compared to conventional fluorescence imaging techniques such as confocal microscopy and wide-field microscopy. It works based on the principle that it uses multiple intensity-modulated fields in an interferometric setup as excitation fields and applies frequency-division multiplexing to fluorescence signals. Unfortunately, despite its high potential, FIRE has limited imaging speed due to two practical limitations: signal bandwidth and signal detection efficiency. The signal bandwidth is limited by that of an acousto-optic deflector (AOD) employed in the setup, which is typically 100-200 MHz for the spectral range of fluorescence excitation (400-600 nm). The signal detection efficiency is limited by poor spatial mode-matching between two interfering fields to produce a modulated excitation field. Here we present a method to overcome these limitations and thus to achieve higher imaging speed than the prior version of FIRE. Our method achieves an increase in signal bandwidth by a factor of two and nearly optimal mode matching, which enables the imaging speed limited by the lifetime of the target fluorophore rather than the imaging system itself. The higher bandwidth and better signal detection efficiency work synergistically because higher bandwidth requires higher signal levels to avoid the contribution of shot noise and amplifier noise to the fluorescence signal. Due to its unprecedentedly high-speed performance, our method has a wide variety of applications in cancer detection, drug discovery, and regenerative medicine.

  13. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization

    PubMed Central

    Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2016-01-01

    Quantitative measurements of both the copy number and spatial distribution of large fractions of the transcriptome in single-cells could revolutionize our understanding of a variety of cellular and tissue behaviors in both healthy and diseased states. Single-molecule Fluorescence In Situ Hybridization (smFISH)—an approach where individual RNAs are labeled with fluorescent probes and imaged in their native cellular and tissue context—provides both the copy number and spatial context of RNAs but has been limited in the number of RNA species that can be measured simultaneously. Here we describe Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH), a massively parallelized form of smFISH that can image and identify hundreds to thousands of different RNA species simultaneously with high accuracy in individual cells in their native spatial context. We provide detailed protocols on all aspects of MERFISH, including probe design, data collection, and data analysis to allow interested laboratories to perform MERFISH measurements themselves. PMID:27241748

  14. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    PubMed

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets. PMID:24731194

  15. Molecular analysis and test of linkage between the FMR-I gene and infantile autism in multiplex families

    SciTech Connect

    Hallmayer, J.; Pintado, E.; Lotspeich, L.; Spiker, D.; Kraemer, H.C.; Lee Wong, D.; Lin, A.; Herbert, J.; Cavalli-Sforza, L.L.; Ciaranello, R.D.

    1994-11-01

    Approximately 2%-5% of autistic children show cytogenetic evidence of the fragile X syndrome. This report tests whether infantile autism in multiplex autism families arises from an unusual manifestion of the fragile X syndrome. This could arise either by expansion of the (CGG)n trinucleotide repeat in FMR-1 or from a mutation elsewhere in the gene. We studied 35 families that met stringent criteria for multiplex autism. Amplification of the trinucleotide repeat and analysis of methylation status were performed in 79 autistic children and in 31 of their unaffected siblings by Southern blot analysis. No examples of amplified repeats were seen in the autistic or control children or in their parents or grandparents. We next examined the hypothesis that there was a mutation elsewhere in the FMR-1 gene, by linkage analysis in 32 of these families. We tested four different dominant models and a recessive model. Linkage to FMR-1 could be excluded (lod score between -24 and -62) in all models by using probes DXS548, FRAXAC1, and FRAXAC2 and the CGG repeat itself. Tests for heterogeneity in this sample were negative, and the occurrence of positive lod scores in this data set could be attributed to chance. Analysis of the data by the affected-sib method also did not show evidence for linkage of any marker to autism. These results enable us to reject the hypothesis that multiplex autism arises from expansion of the (CGG)n trinucleotide repeat in FMR-1. Further, because the overall lod scores for all probes in all models tested were highly negative, linkage to FMR-1 can also be ruled out in multiplex autistic families. 35 refs., 2 figs., 5 tabs.

  16. Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry.

    PubMed

    Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland

    2014-01-01

    The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis.

  17. In vivo simultaneous multispectral fluorescence imaging with spectral multiplexed volume holographic imaging system

    NASA Astrophysics Data System (ADS)

    Lv, Yanlu; Zhang, Jiulou; Zhang, Dong; Cai, Wenjuan; Chen, Nanguang; Luo, Jianwen

    2016-06-01

    A simultaneous multispectral fluorescence imaging system incorporating multiplexed volume holographic grating (VHG) is developed to acquire multispectral images of an object in one shot. With the multiplexed VHG, the imaging system can provide the distribution and spectral characteristics of multiple fluorophores in the scene. The implementation and performance of the simultaneous multispectral imaging system are presented. Further, the system's capability in simultaneously obtaining multispectral fluorescence measurements is demonstrated with in vivo experiments on a mouse. The demonstrated imaging system has the potential to obtain multispectral images fluorescence simultaneously.

  18. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    PubMed Central

    Jeong, Sinyoung; Kim, Yong-il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-01-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures. PMID:25820115

  19. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  20. Multiplex automated analysis of microsatellite loci for linkage analysis of the entire human genome

    SciTech Connect

    Freas-Lutz, D.L.; Walczak, C.A.; Gillanders, E.M.

    1994-09-01

    We are evaluating 29 panels of fluorescently labeled markers located at approximately 10 cM intervals. Each chromosome is covered at this marker density in 1-4 panels (11-17 loci/panel). Individual markers are labeled with 1 of 3 different fluorescent dyes, combined after PCR and run in a single gel lane. Genotypes are obtained for each locus using Applied Biosystems automated DNA sequencers and GENESCAN analysis and Genotyper allele scoring software. These programs automate the identification of alleles by distinguishing major peaks from PCR artifacts and facilitate export of data in a format suitable for standard genetic analysis programs. To verify the reported genetic relationships among individuals involved in gene mapping studies, we developed software to determine the number of alleles shared among individuals within a family. We use these statistics to distinguish full and half sibs and parent-child relations from unrelated individuals. Finally, we are developing a database using Fourth Dimension software so that the tremendous amounts of data generated can be processed efficiently in an integrated suite of specialized computer programs for linkage/association studies.

  1. Exclusion of linkage between alcoholism and the MNS blood group region on chromosome 4q in multiplex families

    SciTech Connect

    Neiswanger, K.; Kaplan, B.; Hill, S.Y.

    1995-02-27

    Polymorphic DNA markers on the long arm of chromosome 4 were used to examine linkage to alcoholism in 20 multiplex pedigrees. Fifteen loci were determined for 124 individuals. Lod scores were calculated assuming both dominant and recessive disease modes of inheritance, utilizing incidence data by age and gender that allow for correction for variable age of onset and frequency of the disorder by gender. Under the assumption that alcoholism is homogeneous in this set of pedigrees, and that a recessive mode with age and gender correction is the most appropriate, the total lod scores for all families combined were uniformly lower than -2.0. This suggests an absence of linkage between the putative alcoholism susceptibility gene and markers in the region of the MNS blood group (4q28-31), a region for which we had previously found suggestive evidence of linkage to alcoholism. The 100 cM span of chromosome 4 studied includes the class I alcohol dehydrogenase (ADH) loci. Using the recessive mode, no evidence for linkage to alcoholism was found for the markers tested, which spanned almost the entire long arm of chromosome 4. Under the dominant mode, no evidence for linkage could be found for several of the markers. 36 refs., 1 fig., 3 tabs.

  2. Multiplexed immunoassays for biomonitoring of exposure to agrochemicals using quantum dots as fluorescent reporters

    NASA Astrophysics Data System (ADS)

    Nichkova, Mikaela; Dosev, Dosi; Davies, Alexander E.; Gee, Shirley J.; Kennedy, Ian M.; Hammock, Bruce D.

    2007-02-01

    The application of quantum dots (QDs) as labels in immunoassay microarrays for the multiplex detection of 3- phenoxybenzoic acid (PBA) and atrazine-mercapturate (AM) has been demonstrated. PBA and AM are biomarkers of exposure to the pyrethroid insecticides and to the herbicide atrazine, respectively. Microarrays were fabricated by microcontact printing of the coating antigens in line patterns onto glass substrates. Competitive immunoassays were successfully performed using quantum dots (QD560 and QD620) as reporters. The multiplexed immunoassays were characterized by fluorescence microscopy and SEM. The application of QD fluorophores facilitates multiplex assays and therefore can contribute to enhanced throughput in biomonitoring.

  3. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    PubMed

    Zhang, Kaihui; Liu, Shu; Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  4. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome

    PubMed Central

    Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  5. 4D phase-space multiplexing for fluorescent microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2016-03-01

    Phase-space measurements enable characterization of second-order spatial coherence properties and can be used for digital aberration removal or 3D position reconstruction. Previous methods use a scanning aperture to measure the phase space spectrogram, which is slow and light inefficient, while also attenuating information about higher-order correlations. We demonstrate a significant improvement of speed and light throughput by incorporating multiplexing techniques into our phase-space imaging system. The scheme implements 2D coded aperture patterning in the Fourier (pupil) plane of a microscope using a Spatial Light Modulator (SLM), while capturing multiple intensity images in real space. We compare various multiplexing schemes to scanning apertures and show that our phase-space reconstructions are accurate for experimental data with biological samples containing many 3D fluorophores.

  6. Erratum: Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing.

    PubMed

    2015-01-01

    The author's email has been corrected in the publication of Colorectal Cancer Cell Surface Protein Profiling Using an Antibody Microarray and Fluorescence Multiplexing. There was an error with the author, Jerry Zhou's, email. The author's email has been updated to: j.zhou@uws.edu.au from: jzho7551@mail.usyd.edu.au. PMID:26167960

  7. Multiplexed analysis using time-resolved near-IR fluorescence for the detection of genomic material

    NASA Astrophysics Data System (ADS)

    Stryjewski, Wieslaw J.; Soper, Steven A.; Lassiter, Suzzane; Davis, Lloyd M.

    2002-06-01

    While fluorescence continues to be an important tool in genomics, new challenges are being encountered due to increased efforts toward miniaturization reducing detection volumes and the need for screening multiple targets simultaneously. We have initiated work on developing time- resolved near-IR fluorescence as an additional tool for the multiplexed analyses of DNA, either for sequencing or mutation detection. We have fabricated simple and compact time-resolved fluorescence microscopes for reading fluorescence from electrophoresis or DNA microarrays. These microscopes consist of solid-state diode lasers and diode detectors and due to their compact size, the optical components and laser head can be mounted on high-speed micro-translational stages to read fluorescence from either multi-channel capillary electrophoresis instruments or micro fabricated DNA sorting devices. The detector is configured in a time-correlated single photon counting format to allow acquisition of fluorescence lifetimes on-the-fly during data acquisition in the limit of low counting statistics. In multiplexed analyses, lifetime discrimination serves as a method for dye-reporter identification using only a single readout channel. Also, coupled to multi-color systems, lifetime identification can significantly increase the number of probes monitored in a single instrument. In this work, near-IR fluorescence, including dye-labels and hardware, will be discussed as well as the implementation of near-IR fluorescence in DNA sequencing using slab gel electrophoresis and DNA microarrays.

  8. Multiplexed Spectral Imaging of 120 Different Fluorescent Labels

    PubMed Central

    Valm, Alex M.; Oldenbourg, Rudolf; Borisy, Gary G.

    2016-01-01

    The number of fluorescent labels that can unambiguously be distinguished in a single image when acquired through band pass filters is severely limited by the spectral overlap of available fluorophores. The recent development of spectral microscopy and the application of linear unmixing algorithms to spectrally recorded image data have allowed simultaneous imaging of fluorophores with highly overlapping spectra. However, the number of distinguishable fluorophores is still limited by the unavoidable decrease in signal to noise ratio when fluorescence signals are fractionated over multiple wavelength bins. Here we present a spectral image analysis algorithm to greatly expand the number of distinguishable objects labeled with binary combinations of fluorophores. Our algorithm utilizes a priori knowledge about labeled specimens and imposes a binary label constraint on the unmixing solution. We have applied our labeling and analysis strategy to identify microbes labeled by fluorescence in situ hybridization and here demonstrate the ability to distinguish 120 differently labeled microbes in a single image. PMID:27391327

  9. Exploiting fluorescence for multiplex immunoassays on protein microarrays

    NASA Astrophysics Data System (ADS)

    Herbáth, Melinda; Papp, Krisztián; Balogh, Andrea; Matkó, János; Prechl, József

    2014-09-01

    Protein microarray technology is becoming the method of choice for identifying protein interaction partners, detecting specific proteins, carbohydrates and lipids, or for characterizing protein interactions and serum antibodies in a massively parallel manner. Availability of the well-established instrumentation of DNA arrays and development of new fluorescent detection instruments promoted the spread of this technique. Fluorescent detection has the advantage of high sensitivity, specificity, simplicity and wide dynamic range required by most measurements. Fluorescence through specifically designed probes and an increasing variety of detection modes offers an excellent tool for such microarray platforms. Measuring for example the level of antibodies, their isotypes and/or antigen specificity simultaneously can offer more complex and comprehensive information about the investigated biological phenomenon, especially if we take into consideration that hundreds of samples can be measured in a single assay. Not only body fluids, but also cell lysates, extracted cellular components, and intact living cells can be analyzed on protein arrays for monitoring functional responses to printed samples on the surface. As a rapidly evolving area, protein microarray technology offers a great bulk of information and new depth of knowledge. These are the features that endow protein arrays with wide applicability and robust sample analyzing capability. On the whole, protein arrays are emerging new tools not just in proteomics, but glycomics, lipidomics, and are also important for immunological research. In this review we attempt to summarize the technical aspects of planar fluorescent microarray technology along with the description of its main immunological applications.

  10. Resolution below the point spread function for diffuse optical imaging using fluorescence lifetime multiplexing

    PubMed Central

    Rice, William L.; Hou, Steven; Kumar, Anand T. N.

    2014-01-01

    We show that asymptotic lifetime-based fluorescence tomography can localize multiple-lifetime targets separated well below the diffuse point spread function of a turbid medium. This is made possible due to a complete diagonalization of the time domain forward problem in the asymptotic limit. We also show that continuous wave or direct time gate approaches to fluorescence tomography are unable to achieve this separation, indicating the unique advantage of a decay-amplitude-based approach for tomographic lifetime multiplexing with time domain data. PMID:23938969

  11. The Statistical Value of Raw Fluorescence Signal in Luminex xMAP Based Multiplex Immunoassays

    PubMed Central

    Breen, Edmond J.; Tan, Woei; Khan, Alamgir

    2016-01-01

    Tissue samples (plasma, saliva, serum or urine) from 169 patients classified as either normal or having one of seven possible diseases are analysed across three 96-well plates for the presences of 37 analytes using cytokine inflammation multiplexed immunoassay panels. Censoring for concentration data caused problems for analysis of the low abundant analytes. Using fluorescence analysis over concentration based analysis allowed analysis of these low abundant analytes. Mixed-effects analysis on the resulting fluorescence and concentration responses reveals a combination of censoring and mapping the fluorescence responses to concentration values, through a 5PL curve, changed observed analyte concentrations. Simulation verifies this, by showing a dependence on the mean florescence response and its distribution on the observed analyte concentration levels. Differences from normality, in the fluorescence responses, can lead to differences in concentration estimates and unreliable probabilities for treatment effects. It is seen that when fluorescence responses are normally distributed, probabilities of treatment effects for fluorescence based t-tests has greater statistical power than the same probabilities from concentration based t-tests. We add evidence that the fluorescence response, unlike concentration values, doesn’t require censoring and we show with respect to differential analysis on the fluorescence responses that background correction is not required. PMID:27243383

  12. Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeop; Chon, Hyangah; Yoon, Soo-Young; Lee, Eun Kyu; Chang, Soo-Ik; Lim, Dong Woo; Choo, Jaebum

    2011-12-01

    We report a highly sensitive optical imaging technology using surface-enhanced Raman scattering (SERS)-fluorescence dual modal nanoprobes (DMNPs). Fluorescence microscopy is a well-known imaging technique that shows specific protein distributions within cells. However, most currently available fluorescent organic dyes have relatively weak emission intensities and are rapidly photo-bleached. Thus more sensitive and stable probes are needed. In this work we develop DMNPs, which can be used for both SERS and fluorescence detection. SERS detection is a powerful technique that allows ultrasensitive chemical or biochemical analysis through unlimited multiplexing and single molecule sensitivity. Combining advantages of fluorescence and SERS allows these dual modal nanostructures to be used as powerful probes for novel biomedical imaging. In this work, the fabrication and characterization of the SERS-fluorescence DMNPs and application to biological imaging were investigated using markers CD24 and CD44, which are co-expressed in MDA-MB-231 breast cancer cells, as a model system. SERS imaging with DMNPs was found to be a powerful tool to determine the co-localization of CD24 and CD44 in the cell.We report a highly sensitive optical imaging technology using surface-enhanced Raman scattering (SERS)-fluorescence dual modal nanoprobes (DMNPs). Fluorescence microscopy is a well-known imaging technique that shows specific protein distributions within cells. However, most currently available fluorescent organic dyes have relatively weak emission intensities and are rapidly photo-bleached. Thus more sensitive and stable probes are needed. In this work we develop DMNPs, which can be used for both SERS and fluorescence detection. SERS detection is a powerful technique that allows ultrasensitive chemical or biochemical analysis through unlimited multiplexing and single molecule sensitivity. Combining advantages of fluorescence and SERS allows these dual modal nanostructures to be used

  13. Olive oil DNA fingerprinting by multiplex SNP genotyping on fluorescent microspheres.

    PubMed

    Kalogianni, Despina P; Bazakos, Christos; Boutsika, Lemonia M; Targem, Mehdi Ben; Christopoulos, Theodore K; Kalaitzis, Panagiotis; Ioannou, Penelope C

    2015-04-01

    Olive oil cultivar verification is of primary importance for the competitiveness of the product and the protection of consumers and producers from fraudulence. Single-nucleotide polymorphisms (SNPs) have emerged as excellent DNA markers for authenticity testing. This paper reports the first multiplex SNP genotyping assay for olive oil cultivar identification that is performed on a suspension of fluorescence-encoded microspheres. Up to 100 sets of microspheres, with unique "fluorescence signatures", are available. Allele discrimination was accomplished by primer extension reaction. The reaction products were captured via hybridization on the microspheres and analyzed, within seconds, by a flow cytometer. The "fluorescence signature" of each microsphere is assigned to a specific allele, whereas the signal from a reporter fluorophore denotes the presence of the allele. As a model, a panel of three SNPs was chosen that enabled identification of five common Greek olive cultivars (Adramytini, Chondrolia Chalkidikis, Kalamon, Koroneiki, and Valanolia).

  14. Frequency-encoded laser-induced fluorescence for multiplexed detection in infrared-mediated quantitative PCR.

    PubMed

    Schrell, Adrian M; Roper, Michael G

    2014-06-01

    A frequency-modulated fluorescence encoding method was used as a means to increase the number of fluorophores monitored during infrared-mediated polymerase chain reaction. Laser lines at 488 nm and 561 nm were modulated at 73 and 137 Hz, respectively, exciting fluorescence from the dsDNA intercalating dye, EvaGreen, and the temperature insensitive dye, ROX. Emission was collected in a color-blind manner using a single photomultiplier tube for detection and demodulated by frequency analysis. The resulting frequency domain signal resolved the contribution from the two fluorophores as well as the background from the IR lamp. The detection method was successfully used to measure amplification of DNA samples containing 10(4)-10(7) starting copies of template producing an amplification efficiency of 96%. The utility of this methodology was further demonstrated by simultaneous amplification of two genes from human genomic DNA using different color TaqMan probes. This method of multiplexing fluorescence detection with IR-qPCR is ideally suited as it allows isolation of the signals of interest from the background in the frequency domain and is expected to further reduce the complexity of multiplexed microfluidic IR-qPCR instrumentation.

  15. Multiplexed miRNA Fluorescence In Situ Hybridization for Formalin-Fixed Paraffin-Embedded Tissues

    PubMed Central

    Renwick, Neil; Cekan, Pavol; Bognanni, Claudia; Tuschl, Thomas

    2015-01-01

    Multiplexed miRNA fluorescence in situ hybridization (miRNA FISH) is an advanced method for visualizing differentially expressed miRNAs, together with other reference RNAs, in archival tissues. Some miRNAs are excellent disease biomarkers due to their abundance and cell-type specificity. However, these short RNA molecules are difficult to visualize due to loss by diffusion, probe mishybridization, and signal detection and signal amplification issues. Here, we describe a reliable and adjustable method for visualizing and normalizing miRNA signals in formalin-fixed paraffin-embedded (FFPE) tissue sections. PMID:25218385

  16. Rapid detection of mitochondrial sequence polymorphisms using multiplex solid-phase fluorescent minisequencing

    SciTech Connect

    Tully, G.; Sullivan, K.M.; Nixon, P.

    1996-05-15

    This work describes a novel method, multiplex solidphase fluorescent minisequencing, for the simultaneous detection of several point mutations and/or small deletions and insertions. The method is applied to the analysis of mitochondrial DNA polymorphisms for the purposes of individual identification. A database of 152 British Caucasians and 103 British Afro-Caribbeans has been constructed, and the probability of a chance match between two unrelated individuals is calculated as 0.054 for Caucasians and 0.026 for Afro-Caribbeans. 36 refs., 4 figs., 2 tabs.

  17. A versatile graphene-based fluorescence "on/off" switch for multiplex detection of various targets.

    PubMed

    Zhang, Min; Yin, Bin-Cheng; Tan, Weihong; Ye, Bang-Ce

    2011-03-15

    We have designed a versatile molecular beacon (MB)-like probe for the multiplex sensing of targets such as sequence-specific DNA, protein, metal ions and small molecule compounds based on the self-assembled ssDNA-graphene oxide (ssDNA-GO) architecture. The probe employs fluorescence "on/off" switching strategy in a single step in homogeneous solution. Compared to traditional molecular beacons, the proposed design is simple to prepare and manipulate and has little background interference, but still gives superior sensitivity and rapid response. More importantly, this ssDNA-GO architecture can serve as a universal beacon platform by simply changing the types of ssDNA sequences for the different targets. In this work, the ssDNA-GO architecture probe has been successfully applied in the multiplex detection of sequence-specific DNA, thrombin, Ag(+), Hg(2+) and cysteine, and the limit of detection was 1 nM, 5 nM, 20 nM, 5.7 nM and 60 nM, respectively. The results demonstrate that the ssDNA-GO architecture can be an excellent and versatile platform for sensing multiplex analytes, easily replacing the universal molecular beacon.

  18. Linkage analysis of chromosome 22q12-13 in a United Kingdom/Icelandic sample of 23 multiplex schizophrenia families

    SciTech Connect

    Kalsi, G.; Read, T.; Butler, R.

    1995-08-14

    A possible linkage to a genetic subtype of schizophrenia and related disorders has been reported on the long arm of chromosome 22 at q12-13. However formal statistical tests in a combined sample could not reject homogeneity and prove that there was linked subgroup of families. We have studied 23 schizophrenia pedigrees to test whether some multiplex schizophrenia families may be linked to the microsatellite markers D22S274 and D22S283 which span the 22q12-13 region. Two point followed by multipoint lod and non-parametric linkage analyses under the assumption of heterogeneity provided no evidence for linkage over the relevant region. 16 refs., 4 tabs.

  19. Aptamers-based sandwich assay for silver-enhanced fluorescence multiplex detection.

    PubMed

    Wang, Ying; Li, Hui; Xu, Danke

    2016-01-28

    In this work, aptamers-modified silver nanoparticles (AgNPs) were prepared as capture substrate, and fluorescent dyes-modified aptamers were synthesized as detection probes. The sandwich assay was based on dual aptamers, which was aimed to accomplish the highly sensitive detection of single protein and multiplex detection of proteins on one-spot. We found that aptamers-modified AgNPs based microarray was much superior to the aptamer based microarray in fluorescence detection of proteins. The result shows that the detection limit of the sandwich assay using AgNPs probes for thrombin or platelet-derived growth factor-BB (PDGF-BB) is 80 or 8 times lower than that of aptamers used directly. For multiplex detection of proteins, the detection limit was 625 pM for PDGF-BB and 21 pM for thrombin respectively. The sandwich assay based on dual aptamers and AgNPs was sensitive and specific. PMID:26755149

  20. Fluorescence of Dendrons based on Donors and Accepter with Different Linkages

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Wu, Y.; Modarelli, D. A.; Parquette, J. R.; Epstein, A. J.

    2007-03-01

    Earlier indirect studies utilizing wavelength and bias spectra of photocurrent in simple photovoltaic cells demonstrated charge transfer (CT) in 1st generation dendritic macromolecules prepared using two different donor (tetraphenylporphyrin) groups bound to an accepter (naphthalenediimide) group. We report here fluorescence for solid-state films and solutions of these donor and dendrons. Using 460nm excitation, fluorescence (660nm, 715nm) in solution samples can be observed for both donor and dendron but fluorescence in the solid state can be observable only in donor sample due to fluorescence quenching within the dendron. This demonstrates intermolecular CT from donor to accepter. Fluorescence lifetime measurements (460nm 1.5nsec FWHM pulse excitation) of donor and dendron solutions show that it depends on length of the linkage between donor and accepter. This shows a direct relaxation path from donor to accepter (intramolecular CT). The separation of the exciton to separate electron and on the donor and acceptor portions of the dendron would open the potential for its use in photovoltaic application. Supported in part by DOE #DE-FG02-01ER45931

  1. A fluorescent multiplex-DGGE screening test for mutations in the BRCA1 gene.

    PubMed

    Kuperstein, Graciela; Jack, Elaine; Narod, Steven A

    2006-01-01

    Screening for mutations in the BRCA1 gene is challenging because of the wide spectrum of mutations found in this large gene. As the extensive exon 11 is commonly screened by the protein truncation test (PTT), here a fluorescent multiplex denaturing gradient gel electrophoresis (FMD) mutation screening technique was developed to test the remaining numerous small exons and splice sites of the gene. The method is based upon the use of an efficient multiplex polymerase chain reaction (PCR) amplification of the target regions, followed by denaturing gradient gel electrophoresis (DGGE) separation of the amplicon mixture, and the immediate achievement of results by wet gel scanning. The technique was applied to screen 16 samples with different BRCA1 sequence variants distributed over 12 exons. All variants were detected. In addition, 188 DNA samples from ovarian cancer patients were screened, identifying 22 new sequence variants (11.7% of the samples) and 243 common polymorphisms in the BRCA1 locus. Variants included 16 single nucleotide substitutions, 3 deletions of 2 nucleotides, 1 deletion of 4 nucleotides, and 2 insertions of 1 nucleotide. The FMD test provides an accurate, fast, nonradioactive and cost-efficient way to scan the BRCA1 gene with high sensitivity and an ease of result interpretation. This technique may prove to be a useful research tool for the detection of mutations and polymorphisms in the BRCA1 gene and for large-scale epidemiologic studies. PMID:16544996

  2. Orientation of the Friedreich`s ataxia linkage group by fluorescent in situ hybridisation

    SciTech Connect

    Hillermann, R.; Wilkes, D.; Pook, M.

    1994-09-01

    The tight linkage between the Friedreich`s ataxia (FRDA) locus and the DNA marker loci originally used to assign the mutation to chromosome 9q13-21.1 has caused great difficulty in determining the precise order of the disease locus with respect to the markers. Investigation of a single-recombination event identified by a collaborative study indicated that the most probable order for the linkage group is cen-FRDA-D9S5-D9S15-qter. To confirm this order, essential for the final cloning strategy, we have undertaken fluorescent in situ hybridization studies on pro-metaphase chromosomes. Cosmid clones isolated from the proximal and distal ends of a YAC contig spanning a 1.2 Mb interval containing the gene were labelled with biotin and digoxigenin, respectively, and analyzed utilising dual color detection methods. An orientation of cen-D9S5-D9S15-qter was demonstrated on normal chromosomes, which confirms and strengthens the genetic data. These markers were also orientated on a polymorphic inverted chromosome 9 and a corresponding order demonstrated, suggesting that the inversion does not disrupt or interfere with the region containing the FRDA gene.

  3. Multiplexed fluorescence tomography with spectral and temporal data: demixing with intrinsic regularization.

    PubMed

    Pera, Vivian; Brooks, Dana H; Niedre, Mark

    2016-01-01

    We consider the joint use of spectral and temporal data for multiplexed fluorescence molecular tomography to enable high-throughput imaging of multiple fluorescent targets in bulk tissue. This is a challenging problem due to the narrow near-infrared diagnostic window and relatively broad emission spectra of common fluorophores, and the distortion ("redshift") that the fluorophore signals undergo as they propagate through tissue. We show through a Cramér-Rao lower bound analysis that demixing with spectral-temporal data could result in an order of magnitude improvement in performance over either modality alone. To cope with the resulting large data set, we propose a novel two-stage algorithm that decouples the demixing and tomographic reconstruction operations. In this work we concentrate on the demixing stage. We introduce an approach which incorporates ideas from sparse subspace clustering and compressed sensing and does not require a regularization parameter. We report on simulations in which we simultaneously demixed four fluorophores with closely overlapping spectral and temporal profiles in a 25 mm diameter cross-sectional area with a root-mean-square error of less than 3% per fluorophore, as well as on studies of sensitivity of the method to model mismatch. PMID:26819822

  4. Multiplexed fluorescence tomography with spectral and temporal data: demixing with intrinsic regularization

    PubMed Central

    Pera, Vivian; Brooks, Dana H.; Niedre, Mark

    2015-01-01

    We consider the joint use of spectral and temporal data for multiplexed fluorescence molecular tomography to enable high-throughput imaging of multiple fluorescent targets in bulk tissue. This is a challenging problem due to the narrow near-infrared diagnostic window and relatively broad emission spectra of common fluorophores, and the distortion (“redshift”) that the fluorophore signals undergo as they propagate through tissue. We show through a Cramér-Rao lower bound analysis that demixing with spectral-temporal data could result in an order of magnitude improvement in performance over either modality alone. To cope with the resulting large data set, we propose a novel two-stage algorithm that decouples the demixing and tomographic reconstruction operations. In this work we concentrate on the demixing stage. We introduce an approach which incorporates ideas from sparse subspace clustering and compressed sensing and does not require a regularization parameter. We report on simulations in which we simultaneously demixed four fluorophores with closely overlapping spectral and temporal profiles in a 25 mm diameter cross-sectional area with a root-mean-square error of less than 3% per fluorophore, as well as on studies of sensitivity of the method to model mismatch. PMID:26819822

  5. Two-Beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume

    NASA Technical Reports Server (NTRS)

    Ruyten, Wilhelmus M.; Keefer, Dennis

    1993-01-01

    We describe a multiplexed, laser-induced fluorescence (LIF) technique with which radial and axial profiles of vector velocities of excited propellant species were obtained in the exhaust plume from a 300-W argon arcjet. Although the arcjet is a prototype, and although argon is not an interesting propellant from a propulsion perspective, the technique clearly demonstrates how a narrowband, frequency-stabilized ring-dye laser can be used to obtain simultaneous measurements of two velocity components in an arcjet plume and how a third signal from an optogalvanic cell can be used as a frequency reference. We also show that much information on the flow can be obtained by analyzing the Doppler widths and fluorescence intensities of the LIF data. Specifically, the data identify a boundary layer in the radial direction of the plume and a shock in the downstream region of the flow. Also, some flow anisotropy is observed, consistent with the assumption that the magnitude of the mean flow velocity fluctuates. The peak velocity on centerline remains roughly constant at 3 km/s throughout the expansion.

  6. A versatile molecular beacon-like probe for multiplexed detection based on fluorescence polarization and its application for a resettable logic gate.

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Wang, Ping; Ye, Bang-Ce

    2012-10-14

    A versatile molecular beacon (MB)-like probe was developed for multiplexed detection based on fluorescence polarization by target-induced allosteric effect and furthermore for resettable logic gate operation.

  7. Erratum to: Automated Sample Preparation Method for Suspension Arrays using Renewable Surface Separations with Multiplexed Flow Cytometry Fluorescence Detection

    SciTech Connect

    Grate, Jay W.; Bruckner-Lea, Cindy J.; Jarrell, Ann E.; Chandler, Darrell P.

    2003-04-10

    In this paper we describe a new method of automated sample preparation for multiplexed biological analysis systems that use flow cytometry fluorescence detection. In this approach, color-encoded microspheres derivatized to capture particular biomolecules are temporarily trapped in a renewable surface separation column to enable perfusion with sample and reagents prior to delivery to the detector. This method provides for separation of the biomolecules of interest from other sample matrix components as well as from labeling solutions.

  8. Standardisation of multiplex fluorescent short tandem repeat analysis for chimerism testing.

    PubMed

    Nollet, F; Billiet, J; Selleslag, D; Criel, A

    2001-09-01

    To evaluate the origin of cells after allogeneic haematopoietic stem cell transplantation we optimised and evaluated two commercially available systems (AmpFlSTR Profiler Plus and GenePrint Powerplex-16) which are based on multiplex fluorescent short tandem repeat (STR) analysis. A standard procedure for interpretation of electropherographs was found essential to obtain reproducible results. On the basis of the relative length of donor and recipient alleles, TYPE-I (no shared alleles are used to calculate chimerism), TYPE-II (one shared and one unshared allele is used to calculate chimerism) or TYPE-III (not informative) allelic distribution types were distinguished. Also, stutter peaks were recognised as an important criterion to exclude a marker for analysis. Intralaboratory and multicentre evaluation of the AmpFlSTR Profiler Plus system showed that mixed blood samples could be determined with an absolute deviation of less than 2%. A sensitivity threshold was set at 5% for TYPE-I and 10% for TYPE-II markers since relative imprecision increases at low chimerism values. No significant difference of calculated chimerism values was observed between STR markers shared between both systems. By monitoring 26 allogeneic peripheral blood stem cell transplants, the applicability of the proposed method was demonstrated.

  9. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization.

    PubMed

    Chan, PokMan; Yuen, Tony; Ruf, Frederique; Gonzalez-Maeso, Javier; Sealfon, Stuart C

    2005-10-13

    The photostability and narrow emission spectra of non-organic quantum dot fluorophores (QDs) make them desirable candidates for fluorescent in situ hybridization (FISH) to study the expression of specific mRNA transcripts. We developed a novel method for direct QD labeling of modified oligonucleotide probes through streptavidin and biotin interactions, as well as protocols for their use in multiple-label FISH. We validated this technique in mouse brainstem sections. The subcellular localization of the vesicular monoamine transporter (Vmat2) mRNA corresponds when using probes labeled with two different QDs in the same hybridization. We developed protocols for combined direct QD FISH and QD immunohistochemical labeling within the same neurons as well as for simultaneous study of the subcellular distribution of multiple mRNA targets. We demonstrated increased sensitivity of FISH using QDs in comparison with organic fluorophores. These techniques gave excellent histological results both for multiplex FISH and combined FISH and immunohistochemistry. This approach can facilitate the ultrasensitive simultaneous study of multiple mRNA and protein markers in tissue culture and histological section.

  10. Multiplex Detection of Bacteria in Complex Clinical and Environmental Samples using Oligonucleotide-coupled Fluorescent Microspheres

    PubMed Central

    Dumonceaux, Tim J.; Town, Jennifer R.; Hill, Janet E.; Chaban, Bonnie L.; Hemmingsen, Sean M.

    2011-01-01

    Bacterial vaginosis (BV) is a recurring polymicrobial syndrome that is characterized by a change in the "normal" microbiota from Lactobacillus-dominated to a microbiota dominated by a number of bacterial species, including Gardnerella vaginalis, Atopobium vaginae, and others1-3. This condition is associated with a range of negative health outcomes, including HIV acquisition4, and it can be difficult to manage clinically5. Furthermore, diagnosis of BV has relied on the use of Gram stains of vaginal swab smears that are scored on various numerical criteria6,7. While this diagnostic is simple, inexpensive, and well suited to resource-limited settings, it can suffer from problems related to subjective interpretations and it does not give a detailed profile of the composition of the vaginal microbiota8. Recent deep sequencing efforts have revealed a rich, diverse vaginal microbiota with clear differences between samples taken from individuals that are diagnosed with BV compared to those individuals that are considered normal9,10, which has resulted in the identification of a number of potential targets for molecular diagnosis of BV11,12. These studies have provided a wealth of useful information, but deep sequencing is not yet practical as a diagnostic method in a clinical setting. We have recently described a method for rapidly profiling the vaginal microbiota in a multiplex format using oligonucleotide-coupled fluorescent beads with detection on a Luminex platform13. This method, like current Gram stain-based methods, is rapid and simple but adds the additional advantage of exploiting molecular knowledge arising from sequencing studies in probe design. This method therefore provides a way to profile the major microorganisms that are present in a vaginal swab that can be used to diagnose BV with high specificity and sensitivity compared to Gram stain while providing additional information on species presence and abundance in a semi-quantitative and rapid manner. This

  11. Multiplex fluorescence in situ hybridization (M-FISH) and confocal laser scanning microscopy (CLSM) to analyze multispecies oral biofilms.

    PubMed

    Karygianni, Lamprini; Hellwig, Elmar; Al-Ahmad, Ali

    2014-01-01

    Multiplex fluorescence in situ hybridization (M-FISH) constitutes a favorable microbiological method for the analysis of spatial distribution of highly variable phenotypes found in multispecies oral biofilms. The combined use of confocal laser scanning microscopy (CLSM) produces high-resolution three-dimensional (3D) images of individual bacteria in their natural environment. Here, we describe the application of M-FISH on early (Streptococcus spp., Actinomyces naeslundii) and late colonizers (Fusobacterium nucleatum, Veillonella spp.) of in situ-formed oral biofilms, the acquisition of CLSM images, as well as the qualitative and quantitative analysis of these digitally obtained and processed images.

  12. Development of a 20-locus fluorescent multiplex system as a valuable tool for national DNA database.

    PubMed

    Jiang, Xianhua; Guo, Fei; Jia, Fei; Jin, Ping; Sun, Zhu

    2013-02-01

    The multiplex system allows the detection of 19 autosomal short tandem repeat (STR) loci [including all Combined DNA Index System (CODIS) STR loci as well as D2S1338, D6S1043, D12S391, D19S433, Penta D and Penta E] plus the sex-determining locus Amelogenin in a single reaction, comprising all STR loci in various commercial kits used in the China national DNA database (NDNAD). Primers are designed so that the amplicons are distributed ranging from 90 base pairs (bp) to 450 bp within a five-dye fluorescent design with the fifth dye reserved for the internal size standard. With 30 cycles, 125 pg to 2 ng DNA template showed optimal profiling result, while robust profiles could also be achieved by adjusting the cycle numbers for the DNA template beyond that optimal DNA input range. Mixture studies showed that 83% and 87% of minor alleles were detected at 9:1 and 1:9 ratios, respectively. When 4 ng of degraded DNA was digested by 2-min DNase and 1 ng undegraded DNA was added to 400 μM haematin, the complete profiles were still observed. Polymerase chain reaction (PCR)-based procedures were examined and optimized including the concentrations of primer set, magnesium and the Taq polymerase as well as volume, cycle number and annealing temperature. In addition, the system has been validated by 3000 bloodstain samples and 35 common case samples in line with the Chinese National Standards and Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The total probability of identity (TPI) can reach to 8×10(-24), where DNA database can be improved at the level of 10 million DNA profiles or more because the number of expected match is far from one person (4×10(-10)) and can be negligible. Further, our system also demonstrates its good performance in case samples and it will be an ideal tool for forensic DNA typing and databasing with potential application.

  13. Multiplexed detection of protein cancer markers on Au/Ag-barcoded nanorods using fluorescent-conjugated polymers.

    PubMed

    Zheng, Weiming; He, Lin

    2010-07-01

    Integration of fluorescent-conjugated polymers as detection moiety with metallic striped nanorods for multiplexed detection of clinically important cancer marker proteins in an immunoassay format was demonstrated in this report. Specifically, cationic conjugated polymers were introduced to protein complexes through electrostatic binding to negatively charged double-stranded DNA, which was tagged on detection antibodies prior to antigen recognition. The intense fluorescence emission of conjugated polymers resulted in highly sensitive detection of cancer marker proteins wherein an undiluted bovine serum sample as low as approximately 25 target molecules captured on each particle was detectable. Meanwhile, the use of polymer molecules as the detection probe did not obscure the optical pattern of underlying nanorods, i.e., the encoding capability of barcoded nanorods was preserved, which allowed simultaneous detection of three cancer marker proteins with good specificity.

  14. Development and Validation of a Fluorescent Multiplexed Immunoassay for Measurement of Transgenic Proteins in Cotton (Gossypium hirsutum).

    PubMed

    Yeaman, Grant R; Paul, Sudakshina; Nahirna, Iryna; Wang, Yongcheng; Deffenbaugh, Andrew E; Liu, Zi Lucy; Glenn, Kevin C

    2016-06-22

    In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.

  15. Development and Validation of a Fluorescent Multiplexed Immunoassay for Measurement of Transgenic Proteins in Cotton (Gossypium hirsutum).

    PubMed

    Yeaman, Grant R; Paul, Sudakshina; Nahirna, Iryna; Wang, Yongcheng; Deffenbaugh, Andrew E; Liu, Zi Lucy; Glenn, Kevin C

    2016-06-22

    In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources. PMID:27177195

  16. Evaluation of quantum dot-based concentric FRET configurations with a fluorescent dye and dark quencher for multiplexed bioanalyses

    NASA Astrophysics Data System (ADS)

    Conroy, Erin M.; Algar, W. Russ

    2014-03-01

    Semiconductor quantum dots (QDs) continue to emerge as a highly advantageous platform for bioanalysis. Their unique physical and optical properties are especially well suited for Förster resonance energy transfer (FRET)-based bioprobes. Concentric FRET configurations are a recent development in this area of research and are best described as QD bioconjugates where multiple energy transfer pathways have been assembled around the central QD. Concentric FRET configurations permit multiplexed bioanalysis using one type of QD vector, but require more sophisticated analyses than conventional FRET pairs. In this paper, we describe the design and characterization of a new concentric FRET configuration that assembles both a fluorescent dye, Alexa Fluor 555 or Alexa Fluor 647, and a dark quencher, QSY9, at different ratios around a central CdSeS/ZnS QD. It was found that the magnitudes of the total photoluminescence (PL) intensity and either the A555/QD or A647/QD PL ratio can be related to the number of QSY9 and A555 or A647 per QD. The trends in these parameters with changes in the number of each dye molecule per QD have both similarities and differences between configurations with A555 and A647. In each case, a system of equations can be defined to permit calculation of the number of each dye molecule per QD from PL measurements. Both of these dark quencher-based concentric FRET configurations are therefore good candidates for quantitative, multiplexed bioanalysis.

  17. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization

    PubMed Central

    Moffitt, Jeffrey R.; Hao, Junjie; Wang, Guiping; Chen, Kok Hao

    2016-01-01

    Image-based approaches to single-cell transcriptomics, in which RNA species are identified and counted in situ via imaging, have emerged as a powerful complement to single-cell methods based on RNA sequencing of dissociated cells. These image-based approaches naturally preserve the native spatial context of RNAs within a cell and the organization of cells within tissue, which are important for addressing many biological questions. However, the throughput of these image-based approaches is relatively low. Here we report advances that lead to a drastic increase in the measurement throughput of multiplexed error-robust fluorescence in situ hybridization (MERFISH), an image-based approach to single-cell transcriptomics. In MERFISH, RNAs are identified via a combinatorial labeling approach that encodes RNA species with error-robust barcodes followed by sequential rounds of single-molecule fluorescence in situ hybridization (smFISH) to read out these barcodes. Here we increase the throughput of MERFISH by two orders of magnitude through a combination of improvements, including using chemical cleavage instead of photobleaching to remove fluorescent signals between consecutive rounds of smFISH imaging, increasing the imaging field of view, and using multicolor imaging. With these improvements, we performed RNA profiling in more than 100,000 human cells, with as many as 40,000 cells measured in a single 18-h measurement. This throughput should substantially extend the range of biological questions that can be addressed by MERFISH. PMID:27625426

  18. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-01

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  19. Two-color widefield fluorescence microendoscopy enables multiplexed molecular imaging in the alveolar space of human lung tissue

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Akram, Ahsan R.; Choudhary, Tushar R.; McDonald, Neil; Tanner, Michael G.; Pedretti, Ettore; Dalgarno, Paul A.; Scholefield, Emma; Girkin, John M.; Moore, Anne; Bradley, Mark; Dhaliwal, Kevin

    2016-04-01

    We demonstrate a fast two-color widefield fluorescence microendoscopy system capable of simultaneously detecting several disease targets in intact human ex vivo lung tissue. We characterize the system for light throughput from the excitation light emitting diodes, fluorescence collection efficiency, and chromatic focal shifts. We demonstrate the effectiveness of the instrument by imaging bacteria (Pseudomonas aeruginosa) in ex vivo human lung tissue. We describe a mechanism of bacterial detection through the fiber bundle that uses blinking effects of bacteria as they move in front of the fiber core providing detection of objects smaller than the fiber core and cladding (˜3 μm). This effectively increases the measured spatial resolution of 4 μm. We show simultaneous imaging of neutrophils, monocytes, and fungus (Aspergillus fumigatus) in ex vivo human lung tissue. The instrument has 10 nM and 50 nM sensitivity for fluorescein and Cy5 solutions, respectively. Lung tissue autofluorescence remains visible at up to 200 fps camera acquisition rate. The optical system lends itself to clinical translation due to high-fluorescence sensitivity, simplicity, and the ability to multiplex several pathological molecular imaging targets simultaneously.

  20. Fluorescent Protein Nanowire-Mediated Protein Microarrays for Multiplexed and Highly Sensitive Pathogen Detection.

    PubMed

    Men, Dong; Zhou, Juan; Li, Wei; Leng, Yan; Chen, Xinwen; Tao, Shengce; Zhang, Xian-En

    2016-07-13

    Protein microarrays are powerful tools for high-throughput and simultaneous detection of different target molecules in complex biological samples. However, the sensitivity of conventional fluorescence-labeling protein detection methods is limited by the availability of signal molecules for binding to the target molecule. Here, we built a multifunctional fluorescent protein nanowire (FNw) by harnessing self-assembly of yeast amyloid protein. The FNw integrated a large number of fluorescent molecules, thereby enhancing the fluorescent signal output in target detection. The FNw was then combined with protein microarray technology to detect proteins derived from two pathogens, including influenza virus (hemagglutinin 1, HA1) and human immunodeficiency virus (p24 and gp120). The resulting detection sensitivity achieved a 100-fold improvement over a commercially available detection reagent. PMID:27315221

  1. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification.

    PubMed

    Yin, Bin-Cheng; Liu, Yu-Qiang; Ye, Bang-Ce

    2012-03-21

    Traditional molecular beacons, widely applied for detection of nucleic acids, have an intrinsic limitation on sensitivity, as one target molecule converts only one beacon molecule to its fluorescent form. Herein, we take advantage of the duplex-specific nuclease (DSN) to create a new signal-amplifying mechanism, duplex-specific nuclease signal amplification (DSNSA), to increase the detection sensitivity of molecular beacons (Taqman probes). DSN nuclease is employed to recycle the process of target-assisted digestion of Taqman probes, thus, resulting in a significant fluorescence signal amplification through which one target molecule cleaves thousands of probe molecules. We further demonstrate the efficiency of this DSNSA strategy for rapid direct quantification of multiple miRNAs in biological samples. Our experimental results showed a quantitative measurement of sequence-specific miRNAs with the detection limit in the femtomolar range, nearly 5 orders of magnitude lower than that of conventional molecular beacons. This amplification strategy also demonstrated a high selectivity for discriminating differences between miRNA family members. Considering the superior sensitivity and specificity, as well as the multiplex and simple-to-implement features, this method promises a great potential of becoming a routine tool for simultaneously quantitative analysis of multiple miRNAs in tissues or cells, and supplies valuable information for biomedical research and clinical early diagnosis.

  2. Multiplexed flow cytometric sensing of blood electrolytes in physiological samples using fluorescent bulk optode microspheres.

    PubMed

    Xu, Chao; Wygladacz, Katarzyna; Retter, Robert; Bell, Michael; Bakker, Eric

    2007-12-15

    Polymeric bulk optode microsphere ion sensors in combination with suspension array technologies such as analytical flow cytometry may become a power tool for measuring electrolytes in physiological samples. In this work, the methodology for the direct measurement of common blood electrolytes in physiological samples using bulk optode microsphere sensors was explored. The simultaneous determination of Na(+), K(+), and Ca(2+) in diluted sheep blood plasma was demonstrated for the first time, using a random suspension array containing three types of mixed microsphere bulk optodes of similar size, fabricated from the same chromoionophore without additional labeling. Sodium ionophore X, potassium ionophore III, and grafted AU-1 in poly(butyl acrylate) were the ionophores used in the bulk optode microsphere ion sensors for Na(+), K(+), and Ca(2+), respectively, in combination with the cation-exchanger NaTFPB (sodium tetrakis-[3,5-bis(trifluoromethyl)phenyl]borate) and the same concentration of the chromoionophore ETH 5294 (9-(di-ethylamino)-5-octadecanoylimino-5H-benzo[a]phen-oxazine) in plasticized poly(vinyl chloride). Excellent reproducibility was achieved for the sensing of potassium ions. The effect of sample pH was relatively small at near-physiological pH and followed theoretical predictions, yet the sample temperature was found to influence the sensor response to a larger extent. Multiplexed ion sensing was achieved by taking advantage of the chemical tunability of the sensor response, adjusting the sensor compositions so that the three types of ion sensors responded with distinct levels of protonation of the chromoionophore. Consequently, three well-resolved peaks were simultaneously observed in the single-channel histogram during the multiplexed calibration as well as in the subsequent measurement of the three cations in 10-fold-diluted sheep plasma. The assigned peak positions corresponded very well to the physiological range of the measured ions. PMID

  3. Development and potential applications of microarrays based on fluorescent nanocrystal-encoded beads for multiplexed cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Brazhnik, Kristina; Grinevich, Regina; Efimov, Anton E.; Nabiev, Igor; Sukhanova, Alyona

    2014-05-01

    Advanced multiplexed assays have recently become an indispensable tool for clinical diagnostics. These techniques provide simultaneous quantitative determination of multiple biomolecules in a single sample quickly and accurately. The development of multiplex suspension arrays is currently of particular interest for clinical applications. Optical encoding of microparticles is the most available and easy-to-use technique. This technology uses fluorophores incorporated into microbeads to obtain individual optical codes. Fluorophore-encoded beads can be rapidly analyzed using classical flow cytometry or microfluidic techniques. We have developed a new generation of highly sensitive and specific diagnostic systems for detection of cancer antigens in human serum samples based on microbeads encoded with fluorescent quantum dots (QDs). The designed suspension microarray system was validated for quantitative detection of (1) free and total prostate specific antigen (PSA) in the serum of patients with prostate cancer and (2) carcinoembryonic antigen (CEA) and cancer antigen 15-3 (CA 15-3) in the serum of patients with breast cancer. The serum samples from healthy donors were used as a control. The antigen detection is based on the formation of an immune complex of a specific capture antibody (Ab), a target antigen (Ag), and a detector Ab on the surface of the encoded particles. The capture Ab is bound to the polymer shell of microbeads via an adapter molecule, for example, protein A. Protein A binds a monoclonal Ab in a highly oriented manner due to specific interaction with the Fc-region of the Ab molecule. Each antigen can be recognized and detected due to a specific microbead population carrying the unique fluorescent code. 100 and 231 serum samples from patients with different stages of prostate cancer and breast cancer, respectively, and those from healthy donors were examined using the designed suspension system. The data were validated by comparing with the results of

  4. Species specificities among primates probed with commercially available fluorescence-based multiplex PCR typing kits.

    PubMed

    Hiroshige, Yuuji; Ohtaki, Hiroyuki; Yoshimoto, Takashi; Ogawa, Hisae; Ishii, Akira; Yamamoto, Toshimichi

    2015-09-01

    To assess species specificities among primates of signals from short tandem repeat (STR) loci included in two commercially available kits, mainly the AmpFlSTR Identifiler kit and additionally the GenePrint PowerPlex 16 system, we analyzed 69 DNA samples from 22 nonhuman primate species representing apes, Old World Monkeys (OWMs), New World Monkeys (NWMs), and prosimians. Each prosimian species and the NWM cotton-top tamarin apparently lacked all STR loci probed. Only one peak, the amelogenin-X peak, was evident in samples from all other NWMs, except the owl monkey. In contrast, several loci, including the amelogenin-X peak, was evident in samples from each OWM species. Notably, for each ape sample, the amelogenin peaks were concordant with morphological gender of the individual. Among the primates, especially in apes, the numbers of alleles for STR loci were increasing according to their phylogenetic order: prosimiansmultiplex STR kits examined in this study would contribute to forensic examinations. PMID:25899252

  5. Simultaneous detection of antibodies to mouse hepatitis virus recombinant structural proteins by a microsphere-based multiplex fluorescence immunoassay.

    PubMed

    Kunita, Satoshi; Kato, Kanako; Ishida, Miyuki; Hagiwara, Kozue; Kameda, Shuko; Ishida, Tomoko; Takakura, Akira; Goto, Kazuo; Sugiyama, Fumihiro; Yagami, Ken-Ichi

    2011-05-01

    We describe a new microsphere-based multiplex fluorescent immunoassay (MFI) using recombinant mouse hepatitis virus (MHV) proteins to detect antibodies to coronaviruses in mouse and rat sera. All the recombinant proteins, including nucleocapsid (N) and 3 subunits of spike protein, S1, S2, and Smid, showed positive reactivity in MFI with mouse antisera to 4 MHV strains (MHV-S, -A59, -JHM, and -Nu67) and rat antiserum to a strain of sialodacryoadenitis virus (SDAV-681). The MFI was evaluated for its diagnostic power, with panels of mouse sera classified as positive or negative for anti-MHV antibodies by enzyme-linked immunosorbent assay (ELISA) using MHV virion antigen and indirect fluorescent antibody assay. The reactivities of 236 naturally infected mouse sera were examined; 227 samples were positive by MFI using S2 antigen (96% sensitivity), and 208 samples were positive using N antigen (88% sensitivity). Based on the assessment by MFI using the S2 and N antigens, only 3 serum samples showed double-negative results, indicating a false-negative rate of 1.3%. In 126 uninfected mouse sera, including 34 ELISA false-positive sera, only 7 samples showed false-positive results by MFI using either the S2 or N antigen (94% specificity). Similarly, the S2 and N antigen-based MFI was 98% sensitive and 100% specific in detecting anticoronavirus antibodies in rat sera. Thus, this MFI-based serologic assay using the S2 and N antigens promises to be a reliable diagnostic method, representing a highly sensitive and specific alternative to traditional ELISA for detection of coronavirus infections in laboratory mouse and rat colonies.

  6. [Development, optimization and application of the expression analysis platform based on multiplex quantitative RT-PCR using fluorescent universal primers].

    PubMed

    Wang, Qin-Xi; Li, Kai; Zhou, Yu-Xun; Xiao, Jun-Hua

    2009-05-01

    A multiplex quantitative RT-PCR technology with a universal fluorescent primer was established. This technology employs a chimeric-primer-induced-universal-primer amplification method that ensures target genes amplified in a constant ratio. This technique was cost-effective, moderate-throughput, and reliable in quantification of gene expression. It is complementary to cDNA chip, which has low quantitative accuracy , and Real-time quantitative PCR with low throughput, through improving the entire process of expression profiling analysis. Eleven genes within a QTL segment regulating mouse puberty onset on chromosome X were investigated to construct and optimize the method. The sensitivity of detection (102 copies) was determined, the concentration ratio of universal primer and chimeric forward primers (1:1) was optimized, and the accuracy and repeatability were validated. The method of Touchdown PCR with addition of universal primers significantly improved amplification of genes expressed in low abundance. After testing the expression profile of 11 genes in hypothalamus and testis in two mouse strains C3H/HeJ and C57BL/6J at the age of 15 d, one gene named PHF6 was found differentially expressed for further function analysis.

  7. Measurement of Protein Sulfhydryls in Response to Cellular Oxidative Stress Using Gel Electrophoresis and Multiplexed Fluorescent Imaging Analysis

    PubMed Central

    Spiess, Page C.; Morin, Dexter; Jewell, William T.; Buckpitt, Alan R.

    2008-01-01

    The significance of free radicals in biology has been established by numerous investigations spanning a period of over 40 years. Whereas there are many intracellular targets for these radical species, the importance of cysteine thiol posttranslational modification has received considerable attention. The current studies present a highly sensitive method for measurement of the posttranslational modification of protein thiols. This method is based on labeling of proteins with monofunctional maleimide dyes followed by 2D gel electrophoresis to separate proteins and multiplexed fluorescent imaging analysis. The method correctly interrogates the thiol/disulfide ratio present in commercially available proteins. Exposure of pulmonary airway epithelial cells to high concentrations of menadione or t-butyl hydroperoxide resulted in the modification of cysteines in more than 141 proteins of which 60 were subsequently identified by MALDI-TOF/TOF MS. Although some proteins were modified similarly by these two oxidants, several showed detectably different maleimide ratios in response to these two agents. Proteins that were modified by one or both oxidants include those involved in transcription, protein synthesis and folding, and cell death/growth. In conclusion, these studies provide a novel procedure for measuring the redox status of cysteine thiols on individual proteins with a clearly demonstrated applicability to interactions of chemicals with pulmonary epithelial cells. PMID:18416539

  8. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes.

    PubMed

    Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M; Gibson, Christopher C; Carpenter, Anne E

    2016-09-01

    In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, which is a morphological profiling assay that multiplexes six fluorescent dyes, imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multiwell plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Next, an automated image analysis software identifies individual cells and measures ∼1,500 morphological features (various measures of size, shape, texture, intensity, and so on) to produce a rich profile that is suitable for the detection of subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes 2 weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178

  9. Construction of two fluorescence-labeled non-combined DNA index system miniSTR multiplex systems to analyze degraded DNA samples in the Chinese Han Population.

    PubMed

    Bai, Xue; Li, Shujin; Cong, Bin; Li, Xia; Guo, Xia; He, Lujun; Ye, Jian; Pei, Li

    2010-09-01

    MiniSTR loci have been demonstrated to be an effective approach in recovering genetic information from degraded specimens, because of the reduced PCR amplicon sizes which improved the PCR efficiency. Eight non-combined DNA index system miniSTR loci suitable for the Chinese Han Population were analyzed in 300 unrelated Chinese Han individuals using two novel five fluorescence-labeled miniSTR multiplex systems(multiplex I: D10S1248, D2S441, D1S1677 and D9S2157; multiplex II: D9S1122, D10S1435, D12ATA63, D2S1776 and Amelogenin). The allele frequency distribution and forensic parameters in the Chinese Han Population were reported in this article. The Exact Test demonstrated that all loci surveyed here were found to be no deviation from Hardy-Weinberg equilibrium. The accumulated power of discrimination and power of exclusion for the eight loci were 0.999999992 and 0.98, respectively. The highly degraded DNA from artificially degraded samples and the degraded forensic case work samples was assessed with the two miniSTR multiplex systems, and the results showed that the systems were quite effective.

  10. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method.

    PubMed

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina; Cerca, Nuno

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6-99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  11. Diagnosis of bacterial vaginosis by a new multiplex peptide nucleic acid fluorescence in situ hybridization method

    PubMed Central

    Machado, António; Castro, Joana; Cereija, Tatiana; Almeida, Carina

    2015-01-01

    Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6–99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis. PMID:25737820

  12. Discrepancy between fluorescence in situ hybridization and multiplex ligation-dependent probe amplification in orbital recurrence of uveal melanoma 26 years after enucleation.

    PubMed

    Russo, Andrea; Rene, Cornelius; Coupland, Sarah E; Sagili, Suresh; Damato, Bertil

    2012-01-01

    Cytogenetic analysis has transformed the management of uveal melanoma in recent years and allows categorization of such tumors into low-grade tumors with a favorable prognosis and high-grade tumors that metastasize with a fatal outcome. The authors report the case of a 73-year-old man who presented with recurrent melanoma in his left socket, 26 years after enucleation for uveal melanoma. Chromosomal analysis by multiplex ligation-dependent probe amplification revealed partial loss of chromosome 3 and gains in chromosomes 6 and 8, which were missed with fluorescence in situ hybridization. The patient developed multiple liver metastases 14 months after orbital exenteration and died 8 months later. To the best of authors' knowledge, this is the first report of late recurrence of uveal melanoma after enucleation, in which multiplex ligation-dependent probe amplification chromosomal analysis has been used. The case also highlights the limitations of fluorescence in situ hybridization and the benefits of multiplex ligation-dependent probe amplification, which is more reliable at predicting survival.

  13. Retrospective Species Identification of Microsporidian Spores in Diarrheic Fecal Samples from Human Immunodeficiency Virus/AIDS Patients by Multiplexed Fluorescence In Situ Hybridization▿

    PubMed Central

    Graczyk, Thaddeus K.; Johansson, Michael A.; Tamang, Leena; Visvesvara, Govinda S.; Moura, Laci S.; DaSilva, Alexandre J.; Girouard, Autumn S.; Matos, Olga

    2007-01-01

    In order to assess the applicability of multiplexed fluorescence in situ hybridization (FISH) assay for the clinical setting, we conducted retrospective analysis of 110 formalin-stored diarrheic stool samples from human immunodeficiency virus (HIV)/AIDS patients with intestinal microsporidiosis collected between 1992 and 2003. The multiplexed FISH assay identified microsporidian spores in 94 of 110 (85.5%) samples: 49 (52.1%) were positive for Enterocytozoon bieneusi, 43 (45.8%) were positive for Encephalitozoon intestinalis, 2 (2.1%) were positive for Encephalitozoon hellem, and 9 samples (9.6%) contained both E. bieneusi and E. intestinalis spores. Quantitative spore counts per ml of stool yielded concentration values from 3.5 × 103 to 4.4 × 105 for E. bieneusi (mean, 8.8 × 104/ml), 2.3 × 102 to 7.8 × 104 (mean, 1.5 × 104/ml) for E. intestinalis, and 1.8 × 102 to 3.6 × 102 for E. hellem (mean, 2.7 × 102/ml). Identification of microsporidian spores by multiplex FISH assay was more sensitive than both Chromotrope-2R and CalcoFluor White M2R stains; 85.5% versus 72.7 and 70.9%, respectively. The study demonstrated that microsporidian coinfection in HIV/AIDS patients with intestinal microsporidiosis is not uncommon and that formalin-stored fecal samples older than 10 years may not be suitable for retrospective analysis by techniques targeting rRNA. Multiplexed FISH assay is a reliable, quantitative fluorescence microscopy method for the simultaneous identification of E. bieneusi, E. intestinalis, and E. hellem, as well as Encephalitozoon cuniculi, spores in fecal samples and is a useful tool for assessing spore shedding intensity in intestinal microsporidiosis. The method can be used for epidemiological investigations and applied in clinical settings. PMID:17287331

  14. Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye.

    PubMed

    Ahberg, Christian D; Manz, Andreas; Neuzil, Pavel

    2015-01-01

    Since its invention in 1985 the polymerase chain reaction (PCR) has become a well-established method for amplification and detection of segments of double-stranded DNA. Incorporation of fluorogenic probe or DNA intercalating dyes (such as SYBR Green) into the PCR mixture allowed real-time reaction monitoring and extraction of quantitative information (qPCR). Probes with different excitation spectra enable multiplex qPCR of several DNA segments using multi-channel optical detection systems. Here we show multiplex qPCR using an economical EvaGreen-based system with single optical channel detection. Previously reported non quantitative multiplex real-time PCR techniques based on intercalating dyes were conducted once the PCR is completed by performing melting curve analysis (MCA). The technique presented in this paper is both qualitative and quantitative as it provides information about the presence of multiple DNA strands as well as the number of starting copies in the tested sample. Besides important internal control, multiplex qPCR also allows detecting concentrations of more than one DNA strand within the same sample. Detection of the avian influenza virus H7N9 by PCR is a well established method. Multiplex qPCR greatly enhances its specificity as it is capable of distinguishing both haemagglutinin (HA) and neuraminidase (NA) genes as well as their ratio.

  15. Multiplex polymerase chain reaction analysis of Glu-1 high-molecular-mass glutenin genes from wheat by capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Salmanowicz, Boleslaw P; Moczulski, Marcin

    2004-04-01

    The unique bread-making properties of wheat are closely correlated with composition and quantity of high-molecular-mass (HMW) glutenin subunits encoded by the Glu-1 genes. We report the development of a multiplex polymerase chain reaction (PCR) method to identify bread wheat genotypes carrying HMW glutenin allele composition of Glu-1 complex loci (Glu-A1, Glu-B1 and Glu-D1) by capillary electrophoresis(CE) with laser-induced fluorescence (LIF) detection. Two triplex primer sets of HMW glutenin subunit genes were examined. An automated and rapid CE-LIF technique is helpful in the multiplex PCR optimization process. Two fluorescent intercalating dyes (EnhanCE, and YO-PRO-1) are compared for detection of DNA fragments. Amplified DNA fragments of HMW glutenin Glu-1 genes were well separated both by agarose slab-gel electrophoresis and CE, and revealed minor differences between the sequences of 1Ax2*, 1Axnull, 1Bx6, 1Bx7, 1Bx17 and 1Dx5 genes. Moreover, CE technique requires samples of smaller volumes in comparison to slab-gel electrophoresis, and data can be obtained in less than 20 min. There was a very high concordance in the assessment of the molecular size of PCR-generated DNA markers. Fast and accurate identification of molecular markers of Glu-1 genes by CE-LIF can be an efficient alternative to standard procedure separation for early selection of useful wheat genotypes with good bread-making quality.

  16. Multiplex fluorescence-based primer extension method for quantitative mutation analysis of mitochondrial DNA and its diagnostic application for Alzheimer's disease.

    PubMed Central

    Fahy, E; Nazarbaghi, R; Zomorrodi, M; Herrnstadt, C; Parker, W D; Davis, R E; Ghosh, S S

    1997-01-01

    A sensitive and highly reproducible multiplexed primer extension assay is described for quantitative mutation analysis of heterogeneous DNA populations. Wild-type and mutant target DNA are simultaneously probed in competitive primer extension reactions using fluorophor-labeled primers and high fidelity, thermostable DNA polymerases in the presence of defined mixtures of deoxy- and dideoxynucleotides. Primers are differentially extended and the resulting products are distinguished by size and dye label. Wild-type:mutant DNA ratios are determined from the fluorescence intensities associated with electrophoretically resolved reaction products. Multiple nucleotide sites can be simultaneously interrogated with uniquely labeled primers of different lengths. The application of this quantitative technique is shown in the analysis of heteroplasmic point mutations in mitochondrial DNA that are associated with Alzheimer's disease. PMID:9224611

  17. A novel multiplexed fluorescence polarisation immunoassay based on a recombinant bi-specific single-chain diabody for simultaneous detection of fluoroquinolones and sulfonamides in milk.

    PubMed

    Chen, Min; Wen, Kai; Tao, Xiaoqi; Ding, Shuangyang; Xie, Jie; Yu, Xuezhi; Li, Jiancheng; Xia, Xi; Wang, Yang; Xie, Sanlei; Jiang, Haiyang

    2014-01-01

    Major research efforts are focusing on the development of simultaneous multiplexed immunoassays. In this study, a novel dual-binding fluorescence polarisation immunoassay (DB-FPIA) using a broad-specificity bi-specific single-chain diabody (scDb) and two fluorescent-labelled tracers (sulfamethoxypyridazine-fluorescein isothiocyanate (SMP-FITC) and sarafloxacin-Texas Red (SAR-TR)) with different excitation and emission wavelengths was developed for simultaneous and high-throughput detection of 19 fluoroquinolones (FQs) and 13 sulfonamides (SAs) at the maximum residue limits in milk samples. Recoveries for spiked milk samples were from 76.4% to 128.4%, with a relative standard deviation lower than 13.9%. The developed DB-FPIA was then applied to field samples, followed by confirmation by LC-MS/MS. All three instances in which FQs and SAs were present at concentrations near or above the assay limit of detection were identified as positive by the developed DB-FPIA, demonstrating that the method is suitable for rapid screening of FQs and SAs contamination. The novel methodology combines the advantage of the FPIA and the broad sensitivity of scDb and shows great promise for fast multi-analyte screening of low-molecular weight chemical residues in food samples.

  18. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging.

    PubMed

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-09-22

    We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [Opt. Express 22, 10221 (2014)]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system's FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging.

  19. FPGA-based multi-channel fluorescence lifetime analysis of Fourier multiplexed frequency-sweeping lifetime imaging

    PubMed Central

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-01-01

    We report a fast non-iterative lifetime data analysis method for the Fourier multiplexed frequency-sweeping confocal FLIM (Fm-FLIM) system [ Opt. Express22, 10221 ( 2014)24921725]. The new method, named R-method, allows fast multi-channel lifetime image analysis in the system’s FPGA data processing board. Experimental tests proved that the performance of the R-method is equivalent to that of single-exponential iterative fitting, and its sensitivity is well suited for time-lapse FLIM-FRET imaging of live cells, for example cyclic adenosine monophosphate (cAMP) level imaging with GFP-Epac-mCherry sensors. With the R-method and its FPGA implementation, multi-channel lifetime images can now be generated in real time on the multi-channel frequency-sweeping FLIM system, and live readout of FRET sensors can be performed during time-lapse imaging. PMID:25321778

  20. LINKAGE programs: linkage analysis for monogenic cardiovascular diseases.

    PubMed

    Li, Lin; Wang, Qing K; Rao, Shaoqi

    2006-01-01

    Identification of the genes for a human disease provides significant insights into the molecular mechanism underlying the pathogenesis of the disease. A human disease gene can be identified by its chromosomal location (positional cloning). Linkage analysis is a key step in positional cloning. For monogenic disorders with a known inheritance pattern, model-based linkage analysis is effective in mapping the disease location. Therefore, model-based linkage analysis can provide a powerful tool to positional cloning of some specific molecular determinants that co-segregate with disease phenotypes in the isolated samples (e.g., large and multiplex impaired pedigrees). This chapter describes model-based human genetic linkage analysis as implemented in the LINKAGE computer package. First, we introduce the basic concepts and principles for genetic analysis of monogenic disorders. Then, we demonstrate the usages of the programs by analyzing several examples of hypothetical pedigrees with the inheritance modes of autosomal-dominant, autosomal-recessive, and genetic heterogeneity. PMID:17071989

  1. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk.

    PubMed

    Chen, Yiqiang; Chen, Qian; Han, Miaomiao; Liu, Jiangyang; Zhao, Peng; He, Lidong; Zhang, Yuan; Niu, Yiming; Yang, Wenjun; Zhang, Liying

    2016-05-15

    In this study, we developed a novel near-infrared fluorescence based multiplex lateral flow immunoassay by conjugating a near-infrared label to broad-specificity monoclonal antibody/receptor as detection complexes. Different antigens were dispensed onto separate test zones of nitrocellulose membrane to serve as capture reagents. This assay format allowed the simultaneous detection of four families of antibiotics (β-lactams, tetracyclines, quinolones and sulfonamides) in milk within 20 min. Qualitative and quantitative analysis of target antibiotics were realized by imaging the fluorescence intensity of the near-infrared label captured on respective test lines. For qualitative analysis, the cut-off values of β-lactams, tetracyclines, quinolones and sulfonamides were determined to be 8 ng/mL, 2 ng/mL, 4 ng/mL and 8 ng/mL respectively, which were much lower than the conventional gold nanoparticle based lateral flow immunoassay. For quantitative analysis, the detection ranges were 0.26-3.56 ng/mL for β-lactams, 0.04-0.98 ng/mL for tetracyclines, 0.08-2.0 ng/mL for quinolones, and 0.1-3.98 ng/mL for sulfonamides, with linear correlation coefficients higher than 0.97. The mean spiked recoveries ranged from 93.7% to 108.2% with coefficient of variations less than 16.3%. These results demonstrated that this novel immunoassay is a promising approach for rapidly screening the four families of antibiotic residues in milk.

  2. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.

    PubMed

    Yaoi, Takuro; Jiang, Xin; Li, Xianqiang

    2006-06-01

    Transcription factors (TFs), which play crucial roles in the regulation of gene expression in the human genome, are highly regulated by a variety of mechanisms. A single extracellular stimulus can trigger multiple signaling pathways, and these in turn can activate multiple TFs to mediate the inducible expression of target genes. Alterations in the activities of TFs are often associated with human diseases, such as altered activating factor 1, estrogen receptor, and p53 function in cancer, nuclear factor kappaB in inflammatory diseases, and peroxisome proliferator-activated receptor gamma in obesity. A systematic assay for profiling the activation of TFs will aid in elucidating the mechanisms of TF activation, reveal altered TFs associated with human diseases, and aid in developing assays for drug discovery. Here, we developed a 24-plex fluorescent microsphere-based TF activation assay system with a 96-well plate format. The assay system enabled high-throughput profiling of the DNA binding activity of TFs in multiple samples with high sensitivity. PMID:16834534

  3. Multimodal imaging of living cells with multiplex coherent anti-stokes raman scattering (CARS), third-order sum frequency generation (TSFG) and two-photon excitation fluorescence (TPEF) using a nanosecond white-light laser source.

    PubMed

    Segawa, Hiroki; Okuno, Masanari; Leproux, Philippe; Couderc, Vincent; Ozawa, Takeaki; Kano, Hideaki

    2015-01-01

    The subnanosecond "white-light laser" source has been applied to multimodal, multiphoton, and multiplex spectroscopic imaging (M(3) spectroscopic imaging) with coherent anti-Stokes Raman scattering (CARS), third-order sum frequency generation (TSFG), and two-photon excitation fluorescence (TPEF). As the proof-of-principle experiment, we performed simultaneous imaging of polystyrene beads with TSFG and TPEF. This technique is then applied to live cell imaging. Mouse L929 fibroblastic cells are clearly visualized by CARS, TSFG, and TPEF processes. M(3) spectroscopic imaging provides various and unique cellular information with different image contrast based on each multiphoton process.

  4. Multimodal imaging of living cells with multiplex coherent anti-stokes raman scattering (CARS), third-order sum frequency generation (TSFG) and two-photon excitation fluorescence (TPEF) using a nanosecond white-light laser source.

    PubMed

    Segawa, Hiroki; Okuno, Masanari; Leproux, Philippe; Couderc, Vincent; Ozawa, Takeaki; Kano, Hideaki

    2015-01-01

    The subnanosecond "white-light laser" source has been applied to multimodal, multiphoton, and multiplex spectroscopic imaging (M(3) spectroscopic imaging) with coherent anti-Stokes Raman scattering (CARS), third-order sum frequency generation (TSFG), and two-photon excitation fluorescence (TPEF). As the proof-of-principle experiment, we performed simultaneous imaging of polystyrene beads with TSFG and TPEF. This technique is then applied to live cell imaging. Mouse L929 fibroblastic cells are clearly visualized by CARS, TSFG, and TPEF processes. M(3) spectroscopic imaging provides various and unique cellular information with different image contrast based on each multiphoton process. PMID:25864673

  5. Multiplex SSR-PCR approaches for semi-automated genotyping and characterization of loci linked to blast disease resistance genes in rice.

    PubMed

    Ashkani, Sadegh; Rafii, Mohd Yusop; Shabanimofrad, Mahmoodreza; Foroughi, Majid; Azizia, Parisa; Akhtar, Mohd Sayeed; Sahebi, Mahbod; Harun, Abd Rahim; Nasehi, Abbas

    2015-11-01

    In the present study, 63 polymorphic microsatellite markers related to rice blast resistance genes were fluorescently labelled at the 5'-end with either 6-FAM or HEX using the G5 dye set and incorporated into a multiplex SSR-PCR for the detection of fragments using an automated system. For rice F3 families obtained from crosses between Pongsu Seribu 2 (Malaysian blast resistant cultivar) and Mahsuri (a susceptible rice cultivar), the genotypes for 13 designated multiplex SSR panels were determined. The genotyping assays were performed using a capillary-based ABIPRISM 3100 genetic analyser. The sizes of the SSRs alleles observed in the range from 79 to 324 bp. The observed marker segregation data were analysed using the Chi(2) test. A genetic linkage map covering ten chromosomes and comprising 63 polymorphic SSR markers was constructed, and the distorted loci were localised to linkage groups. The results indicated that distorted loci are presented on eight chromosomes. PMID:26318048

  6. Multiplex SSR-PCR approaches for semi-automated genotyping and characterization of loci linked to blast disease resistance genes in rice.

    PubMed

    Ashkani, Sadegh; Rafii, Mohd Yusop; Shabanimofrad, Mahmoodreza; Foroughi, Majid; Azizia, Parisa; Akhtar, Mohd Sayeed; Sahebi, Mahbod; Harun, Abd Rahim; Nasehi, Abbas

    2015-11-01

    In the present study, 63 polymorphic microsatellite markers related to rice blast resistance genes were fluorescently labelled at the 5'-end with either 6-FAM or HEX using the G5 dye set and incorporated into a multiplex SSR-PCR for the detection of fragments using an automated system. For rice F3 families obtained from crosses between Pongsu Seribu 2 (Malaysian blast resistant cultivar) and Mahsuri (a susceptible rice cultivar), the genotypes for 13 designated multiplex SSR panels were determined. The genotyping assays were performed using a capillary-based ABIPRISM 3100 genetic analyser. The sizes of the SSRs alleles observed in the range from 79 to 324 bp. The observed marker segregation data were analysed using the Chi(2) test. A genetic linkage map covering ten chromosomes and comprising 63 polymorphic SSR markers was constructed, and the distorted loci were localised to linkage groups. The results indicated that distorted loci are presented on eight chromosomes.

  7. Multiplex detection of mutations.

    PubMed

    Perlin, David S; Balashov, Sergey; Park, Steven

    2008-01-01

    Rapid and reliable detection of mutations at the genetic level is an integral part of modern molecular diagnostics. These mutations can range from dominant single nucleotide polymorphisms within specific loci to codominant heterozygotic insertions and they present considerable challenges to investigators in developing rapid nucleic acid-based amplification assays that can distinguish wild-type from mutant alleles. The recent improvements of real-time polymerase chain reaction (PCR) using self-reporting fluorescence probes have given researchers a powerful tool in developing assays for mutation detection that can be multiplexed for high-throughput screening of multiple mutations and cost effectiveness. Here we describe an application of a multiplexed real-time PCR assay using Molecular Beacon probes for the detection of mutations in codon 54 of the CYP51A gene in Aspergillus fumigatus conferring triazole resistance.

  8. Portable Multiplex Pathogen Detector

    SciTech Connect

    Visuri, S; McBride, M T; Matthews, D; Rao, R

    2002-07-15

    Tumor marker concentrations in serum provide useful information regarding clinical stage and prognosis of cancer and can thus be used for presymptomatic diagnostic purposes. Currently, detection and identification of soluble analytes in biological fluids is conducted by methods including bioassays, ELISA, PCR, DNA chip or strip tests. While these technologies are generally sensitive and specific, they are time consuming, labor intensive and cannot be multiplexed. Our goal is to develop a simple, point-of-care, portable, liquid array-based immunoassay device capable of simultaneous detection of a variety of cancer markers. Here we describe the development of assays for the detection of Serum Prostate Specific Antigen, and Ovalbumin from a single sample. The multiplexed immunoassays utilize polystyrene microbeads. The beads are imbedded with precise ratios of red and orange fluorescent dyes yielding an array of 100 beads, each with a unique spectral address (Figure 1). Each bead can be coated with capture antibodies specific for a given antigen. After antigen capture, secondary antibodies sandwich the bound antigen and are indirectly labeled by the fluorescent reporter phycoerythrin (PE). Each optically encoded and fluorescently-labeled microbead is then individually interrogated. A red laser excites the dye molecules imbedded inside the bead and classifies the bead to its unique bead set, and a green laser quantifies the assay at the bead surface. This technology has been proven to be comparable to the ELISA in terms of sensitivity and specificity. We also describe the laser-based instrumentation used to acquire fluorescent bead images Following the assay, droplets of bead suspension containing a mixture of bead classes were deposited onto filters held in place by a disposable plexiglass device and the resultant arrays viewed under the fluorescent imaging setup. Using the appropriate filter sets to extract the necessary red, orange and green fluorescence from the

  9. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Li, Q.; Lu, X.

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  10. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  11. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Li, Qingbo; Lu, Xiandan

    1998-04-21

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  12. Multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan

    1996-12-10

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  13. Color-Multiplexing-Based Fluorescent Test Paper: Dosage-Sensitive Visualization of Arsenic(III) with Discernable Scale as Low as 5 ppb.

    PubMed

    Zhou, Yujie; Huang, Xiaoyan; Liu, Cui; Zhang, Ruilong; Gu, Xiaoling; Guan, Guijian; Jiang, Changlong; Zhang, Liying; Du, Shuhu; Liu, Bianhua; Han, Ming-Yong; Zhang, Zhongping

    2016-06-21

    Fluorescent colorimetry test papers are promising for the assays of environments, medicines, and foods by the observation of the naked eye on the variations of fluorescence brightness and color. Unlike dye-absorption-based pH test paper, however, the fluorescent test papers with wide color-emissive variations with target dosages for accurate quantification remain unsuccessful even if the multicolorful fluorescent probes are used. Here, we report the dosage-sensitive fluorescent colorimetry test paper with a very wide/consecutive "from red to cyan" response to the presence and amount of arsenic ions, As(III). Red quantum dots (QDs) were modified with glutathione and dithiothreitol to obtain the supersensitivity to As(III) by the quenching of red fluorescence through the formation of dispersive QDs aggregates. A small amount of cyan carbon dots (CDs) with spectral blue-green components as the photostable internal standard were mixed into the QDs solution to produce a composited red fluorescence. Upon the addition of As(III) into the sensory solution, the fluorescence color could gradually be reversed from red to cyan with a detection limit of 1.7 ppb As(III). When the sensory solution was printed onto a piece of filter paper, surprisingly a serial of color evolution from peach to pink to orange to khaki to yellowish to yellow-green to final cyan with the addition of As(III) was displayed and clearly discerned the dosage scale as low as 5 ppb. The methodology reported here opens a novel pathway toward the real applications of fluorescent test papers. PMID:27230307

  14. Simultaneous confirmatory analysis of different transgenic maize (zea mays) lines using multiplex polymerase chain reaction-restriction analysis and capillary gel electrophoresis with laser induced fluorescence detection.

    PubMed

    García-Cañas, Virginia; Cifuentes, Alejandro

    2008-09-24

    A novel analytical procedure based on the combination of multiplex PCR, restriction analysis, and CGE-LIF to unambiguosly and simultaneously confirm the presence of multiple lines of genetically modified corn is proposed. This methodology is based on the amplification of event-specific DNA regions by multiplex PCR using 6-FAM-labeled primers. Subsequently, PCR products are digested by a mixture containing specific restriction endonucleases. Thus, restriction endonucleases selectively recognize DNA target sequences contained in the PCR products and cleave the double-stranded DNA at a given cleavage site. Next, the restriction digest is analyzed by CGE-LIF corroborating the length of the expected restriction fragments, confirming (or not) the existence of GMOs. For accurate size determination of the DNA fragments by CGE-LIF a special standard DNA mixture was produced in this laboratory for calibration. The suitability of this mixture for size determination of labeled DNA fragments is also demonstrated. The usefulness of the proposed methodology is demonstrated through the simultaneous detection and confirmatory analysis of samples containing 0.5% of GA21 and MON863 maize plus an endogenous gene of maize as control.

  15. Multiplex Flow Assays

    PubMed Central

    2016-01-01

    Lateral flow or dipstick assays (e.g., home pregnancy tests), where an analyte solution is drawn through a porous membrane and is detected by localization onto a capture probe residing at a specific site on the flow strip, are the most commonly and extensively used type of diagnostic assay. However, after over 30 years of use, these assays are constrained to measuring one or a few analytes at a time. Here, we describe a completely general method, in which any single-plex lateral flow assay is transformed into a multiplex assay capable of measuring an arbitrarily large number of analytes simultaneously. Instead of identifying the analyte by its localization onto a specific geometric location in the flow medium, the analyte-specific capture probe is identified by its association with a specific optically encoded region within the flow medium. The capture probes for nucleic acids, antigens, or antibodies are attached to highly porous agarose beads, which have been encoded using multiple lanthanide emitters to create a unique optical signature for each capture probe. The optically encoded capture probe-derivatized beads are placed in contact with the analyte-containing porous flow medium and the analytes are captured onto the encoded regions as the solution flows through the porous medium. To perform a multiplex diagnostic assay, a solution comprising multiple analytes is passed through the flow medium containing the capture probe-derivatized beads, and the captured analyte is treated with a suitable fluorescent reporter. We demonstrate this multiplex analysis technique by simultaneously measuring DNA samples, antigen–antibody pairs, and mixtures of multiple nucleic acids and antibodies.

  16. glyXalign: high-throughput migration time alignment preprocessing of electrophoretic data retrieved via multiplexed capillary gel electrophoresis with laser-induced fluorescence detection-based glycoprofiling.

    PubMed

    Behne, Alexander; Muth, Thilo; Borowiak, Matthias; Reichl, Udo; Rapp, Erdmann

    2013-08-01

    Glycomics has become a rapidly emerging field and monitoring of protein glycosylation is needed to ensure quality and consistency during production processes of biologicals such as therapeutic antibodies or vaccines. Glycoanalysis via multiplexed CGE with LIF detection (xCGE-LIF) represents a powerful technique featuring high resolution, high sensitivity as well as high-throughput performance. However, sample data retrieved from this method exhibit challenges for downstream computational analysis due to intersample migration time shifts as well as stretching and compression of electropherograms. Here, we present glyXalign, a freely available and easy-to-use software package to automatically correct for distortions in xCGE-LIF based glycan data. We demonstrate its ability to outperform conventional algorithms such as dynamic time warping and correlation optimized warping in terms of processing time and alignment accuracy for high-resolution datasets. Built upon a set of rapid algorithms, the tool includes an intuitive graphical user interface and allows full control over all parameters. Additionally, it visualizes the alignment process and enables the user to readjust misaligned results. Software and documentation are available at http://www.glyxera.com.

  17. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes

    PubMed Central

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis. PMID:26305575

  18. Simultaneous detection of genetically modified organisms by multiplex ligation-dependent genome amplification and capillary gel electrophoresis with laser-induced fluorescence.

    PubMed

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2010-07-01

    In this work, an innovative method useful to simultaneously analyze multiple genetically modified organisms is described. The developed method consists in the combination of multiplex ligation-dependent genome dependent amplification (MLGA) with CGE and LIF detection using bare-fused silica capillaries. The MLGA process is based on oligonucleotide constructs, formed by a universal sequence (vector) and long specific oligonucleotides (selectors) that facilitate the circularization of specific DNA target regions. Subsequently, the circularized target sequences are simultaneously amplified with the same couple of primers and analyzed by CGE-LIF using a bare-fused silica capillary and a run electrolyte containing 2-hydroxyethyl cellulose acting as both sieving matrix and dynamic capillary coating. CGE-LIF is shown to be very useful and informative for optimizing MLGA parameters such as annealing temperature, number of ligation cycles, and selector probes concentration. We demonstrate the specificity of the method in detecting the presence of transgenic DNA in certified reference and raw commercial samples. The method developed is sensitive and allows the simultaneous detection in a single run of percentages of transgenic maize as low as 1% of GA21, 1% of MON863, and 1% of MON810 in maize samples with signal-to-noise ratios for the corresponding DNA peaks of 15, 12, and 26, respectively. These results demonstrate, to our knowledge for the first time, the great possibilities of MLGA techniques for genetically modified organisms analysis.

  19. Universal primer-multiplex-polymerase chain reaction (UP-M-PCR) and capillary electrophoresis-laser-induced fluorescence analysis for the simultaneous detection of six genetically modified maize lines.

    PubMed

    Zhang, Chunjiao; Xu, Wentao; Zhai, Zhifang; Luo, Yunbo; Yan, Xinghua; Zhang, Nan; Huang, Kunlun

    2011-05-25

    To meet the labeling and traceability requirement of genetically modified (GM) maize and their products for trade and regulation, it is essential to develop a specific detection method for monitoring the presence of GM content. In this work, six GM maize lines, including GA21, Bt11, NK603, Bt176, Mir604, and Mon810, were simultaneously detected by universal primer-multiplex-polymerase chain reaction (UP-M-PCR), and the amplicons for the six event-specific genes as well as the endogenous Ivr gene were successfully separated by the method of capillary electrophoresis-laser-induced fluorescence (CE-LIF). The UP-M-PCR method overcame the disadvantages in conventional M-PCR, such as complex manipulation, lower sensitivity, amplification disparity resulting from different primers, etc., and in combination with CE-LIF, it obtained a high sensitivity of 0.1 ng for both single and mixed DNA samples. The established method can be widely used for the qualitative identification of the GM maize lines.

  20. Establishment of a human malignant fibrous histiocytoma cell line, COMA. Characterization By conventional cytogenetics, comparative genomic hybridization, and multiplex fluorescence In situ hybridization.

    PubMed

    Mairal, A; Chibon, F; Rousselet, A; Couturier, J; Terrier, P; Aurias, A

    2000-09-01

    The human COMA cell line has been established from a storiform pleomorphic malignant fibrous histiocytoma (MFH). As expected for this tumor type, a very complex karyotype was observed after R-banding analysis. An extensive analysis by 24-color painting, comparative genomic hybridization (CGH), and fluorescence in situ hybridization (FISH) was performed. Twelve complex marker chromosomes recurrently observed were clearly identified; among them, three were systematically present in all analyzed metaphases. Amplifications detected by CGH were refined by FISH with probes specific for various candidate loci. A significant aneuploidy and numerous micronuclei were observed, which could be related to the anomalies of centriole numbers detected in a proportion of cells. Such an analysis, performed on a series of MFH cell lines, would allow the delineation of the genomic alterations specific for the oncogenesis or progression of this complex tumor type or both. PMID:11063793

  1. Detection of MDM2/CDK4 amplification in lipomatous soft tissue tumors from formalin-fixed, paraffin-embedded tissue: comparison of multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH).

    PubMed

    Creytens, David; van Gorp, Joost; Ferdinande, Liesbeth; Speel, Ernst-Jan; Libbrecht, Louis

    2015-02-01

    In this study, the detection of MDM2 and CDK4 amplification was evaluated in lipomatous soft tissue tumors using multiplex ligation-dependent probe amplification (MLPA), a PCR-based technique, in comparison with fluorescence in situ hybridization (FISH). These 2 techniques were evaluated in a series of 77 formalin-fixed, paraffin-embedded lipomatous tumors (27 benign adipose tumors, 28 atypical lipomatous tumors/well-differentiated liposarcomas, 18 dedifferentiated liposarcomas, and 4 pleomorphic liposarcomas). Using MLPA, with a cut-off ratio of >2, 36/71 samples (22 atypical lipomatous tumors/well-differentiated liposarcomas, and 14 dedifferentiated liposarcomas) showed MDM2 and CDK4 amplification. Using FISH as gold standard, MLPA showed a sensitivity of 90% (36/40) and a specificity of 100% (31/31) in detecting amplification of MDM2 and CDK4 in lipomatous soft tissue tumors. In case of high-level amplification (MDM2-CDK4/CEP12 ratio >5), concordance was 100%. Four cases of atypical lipomatous tumor/well-differentiated liposarcoma (4/26, 15%) with a low MDM2 and CDK4 amplification level (MDM2-CDK4/CEP12 ratio ranging between 2 and 2.5) detected by FISH showed no amplification by MLPA, although gain of MDM2 and CDK4 (ratios ranging between 1.6 and 1.9) was seen with MLPA. No amplification was detected in benign lipomatous tumors and pleomorphic liposarcomas. Furthermore, there was a very high concordance between the ratios obtained by FISH and MLPA. In conclusion, MLPA proves to be an appropriate and straightforward technique for screening MDM2/CDK4 amplification in lipomatous tumors, especially when a correct cut-off value and reference samples are chosen, and could be considered a good alternative to FISH to determine MDM2 and CDK4 amplification in liposarcomas. Moreover, because MLPA, as a multiplex technique, allows simultaneous detection of multiple chromosomal changes of interest, it could be in the future a very reliable and fast molecular analysis on

  2. Probabilistic record linkage.

    PubMed

    Sayers, Adrian; Ben-Shlomo, Yoav; Blom, Ashley W; Steele, Fiona

    2016-06-01

    Studies involving the use of probabilistic record linkage are becoming increasingly common. However, the methods underpinning probabilistic record linkage are not widely taught or understood, and therefore these studies can appear to be a 'black box' research tool. In this article, we aim to describe the process of probabilistic record linkage through a simple exemplar. We first introduce the concept of deterministic linkage and contrast this with probabilistic linkage. We illustrate each step of the process using a simple exemplar and describe the data structure required to perform a probabilistic linkage. We describe the process of calculating and interpreting matched weights and how to convert matched weights into posterior probabilities of a match using Bayes theorem. We conclude this article with a brief discussion of some of the computational demands of record linkage, how you might assess the quality of your linkage algorithm, and how epidemiologists can maximize the value of their record-linked research using robust record linkage methods. PMID:26686842

  3. Weighted multiplex networks.

    PubMed

    Menichetti, Giulia; Remondini, Daniel; Panzarasa, Pietro; Mondragón, Raúl J; Bianconi, Ginestra

    2014-01-01

    One of the most important challenges in network science is to quantify the information encoded in complex network structures. Disentangling randomness from organizational principles is even more demanding when networks have a multiplex nature. Multiplex networks are multilayer systems of [Formula: see text] nodes that can be linked in multiple interacting and co-evolving layers. In these networks, relevant information might not be captured if the single layers were analyzed separately. Here we demonstrate that such partial analysis of layers fails to capture significant correlations between weights and topology of complex multiplex networks. To this end, we study two weighted multiplex co-authorship and citation networks involving the authors included in the American Physical Society. We show that in these networks weights are strongly correlated with multiplex structure, and provide empirical evidence in favor of the advantage of studying weighted measures of multiplex networks, such as multistrength and the inverse multiparticipation ratio. Finally, we introduce a theoretical framework based on the entropy of multiplex ensembles to quantify the information stored in multiplex networks that would remain undetected if the single layers were analyzed in isolation.

  4. Probabilistic record linkage

    PubMed Central

    Sayers, Adrian; Ben-Shlomo, Yoav; Blom, Ashley W; Steele, Fiona

    2016-01-01

    Studies involving the use of probabilistic record linkage are becoming increasingly common. However, the methods underpinning probabilistic record linkage are not widely taught or understood, and therefore these studies can appear to be a ‘black box’ research tool. In this article, we aim to describe the process of probabilistic record linkage through a simple exemplar. We first introduce the concept of deterministic linkage and contrast this with probabilistic linkage. We illustrate each step of the process using a simple exemplar and describe the data structure required to perform a probabilistic linkage. We describe the process of calculating and interpreting matched weights and how to convert matched weights into posterior probabilities of a match using Bayes theorem. We conclude this article with a brief discussion of some of the computational demands of record linkage, how you might assess the quality of your linkage algorithm, and how epidemiologists can maximize the value of their record-linked research using robust record linkage methods. PMID:26686842

  5. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  6. Multiplexed Engineering in Biology.

    PubMed

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  7. Multiplex gas chromatography

    NASA Technical Reports Server (NTRS)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  8. Multiplex television transmission system

    NASA Technical Reports Server (NTRS)

    Reed, W. R.

    1967-01-01

    Time-multiplexing system enables several cameras to share a single commercial television transmission channel. This system is useful in industries for visually monitoring several operating areas or instrument panels from a remote location.

  9. Linkage analysis: Inadequate for detecting susceptibility loci in complex disorders?

    SciTech Connect

    Field, L.L.; Nagatomi, J.

    1994-09-01

    Insulin-dependent diabetes mellitus (IDDM) may provide valuable clues about approaches to detecting susceptibility loci in other oligogenic disorders. Numerous studies have demonstrated significant association between IDDM and a VNTR in the 5{prime} flanking region of the insulin (INS) gene. Paradoxically, all attempts to demonstrate linkage of IDDM to this VNTR have failed. Lack of linkage has been attributed to insufficient marker locus information, genetic heterogeneity, or high frequency of the IDDM-predisposing allele in the general population. Tyrosine hydroxylase (TH) is located 2.7 kb from INS on the 5` side of the VNTR and shows linkage disequilibrium with INS region loci. We typed a highly polymorphic microsatellite within TH in 176 multiplex families, and performed parametric (lod score) linkage analysis using various intermediate reduced penetrance models for IDDM (including rare and common disease allele frequencies), as well as non-parametric (affected sib pair) linkage analysis. The scores significantly reject linkage for recombination values of .05 or less, excluding the entire 19 kb region containing TH, the 5{prime} VNTR, the INS gene, and IGF2 on the 3{prime} side of INS. Non-parametric linkage analysis also provided no significant evidence for linkage (mean TH allele sharing 52.5%, P=.12). These results have important implications for efforts to locate genes predisposing to complex disorders, strongly suggesting that regions which are significantly excluded by linkage methods may nevertheless contain predisposing genes readily detectable by association methods. We advocate that investigators routinely perform association analyses in addition to linkage analyses.

  10. Downlink data multiplexer

    NASA Technical Reports Server (NTRS)

    Holland, S. Douglas (Inventor); Steele, Glen F. (Inventor); Romero, Denise M. (Inventor); Koudelka, Robert David (Inventor)

    2008-01-01

    A data multiplexer that accommodates both industry standard CCSDS data packets and bits streams and standard IEEE 1394 data is described. The multiplexer provides a statistical allotment of bandwidth to the channels in turn, preferably four, but expandable in increments of four up to sixteen. A microcontroller determines bandwidth requested by the plurality of channels, as well as the bandwidth available, and meters out the available bandwidth on a statistical basis employing flow control to the input channels.

  11. Optimized linkage and quenching strategies for quantum dot molecular beacons.

    PubMed

    Cady, Nathaniel C; Strickland, Aaron D; Batt, Carl A

    2007-04-01

    Quantum dot (QD) molecular beacons were explored for sequence-specific DNA detection. The effectiveness of multiple linkage strategies and fluorescence quenchers were compared in hybridization-based assays. To compare linkage strategies, covalent amide linkage and streptavidin-biotin binding were used to link semiconductor QDs to molecular beacon DNA. Amide-linked beacons showed a 57% greater fluorescence increase than streptavidin-linked beacons when hybridized to 200 pmol of target DNA. The specificity of the molecular beacons, however, was similar for both linkage methods. Hybridization of both QD molecular beacons with non-complementary target DNA resulted in approximately 50% lower fluorescence intensity than hybridization with complementary DNA. The effectiveness of different quencher moieties was also evaluated. Iowa Black and 1.4 nm Nanogold-quenched molecular beacons exhibited approximately 2-fold greater fluorescence increases than dabcyl-quenched beacons when hybridized to complementary target. Specificity for target DNA was also confirmed through hybridization assays with non-complementary DNA. To provide insight into differences between the QD molecular beacons and the linkage strategies used, the hydrodynamic radius of each was measured. These measurements indicated that the larger radius of the streptavidin QDs (13.5 nm) than the carboxyl QDs (7 nm) could have a negative effect on FRET-based quenching for QD molecular beacons. These data outline the importance of choosing proper linkage methods and quencher moieties for creating high-quality QD molecular beacons.

  12. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  13. Automated linkage analysis in psychiatric disorders

    SciTech Connect

    He, L.; Mansfield, D.C.; Brown, A.F.; Green, D.K.

    1995-06-19

    A genome-wide search for linkage of microsatellite markers to chromosomal loci containing genes responsible for the major psychoses is a laborious task which can be carried out with greater speed and economy by introducing automation to several steps in the procedure. We describe the use of the Automated Linkage Preprocessor (ALP) program for the computer analysis of the waveform generated by fluorescein-labelled markers after electrophoretic separation. (To obtain a copy send a request to A.F. Brown at the below MRC address or use Anonymous FTP to ftp.hgu.mrc.ac.uk. Software is in directory pub/ALP.) The program runs on a PC in the Microsoft Windows environment, and is used in conjunction with an automated laser fluorescence (ALF) sequencer (Pharmacia) and its Fragment Manager{trademark} software to detect and size the PCR products, filter out peaks of fluorescence due to nonallele fragments, and generate genotypes in a format suitable for direct input to standard linkage analysis programs. The method should offer the advantages of speed, accuracy, and reduced cost. Its use in linkage studies in a large family with manic-depressive illness is discussed. 14 refs., 3 figs., 1 tab.

  14. Compact spatial multiplexers for mode division multiplexing.

    PubMed

    Chen, Haoshuo; van Uden, Roy; Okonkwo, Chigo; Koonen, Ton

    2014-12-29

    Spatial multiplexer (SMUX) for mode division multiplexing (MDM) has evolved from mode-selective excitation, multiple-spot and photonic-lantern based solutions in order to minimize both mode-dependent loss (MDL) and coupler insertion loss (CIL). This paper discusses the implementation of all the three solutions by compact components in a small footprint. Moreover, the compact SMUX can be manufactured in mass production and packaged to assure high reliability. First, push-pull scheme and center launch based SMUXes are demonstrated on two mostly-popular photonic integration platforms: Silicon-on-insulator (SOI) and Indium Phosphide (InP) for selectively exciting LP01 and LP11 modes. 2-dimensional (2D) top-coupling by using vertical emitters is explored to provide a coupling interface between a few-mode fiber (FMF) and the photonic integrated SMUX. SOI-based grating couplers and InP-based 45° vertical mirrors are proposed and researched as vertical emitters in each platform. Second, a 3-spot SMUX is realized on an InP-based circuit through employing 45° vertical mirrors. Third, as a newly-emerging photonic integration platform, laser-inscribed 3D waveguide (3DW) technology is applied for a fully-packaged dual-channel 6-mode SMUX including two 6-core photonic lantern structures as mode multiplexer and demultiplexer, respectively.

  15. Multiplexed Biosensors for Mycotoxins.

    PubMed

    Maragos, Chris M

    2016-07-01

    Significant progress has been made in the development of biosensors that can be used to detect low-MW toxins produced by fungi (mycotoxins). The number of formats that have been investigated is impressive and is an indication of the importance attached to finding easy-to-use, accurate, and rapid methods for detecting these toxins in commodities and foods. This review explores the details of multiplexed biosensors based on many formats, including multiplexed immunoassays, suspension arrays, membrane-based devices (flow-through and immunochromatographic), and planar microarrays. Each assay format has its own strengths and areas that need improvement. Certain formats, such as multiplexed immunochromatographic devices, are well developed and relatively easy to use, and in some cases, commercial products are being sold. Others, such as the suspension arrays and microarrays, are laboratory-based assays that, although more complicated, are also more amenable to a larger scale of multiplexing. The diversity of such efforts and the multitude of formats under investigation suggest that multiple solutions will be found to satisfy the need for multiplexed toxin detection. PMID:27455928

  16. Tunable lifetime multiplexing using luminescent nanocrystals

    NASA Astrophysics Data System (ADS)

    Lu, Yiqing; Zhao, Jiangbo; Zhang, Run; Liu, Yujia; Liu, Deming; Goldys, Ewa M.; Yang, Xusan; Xi, Peng; Sunna, Anwar; Lu, Jie; Shi, Yu; Leif, Robert C.; Huo, Yujing; Shen, Jian; Piper, James A.; Robinson, J. Paul; Jin, Dayong

    2014-01-01

    Optical multiplexing plays an important role in applications such as optical data storage, document security, molecular probes and bead assays for personalized medicine. Conventional fluorescent colour coding is limited by spectral overlap and background interference, restricting the number of distinguishable identities. Here, we show that tunable luminescent lifetimes τ in the microsecond region can be exploited to code individual upconversion nanocrystals. In a single colour band, one can generate more than ten nanocrystal populations with distinct lifetimes ranging from 25.6 µs to 662.4 µs and decode their well-separated lifetime identities, which are independent of both colour and intensity. Such `τ-dots' potentially suit multichannel bioimaging, high-throughput cytometry quantification, high-density data storage, as well as security codes to combat counterfeiting. This demonstration extends the optical multiplexing capability by adding the temporal dimension of luminescent signals, opening new opportunities in the life sciences, medicine and data security.

  17. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  18. A multiplexed quantum memory.

    PubMed

    Lan, S-Y; Radnaev, A G; Collins, O A; Matsukevich, D N; Kennedy, T A; Kuzmich, A

    2009-08-01

    A quantum repeater is a system for long-distance quantum communication that employs quantum memory elements to mitigate optical fiber transmission losses. The multiplexed quantum memory (O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007)) has been shown theoretically to reduce quantum memory time requirements. We present an initial implementation of a multiplexed quantum memory element in a cold rubidium gas. We show that it is possible to create atomic excitations in arbitrary memory element pairs and demonstrate the violation of Bell's inequality for light fields generated during the write and read processes.

  19. Von Willebrand gene tracking by single-tube automated fluorescent analysis of four short tandem repeat polymorphisms.

    PubMed

    Vidal, Francisco; Julià, Antoni; Altisent, Carme; Puig, Lluís; Gallardo, Doinique

    2005-05-01

    Molecular diagnosis of von Willebrand disease (VWD) has been hampered by the large size and complex genomic characteristics of the gene involved. For this reason, indirect methods using intragenic polymorphic markers described along the von Willebrand factor (VWF) gene are valuable tools for gene monitoring and linkage analysis. Several studies have demonstrated the four commonly utilized short tandem repeats (STRs), three located in intron 40 and one in the promoter region of the VWF gene, to be highly informative for this task. Our objective was t o develop a rapid, automated method to simultaneously analyze these four STRs for VWF gene tracking. Amplification of the four loci is achieved in a single multiplex fluorescent PCR which is then analyzed in the same run by capillary electrophoresis. Data processing with GeneScan and Genotyper software has simplified management and tabulation of the resulting haplotypes. Analysis of the VWF gene in DNA from 102 individuals (204 chromosomes) revealed that the three STRs within intron 40 showed significant linkage disequilibrium against each other but not against the VWP locus. Moreover, the combination of the four markers offers a high heterozygosity rate (>99%) that improves tracing VWF gene inheritance. In conclusion, the automated fluorescent capillary electrophoresis method presented here is an extremely rapid, simple and highly informative technique for association studies between VWD and the VWF gene in addition to genetic counseling and prenatal diagnosis by precise linkage analysis in VWD-affected families. PMID:15886817

  20. Von Willebrand gene tracking by single-tube automated fluorescent analysis of four short tandem repeat polymorphisms.

    PubMed

    Vidal, Francisco; Julià, Antoni; Altisent, Carme; Puig, Lluís; Gallardo, Doinique

    2005-05-01

    Molecular diagnosis of von Willebrand disease (VWD) has been hampered by the large size and complex genomic characteristics of the gene involved. For this reason, indirect methods using intragenic polymorphic markers described along the von Willebrand factor (VWF) gene are valuable tools for gene monitoring and linkage analysis. Several studies have demonstrated the four commonly utilized short tandem repeats (STRs), three located in intron 40 and one in the promoter region of the VWF gene, to be highly informative for this task. Our objective was t o develop a rapid, automated method to simultaneously analyze these four STRs for VWF gene tracking. Amplification of the four loci is achieved in a single multiplex fluorescent PCR which is then analyzed in the same run by capillary electrophoresis. Data processing with GeneScan and Genotyper software has simplified management and tabulation of the resulting haplotypes. Analysis of the VWF gene in DNA from 102 individuals (204 chromosomes) revealed that the three STRs within intron 40 showed significant linkage disequilibrium against each other but not against the VWP locus. Moreover, the combination of the four markers offers a high heterozygosity rate (>99%) that improves tracing VWF gene inheritance. In conclusion, the automated fluorescent capillary electrophoresis method presented here is an extremely rapid, simple and highly informative technique for association studies between VWD and the VWF gene in addition to genetic counseling and prenatal diagnosis by precise linkage analysis in VWD-affected families.

  1. Dynamic optically multiplexed imaging

    NASA Astrophysics Data System (ADS)

    Rachlin, Yaron; Shah, Vinay; Shepard, R. Hamilton; Shih, Tina

    2015-09-01

    Optically multiplexed imagers overcome the tradeoff between field of view and resolution by superimposing images from multiple fields of view onto a single focal plane. In this paper, we consider the implications of independently shifting each field of view at a rate exceeding the frame rate of the focal plane array and with a precision that can exceed the pixel pitch. A sequence of shifts enables the reconstruction of the underlying scene, with the number of frames required growing inversely with the number of multiplexed images. As a result, measurements from a sufficiently fast sampling sensor can be processed to yield a low distortion image with more pixels than the original focal plane array, a wider field of view than the original optical design, and an aspect ratio different than the original lens. This technique can also enable the collection of low-distortion, wide field of view videos. A sequence of sub-pixel spatial shifts extends this capability to allow the recovery of a wide field of view scene at sub-pixel resolution. To realize this sensor concept, a novel and compact divided aperture multiplexed sensor, capable of rapidly and precisely shifting its fields of view, was prototyped. Using this sensor, we recover twenty-four megapixel images from a four-megapixel focal plane and show the feasibility of simultaneous de-multiplexing and super-resolution.

  2. Linkage results in Schizophrenia

    SciTech Connect

    Baron, M.

    1996-04-09

    In setting a model for replication studies, the collective effort by the various investigators is praiseworthy. The linkage reported is intriguing, but given the aforementioned caveats it would be premature to dub it {open_quotes}significant -- and, probably, confirmed.{close_quotes} The extent to which a real genetic effect exists on chromosome 6p24-22 remains to be seen. Compelling confirmation, which further study might proffer, would be a welcome boost to a fledgling enterprise, where other findings of promise have faltered or failed to gain unequivocal support. The caution advised in this commentary may guide the design and interpretation of other linkage studies in psychiatric disorders.

  3. Extracting information from multiplex networks.

    PubMed

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ̃(S) for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science. PMID:27368796

  4. Extracting information from multiplex networks.

    PubMed

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ̃(S) for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  5. Extracting information from multiplex networks

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  6. Multiplexing a high-throughput liability assay to leverage efficiencies.

    PubMed

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  7. Transitions and Linkages.

    ERIC Educational Resources Information Center

    Ilfeld, Ellen M., Ed.; Hanssen, Elizabeth, Ed.

    1997-01-01

    If children are to benefit from a healthy, supportive early childhood experience, it is important to strengthen transitions between early childhood experiences in educational and care settings and the more formal educational system. This issue of Coordinator's Notebook focuses on strengthening linkages and transitions between home, preschool, and…

  8. Genetic linkage analysis using pooled DNA and infrared detection of tailed STRP primer patterns

    NASA Astrophysics Data System (ADS)

    Oetting, William S.; Wildenberg, Scott C.; King, Richard A.

    1996-04-01

    The mapping of a disease locus to a specific chromosomal region is an important step in the eventual isolation and analysis of a disease causing gene. Conventional mapping methods analyze large multiplex families and/or smaller nuclear families to find linkage between the disease and a chromosome marker that maps to a known chromosomal region. This analysis is time consuming and tedious, typically requiring the determination of 30,000 genotypes or more. For appropriate populations, we have instead utilized pooled DNA samples for gene mapping which greatly reduces the amount of time necessary for an initial chromosomal screen. This technique assumes a common founder for the disease locus of interest and searches for a region of a chromosome shared between affected individuals. Our analysis involves the PCR amplification of short tandem repeat polymorphisms (STRP) to detect these shared regions. In order to reduce the cost of genotyping, we have designed unlabeled tailed PCR primers which, when combined with a labeled universal primer, provides for an alternative to synthesizing custom labeled primers. The STRP pattern is visualized with an infrared fluorescence based automated DNA sequencer and the patterns quantitated by densitometric analysis of the allele pattern. Differences in the distribution of alleles between pools of affected and unaffected individuals, including a reduction in the number of alleles in the affected pool, indicate the sharing of a region of a chromosome. We have found this method effective for markers 10 - 15 cM away from the disease locus for a recessive genetic disease.

  9. Two-locus linkage analysis in multiple sclerosis (MS)

    SciTech Connect

    Tienari, P.J. Univ. of Helsinki ); Terwilliger, J.D.; Ott, J. ); Palo, J. ); Peltonen, L. )

    1994-01-15

    One of the major challenges in genetic linkage analyses is the study of complex diseases. The authors demonstrate here the use of two-locus linkage analysis in multiple sclerosis (MS), a multifactorial disease with a complex mode of inheritance. In a set of Finnish multiplex families, they have previously found evidence for linkage between MS susceptibility and two independent loci, the myelin basic protein gene (MBP) on chromosome 18 and the HLA complex on chromosome 6. This set of families provides a unique opportunity to perform linkage analysis conditional on two loci contributing to the disease. In the two-trait-locus/two-marker-locus analysis, the presence of another disease locus is parametrized and the analysis more appropriately treats information from the unaffected family member than single-disease-locus analysis. As exemplified here in MS, the two-locus analysis can be a powerful method for investigating susceptibility loci in complex traits, best suited for analysis of specific candidate genes, or for situations in which preliminary evidence for linkage already exists or is suggested. 41 refs., 6 tabs.

  10. Sub-diffraction-limit imaging using mode multiplexing

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Miyazaki, Jun; He, Jinping; Seto, Keisuke; Kobayashi, Takayoshi

    2015-05-01

    Pixel-by-pixel processed fluorescence difference microscopy is experimentally demonstrated by multiplexing excitation laser beams with Gaussian and donut spot shapes and then demultiplexing the fluorescent signals using lock-in amplifiers. With this scheme, a fixed sample of fluorescent spheres and a slice of mouse brain tissue are imaged with resolutions that exceed the diffraction limit. Compared to previously reported subtraction imaging techniques, this pixel-by-pixel scan can be applied to improve the resolution of a moving sample without introducing subtraction errors. The synchronized signal detection feature makes this method extendible to various applications.

  11. Development and population study of an eight-locus short tandem repeat (STR) multiplex system.

    PubMed

    Lins, A M; Micka, K A; Sprecher, C J; Taylor, J A; Bacher, J W; Rabbach, D R; Bever, R A; Creacy, S D; Schumm, J W

    1998-11-01

    Amplification of short tandem repeat (STR) loci has become a useful tool for human identification applications. To improve throughput and efficiency for such uses, the polymorphic STR loci CSF1PO, TPOX, TH01, vWA, D16S539, D7S820, D13S317, D5S818, F13A01, FESFPS, F13B, and LPL have been evaluated, developed, and configured into fluorescently labeled multiplex systems. Eight of these STR loci were combined to generate the PowerPlex System, a two-color multiplex system that supports rapid, accurate, reliable analysis and designation of alleles. The remaining four loci comprise the FFFL System, a one-color multiplex system. The PowerPlex System may be evaluated alternatively as two one-color, four-locus multiplex systems, CTTv Multiplex and GammaSTR Multiplex. The products of multiplex amplification may be analyzed with a variety of fluorescence detection instruments. Determination of genotypes of over 200 individuals from each of three different population/ethnic groups revealed independence of inheritance of the loci and allowed calculation of matching probability, typical paternity index, and power of exclusion for each multiplex.

  12. Multiplex data bus simulator

    SciTech Connect

    Garbo, D.L.

    1983-01-01

    A multiplex data-bus simulator for analyzing multiprocessor designs is presented. The simulator was designed to be user-friendly, thus allowing a multiprocessor designer to enter various configuration inputs in a concise and orderly fashion through the use of menus. The designer is also provided a method of visualizing a message traffic flow through the use of graphical representation of events. 3 references.

  13. Self-calibrating multiplexer circuit

    DOEpatents

    Wahl, Chris P.

    1997-01-01

    A time domain multiplexer system with automatic determination of acceptable multiplexer output limits, error determination, or correction is comprised of a time domain multiplexer, a computer, a constant current source capable of at least three distinct current levels, and two series resistances employed for calibration and testing. A two point linear calibration curve defining acceptable multiplexer voltage limits may be defined by the computer by determining the voltage output of the multiplexer to very accurately known input signals developed from predetermined current levels across the series resistances. Drift in the multiplexer may be detected by the computer when the output voltage limits, expected during normal operation, are exceeded, or the relationship defined by the calibration curve is invalidated.

  14. Linkage map integration

    SciTech Connect

    Collins, A.; Teague, J.; Morton, N.E.; Keats, B.J.

    1996-08-15

    The algorithms that drive the map+ program for locus-oriented linkage mapping are presented. They depend on the enhanced location database program ldb+ to specify an initial comprehensive map that includes all loci in the summary lod file. Subsequently the map may be edited or order constrained and is automatically improved by estimating the location of each locus conditional on the remainder, beginning with the most discrepant loci. Operating characteristics permit rapid and accurate construction of linkage maps with several hundred loci. The map+ program also performs nondisjunction mapping with tests of nonstandard recombination. We have released map+ on Internet as a source program in the C language together with the location database that now includes the LODSOURCE database. 28 refs., 5 tabs.

  15. Chopped molecular beam multiplexing system

    NASA Technical Reports Server (NTRS)

    Adams, Billy R. (Inventor)

    1986-01-01

    The integration of a chopped molecular beam mass spectrometer with a time multiplexing system is described. The chopping of the molecular beam is synchronized with the time intervals by a phase detector and a synchronous motor. Arithmetic means are generated for phase shifting the chopper with respect to the multiplexer. A four channel amplifier provides the capacity to independently vary the baseline and amplitude in each channel of the multiplexing system.

  16. Hardware Counter Multiplexing

    2000-10-13

    The Hardware Counter Multiplexer works with the built-in counter registers on computer processors. These counters record various low-level events as software runs, but they can not record all possible events at the same time. This software helps work around that limitation by counting a series of different events in sequence over a period of time. This in turn allows programmers to measure interesting combinations of events, rather than single events. The software is designed tomore » work with multithreaded or single-threaded programs.« less

  17. Optofluidic wavelength division multiplexing for single-virus detection

    PubMed Central

    Ozcelik, Damla; Parks, Joshua W.; Wall, Thomas A.; Stott, Matthew A.; Cai, Hong; Parks, Joseph W.; Hawkins, Aaron R.; Schmidt, Holger

    2015-01-01

    Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context––the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine. PMID:26438840

  18. Irish study of high-density Schizophrenia families: Field methods and power to detect linkage

    SciTech Connect

    Kendler, K.S.; Straub, R.E.; MacLean, C.J.

    1996-04-09

    Large samples of multiplex pedigrees will probably be needed to detect susceptibility loci for schizophrenia by linkage analysis. Standardized ascertainment of such pedigrees from culturally and ethnically homogeneous populations may improve the probability of detection and replication of linkage. The Irish Study of High-Density Schizophrenia Families (ISHDSF) was formed from standardized ascertainment of multiplex schizophrenia families in 39 psychiatric facilities covering over 90% of the population in Ireland and Northern Ireland. We here describe a phenotypic sample and a subset thereof, the linkage sample. Individuals were included in the phenotypic sample if adequate diagnostic information, based on personal interview and/or hospital record, was available. Only individuals with available DNA were included in the linkage sample. Inclusion of a pedigree into the phenotypic sample required at least two first, second, or third degree relatives with non-affective psychosis (NAP), one of whom had schizophrenia (S) or poor-outcome schizoaffective disorder (PO-SAD). Entry into the linkage sample required DNA samples on at least two individuals with NAP, of whom at least one had S or PO-SAD. Affection was defined by narrow, intermediate, and broad criteria. 75 refs., 6 tabs.

  19. Multiplex Immunoassays: Chips and Beads

    PubMed Central

    2010-01-01

    Multiplex analysis is intended to simultaneously look for multiple targets in one sample. This approach has been largely adopted in genomics and progressively expands to various domains of laboratory investigation. In protein analysis, immunoassays are the fundamental methods and their multiplexing and miniaturization is of great applicability to both basic and applied research. Furthermore, the potential of these high-throughput methodologies can be foreseen in the field of clinical diagnostics. The following text describes planar and bead-based arrays, two main strategies of immunoassay multiplexing. Principles, detection methods and strengths of each are shortly discussed. Finally, we mention several challenges linked with the integration of these methods to diagnostics.

  20. Apprenticeship - School Linkage Implementation Manual.

    ERIC Educational Resources Information Center

    Martin, Sharon T.; And Others

    Developed to assist interested sponsors in implementing apprenticeship-school linkage projects, this guide is intended to organize the collective experiences of those who have implemented the demonstration projects to highlight the day-to-day mechanics involved. Section 1 overviews apprenticeship-school linkage. In section 2 factors are described…

  1. A 128 Multiplexing Factor Time-Domain SQUID Multiplexer

    NASA Astrophysics Data System (ADS)

    Prêle, D.; Voisin, F.; Piat, M.; Decourcelle, T.; Perbost, C.; Chapron, C.; Rambaud, D.; Maestre, S.; Marty, W.; Montier, L.

    2016-07-01

    A cryogenic 128:1 Time-Domain Multiplexer (TDM) has been developed for the readout of kilo-pixel Transition Edge Sensor (TES) arrays dedicated to the Q&U Bolometric Interferometer for Cosmology (QUBIC) instrument which aims to measure the B-mode polarization of the Cosmic Microwave Background. Superconducting QUantum Interference Devices (SQUIDs) are usually used to read out TESs. Moreover, SQUIDs are used to build TDM by biasing sequentially the SQUIDs connected together—one for each TES. In addition to this common technique which allows a typical 32 multiplexing factor, a cryogenic integrated circuit provides a 4:1 second multiplexing stage. This cryogenic integrated circuit is one of the original part of our TDM achieving an unprecedented 128 multiplexing factor. We present these two dimension TDM stages: topology of the SQUID multiplexer, operation of the cryogenic integrated circuit, and integration of the full system to read out a TES array dedicated to the QUBIC instrument. Flux-locked loop operation in multiplexed mode is also discussed.

  2. Multiplexed Microsphere Suspension Array-Based Immunoassays.

    PubMed

    Lin, Andrew; Salvador, Alexandra; Carter, J Mark

    2015-01-01

    ELISA is an extremely powerful tool to detect analytes because of its sensitivity, selectivity, reproducibility and ease of use. Here we describe sandwich immunoassays performed in suspension on spectrally unique microspheres developed by Luminex. Luminex assays offer the benefit of multiplex analysis of large numbers of analytes in a single reaction. Because the microspheres are spectrally unique, many microspheres, each attached to various antibodies, can be added to a single sample. Luminex instruments can distinguish each microsphere and detect the intensity of a reporter signal for each microsphere. Results are reported in Median Fluorescent Intensities for each analyte. Luminex assays can be used to detect up to 500 analytes in a high-throughput format. Luminex refers to this technology as xMAP(®). Here we describe a routine protocol for a Luminex immunoassay. Other Luminex assays would have to be optimized for specific conditions according to their use. PMID:26160569

  3. Multiplexed FBG strain measurement system

    NASA Astrophysics Data System (ADS)

    Helsztynski, Jerzy; Lewandowski, Lech; Jasiewicz, Wieslaw; Jedrzejewski, Kazimierz P.

    2008-11-01

    The idea and, design and realization of fiber Bragg grating multiplexing system is given. Special Bragg gratings with very long and linear side slopes were practically realized. They were tuned for different wavelengths distanced 9nm in each measurement channel. The system was applied for strain control. Special spectrophotometer with linear photodiode array was made. For flexible distributed multiplexing of many sensor channels fiber-optic switches were used.

  4. Multiplexed Dip Pen Nanolithography patterning by simple desktop nanolithography platform

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Won; Smetana, Alexander; Stiles, Paul

    2010-02-01

    Multiplexed patterning in the micro-scale has been required in order to accomplish functional bio-materials templating on the subcellular length scale. Multiplexed bio-material patterns can be used in several fields: high sensitivity DNA/protein chip development, cell adhesion/differentiation studies, and biological sensor applications. Especially, two or more materials' patterning in subcellular length scale is highly demanding to develop a multi-functional and highintegrated chip device. The multiplexing patterning of two or more materials is a challenge because of difficulty in an alignment and a precision of patterning. In this work, we demonstrate that multiplexed dip pen nanolithography® (DPN®) patterning up to four different material inks by means of using recently developed new generation nanolithography platform (NLP 2000™, NanoInk, Inc., Skokie, IL). Ink materials were prepared by adding different colored fluorescent dyes to matrix carrier materials, such as poly(ethylene glycol) dimethacrylate (PEG-DMA) and lipid material (1,2- dioleoyl-sn-glycero-3-phosphocholine, DOPC). Finally, dot-array patterns of four different inks were obtained in 50 × 50 μm2 area. This lithography platform is capable of patterning 12 separate materials within micrometer areas by efficient use of the available MEMS accessories. This number can be scaled up further with development of new accessories.

  5. A protein multiplex microarray substrate with high sensitivity and specificity

    PubMed Central

    Fici, Dolores A.; McCormick, William; Brown, David W.; Herrmann, John E.; Kumar, Vikram; Awdeh, Zuheir L.

    2010-01-01

    The problems that have been associated with protein multiplex microarray immunoassay substrates and existing technology platforms include: binding, sensitivity, a low signal to noise ratio, target immobilization and the optimal simultaneous detection of diverse protein targets. Current commercial substrates for planar multiplex microarrays rely on protein attachment chemistries that range from covalent attachment to affinity ligand capture, to simple adsorption. In this pilot study, experimental performance parameters for direct monoclonal mouse IgG detection were compared for available two and three dimensional slide surface coatings with a new colloidal nitrocellulose substrate. New technology multiplex microarrays were also developed and evaluated for the detection of pathogen specific antibodies in human serum and the direct detection of enteric viral antigens. Data supports the nitrocellulose colloid as an effective reagent with the capacity to immobilize sufficient diverse protein target quantities for increased specificory signal without compromising authentic protein structure. The nitrocellulose colloid reagent is compatible with the array spotters and scanners routinely used for microarray preparation and processing. More importantly, as an alternate to fluorescence, colorimetric chemistries may be used for specific and sensitive protein target detection. The advantages of the nitrocellulose colloid platform indicate that this technology may be a valuable tool for the further development and expansion of multiplex microarray immunoassays in both the clinical and research laborat environment. PMID:20974147

  6. A multiplex fluorophore molecular beacon: detection of the target sequence using large Stokes shift and multiple emission signal properties.

    PubMed

    Joo, Han Na; Seo, Young Jun

    2015-02-18

    We have developed a multiplex fluorophore molecular beacon () with fluorophores located at its end to produce unique FRET (Fluorescence Resonance Energy Transfer). It exhibited diverse fluorescence properties depending on the mixing pattern, such as large Stokes shift emission and multiple colors, namely, blue, green and red using one excitation wavelength. Our also worked in probing a target perfect matched sequence with exonuclease III.

  7. Efficient exploration of multiplex networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2016-04-01

    Efficient techniques to navigate networks with local information are fundamental to sample large-scale online social systems and to retrieve resources in peer-to-peer systems. Biased random walks, i.e. walks whose motion is biased on properties of neighbouring nodes, have been largely exploited to design smart local strategies to explore a network, for instance by constructing maximally mixing trajectories or by allowing an almost uniform sampling of the nodes. Here we introduce and study biased random walks on multiplex networks, graphs where the nodes are related through different types of links organised in distinct and interacting layers, and we provide analytical solutions for their long-time properties, including the stationary occupation probability distribution and the entropy rate. We focus on degree-biased random walks and distinguish between two classes of walks, namely those whose transition probability depends on a number of parameters which is extensive in the number of layers, and those whose motion depends on intrinsically multiplex properties of the neighbouring nodes. We analyse the effect of the structure of the multiplex network on the steady-state behaviour of the walkers, and we find that heterogeneous degree distributions as well as the presence of inter-layer degree correlations and edge overlap determine the extent to which a multiplex can be efficiently explored by a biased walk. Finally we show that, in real-world multiplex transportation networks, the trade-off between efficient navigation and resilience to link failure has resulted into systems whose diffusion properties are qualitatively different from those of appropriately randomised multiplex graphs. This fact suggests that multiplexity is an important ingredient to include in the modelling of real-world systems.

  8. Exploring linkage disequilibrium.

    PubMed

    Baird, Stuart J E

    2015-09-01

    Linkage disequilibrium (LD, association of allelic states across loci) is poorly understood by many evolutionary biologists, but as technology for multilocus sampling improves, we ignore LD at our peril. If we sample variation at 10 loci in an organism with 20 chromosomes, we can reasonably treat them as 10 'independent witnesses' of the evolutionary process. If instead, we sample variation at 1000 loci, many are bound to be close together on a chromosome. With only one or two crossovers per meiosis, associations between close neighbours decay so slowly that even LD created far in the past will not have dissipated, so we cannot treat the 1000 loci as independent witnesses (Barton ). This means that as marker density on genomes increases classic analyses assuming independent loci become mired in the problem of overconfidence: if 1000 independent witnesses are assumed, and that number should be much lower, any conclusion will be overconfident. This is of special concern because our literature suffers from a strong publication bias towards confident answers, even when they turn out to be wrong (Knowles ). In contrast, analyses that take into account associations across loci both control for overconfidence and can inform us about LD generating events far in the past, for example human/Neanderthal admixture (Fu et al. ). With increased marker density, biologists must increase their awareness of LD and, in this issue of Molecular Ecology Resources, Kemppainen et al. () make software available that can only help in this process: LDna allows patterns of LD in a data set to be explored using tools borrowed from network analysis. This has great potential, but realizing that potential requires understanding LD. PMID:26261040

  9. Higher Education: Labor Market Linkage.

    ERIC Educational Resources Information Center

    Asayeghn, Desta

    1982-01-01

    Examines the methodology of three case studies investigating the linkage between higher education and the world of work in the Sudan, Zambia, and Tanzania. Summarizes 12 main findings. Suggests the studies remain traditional human resources planning efforts. (NEC)

  10. Thermally multiplexed polymerase chain reaction.

    PubMed

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  11. Bond Percolation on Multiplex Networks

    NASA Astrophysics Data System (ADS)

    Hackett, A.; Cellai, D.; Gómez, S.; Arenas, A.; Gleeson, J. P.

    2016-04-01

    We present an analytical approach for bond percolation on multiplex networks and use it to determine the expected size of the giant connected component and the value of the critical bond occupation probability in these networks. We advocate the relevance of these tools to the modeling of multilayer robustness and contribute to the debate on whether any benefit is to be yielded from studying a full multiplex structure as opposed to its monoplex projection, especially in the seemingly irrelevant case of a bond occupation probability that does not depend on the layer. Although we find that in many cases the predictions of our theory for multiplex networks coincide with previously derived results for monoplex networks, we also uncover the remarkable result that for a certain class of multiplex networks, well described by our theory, new critical phenomena occur as multiple percolation phase transitions are present. We provide an instance of this phenomenon in a multiplex network constructed from London rail and European air transportation data sets.

  12. Thermally multiplexed polymerase chain reaction

    PubMed Central

    Phaneuf, Christopher R.; Pak, Nikita; Saunders, D. Curtis; Holst, Gregory L.; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L.; Jerris, Robert; Forest, Craig R.

    2015-01-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously—each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel. PMID:26339317

  13. Structural measures for multiplex networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2014-03-01

    Many real-world complex systems consist of a set of elementary units connected by relationships of different kinds. All such systems are better described in terms of multiplex networks, where the links at each layer represent a different type of interaction between the same set of nodes rather than in terms of (single-layer) networks. In this paper we present a general framework to describe and study multiplex networks, whose links are either unweighted or weighted. In particular, we propose a series of measures to characterize the multiplexicity of the systems in terms of (i) basic node and link properties such as the node degree, and the edge overlap and reinforcement, (ii) local properties such as the clustering coefficient and the transitivity, and (iii) global properties related to the navigability of the multiplex across the different layers. The measures we introduce are validated on a genuinely multiplex data set of Indonesian terrorists, where information among 78 individuals are recorded with respect to mutual trust, common operations, exchanged communications, and business relationships.

  14. Structural measures for multiplex networks.

    PubMed

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2014-03-01

    Many real-world complex systems consist of a set of elementary units connected by relationships of different kinds. All such systems are better described in terms of multiplex networks, where the links at each layer represent a different type of interaction between the same set of nodes rather than in terms of (single-layer) networks. In this paper we present a general framework to describe and study multiplex networks, whose links are either unweighted or weighted. In particular, we propose a series of measures to characterize the multiplexicity of the systems in terms of (i) basic node and link properties such as the node degree, and the edge overlap and reinforcement, (ii) local properties such as the clustering coefficient and the transitivity, and (iii) global properties related to the navigability of the multiplex across the different layers. The measures we introduce are validated on a genuinely multiplex data set of Indonesian terrorists, where information among 78 individuals are recorded with respect to mutual trust, common operations, exchanged communications, and business relationships.

  15. Replication of linkage studies of complex traits: an examination of variation in location estimates.

    PubMed Central

    Roberts, S B; MacLean, C J; Neale, M C; Eaves, L J; Kendler, K S

    1999-01-01

    In linkage studies, independent replication of positive findings is crucial in order to distinguish between true positives and false positives. Recently, the following question has arisen in linkage studies of complex traits: at what distance do we reject the hypothesis that two location estimates in a genomic region represent the same gene? Here we attempt to address this question. Sampling distributions for location estimates were constructed by computer simulation. The conditions for simulation were chosen to reflect features of "typical" complex traits, including incomplete penetrance, phenocopies, and genetic heterogeneity. Our findings, which bear on what is considered a replication in linkage studies of complex traits, suggest that, even with relatively large numbers of multiplex families, chance variation in the location estimate is substantial. In addition, we report evidence that, for the conditions studied here, the standard error of a location estimate is a function of the magnitude of the expected LOD score. PMID:10441592

  16. Helicity multiplexed broadband metasurface holograms

    PubMed Central

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Yue Bun Pun, Edwin; Zhang, Shuang; Chen, Xianzhong

    2015-01-01

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices. PMID:26354497

  17. Linkages in thermal copolymers of lysine

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Suzuki, F.

    1975-01-01

    The thermal copolymerization of lysine with other alpha-amino acids was studied. The identity of the second amino acid influences various properties of the polymer obtained, including the proportion of alpha and epsilon linkages of lysine. A review of linkages in proteinoids indicates alpha and beta linkages for aspartic acid, alpha and gamma linkages for glutamic acid, alpha and epsilon linkages for lysine, and alpha linkages for other amino acids. Thermal proteinoids are thus more complex in types of linkage than are proteins.

  18. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    SciTech Connect

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCR amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.

  19. Integrated multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Tan, Hongdong

    2002-05-14

    The present invention provides an integrated multiplexed capillary electrophoresis system for the analysis of sample analytes. The system integrates and automates multiple components, such as chromatographic columns and separation capillaries, and further provides a detector for the detection of analytes eluting from the separation capillaries. The system employs multiplexed freeze/thaw valves to manage fluid flow and sample movement. The system is computer controlled and is capable of processing samples through reaction, purification, denaturation, pre-concentration, injection, separation and detection in parallel fashion. Methods employing the system of the invention are also provided.

  20. Optical Multiplex Systems For Vehicles

    NASA Astrophysics Data System (ADS)

    Rogers, Wesley A.

    1980-09-01

    Optical multiplex technology, presently in vogue in many segments of industry, is now under scrutiny at General Motors. We are evaluating this technology as a means of simplifying the vehicle harness, reducing weight, eliminating electromagnetic interference, and providing drastically new interior styling options. Door, seat, steering column, forward and rear harness vehicle assemblies, are replaced with a single fiber optic cable in each area. A four bit microprocessor at the top of the steering column, and in each door, multiplexes control console button commands over fiber optic cables. A microprocessor at the other end of the cables decodes the optical signals and operates seats, windows, windshield wipers, etc.

  1. Turing patterns in multiplex networks

    NASA Astrophysics Data System (ADS)

    Asllani, Malbor; Busiello, Daniel M.; Carletti, Timoteo; Fanelli, Duccio; Planchon, Gwendoline

    2014-10-01

    The theory of patterns formation for a reaction-diffusion system defined on a multiplex is developed by means of a perturbative approach. The interlayer diffusion constants act as a small parameter in the expansion and the unperturbed state coincides with the limiting setting where the multiplex layers are decoupled. The interaction between adjacent layers can seed the instability of a homogeneous fixed point, yielding self-organized patterns which are instead impeded in the limit of decoupled layers. Patterns on individual layers can also fade away due to cross-talking between layers. Analytical results are compared to direct simulations.

  2. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III.

    PubMed

    Levinson, D F; Holmans, P; Straub, R E; Owen, M J; Wildenauer, D B; Gejman, P V; Pulver, A E; Laurent, C; Kendler, K S; Walsh, D; Norton, N; Williams, N M; Schwab, S G; Lerer, B; Mowry, B J; Sanders, A R; Antonarakis, S E; Blouin, J L; DeLeuze, J F; Mallet, J

    2000-09-01

    Schizophrenia candidate regions 33-51 cM in length on chromosomes 5q, 6q, 10p, and 13q were investigated for genetic linkage with mapped markers with an average spacing of 5.64 cM. We studied 734 informative multiplex pedigrees (824 independent affected sibling pairs [ASPs], or 1,003 ASPs when all possible pairs are counted), which were collected in eight centers. Cases with diagnoses of schizophrenia or schizoaffective disorder (DSM-IIIR criteria) were considered affected (n=1,937). Data were analyzed with multipoint methods, including nonparametric linkage (NPL), ASP analysis using the possible-triangle method, and logistic-regression analysis of identity-by-descent (IBD) sharing in ASPs with sample as a covariate, in a test for intersample heterogeneity and for linkage with allowance for intersample heterogeneity. The data most supportive for linkage to schizophrenia were from chromosome 6q; logistic-regression analysis of linkage allowing for intersample heterogeneity produced an empirical P value <.0002 with, or P=.0004 without, inclusion of the sample that produced the first positive report in this region; the maximum NPL score in this region was 2.47 (P=.0046), the maximum LOD score (MLS) from ASP analysis was 3.10 (empirical P=.0036), and there was significant evidence for intersample heterogeneity (empirical P=.0038). More-modest support for linkage was observed for chromosome 10p, with logistic-regression analysis of linkage producing an empirical P=. 045 and with significant evidence for intersample heterogeneity (empirical P=.0096). PMID:10924404

  3. Quantitative linkage analysis to the autism endophenotype social responsiveness identifies genome-wide significant linkage to two regions on chromosome 8

    PubMed Central

    Lowe, Jennifer K.; Werling, Donna M.; Constantino, John N.; Cantor, Rita M.; Geschwind, Daniel H.

    2015-01-01

    Objective Autism Spectrum Disorder (ASD) is characterized by deficits in social function and the presence of repetitive and restrictive behaviors. Following a previous test of principle, we adopted a quantitative approach to discovering genes contributing to the broader autism phenotype by using social responsiveness as an endophenotype for ASD. Method Linkage analyses using scores from the Social Responsiveness Scale (SRS) were performed in 590 families from AGRE, a largely multiplex ASD cohort. Regional and genome-wide association analyses were performed to search for common variants contributing to social responsiveness. Results SRS is unimodally distributed in male offspring from multiplex autism families, in contrast with a bimodal distribution observed in females. In correlated analyses differing by SRS respondent, genome-wide significant linkage for social responsiveness was identified at chr8p21.3 (multi-point LOD=4.11; teacher/parent scores) and chr8q24.22 (multi-point LOD=4.54; parent-only scores), respectively. Genome-wide or linkage-directed association analyses did not detect common variants contributing to social responsiveness. Conclusions The sex-differential distributions of SRS in multiplex autism families likely reflect mechanisms contributing to the sex ratio for autism observed in the general population and form a quantitative signature of reduced penetrance of inherited liability to ASD among females. The identification of two strong loci for social responsiveness validates the endophenotype approach for the identification of genetic variants contributing to complex traits such as ASD. While causal mutations have yet to be identified, these findings are consistent with segregation of rare genetic variants influencing social responsiveness and underscore the increasingly recognized role of rare inherited variants in the genetic architecture of ASD. PMID:25727539

  4. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  5. Capillaries for use in a multiplexed capillary electrophoresis system

    DOEpatents

    Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.

  6. A Genetic Linkage Map of the Male Goat Genome

    PubMed Central

    Vaiman, D.; Schibler, L.; Bourgeois, F.; Oustry, A.; Amigues, Y.; Cribiu, E. P.

    1996-01-01

    This paper presents a first genetic linkage map of the goat genome. Primers derived from the flanking sequences of 612 bovine, ovine and goat microsatellite markers were gathered and tested for amplification with goat DNA under standardized PCR conditions. This screen made it possible to choose a set of 55 polymorphic markers that can be used in the three species and to define a panel of 223 microsatellites suitable for the goat. Twelve half-sib paternal goat families were then used to build a linkage map of the goat genome. The linkage analysis made it possible to construct a meiotic map covering 2300 cM, i.e., >80% of the total estimated length of the goat genome. Moreover, eight cosmids containing microsatellites were mapped by fluorescence in situ hybridization in goat and sheep. Together with 11 microsatellite-containing cosmids previously mapped in cattle (and supposing conservation of the banding pattern between this species and the goat) and data from the sheep map, these results made the orientation of 15 linkage groups possible. Furthermore, 12 coding sequences were mapped either genetically or physically, providing useful data for comparative mapping. PMID:8878693

  7. Automation of genetic linkage analysis using florescent microsatellite markers

    SciTech Connect

    Mansfield, D.C.; Brown, A.F.; Green, D.K.

    1994-11-15

    Automation of the typing of genetic markers offers advantages of speed, accuracy, and cost in the mapping of genetic traits and the construction of high-resolution linkage maps. The authors have developed an automated linkage analysis system by (i) using a robotic pipettor to set up polymerase chain reactions (PCR) to amplify microsatellites with incorporation of a single fluorescent label; (ii) using an automated sequencing apparatus for detection of the PCR products; (iii) sizing alleles automatically by the use of internal and external standards; (iv) iteratively filtering out nonallelic fragments and checking for Mendelian consistency; (v) calculating the probabilities of selected genotypes; and (vi) automatically formatting the results for input to linkage analysis programs. The method provides accurate sizing of alleles, minimizes the risk of error during manual reading and transcription of data, and increases the throughput of reliable data. It brings any consistencies or ambiguities in the data to the attention of the user and facilitates examination of the raw data. The ALF/ALP system, together with new, optimized microsatellite sets, particularly tetranucleotide repeats, is likely to be well-suited to fully automatic genetic linkage analysis. 32 refs., 2 figs., 2 tabs.

  8. Education: Linkages with Economic Development.

    ERIC Educational Resources Information Center

    Clouser, Rodney L.

    A review of the literature of research in education and economics revealed very limited linkages between education (human capital) and economic development. Much of the economic development research has been carried out in developing nations and is case-study based. Many case studies concentrate on identifying factors that influence location or…

  9. Multiplexed miRNA northern blots via hybridization chain reaction

    PubMed Central

    Schwarzkopf, Maayan; Pierce, Niles A.

    2016-01-01

    Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2′OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs. PMID:27270083

  10. Multiplexed miRNA northern blots via hybridization chain reaction.

    PubMed

    Schwarzkopf, Maayan; Pierce, Niles A

    2016-09-01

    Northern blots enable detection of a target RNA of interest in a biological sample using standard benchtop equipment. miRNAs are the most challenging targets as they must be detected with a single short nucleic acid probe. With existing approaches, it is cumbersome to perform multiplexed blots in which several RNAs are detected simultaneously, impeding the study of interacting regulatory elements. Here, we address this shortcoming by demonstrating multiplexed northern blotting based on the mechanism of hybridization chain reaction (HCR). With this approach, nucleic acid probes complementary to RNA targets trigger chain reactions in which fluorophore-labeled DNA hairpins self-assemble into tethered fluorescent amplification polymers. The programmability of HCR allows multiple amplifiers to operate simultaneously and independently within a blot, enabling straightforward multiplexing. We demonstrate simultaneous detection of three endogenous miRNAs in total RNA extracted from 293T and HeLa cells. For a given target, HCR signal scales linearly with target abundance, enabling relative and absolute quantitation. Using non-radioactive HCR, sensitive and selective miRNA detection is achieved using 2'OMe-RNA probes. The HCR northern blot protocol takes ∼1.5 days independent of the number of target RNAs. PMID:27270083

  11. Catch and Release: Integrated system for multiplexed detection of bacteria

    PubMed Central

    Verbarg, Jasenka; Plath, William D.; Shriver-Lake, Lisa C.; Howell, Peter B.; Erickson, Jeffrey S.; Golden, Joel P.; Ligler, Frances S.

    2013-01-01

    An integrated system with automated immunomagnetic separation and processing of fluidic samples was demonstrated for multiplexed optical detection of bacterial targets. Mixtures of target-specific magnetic bead sets were processed in the NRL MagTrap with the aid of rotating magnet arrays that entrapped and moved the beads within the channel during reagent processing. Processing was performed in buffer and human serum matrices with 10-fold dilutions in the range of 102 – 106 cells/mL of target bacteria. Reversal of magnets’ rotation post processing released the beads back into the flow and moved them into the Microflow Cytometer for optical interrogation. Identification of the beads and the detection of PE fluorescence were performed simultaneously for multiplexed detection. Multiplexing was performed with specifically targeted bead sets to detect E. coli 0157.H7, Salmonella Common Structural Antigen, Listeria sp. and Shigella sp. Dose-response curves were obtained, and limits of detection were calculated for each target in the buffer and clinical matrix. Additional tests demonstrated the potential for using the MagTrap to concentrate target from larger volumes of sample prior to the addition of assay reagents. PMID:23631439

  12. Automated DNA profiling employing multiplex amplification of short tandem repeat loci.

    PubMed

    Kimpton, C P; Gill, P; Walton, A; Urquhart, A; Millican, E S; Adams, M

    1993-08-01

    We have employed automated fluorescence-based technology to detect amplified tri-, tetra-, and pentanucleotide short tandem repeat (STR) loci electrophoresed on denaturing polyacrylamide sequencing gels. The system described incorporates an internal size standard in each sample, allowing the STR-PCR products to be sized automatically with a high degree of precision. By utilizing different fluorescent dye markers for loci that have overlapping allele size ranges, we have developed three multiplex STR systems containing a total of 14 different loci. These multiplex systems were then used to evaluate the usefulness of the 14 loci for the identification of individuals. Allele frequency data were collected from a minimum of 50 individuals from each of three different racial groups: Caucasians, Afro-Caribbeans, and Asians. Of the resulting 42 locus population sets, deviation from Hardy-Weinberg equilibria was detected in only the STR HUMCYARO3-Caucasian data. The probabilities of two unrelated individuals matching by chance (pM) at all 14 loci in the three multiplex reactions was < 1 x 10(14). The combination of multiplex STR-PCR and automatic fluorescence-based detection is thus a rapid and powerful technique for individual identification.

  13. New tools for in vivo fluorescence tagging.

    PubMed

    Chapman, Sean; Oparka, Karl J; Roberts, Alison G

    2005-12-01

    Engineering of fluorescent proteins continues to produce new tools for in vivo studies. The current selection contains brighter, monomeric, spectral variants that will facilitate multiplex imaging and FRET, and a collection of optical highlighter proteins that might replace photoactivatable-GFP. These new highlighter proteins, which include proteins that have photoswitchable fluorescence characteristics and a protein whose fluorescence can be repeatedly turned on and off, should simplify refined analyses of protein dynamics and kinetics. Fluorescent protein-based systems have also been developed to allow facile detection of protein-protein interactions in planta. In addition, new tags in the form of peptides that bind fluorescent ligands and quantum dots offer the prospect of overcoming some of the limitations of fluorescent proteins such as excessive size and insufficient brightness.

  14. Parallel multiplex laser feedback interferometry

    SciTech Connect

    Zhang, Song; Tan, Yidong; Zhang, Shulian

    2013-12-15

    We present a parallel multiplex laser feedback interferometer based on spatial multiplexing which avoids the signal crosstalk in the former feedback interferometer. The interferometer outputs two close parallel laser beams, whose frequencies are shifted by two acousto-optic modulators by 2Ω simultaneously. A static reference mirror is inserted into one of the optical paths as the reference optical path. The other beam impinges on the target as the measurement optical path. Phase variations of the two feedback laser beams are simultaneously measured through heterodyne demodulation with two different detectors. Their subtraction accurately reflects the target displacement. Under typical room conditions, experimental results show a resolution of 1.6 nm and accuracy of 7.8 nm within the range of 100 μm.

  15. Pattern formation in multiplex networks

    PubMed Central

    Kouvaris, Nikos E.; Hata, Shigefumi; Guilera, Albert Díaz-

    2015-01-01

    The advances in understanding complex networks have generated increasing interest in dynamical processes occurring on them. Pattern formation in activator-inhibitor systems has been studied in networks, revealing differences from the classical continuous media. Here we study pattern formation in a new framework, namely multiplex networks. These are systems where activator and inhibitor species occupy separate nodes in different layers. Species react across layers but diffuse only within their own layer of distinct network topology. This multiplicity generates heterogeneous patterns with significant differences from those observed in single-layer networks. Remarkably, diffusion-induced instability can occur even if the two species have the same mobility rates; condition which can never destabilize single-layer networks. The instability condition is revealed using perturbation theory and expressed by a combination of degrees in the different layers. Our theory demonstrates that the existence of such topology-driven instabilities is generic in multiplex networks, providing a new mechanism of pattern formation. PMID:26042606

  16. (Multiplex mapping of human cDNAs)

    SciTech Connect

    Nierman, W.C.

    1991-01-01

    J. Craig Venter, National Institute of Neurological Disorders and Stroke, has begun to identify genes expressed in the human brain by partially sequences cDNA clones. We are collaborating with the Venter group and using their sequence data to develop methods for rapid localization of newly identified cDNAs to human chromosomes. We are applying the ABI automated DNA sequencer to the analysis of fluorescently-tagged PCR products for assigning sequences to individual human chromosomes. The steps in our mapping protocol are (1) to design PCR primers from the Venter laboratory-generated sequence data, (2) to test the primers for specific amplification from human genomic DNA, (3) to use the primers for PCR amplification from a somatic cell hybrid cell mapping panel, (4) to determine the presence or absence of the specific amplification products from each cell line DNA by electrophoretic analysis using the ABI sequencer, and (5) to analyze the pattern of amplification results from the hybrid panel to identify the chromosomal origin of the cDNA sequence. We have demonstrated the principle by mapping 12 sequences or Expressed Sequence Tags'' (ESTs), providing primer sequence data for subsequent subchromosomal localizations. We will now concentrate on developing methodology to allow multiplexing the amplification reactions and analysis of the reaction products, to achieve a high throughput with a minimum allocation of resources. This project will generate a data set from which to evaluate strategies to identify functional primer sequences from cDNA sequence data.

  17. (Multiplex mapping of human cDNAs)

    SciTech Connect

    Nierman, W.C.

    1992-01-01

    We have tested and implemented several protocols to increase productivity for mapping expressed sequence tags EST sequences to human chromosomes. These protocols include adopting PRIMER which permits utilization of batch files, as the standard software for PCR primer design; adding a human 21-only cell line to the NIGMS panel No. 1 to improve discrimination in discordancy analyses involving chromosome 21, adding a monochromosomal hybrid panel to facilitate chromosome assignment of sequences that are amplified from more than 1 chromosome; combining the products of multiple PCR reactions for electrophoretic analysis (pseudoplexing); routinely multiplexing PCR reactions; and automating data entry and analysis as much as possible. We have applied these protocols to assign an overall total of 132 human brain CDNA sequences to individual human chromosomes. PCR primers were designed from ESTS and tested for specific amplification from human genomic DNA. DNA was then amplified using DNA from somatic cell hybrid mapping panels as templates. The amplification products were identified using an automated fluorescence detection system. Chromosomal assignments were made by discordancy analysis. The localized cDNAs include 2 for known human genes, 2 that map to 2 different human chromosomes, and 25 for cDNAs matching existing database records.

  18. Nanoscale Test Strips for Multiplexed Blood Analysis

    NASA Technical Reports Server (NTRS)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  19. Multiplex detection of agricultural pathogens

    DOEpatents

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  20. Multiplex detection of agricultural pathogens

    DOEpatents

    McBride, Mary Teresa; Slezak, Thomas Richard; Messenger, Sharon Lee

    2010-09-14

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  1. Efficient Record Linkage Algorithms Using Complete Linkage Clustering

    PubMed Central

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times. PMID:27124604

  2. Large-scale fibre-array multiplexing

    SciTech Connect

    Cheremiskin, I V; Chekhlova, T K

    2001-05-31

    The possibility of creating a fibre multiplexer/demultiplexer with large-scale multiplexing without any basic restrictions on the number of channels and the spectral spacing between them is shown. The operating capacity of a fibre multiplexer based on a four-fibre array ensuring a spectral spacing of 0.7 pm ({approx} 10 GHz) between channels is demonstrated. (laser applications and other topics in quantum electronics)

  3. Legal impediments to data linkage.

    PubMed

    Xafis, V; Thomson, C; Braunack-Mayer, A J; Duszynski, K M; Gold, M S

    2011-12-01

    Large numbers of electronic health data collections have been accumulated by both government and non-government agencies and organisations. Such collections primarily assist with the management of health services and the provision of health care programs, with only a minority of these data collections also intended for research purposes. A number of constraints are placed on access to such data for the purposes of research, including data linkage. This article examines those factors arising from the intricacies of Australia's privacy legislation landscape which impede access to such collections. The relevant issues discussed include issues relating to the existence of multiple privacy and health privacy Acts, the recommendations made by the Australian Law Reform Commission in relation to the Privacy Act 1988 (Cth) and the constraints placed on the conduct of data-linkage research which arise from legislation that relates specifically to certain data collections.

  4. Measuring and modeling correlations in multiplex networks.

    PubMed

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance. PMID:26465526

  5. Measuring and modeling correlations in multiplex networks

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  6. Multiplex pathogen detection based on spatially addressable microarrays of barcoded resins.

    PubMed

    Blais, David R; Alvarez-Puebla, Ramon A; Bravo-Vasquez, Juan P; Fenniri, Hicham; Pezacki, John Paul

    2008-07-01

    Suspension microsphere immunoassays are rapidly gaining recognition in antigen identification and infectious disease biodetection due to their simplicity, versatility and high-throughput multiplex screening. We demonstrate a multiplex assay based on antibody-functionalized barcoded resins (BCRs) to identify pathogen antigens in complex biological fluids. The binding event of a particular antibody on given bead (fluorescence) and the identification of the specific pathogen agent (vibrational fingerprint of the bead) can be achieved in a dispersive Raman system by exciting the sample with two different laser lines. Anthrax protective antigen, Franciscella tularensis lipopolysaccharide and CD14 antigens were accurately identified and quantified in tetraplex assays with a detection limit of 1 ng/mL. The rapid, versatile and simple analysis enabled by the BCRs demonstrates their potential for multiplex antigen detection and identification in a reconfigurable microarray format. PMID:18566958

  7. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    PubMed

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-01

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing. PMID:26016439

  8. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    PubMed

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-01

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  9. Privacy preserving interactive record linkage (PPIRL)

    PubMed Central

    Kum, Hye-Chung; Krishnamurthy, Ashok; Machanavajjhala, Ashwin; Reiter, Michael K; Ahalt, Stanley

    2014-01-01

    Objective Record linkage to integrate uncoordinated databases is critical in biomedical research using Big Data. Balancing privacy protection against the need for high quality record linkage requires a human–machine hybrid system to safely manage uncertainty in the ever changing streams of chaotic Big Data. Methods In the computer science literature, private record linkage is the most published area. It investigates how to apply a known linkage function safely when linking two tables. However, in practice, the linkage function is rarely known. Thus, there are many data linkage centers whose main role is to be the trusted third party to determine the linkage function manually and link data for research via a master population list for a designated region. Recently, a more flexible computerized third-party linkage platform, Secure Decoupled Linkage (SDLink), has been proposed based on: (1) decoupling data via encryption, (2) obfuscation via chaffing (adding fake data) and universe manipulation; and (3) minimum information disclosure via recoding. Results We synthesize this literature to formalize a new framework for privacy preserving interactive record linkage (PPIRL) with tractable privacy and utility properties and then analyze the literature using this framework. Conclusions Human-based third-party linkage centers for privacy preserving record linkage are the accepted norm internationally. We find that a computer-based third-party platform that can precisely control the information disclosed at the micro level and allow frequent human interaction during the linkage process, is an effective human–machine hybrid system that significantly improves on the linkage center model both in terms of privacy and utility. PMID:24201028

  10. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.

    2015-01-01

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241

  11. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells.

    PubMed

    Warren, Sean C; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M W

    2015-06-30

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3'-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3'-phosphoinositide accumulation.

  12. Integrated Fluorescence

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret (Inventor); Gruhlke, Russell W. (Inventor)

    1998-01-01

    A detection method is integrated with a filtering method and an enhancement method to create a fluorescence sensor that can be miniaturized. The fluorescence sensor comprises a thin film geometry including a waveguide layer, a metal film layer and sensor layer. The thin film geometry of the fluorescence sensor allows the detection of fluorescent radiation over a narrow wavelength interval. This enables wavelength discrimination and eliminates the detection of unwanted light from unknown or spurious sources.

  13. Multiplex detection of respiratory pathogens

    DOEpatents

    McBride, Mary; Slezak, Thomas; Birch, James M.

    2012-07-31

    Described are kits and methods useful for detection of respiratory pathogens (influenza A (including subtyping capability for H1, H3, H5 and H7 subtypes) influenza B, parainfluenza (type 2), respiratory syncytial virus, and adenovirus) in a sample. Genomic sequence information from the respiratory pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  14. Arthrogryposis multiplex congenita, AD 1156.

    PubMed

    Gordon, E C

    1996-01-01

    A case of arthrogryposis multiplex congenita in an eight-year-old girl was recounted by Thomas of Monmouth in a mid twelfth-century English hagiographic narrative, The Life and Miracles of St William of Norwich. The child had deformities of both hands and both feet at birth, and she developed torticollis and probably had some degree of hypotonia. She needed total care, her family took her to the tomb of St William in the cathedral at Norwich. This visit produced some sort of improvement in her health. Her parents, seeking a miracle, were satisfied that one had occurred. PMID:8606020

  15. Flexible Multiplexed Surface Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, L. A.; Johnson, Preston B.; Ash, Robert L.

    1995-01-01

    Unitary array of sensors measures temperatures at points distributed over designated area on surface. Useful in measuring surface temperatures of aerodynamic models and thermally controlled objects. Made of combination of integrated-circuit microchips and film circuitry. Temperature-sensing chips scanned at speeds approaching 10 kHz. Operating range minus 40 degrees C to 120 degrees C. Flexibility of array conforms to curved surfaces. Multiplexer eliminates numerous monitoring cables. Control of acquisition and recording of data effected by connecting array to microcomputers via suitable interface circuitry.

  16. A bead-based suspension array for the multiplexed detection of begomoviruses and their whitefly vectors.

    PubMed

    van Brunschot, S L; Bergervoet, J H W; Pagendam, D E; de Weerdt, M; Geering, A D W; Drenth, A; van der Vlugt, R A A

    2014-03-01

    Bead-based suspension array systems enable simultaneous fluorescence-based identification of multiple nucleic acid targets in a single reaction. This study describes the development of a novel approach to plant virus and vector diagnostics, a multiplexed 7-plex array that comprises a hierarchical set of assays for the simultaneous detection of begomoviruses and Bemisia tabaci, from both plant and whitefly samples. The multiplexed array incorporates genus, species and strain-specific assays, offering a unique approach for identifying both known and unknown viruses and B. tabaci species. When tested against a large panel of sequence-characterized begomovirus and whitefly samples, the array was shown to be 100% specific to the homologous target. Additionally, the multiplexed array was highly sensitive, efficiently and concurrently determining both virus and whitefly identity from single viruliferous whitefly samples. The detection limit for one assay within the multiplexed array that specifically detects Tomato yellow leaf curl virus-Israel (TYLCV-IL) was quantified as 200fg of TYLCV-IL DNA, directly equivalent to that of TYLCV-specific qPCR. Highly reproducible results were obtained over multiple tests. The flexible multiplexed array described in this study has great potential for use in plant quarantine, biosecurity and disease management programs worldwide. PMID:24388931

  17. SQUID Multiplexers for Cryogenic Detector Arrays

    NASA Technical Reports Server (NTRS)

    Irwin, Kent; Beall, James; Deiker, Steve; Doriese, Randy; Duncan, William; Hilton, Gene; Moseley, S. Harvey; Reintsema, Carl; Stahle, Caroline; Ullom, Joel; Vale, Leila

    2004-01-01

    SQUID multiplexers make it possible to build arrays of thousands of cryogenic detectors with a manageable number of readout channels. We are developing time-division SQUID multiplexers based on Nb trilayer SQUIDs to read arrays of superconducting transition-edge sensors. Our first-generation, 8-channel SQUID multiplexer was used in FIBRE, a one-dimensional TES array for submillimeter astronomy. Our second-generation 32-pixel multiplexer, based on an improved architecture, has been developed for instruments including Constellation-X, SCUBA-2, and solar x-ray astronomy missions. SCUBA-2, which is being developed for the James Clerk Maxwell Telescope, will have more than 10,000 pixels. We are now developing a third-generation architecture based on superconducting hot-electron switches. The use of SQUID multiplexers in instruments operating at above 2 K will also be discussed.

  18. Linkage map construction involving a reciprocal translocation.

    PubMed

    Farré, A; Benito, I Lacasa; Cistué, L; de Jong, J H; Romagosa, I; Jansen, J

    2011-03-01

    This paper is concerned with a novel statistical-genetic approach for the construction of linkage maps in populations obtained from reciprocal translocation heterozygotes of barley (Hordeum vulgare L.). Using standard linkage analysis, translocations usually lead to 'pseudo-linkage': the mixing up of markers from the chromosomes involved in the translocation into a single linkage group. Close to the translocation breakpoints recombination is severely suppressed and, as a consequence, ordering markers in those regions is not feasible. The novel strategy presented in this paper is based on (1) disentangling the "pseudo-linkage" using principal coordinate analysis, (2) separating individuals into translocated types and normal types and (3) separating markers into those close to and those more distant from the translocation breakpoints. The methods make use of a consensus map of the species involved. The final product consists of integrated linkage maps of the distal parts of the chromosomes involved in the translocation.

  19. Detection of programmed cell death using fluorescence energy transfer.

    PubMed Central

    Xu, X; Gerard, A L; Huang, B C; Anderson, D C; Payan, D G; Luo, Y

    1998-01-01

    Fluorescence energy transfer (FRET) can be generated when green fluorescent protein (GFP) and blue fluorescent protein (BFP) are covalently linked together by a short peptide. Cleavage of this linkage by protease completely eliminates FRET effect. Caspase-3 (CPP32) is an important cellular protease activated during programmed cell death. An 18 amino acid peptide containing CPP32 recognition sequence, DEVD, was used to link GFP and BFP together. CPP32 activation can be monitored by FRET assay during the apoptosis process. PMID:9518501

  20. Gripper deploying and inverting linkage

    DOEpatents

    Minichan, Richard L.; Killian, Mark A.

    1993-01-01

    An end effector deploying and inverting linkage. The linkage comprises an air cylinder mounted in a frame or tube, a sliding bracket next to the air cylinder, a stopping bracket depending from the frame and three, pivotally-attached links that are attached to the end effector and to each other in such a way as to be capable of inverting the end effector and translating it laterally. The first of the three links is a straight element that is moved up and down by the shaft of the air cylinder. The second link is attached at one end to the stopping bracket and to the side of the end effector at the other end. The first link is attached near the middle of the second, sharply angled link so that, as the shaft of the air cylinder moves up and down, the second link rotates about an axis perpendicular to the frame and inverts and translates the end effector. The rotation of the second link is stopped at both ends when the link engages stops on the stopping bracket. The third link, slightly angled, is attached to the sliding bracket at one end and to the end of the end effector at the other. The third helps to control the end effector in its motion.

  1. Gripper deploying and inverting linkage

    DOEpatents

    Minichan, R.L.; Killian, M.A.

    1993-03-02

    An end effector deploying and inverting linkage. The linkage comprises an air cylinder mounted in a frame or tube, a sliding bracket next to the air cylinder, a stopping bracket depending from the frame and three, pivotally-attached links that are attached to the end effector and to each other in such a way as to be capable of inverting the end effector and translating it laterally. The first of the three links is a straight element that is moved up and down by the shaft of the air cylinder. The second link is attached at one end to the stopping bracket and to the side of the end effector at the other end. The first link is attached near the middle of the second, sharply angled link so that, as the shaft of the air cylinder moves up and down, the second link rotates about an axis perpendicular to the frame and inverts and translates the end effector. The rotation of the second link is stopped at both ends when the link engages stops on the stopping bracket. The third link, slightly angled, is attached to the sliding bracket at one end and to the end of the end effector at the other. The third helps to control the end effector in its motion.

  2. Identification of linkage phase by parental genotypes

    SciTech Connect

    Aksenovich, T.I.

    1995-08-01

    The possibility of using the phenotypic characteristics of parents for identifying the linkage phase in offspring is analyzed. It is demonstrated that parents with similar phenotypes (or marker genotypes) carry no information about the gene linkage phase in diheterozygous offspring. The probability of a certain linkage phase remains the same in all informative crossings. It depends on the model of inheritance of the analyzed alternative trait and is similar for di- and polyallelic markers. The frequencies of informative crossings and the probability of the linkage phase for different models of inheritance of the analyzed and marker traits are estimated. 17 refs., 2 tabs.

  3. An introduction to recombination and linkage analysis

    SciTech Connect

    Mcpeek, M.S.

    1996-12-31

    With a garden as his laboratory, Mendel was able to discern basic probabilistic laws of heredity. Although it first appeared as a baffling exception to one of Mendel`s principles, the phenomenon of variable linkage between characters was soon recognized to be a powerful tool in the process of chromosome mapping and location of genes of interest. In this introduction, we first describe Mendel`s work and the subsequent discovery of linkage. Next we describe the apparent cause of variable linkage, namely recombination, and we introduce linkage analysis. 33 refs., 1 fig., 2 tabs.

  4. Structure of triadic relations in multiplex networks

    NASA Astrophysics Data System (ADS)

    Cozzo, Emanuele; Kivelä, Mikko; De Domenico, Manlio; Solé-Ribalta, Albert; Arenas, Alex; Gómez, Sergio; Porter, Mason A.; Moreno, Yamir

    2015-07-01

    Recent advances in the study of networked systems have highlighted that our interconnected world is composed of networks that are coupled to each other through different ‘layers’ that each represent one of many possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate multilayer networks into a single weighted network in order to take advantage of existing tools. This is admittedly convenient, but it is also extremely problematic, as important information can be lost as a result. It is therefore important to develop multilayer generalizations of network concepts. In this paper, we analyze triadic relations and generalize the idea of transitivity to multiplex networks. By focusing on triadic relations, which yield the simplest type of transitivity, we generalize the concept and computation of clustering coefficients to multiplex networks. We show how the layered structure of such networks introduces a new degree of freedom that has a fundamental effect on transitivity. We compute multiplex clustering coefficients for several real multiplex networks and illustrate why one must take great care when generalizing standard network concepts to multiplex networks. We also derive analytical expressions for our clustering coefficients for ensemble averages of networks in a family of random multiplex networks. Our analysis illustrates that social networks have a strong tendency to promote redundancy by closing triads at every layer and that they thereby have a different type of multiplex transitivity from transportation networks, which do not exhibit such a tendency. These insights are invisible if one only studies aggregated networks.

  5. Multiwavelength metasurfaces through spatial multiplexing

    PubMed Central

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraon, Andrei

    2016-01-01

    Metasurfaces are two-dimensional arrangements of optical scatterers rationally arranged to control optical wavefronts. Despite the significant advances made in wavefront engineering through metasurfaces, most of these devices are designed for and operate at a single wavelength. Here we show that spatial multiplexing schemes can be applied to increase the number of operation wavelengths. We use a high contrast dielectric transmittarray platform with amorphous silicon nano-posts to demonstrate polarization insensitive metasurface lenses with a numerical aperture of 0.46, that focus light at 915 and 1550 nm to the same focal distance. We investigate two different methods, one based on large scale segmentation and one on meta-atom interleaving, and compare their performances. An important feature of this method is its simple generalization to adding more wavelengths or new functionalities to a device. Therefore, it provides a relatively straightforward method for achieving multi-functional and multiwavelength metasurface devices. PMID:27597568

  6. Cooperative epidemics on multiplex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.

    2016-04-01

    The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.

  7. Multiplexed Primer Prediction for PCR

    SciTech Connect

    2007-07-23

    MPP predicts sets of multiplex-compatible primers for Polymerase Chain Reaction (PCR), finding a near minimal set of primers such that at least one amplicon will be generated from every target sequence in the input file. The code finds highly conserved oligos that are suitable as primers, according to user-specified desired primer characteristics such as length, melting temperature, and amplicon length. The primers are predicted not to form unwanted dimer or hairpin structures. The target sequences used as input can be diverse, since no multiple sequence alighment is required. The code is scalable, taking up to tens of thousands of sequences as input, and works, for example, to find a "universal primer set" for all viral genomes provided as a single input file. The code generates a periodic check-point file, thus in the event of premature execution termination, the application can be restarted from the last check-point file.

  8. Analog bus driver and multiplexer

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Hancock, Bruce (Inventor); Cunningham, Thomas J. (Inventor)

    2012-01-01

    For a source-follower signal chain, the ohmic drop in the selection switch causes unacceptable voltage offset, non-linearity, and reduced small signal gain. For an op amp signal chain, the required bias current and the output noise rises rapidly with increasing the array format due to a rapid increase in the effective capacitance caused by the Miller effect boosting up the contribution of the bus capacitance. A new switched source-follower signal chain circuit overcomes limitations of existing op-amp based or source follower based circuits used in column multiplexers and data readout. This will improve performance of CMOS imagers, and focal plane read-out integrated circuits for detectors of infrared or ultraviolet light.

  9. Multiwavelength metasurfaces through spatial multiplexing.

    PubMed

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraon, Andrei

    2016-01-01

    Metasurfaces are two-dimensional arrangements of optical scatterers rationally arranged to control optical wavefronts. Despite the significant advances made in wavefront engineering through metasurfaces, most of these devices are designed for and operate at a single wavelength. Here we show that spatial multiplexing schemes can be applied to increase the number of operation wavelengths. We use a high contrast dielectric transmittarray platform with amorphous silicon nano-posts to demonstrate polarization insensitive metasurface lenses with a numerical aperture of 0.46, that focus light at 915 and 1550 nm to the same focal distance. We investigate two different methods, one based on large scale segmentation and one on meta-atom interleaving, and compare their performances. An important feature of this method is its simple generalization to adding more wavelengths or new functionalities to a device. Therefore, it provides a relatively straightforward method for achieving multi-functional and multiwavelength metasurface devices. PMID:27597568

  10. Multiplexed Primer Prediction for PCR

    2007-07-23

    MPP predicts sets of multiplex-compatible primers for Polymerase Chain Reaction (PCR), finding a near minimal set of primers such that at least one amplicon will be generated from every target sequence in the input file. The code finds highly conserved oligos that are suitable as primers, according to user-specified desired primer characteristics such as length, melting temperature, and amplicon length. The primers are predicted not to form unwanted dimer or hairpin structures. The target sequencesmore » used as input can be diverse, since no multiple sequence alighment is required. The code is scalable, taking up to tens of thousands of sequences as input, and works, for example, to find a "universal primer set" for all viral genomes provided as a single input file. The code generates a periodic check-point file, thus in the event of premature execution termination, the application can be restarted from the last check-point file.« less

  11. Multiwavelength metasurfaces through spatial multiplexing.

    PubMed

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraon, Andrei

    2016-01-01

    Metasurfaces are two-dimensional arrangements of optical scatterers rationally arranged to control optical wavefronts. Despite the significant advances made in wavefront engineering through metasurfaces, most of these devices are designed for and operate at a single wavelength. Here we show that spatial multiplexing schemes can be applied to increase the number of operation wavelengths. We use a high contrast dielectric transmittarray platform with amorphous silicon nano-posts to demonstrate polarization insensitive metasurface lenses with a numerical aperture of 0.46, that focus light at 915 and 1550 nm to the same focal distance. We investigate two different methods, one based on large scale segmentation and one on meta-atom interleaving, and compare their performances. An important feature of this method is its simple generalization to adding more wavelengths or new functionalities to a device. Therefore, it provides a relatively straightforward method for achieving multi-functional and multiwavelength metasurface devices.

  12. Low-cost, multiplexed biosensor for disease diagnosis

    NASA Astrophysics Data System (ADS)

    Myatt, Christopher J.; Delaney, Marie; Todorof, Kathryn; Heil, James; Givens, Monique; Schooley, Robert T.; Lochhead, Michael J.

    2009-02-01

    Cost-effective disease diagnosis in resource-limited settings remains a critical global health challenge. Qualitative rapid tests based on lateral flow technology provide valuable screening information, but require relatively expensive confirmatory tests and generally lack quantitation. We report on a fluorescence technology that combines low cost instrumented readout with passive pumping in a disposable cartridge. The detection system utilizes a novel waveguide illumination approach in conjunction with commercial CMOS imagers. Total instrument cost in production are projected to be around $100 This cost structure and instrument ease of use will enable use in point-of-care settings, outside of centralized laboratories. The system has been used for detection and analysis of proteins, antibodies, nucleic acids, and cells. Here we will report first on our development of a multiplexed, array-based serology assay for HIV and common AIDS co-infections. Data will be presented for HIV/HCV antibody testing in human serum samples. In addition, we will present data on the use of the system for sensitive detection of bacterial RNA. Current detection limit for the model multiplexed RNA sandwich assay is 1 femtomolar target RNA. Finally, a high magnification version of the system is used to image immunostained human T cells.

  13. Multiplexed Dosing Assays by Digitally Definable Hydrogel Volumes.

    PubMed

    Faralli, Adele; Melander, Fredrik; Larsen, Esben Kjaer Unmack; Chernyy, Sergey; Andresen, Thomas L; Larsen, Niels B

    2016-01-21

    Stable and low-cost multiplexed drug sensitivity assays using small volumes of cells or tissue are in demand for personalized medicine, including patient-specific combination chemotherapy. Spatially defined projected light photopolymerization of hydrogels with embedded active compounds is introduced as a flexible and cost-efficient method for producing multiplexed dosing assays. The high spatial resolution of light projector technology defines multiple compound doses by the volume of individual compound-embedded hydrogel segments. Quantitative dosing of multiple proteins with a dynamic range of 1-2 orders of magnitude is demonstrated using fluorescently labeled albumins. The hydrogel matrix results from photopolymerization of low-cost poly(ethylene glycol) diacrylates (PEGDA), and tuning of the PEGDA composition enables fast complete dosing of all tested species. Dosing of hydrophilic and hydrophobic compounds is demonstrated using two first-line chemotherapy regimens combining oxaliplatin, SN-38, 5-fluorouracil, and folinic acid, with each compound being dosed from a separate light-defined hydrogel segment. Cytotoxicity studies using a colorectal cancer cell line show equivalent effects of dissolved and released compounds. Further control of the dosing process is demonstrated by liposomal encapsulation of oxaliplatin, stable embedding of the liposomes in hydrogels for more than 3 months, and heat-triggered complete release of the loaded oxaliplatin. PMID:26619161

  14. Linkage disequilibrium in human populations

    PubMed Central

    Lonjou, Christine; Zhang, Weihua; Collins, Andrew; Tapper, William J.; Elahi, Eiram; Maniatis, Nikolas; Morton, Newton E.

    2003-01-01

    Whereas the human linkage map appears on limited evidence to be constant over populations, maps of linkage disequilibrium (LD) vary among populations that differ in gene history. The greatest difference is between populations of sub-Saharan origin and populations remotely derived from Africa after a major bottleneck that reduced their heterozygosity and altered their Malecot parameters, increasing the intercept M that reflects association in founders and decreasing the exponential decline ɛ. Variation among populations within this ethnic dichotomy is much smaller. These observations validate use of a cosmopolitan LD map based on a sizeable sample representing a large population reliably typed for markers at high density. Then an LD map for a region or isolate within an ethnic group may be created by fitting the sample LD to the cosmopolitan map, estimating Malecot parameters simultaneously. The cosmopolitan map scaled by ɛ recovers 95% of the information that a local map at the same density gives and therefore more than the information in a low-resolution local map. Relative to a Eurasian cosmopolitan map the scaling factors are estimated to be 0.82 for isolates of European descent, 1.53 for Yorubans, and 1.74 for African Americans. These observations are consistent with a common bottleneck (perhaps but not necessarily speciation) ≈173,500 years ago, if the bottleneck associated with migration out of Africa was 100,000 years ago. Eurasian populations (especially isolates with numerous cases) are efficient for genome scans, and populations of recent African origin (such as African Americans) are efficient for identification of causal polymorphisms within a candidate sequence. PMID:12721363

  15. Fluorescent taggants with temporally coded signatures.

    PubMed

    Wang, Siyang; Vyas, Raul; Dwyer, Chris

    2016-07-11

    In this paper, resonance energy transfer (RET) networks between chromophores are used to implement fluorescent taggants with temporally coded signatures. Because the temporal signature of such a fluorescent taggant is a phase-type distribution defined by the geometry of its RET network, the taggant design is not constrained by resolvable dyes and has a significantly larger coding capacity than spectrally or lifetime coded fluorescent taggants. Meanwhile, the detection process becomes highly efficient when the signatures are coded in the time domain. The taggant identification method is based on the multinomial distribution of detected photons and Maximum Likelihood Estimation, which guarantees high accuracy even with only a few hundred photons and also applies to a mixture of taggants in multiplex detection. Therefore, these temporally coded fluorescent taggants have great potential for both in situ and Lidar applications. PMID:27410827

  16. Bovine embryo sex determination by multiplex loop-mediated isothermal amplification.

    PubMed

    Khamlor, Trisadee; Pongpiachan, Petai; Parnpai, Rangsun; Punyawai, Kanchana; Sangsritavong, Siwat; Chokesajjawatee, Nipa

    2015-03-15

    In cattle, the ability to determine the sex of embryos before embryo transfer is beneficial for increasing the number of animals with the desired sex. This study therefore developed a new modification of loop-mediated isothermal amplification in a multiplex format (multiplex LAMP) for highly efficient bovine embryo sexing. Two chromosomal regions, one specific for males (Y chromosome, S4 region) and the other common to both males and females (1.715 satellite DNA), were amplified in the same reaction tube. Each target was amplified by specifically designed inner primers, outer primers, and loop primers, where one of the S4 loop primers was labeled with the fluorescent dye 6-carboxyl-X-rhodamine (emitting a red color), whereas both satellite loop primers were labeled with the fluorescent dye fluorescein isothiocyanate (emitting a green color). After amplification at 63 °C for 1 hour, the amplified products were precipitated by a small volume of cationic polymer predispensed inside the reaction tube cap. Green precipitate indicated the presence of only control DNA without the Y chromosome, whereas orange precipitate indicated the presence of both target DNAs, enabling interpretation as female and male, respectively. Accuracy of the multiplex LAMP assay was evaluated using 46 bovine embryos with known sex (25 male and 21 female) generated by somatic cell nuclear transfer and confirmed by multiplex polymerase chain reaction. The multiplex LAMP showed 100% accuracy in identifying the actual sex of the embryos and provides a fast, simple, and cost-effective tool for bovine embryo sexing. PMID:25542460

  17. Single-channel multiplexing without melting curve analysis in real-time PCR.

    PubMed

    Lee, Young-Jo; Kim, Daeyoung; Lee, Kihoon; Chun, Jong-Yoon

    2014-01-01

    Multiplex real-time PCR with quantification of targets in a single fluorescence channel has been the demand in biotechnology industry. Here, we develop a novel analytical real-time PCR technique to detect multiple targets in a single fluorescence channel without melting curve analysis. In this technique, we show the intensity of the fluorescence signals of two discrete Tm targets is different at certain temperatures called detection temperatures, by which a high Tm target can be detected regardless of a low Tm target. We then identify the low Tm target by utilizing a change of the fluorescence signals between two different detection temperatures. Furthermore, it enables us to determine quantification of each target in a single channel, possibly facilitating convenient patient care for drug treatment in clinics. PMID:25501038

  18. Examining the Linkage Between FRAMES and GMS

    SciTech Connect

    Whelan, Gene; Castleton, Karl J.

    2006-02-13

    Because GMS provides so many features, of which some are also addressed by FRAMES, it could represent a platform to link to FRAMES, or FRAMES could represent a platform to link to GMS. The focus of this summary is to examine the strengths and weaknesses of the potential linkage direction and provide recommendations for the linkage between FRAMES and GMS.

  19. Linkage Disequilibrium Mapping of Meat Quality QTL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies based on linkage analysis have identified broad areas in the bovine genome associated with meat quality. Linkage disequilibrium (LD) analyses have the potential to identify narrower regions and point towards candidate genes. Tenderness and marbling were chosen to be evaluated in a ...

  20. Guidelines for College and University Linkages Abroad.

    ERIC Educational Resources Information Center

    American Council on Education, Washington, DC.

    This publication contains guidelines for U.S. institutions seeking linkages with institutions in other countries. It is the second revision of a document originally published in 1984. The guidelines are designed to help start the process, outline procedures to follow, and identify difficulties that might be avoided. Three types of linkages are…

  1. Linkage Manual V, Social Studies II.

    ERIC Educational Resources Information Center

    Piltch, Benjamin

    The linkage manual presents social studies material in story outline form. Linkage refers to the bonding of study skills (particularly logical thinking and reading) with subject area content. The document is intended as an aid to intermediate and junior high school classroom teachers as they develop and/or adapt social studies materials to meet…

  2. Remote PCF-based sensors multiplexing by using optical add-drop multiplexers

    NASA Astrophysics Data System (ADS)

    Bravo, Mikel; Candiani, Alessandro; Cucinotta, Annamaria; Selleri, Stefano; Lopez-Amo, Manuel; Kobelke, Jens; Schuster, Kay

    2014-04-01

    A 100 km remote PCF micro-displacement sensor multiplexing system based on optical add-drop multiplexers (OADMs) has been experimentally demonstrated. The PCF sensors are placed in an OADM bus structure which is illuminated by a home-made tunable fiber optic ring laser. Four micro-displacement photonic crystal fiber (PCF) sensors based on a suspended core fiber inserted into a Sagnac loop filter are multiplexed. Furthermore, being the first proposal to solve this issue in PCF sensor multiplexing structures, these sensors can be referenced with an extra wavelength.

  3. Equivalence of time-multiplexed and frequency-multiplexed signals in digital communications.

    NASA Technical Reports Server (NTRS)

    Timor, U.

    1972-01-01

    In comparing different techniques for multiplexing N binary data signals into a single channel, time-division multiplexing (TDM) is known to have a theoretic efficiency of 100 percent (neglecting sync power) and thus seems to outperform frequency-division multiplexing systems (FDM). By considering more general FDM systems, we will show that both TDM and FDM are equivalent and have an efficiency of 100 percent. The difference between the systems is in the multiplexing and demultiplexing subsystems, but not in the performance or in the generated waveforms.

  4. Genetic Linkage Heterogeneity in Myotubular Myopathy

    PubMed Central

    Samson, F.; Mesnard, L.; Heimburger, M.; Hanauer, A.; Chevallay, M.; Mercadier, J. J.; Pelissier, J. F.; Feingold, N.; Junien, C.; Mandel, J.-L.; Fardeau, M.

    1995-01-01

    Myotubular myopathy is a severe congenital disease inherited as an X-linked trait (MTM1; McKusick 31040). It has been mapped to the long arm of chromosome X, to the Xq27-28 region. Significant linkage has subsequently been established for the linkage group comprised of DXS304, DXS15, DXS52, and F8C in several studies. To date, published linkage studies have provided no evidence of genetic heterogeneity in severe neonatal myotubular myopathy (XLMTM). We have investigated a family with typical XLMTM in which no linkage to these markers was found. Our findings strongly suggest genetic heterogeneity in myotubular myopathy and indicate that great care should be taken when using Xq28 markers in linkage studies for prenatal diagnosis and genetic counseling. ImagesFigure 1Figure 2Figure 3Figure 5 PMID:7611280

  5. A model for linkage analysis with apomixis.

    PubMed

    Hou, Wei; Lin, Shen; Li, Yao; Pang, Xiaoming; Zeng, Yanru; Wu, Rongling

    2011-09-01

    Apomixis, or asexual reproduction through seeds, occurs in over 400 species of angiosperms. Although apomixis can favorably perpetuate desired genotypes through successive seed generation, it may also bring about some difficulty for linkage analysis and quantitative trait locus mapping. In this article, we explore the issue of how apomixis affects the precision and power of linkage analysis with molecular markers. We derive a statistical model for estimating the linkage between different markers when some progeny are derived from apomixis. The model was constructed within the maximum likelihood framework and implemented with the EM algorithm. A series of procedures are formulated to test the linkage of markers, the rate of apomixis, and the degree of genetic interference during meiosis. The model was examined and validated through simulation studies. The model will provide a tool for linkage mapping and evolutionary studies for plant species that undergo apomixis.

  6. Immunization of epidemics in multiplex networks.

    PubMed

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755

  7. Recent developments in multiplexing techniques for immunohistochemistry

    PubMed Central

    Dixon, Angela R; Bathany, Cédric; Tsuei, Michael; White, Joshua; Barald, Kate F; Takayama, Shuichi

    2016-01-01

    Methods to detect immuno-labelled molecules at increasingly higher resolution, even when present at low levels, are revolutionizing immunohistochemistry (IHC). These technologies can be valuable for management and examination of rare patient tissue specimens, and for improved accuracy of early disease detection. The purpose of this mini-review is to highlight recent multiplexing methods that are candidates for more prevalent use in clinical research and potential translation to the clinic. Multiplex IHC methods, which permit identification of at least 3 and up to 30 discrete antigens, have been divided into whole section staining and spatially-patterned staining categories. Associated signal enhancement technologies that can enhance performance and throughput of multiplex IHC assays are also discussed. Each multiplex IHC technique, detailed herein, is associated with several advantages as well as tradeoffs that must be taken into consideration for proper evaluation and use of the methods. PMID:26289603

  8. Design architectures for optically multiplexed imaging.

    PubMed

    Shepard, R Hamilton; Rachlin, Yaron; Shah, Vinay; Shih, Tina

    2015-11-30

    Optically multiplexed imaging is the process by which multiple images are overlaid on a single image surface. Uniquely encoding the discrete images allows scene reconstruction from multiplexed images via post processing. We describe a class of optical systems that can achieve high density image multiplexing through a novel division of aperture technique. Fundamental design considerations and performance attributes for this sensor architecture are discussed. A number of spatial and temporal encoding methods are presented including point spread function engineering, amplitude modulation, and image shifting. Results from a prototype five-channel sensor are presented using three different encoding methods in sparse-scene star tracking demonstration. A six-channel optically multiplexed prototype sensor is used to reconstruct imagery from information rich dense scenes through dynamic image shifting. PMID:26698767

  9. Genome-wide Study of Families with Absolute Pitch Reveals Linkage to 8q24.21 and Locus Heterogeneity

    PubMed Central

    Theusch, Elizabeth; Basu, Analabha; Gitschier, Jane

    2009-01-01

    Absolute pitch (AP) is the rare ability to instantaneously recognize and label tones with their musical note names without using a reference pitch for comparison. The etiology of AP is complex. Prior studies have implicated both genetic and environmental factors in its genesis, yet the molecular basis for AP remains unknown. To locate regions of the human genome that may harbor AP-predisposing genetic variants, we performed a genome-wide linkage study on 73 multiplex AP families by genotyping them with 6090 SNP markers. Nonparametric multipoint linkage analyses were conducted, and the strongest evidence for linkage was observed on chromosome 8q24.21 in the subset of 45 families with European ancestry (exponential LOD score = 3.464, empirical genome-wide p = 0.03). Other regions with suggestive LOD scores included chromosomes 7q22.3, 8q21.11, and 9p21.3. Of these four regions, only the 7q22.3 linkage peak was also evident when 19 families with East Asian ancestry were analyzed separately. Though only one of these regions has yet reached statistical significance individually, we detected a larger number of independent linkage peaks than expected by chance overall, indicating that AP is genetically heterogeneous. PMID:19576568

  10. Genetic structure and linkage disequilibrium in a diverse, representative collection of the C4 model plant, Sorghum bicolor.

    PubMed

    Wang, Yi-Hong; Upadhyaya, Hari D; Burrell, A Millie; Sahraeian, Sayed Mohammad Ebrahim; Klein, Robert R; Klein, Patricia E

    2013-05-20

    To facilitate the mapping of genes in sorghum [Sorghum bicolor (L.) Moench] underlying economically important traits, we analyzed the genetic structure and linkage disequilibrium in a sorghum mini core collection of 242 landraces with 13,390 single-nucleotide polymorphims. The single-nucleotide polymorphisms were produced using a highly multiplexed genotyping-by-sequencing methodology. Genetic structure was established using principal component, Neighbor-Joining phylogenetic, and Bayesian cluster analyses. These analyses indicated that the mini-core collection was structured along both geographic origin and sorghum race classification. Examples of the former were accessions from Southern Africa, East Asia, and Yemen. Examples of the latter were caudatums with widespread geographical distribution, durras from India, and guineas from West Africa. Race bicolor, the most primitive and the least clearly defined sorghum race, clustered among other races and formed only one clear bicolor-centric cluster. Genome-wide linkage disequilibrium analyses showed linkage disequilibrium decayed, on average, within 10-30 kb, whereas the short arm of SBI-06 contained a linkage disequilibrium block of 20.33 Mb, confirming a previous report of low recombination on this chromosome arm. Four smaller but equally significant linkage disequilibrium blocks of 3.5-35.5 kb were detected on chromosomes 1, 2, 9, and 10. We examined the genes encoded within each block to provide a first look at candidates such as homologs of GS3 and FT that may indicate a selective sweep during sorghum domestication.

  11. Genetic Structure and Linkage Disequilibrium in a Diverse, Representative Collection of the C4 Model Plant, Sorghum bicolor

    PubMed Central

    Wang, Yi-Hong; Upadhyaya, Hari D.; Burrell, A. Millie; Sahraeian, Sayed Mohammad Ebrahim; Klein, Robert R.; Klein, Patricia E.

    2013-01-01

    To facilitate the mapping of genes in sorghum [Sorghum bicolor (L.) Moench] underlying economically important traits, we analyzed the genetic structure and linkage disequilibrium in a sorghum mini core collection of 242 landraces with 13,390 single-nucleotide polymorphims. The single-nucleotide polymorphisms were produced using a highly multiplexed genotyping-by-sequencing methodology. Genetic structure was established using principal component, Neighbor-Joining phylogenetic, and Bayesian cluster analyses. These analyses indicated that the mini-core collection was structured along both geographic origin and sorghum race classification. Examples of the former were accessions from Southern Africa, East Asia, and Yemen. Examples of the latter were caudatums with widespread geographical distribution, durras from India, and guineas from West Africa. Race bicolor, the most primitive and the least clearly defined sorghum race, clustered among other races and formed only one clear bicolor-centric cluster. Genome-wide linkage disequilibrium analyses showed linkage disequilibrium decayed, on average, within 10−30 kb, whereas the short arm of SBI-06 contained a linkage disequilibrium block of 20.33 Mb, confirming a previous report of low recombination on this chromosome arm. Four smaller but equally significant linkage disequilibrium blocks of 3.5−35.5 kb were detected on chromosomes 1, 2, 9, and 10. We examined the genes encoded within each block to provide a first look at candidates such as homologs of GS3 and FT that may indicate a selective sweep during sorghum domestication. PMID:23704283

  12. Correlated edge overlaps in multiplex networks

    NASA Astrophysics Data System (ADS)

    Baxter, Gareth J.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.

    2016-07-01

    We develop the theory of sparse multiplex networks with partially overlapping links based on their local treelikeness. This theory enables us to find the giant mutually connected component in a two-layer multiplex network with arbitrary correlations between connections of different types. We find that correlations between the overlapping and nonoverlapping links markedly change the phase diagram of the system, leading to multiple hybrid phase transitions. For assortative correlations we observe recurrent hybrid phase transitions.

  13. Hyperspectral fluorescence imaging with multi wavelength LED excitation

    NASA Astrophysics Data System (ADS)

    Luthman, A. Siri; Dumitru, Sebastian; Quirós-Gonzalez, Isabel; Bohndiek, Sarah E.

    2016-04-01

    Hyperspectral imaging (HSI) can combine morphological and molecular information, yielding potential for real-time and high throughput multiplexed fluorescent contrast agent imaging. Multiplexed readout from targets, such as cell surface receptors overexpressed in cancer cells, could improve both sensitivity and specificity of tumor identification. There remains, however, a need for compact and cost effective implementations of the technology. We have implemented a low-cost wide-field multiplexed fluorescence imaging system, which combines LED excitation at 590, 655 and 740 nm with a compact commercial solid state HSI system operating in the range 600 - 1000 nm. A key challenge for using reflectance-based HSI is the separation of contrast agent fluorescence from the reflectance of the excitation light. Here, we illustrate how it is possible to address this challenge in software, using two offline reflectance removal methods, prior to least-squares spectral unmixing. We made a quantitative comparison of the methods using data acquired from dilutions of contrast agents prepared in well-plates. We then established the capability of our HSI system for non-invasive in vivo fluorescence imaging in small animals using the optimal reflectance removal method. The HSI presented here enables quantitative unmixing of at least four fluorescent contrast agents (Alexa Fluor 610, 647, 700 and 750) simultaneously in living mice. A successful unmixing of the four fluorescent contrast agents was possible both using the pure contrast agents and with mixtures. The system could in principle also be applied to imaging of ex vivo tissue or intraoperative imaging in a clinical setting. These data suggest a promising approach for developing clinical applications of HSI based on multiplexed fluorescence contrast agent imaging.

  14. k-core percolation on multiplex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.; Gómez-Gardeñes, J.; Dorogovtsev, S. N.

    2014-09-01

    We generalize the theory of k-core percolation on complex networks to k-core percolation on multiplex networks, where k ≡(k1,k2,...,kM). Multiplex networks can be defined as networks with vertices of one kind but M different types of edges, representing different types of interactions. For such networks, the k-core is defined as the largest subgraph in which each vertex has at least ki edges of each type, i =1,2,...,M. We derive self-consistency equations to obtain the birth points of the k-cores and their relative sizes for uncorrelated multiplex networks with an arbitrary degree distribution. To clarify our general results, we consider in detail multiplex networks with edges of two types and solve the equations in the particular case of Erdős-Rényi and scale-free multiplex networks. We find hybrid phase transitions at the emergence points of k-cores except the (1,1)-core for which the transition is continuous. We apply the k-core decomposition algorithm to air-transportation multiplex networks, composed of two layers, and obtain the size of (k1,k2)-cores.

  15. Resource linkages and sustainable development

    NASA Astrophysics Data System (ADS)

    Anouti, Yahya

    Historically, fossil fuel consumers in most developing hydrocarbon-rich countries have enjoyed retail prices at a discount from international benchmarks. Governments of these countries consider the subsidy transfer to be a means for sharing the wealth from their resource endowment. These subsidies create negative economic, environmental, and social distortions, which can only increase over time with a fast growing, young, and rich population. The pressure to phase out these subsidies has been mounting over the last years. At the same time, policy makers in resource-rich developing countries are keen to obtain the greatest benefits for their economies from the extraction of their exhaustible resources. To this end, they are deploying local content policies with the aim of increasing the economic linkages from extracting their resources. Against this background, this dissertation's three essays evaluate (1) the global impact of rationalizing transport fuel prices, (2) how resource-rich countries can achieve the objectives behind fuel subsidies more efficiently through direct cash transfers, and (3) the economic tradeoffs from deploying local content policies and the presence of an optimal path. We begin by reviewing the literature and building the case for rationalizing transport fuel prices to reflect their direct costs (production), indirect costs (road maintenance) and negative externalities (climate change, local pollutants, traffic accidents and congestion). To do so, we increase the scope of the economic literature by presenting an algorithm to evaluate the rationalized prices in different countries. Then, we apply this algorithm to quantify the rationalized prices across 123 countries in a partial equilibrium setting. Finally, we present the first comprehensive measure of the impact of rationalizing fuel prices on the global demand for gasoline and diesel, environmental emissions, government revenues, and consumers' welfare. By rationalizing transport fuel

  16. Multi-Channel Hyperspectral Fluorescence Detection Excited by Coupled Plasmon-Waveguide Resonance

    PubMed Central

    Du, Chan; Liu, Le; Zhang, Lin; Guo, Jun; Guo, Jihua; Ma, Hui; He, Yonghong

    2013-01-01

    We propose in this paper a biosensor scheme based on coupled plasmon-waveguide resonance (CPWR) excited fluorescence spectroscopy. A symmetrical structure that offers higher surface electric field strengths, longer surface propagation lengths and depths is developed to support guided waveguide modes for the efficient excitation of fluorescence. The optimal parameters for the sensor films are theoretically and experimentally investigated, leading to a detection limit of 0.1 nM (for a Cy5 solution). Multiplex analysis possible with the fluorescence detection is further advanced by employing the hyperspectral fluorescence technique to record the full spectra for every pixel on the sample plane. We demonstrate experimentally that highly overlapping fluorescence (Cy5 and Dylight680) can be distinguished and ratios of different emission sources can be determined accurately. This biosensor shows great potential for multiplex detections of fluorescence analytes. PMID:24129023

  17. Simplified development of multiplex real-time PCR through master mix augmented by universal fluorogenic reporters.

    PubMed

    Wadle, Simon; Lehnert, Michael; Schuler, Friedrich; Köppel, René; Serr, Annerose; Zengerle, Roland; von Stetten, Felix

    2016-01-01

    Mediator probe (MP) PCR is a real-time PCR approach that uses standardized universal fluorogenic reporter oligonucleotides (UR) in conjunction with label-free sequence-specific probes. To enable multiplex real-time MP PCR, we designed a set of five optimized URs with different fluorescent labels. Performance of the optimized URs was verified in multiplex real-time MP PCR for the detection of a pentaplex food panel and a quadruplex methicillin-resistant Staphylococcus aureus (MRSA) panel. Results were comparable to corresponding multiplex hydrolysis probe (HP) PCR, also designated as TaqMan PCR. Analyses of MRSA DNA standards and DNA extracted from patient swab samples showed improved lower limits of detection (LoDs) by a factor of 2-5 when using quadruplex real-time MP PCR instead of HP PCR. The novel set of standardized URs we present here simplifies development of multiplex real-time PCR assays by requiring only the design of label-free probes. In the future, real-time PCR master mixes could be augmented with up to five standardized fluorogenic URs, each emitting light at a different wavelength.

  18. Simplified development of multiplex real-time PCR through master mix augmented by universal fluorogenic reporters.

    PubMed

    Wadle, Simon; Lehnert, Michael; Schuler, Friedrich; Köppel, René; Serr, Annerose; Zengerle, Roland; von Stetten, Felix

    2016-01-01

    Mediator probe (MP) PCR is a real-time PCR approach that uses standardized universal fluorogenic reporter oligonucleotides (UR) in conjunction with label-free sequence-specific probes. To enable multiplex real-time MP PCR, we designed a set of five optimized URs with different fluorescent labels. Performance of the optimized URs was verified in multiplex real-time MP PCR for the detection of a pentaplex food panel and a quadruplex methicillin-resistant Staphylococcus aureus (MRSA) panel. Results were comparable to corresponding multiplex hydrolysis probe (HP) PCR, also designated as TaqMan PCR. Analyses of MRSA DNA standards and DNA extracted from patient swab samples showed improved lower limits of detection (LoDs) by a factor of 2-5 when using quadruplex real-time MP PCR instead of HP PCR. The novel set of standardized URs we present here simplifies development of multiplex real-time PCR assays by requiring only the design of label-free probes. In the future, real-time PCR master mixes could be augmented with up to five standardized fluorogenic URs, each emitting light at a different wavelength. PMID:27625206

  19. Color-encoded microcarriers based on nano-silicon dioxide film for multiplexed immunoassays.

    PubMed

    Li, Qiang; Zhang, Kaihuan; Wang, Tongzhou; Zhou, Xinying; Wang, Jia; Wang, Chen; Lin, Haixiao; Li, Xin; Lu, Ying; Huang, Guoliang

    2012-08-21

    Multiplexed analysis allows researchers to obtain high-density information with minimal assay time, sample volume and cost. Currently, microcarrier or particle-based approaches for multiplexed analysis involve complicated or expensive encoding and decoding processes. In this paper, a novel optical encoding technique based on nano-silicon dioxide film is presented. Microcarriers composed of thermally grown silicon dioxide (SiO(2)) film and monocrystalline silicon (Si) substrate were fabricated. The nano-silicon dioxide film exhibited unique surface color by low-coherence interference. Hence the colors can be used for encoding at least 100 microcarriers loaded with films of different thickness. We demonstrated that color-encoded microcarriers loaded with antigens could be used for multiplexed immunoassays to detect goat anti-human IgG, goat anti-mouse IgG and goat anti-rabbit IgG, with fluorescent detection as the interrogating approach. This microcarrier-based method also exhibited improved analytical performance compared with a microarray technique. This approach will provide new opportunities for multiplexed target assay development.

  20. The REBUS-MCNP linkage.

    SciTech Connect

    Stevens, J. G.; Nuclear Engineering Division

    2009-04-24

    The Reduced Enrichment Research and Test Reactor (RERTR) Program uses the REBUS-PC computer code to provide reactor physics and core design information such as neutron flux distributions in space, energy, and time, and to track isotopic changes in fuel and neutron absorbers with burnup. REBUS-PC models the complete fuel cycle including shuffling capability. REBUS-PC evolved using the neutronic capabilities of multi-group diffusion theory code DIF3D 9.0, but was extended to apply the continuous energy Monte Carlo code MCNP for one-group fluxes and cross-sections. The linkage between REBUS-PC and MCNP has recently been modernized and extended, as described in this manual. REBUS-PC now calls MCNP via a system call so that the user can apply any valid MCNP executable. The interface between REBUS-PC and MCNP requires minimal changes to an existing MCNP model, and little additional input. The REBUS-MCNP interface can also be used in conjunction with DIF3D neutronics to update an MCNP model with fuel compositions predicted using a DIF3D based depletion.

  1. Multiplexed modulation of behavioral choice

    PubMed Central

    Palmer, Chris R.; Barnett, Megan N.; Copado, Saul; Gardezy, Fred; Kristan, William B.

    2014-01-01

    Stimuli in the environment, as well as internal states, influence behavioral choice. Of course, animals are often exposed to multiple external and internal factors simultaneously, which makes the ultimate determinants of behavior quite complex. We observed the behavioral responses of European leeches, Hirudo verbana, as we varied one external factor (surrounding water depth) with either another external factor (location of tactile stimulation along the body) or an internal factor (body distention following feeding). Stimulus location proved to be the primary indicator of behavioral response. In general, anterior stimulation produced shortening behavior, midbody stimulation produced local bending, and posterior stimulation usually produced either swimming or crawling but sometimes a hybrid of the two. By producing a systematically measured map of behavioral responses to body stimulation, we found wide areas of overlap between behaviors. When we varied the surrounding water depth, this map changed significantly, and a new feature – rotation of the body along its long axis prior to swimming – appeared. We found additional interactions between water depth and time since last feeding. A large blood meal initially made the animals crawl more and swim less, an effect that was attenuated as water depth increased. The behavioral map returned to its pre-feeding form after approximately 3 weeks as the leeches digested their blood meal. In summary, we found multiplexed impacts on behavioral choice, with the map of responses to tactile stimulation modified by water depth, which itself modulated the impact that feeding had on the decision to swim or crawl. PMID:24902753

  2. Intracavity absorption multiplexed sensor network based on dense wavelength division multiplexing filter.

    PubMed

    Zhang, Haiwei; Lu, Ying; Duan, Liangcheng; Zhao, Zhiqiang; Shi, Wei; Yao, Jianquan

    2014-10-01

    We report the system design and experimental verification of an intracavity absorption multiplexed sensor network with hollow core photonic crystal fiber (HCPCF) sensors and dense wavelength division multiplexing (DWDM) filters. Compared with fiber Bragg grating (FBG), it is easier for the DWDM to accomplish a stable output. We realize the concentration detection of three gas cells filled with acetylene. The sensitivity is up to 100 ppmV at 1536.71 nm. Voltage gradient is firstly used to optimize the intracavity sensor network enhancing the detection efficiency up to 6.5 times. To the best of our knowledge, DWDM is firstly used as a wavelength division multiplexing device to realize intracavity absorption multiplexed sensor network. It make it possible to realize high capacity intracavity sensor network via multiplexed technique. PMID:25322029

  3. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

  4. Dual-color encoded DNAzyme nanostructures for multiplexed detection of intracellular metal ions in living cells.

    PubMed

    Zhou, Wenjiao; Liang, Wenbing; Li, Daxiu; Yuan, Ruo; Xiang, Yun

    2016-11-15

    The detection of intracellular metal ions is of great importance in understanding metal homeostasis in cells and related diseases, and yet it remains a significant challenge to achieve this goal. Based on a new self-assembled and dual-color encoded DNAzyme nanostructure, we describe here an approach for multiplexed sensing of UO2(2+) and Pb(2+) in living cells. The fluorescently quenched nanoprobes can be prepared by simple thermal annealing of four ssDNAs containing the metal ion-dependent enzymatic and substrate sequences. The self-assembly formation of the nanostructures are verified by native polyacrylamide gel electrophoresis. The target metal ions can cleave the substrate sequences in the DNAzyme nanostructures to recover fluorescent emissions at different wavelengths for sensitive and selective in vitro multiplexed detection of UO2(2+) and Pb(2+) with the detection limits of 0.6nM and 3.9nM, respectively. Importantly, we demonstrate that these nanoprobes are stable in cell lysates and can enter cells without the aid of any transfection agents for simultaneous imaging intracellular UO2(2+) and Pb(2+). Moreover, the nanoprobes offer excellent biocompatibility and non-cytotoxicity. With these unique features, the dual-color encoded nanostructures presented here can thus offer new opportunities for multiplexed detection of specific intracellular species.

  5. A GENOME-WIDE LINKAGE AND ASSOCIATION SCAN REVEALS NOVEL LOCI FOR AUTISM

    PubMed Central

    Weiss, Lauren A.; Arking, Dan E.

    2009-01-01

    Summary Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success 1. Genome-wide association studies (GWAS) using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits (http://www.genome.gov/26525384). Consequently, we initiated a linkage and association mapping study using half a million genome-wide SNPs in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed a SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism (P = 2 × 10−7). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening while the discovery of a single novel association demonstrates the action of common variants. PMID:19812673

  6. A genome-wide linkage and association scan reveals novel loci for autism.

    PubMed

    Weiss, Lauren A; Arking, Dan E; Daly, Mark J; Chakravarti, Aravinda

    2009-10-01

    Although autism is a highly heritable neurodevelopmental disorder, attempts to identify specific susceptibility genes have thus far met with limited success. Genome-wide association studies using half a million or more markers, particularly those with very large sample sizes achieved through meta-analysis, have shown great success in mapping genes for other complex genetic traits. Consequently, we initiated a linkage and association mapping study using half a million genome-wide single nucleotide polymorphisms (SNPs) in a common set of 1,031 multiplex autism families (1,553 affected offspring). We identified regions of suggestive and significant linkage on chromosomes 6q27 and 20p13, respectively. Initial analysis did not yield genome-wide significant associations; however, genotyping of top hits in additional families revealed an SNP on chromosome 5p15 (between SEMA5A and TAS2R1) that was significantly associated with autism (P = 2 x 10(-7)). We also demonstrated that expression of SEMA5A is reduced in brains from autistic patients, further implicating SEMA5A as an autism susceptibility gene. The linkage regions reported here provide targets for rare variation screening whereas the discovery of a single novel association demonstrates the action of common variants.

  7. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  8. Cytogenetical anchoring of sheep linkage map and syntenic groups using a sheep BAC library.

    PubMed

    Tabet-Aoul, K; Oustry-Vaiman, A; Vaiman, D; Saïdi-Mehtar, N; Cribiu, E P; Lantier, F

    2000-01-01

    In order to simultaneously integrate linkage and syntenic groups to the ovine chromosomal map, a sheep bacterial artificial chromosome (BAC) library was screened with previously assigned microsatellites using a sheep-hamster hybrid panel and genetic linkage. Thirty-three BACs were obtained, fluorescently labelled and hybridised on sheep-goat hybrid metaphases (2n = 57). This study allowed us, (i), to anchor all linkage groups on sheep chromosomes, (ii), to give information on the probable position of the centromere on the linkage map for the centromeric chromosomes, (iii), to contradict the previous orientation of the ovine X linkage group by the mapping of BMS1008 on OARXq38. Concerning our somatic cell hybrid panel, this study resulted in the assignment of all the previously unassigned groups to ovine chromosomes and a complete characterisation of the hybrid panel. In addition, since hybridisations were performed on a sheep-goat hybrid, new marker/anchoring points were added to the caprine cytogenetic map. PMID:14736389

  9. Linkage Disequilibrium in Wild Mice

    PubMed Central

    Laurie, Cathy C; Nickerson, Deborah A; Anderson, Amy D; Weir, Bruce S; Livingston, Robert J; Dean, Matthew D; Smith, Kimberly L; Schadt, Eric E; Nachman, Michael W

    2007-01-01

    Crosses between laboratory strains of mice provide a powerful way of detecting quantitative trait loci for complex traits related to human disease. Hundreds of these loci have been detected, but only a small number of the underlying causative genes have been identified. The main difficulty is the extensive linkage disequilibrium (LD) in intercross progeny and the slow process of fine-scale mapping by traditional methods. Recently, new approaches have been introduced, such as association studies with inbred lines and multigenerational crosses. These approaches are very useful for interval reduction, but generally do not provide single-gene resolution because of strong LD extending over one to several megabases. Here, we investigate the genetic structure of a natural population of mice in Arizona to determine its suitability for fine-scale LD mapping and association studies. There are three main findings: (1) Arizona mice have a high level of genetic variation, which includes a large fraction of the sequence variation present in classical strains of laboratory mice; (2) they show clear evidence of local inbreeding but appear to lack stable population structure across the study area; and (3) LD decays with distance at a rate similar to human populations, which is considerably more rapid than in laboratory populations of mice. Strong associations in Arizona mice are limited primarily to markers less than 100 kb apart, which provides the possibility of fine-scale association mapping at the level of one or a few genes. Although other considerations, such as sample size requirements and marker discovery, are serious issues in the implementation of association studies, the genetic variation and LD results indicate that wild mice could provide a useful tool for identifying genes that cause variation in complex traits. PMID:17722986

  10. Model averaging in linkage analysis.

    PubMed

    Matthysse, Steven

    2006-06-01

    Methods for genetic linkage analysis are traditionally divided into "model-dependent" and "model-independent," but there may be a useful place for an intermediate class, in which a broad range of possible models is considered as a parametric family. It is possible to average over model space with an empirical Bayes prior that weights models according to their goodness of fit to epidemiologic data, such as the frequency of the disease in the population and in first-degree relatives (and correlations with other traits in the pleiotropic case). For averaging over high-dimensional spaces, Markov chain Monte Carlo (MCMC) has great appeal, but it has a near-fatal flaw: it is not possible, in most cases, to provide rigorous sufficient conditions to permit the user safely to conclude that the chain has converged. A way of overcoming the convergence problem, if not of solving it, rests on a simple application of the principle of detailed balance. If the starting point of the chain has the equilibrium distribution, so will every subsequent point. The first point is chosen according to the target distribution by rejection sampling, and subsequent points by an MCMC process that has the target distribution as its equilibrium distribution. Model averaging with an empirical Bayes prior requires rapid estimation of likelihoods at many points in parameter space. Symbolic polynomials are constructed before the random walk over parameter space begins, to make the actual likelihood computations at each step of the random walk very fast. Power analysis in an illustrative case is described. (c) 2006 Wiley-Liss, Inc. PMID:16652369

  11. Linkage: from particulate to interactive genetics.

    PubMed

    Falk, Raphael

    2003-01-01

    Genetics was established on a strict particulate conception of heredity. Genetic linkage, the deviation from independent segregation of Mendelian factors, was conceived as a function of the material allocation of the factors to the chromosomes, rather than to the multiple effects (pleiotropy) of discrete factors. Although linkage maps were abstractions they provided strong support for the chromosomal theory of inheritance. Direct Cytogenetic evidence was scarce until X-ray induced major chromosomal rearrangements allowed direct correlation of genetic and cytological rearrangements. Only with the discovery of the polytenic giant chromosomes in Drosophila larvae in the 1930s were the virtual maps backed up by physical maps of the genetic loci. Genetic linkage became a pivotal experimental tool for the examination of the integration of genetic functions in development and in evolution. Genetic mapping has remained a hallmark of genetic analysis. The location of genes in DNA is a modern extension of the notion of genetic linkage.

  12. Linkage studies in primary open angle glaucoma

    SciTech Connect

    Avramopoulos, D.; Grigoriadu, M.; Kitsos, G.

    1994-09-01

    Glaucoma is a leading cause of blindness worldwide. The majority of glaucoma is associated with an open, normal appearing anterior chamber angle and is termed primary open angle glaucoma (POAG, MIM 137760). It is characterized by elevated intraocular pressure and onset in middle age or later. A subset of POAG with juvenile onset has recently been linked to chromosome 1q in two families with autosomal dominant inheritance. Eleven pedigrees with autosomal dominant POG (non-juvenile-onset) have been identified in Epirus, Greece. In the present study DNA samples have been collected from 50 individuals from one large pedigree, including 12 affected individuals. Preliminary results of linkage analysis with chromosome 1 microsatellites using the computer program package LINKAGE Version 5.1 showed no linkage with the markers previously linked to juvenile-onset POAG. Further linkage analysis is being pursued, and the results will be presented.

  13. Investigations of Three-Point Linkage

    ERIC Educational Resources Information Center

    Mertens, Thomas R.

    1972-01-01

    Describes sequence of activities for teaching three-point linkage concept and gene-mapping to high school biology students. Includes laboratory experiments and hypothetical examples for classroom discussion. (PS)

  14. Resource linkages and sustainable development

    NASA Astrophysics Data System (ADS)

    Anouti, Yahya

    Historically, fossil fuel consumers in most developing hydrocarbon-rich countries have enjoyed retail prices at a discount from international benchmarks. Governments of these countries consider the subsidy transfer to be a means for sharing the wealth from their resource endowment. These subsidies create negative economic, environmental, and social distortions, which can only increase over time with a fast growing, young, and rich population. The pressure to phase out these subsidies has been mounting over the last years. At the same time, policy makers in resource-rich developing countries are keen to obtain the greatest benefits for their economies from the extraction of their exhaustible resources. To this end, they are deploying local content policies with the aim of increasing the economic linkages from extracting their resources. Against this background, this dissertation's three essays evaluate (1) the global impact of rationalizing transport fuel prices, (2) how resource-rich countries can achieve the objectives behind fuel subsidies more efficiently through direct cash transfers, and (3) the economic tradeoffs from deploying local content policies and the presence of an optimal path. We begin by reviewing the literature and building the case for rationalizing transport fuel prices to reflect their direct costs (production), indirect costs (road maintenance) and negative externalities (climate change, local pollutants, traffic accidents and congestion). To do so, we increase the scope of the economic literature by presenting an algorithm to evaluate the rationalized prices in different countries. Then, we apply this algorithm to quantify the rationalized prices across 123 countries in a partial equilibrium setting. Finally, we present the first comprehensive measure of the impact of rationalizing fuel prices on the global demand for gasoline and diesel, environmental emissions, government revenues, and consumers' welfare. By rationalizing transport fuel

  15. Giant components in directed multiplex networks

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2014-11-01

    We describe the complex global structure of giant components in directed multiplex networks that generalizes the well-known bow-tie structure, generic for ordinary directed networks. By definition, a directed multiplex network contains vertices of one type and directed edges of m different types. In directed multiplex networks, we distinguish a set of different giant components based on the existence of directed paths of different types between their vertices such that for each type of edges, the paths run entirely through only edges of that type. If, in particular, m =2 , we define a strongly viable component as a set of vertices in which for each type of edges each two vertices are interconnected by at least two directed paths in both directions, running through the edges of only this type. We show that in this case, a directed multiplex network contains in total nine different giant components including the strongly viable component. In general, the total number of giant components is 3m. For uncorrelated directed multiplex networks, we obtain exactly the size and the emergence point of the strongly viable component and estimate the sizes of other giant components.

  16. Linkage of the VNTR/insulin-gene and type I diabetes mellitus: Increased gene sharing in affected sibling pairs

    SciTech Connect

    Owerbach, D.; Gabbay, K.H. )

    1994-05-01

    Ninety-six multiplex type I diabetic families were typed at the 5' flanking region of the insulin gene by using a PCR assay that better resolves the VNTR into multiple alleles. Affected sibling pairs shared 2, 1, and 0 VNTR alleles - identical by descent - at a frequency of .47, .45, and .08, respectively, a ratio that deviated from the expected 1:2:1 ratio (P<.001). These results confirm linkage of the chromosome 11p15.5 region with type I diabetes mellitus susceptibility. 20 refs., 2 tabs.

  17. Single Quantum Dot Analysis Enables Multiplexed Point Mutation Detection by Gap Ligase Chain Reaction

    PubMed Central

    Song, Yunke; Zhang, Yi; Wang, Tza-Huei

    2014-01-01

    Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and tedious assay processes. In this report, we propose an assay technology which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single molecule coincidence detection and superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. PMID:23239594

  18. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain. PMID:26169291

  19. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction.

    PubMed

    Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana

    2015-08-18

    Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.

  20. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    PubMed Central

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-01-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets. PMID:27739510

  1. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    NASA Astrophysics Data System (ADS)

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  2. Development of the 19 X-STR loci multiplex system and genetic analysis of a Zhejiang Han population in China.

    PubMed

    Yang, XingYi; Wu, WeiWei; Chen, LinLi; Liu, ChangHui; Zhang, XiaoFang; Chen, Ling; Feng, XingLin; Wang, HuiJun; Liu, Chao

    2016-08-01

    The 19 X-STRs multiplex system is a PCR-based amplification kit that facilitates simultaneous amplification of 19 X-chromosomal STR loci (i.e. DXS7423, DXS10148, DXS10159, DXS6809, DXS7424, DXS8378, DXS10164, DXS10162, DXS7132, DXS10079, DXS6789, DXS101, DXS10103,DXS10101, HPTRB, DXS10075, DXS10074, DXS10135, and DXS10134). Eleven loci were extensively used in an Investigator Qiagen Argus X-12 (DXS7423, DXS10148, DXS8378, DXS10162, DXS7132, DXS10079, DXS10103, DXS10101, HPTRB, DXS10074, and DXS10135). In this research, the multiplex system was tested for detection sensitivity, DNA mixtures, inhibitor tolerance and species specificity; SWGDAM Validation Guidelines - Approved December 2012 were followed for the human fluorescent STR multiplex PCR reagent. Samples from 181 unrelated Zhejiang Han individuals (121 males and 60 females) were typed using this multiplex system. The results show that this 19X-STRs multiplex system is a robust and reliable amplification means to facilitate forensic and human identification testing. PMID:27184937

  3. Multiplexed image storage by electromagnetically induced transparency in a solid

    NASA Astrophysics Data System (ADS)

    Heinze, G.; Rentzsch, N.; Halfmann, T.

    2012-11-01

    We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.

  4. Superconducting Digital Multiplexers for Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan

    2004-01-01

    Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.

  5. Metric projection for dynamic multiplex networks.

    PubMed

    Jurman, Giuseppe

    2016-08-01

    Evolving multiplex networks are a powerful model for representing the dynamics along time of different phenomena, such as social networks, power grids, biological pathways. However, exploring the structure of the multiplex network time series is still an open problem. Here we propose a two-step strategy to tackle this problem based on the concept of distance (metric) between networks. Given a multiplex graph, first a network of networks is built for each time step, and then a real valued time series is obtained by the sequence of (simple) networks by evaluating the distance from the first element of the series. The effectiveness of this approach in detecting the occurring changes along the original time series is shown on a synthetic example first, and then on the Gulf dataset of political events.

  6. Metric projection for dynamic multiplex networks.

    PubMed

    Jurman, Giuseppe

    2016-08-01

    Evolving multiplex networks are a powerful model for representing the dynamics along time of different phenomena, such as social networks, power grids, biological pathways. However, exploring the structure of the multiplex network time series is still an open problem. Here we propose a two-step strategy to tackle this problem based on the concept of distance (metric) between networks. Given a multiplex graph, first a network of networks is built for each time step, and then a real valued time series is obtained by the sequence of (simple) networks by evaluating the distance from the first element of the series. The effectiveness of this approach in detecting the occurring changes along the original time series is shown on a synthetic example first, and then on the Gulf dataset of political events. PMID:27626089

  7. Sequential strategy to identify a susceptibility gene for schizophrenia: Report of potential linkage on chromosome 22q12-q13.1: Part 1

    SciTech Connect

    Pulver, A.E.; Wolyniec, P.S.; Lasseter, V.K.

    1994-03-15

    To identify genes responsible for the susceptibility for schizophrenia, and to test the hypothesis that schizophrenia is etiologically heterogeneous, we have studied 39 multiplex families from a systematic sample of schizophrenic patients. Using a complex autosomal dominant model, which considers only those with a diagnosis of schizophrenia or schizoaffective disorder as affected, a random search of the genome for detection of linkage was undertaken. Pairwise linkage analyses suggest a potential linkage (LRH = 34.7 or maximum lod score = 1.54) for one region (22q12-q13.1). Reanalyses, varying parameters in the dominant model, maximized the LRH at 660.7 (maximum lod score 2.82). This finding is of sufficient interest to warrant further investigation through collaborative studies. 72 refs., 5 tabs.

  8. Positional Cloning by Linkage Disequilibrium

    PubMed Central

    Maniatis, Nikolas; Collins, Andrew; Gibson, Jane; Zhang, Weihua; Tapper, William; Morton, Newton E.

    2004-01-01

    Recently, metric linkage disequilibrium (LD) maps that assign an LD unit (LDU) location for each marker have been developed (Maniatis et al. 2002). Here we present a multiple pairwise method for positional cloning by LD within a composite likelihood framework and investigate the operating characteristics of maps in physical units (kb) and LDU for two bodies of data (Daly et al. 2001; Jeffreys et al. 2001) on which current ideas of blocks are based. False-negative indications of a disease locus (type II error) were examined by selecting one single-nucleotide polymorphism (SNP) at a time as causal and taking its allelic count (0, 1, or 2, for the three genotypes) as a pseudophenotype, Y. By use of regression and correlation, association between every pseudophenotype and the allelic count of each SNP locus (X) was based on an adaptation of the Malecot model, which includes a parameter for location of the putative gene. By expressing locations in kb or LDU, greater power for localization was observed when the LDU map was fitted. The efficiency of the kb map, relative to the LDU map, to describe LD varied from a maximum of 0.87 to a minimum of 0.36, with a mean of 0.62. False-positive indications of a disease locus (type I error) were examined by simulating an unlinked causal SNP and the allele count was used as a pseudophenotype. The type I error was in good agreement with Wald’s likelihood theorem for both metrics and all models that were tested. Unlike tests that select only the most significant marker, haplotype, or haploset, these methods are robust to large numbers of markers in a candidate region. Contrary to predictions from tagging SNPs that retain haplotype diversity, the sample with smaller size but greater SNP density gave less error. The locations of causal SNPs were estimated with the same precision in blocks and steps, suggesting that block definition may be less useful than anticipated for mapping a causal SNP. These results provide a guide to

  9. Automated Methods for Multiplexed Pathogen Detection

    SciTech Connect

    Straub, Tim M.; Dockendorff, Brian P.; Quinonez-Diaz, Maria D.; Valdez, Catherine O.; Shutthanandan, Janani I.; Tarasevich, Barbara J.; Grate, Jay W.; Bruckner-Lea, Cindy J.

    2005-09-01

    Detection of pathogenic microorganisms in environmental samples is a difficult process. Concentration of the organisms of interest also co-concentrates inhibitors of many end-point detection methods, notably, nucleic acid methods. In addition, sensitive, highly multiplexed pathogen detection continues to be problematic. The primary function of the BEADS (Biodetection Enabling Analyte Delivery System) platform is the automated concentration and purification of target analytes from interfering substances, often present in these samples, via a renewable surface column. In one version of BEADS, automated immunomagnetic separation (IMS) is used to separate cells from their samples. Captured cells are transferred to a flow-through thermal cycler where PCR, using labeled primers, is performed. PCR products are then detected by hybridization to a DNA suspension array. In another version of BEADS, cell lysis is performed, and community RNA is purified and directly labeled. Multiplexed detection is accomplished by direct hybridization of the RNA to a planar microarray. The integrated IMS/PCR version of BEADS can successfully purify and amplify 10 E. coli O157:H7 cells from river water samples. Multiplexed PCR assays for the simultaneous detection of E. coli O157:H7, Salmonella, and Shigella on bead suspension arrays was demonstrated for the detection of as few as 100 cells for each organism. Results for the RNA version of BEADS are also showing promising results. Automation yields highly purified RNA, suitable for multiplexed detection on microarrays, with microarray detection specificity equivalent to PCR. Both versions of the BEADS platform show great promise for automated pathogen detection from environmental samples. Highly multiplexed pathogen detection using PCR continues to be problematic, but may be required for trace detection in large volume samples. The RNA approach solves the issues of highly multiplexed PCR and provides ''live vs. dead'' capabilities. However

  10. Multiplexed DNA detection with a composite molecular beacon based on guanine-quenching.

    PubMed

    Xiang, Dong-Shan; Zhai, Kun; Wang, Lian-Zhi

    2013-09-21

    We developed a multiplexed DNA detection method with a composite molecular beacon (MB) probe based on guanine-quenching by synchronous fluorescence analysis. It is demonstrated by two types of tumor-suppressor genes namely exon segments of p16 (T1) and p53 (T2) genes. The composite MB probe includes two loops and two stems, and two fluorophores of 6-carboxyfluorescein group (FAM) and tetramethyl-6-carboxyrhodamine (TAMRA) are connected to the two ends of molecular beacon. Every stem portion of MB include four continuous nucleotides with guanine (G) base as quencher, every loop portion is a probe sequence that is complementary to a corresponding target sequence. In the absence of target DNA, the composite MBs are in the stem-closed form, the fluorescence of FAM and TAMRA are quenched by G bases. At this time, the fluorescence signals of FAM and TAMRA are all very low. In the presence of target DNA, the MBs hybridize with the target DNA and form double-strands, FAM and TAMRA are separated from G bases, and the fluorescence of FAM and TAMRA recovers simultaneously. Thus, the simultaneous detection of two targets of DNA can be realized by measuring fluorescence signals of FAM and TAMRA, respectively. Under the optimum conditions, the fluorescence intensities of FAM and TAMRA all exhibit good linear dependence on their target DNA concentration in the range from 5 × 10(-11) to 5.5 × 10(-9) M. The detection limit of T1 is 4 × 10(-11) M (3σ), and that of T2 is 3 × 10(-11) M. This composite MB can be applied to detect the real sample, and can be applied to detect two aleatoric sequences of DNA. Compared with previously reported methods of detecting multiplexed target DNA with MBs, the proposed method has some advantages including easy synthesis of composite MB probes, low detection cost and shorter analytical time.

  11. Comparing Linkage Designs Based on Land Facets to Linkage Designs Based on Focal Species

    PubMed Central

    Brost, Brian M.; Beier, Paul

    2012-01-01

    Least-cost modeling for focal species is the most widely used method for designing conservation corridors and linkages. However, these designs depend on today's land covers, which will be altered by climate change. We recently proposed an alternative approach based on land facets (recurring landscape units of relatively uniform topography and soils). The rationale is that corridors with high continuity of individual land facets will facilitate movement of species associated with each facet today and in the future. Conservation practitioners might like to know whether a linkage design based on land facets is likely to provide continuity of modeled breeding habitat for species needing connectivity today, and whether a linkage for focal species provides continuity and interspersion of land facets. To address these questions, we compared linkages designed for focal species and land facets in three landscapes in Arizona, USA. We used two variables to measure linkage utility, namely distances between patches of modeled breeding habitat for 5–16 focal species in each linkage, and resistance profiles for focal species and land facets between patches connected by the linkage. Compared to focal species designs, linkage designs based on land facets provided as much or more modeled habitat connectivity for 25 of 28 species-landscape combinations, failing only for the three species with the most narrowly distributed habitat. Compared to land facets designs, focal species linkages provided lower connectivity for about half the land facets in two landscapes. In areas where a focal species approach to linkage design is not possible, our results suggest that conservation practitioners may be able to implement a land facets approach with some confidence that the linkage design would serve most potential focal species. In areas where focal species designs are possible, we recommend using the land facet approach to complement, rather than replace, focal species approaches. PMID

  12. Cooperative spreading processes in multiplex networks

    NASA Astrophysics Data System (ADS)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-an

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  13. Temporally multiplexed quantum repeaters with atomic gases

    SciTech Connect

    Simon, Christoph; Riedmatten, Hugues de; Afzelius, Mikael

    2010-07-15

    We propose a temporally multiplexed version of the Duan-Lukin-Cirac-Zoller (DLCZ) quantum-repeater protocol using controlled inhomogeneous spin broadening in atomic gases. A first analysis suggests that the advantage of multiplexing is negated by noise due to spin-wave excitations corresponding to unobserved directions of Stokes photon emission. However, this problem can be overcome with the help of a moderate-finesse cavity which is in resonance with Stokes photons, but invisible to the anti-Stokes photons. Our proposal promises greatly enhanced quantum repeater performance with atomic gases.

  14. Eigenvector centrality of nodes in multiplex networks.

    PubMed

    Solá, Luis; Romance, Miguel; Criado, Regino; Flores, Julio; García del Amo, Alejandro; Boccaletti, Stefano

    2013-09-01

    We extend the concept of eigenvector centrality to multiplex networks, and introduce several alternative parameters that quantify the importance of nodes in a multi-layered networked system, including the definition of vectorial-type centralities. In addition, we rigorously show that, under reasonable conditions, such centrality measures exist and are unique. Computer experiments and simulations demonstrate that the proposed measures provide substantially different results when applied to the same multiplex structure, and highlight the non-trivial relationships between the different measures of centrality introduced.

  15. High performance optical wavelength multiplexer-demultiplexer.

    PubMed

    Dobrowolski, J A; Hara, E H; Sullivan, B T; Waldorf, A J

    1992-07-01

    The principle of an optical wavelength multiplexer-demultiplexer is described in which the signals undergo repeated reflections from special filter elements that can be designed for a wide range of cross-talk ratios. The insertion losses of these units can be quite small and they can be implemented to provide simultaneous multichannel two-way transmission. In a preliminary investigation of an experimental prototype an insertion loss of 0.5 dB and a cross talk of -35 dB were demonstrated. The multiplexer-demultiplexer is expected to have a long life and high reliability.

  16. Line graphs for a multiplex network.

    PubMed

    Criado, Regino; Flores, Julio; García Del Amo, Alejandro; Romance, Miguel; Barrena, Eva; Mesa, Juan A

    2016-06-01

    It is well known that line graphs offer a good summary of the graphs properties, which make them easier to analyze and highlight the desired properties. We extend the concept of line graph to multiplex networks in order to analyze multi-plexed and multi-layered networked systems. As these structures are very rich, different approaches to this notion are required to capture a variety of situations. Some relationships between these approaches are established. Finally, by means of some simulations, the potential utility of this concept is illustrated.

  17. Multiplexed imaging of intracellular protein networks.

    PubMed

    Grecco, Hernán E; Imtiaz, Sarah; Zamir, Eli

    2016-08-01

    Cellular functions emerge from the collective action of a large number of different proteins. Understanding how these protein networks operate requires monitoring their components in intact cells. Due to intercellular and intracellular molecular variability, it is important to monitor simultaneously multiple components at high spatiotemporal resolution. However, inherent trade-offs narrow the boundaries of achievable multiplexed imaging. Pushing these boundaries is essential for a better understanding of cellular processes. Here the motivations, challenges and approaches for multiplexed imaging of intracellular protein networks are discussed. © 2016 International Society for Advancement of Cytometry. PMID:27183498

  18. Evolution of cooperation in multiplex networks.

    PubMed

    Gómez-Gardeñes, Jesús; Reinares, Irene; Arenas, Alex; Floría, Luis Mario

    2012-01-01

    We study evolutionary game dynamics on structured populations in which individuals take part in several layers of networks of interactions simultaneously. This multiplex of interdependent networks accounts for the different kind of social ties each individual has. By coupling the evolutionary dynamics of a Prisoner's Dilemma game in each of the networks, we show that the resilience of cooperative behaviors for extremely large values of the temptation to defect is enhanced by the multiplex structure. Furthermore, this resilience is intrinsically related to a non-trivial organization of cooperation across the network layers, thus providing a new way out for cooperation to survive in structured populations.

  19. Eigenvector centrality of nodes in multiplex networks.

    PubMed

    Solá, Luis; Romance, Miguel; Criado, Regino; Flores, Julio; García del Amo, Alejandro; Boccaletti, Stefano

    2013-09-01

    We extend the concept of eigenvector centrality to multiplex networks, and introduce several alternative parameters that quantify the importance of nodes in a multi-layered networked system, including the definition of vectorial-type centralities. In addition, we rigorously show that, under reasonable conditions, such centrality measures exist and are unique. Computer experiments and simulations demonstrate that the proposed measures provide substantially different results when applied to the same multiplex structure, and highlight the non-trivial relationships between the different measures of centrality introduced. PMID:24089967

  20. Line graphs for a multiplex network.

    PubMed

    Criado, Regino; Flores, Julio; García Del Amo, Alejandro; Romance, Miguel; Barrena, Eva; Mesa, Juan A

    2016-06-01

    It is well known that line graphs offer a good summary of the graphs properties, which make them easier to analyze and highlight the desired properties. We extend the concept of line graph to multiplex networks in order to analyze multi-plexed and multi-layered networked systems. As these structures are very rich, different approaches to this notion are required to capture a variety of situations. Some relationships between these approaches are established. Finally, by means of some simulations, the potential utility of this concept is illustrated. PMID:27368798

  1. Multimode fiber optic wavelength division multiplexing

    NASA Technical Reports Server (NTRS)

    Spencer, J. L.

    1982-01-01

    Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single optical fiber, can have increased bandwidth and fault isolation properties over single wavelength optical systems. Two WDM system designs that might be used with multimode fibers are considered and a general description of the components which could be used to implement the system are given. The components described are sources, multiplexers, demultiplexers, and detectors. Emphasis is given to the demultiplexer technique which is the major developmental component in the WDM system.

  2. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  3. Multiplexing with multispectral imaging: from mice to microscopy.

    PubMed

    Levenson, Richard M; Lynch, David T; Kobayashi, Hisataka; Backer, Joseph M; Backer, Marina V

    2008-01-01

    Increasing sophistication in the design and application of biological models as well as the advent of novel fluorescent probes have led to new demands on molecular imaging systems to deliver enhanced sensitivity, reliable quantitation, and the ability to resolve multiple simultaneous signals. Sensitivity is limited, especially in the visible spectral range, by the presence of ubiquitous autofluorescence signals (mostly arising from the skin and gut), which need to be separated from those of targeted fluorophores. Fluorescence-based imaging is also affected by absorbing and scattering properties of tissue in both the visible and to a lesser extent the near-infrared (NIR) regions. However, the small size of typical animal models (usually mice) often permits the detection of enough light arising even from relatively deep locations to allow the capture of signals with an acceptable signal-to-noise ratio. Multispectral imaging, through its ability to separate autofluorescence from label fluorescence, can increase sensitivity as much as 300 times compared to conventional approaches, and concomitantly improve quantitative accuracy. In the NIR region, autofluorescence, while still significant, poses less of a problem. However, the task of disentangling signals from multiple fluorophores remains. Multispectral imaging allows the separation of five or more fluorophores, with each signal quantitated and visualized separately. Preclinical small animal imaging is often accompanied by microscopic analysis, both before and after the in vivo phase. This can involve tissue culture manipulations and/or histological examination of fixed or frozen tissue. Due to the same advantages in sensitivity, quantitation, and multiplexing, microscopy-based multispectral techniques form an excellent complement to in vivo imaging.

  4. Likelihood ratio tests for linkage and linkage disequilibrium: Asymptotic distribution and power

    SciTech Connect

    1996-05-01

    Terwilliger proposes an interesting likelihood ratio test for linkage disequilibrium that appears conservative under the null hypothesis and powerful when one of several alleles is positively associated with the disease. We discuss in detail the aspects of linkage disequilibrium with a simpler asymptotic distribution. 3 refs.

  5. A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry.

    PubMed

    Spiro, A; Lowe, M; Brown, D

    2000-10-01

    A new multiplexed, bead-based method which utilizes nucleic acid hybridizations on the surface of microscopic polystyrene spheres to identify specific sequences in heterogeneous mixtures of DNA sequences is described. The method consists of three elements: beads (5.6-microm diameter) with oligomer capture probes attached to the surface, three fluorophores for multiplexed detection, and flow cytometry instrumentation. Two fluorophores are impregnated within each bead in varying amounts to create different bead types, each associated with a unique probe. The third fluorophore is a reporter. Following capture of fluorescent cDNA sequences from environmental samples, the beads are analyzed by flow cytometric techniques which yield a signal intensity for each capture probe proportional to the amount of target sequences in the analyte. In this study, a direct hybrid capture assay was developed and evaluated with regard to sequence discrimination and quantitation of abundances. The target sequences (628 to 728 bp in length) were obtained from the 16S/23S intergenic spacer region of microorganisms collected from polluted groundwater at the nuclear waste site in Hanford, Wash. A fluorescence standard consisting of beads with a known number of fluorescent DNA molecules on the surface was developed, and the resolution, sensitivity, and lower detection limit for measuring abundances were determined. The results were compared with those of a DNA microarray using the same sequences. The bead method exhibited far superior sequence discrimination and possesses features which facilitate accurate quantitation. PMID:11010868

  6. Rapid point-of-care multiplex immunodetection using two-dimensional microarray technology

    NASA Astrophysics Data System (ADS)

    Chuang, Frank Y. S.; Gutierrez, Dora M.; Nguyen, Christine P.; Johnson, David C.; Palmer, Richard A.; Richards, James B.; Chang, John T.; Visuri, Steven R.; Colston, Bill W., Jr.

    2003-07-01

    In response to a broad-based need for point-of-care multiplex diagnostic capability, we have developed a novel hybrid platform to analyze optically encoded microspheres arranged on a 2-dimensional planar array. The microspheres which we have initially selected are developed by Luminex Inc. as substrates for sandwich-type fluorescent immunoassays and are typically used in conjunction with a customized flow analyzer. CCD-based optics are the essential feature which enables the development of a rugged diagnostic instrument which can be scaled for point-of-care applications. We have characterized the Multiplex Immunoassay Diagnostic System (MIDS) using a benchtop prototype built around a conventional 12-bit CCD. This system is capable of resolving up to 6 discrete classes of fluorescent microbeads, and measuring their corresponding reporter signal. The MIDS sensitivity to the phycoerythrin (PE) reporter compared favorably to that of the reference Luminex flow system, and is capable of identifying viral, bacterial, and protein simulants in laboratory samples, at concentrations less than 1μg/ml. The ability to resolve small differences in the average PE fluorescence is a direct function of CCD performance, and may be a necessary trade-off for developing a portable and economical detection system. However, we are confident that the MIDS platform can easily be scaled to meet the nominal requirements of any given point-of-care or screening application, and furthermore provide much-needed diagnostic functionality in this particular environment.

  7. A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry.

    PubMed

    Spiro, A; Lowe, M; Brown, D

    2000-10-01

    A new multiplexed, bead-based method which utilizes nucleic acid hybridizations on the surface of microscopic polystyrene spheres to identify specific sequences in heterogeneous mixtures of DNA sequences is described. The method consists of three elements: beads (5.6-microm diameter) with oligomer capture probes attached to the surface, three fluorophores for multiplexed detection, and flow cytometry instrumentation. Two fluorophores are impregnated within each bead in varying amounts to create different bead types, each associated with a unique probe. The third fluorophore is a reporter. Following capture of fluorescent cDNA sequences from environmental samples, the beads are analyzed by flow cytometric techniques which yield a signal intensity for each capture probe proportional to the amount of target sequences in the analyte. In this study, a direct hybrid capture assay was developed and evaluated with regard to sequence discrimination and quantitation of abundances. The target sequences (628 to 728 bp in length) were obtained from the 16S/23S intergenic spacer region of microorganisms collected from polluted groundwater at the nuclear waste site in Hanford, Wash. A fluorescence standard consisting of beads with a known number of fluorescent DNA molecules on the surface was developed, and the resolution, sensitivity, and lower detection limit for measuring abundances were determined. The results were compared with those of a DNA microarray using the same sequences. The bead method exhibited far superior sequence discrimination and possesses features which facilitate accurate quantitation.

  8. Delay grid multiplexing: simple time-based multiplexing and readout method for silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Won, Jun Yeon; Ko, Guen Bae; Lee, Jae Sung

    2016-10-01

    In this paper, we propose a fully time-based multiplexing and readout method that uses the principle of the global positioning system. Time-based multiplexing allows simplifying the multiplexing circuits where the only innate traces that connect the signal pins of the silicon photomultiplier (SiPM) channels to the readout channels are used as the multiplexing circuit. Every SiPM channel is connected to the delay grid that consists of the traces on a printed circuit board, and the inherent transit times from each SiPM channel to the readout channels encode the position information uniquely. Thus, the position of each SiPM can be identified using the time difference of arrival (TDOA) measurements. The proposed multiplexing can also allow simplification of the readout circuit using the time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA), where the time-over-threshold (ToT) is used to extract the energy information after multiplexing. In order to verify the proposed multiplexing method, we built a positron emission tomography (PET) detector that consisted of an array of 4  ×  4 LGSO crystals, each with a dimension of 3  ×  3  ×  20 mm3, and one- to-one coupled SiPM channels. We first employed the waveform sampler as an initial study, and then replaced the waveform sampler with an FPGA-TDC to further simplify the readout circuits. The 16 crystals were clearly resolved using only the time information obtained from the four readout channels. The coincidence resolving times (CRTs) were 382 and 406 ps FWHM when using the waveform sampler and the FPGA-TDC, respectively. The proposed simple multiplexing and readout methods can be useful for time-of-flight (TOF) PET scanners.

  9. ASTN1 and alcohol dependence: family-based association analysis in multiplex alcohol dependence families.

    PubMed

    Hill, Shirley Y; Weeks, Daniel E; Jones, Bobby L; Zezza, Nicholas; Stiffler, Scott

    2012-06-01

    A previous genome-wide linkage study of alcohol dependence (AD) in multiplex families found a suggestive linkage result for a region on Chromosome 1 near microsatellite markers D1S196 and D1S2878. The ASTN1 gene is in this region, a gene previously reported to be associated with substance abuse, bipolar disorder and schizophrenia. Using the same family data consisting of 330 individuals with phenotypic data and DNA, finer mapping of a 26 cM region centered on D1S196 was undertaken using SNPs with minor allele frequency (MAF) ≥ 0.15 and pair-wise linkage disequilibrium (LD) of r(2) < 0.8 using the HapMap CEU population. Significant FBAT P-values for SNPs within the ASTN1 gene were observed for four SNPs (rs465066, rs228008, rs6668092, and rs172917), the most significant, rs228008, within intron 8 had a P-value of 0.001. Using MQLS, which allows for inclusion of all families, we find three of these SNPs with MQLS P-values < 0.003. In addition, two additional neighboring SNPs (rs10798496 and rs6667588) showed significance at P = 0.002 and 0.03, respectively. Haplotype analysis was performed using the haplotype-based test function of FBAT for a block that included rs228008, rs6668092, and rs172917. This analysis found one block (GCG) over-transmitted and another (ATA) under-transmitted to affected offspring. Linkage analysis identified a region consistent with the association results. Family-based association analysis shows the ASTN1 gene significantly associated with alcohol dependence. The potential importance of the ASTN1 gene for AD risk may be related its role in glial-guided neuronal migration.

  10. Immunity of multiplex networks via acquaintance vaccination

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhao, Da-Wei; Wang, Lin; Sun, Gui-Quan; Jin, Zhen

    2015-11-01

    How to find the effective approach of immunizing a population is one open question in the research of complex systems. Up to now, there have been a great number of works focusing on the efficiency of various immunization strategies. However, the majority of these existing achievements are limited to isolated networks, how immunization affects disease spreading in multiplex networks seems to need further exploration. In this letter, we explore the impact of the acquaintance immunization in multiplex networks, where two kinds of immunization strategies, multiplex node-based acquaintance immunization and layer node-based acquaintance immunization, are proposed. With the generating function method, our theoretical framework is able to accurately calculate the critical immunization threshold which is one of the most important indexes to predict the epidemic regime. Moreover, we further uncover that, with the increment of degree correlation between network layers, the immunization threshold declines for multiplex node-based acquaintance immunization, but slowly increases for layer node-based acquaintance immunization.

  11. Microwave multiplex readout for superconducting sensors

    NASA Astrophysics Data System (ADS)

    Ferri, E.; Becker, D.; Bennett, D.; Faverzani, M.; Fowler, J.; Gard, J.; Giachero, A.; Hays-Wehle, J.; Hilton, G.; Maino, M.; Mates, J.; Puiu, A.; Nucciotti, A.; Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L.

    2016-07-01

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the 163Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of 163Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  12. Moving through a multiplex holographic scene

    NASA Astrophysics Data System (ADS)

    Mrongovius, Martina

    2013-02-01

    This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.

  13. Development of the first standardised panel of two new microsatellite multiplex PCRs for gilthead seabream (Sparus aurata L.).

    PubMed

    Lee-Montero, I; Navarro, A; Borrell, Y; García-Celdrán, M; Martín, N; Negrín-Báez, D; Blanco, G; Armero, E; Berbel, C; Zamorano, M J; Sánchez, J J; Estévez, A; Ramis, G; Manchado, M; Afonso, J M

    2013-08-01

    The high number of multiplex PCRs developed for gilthead seabream (Sparus aurata L.) from many different microsatellite markers does not allow comparison among populations. This highlights the need for developing a reproducible panel of markers, which can be used with safety and reliability by all users. In this study, the first standardised panel of two new microsatellite multiplex PCRs was developed for this species. Primers of 138 specific microsatellites from the genetic linkage map were redesigned and evaluated according to their genetic variability, allele size range and genotyping reliability. A protocol to identify and classify genotyping errors or potential errors was proposed to assess the reliability of each marker. Two new multiplex PCRs from the best assessed markers were designed with 11 markers in each, named SMsa1 and SMsa2 (SuperMultiplex Sparus aurata). Three broodstocks (59, 47 and 98 breeders) from different Spanish companies, and a sample of 80 offspring from each one, were analysed to validate the usefulness of these multiplexes in the parental assignation. It was possible to assign each offspring to a single parent pair (100% success) using the exclusion method with SMsa1 and/or SMsa2. In each genotyped a reference sample (Ref-sa) was used, and its DNA is available on request similar to the kits of bin set to genotype by genemapper (v.3.7) software (kit-SMsa1 and kit-SMsa2). This will be a robust and effective tool for pedigree analysis or characterisation of populations and will be proposed as an international panel for this species.

  14. Exclusion of close linkage between the synaptic vesicular monoamine transporter locus and schizophrenia spectrum disorders

    SciTech Connect

    Persico, A.M.; Uhl, G.R.; Wang, Zhe Wu

    1995-12-18

    The principal brain synaptic vesicular monoamine transporter (VMAT2) is responsible for the reuptake of serotonin, dopamine, norepinephrine, epinephrine, and histamine from the cytoplasm into synaptic vesicles, thus contributing to determination of the size of releasable neurotransmitter vesicular pools. Potential involvement of VMAT2 gene variants in the etiology of schizophrenia and related disorders was tested using polymorphic VMAT2 gene markers in 156 subjects from 16 multiplex pedigrees with schizophrenia, schizophreniform, schizoaffective, and schizotypal disorders and mood incongruent psychotic depression. Assuming genetic homogeneity, complete ({theta} = 0.0) linkage to the schizophrenia spectrum was excluded under both dominant and recessive models. Allelic variants at the VMAT2 locus do not appear to provide major genetic contributions to the etiology of schizophrenia spectrum disorders in these pedigrees. 16 refs.

  15. Private Medical Record Linkage with Approximate Matching

    PubMed Central

    Durham, Elizabeth; Xue, Yuan; Kantarcioglu, Murat; Malin, Bradley

    2010-01-01

    Federal regulations require patient data to be shared for reuse in a de-identified manner. However, disparate providers often share data on overlapping populations, such that a patient’s record may be duplicated or fragmented in the de-identified repository. To perform unbiased statistical analysis in a de-identified setting, it is crucial to integrate records that correspond to the same patient. Private record linkage techniques have been developed, but most methods are based on encryption and preclude the ability to determine similarity, decreasing the accuracy of record linkage. The goal of this research is to integrate a private string comparison method that uses Bloom filters to provide an approximate match, with a medical record linkage algorithm. We evaluate the approach with 100,000 patients’ identifiers and demographics from the Vanderbilt University Medical Center. We demonstrate that the private approximation method achieves sensitivity that is, on average, 3% higher than previous methods. PMID:21346965

  16. Intragroup Emotions: Physiological Linkage and Social Presence.

    PubMed

    Järvelä, Simo; Kätsyri, Jari; Ravaja, Niklas; Chanel, Guillaume; Henttonen, Pentti

    2016-01-01

    We investigated how technologically mediating two different components of emotion-communicative expression and physiological state-to group members affects physiological linkage and self-reported feelings in a small group during video viewing. In different conditions the availability of second screen text chat (communicative expression) and visualization of group level physiological heart rates and their dyadic linkage (physiology) was varied. Within this four person group two participants formed a physically co-located dyad and the other two were individually situated in two separate rooms. We found that text chat always increased heart rate synchrony but HR visualization only with non-co-located dyads. We also found that physiological linkage was strongly connected to self-reported social presence. The results encourage further exploration of the possibilities of sharing group member's physiological components of emotion by technological means to enhance mediated communication and strengthen social presence. PMID:26903913

  17. Linkage and association to genetic markers.

    PubMed

    Elston, R C

    1995-01-01

    Genetic markers that are sufficiently polymorphic (as measured by their heterozygosities) can be used in linkage and association analyses to detect Mendelian segregation underlying disease phenotypes. Each type of analysis can either be based on a specific genetic model or not make any assumptions about the mode of inheritance of the disease. Principles underlying these methods are reviewed, and the assumptions underlying them stressed. Association analyses are more powerful, provided there is linkage disequilibrium between the marker and disease loci; however, only linkage analyses have power in the absence of such disequilibrium. For this reason, models that allow for both kinds of tests are preferred, and such models must adequately approximate the complexity of the disease being studied.

  18. A Genetic Linkage Map for Cattle

    PubMed Central

    Bishop, M. D.; Kappes, S. M.; Keele, J. W.; Stone, R. T.; Sunden, SLF.; Hawkins, G. A.; Toldo, S. S.; Fries, R.; Grosz, M. D.; Yoo, J.; Beattie, C. W.

    1994-01-01

    We report the most extensive physically anchored linkage map for cattle produced to date. Three-hundred thirteen genetic markers ordered in 30 linkage groups, anchored to 24 autosomal chromosomes (n = 29), the X and Y chromosomes, four unanchored syntenic groups and two unassigned linkage groups spanning 2464 cM of the bovine genome are summarized. The map also assigns 19 type I loci to specific chromosomes and/or syntenic groups and four cosmid clones containing informative microsatellites to chromosomes 13, 25 and 29 anchoring syntenic groups U11, U7 and U8, respectively. This map provides the skeletal framework prerequisite to development of a comprehensive genetic map for cattle and analysis of economic trait loci (ETL). PMID:7908653

  19. A microsatellite linkage map of Drosophila mojavensis

    PubMed Central

    Staten, Regina; Schully, Sheri Dixon; Noor, Mohamed AF

    2004-01-01

    Background Drosophila mojavensis has been a model system for genetic studies of ecological adaptation and speciation. However, despite its use for over half a century, no linkage map has been produced for this species or its close relatives. Results We have developed and mapped 90 microsatellites in D. mojavensis, and we present a detailed recombinational linkage map of 34 of these microsatellites. A slight excess of repetitive sequence was observed on the X-chromosome relative to the autosomes, and the linkage groups have a greater recombinational length than the homologous D. melanogaster chromosome arms. We also confirmed the conservation of Muller's elements in 23 sequences between D. melanogaster and D. mojavensis. Conclusions The microsatellite primer sequences and localizations are presented here and made available to the public. This map will facilitate future quantitative trait locus mapping studies of phenotypes involved in adaptation or reproductive isolation using this species. PMID:15163351

  20. Intragroup Emotions: Physiological Linkage and Social Presence

    PubMed Central

    Järvelä, Simo; Kätsyri, Jari; Ravaja, Niklas; Chanel, Guillaume; Henttonen, Pentti

    2016-01-01

    We investigated how technologically mediating two different components of emotion—communicative expression and physiological state—to group members affects physiological linkage and self-reported feelings in a small group during video viewing. In different conditions the availability of second screen text chat (communicative expression) and visualization of group level physiological heart rates and their dyadic linkage (physiology) was varied. Within this four person group two participants formed a physically co-located dyad and the other two were individually situated in two separate rooms. We found that text chat always increased heart rate synchrony but HR visualization only with non-co-located dyads. We also found that physiological linkage was strongly connected to self-reported social presence. The results encourage further exploration of the possibilities of sharing group member's physiological components of emotion by technological means to enhance mediated communication and strengthen social presence. PMID:26903913

  1. A novel IPTV program multiplex access system to EPON

    NASA Astrophysics Data System (ADS)

    Xu, Xian; Liu, Deming; He, Wei; Lu, Xi

    2007-11-01

    With the rapid development of high speed networks, such as Ethernet Passive Optical Network (EPON), traffic patterns in access networks have evolved from traditional text-oriented service to the mixed text-, voice- and video- based services, leading to so called "Triple Play". For supporting IPTV service in EPON access network infrastructure, in this article we propose a novel IPTV program multiplex access system to EPON, which enables multiple IPTV program source servers to seamlessly access to IPTV service access port of optical line terminal (OLT) in EPON. There are two multiplex schemes, namely static multiplex scheme and dynamic multiplex scheme, in implementing the program multiplexing. Static multiplex scheme is to multiplex all the IPTV programs and forward them to the OLT, regardless of the need of end-users. While dynamic multiplex scheme can dynamically multiplex and forward IPTV programs according to what the end-users actually demand and those watched by no end-user would not be multiplexed. By comparing these two schemes, a reduced traffic of EPON can be achieved by using dynamic multiplex scheme, especially when most end-users are watching the same few IPTV programs. Both schemes are implemented in our system, with their hardware and software designs described.

  2. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    PubMed

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  3. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    PubMed

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  4. Some methods for blindfolded record linkage

    PubMed Central

    Churches, Tim; Christen, Peter

    2004-01-01

    Background The linkage of records which refer to the same entity in separate data collections is a common requirement in public health and biomedical research. Traditionally, record linkage techniques have required that all the identifying data in which links are sought be revealed to at least one party, often a third party. This necessarily invades personal privacy and requires complete trust in the intentions of that party and their ability to maintain security and confidentiality. Dusserre, Quantin, Bouzelat and colleagues have demonstrated that it is possible to use secure one-way hash transformations to carry out follow-up epidemiological studies without any party having to reveal identifying information about any of the subjects – a technique which we refer to as "blindfolded record linkage". A limitation of their method is that only exact comparisons of values are possible, although phonetic encoding of names and other strings can be used to allow for some types of typographical variation and data errors. Methods A method is described which permits the calculation of a general similarity measure, the n-gram score, without having to reveal the data being compared, albeit at some cost in computation and data communication. This method can be combined with public key cryptography and automatic estimation of linkage model parameters to create an overall system for blindfolded record linkage. Results The system described offers good protection against misdeeds or security failures by any one party, but remains vulnerable to collusion between or simultaneous compromise of two or more parties involved in the linkage operation. In order to reduce the likelihood of this, the use of last-minute allocation of tasks to substitutable servers is proposed. Proof-of-concept computer programmes written in the Python programming language are provided to illustrate the similarity comparison protocol. Conclusion Although the protocols described in this paper are not

  5. IRT test equating in complex linkage plans.

    PubMed

    Battauz, Michela

    2013-07-01

    Linkage plans can be rather complex, including many forms, several links, and the connection of forms through different paths. This article studies item response theory equating methods for complex linkage plans when the common-item nonequivalent group design is used. An efficient way to average equating coefficients that link the same two forms through different paths will be presented and the asymptotic standard errors of indirect and average equating coefficients are derived. The methodology is illustrated using simulations studies and a real data example. PMID:25106395

  6. A linkage study of malignant hyperthermia (MH).

    PubMed

    Bender, K; Senff, H; Wienker, T F; Spiess-Kiefer, C; Lehmann-Horn, F

    1990-03-01

    Five German families segregating for malignant hyperthermia (MH) were tested for linkage relationships using 35 serological and biochemical markers. Slightly positive lod scores were obtained with MNS, EsD, C3 and P. The relation with the C3 locus on chromosome 19p13.3-13.2 (z = 0.72, theta = 0.11) is of some interest, since genetic linkage of MH with several polymorphic DNA markers from the 19q12-13.2 region has been reported (McCarthy et al. 1989).

  7. TES Detector Noise Limited Readout Using SQUID Multiplexers

    NASA Technical Reports Server (NTRS)

    Staguhn, J. G.; Benford, D. J.; Chervenak, J. A.; Khan, S. A.; Moseley, S. H.; Shafer, R. A.; Deiker, S.; Grossman, E. N.; Hilton, G. C.; Irwin, K. D.

    2004-01-01

    The availability of superconducting Transition Edge Sensors (TES) with large numbers of individual detector pixels requires multiplexers for efficient readout. The use of multiplexers reduces the number of wires needed between the cryogenic electronics and the room temperature electronics and cuts the number of required cryogenic amplifiers. We are using an 8 channel SQUID multiplexer to read out one-dimensional TES arrays which are used for submillimeter astronomical observations. We present results from test measurements which show that the low noise level of the SQUID multiplexers allows accurate measurements of the TES Johnson noise, and that in operation, the readout noise is dominated by the detector noise. Multiplexers for large number of channels require a large bandwidth for the multiplexed readout signal. We discuss the resulting implications for the noise performance of these multiplexers which will be used for the readout of two dimensional TES arrays in next generation instruments.

  8. Capacity limits of spatially multiplexed free-space communication

    NASA Astrophysics Data System (ADS)

    Zhao, Ningbo; Li, Xiaoying; Li, Guifang; Kahn, Joseph M.

    2015-12-01

    Increasing the information capacity per unit bandwidth has been a perennial goal of scientists and engineers. Multiplexing of independent degrees of freedom, such as wavelength, polarization and more recently space, has been a preferred method to increase capacity in both radiofrequency and optical communication. Orbital angular momentum, a physical property of electromagnetic waves discovered recently, has been proposed as a new degree of freedom for multiplexing to achieve capacity beyond conventional multiplexing techniques, and has generated widespread and significant interest in the scientific community. However, the capacity of orbital angular momentum multiplexing has not been established or compared to other multiplexing techniques. Here, we show that orbital angular momentum multiplexing is not an optimal technique for realizing the capacity limits of a free-space communication channel and is outperformed by both conventional line-of-sight multi-input multi-output transmission and spatial-mode multiplexing.

  9. Liquid-crystal-on-silicon-based optical add/drop multiplexer for orbital-angular-momentum-multiplexed optical links.

    PubMed

    Huang, Hao; Yue, Yang; Yan, Yan; Ahmed, Nisar; Ren, Yongxiong; Tur, Moshe; Willner, Alan E

    2013-12-01

    We designed an optical add/drop multiplexer for orbital-angular-momentum (OAM)-multiplexed data links by taking advantage of the ring-shaped intensity profile of OAM beams. We demonstrated adding/dropping a single OAM beam from three multiplexed OAM beams using liquid-crystal-on-silicon-based diffraction optical elements. For multiplexed OAM beams carrying 100 Gbit/s quadrature phase-shift-keying data, a power penalty of <2 dB is observed to achieve a bit-error rate of 2.0×10(-3) for each channel of the add/drop multiplexer.

  10. All-plastic miniature fluorescence microscope for point-of-care readout of bead-based bioassays

    NASA Astrophysics Data System (ADS)

    Forcucci, Alessandra; Pawlowski, Michal Emanuel; Crannell, Zachary; Pavlova, Ina; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S.

    2015-10-01

    A number of new platforms have been developed for multiplexed bioassays that rely on imaging targeted fluorescent beads labeled with different fluorescent dyes. We developed a compact, low-cost three-dimensional printed fluorescence microscope that can be used as a detector for mutiplexed, bead-based assays to support point-of-care applications. Images obtained with the microscope were analyzed to differentiate multiple analytes in a single sample with a comparable limit of detection to commercially available macroscopic assay platforms.

  11. Multiplexed molecular profiling of prostate cancer specimens using semiconductor quantum dot bioconjugates

    NASA Astrophysics Data System (ADS)

    Xing, Yun; Numora, Takeo; Chung, Leland; Zhau, Haiyen; Nie, Shuming

    2007-02-01

    Quantum dots (QDs) are light emitting semi-conductor nanocrystals with novel optical properties including superior photostability, narrow emission spectra with continuous excitation spectra. These properties make QDs especially suitable for multiplexed fluorescent labeling, live cell imaging, and in vivo animal imaging. The multiplexing potential has been recognized but real applications of biological/clinical significance are few. In this study, we used quantum dots to study epithelial mesenchymal transition (EMT), an important process involved in the bone metastasis of prostate cancer. Two prostate cancer cells lines with distinct molecular profiles, representing the two ends of the EMT process, were selected for this study. Four EMT-related biomarkers including E-cadherin, N-cadherin, Vimentin, and RANKL were stained with QD-antibody conjugates with elongation factor 1alpha as the internal control. Morphological information of the QD-stained cells was obtained by digital-color imaging and quantitative information obtained by spectra analysis using a spectrometer. Two types of analysis were performed: abundance of each biomarker in the same cell line relative to the internal control; and the relative abundance of these markers between the two cell lines. Our results demonstrate the feasibility of QDs for multiplexed profiling of FFPE cells/tissue of clinical significance; however, the standardization and quantification still awaits optimization.

  12. A Protocol for a High-Throughput Multiplex Cell Viability Assay.

    PubMed

    Gilbert, Daniel F; Boutros, Michael

    2016-01-01

    High-throughput cell viability assays are broadly used in RNAi and small molecule screening experiments to identify compounds that selectively kill cancer cells or as counter screens to exclude the compounds that have a generic effect on cell growth. While there are several assaying techniques available, cellular fitness is often assessed on the basis of one single and often rather indirect physiological indicator. This can lead to inconsistencies and poor correspondence between cell viability screening experiments, conducted under comparable conditions but with different viability indicators. Multiplexing, i.e., the combination of different individual assaying techniques in one experiment and subsequent comparative analysis of multiparametric data can decrease inter-assay variability and increase dataset concordance. Here, we describe a protocol for a multiplexing approach for high-throughput cell viability screening to address the issues encountered in the classical strategy using a single fitness indicator described above. The method combines a biochemical, luminescence-based approach and two fluorescence-based assay types. The biochemical method assesses cellular fitness by quantifying intracellular ATP concentration. Calcein labeling reflects cell fitness through membrane integrity and indirect measurement of ATP-dependent enzymatic esterase activity. Hoechst DNA stain correlates cell fitness with cellular DNA content. The presented multiplexing approach is suitable for low, medium and high-throughput screening and has the potential to decrease inter-assay variability and increase dataset concordance as well as reproducibility of experimental results. PMID:27581285

  13. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections.

    PubMed

    Prost, Sandrine; Kishen, Ria E B; Kluth, David C; Bellamy, Christopher O C

    2016-01-01

    The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family). Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705), Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches. PMID:27632367

  14. Choice of Illumination System & Fluorophore for Multiplex Immunofluorescence on FFPE Tissue Sections

    PubMed Central

    Kishen, Ria E. B.; Kluth, David C.; Bellamy, Christopher O. C.

    2016-01-01

    The recent availability of novel dyes and alternative light sources to facilitate complex tissue immunofluorescence studies such as multiplex labelling has not been matched by reports critically evaluating the considerations and relative benefits of these new tools, particularly in combination. Product information is often limited to wavelengths used for older fluorophores (FITC, TRITC & corresponding Alexa dyes family). Consequently, novel agents such as Quantum dots are not widely appreciated or used, despite highly favourable properties including extremely bright emission, stability and potentially reduced tissue autofluorescence at the excitation wavelength. Using spectral analysis, we report here a detailed critical appraisal and comparative evaluation of different light sources and fluorophores in multiplex immunofluorescence of clinical biopsy sections. The comparison includes mercury light, metal halide and 3 different LED-based systems, using 7 Qdots (525, 565, 585, 605, 625, 705), Cy3 and Cy5. We discuss the considerations relevant to achieving the best combination of light source and fluorophore for accurate multiplex fluorescence quantitation. We highlight practical limitations and confounders to quantitation with filter-based approaches. PMID:27632367

  15. Ohio At-Risk Linkage Team Project. A Report on Three State Team Projects. Linkage Survey. Linkage Workshop for Local Teams. Identification of Exemplary Local Linkages.

    ERIC Educational Resources Information Center

    Imel, Susan; Sandoval, Gloria T.

    To implement an action plan developed during an institute on building linkages for at-risk youth and adults through vocational technical education, a team of representatives from the Ohio Departments of Education and Human Services undertook three activities. First, a survey was sent to 832 Ohio educators and human services personnel to identify…

  16. ARE COASTAL WETLAND-LAKE LINKAGES IMPORTANT?

    EPA Science Inventory

    Because coastal werlands typically comprise only a small percentage of the overall surface area in large lakes, an assumption has often been made that functional links between wetlands and the lake proper are of little significance. Recent investigations of functional linkages be...

  17. Composite Bloom Filters for Secure Record Linkage

    PubMed Central

    Durham, Elizabeth Ashley; Kantarcioglu, Murat; Xue, Yuan; Toth, Csaba; Kuzu, Mehmet; Malin, Bradley

    2014-01-01

    The process of record linkage seeks to integrate instances that correspond to the same entity. Record linkage has traditionally been performed through the comparison of identifying field values (e.g., Surname), however, when databases are maintained by disparate organizations, the disclosure of such information can breach the privacy of the corresponding individuals. Various private record linkage (PRL) methods have been developed to obscure such identifiers, but they vary widely in their ability to balance competing goals of accuracy, efficiency and security. The tokenization and hashing of field values into Bloom filters (BF) enables greater linkage accuracy and efficiency than other PRL methods, but the encodings may be compromised through frequency-based cryptanalysis. Our objective is to adapt a BF encoding technique to mitigate such attacks with minimal sacrifices in accuracy and efficiency. To accomplish these goals, we introduce a statistically-informed method to generate BF encodings that integrate bits from multiple fields, the frequencies of which are provably associated with a minimum number of fields. Our method enables a user-specified tradeoff between security and accuracy. We compare our encoding method with other techniques using a public dataset of voter registration records and demonstrate that the increases in security come with only minor losses to accuracy. PMID:25530689

  18. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    PubMed

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes. PMID:26661945

  19. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    PubMed

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.

  20. Three Degree of Freedom Parallel Mechanical Linkage

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D. (Inventor)

    1998-01-01

    A three degree of freedom parallel mechanism or linkage that couples three degree of freedom translational displacements at an endpoint, such as a handle, a hand grip, or a robot tool, to link rotations about three axes that are fixed with respect to a common base or ground link. The mechanism includes a three degree of freedom spherical linkage formed of two closed loops, and a planar linkage connected to the endpoint. The closed loops are rotatably interconnected, and made of eight rigid links connected by a plurality of single degree of freedom revolute joints. Three of these revolute joints are base joints and are connected to a common ground. such that the axis lines passing through the revolute joints intersect at a common fixed center point K forming the center of a spherical work volume in which the endpoint is capable of moving. 'Me three degrees of freedom correspond to the spatial displacement of the endpoint, for instance. The mechanism provides a new overall spatial kinematic linkage composed of a minimal number of rigid links and rotary joints. The mechanism has improved mechanical stiffness, and conveys mechanical power bidirectionally between the human operator and the electromechanical actuators. It does not require gears, belts. cable, screw or other types of transmission elements, and is useful in applications requiring full backdrivability. Thus, this invention can serve as the mechanical linkage for actively powered devices such as compliant robotic manipulators and force-reflecting hand controllers, and passive devices such as manual input devices for computers and other systems.

  1. Anorganic fluorescence reference materials for decay time of fluorescence emission

    NASA Astrophysics Data System (ADS)

    Engel, A.; Ottermann, C.; Klahn, J.; Korb, T.; Resch-Genger, U.; Hoffmann, K.; Kynast, U.; Rupertus, V.

    2008-02-01

    Fluorescence techniques are known for their high sensitivity and are widely used as analytical tools, detection methods and imaging applications for product and process control, material sciences, environmental and bio-technical analysis, molecular genetics, cell biology, medical diagnostics, and drug screening. According to DIN/ISO 17025 certified standards are used for steady state fluorescence diagnostics, a method having the drawback of giving relative values for fluorescence intensities only. Therefore reference materials for a quantitative characterization have to be related directly to the materials under investigation. In order to evaluate these figures it is necessary to calculate absolute numbers such as absorption/excitation cross sections and quantum yield. This has been done for different types of dopands in different materials such as glass, glass ceramics, crystals or nano crystalline material embedded in polymer matrices. Samples doped with several fluophores of different emission wavelengths and decay times are required for fluorescent multiplexing applications. Decay times shorter than 100 ns are of special interest. In addition, a proper knowledge is necessary of quantum efficiency in highly scattering media. Recently, quantum efficiency in YAG:Ce glass ceramics has been successfully investigated. Glass and glass ceramics doped with threefold charged rare earth elements are available. However, these samples have the disadvantage of emission decay times much longer than 1 microsecond, due to the excitation and emission of their optical forbidden electronic transitions. Therefore first attempts have been made to produce decay-time standards based on organic and inorganic fluophores. Stable LUMOGEN RED pigments and YAG:Ce phosphors are diluted simultaneously in silicone matrices using a wide range of concentrations between 0.0001 and 2 wt%. Organic LUMOGEN RED has decay times in the lower nanosecond range with a slight dependency on concentration

  2. Development of two multiplex PCR systems for the analysis of 14 X-chromosomal STR loci in a southern Brazilian population sample.

    PubMed

    Penna, Larissa Siqueira; Silva, Fernanda Gamio; Salim, Patricia Hartstein; Ewald, Gisele; Jobim, Mariana; Magalhães, José Antônio de Azevedo; Jobim, Luiz Fernando

    2012-03-01

    We developed two multiplex systems for the coamplification of X-chromosomal short tandem repeats (STRs). X-Multiplex 1 consisted of DXS6807, DXS6800, DXS7424, DXS101, GATA172D05 and HPRTB and X-Multiplex 2 consisted of DXS8378, DXS9898, DXS6801, DXS6809, DXS6789, DXS7133, DXS8377 and DXS7423. In addition, we present allele frequencies for these loci in a south Brazilian population comprising 124 females and 141 males and haplotype frequencies of linked markers for males. Hardy-Weinberg equilibrium (HWE) was tested in the female sample and no significant deviations were found after applying Bonferroni's correction. Linkage disequilibrium (LD) tests were performed for all pairs of loci and three significant results, out of 91 pairwise comparisons, were obtained. We did not find any evidence of linkage disequilibrium between close or linked markers. The power of discrimination in females (PD(F)) varied between 0.832 for DXS6801 and 0.987 for DXS8377. DXS6801 was the least informative marker (PIC = 0.605), while DXS8377 was the most polymorphic (PIC = 0.911), followed by DXS101 (PIC = 0.872). Genetic distances were estimated for each STR marker applying the calculation of F (ST) between our total sample and other studies from Brazil, Europe, Asia and Africa. The most distant populations were Japan, Korea, China, Ghana and Uganda.

  3. Linkage mapping of the locus for inherited ovine arthrogryposis (IOA) to sheep chromosome 5.

    PubMed

    Murphy, Angela M; MacHugh, David E; Park, Stephen D E; Scraggs, Erik; Haley, Chris S; Lynn, David J; Boland, Maurice P; Doherty, Michael L

    2007-01-01

    Arthrogryposis is a congenital malformation affecting the limbs of newborn animals and infants. Previous work has demonstrated that inherited ovine arthrogryposis (IOA) has an autosomal recessive mode of inheritance. Two affected homozygous recessive (art/art) Suffolk rams were used as founders for a backcross pedigree of half-sib families segregating the IOA trait. A genome scan was performed using 187 microsatellite genetic markers and all backcross animals were phenotyped at birth for the presence and severity of arthrogryposis. Pairwise LOD scores of 1.86, 1.35, and 1.32 were detected for three microsatellites, BM741, JAZ, and RM006, that are located on sheep Chr 5 (OAR5). Additional markers in the region were identified from the genetic linkage map of BTA7 and by in silico analyses of the draft bovine genome sequence, three of which were informative. Interval mapping of all autosomes produced an F value of 21.97 (p < 0.01) for a causative locus in the region of OAR5 previously flagged by pairwise linkage analysis. Inspection of the orthologous region of HSA5 highlighted a previously fine-mapped locus for human arthrogryposis multiplex congenita neurogenic type (AMCN). A survey of the HSA5 genome sequence identified plausible candidate genes for both IOA and human AMCN.

  4. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  5. Spin and wavelength multiplexed nonlinear metasurface holography

    NASA Astrophysics Data System (ADS)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  6. Spin and wavelength multiplexed nonlinear metasurface holography

    PubMed Central

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam–Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  7. Multiplexing Short Primers for Viral Family PCR

    SciTech Connect

    Gardner, S N; Hiddessen, A L; Hara, C A; Williams, P L; Wagner, M; Colston, B W

    2008-06-26

    We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets for large, diverse, and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers ({approx}3700 18-mers or {approx}2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus, hemagglutinin and neuraminidase segments of influenza A virus, Norwalk virus, and HIV-1.

  8. Integrated mode converter for mode division multiplexing

    NASA Astrophysics Data System (ADS)

    Perez-Galacho, Diego; Alonso-Ramos, Carlos Alberto; Marris-Morini, Delphine; Vakarin, Vladyslav; Le Roux, Xavier; Ortega-Moñux, Alejandro; Wangüemert-Perez, Juan Gonzalo; Vivien, Laurent

    2016-05-01

    The ever growing demands of bandwidth in optical communication systems are making traditional Wavelength Division Multiplexing (WDM) based systems to reach its limit. In order to cope with future bandwidth demand is necessary to use new levels of orthogonality, such as the waveguide mode or the polarization state. Mode Division Multiplexing (MDM) has recently attracted attention as a possible solution to increase aggregate bandwidth. In this work we discuss the proposition a of mode converter that can cover the whole C-Band of optical communications. The Mode Converter is based on two Multimode Interference (MMI) couplers and a phase shifter. Insertion loss (IL) below 0.2 dB and Extinction ratio (ER) higher than 20 dB in a broad bandwidth range of 1.5 μm to 1.6 μm have been estimated. The total length of the device is less than 30 μm.

  9. An LED multiplexer with improved efficiency

    NASA Astrophysics Data System (ADS)

    Cobb, Joshua

    2008-09-01

    Light emitting diodes (LED) have been increasingly used as light sources for projection display. LEDs have numerous advantages as a light source for these applications especially when used with a digital micro-mirror spatial light modulator such as the device offered by Texas Instruments. LEDs create an expanded color gamut, they can be modulated at very high rates (thus, eliminating the need for a color wheel), and they last longer than other light sources. One disadvantage they have is the luminous output is lower than would be desired for most front projection applications. Smaller pocket projectors have used the LED sources successfully, but the luminous output is limited to between 25 and 100 lumens. One of the areas of light loss in the illumination system is in the multiplexer that combines the three colored LEDs into a coaxial illumination beam. In this paper, this loss is quantified and an alternate multiplexer design is proposed.

  10. Spin and wavelength multiplexed nonlinear metasurface holography.

    PubMed

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-01-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption. PMID:27306147

  11. Dual phase multiplex polymerase chain reaction

    DOEpatents

    Pemov, Alexander; Bavykin, Sergei

    2008-10-07

    Highly specific and sensitive methods were developed for multiplex amplification of nucleic acids on supports such as microarrays. Based on a specific primer design, methods include five types of amplification that proceed in a reaction chamber simultaneously. These relate to four types of multiplex amplification of a target DNA on a solid support, directed by forward and reverse complex primers immobilized to the support and a fifth type--pseudo-monoplex polymerase chain reaction (PCR) of multiple targets in solution, directed by a single pair of unbound universal primers. The addition of the universal primers in the reaction mixture increases the yield over the traditional "bridge" amplification on a solid support by approximately ten times. Methods that provide multitarget amplification and detection of as little as 0.45-4.5.times.10.sup.-12 g (equivalent to 10.sup.2-10.sup.3 genomes) of a bacterial genomic DNA are disclosed.

  12. DAB: Multiplex and system support features

    NASA Astrophysics Data System (ADS)

    Riley, J. L.

    This Report describes the multiplex and system support features of the Eureka 147/DAB digital audio system. It sets out the requirements of all users along the broadcast chain from service providers and broadcaster through to the listener. The contents of the transmission frame are examined drawing the distinction between the main service multiplex and the provision of control information in a separate fast data channel. The concept of the DAB service structure is introduced and the inherent system flexibility for altering the service arrangement is explained. A wide range of service information features builds on those provided in earlier systems, such as RDS (Radio Data System) and is intended to make it easier for a listener to find any required service and to add a further dimension to audio broadcasting. The choices available to users in all of these areas are examined.

  13. Demand and Congestion in Multiplex Transportation Networks

    PubMed Central

    al-Awwad, Zeyad; Jiang, Shan; González, Marta C.

    2016-01-01

    Urban transportation systems are multimodal, sociotechnical systems; however, while their multimodal aspect has received extensive attention in recent literature on multiplex networks, their sociotechnical aspect has been largely neglected. We present the first study of an urban transportation system using multiplex network analysis and validated Origin-Destination travel demand, with Riyadh’s planned metro as a case study. We develop methods for analyzing the impact of additional transportation layers on existing dynamics, and show that demand structure plays key quantitative and qualitative roles. There exist fundamental geometrical limits to the metro’s impact on traffic dynamics, and the bulk of environmental accrue at metro speeds only slightly faster than those planned. We develop a simple model for informing the use of additional, “feeder” layers to maximize reductions in global congestion. Our techniques are computationally practical, easily extensible to arbitrary transportation layers with complex transfer logic, and implementable in open-source software. PMID:27657738

  14. Nanophotonic modal dichroism: mode-multiplexed modulators.

    PubMed

    Das, Susobhan; Fardad, Shima; Kim, Inki; Rho, Junsuk; Hui, Rongqing; Salandrino, Alessandro

    2016-09-15

    As the diffraction limit is approached, device miniaturization to integrate more functionality per area becomes more and more challenging. Here we propose a strategy to increase the functionality-per-area by exploiting the modal properties of a waveguide system. With such an approach the design of a mode-multiplexed nanophotonic modulator relying on the mode-selective absorption of a patterned indium-tin-oxide (ITO) is proposed. Full-wave simulations of a device operating at the telecom wavelength of 1550 nm show that two modes can be independently modulated, while maintaining performances in line with conventional single-mode ITO modulators reported in the recent literature. The proposed design principles can pave the way to a class of mode-multiplexed compact photonic devices able to effectively multiply the functionality-per-area in integrated photonic systems. PMID:27628406

  15. Nucleic acid based fluorescent nanothermometers.

    PubMed

    Ebrahimi, Sara; Akhlaghi, Yousef; Kompany-Zareh, Mohsen; Rinnan, Asmund

    2014-10-28

    Accurate thermometry at micro- and nanoscales is essential in many nanobiotechnological applications. The nanothermometers introduced in this paper are composed of labeled molecular beacons (MBs) comprising gold nanoparticles (AuNPs) on which, depending on application, many MBs of one or more types are immobilized. In this design, three differently labeled MBs with different thermostabilities function as the sensing elements, and AuNPs act as carriers of the MBs and also quenchers of their fluorophores. This flexible design results in a number of nanothermometers with various temperature-sensing ranges. At the lowest temperature, the MBs are in the closed form, where they are quenched. By increasing the temperature, the MBs start to open with respect to their melting points (Tm), and as a result, the fluorescence emission will increase. The temperature resolution of the nanoprobes over a range of 15-60 °C is less than 0.50 °C, which indicates their high sensitivity. Such a good temperature resolution is a result of the specific design of the unusual less stable MBs and also presence of many MBs on AuNPs. The reproducibility and precision of the probes are also satisfactory. The multiplex MB nanoprobe is suitable for thermal imaging by fluorescence microscopy.

  16. External linkage tie permits reduction in ducting system flange thickness

    NASA Technical Reports Server (NTRS)

    Pfleger, R. O.

    1966-01-01

    External linkage tie reduces flange thickness and increases seal efficiency in high pressure ducting and piping systems. The linkage transmits the pressure separating load to the tube wall behind the flange allowing the flange to support only the seal.

  17. Exclusion of linkage between cleft lip with or without cleft palate and markers on chromosomes 4 and 6

    SciTech Connect

    Blanton, S.H.; Malcolm, S.; Winter, R.

    1996-01-01

    Nonsyndromic cleft lip with or without associate cleft palate (CLP) is a common craniofacial defect, occurring in {approximately}1/1,000 live births. While the defect generally occurs sporadically, multiplex families have been reported. Segregation analyses have demonstrated that, in some families, CLP is inherited as an autosomal dominant/codominant disorder with low penetrance. Several clefting loci have been proposed on multiple chromosomes, including 6p24, 4q, and 19q13.1. Association studies and linkage studies suggested a locus that mapped to 6p24. We were unable to confirm this in a linkage study of 12 multigenerational families. A subsequent linkage study by Carinci et al., however, found evidence for linkage to this region in 14 of 21 clefting families. Additionally, Davies et al. studied the chromosomes of three individuals with cleft lip and palate, all of whom had a rearrangement involving 6p24. Their investigation supported a locus at 6p24. Carinci et al. reported that the most likely position for a clefting locus was at D6S89, which is centromeric to EDN1. This is in contrast to the findings of Davies et al., who suggested a placement telomeric to EDN1. F13A, which had been implicated in the initial association studies, is telomeric to EDN1. Thus, the region between F13A and D6S89 encompasses the regions proposed by both Davies et al. and Carinci et al. A second clefting locus, at 4q, was proposed by Beiraghi et al., who studied a single multigenerational family by linkage analysis. Their data suggested a locus near D4S175 and D4S192. 10 refs., 1 tab.

  18. [Multiplex mapping of human cDNAs]. Technical progress report

    SciTech Connect

    Nierman, W.C.

    1991-12-31

    J. Craig Venter, National Institute of Neurological Disorders and Stroke, has begun to identify genes expressed in the human brain by partially sequences cDNA clones. We are collaborating with the Venter group and using their sequence data to develop methods for rapid localization of newly identified cDNAs to human chromosomes. We are applying the ABI automated DNA sequencer to the analysis of fluorescently-tagged PCR products for assigning sequences to individual human chromosomes. The steps in our mapping protocol are (1) to design PCR primers from the Venter laboratory-generated sequence data, (2) to test the primers for specific amplification from human genomic DNA, (3) to use the primers for PCR amplification from a somatic cell hybrid cell mapping panel, (4) to determine the presence or absence of the specific amplification products from each cell line DNA by electrophoretic analysis using the ABI sequencer, and (5) to analyze the pattern of amplification results from the hybrid panel to identify the chromosomal origin of the cDNA sequence. We have demonstrated the principle by mapping 12 sequences or ``Expressed Sequence Tags`` (ESTs), providing primer sequence data for subsequent subchromosomal localizations. We will now concentrate on developing methodology to allow multiplexing the amplification reactions and analysis of the reaction products, to achieve a high throughput with a minimum allocation of resources. This project will generate a data set from which to evaluate strategies to identify functional primer sequences from cDNA sequence data.

  19. [Multiplex mapping of human cDNAs]. Technical progress report

    SciTech Connect

    Nierman, W.C.

    1992-11-01

    We have tested and implemented several protocols to increase productivity for mapping expressed sequence tags EST sequences to human chromosomes. These protocols include adopting PRIMER which permits utilization of batch files, as the standard software for PCR primer design; adding a human 21-only cell line to the NIGMS panel No. 1 to improve discrimination in discordancy analyses involving chromosome 21, adding a monochromosomal hybrid panel to facilitate chromosome assignment of sequences that are amplified from more than 1 chromosome; combining the products of multiple PCR reactions for electrophoretic analysis (pseudoplexing); routinely multiplexing PCR reactions; and automating data entry and analysis as much as possible. We have applied these protocols to assign an overall total of 132 human brain CDNA sequences to individual human chromosomes. PCR primers were designed from ESTS and tested for specific amplification from human genomic DNA. DNA was then amplified using DNA from somatic cell hybrid mapping panels as templates. The amplification products were identified using an automated fluorescence detection system. Chromosomal assignments were made by discordancy analysis. The localized cDNAs include 2 for known human genes, 2 that map to 2 different human chromosomes, and 25 for cDNAs matching existing database records.

  20. Multiplex detection of single-nucleotide variations using molecular beacons.

    PubMed

    Marras, S A; Kramer, F R; Tyagi, S

    1999-02-01

    We demonstrate that single-nucleotide differences in a DNA sequence can be detected in homogeneous assays using molecular beacons. In this method, the region surrounding the site of a sequence variation is amplified in a polymerase chain reaction and the identity of the variant nucleotide is determined by observing which of four differently colored molecular beacons binds to the amplification product. Each of the molecular beacons is perfectly complementary to one variant of the target sequence and each is labeled with a different fluorophore. To demonstrate the specificity of these assays, we prepared four template DNAs that only differed from one another by the identity of the nucleotide at one position. Four amplification reactions were prepared, each containing all four molecular beacons, but each initiated with only one of the four template DNAs. The results show that in each reaction a fluorogenic response was elicited from the molecular beacon that was perfectly complementary to the amplified DNA, but not from the three molecular beacons whose probe sequence mismatched the target sequence. The color of the fluorescence that appeared in each tube during the course of the amplification indicated which nucleotide was present at the site of variation. These results demonstrate the extraordinary specificity of molecular beacons. Furthermore, the results illustrate how the ability to label molecular beacons with differently colored fluorophores enables simple multiplex assays to be carried out for genetic analysis.

  1. Large scale multiplex PCR improves pathogen detection by DNA microarrays

    PubMed Central

    2009-01-01

    Background Medium density DNA microchips that carry a collection of probes for a broad spectrum of pathogens, have the potential to be powerful tools for simultaneous species identification, detection of virulence factors and antimicrobial resistance determinants. However, their widespread use in microbiological diagnostics is limited by the problem of low pathogen numbers in clinical specimens revealing relatively low amounts of pathogen DNA. Results To increase the detection power of a fluorescence-based prototype-microarray designed to identify pathogenic microorganisms involved in sepsis, we propose a large scale multiplex PCR (LSplex PCR) for amplification of several dozens of gene-segments of 9 pathogenic species. This protocol employs a large set of primer pairs, potentially able to amplify 800 different gene segments that correspond to the capture probes spotted on the microarray. The LSplex protocol is shown to selectively amplify only the gene segments corresponding to the specific pathogen present in the analyte. Application of LSplex increases the microarray detection of target templates by a factor of 100 to 1000. Conclusion Our data provide a proof of principle for the improvement of detection of pathogen DNA by microarray hybridization by using LSplex PCR. PMID:19121223

  2. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  3. Optimal distributions for multiplex logistic networks

    NASA Astrophysics Data System (ADS)

    Solá Conde, Luis E.; Used, Javier; Romance, Miguel

    2016-06-01

    This paper presents some mathematical models for distribution of goods in logistic networks based on spectral analysis of complex networks. Given a steady distribution of a finished product, some numerical algorithms are presented for computing the weights in a multiplex logistic network that reach the equilibrium dynamics with high convergence rate. As an application, the logistic networks of Germany and Spain are analyzed in terms of their convergence rates.

  4. Optimal distributions for multiplex logistic networks.

    PubMed

    Solá Conde, Luis E; Used, Javier; Romance, Miguel

    2016-06-01

    This paper presents some mathematical models for distribution of goods in logistic networks based on spectral analysis of complex networks. Given a steady distribution of a finished product, some numerical algorithms are presented for computing the weights in a multiplex logistic network that reach the equilibrium dynamics with high convergence rate. As an application, the logistic networks of Germany and Spain are analyzed in terms of their convergence rates.

  5. Optimal distributions for multiplex logistic networks.

    PubMed

    Solá Conde, Luis E; Used, Javier; Romance, Miguel

    2016-06-01

    This paper presents some mathematical models for distribution of goods in logistic networks based on spectral analysis of complex networks. Given a steady distribution of a finished product, some numerical algorithms are presented for computing the weights in a multiplex logistic network that reach the equilibrium dynamics with high convergence rate. As an application, the logistic networks of Germany and Spain are analyzed in terms of their convergence rates. PMID:27368801

  6. Multiplex imaging with multiple-pinhole cameras

    NASA Technical Reports Server (NTRS)

    Brown, C.

    1974-01-01

    When making photographs in X rays or gamma rays with a multiple-pinhole camera, the individual images of an extended object such as the sun may be allowed to overlap. Then the situation is in many ways analogous to that in a multiplexing device such as a Fourier spectroscope. Some advantages and problems arising with such use of the camera are discussed, and expressions are derived to describe the relative efficacy of three exposure/postprocessing schemes using multiple-pinhole cameras.

  7. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles

    PubMed Central

    Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C. D.; Bosio, Andreas; Schauss, Astrid; Wild, Stefan

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions. PMID:26901056

  8. Species-Specific Serological Detection for Schistosomiasis by Serine Protease Inhibitor (SERPIN) in Multiplex Assay

    PubMed Central

    Tanigawa, Chihiro; Fujii, Yoshito; Miura, Masashi; Nzou, Samson Muuo; Mwangi, Anne Wanjiru; Nagi, Sachiyo; Hamano, Shinjiro; Njenga, Sammy M.; Mbanefo, Evaristus Chibunna; Hirayama, Kenji; Mwau, Matilu; Kaneko, Satoshi

    2015-01-01

    Background Both Schistosoma mansoni and Schistosoma haematobium cause schistosomiasis in sub-Saharan Africa. We assessed the diagnostic value of selected Schistosoma antigens for the development of a multiplex serological immunoassay for sero-epidemiological surveillance. Methodology/Principal Findings Diagnostic ability of recombinant antigens from S. mansoni and S. haematobium was assessed by Luminex multiplex immunoassay using plasma from school children in two areas of Kenya, endemic for different species of schistosomiasis. S. mansoni serine protease inhibitor (SERPIN) and Sm-RP26 showed significantly higher reactivity to patient plasma as compared to the control group. Sm-Filamin, Sm-GAPDH, Sm-GST, Sm-LAP1, Sm-LAP2, Sm-Sm31, Sm-Sm32 and Sm-Tropomyosin did not show difference in reactivity between S. mansoni infected and uninfected pupils. Sm-RP26 was cross-reactive to plasma from S. haematobium patients, whereas Sm-SERPIN was species-specific. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. ROC analysis for Sm-RP26, Sm-SERPIN and Sh-SERPIN showed AUC values of 0.833, 0.888 and 0.947, respectively. Using Spearman’s rank correlation coefficient analysis, we also found significant positive correlation between the number of excreted eggs and median fluorescence intensity (MFI) from the multiplex immunoassays for Sm-SERPIN (ρ = 0.430, p-value = 0.003) and Sh-SERPIN (ρ = 0.433, p-value = 0.006). Conclusions/Significance Sm-SERPIN is a promising species-specific diagnostic antigen. Sh-SEPRIN was partially cross-reactive to S. mansoni infected patients. SERPINs showed correlation with the number of excreted eggs. These indicate prospects for inclusion of SERPINs in the multiplex serological immunoassay system. PMID:26291988

  9. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays.

    PubMed

    Panicker, Gitika; Call, Douglas R; Krug, Melissa J; Bej, Asim K

    2004-12-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50 degrees C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 10(2) to 10(3) CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers. PMID:15574946

  10. Detection of Pathogenic Vibrio spp. in Shellfish by Using Multiplex PCR and DNA Microarrays

    PubMed Central

    Panicker, Gitika; Call, Douglas R.; Krug, Melissa J.; Bej, Asim K.

    2004-01-01

    This study describes the development of a gene-specific DNA microarray coupled with multiplex PCR for the comprehensive detection of pathogenic vibrios that are natural inhabitants of warm coastal waters and shellfish. Multiplex PCR with vvh and viuB for Vibrio vulnificus, with ompU, toxR, tcpI, and hlyA for V. cholerae, and with tlh, tdh, trh, and open reading frame 8 for V. parahaemolyticus helped to ensure that total and pathogenic strains, including subtypes of the three Vibrio spp., could be detected and discriminated. For DNA microarrays, oligonucleotide probes for these targeted genes were deposited onto epoxysilane-derivatized, 12-well, Teflon-masked slides by using a MicroGrid II arrayer. Amplified PCR products were hybridized to arrays at 50°C and detected by using tyramide signal amplification with Alexa Fluor 546 fluorescent dye. Slides were imaged by using an arrayWoRx scanner. The detection sensitivity for pure cultures without enrichment was 102 to 103 CFU/ml, and the specificity was 100%. However, 5 h of sample enrichment followed by DNA extraction with Instagene matrix and multiplex PCR with microarray hybridization resulted in the detection of 1 CFU in 1 g of oyster tissue homogenate. Thus, enrichment of the bacterial pathogens permitted higher sensitivity in compliance with the Interstate Shellfish Sanitation Conference guideline. Application of the DNA microarray methodology to natural oysters revealed the presence of V. vulnificus (100%) and V. parahaemolyticus (83%). However, V. cholerae was not detected in natural oysters. An assay involving a combination of multiplex PCR and DNA microarray hybridization would help to ensure rapid and accurate detection of pathogenic vibrios in shellfish, thereby improving the microbiological safety of shellfish for consumers. PMID:15574946

  11. Analysis of linkage and linkage disequilibrium for syntenic STRs on 12 chromosomes.

    PubMed

    Wu, Weiwei; Hao, Honglei; Liu, Qiuling; Han, Xian; Wu, Yeda; Cheng, Jianding; Lu, Dejian

    2014-09-01

    The purpose of this study is to evaluate allelic association and linkage of 18 adjacent syntenic short tandem repeat (STR) pairs form out of 30 markers located on 12 different autosomes. Linkage disequilibrium was tested by using the unknown gametic phase genotypes and phased haplotypes from 290 unrelated individuals from Chinese Han population. Genetic linkage analysis between syntenic STRs was performed based on 145 two-generation families which involved 628 meioses. The results showed no significant linkage disequilibrium at any STR pairs and independent inheritance between syntenic STR pairs was indicated. Significant linkage (maximum logarithm of odd (LOD) scores >3.0) was found in 6 out of the 18 adjacent syntenic STR pairs (D1S1627-D1S1677, CSF1PO-D5S818, D6S1017-D6S1043, D6S1043-D6S474, D12S391-vWA, and D19S253-D19S433). These significant linkage marker pairs had a genetic distance ranged from 11.94 to 41.33 cM deduced from HapMap. When recombination fractions determined in families were compared to those derived from Kosambi mapping function based on HapMap data, the latter may have an overestimation. In summary, our results demonstrated that product rule included syntenic STRs can be used for unrelated individual profile probability and the recombination fraction based on family data was superior to the estimation from HapMap for kinship analysis.

  12. Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles

    PubMed Central

    Meade, Shawn O.; Chen, Michelle Y.

    2009-01-01

    A particle-based multiplexed DNA assay based on encoded porous SiO2 photonic crystal disks is demonstrated. A “spectral barcode” is generated by electrochemical etch of a single-crystal silicon wafer using a programmed current-time waveform. A lithographic procedure is used to isolate cylindrical microparticles 25 microns in diameter and 10 microns thick, which are then oxidized, modified with a silane linker, and conjugated to various amino functionalized oligonucleotide probes via cyanuric chloride. It is shown that the particles can be decoded based on their reflectivity spectra, and that a multiple analyte assay can be performed in a single sample with a modified fluorescence microscope. The homogeneity of the reflectivity and fluorescence spectra, both within and across the microparticles is also reported. PMID:19271746

  13. Emergence of Chimera in Multiplex Network

    NASA Astrophysics Data System (ADS)

    Ghosh, Saptarshi; Jalan, Sarika

    2016-06-01

    Chimera is a relatively new emerging phenomenon where coexistence of synchronous and asynchronous states is observed in symmetrically coupled dynamical units. We report the observation of the chimera state in multiplex networks where individual layer is represented by 1-d lattice with nonlocal interactions. While, multiplexing does not change the type of the chimera state and retains the multi-chimera state displayed by the isolated networks, it changes the regions of the incoherence. We investigate the emergence of coherent-incoherent bifurcation upon varying the control parameters, namely, the coupling strength and the network size. Additionally, we investigate the effect of initial condition on the dynamics of the chimera state. Using a measure based on the differences between the neighboring nodes which distinguishes smooth and nonsmooth spatial profiles, we find the critical coupling strength for the transition to the chimera state. Observing chimera in a multiplex network with one-to-one inter layer coupling is important to gain insight to many real world complex systems which inherently posses multilayer architecture.

  14. Emergence of Multiplex Communities in Collaboration Networks.

    PubMed

    Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito

    2016-01-01

    Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks.

  15. Emergence of Multiplex Communities in Collaboration Networks.

    PubMed

    Battiston, Federico; Iacovacci, Jacopo; Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito

    2016-01-01

    Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks. PMID:26815700

  16. Multiplex assays to diagnose celiac disease.

    PubMed

    Lochman, Ivo; Martis, Peter; Burlingame, Rufus W; Lochmanová, Alexandra

    2007-08-01

    Patients with celiac disease are sensitive to the gluten fractions of wheat. Symptoms include gastrointestinal problems and a failure to thrive in children, but may range from headaches to general malaise in adults. Thus, it is difficult to diagnose celiac disease by symptoms alone. The standard diagnostic criteria include the presence of the characteristic anti-gliadin or anti-tissue transglutaminase antibodies (anti-tTG) in serum, flattened mucosa on intestinal biopsy, and improved symptoms on a gluten-free diet. Because of the ease of use of the tTG enzyme-linked immunosorbent assay (ELISA) compared to endomysial by indirect immunofluorescence assay, there has been much more screening for celiac disease in recent years. This increased screening showed that celiac disease was more prevalent than previously believed. We compared a new multiplex assay that includes a novel form of deamidated gliadin and recombinant human tTG as the antigens to other assays using standard antigens. In addition, the new assay detects the presence of selective IgA deficiency, which shows a 10-fold increase in prevalence in patients with celiac disease compared to the general population. The combination of sensitivity and specificity of the new multiplex assay was equal or better than those for standard assays. Thus the performance, ease of use, and ability to measure three clinically important parameters in a single test make the new multiplex assay a viable alternative to standard assays in a clinical lab.

  17. Emergence of Multiplex Communities in Collaboration Networks

    PubMed Central

    Nicosia, Vincenzo; Bianconi, Ginestra; Latora, Vito

    2016-01-01

    Community structures in collaboration networks reflect the natural tendency of individuals to organize their work in groups in order to better achieve common goals. In most of the cases, individuals exploit their connections to introduce themselves to new areas of interests, giving rise to multifaceted collaborations which span different fields. In this paper, we analyse collaborations in science and among movie actors as multiplex networks, where the layers represent respectively research topics and movie genres, and we show that communities indeed coexist and overlap at the different layers of such systems. We then propose a model to grow multiplex networks based on two mechanisms of intra and inter-layer triadic closure which mimic the real processes by which collaborations evolve. We show that our model is able to explain the multiplex community structure observed empirically, and we infer the strength of the two underlying social mechanisms from real-world systems. Being also able to correctly reproduce the values of intra-layer and inter-layer assortativity correlations, the model contributes to a better understanding of the principles driving the evolution of social networks. PMID:26815700

  18. Multiplex congruence network of natural numbers

    PubMed Central

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-01-01

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations. PMID:27029650

  19. Multiplexed Holographic Data Storage in Bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Mehrl, David J.; Krile, Thomas F.

    1997-01-01

    High density optical data storage, driven by the information revolution, remains at the forefront of current research areas. Much of the current research has focused on photorefractive materials (SBN and LiNbO3) and polymers, despite various problems with expense, durability, response time and retention periods. Photon echo techniques, though promising, are questionable due to the need for cryogenic conditions. Bacteriorhodopsin (BR) films are an attractive alternative recording medium. Great strides have been made in refining BR, and materials with storage lifetimes as long as 100 days have recently become available. The ability to deposit this robust polycrystalline material as high quality optical films suggests the use of BR as a recording medium for commercial optical disks. Our own recent research has demonstrated the suitability of BR films for real time spatial filtering and holography. We propose to fully investigate the feasibility of performing holographic mass data storage in BR. Important aspects of the problem to be investigated include various data multiplexing techniques (e.g. angle- amplitude- and phase-encoded multiplexing, and in particular shift-multiplexing), multilayer recording techniques, SLM selection and data readout using crossed polarizers for noise rejection. Systems evaluations of storage parameters, including access times, memory refresh constraints, erasure, signal-to-noise ratios and bit error rates, will be included in our investigations.

  20. The effect of spatiality on multiplex networks

    NASA Astrophysics Data System (ADS)

    Danziger, Michael M.; Shekhtman, Louis M.; Berezin, Yehiel; Havlin, Shlomo

    2016-08-01

    Many multiplex networks are embedded in space, with links more likely to exist between nearby nodes than distant nodes. For example, interdependent infrastructure networks can be represented as multiplex networks, where each layer has links among nearby nodes. Here, we model the effect of spatiality on the robustness of a multiplex network embedded in 2-dimensional space, where links in each layer are of variable but constrained length. Based on empirical measurements of real-world networks, we adopt exponentially distributed link lengths with characteristic length ζ. By changing ζ, we modulate the strength of the spatial embedding. When ζ → ∞, all link lengths are equally likely, and the spatiality does not affect the topology. However, when \\zeta→ 0 only short links are allowed, and the topology is overwhelmingly determined by the spatial embedding. We find that, though longer links strengthen a single-layer network, they make a multi-layer network more vulnerable. We further find that when ζ is longer than a certain critical value, \\zetac , abrupt, discontinuous transitions take place, while for \\zeta<\\zetac the transition is continuous, indicating that the risk of abrupt collapse can be eliminated if the typical link length is shorter than \\zetac .

  1. Multiplex congruence network of natural numbers.

    PubMed

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-01-01

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations. PMID:27029650

  2. Multiplex congruence network of natural numbers.

    PubMed

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-31

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  3. Multiplex congruence network of natural numbers

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-01

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  4. Genome-wide linkage using the Social Responsiveness Scale in Utah autism pedigrees

    PubMed Central

    2010-01-01

    Background Autism Spectrum Disorders (ASD) are phenotypically heterogeneous, characterized by impairments in the development of communication and social behaviour and the presence of repetitive behaviour and restricted interests. Dissecting the genetic complexity of ASD may require phenotypic data reflecting more detail than is offered by a categorical clinical diagnosis. Such data are available from the Social Responsiveness Scale (SRS) which is a continuous, quantitative measure of social ability giving scores that range from significant impairment to above average ability. Methods We present genome-wide results for 64 multiplex and extended families ranging from two to nine generations. SRS scores were available from 518 genotyped pedigree subjects, including affected and unaffected relatives. Genotypes from the Illumina 6 k single nucleotide polymorphism panel were provided by the Center for Inherited Disease Research. Quantitative and qualitative analyses were done using MCLINK, a software package that uses Markov chain Monte Carlo (MCMC) methods to perform multilocus linkage analysis on large extended pedigrees. Results When analysed as a qualitative trait, linkage occurred in the same locations as in our previous affected-only genome scan of these families, with findings on chromosomes 7q31.1-q32.3 [heterogeneity logarithm of the odds (HLOD) = 2.91], 15q13.3 (HLOD = 3.64), and 13q12.3 (HLOD = 2.23). Additional positive qualitative results were seen on chromosomes 6 and 10 in regions that may be of interest for other neuropsychiatric disorders. When analysed as a quantitative trait, results replicated a peak found in an independent sample using quantitative SRS scores on chromosome 11p15.1-p15.4 (HLOD = 2.77). Additional positive quantitative results were seen on chromosomes 7, 9, and 19. Conclusions The SRS linkage peaks reported here substantially overlap with peaks found in our previous affected-only genome scan of clinical diagnosis. In addition, we

  5. Simple, Sensitive and Accurate Multiplex Detection of Clinically Important Melanoma DNA Mutations in Circulating Tumour DNA with SERS Nanotags

    PubMed Central

    Wee, Eugene J.H.; Wang, Yuling; Tsao, Simon Chang-Hao; Trau, Matt

    2016-01-01

    Sensitive and accurate identification of specific DNA mutations can influence clinical decisions. However accurate diagnosis from limiting samples such as circulating tumour DNA (ctDNA) is challenging. Current approaches based on fluorescence such as quantitative PCR (qPCR) and more recently, droplet digital PCR (ddPCR) have limitations in multiplex detection, sensitivity and the need for expensive specialized equipment. Herein we describe an assay capitalizing on the multiplexing and sensitivity benefits of surface-enhanced Raman spectroscopy (SERS) with the simplicity of standard PCR to address the limitations of current approaches. This proof-of-concept method could reproducibly detect as few as 0.1% (10 copies, CV < 9%) of target sequences thus demonstrating the high sensitivity of the method. The method was then applied to specifically detect three important melanoma mutations in multiplex. Finally, the PCR/SERS assay was used to genotype cell lines and ctDNA from serum samples where results subsequently validated with ddPCR. With ddPCR-like sensitivity and accuracy yet at the convenience of standard PCR, we believe this multiplex PCR/SERS method could find wide applications in both diagnostics and research. PMID:27446486

  6. Client and Birth Record Linkage: A Method, Biases, and Lessons.

    ERIC Educational Resources Information Center

    Holian, John

    1996-01-01

    Describes record linkage as a data-generating technique, and presents a method for linking client records to live and stillbirth records, using 32,974 births in the Cleveland (Ohio) area. Biases that can enter the linkage process and general research issues related to record linkage are discussed. (SLD)

  7. The Linking Agent and FLS: Research Supported Assumptions about Linkage.

    ERIC Educational Resources Information Center

    Springfield, Charlotte; Anderson, E. Chris

    This paper describes the Florida Linkage System (FLS), which was designed to help schools throughout the state improve their problem-solving processes and knowledge utilization. While the system's goals are listed and a model for its linkage strategy is outlined, the major portion of the report discusses three findings about the linkage strategy…

  8. Linkage Analysis in Autoimmune Addison’s Disease: NFATC1 as a Potential Novel Susceptibility Locus

    PubMed Central

    Mitchell, Anna L.; Bøe Wolff, Anette; MacArthur, Katie; Weaver, Jolanta U.; Vaidya, Bijay; Erichsen, Martina M.; Darlay, Rebecca; Husebye, Eystein S.; Cordell, Heather J.; Pearce, Simon H. S.

    2015-01-01

    Background Autoimmune Addison’s disease (AAD) is a rare, highly heritable autoimmune endocrinopathy. It is possible that there may be some highly penetrant variants which confer disease susceptibility that have yet to be discovered. Methods DNA samples from 23 multiplex AAD pedigrees from the UK and Norway (50 cases, 67 controls) were genotyped on the Affymetrix SNP 6.0 array. Linkage analysis was performed using Merlin. EMMAX was used to carry out a genome-wide association analysis comparing the familial AAD cases to 2706 UK WTCCC controls. To explore some of the linkage findings further, a replication study was performed by genotyping 64 SNPs in two of the four linked regions (chromosomes 7 and 18), on the Sequenom iPlex platform in three European AAD case-control cohorts (1097 cases, 1117 controls). The data were analysed using a meta-analysis approach. Results In a parametric analysis, applying a rare dominant model, loci on chromosomes 7, 9 and 18 had LOD scores >2.8. In a non-parametric analysis, a locus corresponding to the HLA region on chromosome 6, known to be associated with AAD, had a LOD score >3.0. In the genome-wide association analysis, a SNP cluster on chromosome 2 and a pair of SNPs on chromosome 6 were associated with AAD (P <5x10-7). A meta-analysis of the replication study data demonstrated that three chromosome 18 SNPs were associated with AAD, including a non-synonymous variant in the NFATC1 gene. Conclusion This linkage study has implicated a number of novel chromosomal regions in the pathogenesis of AAD in multiplex AAD families and adds further support to the role of HLA in AAD. The genome-wide association analysis has also identified a region of interest on chromosome 2. A replication study has demonstrated that the NFATC1 gene is worthy of future investigation, however each of the regions identified require further, systematic analysis. PMID:26042420

  9. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    SciTech Connect

    Mukundan, Harshini; Xei, Hongshi; Anderson, Aaron S; Grace, Wynne K; Martinez, Jennifer S; Swanson, Basil

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  10. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    NASA Astrophysics Data System (ADS)

    Mukundan, Harshini; Xie, Hongzhi; Anderson, Aaron; Grace, W. Kevin; Martinez, Jennifer S.; Swanson, Basil

    2009-02-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  11. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR.

    PubMed

    Zhong, Qun; Bhattacharya, Smiti; Kotsopoulos, Steven; Olson, Jeff; Taly, Valérie; Griffiths, Andrew D; Link, Darren R; Larson, Jonathan W

    2011-07-01

    Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented.

  12. A novel multiplex isothermal amplification method for rapid detection and identification of viruses.

    PubMed

    Nyan, Dougbeh-Chris; Swinson, Kevin L

    2015-12-08

    A rapid multiplex isothermal amplification assay has been developed for detection and identification of multiple blood-borne viruses that infect millions of people world-wide. These infections may lead to chronic diseases or death if not diagnosed and treated in a timely manner. Sets of virus-specific oligonucleotides and oligofluorophores were designed and used in a reverse-transcription loop-mediated multiplexed isothermal amplification reaction for detection and gel electrophoretic identification of human Immunodeficiency virus (HIV), hepatitis-B virus (HBV), hepatitis-C virus (HCV), hepatitis-E virus (HEV), dengue virus (DENV), and West Nile (WNV) virus infection in blood plasma. Amplification was catalyzed with two thermostable enzymes for 30-60 minutes under isothermal condition, utilizing a simple digital heat source. Electrophoretic analysis of amplified products demonstrated simultaneous detection of 6 viruses that were distinctly identified by unique ladder-like banding patterns. Naked-eye fluorescent visualization of amplicons revealed intensely fluorescing products that indicated positive detection. The test demonstrated a 97% sensitivity and a 100% specificity, with no cross-reaction with other viruses observed. This portable detection tool may have clinical and field utility in the developing and developed world settings. This may enable rapid diagnosis and identification of viruses for targeted therapeutic intervention and prevention of disease transmission.

  13. Multiplexed protein detection using antibody-conjugated microbead arrays in a microfabricated electrophoretic device

    PubMed Central

    Barbee, Kristopher D.; Hsiao, Alexander P.; Roller, Eric E.; Huang, Xiaohua

    2011-01-01

    We report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.4 and 1 μm beads conjugated with antibodies can be rapidly assembled into the microwells by applying a pulsed electric field across the chamber. By assembling step-wise a mixture of fluorescently labeled antibody-conjugated microbeads, we incorporated both spatial and fluorescence encoding strategies to demonstrate significant multiplexing capabilities. We have shown that these antibody-conjugated microbead arrays can be used to perform on-chip sandwich immunoassays to detect test antigens at concentrations as low as 40 pM (6 ng/mL). A finite element model was also developed to examine the electric field distribution within the device for different counter electrode configurations over a range of line pitches and chamber heights. This device will be useful for assembling high-density, encoded antibody arrays for multiplexed detection of proteins and other types of protein-conjugated microbeads for applications such as the analysis of protein-protein interactions. PMID:20820631

  14. Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials.

    PubMed

    Zhou, Yuanyuan; Zhang, Jiangyan; Zhao, Likun; Li, Yingcun; Chen, Hui; Li, Shengliang; Cheng, Yongqiang

    2016-01-20

    A simple, visual, and specific method for simultaneous detection of multiplex microRNAs (miRNAs) has been developed by integrating duplex-specific nuclease (DSN)-induced amplification with cationic conjugated polymer (CCP) materials. The probe DNA with a complementary sequence to target miRNA is labeled with fluorescein dye (FAM). Without target miRNA, the single-strand DNA probe cannot be digested by DSN. Upon adding CCPs, efficient fluorescence resonance energy transfer (FRET) from CCP to FAM occurs owing to strong electrostatic interactions between CCP and the DNA probe. In the presence of target miRNA, the DNA probe hybridizes with target miRNA followed by digestion to small nucleotide fragments by DSN; meanwhile, the miRNA is released and subsequently interacts again with the probe, resulting in the cycled digestion of the DNA probe. In this case, weak electrostatic interactions between oligonucleotide fragments and CCP lead to inefficient FRET from CCP to FAM. Thus, by triggering the FRET signal from CCP to FAM, miRNA can be specially detected, and the fluorescence color change based on FRET can be visualized directly with the naked eye under an UV lamp. Furthermore, an energy transfer cascade can be designed using CCP and DNA probes labeled at the 5'-terminus with FAM and Cy3 dyes, and the multistep FRET processes offer the ability of simultaneous detection of multiplex miRNAs.

  15. A novel multiplex isothermal amplification method for rapid detection and identification of viruses.

    PubMed

    Nyan, Dougbeh-Chris; Swinson, Kevin L

    2015-01-01

    A rapid multiplex isothermal amplification assay has been developed for detection and identification of multiple blood-borne viruses that infect millions of people world-wide. These infections may lead to chronic diseases or death if not diagnosed and treated in a timely manner. Sets of virus-specific oligonucleotides and oligofluorophores were designed and used in a reverse-transcription loop-mediated multiplexed isothermal amplification reaction for detection and gel electrophoretic identification of human Immunodeficiency virus (HIV), hepatitis-B virus (HBV), hepatitis-C virus (HCV), hepatitis-E virus (HEV), dengue virus (DENV), and West Nile (WNV) virus infection in blood plasma. Amplification was catalyzed with two thermostable enzymes for 30-60 minutes under isothermal condition, utilizing a simple digital heat source. Electrophoretic analysis of amplified products demonstrated simultaneous detection of 6 viruses that were distinctly identified by unique ladder-like banding patterns. Naked-eye fluorescent visualization of amplicons revealed intensely fluorescing products that indicated positive detection. The test demonstrated a 97% sensitivity and a 100% specificity, with no cross-reaction with other viruses observed. This portable detection tool may have clinical and field utility in the developing and developed world settings. This may enable rapid diagnosis and identification of viruses for targeted therapeutic intervention and prevention of disease transmission. PMID:26643761

  16. A novel multiplex isothermal amplification method for rapid detection and identification of viruses

    PubMed Central

    Nyan, Dougbeh-Chris; Swinson, Kevin L.

    2015-01-01

    A rapid multiplex isothermal amplification assay has been developed for detection and identification of multiple blood-borne viruses that infect millions of people world-wide. These infections may lead to chronic diseases or death if not diagnosed and treated in a timely manner. Sets of virus-specific oligonucleotides and oligofluorophores were designed and used in a reverse-transcription loop-mediated multiplexed isothermal amplification reaction for detection and gel electrophoretic identification of human Immunodeficiency virus (HIV), hepatitis-B virus (HBV), hepatitis-C virus (HCV), hepatitis-E virus (HEV), dengue virus (DENV), and West Nile (WNV) virus infection in blood plasma. Amplification was catalyzed with two thermostable enzymes for 30–60 minutes under isothermal condition, utilizing a simple digital heat source. Electrophoretic analysis of amplified products demonstrated simultaneous detection of 6 viruses that were distinctly identified by unique ladder-like banding patterns. Naked-eye fluorescent visualization of amplicons revealed intensely fluorescing products that indicated positive detection. The test demonstrated a 97% sensitivity and a 100% specificity, with no cross-reaction with other viruses observed. This portable detection tool may have clinical and field utility in the developing and developed world settings. This may enable rapid diagnosis and identification of viruses for targeted therapeutic intervention and prevention of disease transmission. PMID:26643761

  17. Adjustable throttle linkage for outboard motors

    SciTech Connect

    Dunham, W.D.; Miller, G.L.

    1986-02-17

    An adjustable throttle linkage is described for use in controlling operation of an internal combustion engine having a carburetor including a pivotable throttle valve, a throttle valve position control member operably connected to the throttle valve and movable so as to control the position of the throttle valve, and a throttle lever for controlling the position of the throttle valve. The adjustable throttle linkage comprises a connecting link having one end connected to one of the throttle lever and the control member, and having a threaded portion, means for adjustably connecting the threaded portion to the other of the throttle lever and the control member. The adjustable connecting means includes a slot in the other of the throttle lever and the control member, and a rotatable member threaded onto the threaded portion and receive in the slot such that rotation of the rotatable member causes relative movement between the link and the other of the throttle lever and the control member.

  18. Linkage of typical pseudoachondroplasia to chromosome 19

    SciTech Connect

    Hecht, J.T.; Deere, M.; Conner, B.; Horton, W.A. ); Francomano, C.A. ); Briggs, M.D.; Cohn, D.H. ); Warman, M. ); Blanton, S.H. )

    1993-12-01

    Pseudoachondroplasia (PSACH) is an autosomal dominant dwarfing condition associated with disproportionate short stature, marked joint deformities, and early onset osteoarthritis. Previous linkage studies have excluded linkage to cartilage and noncartilagenous extracellular matrix candidate genes. Here, the authors report mapping the pseudoachondroplasia gene to chromosome 19. Maximum lod scores of 4.70, 4.15, and 4.86 at [theta] = 0.00 were found for D19S212, D19S215, and D19S49, respectively. Multipoint analysis suggests the following order: D19S253-D19S199-(D19S212/PSACH/D19S215)-D19S222-D19S49. 24 refs., 4 figs., 1 tab.

  19. Linkages among global and regional air issues

    SciTech Connect

    Maarouf, A.R.

    1997-11-01

    Six air issues are currently on science and policy agendas in Canada and elsewhere. These are climate change, stratospheric ozone depletion, acidic deposition, SMOG, suspended particulate matter, and hazardous air pollutants. It is now recognized that these issues are interrelated, and they may interact to cause negative as well as some beneficial effects. The linkages among these issues must therefore be better understood in order to develop effective policies to deal with this ensemble of related issues. This paper illustrates through several examples the linkages among the air issues. It also points to potentially conflicting policies arising from the single-issue approach, and it emphasizes the need for better integration of air issues. 14 refs., 1 tab.

  20. Permethylation Linkage Analysis Techniques for Residual Carbohydrates

    NASA Astrophysics Data System (ADS)

    Price, Neil P. J.

    Permethylation analysis is the classic approach to establishing the position of glycosidic linkages between sugar residues. Typically, the carbohydrate is derivatized to form acid-stable methyl ethers, hydrolyzed, peracetylated, and analyzed by gas chromatography-mass spectrometry. The position of glycosidic linkages in the starting carbohydrate are apparent from the mass spectra as determined by the location of acetyl residues. The completeness of permethylation is dependent upon the choice of base catalyst and is readily confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry mass spectrometry. For the permethylation of β-cyclodextrin, Hakomori dimsyl base is shown to be superior to the NaOH-dimethyl sulfoxide system, and the use of the latter resulted in selective under-methylation of the 3-hydroxy groups. These techniques are highly applicable to residual carbohydrates from biofuel processes.

  1. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots

    NASA Astrophysics Data System (ADS)

    Gliddon, H. D.; Howes, P. D.; Kaforou, M.; Levin, M.; Stevens, M. M.

    2016-05-01

    The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar range using only a standard laboratory plate reader. We demonstrate the utility of our QD-based system for the detection of two genes selected from a microarray-derived tuberculosis-specific gene expression signature. Levels of up- and downregulated gene transcripts comprising this signature can be combined to give a disease risk score, making the signature more amenable for use as a diagnostic marker. Our QD-based approach to detect these transcripts could pave the way for novel diagnostic assays for tuberculosis.The development of rapid, robust and high performance point-of-care diagnostics relies on the advancement and combination of various areas of research. We have developed an assay for the detection of multiple mRNA molecules that combines DNA nanotechnology with fluorescent nanomaterials. The core switching mechanism is toehold-mediated strand displacement. We have used fluorescent quantum dots (QDs) as signal transducers in this assay, as they bring many benefits including bright fluorescence and multiplexing abilities. The resulting assay is capable of multiplexed detection of long RNA targets against a high concentration of background non-target RNA, with high sensitivity and specificity and limits of detection in the nanomolar

  2. Communicability reveals a transition to coordinated behavior in multiplex networks

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Gómez-Gardeñes, Jesús

    2014-04-01

    We analyze the flow of information in multiplex networks by means of the communicability function. First, we generalize this measure from its definition from simple graphs to multiplex networks. Then, we study its relevance for the analysis of real-world systems by studying a social multiplex where information flows using formal-informal channels and an air transportation system where the layers represent different air companies. Accordingly, the communicability, which is essential for the good performance of these complex systems, emerges at a systemic operation point in the multiplex where the performance of the layers operates in a coordinated way very differently from the state represented by a collection of unconnected networks.

  3. Multiplex PCR Tests for Detection of Pathogens Associated with Gastroenteritis

    PubMed Central

    Zhang, Hongwei; Morrison, Scott; Tang, Yi-Wei

    2016-01-01

    Synopsis A wide range of enteric pathogens can cause infectious gastroenteritis. Conventional diagnostic algorithms including culture, biochemical identification, immunoassay and microscopic examination are time consuming and often lack sensitivity and specificity. Advances in molecular technology have as allowed its use as clinical diagnostic tools. Multiplex PCR based testing has made its way to gastroenterology diagnostic arena in recent years. In this article we present a review of recent laboratory developed multiplex PCR tests and current commercial multiplex gastrointestinal pathogen tests. We will focus on two FDA cleared commercial syndromic multiplex tests: Luminex xTAG GPP and Biofire FimArray GI test. These multiplex tests can detect and identify multiple enteric pathogens in one test and provide results within hours. Multiplex PCR tests have shown superior sensitivity to conventional methods for detection of most pathogens. The high negative predictive value of these multiplex tests has led to the suggestion that they be used as screening tools especially in outbreaks. Although the clinical utility and benefit of multiplex PCR test are to be further investigated, implementing these multiplex PCR tests in gastroenterology diagnostic algorithm has the potential to improve diagnosis of infectious gastroenteritis. PMID:26004652

  4. Structure and apoprotein linkages of phycourobilin.

    PubMed

    Killilea, S D; O'Carra, P

    1985-03-15

    R-Phycoerythrin contains two covalently bound bilin prosthetic groups, phycoerythrobilin and phycourobilin. The two chromophore types were separated as their peptide-bound derivatives by subjecting tryptic digests of R-phycoerythrin to adsorption chromatography on Sephadex G-25. The structure and apoprotein linkages of the bound phycoerythrobilin were found to be identical with those previously reported for this phycobilin [Killilea, O'Carra & Murphy (1980) Biochem. J. 187, 311-320]. Phycourobilin is a tetrapyrrole, containing no oxo bridges and has the same order of side chains as IX alpha bilins. The chromophore is linked to the peptide through two and possibly three of its pyrrole rings. One linkage possibly consists of an ester bond between the hydroxy group of a serine residue and the propionic acid side chain of one of the inner rings. The second linkage is a labile thioether bond between a cysteine residue and the C2 side chain of pyrrole ring A. The third linkage is a stable thioether bond between a cysteine residue and the alpha-carbon atom of the C2 side chain of pyrrole ring D. Ring D is unsaturated and is attached to ring C through a saturated carbon bridge. Rings B and C have a conjugated system of five bonds, as found in other urobilinoid pigments. Ring A is attached to ring B via a saturated carbon bridge. Both of the alpha-positions of ring A are in the reduced state, but the ring does contain an unsaturated centre (probably a double bond between the beta-carbon and the ring nitrogen atom). The presence of this double bond and its isomerization into the bridge position between rings A and B would explain the extension of the conjugated system of phycourobilin to that of a phycoerythrobilinoid/rhodenoid pigment in acid or alkali. PMID:3838665

  5. Structure and apoprotein linkages of phycourobilin.

    PubMed Central

    Killilea, S D; O'Carra, P

    1985-01-01

    R-Phycoerythrin contains two covalently bound bilin prosthetic groups, phycoerythrobilin and phycourobilin. The two chromophore types were separated as their peptide-bound derivatives by subjecting tryptic digests of R-phycoerythrin to adsorption chromatography on Sephadex G-25. The structure and apoprotein linkages of the bound phycoerythrobilin were found to be identical with those previously reported for this phycobilin [Killilea, O'Carra & Murphy (1980) Biochem. J. 187, 311-320]. Phycourobilin is a tetrapyrrole, containing no oxo bridges and has the same order of side chains as IX alpha bilins. The chromophore is linked to the peptide through two and possibly three of its pyrrole rings. One linkage possibly consists of an ester bond between the hydroxy group of a serine residue and the propionic acid side chain of one of the inner rings. The second linkage is a labile thioether bond between a cysteine residue and the C2 side chain of pyrrole ring A. The third linkage is a stable thioether bond between a cysteine residue and the alpha-carbon atom of the C2 side chain of pyrrole ring D. Ring D is unsaturated and is attached to ring C through a saturated carbon bridge. Rings B and C have a conjugated system of five bonds, as found in other urobilinoid pigments. Ring A is attached to ring B via a saturated carbon bridge. Both of the alpha-positions of ring A are in the reduced state, but the ring does contain an unsaturated centre (probably a double bond between the beta-carbon and the ring nitrogen atom). The presence of this double bond and its isomerization into the bridge position between rings A and B would explain the extension of the conjugated system of phycourobilin to that of a phycoerythrobilinoid/rhodenoid pigment in acid or alkali. PMID:3838665

  6. Hidden linkages between urbanization and food systems.

    PubMed

    Seto, Karen C; Ramankutty, Navin

    2016-05-20

    Global societies are becoming increasingly urban. This shift toward urban living is changing our relationship with food, including how we shop and what we buy, as well as ideas about sanitation and freshness. Achieving food security in an era of rapid urbanization will require considerably more understanding about how urban and food systems are intertwined. Here we discuss some potential understudied linkages that are ripe for further examination.

  7. Hidden linkages between urbanization and food systems.

    PubMed

    Seto, Karen C; Ramankutty, Navin

    2016-05-20

    Global societies are becoming increasingly urban. This shift toward urban living is changing our relationship with food, including how we shop and what we buy, as well as ideas about sanitation and freshness. Achieving food security in an era of rapid urbanization will require considerably more understanding about how urban and food systems are intertwined. Here we discuss some potential understudied linkages that are ripe for further examination. PMID:27199419

  8. A genomic survey of linkage disequilibrium

    SciTech Connect

    Peterson, A.; Freimer, N.; Slakin, M.

    1994-09-01

    Linkage disequilibrium (LD), the association of alleles between two or more loci, is a powerful tool for genetic mapping. LD is governed by recombination, mutation, selection, and population admixture; little is known about their relative importance or the distribution of LD across the genome. We used microsatellite markers to conduct a survey of the genomic distribution of LD on chromosome 4, which was chosen because an available radiation hybrid map enabled assessment of LD distribution based on genetic as well as physical distance. To minimize the effect of admixture, we studied a population from Finland, which has a long history of relative isolation. We compared the informativeness of haplotyped and genotyped samples. 33 markers were typed; 29 significant pairwise associations were observed (p<0.05). Although LD was detected between several loci apparently separated by > 2 cM on linkage maps, it was rarely detected between loci separated by more than 40 centiRays on the radiation hybrid map (about 2 megabases). In several instances, LD was not detected between adjacent markers apparently seperated by < 1 cM. In most of these cases, one locus had low heterozygosity or multiple recombination events were directly observed. Contrary to expectation, there was no evident correlation between the ratio of genetic/physical distance and detection of LD; this is likely partially due to the imprecision of linkage maps over small distances. Detection of LD was roughly equivalent in the haplotyped and genotyped samples, probably reflecting the inadequacy of current methods for detection of LD across multiple loci in a single analysis. Conclusion: LD is widely distributed across large genome regions. Marker heterozygosity and physical distance are correlated with detection of LD, and directly observed recombination events may be more useful than linkage maps in evaluating genetic distance in relation to detection of LD.

  9. A Novel Method for Estimating Linkage Maps

    PubMed Central

    Tan, Yuan-De; Fu, Yun-Xin

    2006-01-01

    The goal of linkage mapping is to find the true order of loci from a chromosome. Since the number of possible orders is large even for a modest number of loci, the problem of finding the optimal solution is known as a NP-hard problem or traveling salesman problem (TSP). Although a number of algorithms are available, many either are low in the accuracy of recovering the true order of loci or require tremendous amounts of computational resources, thus making them difficult to use for reconstructing a large-scale map. We developed in this article a novel method called unidirectional growth (UG) to help solve this problem. The UG algorithm sequentially constructs the linkage map on the basis of novel results about additive distance. It not only is fast but also has a very high accuracy in recovering the true order of loci according to our simulation studies. Since the UG method requires n − 1 cycles to estimate the ordering of n loci, it is particularly useful for estimating linkage maps consisting of hundreds or even thousands of linked codominant loci on a chromosome. PMID:16783016

  10. Genetic linkage for Darier disease (keratosis follicularis)

    SciTech Connect

    Kennedy, J.L.; King, N.; Perkins, M.

    1995-01-30

    Darier disease is an autosomal dominant skin disorder characterized by abnormal keratinocyte adhesion. Recent data have provided evidence for linkage of the Darier disease locus to 12q23-24.1 in British families. We have carried out linkage analysis using the 12q markers D12S58, D12S84, D12S79, D12S86, PLA2, and D12S63 in 6 Canadian families. Pairwise linkage analysis generated positive lod scores at all 6 markers at various recombination fractions, and each family showed positive lod scores with more than one marker. The peak lod score in the multipoint analysis (Z{sub max}) was 5.5 in the interval between markers D12S58 and D12S84. These positive lod scores in North American families of varied European ancestry confirm the location of the Darier disease gene, and suggest genetic homogeneity. The future identification and sequencing of the gene responsible for Darier disease should lead to improved understanding of the disease and of keratinocyte adhesion in general. 22 refs., 2 figs., 2 tabs.

  11. Methods for genetic linkage analysis using trisomies

    SciTech Connect

    Feingold, E.; Lamb, N.E.; Sherman, S.L.

    1995-02-01

    Certain genetic disorders are rare in the general population, but more common in individuals with specific trisomies. Examples of this include leukemia and duodenal atresia in trisomy 21. This paper presents a linkage analysis method for using trisomic individuals to map genes for such traits. It is based on a very general gene-specific dosage model that posits that the trait is caused by specific effects of different alleles at one or a few loci and that duplicate copies of {open_quotes}susceptibility{close_quotes} alleles inherited from the nondisjoining parent give increased likelihood of having the trait. Our mapping method is similar to identity-by-descent-based mapping methods using affected relative pairs and also to methods for mapping recessive traits using inbred individuals by looking for markers with greater than expected homozygosity by descent. In the trisomy case, one would take trisomic individuals and look for markers with greater than expected homozygosity in the chromosomes inherited from the nondisjoining parent. We present statistical methods for performing such a linkage analysis, including a test for linkage to a marker, a method for estimating the distance from the marker to the trait gene, a confidence interval for that distance, and methods for computing power and sample sizes. We also resolve some practical issues involved in implementing the methods, including how to use partially informative markers and how to test candidate genes. 20 refs., 5 figs., 1 tab.

  12. 'Linkage' pharmaceutical evergreening in Canada and Australia

    PubMed Central

    Faunce, Thomas A; Lexchin, Joel

    2007-01-01

    'Evergreening' is not a formal concept of patent law. It is best understood as a social idea used to refer to the myriad ways in which pharmaceutical patent owners utilise the law and related regulatory processes to extend their high rent-earning intellectual monopoly privileges, particularly over highly profitable (either in total sales volume or price per unit) 'blockbuster' drugs. Thus, while the courts are an instrument frequently used by pharmaceutical brand name manufacturers to prolong their patent royalties, 'evergreening' is rarely mentioned explicitly by judges in patent protection cases. The term usually refers to threats made to competitors about a brand-name manufacturer's tactical use of pharmaceutical patents (including over uses, delivery systems and even packaging), not to extension of any particular patent over an active product ingredient. This article focuses in particular on the 'evergreening' potential of so-called 'linkage' provisions, imposed on the regulatory (safety, quality and efficacy) approval systems for generic pharmaceuticals of Canada and Australia, by specific articles in trade agreements with the US. These 'linkage' provisions have also recently appeared in the Korea-US Free Trade Agreement (KORUSFTA). They require such drug regulators to facilitate notification of, or even prevent, any potential patent infringement by a generic pharmaceutical manufacturer. This article explores the regulatory lessons to be learnt from Canada's and Australia's shared experience in terms of minimizing potential adverse impacts of such 'linkage evergreening' provisions on drug costs and thereby potentially on citizen's access to affordable, essential medicines. PMID:17543113

  13. Structural synthesis of linkages for quadruped bio-robot legs

    NASA Astrophysics Data System (ADS)

    Antonescu, O.; Robu, C.; Antonescu, P.

    2016-08-01

    The paper presents a few kinematic schemes of planar mechanisms with bars (linkages) used as part of the quadruped robot legs. The Dunshee linkage having only four elements as crank-rocker mechanism is analyzed. Further, the Klann linkage, which is accomplished by amplifying the crank-rocker mechanism with a dyadic kinematic chain, is also presented. More than that, the Jansen linkage, which is obtained by extending and amplifying the crank-rocker mechanism with two dyadic kinematic chains, is also analyzed. At the end of the paper, the authors present a novel linkage application consisting of a quadric kinematic chain.

  14. 76 FR 71982 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... highly multiplexed microbiology/medical countermeasure (MCM) devices, their clinical application and... Application of Highly Multiplexed Microbiology Devices: Their clinical application and public health/clinical... clinical performance of highly multiplexed microbiology devices; approaches to device validation...

  15. Highly sensitive and multiplexed platforms for allergy diagnostics

    NASA Astrophysics Data System (ADS)

    Monroe, Margo R.

    Allergy is a disorder of the immune system caused by an immune response to otherwise harmless environmental allergens. Currently 20% of the US population is allergic and 90% of pediatric patients and 60% of adult patients with asthma have allergies. These percentages have increased by 18.5% in the past decade, with predicted similar trends for the future. Here we design sensitive, multiplexed platforms to detect allergen-specific IgE using the Interferometric Reflectance Imaging Sensor (IRIS) for various clinical settings. A microarray platform for allergy diagnosis allows for testing of specific IgE sensitivity to a multitude of allergens, while requiring only small volumes of patient blood sample. However, conventional fluorescent microarray technology is limited by i) the variation of probe immobilization, which hinders the ability to make quantitative, assertive, and statistically relevant conclusions necessary in immunodiagnostics and ii) the use of fluorophore labels, which is not suitable for some clinical applications due to the tendency of fluorophores to stick to blood particulates and require daily calibration methods. This calibrated fluorescence enhancement (CaFE) method integrates the low magnification modality of IRIS with enhanced fluorescence sensing in order to directly correlate immobilized probe (major allergens) density to allergen-specific IgE in patient serum. However, this platform only operates in processed serum samples, which is not ideal for point of care testing. Thus, a high magnification modality of IRIS was adapted as an alternative allergy diagnostic platform to automatically discriminate and size single nanoparticles bound to specific IgE in unprocessed, characterized human blood and serum samples. These features make IRIS an ideal candidate for clinical and diagnostic applications, such a POC testing. The high magnification (nanoparticle counting) modality in conjunction with low magnification of IRIS in a combined instrument

  16. High thickness acrylamide photopolymer for peristrophic multiplexing

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Fernández, E.; Márquez, A.; Gallego, S.; Neipp, C.; Pascual, I.

    2006-05-01

    The acrylamide photolymers are considered interesting materials for holographic media. They have high diffraction efficiency (ratio of the intensities of the diffracted and the incident beams), an intermediate energetic sensitivity among other materials and post-processing steps are not necessary, therefore the media is not altered. The layers of these materials, about 1 mm thick, are a suitable media for recording many diffraction gratings in the same volume of photopolymer using peristrophic multiplexing technique, with great practical importance in the field of holographic memories type WORM (write once read many). In this work we study the recording of diffraction gratings by peristrophic multiplexing with axis of rotation perpendicular to the recording media. The photopolymer is composed of acrylamide as the polymerizable monomer, triethanolamine as radical generator, yellowish eosin as sensitizer and a binder of polyvinyl alcohol. We analyze the holographic behaviour of the material during recording and reconstruction of diffraction gratings using a continuous Nd:YAG laser (532 nm) at an intensity of 5 mW/cm2 as recording laser. The response of the material is monitored after recording with an He-Ne laser. We study the recording process of unslanted diffraction gratings of 1125 lines/mm. The diffraction efficiency of each hologram is seen to decrease as the number of holograms recorded increases, due to consumption of the available dynamic range, in a constant exposure scheduling. It can be seen that the photopolymer works well with high energy levels, without excessive dispersion of light by noise gratings. In order to homogenize the diffraction efficiency of each hologram we use the method proposed by Pu. This method is designed to share all or part of the avaliable dynamic range of the recording material among the holograms to be multiplexed. Using exposure schedules derived from this method we have used 3 scheduling recordings from the algorithm used

  17. Multiplexed Western Blotting Using Microchip Electrophoresis.

    PubMed

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-01

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps. PMID:27270033

  18. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  19. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  20. Bayesian model selection for multiple QTLs mapping combining linkage disequilibrium and linkage.

    PubMed

    Jiang, Dan; Ma, Guoda; Yang, Runqing; Li, Keshen; Fang, Ming

    2014-01-01

    Linkage disequilibrium (LD) mapping is able to localize quantitative trait loci (QTL) within a rather small region (e.g. 2 cM), which is much narrower than linkage analysis (LA, usually 20 cM). The multilocus LD method utilizes haplotype information around putative mutation and takes historical recombination events into account, and thus provides a powerful method for further fine mapping. However, sometimes there are more than one QTLs in the region being studied. In this study, the Bayesian model selection implemented via the Markov chain Monte Carlo (MCMC) method is developed for fine mapping of multiple QTLs using haplotype information in a small region. The method combines LD as well as linkage information. A series of simulation experiments were conducted to investigate the behavior of the method. The results showed that this new multiple QTLs method was more efficient in separating closely linked QTLs than single-marker association studies. PMID:25579473

  1. Bayesian model selection for multiple QTLs mapping combining linkage disequilibrium and linkage.

    PubMed

    Jiang, Dan; Ma, Guoda; Yang, Runqing; Li, Keshen; Fang, Ming

    2014-09-19

    Linkage disequilibrium (LD) mapping is able to localize quantitative trait loci (QTL) within a rather small region (e.g. 2 cM), which is much narrower than linkage analysis (LA, usually 20 cM). The multilocus LD method utilizes haplotype information around putative mutation and takes historical recombination events into account, and thus provides a powerful method for further fine mapping. However, sometimes there are more than one QTLs in the region being studied. In this study, the Bayesian model selection implemented via the Markov chain Monte Carlo (MCMC) method is developed for fine mapping of multiple QTLs using haplotype information in a small region. The method combines LD as well as linkage information. A series of simulation experiments were conducted to investigate the behavior of the method. The results showed that this new multiple QTLs method was more efficient in separating closely linked QTLs than single-marker association studies.

  2. Optically encoded multifunctional nanospheres for one-pot separation and detection of multiplex DNA sequences.

    PubMed

    Hu, Jun; Wen, Cong-Ying; Zhang, Zhi-Ling; Xie, Min; Hu, Jiao; Wu, Min; Pang, Dai-Wen

    2013-12-17

    In this study, we report a simple method for simultaneous detection of multiplex DNA sequences, including complementary DNA (cDNA) sequences of HIV and HCV, DNA sequence of HBV, with QDs-encoded fluorescent nanospheres and nano-γ-Fe2O3-coated magnetic nanospheres. Detection was achieved on a fluorescence spectrophotometer without additional auxiliary instruments, and the detection limit was about 100 pM. Here, QDs-encoded fluorescent nanospheres (FNS) with different photoluminescent properties, and magnetic nanospheres (MNS) were separately fabricated by stepwise assembly of hydrophobic QDs or nano-γ-Fe2O3 on the surface of branched poly(ethylene imine) (PEI)-coated nanospheres in precisely controlled amounts, finally followed by silica encapsulation. FNS-labeled probe DNAs and MNS-labeled capture DNAs were used to hybridize with the corresponding targets at the same time. After magnetic separation, the sandwich-structured adducts were measured by fluorescence spectrophotometry. The results indicated that the targets could be detected with high sensitivity. This method is convenient, fast enough, and capable of high anti-interference. Therefore, it is expected to be used for simultaneous detection and separation of multiple targets at high levels of purity and throughput.

  3. Wavelength de-multiplexing metasurface hologram

    PubMed Central

    Wang, Bo; Quan, Baogang; He, Jingwen; Xie, Zhenwei; Wang, Xinke; Li, Junjie; Kan, Qiang; Zhang, Yan

    2016-01-01

    A wavelength de-multiplexing metasurface hologram composed of subwavelength metallic antennas is designed and demonstrated experimentally in the terahertz (THz) regime. Different character patterns are generated at the separated working frequencies 0.50 THz and 0.63 THz which determine a narrow frequency bandwidth of 130 GHz. The two working frequencies are around the central resonance frequency of the antennas where antennas behave strong wavefront modulation. Each antenna is fully utilized to control the wavefront of the metasurface at different frequencies by an optimization algorithm. The results demonstrate a candidate way to design multi-colors optical display elements. PMID:27752118

  4. Hardware Counter Multiplexing V1.2

    2000-10-13

    The Hardware Counter Multiplexer works with the built-in counter registers on computer processors. These counters record varius low-level events as software runs, but they can cannot record all possible events at the same time. This software helps work around that limitation by counting a series of different events in sequence over a period of time. This in turn allows programmers to measure interesting combinations of events, rather than single events. The software is designed tomore » work with multithreaded or single-threaded programs.« less

  5. Replicator dynamics with diffusion on multiplex networks

    NASA Astrophysics Data System (ADS)

    Requejo, R. J.; Díaz-Guilera, A.

    2016-08-01

    In this study we present an extension of the dynamics of diffusion in multiplex graphs, which makes the equations compatible with the replicator equation with mutations. We derive an exact formula for the diffusion term, which shows that, while diffusion is linear for numbers of agents, it is necessary to account for nonlinear terms when working with fractions of individuals. We also derive the transition probabilities that give rise to such macroscopic behavior, completing the bottom-up description. Finally, it is shown that the usual assumption of constant population sizes induces a hidden selective pressure due to the diffusive dynamics, which favors the increase of fast diffusing strategies.

  6. Two wavelength division multiplexing WAN trials

    SciTech Connect

    Lennon, W.J.; Thombley, R.L.

    1995-01-20

    Lawrence Livermore National Laboratory, as a super-user, supercomputer, and super-application site, is anticipating the future bandwidth and protocol requirements necessary to connect to other such sites as well as to connect to remote-sited control centers and experiments. In this paper the authors discuss their vision of the future of Wide Area Networking, describe the plans for a wavelength division multiplexed link connecting Livermore with the University of California at Berkeley and describe plans for a transparent, {approx} 10 Gb/s ring around San Francisco Bay.

  7. Replicator dynamics with diffusion on multiplex networks.

    PubMed

    Requejo, R J; Díaz-Guilera, A

    2016-08-01

    In this study we present an extension of the dynamics of diffusion in multiplex graphs, which makes the equations compatible with the replicator equation with mutations. We derive an exact formula for the diffusion term, which shows that, while diffusion is linear for numbers of agents, it is necessary to account for nonlinear terms when working with fractions of individuals. We also derive the transition probabilities that give rise to such macroscopic behavior, completing the bottom-up description. Finally, it is shown that the usual assumption of constant population sizes induces a hidden selective pressure due to the diffusive dynamics, which favors the increase of fast diffusing strategies. PMID:27627311

  8. Fluorescence of dental porcelain.

    PubMed

    Monsénégo, G; Burdairon, G; Clerjaud, B

    1993-01-01

    This study of the fluorescence of natural enamel and of dental ceramics shows the fluorescence of ceramics not containing rare earths decreases when the color saturation increases; the fluorescence of samples of the same shade guide are not homogenous; some guides show a strong green fluorescence; and two shade guides of the same origin can present completely different fluorescence. The cementing medium can affect the fluorescence of a ceramic prosthesis. PMID:8455155

  9. Preliminary study of visual effect of multiplex hologram

    NASA Astrophysics Data System (ADS)

    Fu, Huaiping; Xiong, Bingheng; Yang, Hong; Zhang, Xueguo

    2004-06-01

    The process of any movement of real object can be recorded and displayed by a multiplex holographic stereogram. An embossing multiplex holographic stereogram and a multiplex rainbow holographic stereogram have been made by us, the multiplex rainbow holographic stereogram reconstructs the dynamic 2D line drawing of speech organs, the embossing multiplex holographic stereogram reconstructs the process of an old man drinking water. In this paper, we studied the visual result of an embossing multiplex holographic stereogram made with 80 films of 2-D pictures. Forty-eight persons of aged from 13 to 67 were asked to see the hologram and then to answer some questions about the feeling of viewing. The results indicate that this kind of holograms could be accepted by human visual sense organ without any problem. This paper also discusses visual effect of the multiplex holography stereograms base on visual perceptual psychology. It is open out that the planar multiplex holograms can be recorded and present the movement of real animal and object. Not only have the human visual perceptual constancy for shape, just as that size, color, etc... but also have visual perceptual constancy for binocular parallax.

  10. Few-mode fibers for mode division multiplexing transmission

    NASA Astrophysics Data System (ADS)

    Kubota, Hirokazu; Morioka, Toshio

    2012-01-01

    A study is presented of the fiber properties needed to achieve 10-mode multiplexing transmission. A combination of MIMO processing with optical LP mode separation is proposed to prevent the need for massive MIMO computation. The impact of mode crosstalk, differential mode delay, and the mode dependent loss of the few-mode fibers on mode multiplexing are discussed.

  11. A Whole-Genome Scan and Fine-Mapping Linkage Study of Auditory-Visual Synesthesia Reveals Evidence of Linkage to Chromosomes 2q24, 5q33, 6p12, and 12p12

    PubMed Central

    Asher, Julian E.; Lamb, Janine A.; Brocklebank, Denise; Cazier, Jean-Baptiste; Maestrini, Elena; Addis, Laura; Sen, Mallika; Baron-Cohen, Simon; Monaco, Anthony P.

    2009-01-01

    Synesthesia, a neurological condition affecting between 0.05%–1% of the population, is characterized by anomalous sensory perception and associated alterations in cognitive function due to interference from synesthetic percepts. A stimulus in one sensory modality triggers an automatic, consistent response in either another modality or a different aspect of the same modality. Familiality studies show evidence of a strong genetic predisposition; whereas initial pedigree analyses supported a single-gene X-linked dominant mode of inheritance with a skewed F:M ratio and a notable absence of male-to-male transmission, subsequent analyses in larger samples indicated that the mode of inheritance was likely to be more complex. Here, we report the results of a whole-genome linkage scan for auditory-visual synesthesia with 410 microsatellite markers at 9.05 cM density in 43 multiplex families (n = 196) with potential candidate regions fine-mapped at 5 cM density. Using NPL and HLOD analysis, we identified four candidate regions. Significant linkage at the genome-wide level was detected to chromosome 2q24 (HLOD = 3.025, empirical genome-wide p = 0.047). Suggestive linkage was found to chromosomes 5q33, 6p12, and 12p12. No support was found for linkage to the X chromosome; furthermore, we have identified two confirmed cases of male-to-male transmission of synesthesia. Our results demonstrate that auditory-visual synesthesia is likely to be an oligogenic disorder subject to multiple modes of inheritance and locus heterogeneity. This study comprises a significant step toward identifying the genetic substrates underlying synesthesia, with important implications for our understanding of the role of genes in human cognition and perception. PMID:19200526

  12. A whole-genome scan and fine-mapping linkage study of auditory-visual synesthesia reveals evidence of linkage to chromosomes 2q24, 5q33, 6p12, and 12p12.

    PubMed

    Asher, Julian E; Lamb, Janine A; Brocklebank, Denise; Cazier, Jean-Baptiste; Maestrini, Elena; Addis, Laura; Sen, Mallika; Baron-Cohen, Simon; Monaco, Anthony P

    2009-02-01

    Synesthesia, a neurological condition affecting between 0.05%-1% of the population, is characterized by anomalous sensory perception and associated alterations in cognitive function due to interference from synesthetic percepts. A stimulus in one sensory modality triggers an automatic, consistent response in either another modality or a different aspect of the same modality. Familiality studies show evidence of a strong genetic predisposition; whereas initial pedigree analyses supported a single-gene X-linked dominant mode of inheritance with a skewed F:M ratio and a notable absence of male-to-male transmission, subsequent analyses in larger samples indicated that the mode of inheritance was likely to be more complex. Here, we report the results of a whole-genome linkage scan for auditory-visual synesthesia with 410 microsatellite markers at 9.05 cM density in 43 multiplex families (n = 196) with potential candidate regions fine-mapped at 5 cM density. Using NPL and HLOD analysis, we identified four candidate regions. Significant linkage at the genome-wide level was detected to chromosome 2q24 (HLOD = 3.025, empirical genome-wide p = 0.047). Suggestive linkage was found to chromosomes 5q33, 6p12, and 12p12. No support was found for linkage to the X chromosome; furthermore, we have identified two confirmed cases of male-to-male transmission of synesthesia. Our results demonstrate that auditory-visual synesthesia is likely to be an oligogenic disorder subject to multiple modes of inheritance and locus heterogeneity. This study comprises a significant step toward identifying the genetic substrates underlying synesthesia, with important implications for our understanding of the role of genes in human cognition and perception.

  13. Microarrays for Genotyping Human Group A Rotavirus by Multiplex Capture and Type-Specific Primer Extension

    PubMed Central

    Lovmar, Lovisa; Fock, Caroline; Espinoza, Felix; Bucardo, Filemon; Syvänen, Ann-Christine; Bondeson, Kåre

    2003-01-01

    Human group A rotavirus (HRV) is the major cause of severe gastroenteritis in infants worldwide. HRV shares the feature of a high degree of genetic diversity with many other RNA viruses, and therefore, genotyping of this organism is more complicated than genotyping of more stable DNA viruses. We describe a novel microarray-based method that allows high-throughput genotyping of RNA viruses with a high degree of polymorphism by multiplex capture and type-specific extension on microarrays. Denatured reverse transcription (RT)-PCR products derived from two outer capsid genes of clinical isolates of HRV were hybridized to immobilized capture oligonucleotides representing the most commonly occurring P and G genotypes on a microarray. Specific primer extension of the type-specific capture oligonucleotides was applied to incorporate the fluorescent nucleotide analogue cyanine 5-labeled dUTP as a detectable label. Laser scanning and fluorescence detection of the microarrays was followed by visual or computer-assisted interpretation of the fluorescence patterns generated on the microarrays. Initially, the method detected HRV in all 40 samples and correctly determined both the G and the P genotypes of 35 of the 40 strains analyzed. After modification by inclusion of additional capture oligonucleotides specific for the initially unassigned genotypes, all genotypes could be correctly defined. The results of genotyping with the microarray fully agreed with the results obtained by nucleotide sequence analysis and sequence-specific multiplex RT-PCR. Owing to its robustness, simplicity, and general utility, the microarray-based method may gain wide applicability for the genotyping of microorganisms, including highly variable RNA and DNA viruses. PMID:14605152

  14. Microarrays for genotyping human group a rotavirus by multiplex capture and type-specific primer extension.

    PubMed

    Lovmar, Lovisa; Fock, Caroline; Espinoza, Felix; Bucardo, Filemon; Syvänen, Ann-Christine; Bondeson, Kåre

    2003-11-01

    Human group A rotavirus (HRV) is the major cause of severe gastroenteritis in infants worldwide. HRV shares the feature of a high degree of genetic diversity with many other RNA viruses, and therefore, genotyping of this organism is more complicated than genotyping of more stable DNA viruses. We describe a novel microarray-based method that allows high-throughput genotyping of RNA viruses with a high degree of polymorphism by multiplex capture and type-specific extension on microarrays. Denatured reverse transcription (RT)-PCR products derived from two outer capsid genes of clinical isolates of HRV were hybridized to immobilized capture oligonucleotides representing the most commonly occurring P and G genotypes on a microarray. Specific primer extension of the type-specific capture oligonucleotides was applied to incorporate the fluorescent nucleotide analogue cyanine 5-labeled dUTP as a detectable label. Laser scanning and fluorescence detection of the microarrays was followed by visual or computer-assisted interpretation of the fluorescence patterns generated on the microarrays. Initially, the method detected HRV in all 40 samples and correctly determined both the G and the P genotypes of 35 of the 40 strains analyzed. After modification by inclusion of additional capture oligonucleotides specific for the initially unassigned genotypes, all genotypes could be correctly defined. The results of genotyping with the microarray fully agreed with the results obtained by nucleotide sequence analysis and sequence-specific multiplex RT-PCR. Owing to its robustness, simplicity, and general utility, the microarray-based method may gain wide applicability for the genotyping of microorganisms, including highly variable RNA and DNA viruses.

  15. Cascading processes on multiplex networks: Impact of weak layers

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Min; Goh, Kwang-Il

    Many real-world complex systems such as biological and socio-technological systems consist of manifold layers in multiplex networks. The multiple network layers give rise to the nonlinear effect for the emergent dynamics of systems. Especially, the weak layers plays the significant role in nonlinearity of multiplex networks, which can be neglected in single-layer network framework overlaying all layers. Here we present a simple model of cascades on multiplex networks of heterogeneous layers. The model is simulated on the multiplex network of international trades. We found that the multiplex model produces more catastrophic cascading failures which were the result of collective behaviors from coupling layers rather than the simple summation effect. Therefore risks can be systematically underestimated in simply overlaid network system because the impact of weak layers is overlooked. Our simple theoretical model would have some implications to investigate and design optimal real-world complex systems.

  16. A Microsatellite Genetic Linkage Map for Xiphophorus

    PubMed Central

    Walter, R. B.; Rains, J. D.; Russell, J. E.; Guerra, T. M.; Daniels, C.; Johnston, Dennis A.; Kumar, Jay; Wheeler, A.; Kelnar, K.; Khanolkar, V. A.; Williams, E. L.; Hornecker, J. L.; Hollek, L.; Mamerow, M. M.; Pedroza, A.; Kazianis, S.

    2004-01-01

    Interspecies hybrids between distinct species of the genus Xiphophorus are often used in varied research investigations to identify genomic regions associated with the inheritance of complex traits. There are 24 described Xiphophorus species and a greater number of pedigreed strains; thus, the number of potential interspecies hybrid cross combinations is quite large. Previously, select Xiphophorus experimental crosses have been shown to exhibit differing characteristics between parental species and among the hybrid fishes derived from crossing them, such as widely differing susceptibilities to chemical or physical agents. For instance, genomic regions harboring tumor suppressor and oncogenes have been identified via linkage association of these loci with a small set of established genetic markers. The power of this experimental strategy is related to the number of genetic markers available in the Xiphophorus interspecies cross of interest. Thus, we have undertaken the task of expanding the suite of easily scored markers by characterization of Xiphophorus microsatellite sequences. Using a cross between Xiphophorus maculatus and X. andersi, we report a linkage map predominantly composed of microsatellite markers. All 24 acrocentric chromosome sets of Xiphophorus are represented in the assembled linkage map with an average intergenomic distance of 7.5 cM. Since both male and female F1 hybrids were used to produce backcross progeny, these recombination rates were compared between “male” and “female” maps. Although several genomic regions exhibit differences in map length, male- and female-derived maps are similar. Thus Xiphophorus, in contrast to zebrafish, Danio rerio, and several other vertebrate species, does not show sex-specific differences in recombination. The microsatellite markers we report can be easily adapted to any Xiphophorus interspecies and some intraspecies crosses, and thus provide a means to directly compare results derived from independent

  17. Directing fluorescence with plasmonic and photonic structures.

    PubMed

    Dutta Choudhury, Sharmistha; Badugu, Ramachandram; Lakowicz, Joseph R

    2015-08-18

    potential in controlling and steering fluorescence beams. Some representative studies by other research groups with various nanoantenna structures are described. While there are complexities to near-field interactions of fluorescence with plasmonic and photonic structures, there are also many exciting possibilities. The routing of each emission wavelength along a specific direction with a given angular width and polarization will allow spatial and spectral multiplexing. Directional emission close to surface normal will be particularly useful for microscopy and array-based studies. Application-specific angular emission patterns can be obtained by varying the design parameters of the plasmonic/photonic substrates in a flexible manner. We anticipate that the ability to control the flow of emitted light in the nanoscale will lead to the development of a new generation of fluorescence-based assays, instrumentation, portable diagnostics, and emissive devices.

  18. Carburetion system including an adjustable throttle linkage

    SciTech Connect

    Du Bois, C.G.; Falig, J.D.

    1986-03-25

    A throttle linkage assembly is described comprising a throttle shaft rotatable about a throttle shaft axis between an idle position and a wide open throttle position, a throttle plate fixed on the throttle shaft, a driven lever pivotable about the throttle shaft axis between various angles relative to the throttle plate, and means for fixing the driven lever at a selected angle relative to the throttle plate an adjustment lever fixedly connected to the throttle adjacent the driven lever, and means for releasably securing the driven lever to the adjustment lever.

  19. Linkage mapping bovine EST-based SNP

    PubMed Central

    Snelling, Warren M; Casas, Eduardo; Stone, Roger T; Keele, John W; Harhay, Gregory P; Bennett, Gary L; Smith, Timothy PL

    2005-01-01

    Background Existing linkage maps of the bovine genome primarily contain anonymous microsatellite markers. These maps have proved valuable for mapping quantitative trait loci (QTL) to broad regions of the genome, but more closely spaced markers are needed to fine-map QTL, and markers associated with genes and annotated sequence are needed to identify genes and sequence variation that may explain QTL. Results Bovine expressed sequence tag (EST) and bacterial artificial chromosome (BAC)sequence data were used to develop 918 single nucleotide polymorphism (SNP) markers to map genes on the bovine linkage map. DNA of sires from the MARC reference population was used to detect SNPs, and progeny and mates of heterozygous sires were genotyped. Chromosome assignments for 861 SNPs were determined by twopoint analysis, and positions for 735 SNPs were established by multipoint analyses. Linkage maps of bovine autosomes with these SNPs represent 4585 markers in 2475 positions spanning 3058 cM . Markers include 3612 microsatellites, 913 SNPs and 60 other markers. Mean separation between marker positions is 1.2 cM. New SNP markers appear in 511 positions, with mean separation of 4.7 cM. Multi-allelic markers, mostly microsatellites, had a mean (maximum) of 216 (366) informative meioses, and a mean 3-lod confidence interval of 3.6 cM Bi-allelic markers, including SNP and other marker types, had a mean (maximum) of 55 (191) informative meioses, and were placed within a mean 8.5 cM 3-lod confidence interval. Homologous human sequences were identified for 1159 markers, including 582 newly developed and mapped SNP. Conclusion Addition of these EST- and BAC-based SNPs to the bovine linkage map not only increases marker density, but provides connections to gene-rich physical maps, including annotated human sequence. The map provides a resource for fine-mapping quantitative trait loci and identification of positional candidate genes, and can be integrated with other data to guide and

  20. Multiplexed microsatellite recovery using massively parallel sequencing

    USGS Publications Warehouse

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  1. Multiplexed Colorimetric Solid-Phase Extraction

    NASA Technical Reports Server (NTRS)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  2. Mesoscopic quantum multiplex for channeling bunches

    NASA Astrophysics Data System (ADS)

    Shen, Jing

    1998-09-01

    (1) Bogacz-Cline channeling is an interesting idea that can transform a bunch of low particle intensity to a collider of high luminosity but it was maintained as impossible to carry out because of three technical problems. (2) The first of which is discussed in this paper, and it is how to get billions particles from each bunch to enter into and channel through a single crystal channel. (3) Two basic difficulties of entrance are discussed in this paper. The first is due to the Heisenberg's uncertainty, and the second is the dimension reduction of a beam bunch in crystal from 3D to 1D. (4) To overcome these difficulties, a hybrid device named Mesoscopic Quantum Multiplex (MQM) is designed to achieve entrance and channeling. It is a quantum generalization of classical multiplex in detector readout electronics for the classical-quantum interface. It is made by nano-crystalline technology. (5) The MQM can channel the Richter-Kimura-Takada flat e± beams of NLC-JLC, and low emittance p or heavy ion beams as well as the Bogacz-Cline μ± beams, and the Nagamine-Chu cool μ± beams.

  3. Multiplexed protein profiling by sequential affinity capture

    PubMed Central

    Ayoglu, Burcu; Birgersson, Elin; Mezger, Anja; Nilsson, Mats; Uhlén, Mathias; Nilsson, Peter

    2016-01-01

    Antibody microarrays enable parallelized and miniaturized analysis of clinical samples, and have proven to provide novel insights for the analysis of different proteomes. However, there are concerns that the performance of such direct labeling and single antibody assays are prone to off‐target binding due to the sample context. To improve selectivity and sensitivity while maintaining the possibility to conduct multiplexed protein profiling, we developed a multiplexed and semi‐automated sequential capture assay. This novel bead‐based procedure encompasses a first antigen capture, labeling of captured protein targets on magnetic particles, combinatorial target elution and a read‐out by a secondary capture bead array. We demonstrate in a proof‐of‐concept setting that target detection via two sequential affinity interactions reduced off‐target contribution, while lowered background and noise levels, improved correlation to clinical values compared to single binder assays. We also compared sensitivity levels with single binder and classical sandwich assays, explored the possibility for DNA‐based signal amplification, and demonstrate the applicability of the dual capture bead‐based antibody microarray for biomarker analysis. Hence, the described concept enhances the possibilities for antibody array assays to be utilized for protein profiling in body fluids and beyond. PMID:26935855

  4. Controllability of asynchronous Boolean multiplex control networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Wang, Xingyuan; Liu, Hong

    2014-09-01

    In this article, the controllability of asynchronous Boolean multiplex control networks (ABMCNs) is studied. First, the model of Boolean multiplex control networks under Harvey' asynchronous update is presented. By means of semi-tensor product approach, the logical dynamics is converted into linear representation, and a generalized formula of control-depending network transition matrices is achieved. Second, a necessary and sufficient condition is proposed to verify that only control-depending fixed points of ABMCNs can be controlled with probability one. Third, using two types of controls, the controllability of system is studied and formulae are given to show: (a) when an initial state is given, the reachable set at time s under a group of specified controls; (b) the reachable set at time s under arbitrary controls; (c) the specific probability values from a given initial state to destination states. Based on the above formulae, an algorithm to calculate overall reachable states from a specified initial state is presented. Moreover, we also discuss an approach to find the particular control sequence which steers the system between two states with maximum probability. Examples are shown to illustrate the feasibility of the proposed scheme.

  5. Dispersion-reduction technique using subcarrier multiplexing

    SciTech Connect

    Sargis, P.D.; Haigh, R.E.; McCammon, K.G.

    1995-10-18

    We have developed a novel dispersion-reduction technique using subcarrier multiplexing (SCM) which permits the transmission of multiple 2.5 Gbit/s data channels over hundreds of kilometers of conventional fiber-optic cable with negligible dispersion. Using a lithium niobate external modulator having a modulation bandwidth of 20 GHz, we are able to multiplex several high-speed data channels at a single wavelength. At the receiving end, we demultiplex the data and detect each channel using a 2-GHz bandwidth optical detector. All of the hardware in our system consists of off-the-shelf components and can be integrated to reduce the overall cost. We demonstrated our dispersion-reduction technique in a recent field trial by transmitting two 2.5 Gbit/s data channels over 90 km of commercially-installed single-mode fiber, followed by 210 km of spooled fiber. For comparison, we substituted the 300 km of fiber with equivalent optical attenuation. We also ran computer simulations to evaluate link behavior. Technical details and field trial results will be presented.

  6. Fluorescent resonance energy transfer based detection of biological contaminants through hybrid quantum dot-quencher interactions.

    PubMed

    Ramadurai, D; Norton, E; Hale, J; Garland, J W; Stephenson, L D; Stroscio, M A; Sivananthan, S; Kumar, A

    2008-06-01

    A nanoscale sensor employing fluorescent resonance energy transfer interactions between fluorescent quantum dots (QDs) and organic quencher molecules can be used for the multiplexed detection of biological antigens in solution. Detection occurs when the antigens to be detected displace quencher-labelled inactivated (or dead) antigens of the same type attached to QD-antibody complexes through equilibrium reactions. This unquenches the QDs, allowing detection to take place through the observation of photoluminescence in solution or through the fluorescence imaging of unquenched QD complexes trapped on filter surfaces. Multiplexing can be accomplished by using several different sizes of QDs, with each size QD labelled with an antibody for a different antigen, providing the ability to detect several types of antigens or biological contaminants simultaneously in near real-time with high specificity and sensitivity.

  7. Genetic Linkage to Chromosome 22q12 for a Heavy-Smoking Quantitative Trait in Two Independent Samples

    PubMed Central

    Saccone, Scott F.; Pergadia, Michele L.; Loukola, Anu; Broms, Ulla; Montgomery, Grant W.; Wang, Jen C.; Agrawal, Arpana; Dick, Danielle M.; Heath, Andrew C.; Todorov, Alexandre A.; Maunu, Heidi; Heikkilä, Kauko; Morley, Katherine I.; Rice, John P.; Todd, Richard D.; Kaprio, Jaakko; Peltonen, Leena; Martin, Nicholas G.; Goate, Alison M.; Madden, Pamela A. F.

    2007-01-01

    We conducted a genomewide linkage screen of a simple heavy-smoking quantitative trait, the maximum number of cigarettes smoked in a 24-h period, using two independent samples: 289 Australian and 155 Finnish nuclear multiplex families, all of which were of European ancestry and were targeted for DNA analysis by use of probands with a heavy-smoking phenotype. We analyzed the trait, using a regression of identity-by-descent allele sharing on the sum and difference of the trait values for relative pairs. Suggestive linkage was detected on chromosome 22 at 27–29 cM in each sample, with a LOD score of 5.98 at 26.96 cM in the combined sample. After additional markers were used to localize the signal, the LOD score was 5.21 at 25.46 cM. To assess the statistical significance of the LOD score in the combined sample, 1,000 simulated genomewide screens were conducted, resulting in an empirical P value of .006 for the LOD score of 5.21. This linkage signal is driven mainly by the microsatellite marker D22S315 (22.59 cM), which had a single-point LOD score of 5.41 in the combined sample and an empirical P value <.001 from 1,000 simulated genomewide screens. This marker is located within an intron of the gene ADRBK2, encoding the beta-adrenergic receptor kinase 2. Fine mapping of this linkage region may reveal variants contributing to heaviness of smoking, which will lead to a better understanding of the genetic mechanisms underlying nicotine dependence. PMID:17436240

  8. Constructing a linkage-linkage disequilibrium map using dominant-segregating markers.

    PubMed

    Zhu, Xuli; Dong, Leiming; Jiang, Libo; Li, Huan; Sun, Lidan; Zhang, Hui; Yu, Weiwu; Liu, Haokai; Dai, Wensheng; Zeng, Yanru; Wu, Rongling

    2016-02-01

    The relationship between linkage disequilibrium (LD) and recombination fraction can be used to infer the pattern of genetic variation and evolutionary process in humans and other systems. We described a computational framework to construct a linkage-LD map from commonly used biallelic, single-nucleotide polymorphism (SNP) markers for outcrossing plants by which the decline of LD is visualized with genetic distance. The framework was derived from an open-pollinated (OP) design composed of plants randomly sampled from a natural population and seeds from each sampled plant, enabling simultaneous estimation of the LD in the natural population and recombination fraction due to allelic co-segregation during meiosis. We modified the framework to infer evolutionary pasts of natural populations using those marker types that are segregating in a dominant manner, given their role in creating and maintaining population genetic diversity. A sophisticated two-level EM algorithm was implemented to estimate and retrieve the missing information of segregation characterized by dominant-segregating markers such as single methylation polymorphisms. The model was applied to study the relationship between linkage and LD for a non-model outcrossing species, a gymnosperm species, Torreya grandis, naturally distributed in mountains of the southeastern China. The linkage-LD map constructed from various types of molecular markers opens a powerful gateway for studying the history of plant evolution.

  9. Searching for epistasis and linkage heterogeneity by correlations of pedigree-specific linkage scores.

    PubMed

    Schaid, Daniel J; McDonnell, Shannon K; Carlson, Erin E; Thibodeau, Stephen N; Stanford, Janet L; Ostrander, Elaine A

    2008-07-01

    Recognizing that multiple genes are likely responsible for common complex traits, statistical methods are needed to rapidly screen for either interacting genes or locus heterogeneity in genetic linkage data. To achieve this, some investigators have proposed examining the correlation of pedigree linkage scores between pairs of chromosomal regions, because large positive correlations suggest interacting loci and large negative correlations suggest locus heterogeneity (Cox et al. [1999]; Maclean et al. [1993]). However, the statistical significance of these extreme correlations has been difficult to determine due to the autocorrelation of linkage scores along chromosomes. In this study, we provide novel solutions to this problem by using results from random field theory, combined with simulations to determine the null correlation for syntenic loci. Simulations illustrate that our new methods control the Type-I error rates, so that one can avoid the extremely conservative Bonferroni correction, as well as the extremely time-consuming permutational method to compute P-values for non-syntenic loci. Application of these methods to prostate cancer linkage studies illustrates interpretation of results and provides insights into the impact of marker information content on the resulting statistical correlations, and ultimately the asymptotic P-values.

  10. Which are the best identifiers for record linkage?

    PubMed

    Quantin, Catherine; Binquet, Christine; Bourquard, Karima; Pattisina, Ronny; Gouyon-Cornet, Béatrice; Ferdynus, Cyril; Gouyon, Jean-Bernard; François-André, Allaert

    2004-01-01

    As a linkage using less informative identifiers could lead to linkage errors, it is essential to quantify the information associated to each identifier. The aim of this study was to estimate the discriminating power of different identifiers susceptible to be used in a record linkage process. This work showed the interest of three identifiers when linking data concerning a same patient using an automatic procedure based on the method proposed by Jaro; the date of birth, the first and the last names seemed to be the more appropriate identifiers. Including a poorly discriminating identifier like gender did not improve the results. Moreover, adding a second christian name, often missing, increased linkage errors. On the contrary, it seemed that using a phonetic treatment adapted to the French language could improve the results of linkage in comparison to the Soundex. However, whatever, the method used it seems necessary to improve the quality of identifier collection as it could greatly influence linkage results.

  11. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  12. [Linkage analysis of serial sex crimes].

    PubMed

    Yokota, Kaeko; Watanabe, Kazumi; Wachi, Taeko; Otsuka, Yusuke; Kuraishi, Hiroki; Fujita, Goro

    2015-08-01

    The purpose of this study was twofold: first, to create an index for a behavioral linkage analysis of serial sex crimes, and second, to construct a predictive model for the analysis. Data on 720 sex crimes (rape, indecent assault) committed by 360 offenders arrested between 1993 and 2005 throughout Japan were collected. The following seven behaviors were examined during a series of analyses aimed at illustrating the effectiveness of crime linkage in serial sex crimes: victim age group, area type, publicness of offense site, weapon, time, contact method, and day of the week. The results indicated that six of the seven behaviors (excluding "day of the week") significantly distinguished between linked and unlinked crime pairs. Under a logistic regression of these six variables, which were dichotomously coded in terms of the concordance or discordance between each pair of incidents, the area under the receiver operating characteristic (ROC) curve was 0.85 (95% CI = 0.82-0.87), indicating a high level of discriminative accuracy in identifying disparate sex crimes committed by the same person. PMID:26402952

  13. Methods for genetic linkage analysis using trisomies

    SciTech Connect

    Feingold, E.; Lamb, N.E.; Sherman, S.L.

    1994-09-01

    Certain genetic disorders (e.g. congenital cataracts, duodenal atresia) are rare in the general population, but more common in people with Down`s syndrome. We present a method for using individuals with trisomy 21 to map genes for such traits. Our methods are analogous to methods for mapping autosomal dominant traits using affected relative pairs by looking for markers with greater than expected identity-by-descent. In the trisomy case, one would take trisomic individuals and look for markers with greater than expected reduction to homozygosity in the chromosomes inherited form the non-disjoining parent. We present statistical methods for performing such a linkage analysis, including a test for linkage to a marker, a method for estimating the distance from the marker to the gene, a confidence interval for that distance, and methods for computing power and sample sizes. The methods are described in the context of gene-dosage model for the etiology of the disorder, but can be extended to other models. We also resolve some practical issues involved in implementing the methods, including how to use partially informative markers, how to test candidate genes, and how to handle the effect of reduced recombination associated with maternal meiosis I non-disjunction.

  14. [Linkage analysis of serial sex crimes].

    PubMed

    Yokota, Kaeko; Watanabe, Kazumi; Wachi, Taeko; Otsuka, Yusuke; Kuraishi, Hiroki; Fujita, Goro

    2015-08-01

    The purpose of this study was twofold: first, to create an index for a behavioral linkage analysis of serial sex crimes, and second, to construct a predictive model for the analysis. Data on 720 sex crimes (rape, indecent assault) committed by 360 offenders arrested between 1993 and 2005 throughout Japan were collected. The following seven behaviors were examined during a series of analyses aimed at illustrating the effectiveness of crime linkage in serial sex crimes: victim age group, area type, publicness of offense site, weapon, time, contact method, and day of the week. The results indicated that six of the seven behaviors (excluding "day of the week") significantly distinguished between linked and unlinked crime pairs. Under a logistic regression of these six variables, which were dichotomously coded in terms of the concordance or discordance between each pair of incidents, the area under the receiver operating characteristic (ROC) curve was 0.85 (95% CI = 0.82-0.87), indicating a high level of discriminative accuracy in identifying disparate sex crimes committed by the same person.

  15. A linkage study of bipolar disorder

    SciTech Connect

    Kelsoe, J.R.; Sadovnick, A.D.; Remick, R.A.

    1994-09-01

    We are currently surveying the genome with polymorphic DNA markers in search of loci linked to bipolar disorder (manic-depressive illness) in three populations: 20 families (175 subjects) from the general North American population from San Diego (UCSD) and Vancouver (UBC); 3 Icelandic families (55 subjects); and an Old Order Amish pedigree 110 (118 subjects). Over 50 markers on chromosomes 1, 2, 5, 11, 17, 18, 20 and 21 have been examined. All markers have been tested in the Amish and Icelandic families, and a portion of them in the UCSD/UBC families, which we have only recently begun genotyping. The following candidate genes have been examined: {beta}-TSH, dopamine transporter (HDAT), {beta}2 adrenergic receptor (ADRB2), glucocorticoid type II receptor (GRL), D2 dopamine receptor, serotonin transporter (HSERT), and G{alpha}s G protein subunit (GNAS1). Linkage analysis was conducted using an autosomal dominant model with age-dependent reduced penetrance. Subjects with bipolar, schizoaffective, or recurrent major depressive disorders were considered affected. No significant evidence for linkage was obtained. Mildly positive lods ranging between 1.1 and 1.6 were obtained for three loci: D11S29, HDAT, and GRL.

  16. Model-free linkage analysis of a binary trait.

    PubMed

    Xu, Wei; Bull, Shelley B; Mirea, Lucia; Greenwood, Celia M T

    2012-01-01

    Genetic linkage analysis aims to detect chromosomal regions containing genes that influence risk of specific inherited diseases. The presence of linkage is indicated when a disease or trait cosegregates through the families with genetic markers at a particular region of the genome. Two main types of genetic linkage analysis are in common use, namely model-based linkage analysis and model-free linkage analysis. In this chapter, we focus solely on the latter type and specifically on binary traits or phenotypes, such as the presence or absence of a specific disease. Model-free linkage analysis is based on allele-sharing, where patterns of genetic similarity among affected relatives are compared to chance expectations. Because the model-free methods do not require the specification of the inheritance parameters of a genetic model, they are preferred by many researchers at early stages in the study of a complex disease. We introduce the history of model-free linkage analysis in Subheading 1. Table 1 describes a standard model-free linkage analysis workflow. We describe three popular model-free linkage analysis methods, the nonparametric linkage (NPL) statistic, the affected sib-pair (ASP) likelihood ratio test, and a likelihood approach for pedigrees. The theory behind each linkage test is described in this section, together with a simple example of the relevant calculations. Table 4 provides a summary of popular genetic analysis software packages that implement model-free linkage models. In Subheading 2, we work through the methods on a rich example providing sample software code and output. Subheading 3 contains notes with additional details on various topics that may need further consideration during analysis.

  17. A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation.

    PubMed

    Ballarini, Mirko; Frascella, Francesca; De Leo, Natascia; Ricciardi, Serena; Rivolo, Paola; Mandracci, Pietro; Enrico, Emanuele; Giorgis, Fabrizio; Michelotti, Francesco; Descrovi, Emiliano

    2012-03-12

    In this work we introduce the use of a patterned polymer-based surface functionalization of a one-dimensional photonic crystal (1DPC) for controlling the emission direction of fluorescent proteins (ptA) via coupling to a set of two Bloch Surface Waves (BSW). Each BSW dispersion branch relates to a micrometric region on the patterned 1DPC, characterized by a well defined chemical characteristic. We report on the enhanced and spatially selective excitation of fluorescent ptA, and on the spatially-resolved detection of polarized emitted radiation coupled to specific BSW modes. As a result, we provide an optical multiplexing technique for the angular separation of fluorescence radiated from micrometric regions having different surface properties, even in the case the emitting labels are spectrally identical. This working principle can be advantageously extended to a multi-step nanometric relief structure for self-referencing biosensing or frequency-multiplexed fluorescence detection. PMID:22418554

  18. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism

    PubMed Central

    Van't Hof, A E; Nguyen, P; Dalíková, M; Edmonds, N; Marec, F; Saccheri, I J

    2013-01-01

    We have constructed a linkage map for the peppered moth (Biston betularia), the classical ecological genetics model of industrial melanism, aimed both at localizing the network of loci controlling melanism and making inferences about chromosome dynamics. The linkage map, which is based primarily on amplified fragment length polymorphisms (AFLPs) and genes, consists of 31 linkage groups (LGs; consistent with the karyotype). Comparison with the evolutionarily distant Bombyx mori suggests that the gene content of chromosomes is highly conserved. Gene order is conserved on the autosomes, but noticeably less so on the Z chromosome, as confirmed by physical mapping using bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH). Synteny mapping identified three pairs of B. betularia LGs (11/29, 23/30 and 24/31) as being orthologous to three B. mori chromosomes (11, 23 and 24, respectively). A similar finding in an outgroup moth (Plutella xylostella) indicates that the B. mori karyotype (n=28) is a phylogenetically derived state resulting from three chromosome fusions. As with other Lepidoptera, the B. betularia W chromosome consists largely of repetitive sequence, but exceptionally we found a W homolog of a Z-linked gene (laminin A), possibly resulting from ectopic recombination between the sex chromosomes. The B. betularia linkage map, featuring the network of known melanization genes, serves as a resource for melanism research in Lepidoptera. Moreover, its close resemblance to the ancestral lepidopteran karyotype (n=31) makes it a useful reference point for reconstructing chromosome dynamic events and ancestral genome architectures. Our study highlights the unusual evolutionary stability of lepidopteran autosomes; in contrast, higher rates of intrachromosomal rearrangements support a special role of the Z chromosome in adaptive evolution and speciation. PMID:23211790

  19. LINKAGE BETWEEN PRODUCTION AND RESPIRATION ON THE LOUISIANA CONTINENTAL SHELF.

    EPA Science Inventory

    Abstract for presentation. Original title, "PRIMARY PRODUCTION, BACTERIOPLANKTON PRODUCTION, AND COMMUNITY RESPIRATION IN STRATIFIED WATERS OF THE NORTHERN GULF OF MEXICO CONTINENTAL SHELF: LINKAGE TO HYPOXIA."

  20. Fluorescent properties of oligonucleotide-conjugated thiazole orange probes.

    PubMed

    Privat, Eric; Melvin, Tracy; Mérola, Fabienne; Schweizer, Gerd; Prodhomme, Sylvie; Asseline, Ulysse; Vigny, Paul

    2002-03-01

    The fluorescence properties of thiazole orange, linked via a (1) hydrophobic alkyl or a (2) hydrophilic ethylene glycol chain to the central internucleotidic phosphate group of a pentadeca-2'-deoxyriboadenylate (dA15), are evaluated. Linkage at the phosphate group yields two stereoisomers, S-isomer of the phosphorus chiral center (Sp) and R-isomer of the phosphorus chiral center (Rp); these are studied separately. The character of the linkage chain and the chirality of the internucleotidic phosphate linkage site influence the fluorescent properties of these thiazole orange-oligonucleotide conjugates (TO-probes). Quantum yields of fluorescence (phifl) of between 0.04 and 0.07 were determined for the single-stranded conjugates. The fluorescence yield increased by up to five times upon hybridization with the complementary sequence (d5'[CACT15CAC3']); (phifl values of between 0.06-0.35 were determined for the double-stranded conjugates. The phifl value (0.17) of thiazole orange, 1-(N,N'-trimethylaminopropyl)-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene]-quinolinium iodide (TO-Pro 1) in the presence of the oligonucleotide duplex (TO-Pro 1: dA15.d5'[CACT15CAC3'] (1:1)) is much less than that for some of the hybrids of the conjugates. Our studies, using steady-state and time-resolved fluorescence experiments, show that a number of discrete fluorescent association species between the thiazole orange and the helix are formed. Time-resolved studies on the four double-stranded TO-probes revealed that the fluorescent oligonucleotide-thiazole orange complexes are common, only the distribution of the species varies with the character of the chain and the chirality at the internucleotidic phosphate site. Those TO-probes in which the isomeric structure of the phosphate-chain linkage is Rp, and therefore such that the fluorophore is directed toward the minor groove, have higher phifl values than the Sp isomer. Of the systems studied, thiazole orange linked by an alkyl

  1. Transmission of multiplexed video signals in multimode optical fiber systems

    NASA Technical Reports Server (NTRS)

    White, Preston, III

    1988-01-01

    Kennedy Space Center has the need for economical transmission of two multiplexed video signals along multimode fiberoptic systems. These systems must span unusual distances and must meet RS-250B short-haul standards after reception. Bandwidth is a major problem and studies of the installed fibers, available LEDs and PINFETs led to the choice of 100 MHz as the upper limit for the system bandwidth. Optical multiplexing and digital transmission were deemed inappropriate. Three electrical multiplexing schemes were chosen for further study. Each of the multiplexing schemes included an FM stage to help meet the stringent S/N specification. Both FM and AM frequency division multiplexing methods were investigated theoretically and these results were validated with laboratory tests. The novel application of quadrature amplitude multiplexing was also considered. Frequency division multiplexing of two wideband FM video signal appears the most promising scheme although this application requires high power highly linear LED transmitters. Futher studies are necessary to determine if LEDs of appropriate quality exist and to better quantify performance of QAM in this application.

  2. Developing a Salivary Antibody Multiplex Immunoassay to Measure Human Exposure to Environmental Pathogens.

    PubMed

    Augustine, Swinburne A J; Eason, Tarsha N; Simmons, Kaneatra J; Curioso, Clarissa L; Griffin, Shannon M; Ramudit, Malini K D; Plunkett, Trevor R

    2016-09-12

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. This manuscript describes the development and analysis of a bead-based multiplex immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using a bead-based, solution-phase assay. Beads were coupled with antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary capture antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen-coupled and control beads were then incubated with prospectively-collected human saliva samples, measured on a high throughput analyzer based on the principles of flow cytometry, and the presence of antibodies to each antigen was measured in Median Fluorescence Intensity units (MFI). This multiplex immunoassay has a number of advantages, including more data with less sample; reduced costs and labor; and the ability to customize the assay to many targets of interest. Results indicate that the salivary multiplex immunoassay may be capable of identifying previous exposures and infections, which can be especially useful in surveillance

  3. Developing a Salivary Antibody Multiplex Immunoassay to Measure Human Exposure to Environmental Pathogens.

    PubMed

    Augustine, Swinburne A J; Eason, Tarsha N; Simmons, Kaneatra J; Curioso, Clarissa L; Griffin, Shannon M; Ramudit, Malini K D; Plunkett, Trevor R

    2016-01-01

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. This manuscript describes the development and analysis of a bead-based multiplex immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using a bead-based, solution-phase assay. Beads were coupled with antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary capture antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen-coupled and control beads were then incubated with prospectively-collected human saliva samples, measured on a high throughput analyzer based on the principles of flow cytometry, and the presence of antibodies to each antigen was measured in Median Fluorescence Intensity units (MFI). This multiplex immunoassay has a number of advantages, including more data with less sample; reduced costs and labor; and the ability to customize the assay to many targets of interest. Results indicate that the salivary multiplex immunoassay may be capable of identifying previous exposures and infections, which can be especially useful in surveillance

  4. Multiplex detection of protein-protein interactions using a next generation luciferase reporter.

    PubMed

    Verhoef, Lisette G G C; Mattioli, Michela; Ricci, Fernanda; Li, Yao-Cheng; Wade, Mark

    2016-02-01

    Cell-based assays of protein-protein interactions (PPIs) using split reporter proteins can be used to identify PPI agonists and antagonists. Generally, such assays measure one PPI at a time, and thus counterscreens for on-target activity must be run in parallel or at a subsequent stage; this increases both the cost and time during screening. Split luciferase systems offer advantages over those that use split fluorescent proteins (FPs). This is since split luciferase offers a greater signal:noise ratio and, unlike split FPs, the PPI can be reversed upon small molecule treatment. While multiplexed PPI assays using luciferase have been reported, they suffer from low signal:noise and require fairly complex spectral deconvolution during analysis. Furthermore, the luciferase enzymes used are large, which limits the range of PPIs that can be interrogated due to steric hindrance from the split luciferase fragments. Here, we report a multiplexed PPI assay based on split luciferases from Photinus pyralis (firefly luciferase, FLUC) and the deep-sea shrimp, Oplophorus gracilirostris (NanoLuc, NLUC). Specifically, we show that the binding of the p53 tumor suppressor to its two major negative regulators, MDM2 and MDM4, can be simultaneously measured within the same sample, without the requirement for complex filters or deconvolution. We provide chemical and genetic validation of this system using MDM2-targeted small molecules and mutagenesis, respectively. Combined with the superior signal:noise and smaller size of split NanoLuc, this multiplexed PPI assay format can be exploited to study the induction or disruption of pairwise interactions that are prominent in many cell signaling pathways. PMID:26646257

  5. Multiplex mRNA profiling for the identification of body fluids.

    PubMed

    Juusola, Jane; Ballantyne, Jack

    2005-08-11

    We report the development of a multiplex reverse transcription-polymerase chain reaction (RT-PCR) method for the definitive identification of the body fluids that are commonly encountered in forensic casework analysis, namely blood, saliva, semen, and vaginal secretions. Using selected genes that we have identified as being expressed in a tissue-specific manner we have developed a multiplex RT-PCR assay which is composed of eight body fluid-specific genes and that is optimized for the detection of blood, saliva, semen, and vaginal secretions as single or mixed stains. The genes include beta-spectrin (SPTB) and porphobilinogen deaminase (PBGD) for blood, statherin (STATH) and histatin 3 (HTN3) for saliva, protamine 1 (PRM1) and protamine 2 (PRM2) for semen, and human beta-defensin 1 (HBD-1) and mucin 4 (MUC4) for vaginal secretions. The known or presumed functions of these genes suggest an extremely restricted pattern of gene expression, which is a basic requirement for incorporation into a tissue-specific assay. The methodology is based upon gene expression profiling analysis in which the body fluid-specific genes are identified by detecting the presence of appropriate mRNA species using capillary electrophoresis/laser induced fluorescence. An mRNA-based approach, such as the multiplex RT-PCR method described in the present work, allows for the facile identification of the tissue components present in a body fluid stain and could supplant the battery of serological and biochemical tests currently employed in the forensic serology laboratory.

  6. Multiplex real-time PCR using SYBR® GreenER™ for the detection of DNA allergens in food.

    PubMed

    Pafundo, Simona; Gullì, Mariolina; Marmiroli, Nelson

    2010-03-01

    We describe the development of a six-target real-time multiplex PCR assay with the SYBR® GreenER™ fluorescent dye, targeted to genes encoding for allergenic proteins commonly present in many processed food products (patent application pending). The assay was successfully trialled on reconstructed food matrices and on a range of commercial foodstuffs, and is proposed as a ready-to-use analytical tool for food manufacturers to detect the presence or confirm the absence of sequences encoding for important allergenic proteins of plant origin.

  7. Multiplexity versus correlation: the role of local constraints in real multiplexes.

    PubMed

    Gemmetto, V; Garlaschelli, D

    2015-01-01

    Several systems can be represented as multiplex networks, i.e. in terms of a superposition of various graphs, each related to a different mode of connection between nodes. Hence, the definition of proper mathematical quantities aiming at capturing the added level of complexity of those systems is required. Various steps in this direction have been made. In the simplest case, dependencies between layers are measured via correlation-based metrics, a procedure that we show to be equivalent to the use of completely homogeneous benchmarks specifying only global constraints. However, this approach does not take into account the heterogeneity in the degree and strength distributions, which is instead a fundamental feature of real-world multiplexes. In this work, we compare the observed dependencies between layers with the expected values obtained from maximum-entropy reference models that appropriately control for the observed heterogeneity in the degree and strength distributions. This information-theoretic approach results in the introduction of novel and improved multiplexity measures that we test on different datasets, i.e. the International Trade Network and the European Airport Network. Our findings confirm that the use of homogeneous benchmarks can lead to misleading results, and highlight the important role played by the distribution of hubs across layers.

  8. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    PubMed

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously.

  9. Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system.

    PubMed

    Luo, Yuan; Gelsinger-Austin, Paul J; Watson, Jonathan M; Barbastathis, George; Barton, Jennifer K; Kostuk, Raymond K

    2008-09-15

    A three-dimensional imaging system incorporating multiplexed holographic gratings to visualize fluorescence tissue structures is presented. Holographic gratings formed in volume recording materials such as a phenanthrenquinone poly(methyl methacrylate) photopolymer have narrowband angular and spectral transmittance filtering properties that enable obtaining spatial-spectral information within an object. We demonstrate this imaging system's ability to obtain multiple depth-resolved fluorescence images simultaneously. PMID:18794943

  10. Pneumosinus dilatans multiplex associated with hormonal imbalance.

    PubMed

    Ushas, P; Ravi, V; Painatt, Jaeson Mohanan; Nair, Preeti P

    2013-08-26

    Pneumosinus dilatans describes an abnormal dilation of one or more paranasal sinuses without radiological evidence of localised bone destruction, hyperostosis or mucous membrane thickening. Dilation of mastoid air cells also occurs rarely along with involvement of paranasal sinuses. This rare combination of unknown aetiology was reported in two cases in the literature and termed 'Pneumosinus Dilatans Multiplex' (PSDM). It is usually asymptomatic, and is detected incidentally on plain radiography, CT or MRI. If left untreated, it can further erode the bone leading to complications such as facial asymmetry, neurological disorders and pathological fractures. The aetiology of the condition remains obscure. Various hypotheses proposed are the presence of gas-forming microorganisms, spontaneous drainage of a mucocele, the presence of a one-way valve, dysregulation of hormonal levels leading to a disturbance of osteoblastic and osteoclastic activity. This paper describes a case of PSDM possibly secondary to hormonal disturbance.

  11. Emergence of network features from multiplexity.

    PubMed

    Cardillo, Alessio; Gómez-Gardeñes, Jesús; Zanin, Massimiliano; Romance, Miguel; Papo, David; del Pozo, Francisco; Boccaletti, Stefano

    2013-01-01

    Many biological and man-made networked systems are characterized by the simultaneous presence of different sub-networks organized in separate layers, with links and nodes of qualitatively different types. While during the past few years theoretical studies have examined a variety of structural features of complex networks, the outstanding question is whether such features are characterizing all single layers, or rather emerge as a result of coarse-graining, i.e. when going from the multilayered to the aggregate network representation. Here we address this issue with the help of real data. We analyze the structural properties of an intrinsically multilayered real network, the European Air Transportation Multiplex Network in which each commercial airline defines a network layer. We examine how several structural measures evolve as layers are progressively merged together. In particular, we discuss how the topology of each layer affects the emergence of structural properties in the aggregate network.

  12. Vibrational mode multiplexing of ultracold atoms.

    PubMed

    Martínez-Garaot, S; Torrontegui, E; Chen, Xi; Modugno, M; Guéry-Odelin, D; Tseng, Shuo-Yen; Muga, J G

    2013-11-22

    Sending multiple messages on qubits encoded in different vibrational modes of cold atoms or ions along a transmission waveguide requires us to merge first and then separate the modes at input and output ends. Similarly, different qubits can be stored in the modes of a trap and be separated later. We design the fast splitting of a harmonic trap into an asymmetric double well so that the initial ground vibrational state becomes the ground state of one of two final wells, and the initial first excited state becomes the ground state of the other well. This might be done adiabatically by slowly deforming the trap. We speed up the process by inverse engineering a double-function trap using dynamical invariants. The separation (demultiplexing) followed by an inversion of the asymmetric bias and then by the reverse process (multiplexing) provides a population inversion protocol based solely on trap reshaping.

  13. Realization of a spin-wave multiplexer.

    PubMed

    Vogt, K; Fradin, F Y; Pearson, J E; Sebastian, T; Bader, S D; Hillebrands, B; Hoffmann, A; Schultheiss, H

    2014-04-23

    Recent developments in the field of spin dynamics--like the interaction of charge and heat currents with magnons, the quasi-particles of spin waves--opens the perspective for novel information processing concepts and potential applications purely based on magnons without the need of charge transport. The challenges related to the realization of advanced concepts are the spin-wave transport in two-dimensional structures and the transfer of existing demonstrators to the micro- or even nanoscale. Here we present the experimental realization of a microstructured spin-wave multiplexer as a fundamental building block of a magnon-based logic. Our concept relies on the generation of local Oersted fields to control the magnetization configuration as well as the spin-wave dispersion relation to steer the spin-wave propagation in a Y-shaped structure. Thus, the present work illustrates unique features of magnonic transport as well as their possible utilization for potential technical applications.

  14. Multiplex coherent raman spectroscopy detector and method

    NASA Technical Reports Server (NTRS)

    Chen, Peter (Inventor); Joyner, Candace C. (Inventor); Patrick, Sheena T. (Inventor); Guyer, Dean R. (Inventor)

    2004-01-01

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  15. Performance boundaries for prioritized multiplexing systems

    NASA Technical Reports Server (NTRS)

    Clare, Loren P.; Rubin, Izhak

    1987-01-01

    Systems in which many data sources are multiplexed over a single communication channel are considered. Data from all the sources are generated in fixed-length packets and are stored in a common buffer with finite capacity. Packets that overflowed or were removed from the buffer prior to transmission are lost. The system performance measure is the set of packet loss probabilities associated with the sources. Queueing disciplines vary depending on the stringency of prioritization and the utilization of the system resources. The set of all possible performances is characterized as the set of all queueing disciplines is spanned. Whether a given performance is possible can be deduced. Strategies that achieve the minimum overall loss probability are identified. The extreme disciplines are specified, and their performances are calculable by means of a given algorithm.

  16. On the design of prioritized multiplexing systems

    NASA Technical Reports Server (NTRS)

    Clare, L. P.; Rubin, I.

    1983-01-01

    Systems in which many data sources are multiplexed over a single communication channel are considered. Data from all the sources are generated in fixed-length packets, and are stored in a common buffer with finite capacity. Packets overflowed or removed from the buffer prior to transmission are lost. The system performance measure is the set of packet loss probabilities associated with the sources. Queueing disciplines vary depending on the stringency of prioritization and the utilization of system resources. The set of all possible performances is characterized as the set of all queueing disciplines is spanned. Whether a given performance is possible can be deduced. Strategies that achieve the minimum overall loss probability are identified. The extreme disciplines are specified, and their performances are calculable by means of a given algorithm.

  17. Multiview multiperspective time multiplexed autostereoscopic display

    NASA Astrophysics Data System (ADS)

    Kupiec, Stephen A.; Markov, Vladimir B.; Hopper, Darrel G.; Saini, Gurdial

    2008-02-01

    The implementation of a time multiplexed display capable of eight simultaneously visible viewing zones will be described. The system employs a high speed digital micromirror device (DMD) to allow for the high framerate essential for flicker free display of multiple viewing zones. A combination of custom graphical processor unit (GPU) programming and a correspondingly optimized field programmable gate array (FPGA) DMD driver allows for real time interactive rendering of scenes. The rendering engine is entirely based on off the shelf with the use of a standard DVI-D interface for data transfer to the DMD interface. A rapidly switched LED light engine is employed to overcome the speed limitations of color wheel light sources, as well as providing a highly saturated color gamut. Selection of viewing zones is achieved by the use of a high-speed shutter interfaced directly to the DMD driver for precise synchronization.

  18. Vibrational Mode Multiplexing of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Martínez-Garaot, S.; Torrontegui, E.; Chen, Xi; Modugno, M.; Guéry-Odelin, D.; Tseng, Shuo-Yen; Muga, J. G.

    2013-11-01

    Sending multiple messages on qubits encoded in different vibrational modes of cold atoms or ions along a transmission waveguide requires us to merge first and then separate the modes at input and output ends. Similarly, different qubits can be stored in the modes of a trap and be separated later. We design the fast splitting of a harmonic trap into an asymmetric double well so that the initial ground vibrational state becomes the ground state of one of two final wells, and the initial first excited state becomes the ground state of the other well. This might be done adiabatically by slowly deforming the trap. We speed up the process by inverse engineering a double-function trap using dynamical invariants. The separation (demultiplexing) followed by an inversion of the asymmetric bias and then by the reverse process (multiplexing) provides a population inversion protocol based solely on trap reshaping.

  19. Multiplex coherent raman spectroscopy detector and method

    DOEpatents

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  20. Weighted multiplex network of air transportation

    NASA Astrophysics Data System (ADS)

    Varga, Imre

    2016-06-01

    In several real networks large heterogeneity of links is present either in intensity or in the nature of relationships. Therefore, recent studies in network science indicate that more detailed topological information are available if weighted or multi-layer aspect is applied. In the age of globalization air transportation is a representative example of huge complex infrastructure systems, which has been analyzed from different points of view. In this paper a novel approach is applied to study the airport network as a weighted multiplex taking into account the fact that the rules and fashion of domestic and international flights differ. Restricting study to only topological features and their correlations in the system (disregarding traffic) one can see reasons why simple network approximation is not adequate.

  1. Emergence of network features from multiplexity.

    PubMed

    Cardillo, Alessio; Gómez-Gardeñes, Jesús; Zanin, Massimiliano; Romance, Miguel; Papo, David; del Pozo, Francisco; Boccaletti, Stefano

    2013-01-01

    Many biological and man-made networked systems are characterized by the simultaneous presence of different sub-networks organized in separate layers, with links and nodes of qualitatively different types. While during the past few years theoretical studies have examined a variety of structural features of complex networks, the outstanding question is whether such features are characterizing all single layers, or rather emerge as a result of coarse-graining, i.e. when going from the multilayered to the aggregate network representation. Here we address this issue with the help of real data. We analyze the structural properties of an intrinsically multilayered real network, the European Air Transportation Multiplex Network in which each commercial airline defines a network layer. We examine how several structural measures evolve as layers are progressively merged together. In particular, we discuss how the topology of each layer affects the emergence of structural properties in the aggregate network. PMID:23446838

  2. Multiplex single particle analysis in microfluidics.

    PubMed

    Dannhauser, D; Romeo, G; Causa, F; De Santo, I; Netti, P A

    2014-10-21

    A straightforward way to measure separated micrometric sized particles in microfluidic flow is reported. The light scattering profile (LSP) of each single particle is fully characterized by using a CMOS-camera based small angle light scattering (SALS) apparatus, ranging from 2° up to 30°. To ensure controlled particle passage through the incident laser, a viscoelastic 3D alignment effect by viscoelastic induced particle migration has been implemented in a simple and cost-effective microfluidic device. Different polystyrene particle sizes are measured in microfluidic flows and the obtained scattering signatures are matched with the Lorenz-Mie based scattering theory. The results confirm the possibility of using this apparatus for real multiplex particle analyses in microfluidic particle flows.

  3. Multiplex detection of food allergens and gluten.

    PubMed

    Cho, Chung Y; Nowatzke, William; Oliver, Kerry; Garber, Eric A E

    2015-05-01

    To help safeguard the food supply and detect the presence of undeclared food allergens and gluten, most producers and regulatory agencies rely on commercial test kits. Most of these are ELISAs with a few being PCR-based. These methods are very sensitive and analyte specific, requiring different assays to detect each of the different food allergens. Mass spectrometry offers an alternative approach whereby multiple allergens may be detected simultaneously. However, mass spectrometry requires expensive equipment, highly trained analysts, and several years before a quantitative approach can be achieved. Using multianalyte profiling (xMAP®) technology, a commercial multiplex test kit based on the use of established antibodies was developed for the simultaneous detection of up to 14 different food allergens plus gluten. The assay simultaneously detects crustacean seafood, egg, gluten, milk, peanut, soy, and nine tree nuts (almond, Brazil nut, cashew, coconut, hazelnut, macadamia, pine nut, pistachio, and walnut). By simultaneously performing multiple tests (typically two) for each analyte, this magnetic bead-based assay offers built-in confirmatory analyses without the need for additional resources. Twenty-five of the assays were performed on buffer extracted samples, while five were conducted on samples extracted using reduced-denatured conditions. Thus, complete analysis for all 14 allergens and gluten requires only two wells of a 96-well microtiter plate. This makes it possible to include in a single analytical run up to 48 samples. All 30 bead sets in this multiplex assay detected 5 ng/mL of food allergen and gluten with responses greater than background. In addition, 26 of the bead sets displayed signal/noise ratios of five or greater. The bead-based design makes this 30-plex assay expandable to incorporate new antibodies and capture/detector methodologies by ascribing these new detectors to any of the unassigned bead sets that are commercially available.

  4. Multiplex detection of food allergens and gluten.

    PubMed

    Cho, Chung Y; Nowatzke, William; Oliver, Kerry; Garber, Eric A E

    2015-05-01

    To help safeguard the food supply and detect the presence of undeclared food allergens and gluten, most producers and regulatory agencies rely on commercial test kits. Most of these are ELISAs with a few being PCR-based. These methods are very sensitive and analyte specific, requiring different assays to detect each of the different food allergens. Mass spectrometry offers an alternative approach whereby multiple allergens may be detected simultaneously. However, mass spectrometry requires expensive equipment, highly trained analysts, and several years before a quantitative approach can be achieved. Using multianalyte profiling (xMAP®) technology, a commercial multiplex test kit based on the use of established antibodies was developed for the simultaneous detection of up to 14 different food allergens plus gluten. The assay simultaneously detects crustacean seafood, egg, gluten, milk, peanut, soy, and nine tree nuts (almond, Brazil nut, cashew, coconut, hazelnut, macadamia, pine nut, pistachio, and walnut). By simultaneously performing multiple tests (typically two) for each analyte, this magnetic bead-based assay offers built-in confirmatory analyses without the need for additional resources. Twenty-five of the assays were performed on buffer extracted samples, while five were conducted on samples extracted using reduced-denatured conditions. Thus, complete analysis for all 14 allergens and gluten requires only two wells of a 96-well microtiter plate. This makes it possible to include in a single analytical run up to 48 samples. All 30 bead sets in this multiplex assay detected 5 ng/mL of food allergen and gluten with responses greater than background. In addition, 26 of the bead sets displayed signal/noise ratios of five or greater. The bead-based design makes this 30-plex assay expandable to incorporate new antibodies and capture/detector methodologies by ascribing these new detectors to any of the unassigned bead sets that are commercially available. PMID

  5. Inter-layer synchronization in multiplex networks of identical layers.

    PubMed

    Sevilla-Escoboza, R; Sendiña-Nadal, I; Leyva, I; Gutiérrez, R; Buldú, J M; Boccaletti, S

    2016-06-01

    Inter-layer synchronization is a distinctive process of multiplex networks whereby each node in a given layer evolves synchronously with all its replicas in other layers, irrespective of whether or not it is synchronized with the other units of the same layer. We analytically derive the necessary conditions for the existence and stability of such a state, and verify numerically the analytical predictions in several cases where such a state emerges. We further inspect its robustness against a progressive de-multiplexing of the network, and provide experimental evidence by means of multiplexes of nonlinear electronic circuits affected by intrinsic noise and parameter mismatch. PMID:27368794

  6. Multiplexing of discrete chaotic signals in presence of noise

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Vaidya, Prabhakar G.

    2009-09-01

    Multiplexing of discrete chaotic signals in presence of noise is investigated. The existing methods are based on chaotic synchronization, which is susceptible to noise, precision limitations, and requires more iterates. Furthermore, most of these methods fail for multiplexing more than two discrete chaotic signals. We propose novel methods to multiplex multiple discrete chaotic signals based on the principle of symbolic sequence invariance in presence of noise and finite precision implementation of finding the initial condition of an arbitrarily long symbolic sequence of a chaotic map. Our methods work for single precision and as less as 35 iterates. For two signals, our method is robust up to 50% noise level.

  7. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  8. Particle swarm optimization with recombination and dynamic linkage discovery.

    PubMed

    Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung

    2007-12-01

    In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system. PMID:18179066

  9. Genome-wide Linkage Analyses of Quantitative and Categorical Autism Subphenotypes

    PubMed Central

    Liu, Xiao-Qing; Paterson, Andrew D.; Szatmari, Peter

    2008-01-01

    Background The search for susceptibility genes in autism and autism spectrum disorders (ASD) has been hindered by the possible small effects of individual genes and by genetic (locus) heterogeneity. To overcome these obstacles, one method is to use autism-related subphenotypes instead of the categorical diagnosis of autism since they may be more directly related to the underlying susceptibility loci. Another strategy is to analyze subsets of families that meet certain clinical criteria to reduce genetic heterogeneity. Methods In this study, using 976 multiplex families from the Autism Genome Project consortium, we performed genome-wide linkage analyses on two quantitative subphenotypes, the total scores of the reciprocal social interaction domain and the restricted, repetitive, and stereotyped patterns of behavior domain from the Autism Diagnostic Interview-Revised. We also selected subsets of ASD families based on four binary subphenotypes, delayed onset of first words, delayed onset of first phrases, verbal status, and IQ ≥ 70. Results When the ASD families with IQ ≥ 70 were used, a logarithm of odds (LOD) score of 4.01 was obtained on chromosome 15q13.3-q14, which was previously linked to schizophrenia. We also obtained a LOD score of 3.40 on chromosome 11p15.4-p15.3 using the ASD families with delayed onset of first phrases. No significant evidence for linkage was obtained for the two quantitative traits. Conclusions This study demonstrates that selection of informative subphenotypes to define a homogeneous set of ASD families could be very important in detecting the susceptibility loci in autism. PMID:18632090

  10. Linkage analyses of stimulant dependence, craving, and heavy use in American Indians.

    PubMed

    Ehlers, Cindy L; Gizer, Ian R; Gilder, David A; Wilhelmsen, Kirk C

    2011-12-01

    Amphetamine-type substances are the second most widely used illicit drugs in the United States. There is evidence to suggest that stimulant use (cocaine and methamphetamine) has a heritable component, yet the areas of the genome underlying these use disorders are yet to be identified. This study's aims were to map loci linked to stimulant dependence, heavy use, and craving in an American Indian community at high risk for substance dependence. DSM diagnosis of stimulant dependence, as well as indices of stimulant "craving," and "heavy use," were obtained using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Genotypes were determined for a panel of 791 microsatellite polymorphisms in 381 members of multiplex families using SOLAR. Stimulant dependence, stimulant "craving," and "heavy stimulant use," were all found to be heritable. Analyses of multipoint variance component LOD scores, failed to yield evidence of linkage for stimulant dependence. For the stimulant "craving" phenotype, linkage analysis revealed a locus that had a LOD score of 3.02 on chromosome 15q25.3-26.1 near the nicotinic receptor gene cluster. A LOD score of 2.05 was found at this same site for "heavy stimulant use." Additional loci with LOD scores above 2.00 were found for stimulant "craving" on chromosomes 12p13.33-13.32 and 18q22.3. These results corroborate the importance of "craving" as an important phenotype that is associated with regions on chromosome 12, 15, and 18, that have been highlighted in prior segregation studies in this and other populations for substance dependence-related phenotypes. PMID:21812097

  11. Linkage analyses of stimulant dependence, craving, and heavy use in American Indians.

    PubMed

    Ehlers, Cindy L; Gizer, Ian R; Gilder, David A; Wilhelmsen, Kirk C

    2011-12-01

    Amphetamine-type substances are the second most widely used illicit drugs in the United States. There is evidence to suggest that stimulant use (cocaine and methamphetamine) has a heritable component, yet the areas of the genome underlying these use disorders are yet to be identified. This study's aims were to map loci linked to stimulant dependence, heavy use, and craving in an American Indian community at high risk for substance dependence. DSM diagnosis of stimulant dependence, as well as indices of stimulant "craving," and "heavy use," were obtained using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). Genotypes were determined for a panel of 791 microsatellite polymorphisms in 381 members of multiplex families using SOLAR. Stimulant dependence, stimulant "craving," and "heavy stimulant use," were all found to be heritable. Analyses of multipoint variance component LOD scores, failed to yield evidence of linkage for stimulant dependence. For the stimulant "craving" phenotype, linkage analysis revealed a locus that had a LOD score of 3.02 on chromosome 15q25.3-26.1 near the nicotinic receptor gene cluster. A LOD score of 2.05 was found at this same site for "heavy stimulant use." Additional loci with LOD scores above 2.00 were found for stimulant "craving" on chromosomes 12p13.33-13.32 and 18q22.3. These results corroborate the importance of "craving" as an important phenotype that is associated with regions on chromosome 12, 15, and 18, that have been highlighted in prior segregation studies in this and other populations for substance dependence-related phenotypes.

  12. Developing rapid, point-of-care, multiplex detection for use in lateral flow devices

    NASA Astrophysics Data System (ADS)

    Rao, R. S.; Albala, J. S.; Lane, S. L.; Matthews, D. L.; Fisher, A. M.; Lambert, J. L.; Coleman, M. A.

    2005-11-01

    Immunoassays have been widely used in commercial, scientific and medical research for detection and quantification of analytes in complex mixtures. There is however a need for a point-of-care, multiplex diagnostic assays capable of providing rapid and quantitative measurements of analytes present in samples that are sufficiently simple to carry out without use of a laboratory or individuals trained in chemical analysis. We are developing a fluorescent lateral flow immunoassay platform to perform simultaneous, multiplexed detection of analytes in a complex fluid mixture along with instrumentation to optically quantitate the analytes in the sample. Our prototype imaging system is based on conventional 16-bit CCD optics, which enables the development of a rugged diagnostic instrument that can be further scaled down for point-of-care applications. We have compared protein microarrays with lateral flow assays (LFAs) to determine the sensitivity of each system for the measurement of distinct proteins in complex samples. We are pursuing the LFA platform such that it can easily be scaled to meet the requirements of any given screening application, and be implemented for use in a medical or surgical setting.

  13. A Multiplex PCR-coupled Liquid Bead Array for the Simultaneous Detection of Four Biothreat Agents

    SciTech Connect

    Wilson, W J; Erler, A M; Nasarabadi, S L; Skowronski, E W; McCready, P M

    2004-02-04

    We have developed a 10-plexed PCR assay coupled to a 12-plexed liquid bead array to rapidly screen environmental samples for B. anthracis, Y. pestis, F. tularensis, and B. melitensis. Highly validated species -specific primer sets were used to simultaneously amplify multiple diagnostic regions unique to each individual pathogen. Resolution of the mix of amplified products was achieved by PCR product hybridization to corresponding probe sequences, attached to unique sets of fluorescent beads. The hybridized beads were processed through a flow cytometer, which detected presence and quantity of each PCR product. The assay was optimized to allow for maximum sensitivity in a multiplexed format. A high- throughput demonstration was performed where 384 simulated environmental samples were spiked with different amounts of B. thuringensis spores and pathogen DNA. The samples were robotically processed to extract DNA and arrayed for multiplexed PCR-liquid bead detection. The assay correctly identified the presence or absence of each pathogen and collected over 3,000 individual data points within a single 8-hour shift for approximately $1.20 per sample in a 10-plexed assay.

  14. A bead-based multiplex assay for the detection of DNA viruses infecting laboratory rodents.

    PubMed

    Höfler, Daniela; Nicklas, Werner; Mauter, Petra; Pawlita, Michael; Schmitt, Markus

    2014-01-01

    The Federation of European Laboratory Animal Science Association (FELASA) recommends screening of laboratory rodents and biological materials for a broad variety of bacterial agents, viruses, and parasites. Methods commonly used to date for pathogen detection are neither cost-effective nor time- and animal-efficient or uniform. However, an infection even if silent alters experimental results through changing the animals' physiology and increases inter-individual variability. As a consequence higher numbers of animals and experiments are needed for valid and significant results. We developed a novel high-throughput multiplex assay, called rodent DNA virus finder (rDVF) for the simultaneous identification of 24 DNA viruses infecting mice and rats. We detected all 24 DNA viruses with high specificity and reproducibility. Detection limits for the different DNA viruses varied between 10 and 1000 copies per PCR. The validation of rDVF was done with DNA isolated from homogenised organs amplified by pathogen specific primers in one multiplex PCR. The biotinylated amplicons were detected via hybridisation to specific oligonucleotide probes coupled to spectrally distinct sets of fluorescent Luminex beads. In conclusion, rDVF may have the potential to replace conventional testing and may simplify and improve routine detection of DNA viruses infecting rodents.

  15. Single particle tracking through highly scattering media with multiplexed two-photon excitation

    NASA Astrophysics Data System (ADS)

    Perillo, Evan; Liu, Yen-Liang; Liu, Cong; Yeh, Hsin-Chih; Dunn, Andrew K.

    2015-03-01

    3D single-particle tracking (SPT) has been a pivotal tool to furthering our understanding of dynamic cellular processes in complex biological systems, with a molecular localization accuracy (10-100 nm) often better than the diffraction limit of light. However, current SPT techniques utilize either CCDs or a confocal detection scheme which not only suffer from poor temporal resolution but also limit tracking to a depth less than one scattering mean free path in the sample (typically <15μm). In this report we highlight our novel design for a spatiotemporally multiplexed two-photon microscope which is able to reach sub-diffraction-limit tracking accuracy and sub-millisecond temporal resolution, but with a dramatically extended SPT range of up to 200 μm through dense cell samples. We have validated our microscope by tracking (1) fluorescent nanoparticles in a prescribed motion inside gelatin gel (with 1% intralipid) and (2) labeled single EGFR complexes inside skin cancer spheroids (at least 8 layers of cells thick) for ~10 minutes. Furthermore we discuss future capabilities of our multiplexed two-photon microscope design, specifically to the extension of (1) simultaneous multicolor tracking (i.e. spatiotemporal co-localization analysis) and (2) FRET studies (i.e. lifetime analysis). The high resolution, high depth penetration, and multicolor features of this microscope make it well poised to study a variety of molecular scale dynamics in the cell, especially related to cellular trafficking studies with in vitro tumor models and in vivo.

  16. A novel, one-step amplification and oligonucleotide ligation procedure for multiplex genetic typing

    SciTech Connect

    Eggerding, F.A.

    1994-09-01

    A new technique, coupled amplification and oligonucleotide ligation (CAL), has been developed for simultaneous multiplex amplification and genotyping of DNA. CAL is a biphasic method which combines in one assay DNA amplification by the polymerase chain reaction (PCR) with DNA genotyping by the oligonucleotide ligation assay (OLA). By virtue of a difference in the melting temperatures of PCR primer-target DNA and OLA probe-target DNA hybrids, the method allows preferential amplification of DNA during stage I and oligonucleotide ligation during stage II of the reaction. In stage I target DNA is amplified using high-melting primers in a two-step PCR cycle that employs a 72{degrees}C anneal-elongation step. In stage II genotyping of PCR products by competitive oligonucleotide ligation with oligonucleotide probes located between PCR primers is accomplished by several cycles of denaturation at 94{degrees}C followed by anneal-ligation at 55{degrees}C. Ligation products are fluorochrome-labeled at their 3{prime}-ends and analyzed electrophoretically on a fluorescent DNA sequencer. The CAL procedure has been used for multiplex detection of 30 cystic fibrosis mutations and for analysis of ras gene point mutations. Because mutation detection occurs concurrently with target amplification, the technique is rapid, highly sensitive and specific, easily automatable, and requires minimal sample processing.

  17. Design and implementation of an integrated magnetic spectrometer for multiplexed biosensing.

    PubMed

    Sideris, Constantine; Hajimiri, Ali

    2013-12-01

    Magnetic spectroscopy allows for characterization of the magnetic susceptibility of magnetic beads across a broad frequency range. This enables differentiation and quantification of multiple beads of varying types concurrently present in the active volume of a sensor's surface. A magnetic spectrometer can be used for multi-probe tagging and identification akin to multi-color fluorescent bio-sensing. We propose a new sensing methodology to perform magnetic spectroscopy and analyze various important design parameters such as SNR and gain uniformity. We present a proof-of-concept design of a fully integrated CMOS magnetic spectrometer that can detect, quantify, and characterize magnetic materials in the 1.1 GHz to 3.3 GHz frequency range, where we demonstrate magnetic multiplexing capability using a mixture of two different kinds of magnetic beads. The sensor consumes less than 2 mW of DC power within the whole frequency range, requires no external biasing magnetic fields, is implemented in a standard CMOS process, and can be powered and operated completely from a USB interface. The magnetic spectrometer not only increases the throughput and multiplexing of biosensing experiments for a given sensor area, but also can enable additional applications, such as magnetic flow cytometry and signal-collocation assays of multiple probes. PMID:24473542

  18. Rapid Multiplexed Immunoassay for Detection of Antibodies to Kaposi’s Sarcoma-Associated Herpesvirus

    PubMed Central

    Logan, Cathy; Todorof, Kathryn; Fiorillo, Suzanne P.; Campbell, Thomas B.; Elder, John H.; Borok, Margaret; Gudza, Ivy; Gwanzura, Lovemore; Ndemera, Buxton; Lochhead, Michael J.; Benson, Constance A.; Schooley, Robert T.

    2016-01-01

    Diagnosis of KSHV-infected individuals remains a challenge. KSHV prevalence is high in several populations with high prevalence of HIV, leading to increased risk of development of Kaposi’s sarcoma (KS). While current assays are reliable for detecting antibodies to KSHV, none are routinely utilized to identify individuals with KSHV infection and thus at increased risk for KS due to assay complexity, lack of access to testing, and cost, particularly in resource-limited settings. Here we describe the addition of KSHV proteins LANA and K8.1 to a previously evaluated HIV/co-infection multiplexed fluorescence immunoassay system. This study demonstrates assay performance by measuring antibody reactivity for KSHV and HIV-1 in a collection of clinical specimens from patients with biopsy-proven KS and sourced negative controls. The KSHV assay correctly identified 155 of 164 plasma samples from patients with biopsy-proven KS and 85 of 93 KSHV antibody (Ab)-negative samples for a sensitivity of 95.1% and specificity of 91.4%. Assay performance for HIV-1 detection was also assessed with 100% agreement with independently verified HIV-1 Ab-positive and Ab-negative samples. These results demonstrate good sensitivity and specificity for detection of antibody to KSHV antigens, and demonstrate the potential for multiplexed co-infection testing in resource-limited settings to identify those at increased risk for HIV-1-related complications. PMID:27669509

  19. Extensible Multiplex Real-time PCR of MicroRNA Using Microparticles

    PubMed Central

    Jung, Seungwon; Kim, Junsun; Lee, Dong Jin; Oh, Eun Hae; Lim, Hwasup; Kim, Kwang Pyo; Choi, Nakwon; Kim, Tae Song; Kim, Sang Kyung

    2016-01-01

    Multiplex quantitative real-time PCR (qPCR), which measures multiple DNAs in a given sample, has received significant attention as a mean of verifying the rapidly increasing genetic targets of interest in single phenotype. Here we suggest a readily extensible qPCR for the expression analysis of multiple microRNA (miRNA) targets using microparticles of primer-immobilized networks as discrete reactors. Individual particles, 200~500 μm in diameter, are identified by two-dimensional codes engraved into the particles and the non-fluorescent encoding allows high-fidelity acquisition of signal in real-time PCR. During the course of PCR, the amplicons accumulate in the volume of the particles with high reliability and amplification efficiency over 95%. In a quick assay comprising of tens of particles holding different primers, each particle brings the independent real-time amplification curve representing the quantitative information of each target. Limited amount of sample was analyzed simultaneously in single chamber through this highly multiplexed qPCR; 10 kinds of miRNAs from purified extracellular vesicles (EVs). PMID:26964639

  20. Image Decoding of Photonic Crystal Beads Array in the Microfluidic Chip for Multiplex Assays

    NASA Astrophysics Data System (ADS)

    Yuan, Junjie; Zhao, Xiangwei; Wang, Xiaoxia; Gu, Zhongze

    2014-10-01

    Along with the miniaturization and intellectualization of biomedical instruments, the increasing demand of health monitoring at anywhere and anytime elevates the need for the development of point of care testing (POCT). Photonic crystal beads (PCBs) as one kind of good encoded microcarriers can be integrated with microfluidic chips in order to realize cost-effective and high sensitive multiplex bioassays. However, there are difficulties in analyzing them towards automated analysis due to the characters of the PCBs and the unique detection manner. In this paper, we propose a strategy to take advantage of automated image processing for the color decoding of the PCBs array in the microfluidic chip for multiplex assays. By processing and alignment of two modal images of epi-fluorescence and epi-white light, every intact bead in the image is accurately extracted and decoded by PC colors, which stand for the target species. This method, which shows high robustness and accuracy under various configurations, eliminates the high hardware requirement of spectroscopy analysis and user-interaction software, and provides adequate supports for the general automated analysis of POCT based on PCBs array.

  1. Automated and Multiplexed Soft Lithography for the Production of Low-Density DNA Microarrays.

    PubMed

    Fredonnet, Julie; Foncy, Julie; Cau, Jean-Christophe; Séverac, Childérick; François, Jean Marie; Trévisiol, Emmanuelle

    2016-09-26

    Microarrays are established research tools for genotyping, expression profiling, or molecular diagnostics in which DNA molecules are precisely addressed to the surface of a solid support. This study assesses the fabrication of low-density oligonucleotide arrays using an automated microcontact printing device, the InnoStamp 40(®). This automate allows a multiplexed deposition of oligoprobes on a functionalized surface by the use of a MacroStamp(TM) bearing 64 individual pillars each mounted with 50 circular micropatterns (spots) of 160 µm diameter at 320 µm pitch. Reliability and reuse of the MacroStamp(TM) were shown to be fast and robust by a simple washing step in 96% ethanol. The low-density microarrays printed on either epoxysilane or dendrimer-functionalized slides (DendriSlides) showed excellent hybridization response with complementary sequences at unusual low probe and target concentrations, since the actual probe density immobilized by this technology was at least 10-fold lower than with the conventional mechanical spotting. In addition, we found a comparable hybridization response in terms of fluorescence intensity between spotted and printed oligoarrays with a 1 nM complementary target by using a 50-fold lower probe concentration to produce the oligoarrays by the microcontact printing method. Taken together, our results lend support to the potential development of this multiplexed microcontact printing technology employing soft lithography as an alternative, cost-competitive tool for fabrication of low-density DNA microarrays.

  2. Multiplexed immunosensing and kinetics monitoring in nanofluidic devices with highly enhanced target capture efficiency.

    PubMed

    Lin, Yii-Lih; Huang, Yen-Jun; Teerapanich, Pattamon; Leïchlé, Thierry; Chou, Chia-Fu

    2016-05-01

    Nanofluidic devices promise high reaction efficiency and fast kinetic responses due to the spatial constriction of transported biomolecules with confined molecular diffusion. However, parallel detection of multiple biomolecules, particularly proteins, in highly confined space remains challenging. This study integrates extended nanofluidics with embedded protein microarray to achieve multiplexed real-time biosensing and kinetics monitoring. Implementation of embedded standard-sized antibody microarray is attained by epoxy-silane surface modification and a room-temperature low-aspect-ratio bonding technique. An effective sample transport is achieved by electrokinetic pumping via electroosmotic flow. Through the nanoslit-based spatial confinement, the antigen-antibody binding reaction is enhanced with ∼100% efficiency and may be directly observed with fluorescence microscopy without the requirement of intermediate washing steps. The image-based data provide numerous spatially distributed reaction kinetic curves and are collectively modeled using a simple one-dimensional convection-reaction model. This study represents an integrated nanofluidic solution for real-time multiplexed immunosensing and kinetics monitoring, starting from device fabrication, protein immobilization, device bonding, sample transport, to data analysis at Péclet number less than 1. PMID:27375819

  3. Multiplex variable number of tandem repeats for Oenococcus oeni and applications.

    PubMed

    Claisse, Olivier; Lonvaud-Funel, Aline

    2014-04-01

    Oenococcus oeni is responsible for the malolactic fermentation of wine. Genomic diversity has already been established in this species. In addition, winemakers usually report varying starter-culture efficiency. It is essential to monitor indigenous and selected strains in order to understand strain survival and development during the winemaking process. A previous article described a variable number of tandem repeats (VNTR) scheme, based on five polymorphic loci of the genome. VNTR typing of O. oeni was highly discriminating, faster, and more reliable than the PFGE or MLST methods. The objective of this study was to set up a faster protocol by multiplexing, taking advantage of the high performance of multicolor capillary electrophoresis. The primers were labeled with multiple fluorescent dyes. PCR conditions were adapted by multiplexing amplifications in two separate PCR mixtures for the five loci, both at the same annealing temperature. The resulting assay proved to be robust, accurate, fast and easy to perform. Thanks to this new protocol, all O. oeni strains used in the study were typed using the five tandem repeats (TR). As expected, the primers for the five TR loci were specific to O. oeni. The method was improved to analyze isolated and mixed colonies, as well as bacteria harvested from wine using fast technology for analysis of nucleic acids (FTA(®)) technology. Finally, predictive models were constructed, to predict phylogenetic relationships and associate bacterial strain resistance to freeze-drying with fragment length analysis (FLA) profiles and genotypic and phenotypic characters. PMID:24290630

  4. Automated and Multiplexed Soft Lithography for the Production of Low-Density DNA Microarrays.

    PubMed

    Fredonnet, Julie; Foncy, Julie; Cau, Jean-Christophe; Séverac, Childérick; François, Jean Marie; Trévisiol, Emmanuelle

    2016-01-01

    Microarrays are established research tools for genotyping, expression profiling, or molecular diagnostics in which DNA molecules are precisely addressed to the surface of a solid support. This study assesses the fabrication of low-density oligonucleotide arrays using an automated microcontact printing device, the InnoStamp 40(®). This automate allows a multiplexed deposition of oligoprobes on a functionalized surface by the use of a MacroStamp(TM) bearing 64 individual pillars each mounted with 50 circular micropatterns (spots) of 160 µm diameter at 320 µm pitch. Reliability and reuse of the MacroStamp(TM) were shown to be fast and robust by a simple washing step in 96% ethanol. The low-density microarrays printed on either epoxysilane or dendrimer-functionalized slides (DendriSlides) showed excellent hybridization response with complementary sequences at unusual low probe and target concentrations, since the actual probe density immobilized by this technology was at least 10-fold lower than with the conventional mechanical spotting. In addition, we found a comparable hybridization response in terms of fluorescence intensity between spotted and printed oligoarrays with a 1 nM complementary target by using a 50-fold lower probe concentration to produce the oligoarrays by the microcontact printing method. Taken together, our results lend support to the potential development of this multiplexed microcontact printing technology employing soft lithography as an alternative, cost-competitive tool for fabrication of low-density DNA microarrays. PMID:27681742

  5. Molecular Probes for Fluorescence Lifetime Imaging

    PubMed Central

    Sarder, Pinaki; Maji, Dolonchampa; Achilefu, Samuel

    2015-01-01

    Visualization of biological processes and pathologic conditions at the cellular and tissue levels largely rely on the use of fluorescence intensity signals from fluorophores or their bioconjugates. To overcome the concentration dependency of intensity measurements, evaluate subtle molecular interactions, and determine biochemical status of intracellular or extracellular microenvironments, fluorescence lifetime (FLT) imaging has emerged as a reliable imaging method complementary to intensity measurements. Driven by a wide variety of dyes exhibiting stable or environment-responsive FLTs, information multiplexing can be readily accomplished without the need for ratiometric spectral imaging. With knowledge of the fluorescent states of the molecules, it is entirely possible to predict the functional status of biomolecules or microevironment of cells. Whereas the use of FLT spectroscopy and microscopy in biological studies is now well established, in vivo imaging of biological processes based on FLT imaging techniques is still evolving. This review summarizes recent advances in the application of the FLT of molecular probes for imaging cells and small animal models of human diseases. It also highlights some challenges that continue to limit the full realization of the potential of using FLT molecular probes to address diverse biological problems, and outlines areas of potential high impact in the future. PMID:25961514

  6. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-01

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis. PMID:26721199

  7. Energy maps for glycosidic linkage conformations.

    PubMed

    French, Alfred D

    2015-01-01

    Glycosidic linkage conformations are the main factors in determining the shapes of disaccharide, oligosaccharide, and polysaccharide molecules. The conformations are expressed in terms of the torsion angles about the bonds from each ring of the disaccharide moiety to its glycosidic oxygen atom, and the probability of a given conformation is often expressed in terms of its free or potential energy. The energy surface or map for a disaccharide is a display of the energy plotted against the two torsion angles. Successful mapping allows a particular kind of energy calculation to provide the energy values for each conformation and avoids possible pitfalls. Although different methods are discussed, the main emphasis of this chapter is on the technical production of the maps and their exploitation in further understanding the shape of the molecule in question.

  8. Linkage arms for minimizing piston wobble

    SciTech Connect

    Langstroth, S.W.

    1992-07-28

    This patent describes an internal combustion engine having a block within which at least one piston is attached to a crankshaft by a connecting rod between the crankpin of the crankshaft and the wrist pin of the piston. This patent describes improvement in a fixed gear concentric with the axis of the crankshaft and coupled to the block; a follower gear concentric with the crankpin; at least one intermediate gear coupling the fixed gear to the follower gear; wherein the ratio of the gears is such that the follower gear orbits the fixed gear and does not rotate; and linkage arms interconnecting the follower gear and the piston for preventing the rotation of the piston about the wrist pin.

  9. How population growth affects linkage disequilibrium.

    PubMed

    Rogers, Alan R

    2014-08-01

    The "LD curve" relates the linkage disequilibrium (LD) between pairs of nucleotide sites to the distance that separates them along the chromosome. The shape of this curve reflects natural selection, admixture between populations, and the history of population size. This article derives new results about the last of these effects. When a population expands in size, the LD curve grows steeper, and this effect is especially pronounced following a bottleneck in population size. When a population shrinks, the LD curve rises but remains relatively flat. As LD converges toward a new equilibrium, its time path may not be monotonic. Following an episode of growth, for example, it declines to a low value before rising toward the new equilibrium. These changes happen at different rates for different LD statistics. They are especially slow for estimates of [Formula: see text], which therefore allow inferences about ancient population history. For the human population of Europe, these results suggest a history of population growth.

  10. Linkage of PRA models. Phase 1, Results

    SciTech Connect

    Smith, C.L.; Knudsen, J.K.; Kelly, D.L.

    1995-12-01

    The goal of the Phase I work of the ``Linkage of PRA Models`` project was to postulate methods of providing guidance for US Nuclear Regulator Commission (NRC) personnel on the selection and usage of probabilistic risk assessment (PRA) models that are best suited to the analysis they are performing. In particular, methods and associated features are provided for (a) the selection of an appropriate PRA model for a particular analysis, (b) complementary evaluation tools for the analysis, and (c) a PRA model cross-referencing method. As part of this work, three areas adjoining ``linking`` analyses to PRA models were investigated: (a) the PRA models that are currently available, (b) the various types of analyses that are performed within the NRC, and (c) the difficulty in trying to provide a ``generic`` classification scheme to groups plants based upon a particular plant attribute.

  11. A simple heuristic for blindfolded record linkage

    PubMed Central

    Lowe, Henry; Das, Amar; Ferris, Todd

    2012-01-01

    Objectives To address the challenge of balancing privacy with the need to create cross-site research registry records on individual patients, while matching the data for a given patient as he or she moves between participating sites. To evaluate the strategy of generating anonymous identifiers based on real identifiers in such a way that the chances of a shared patient being accurately identified were maximized, and the chances of incorrectly joining two records belonging to different people were minimized. Methods Our hypothesis was that most variation in names occurs after the first two letters, and that date of birth is highly reliable, so a single match variable consisting of a hashed string built from the first two letters of the patient's first and last names plus their date of birth would have the desired characteristics. We compared and contrasted the match algorithm characteristics (rate of false positive v. rate of false negative) for our chosen variable against both Social Security Numbers and full names. Results In a data set of 19 000 records, a derived match variable consisting of a 2-character prefix from both first and last names combined with date of birth has a 97% sensitivity; by contrast, an anonymized identifier based on the patient's full names and date of birth has a sensitivity of only 87% and SSN has sensitivity 86%. Conclusion The approach we describe is most useful in situations where privacy policies preclude the full exchange of the identifiers required by more sophisticated and sensitive linkage algorithms. For data sets of sufficiently high quality this effective approach, while producing a lower rate of matching than more complex algorithms, has the merit of being easy to explain to institutional review boards, adheres to the minimum necessary rule of the HIPAA privacy rule, and is faster and less cumbersome to implement than a full probabilistic linkage. PMID:22298567

  12. A valveless rotary microfluidic device for multiplex point mutation identification based on ligation-rolling circle amplification.

    PubMed

    Heo, Hyun Young; Chung, Soyi; Kim, Yong Tae; Kim, Do Hyun; Seo, Tae Seok

    2016-04-15

    Genetic variations such as single nucleotide polymorphism (SNP) and point mutations are important biomarkers to monitor disease prognosis and diagnosis. In this study, we developed a novel rotary microfluidic device which can perform multiplex SNP typing on the mutation sites of TP53 genes. The microdevice consists of three glass layers: a channel wafer, a Ti/Pt electrode-patterned resistance temperature detector (RTD) wafer, and a rotary plate in which twelve reaction chambers were fabricated. A series of sample injection, ligation-rolling circle amplification (L-RCA) reaction, and fluorescence detection of the resultant amplicons could be executed by rotating the top rotary plate, identifying five mutation points related with cancer prognosis. The use of the rotary plate eliminates the necessity of microvalves and micropumps to control the microfluidic flow in the channel, simplifying the chip design and chip operation for multiplex SNP detection. The proposed microdevice provides an advanced genetic analysis platform in terms of multiplexity, simplicity, and portability in the fields of biomedical diagnostics. PMID:26606304

  13. How can we reduce costs of solid-phase multiplex-bead assays used to determine anti-HLA antibodies?

    PubMed

    Kamburova, E G; Wisse, B W; Joosten, I; Allebes, W A; van der Meer, A; Hilbrands, L B; Baas, M C; Spierings, E; Hack, C E; van Reekum, F E; van Zuilen, A D; Verhaar, M; Bots, M L; Drop, A C A D; Plaisier, L; Seelen, M A J; Sanders, J S F; Hepkema, B G; Lambeck, A J; Bungener, L B; Roozendaal, C; Tilanus, M G J; Vanderlocht, J; Voorter, C E; Wieten, L; van Duijnhoven, E M; Gelens, M; Christiaans, M H L; van Ittersum, F J; Nurmohamed, A; Lardy, N M; Swelsen, W; van der Pant, K A; van der Weerd, N C; Ten Berge, I J M; Bemelman, F J; Hoitsma, A; van der Boog, P J M; de Fijter, J W; Betjes, M G H; Heidt, S; Roelen, D L; Claas, F H; Otten, H G

    2016-09-01

    Solid-phase multiplex-bead assays are widely used in transplantation to detect anti-human leukocyte antigen (HLA) antibodies. These assays enable high resolution detection of low levels of HLA antibodies. However, multiplex-bead assays are costly and yield variable measurements that limit the comparison of results between laboratories. In the context of a Dutch national Consortium study we aimed to determine the inter-assay and inter-machine variability of multiplex-bead assays, and we assessed how to reduce the assay reagents costs. Fifteen sera containing a variety of HLA antibodies were used yielding in total 7092 median fluorescence intensities (MFI) values. The inter-assay and inter-machine mean absolute relative differences (MARD) of the screening assay were 12% and 13%, respectively. The single antigen bead (SAB) inter-assay MARD was comparable, but showed a higher lot-to-lot variability. Reduction of screening assay reagents to 50% or 40% of manufacturers' recommendations resulted in MFI values comparable to 100% of the reagents, with an MARD of 12% or 14%, respectively. The MARD of the 50% and 40% SAB assay reagent reductions were 11% and 22%, respectively. From this study, we conclude that the reagents can be reliably reduced at least to 50% of manufacturers' recommendations with virtually no differences in HLA antibody assignments.

  14. How can we reduce costs of solid-phase multiplex-bead assays used to determine anti-HLA antibodies?

    PubMed

    Kamburova, E G; Wisse, B W; Joosten, I; Allebes, W A; van der Meer, A; Hilbrands, L B; Baas, M C; Spierings, E; Hack, C E; van Reekum, F E; van Zuilen, A D; Verhaar, M; Bots, M L; Drop, A C A D; Plaisier, L; Seelen, M A J; Sanders, J S F; Hepkema, B G; Lambeck, A J; Bungener, L B; Roozendaal, C; Tilanus, M G J; Vanderlocht, J; Voorter, C E; Wieten, L; van Duijnhoven, E M; Gelens, M; Christiaans, M H L; van Ittersum, F J; Nurmohamed, A; Lardy, N M; Swelsen, W; van der Pant, K A; van der Weerd, N C; Ten Berge, I J M; Bemelman, F J; Hoitsma, A; van der Boog, P J M; de Fijter, J W; Betjes, M G H; Heidt, S; Roelen, D L; Claas, F H; Otten, H G

    2016-09-01

    Solid-phase multiplex-bead assays are widely used in transplantation to detect anti-human leukocyte antigen (HLA) antibodies. These assays enable high resolution detection of low levels of HLA antibodies. However, multiplex-bead assays are costly and yield variable measurements that limit the comparison of results between laboratories. In the context of a Dutch national Consortium study we aimed to determine the inter-assay and inter-machine variability of multiplex-bead assays, and we assessed how to reduce the assay reagents costs. Fifteen sera containing a variety of HLA antibodies were used yielding in total 7092 median fluorescence intensities (MFI) values. The inter-assay and inter-machine mean absolute relative differences (MARD) of the screening assay were 12% and 13%, respectively. The single antigen bead (SAB) inter-assay MARD was comparable, but showed a higher lot-to-lot variability. Reduction of screening assay reagents to 50% or 40% of manufacturers' recommendations resulted in MFI values comparable to 100% of the reagents, with an MARD of 12% or 14%, respectively. The MARD of the 50% and 40% SAB assay reagent reductions were 11% and 22%, respectively. From this study, we conclude that the reagents can be reliably reduced at least to 50% of manufacturers' recommendations with virtually no differences in HLA antibody assignments. PMID:27534609

  15. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range

    PubMed Central

    Tabakman, Scott M.; Lau, Lana; Robinson, Joshua T.; Price, Jordan; Sherlock, Sarah P.; Wang, Hailiang; Zhang, Bo; Chen, Zhuo; Tangsombatvisit, Stephanie; Jarrell, Justin A.; Utz, Paul J.; Dai, Hongjie

    2012-01-01

    Protein chips are widely used for high-throughput proteomic analysis, but to date, the low sensitivity and narrow dynamic range have limited their capabilities in diagnostics and proteomics. Here we present protein microarrays on a novel nanostructured, plasmonic gold film with near-infrared fluorescence enhancement of up to 100-fold, extending the dynamic range of protein detection by three orders of magnitude towards the fM regime. We employ plasmonic protein microarrays for the early detection of a cancer biomarker, carcinoembryonic antigen, in the sera of mice bearing a xenograft tumour model. Further, we demonstrate a multiplexed autoantigen array for human autoantibodies implicated in a range of autoimmune diseases with superior signal-to-noise ratios and broader dynamic range compared with commercial nitrocellulose and glass substrates. The high sensitivity, broad dynamic range and easy adaptability of plasmonic protein chips presents new opportunities in proteomic research and diagnostics applications. PMID:21915108

  16. Automated Genotyping of Biobank Samples by Multiplex Amplification of Insertion/Deletion Polymorphisms

    PubMed Central

    Mathot, Lucy; Falk-Sörqvist, Elin; Moens, Lotte; Allen, Marie; Sjöblom, Tobias; Nilsson, Mats

    2012-01-01

    The genomic revolution in oncology will entail mutational analyses of vast numbers of patient-matched tumor and normal tissue samples. This has meant an increased risk of patient sample mix up due to manual handling. Therefore, scalable genotyping and sample identification procedures are essential to pathology biobanks. We have developed an efficient alternative to traditional genotyping methods suited for automated analysis. By targeting 53 prevalent deletions and insertions found in human populations with fluorescent multiplex ligation dependent genome amplification, followed by separation in a capillary sequencer, a peak spectrum is obtained that can be automatically analyzed. 24 tumor-normal patient samples were successfully matched using this method. The potential use of the developed assay for forensic applications is discussed. PMID:23300761

  17. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  18. Evaluation of degradation in DNA from males with a quantitative gender typing, endpoint PCR multiplex.

    PubMed

    Smith, Byron C; Vandegrift, Emily; Fuller, Valerie Mattimore; Allen, Robert W

    2015-03-01

    Evidentiary samples submitted to a forensic DNA laboratory occasionally yield DNA that is degraded. Samples of intact chromosomal DNA (both nuclear and mitochondrial) were subjected to a heating protocol to induce DNA degradation. The DNAs were then analyzed using a multiplex PCR assay that amplifies targets of low and high molecular weight on the X/Y and mitochondrial chromosomes. If degradation is random, the amplification of larger DNA targets should be more adversely affected by degradation than smaller targets. In nuclear and mitochondrial DNA from a male donor, exhibiting degradation, DNA quantity estimates based upon higher molecular weight amplicons (HMW) are significantly lower than estimates made using low molecular weight (LMW) Q-TAT amplicons. DNA degradation estimated using this approach correlated well with actual fluorescence associated with HMW and LMW STR alleles amplified from the same genomic DNA templates. Q-TAT is thus useful not only as a quantitation tool, but also as an indicator of template degradation.

  19. Feasibility of Multiplex Quantum Dot Stain Using Primary Antibodies from Four Distinct Host Animals

    PubMed Central

    Tran, Jonathan K.; Hubbard, Elena N.; Stokes, Todd H.; Moffitt, Richard A.; Wang, May D.

    2016-01-01

    We discuss the feasibility of multiplex QD stain for four biomarkers and our progress in finding four suitable biomarkers from four different hosts. There is a demand for using more than three fluorescent probes on a single tissue sample for disease detection to offer a more reliable prediction of disease progression. We developed a protocol for targeting four biomarkers using four primary antibodies from four different animal hosts. We performed primary-secondary antibody binding assays on nitrocellulose paper and stained breast cancer microarray slides with known expression of ER, PR, and HER2. We identified the lack of a standard protocol and the limited supply of primary antibodies from hosts other than rabbit and mouse in the market as key challenges. The results show variable success in both assays, but indicate future potential for this protocol with more development. PMID:23367436

  20. Student-Teacher Linkage Verification: Model Process and Recommendations

    ERIC Educational Resources Information Center

    Watson, Jeffery; Graham, Matthew; Thorn, Christopher A.

    2012-01-01

    As momentum grows for tracking the role of individual educators in student performance, school districts across the country are implementing projects that involve linking teachers to their students. Programs that link teachers to student outcomes require a verification process for student-teacher linkages. Linkage verification improves accuracy by…