Sample records for fluoride volatility process

  1. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  2. PROCESS FOR TREATING VOLATILE METAL FLUORIDES

    DOEpatents

    Rudge, A.J.; Lowe, A.J.

    1957-10-01

    This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.

  3. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  4. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  5. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  6. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  7. On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.

    2012-05-01

    This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivitymore » (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.« less

  8. Characterization of the Kinetics of NF3-Fluorination of NpO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Scheele, Randall D.; McNamara, Bruce K.

    2015-12-23

    The exploitation of selected actinide and fission product fluoride volatilities has long been considered as a potentially attractive compact method for recycling used nuclear fuels to avoid generating the large volumes of radioactive waste arising from aqueous reprocessing [1-7]. The most developed process uses the aggressive and hazardous fluorinating agents hydrogen fluoride (HF) and/or molecular fluorine (F2) at high temperatures to volatilize the greatest fraction of the used nuclear fuel into a single gas stream. The volatilized fluorides are subsequently separated using a series of fractionation and condensation columns to recover the valuable fuel constituents and fission products. In pursuitmore » of a safer and less complicated approach, we investigated an alternative fluoride volatility-based process using the less hazardous fluorinating agent nitrogen trifluoride (NF3) and leveraging its less aggressive nature to selectively evolve fission product and actinide fluorides from the solid phase based on their reaction temperatures into a single recycle stream [8-15]. In this approach, successive isothermal treatments using NF3 will first evolve the more thermally susceptible used nuclear fuel constituents leaving the other constituents in the residual solids until subsequent isothermal temperature treatments cause these others to volatilize. During investigation of this process, individual neat used fuel components were treated with isothermal NF3 in an attempt to characterize the kinetics of each fluorination reaction to provide input into the design of a new volatile fluoride separations approach. In these directed investigations, complex behavior was observed between NF3 and certain solid reactants such as the actinide oxides of uranium, plutonium, and neptunium. Given the similar thermal reaction susceptibilities of neptunium oxide (NpO2) and uranium dioxide (UO2) and the importance of Np and U, we initially focused our efforts on determining the reaction kinetic parameters for NpO2. Characterizing the NF3 fluorination of NpO2 using established models for gas-solid reactions [16] proved unsuccessful so we developed a series of successive fundamental reaction mechanisms to characterize the observed successive fluorination reactions leading to production of the volatile neptunium hexafluoride (NpF6).« less

  9. Symposium on the reprocessing of irradiated fuels. Book 2, Session IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1958-12-31

    Book two of this conference has a single-focused session IV entitled Nonaqueous Processing, with 8 papers. The session deals with fluoride volatility processes and pyrometallurgical or pyrochemical processes. The latter involves either an oxide drossing or molten metal extraction or fused salt extraction technique and results in only partial decontamination. Fluoride volatility processes appear to be especially favorable for recovery of enriched uranium and decontamination factors of 10/sup 7/ to 10/sup 8/ would be achieved by simpler means than those employed in solvent extraction. Data from lab research on the BrF/sub 3/ process and the ClF/sub 3/ process are givenmore » and discussed and pilot plant experience is described, all in connection with natural uranium or slightly enriched uranium processing. Fluoride volatility processes for enriched or high alloy fuels are described step by step. The economic and engineering considerations of both types of nonaqueous processing are treated separately and as fully as present knowledge allows. A comprehensive review of the chemistry of pyrometallurgical processes is included.« less

  10. PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM

    DOEpatents

    Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.

    1959-07-01

    A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.

  11. Calcination process for radioactive wastes

    DOEpatents

    Kilian, Douglas C.

    1976-05-04

    The present invention provides a method for minimizing the volatilization of chlorides during solidification in a fluidized-bed calciner of liquids containing sodium, nitrate and chloride ions. Zirconium and fluoride are introduced into the liquid, and one-half mole of calcium nitrate is added per mole of fluoride present in the liquid mixture. The mixture is calcined in the fluidized-bed calciner at about 500.degree.C., producing a high bulk density calcine product containing the chloride, thus tying up the chloride in the solid product and minimizing chloride volatilization.

  12. URANIUM RECOVERY FROM COMPOSITE UF$sub 4$ REDUCTION BOMB WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E R; Doyle, R L; Coleman, J R

    1954-01-28

    A number of techniques have been investigated on a laboratory-scale for separating uranium from fluorides during the recovery of uranium from UF4 reduction bomb wastes (C-oxide) by an HCl leach - NH4OH precipitation process. Among these are included adsorption of fluorides from filtered leach liquors, fractional precipitation of fluorides and uranium, complexing of fluorides into forms soluble in slightly acid solutions, and fluoride volatilization from the uranium concentrate. Solubility studies of CaF2 and MgF2 in aqueous hydrochloric acid at various acidities and temperatures were also conducted. A description of the production-scale processing of C-oxide in the FMPC scrap plant hasmore » been included.« less

  13. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  14. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Peters, T.

    2011-11-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for themore » distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.« less

  15. On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels

    NASA Astrophysics Data System (ADS)

    Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne

    2012-05-01

    This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.

  16. Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.

    2013-02-01

    This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not formmore » volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.« less

  17. Image Information Obtained Using a Charge-Coupled Device (CCD) Camera During an Immersion Liquid Evaporation Process for Measuring the Refractive Index of Solid Particles.

    PubMed

    Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka

    2018-06-01

    The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.

  18. CHEMICAL ENGINEERING DIVISION SUMMARY REPORT, OCTOBER, NOVEMBER, DECEMBER 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-03-01

    Chemical-metallurgical processing studies were made of pyrometallurgical development snd research, and fuel processing facilities for EBR-II. Fuel-cycle applications of fluidization and volatility techniques included laboratory investigations of fluoride volatility processes, engineeringscale development, and conversion of UF/sub 6/ to UO/sub 2/. Reactor safety studies consisted of metal oxidation and ignition kinetics, and metal-water reactions. Reactor chemistry investigations were conducted to determine nuclear constants and suitable reactor decontamination methods. Routine operations are summarized for the high-level gammairradiation facillty and waste processing. (B.O.G.)

  19. FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Katz, J.J.; Hyman, H.H.; Sheft, I.

    1958-04-15

    The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.

  20. Method for calcining nuclear waste solutions containing zirconium and halides

    DOEpatents

    Newby, Billie J.

    1979-01-01

    A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.

  1. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Simnad, M.T.

    1961-08-15

    A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

  2. REGENERATION OF REACTOR FUEL ELEMENTS

    DOEpatents

    Lyon, W.L.

    1960-04-01

    A process is described for concentrating uranium and/or plutonium metal in aluminum alloys in which the actinide content was partially consumed by neutron bombardinent. Two embodiments are claimed: Either the alloy is heated, together with zinc chloride to at least 1000 deg C whereby some aluminum, in the form of aluminum chloride, and any zinc formed volatilize; or else aluminum fluoride is added and reacted at 800 to 1000 deg O and substmospheric pressure whereby pant of the aluminum volatilizes and aluminum subfluoride.

  3. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill frommore » the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.« less

  4. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  5. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  6. Study of fluoride corrosion of nickel alloys

    NASA Technical Reports Server (NTRS)

    Gunther, W. H.; Steindler, M. J.

    1969-01-01

    Report contains the results of an investigation of the corrosion resistance of nickel and nickel alloys exposed to fluorine, uranium hexafluoride, and volatile fission product fluorides at high temperatures. Survey of the unclassified literature on the subject is included.

  7. REDUCTION OF FLUORIDE TO METAL

    DOEpatents

    Carlson, O.N.; Schmidt, F.A.; Spedding, F.H.

    1960-08-30

    A process is given for making yttrium metal by reducing yttrium fluoride with calcium plus magnesium. Calcium is added in an excess of from 10 to 20% and magnesium in a quantity to yield a magnesium--yttrium alloy containing from 12 to 25% magnesium when the reaction mass is heated in an inert atmosphere at from 900 to 1106 deg C, but preferably above the melting point of the alloy. Calcium chloride may be added so as to obtain a less viscous slag containing from 30 to 60% calcium chloride. After removal of the slag the alloy is vacuum-heated at about 1100 deg C for volatilization of the magnesium and calcium.

  8. DRY FLUORINE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-05-19

    Preparation and separation of U/sup 233/ by irradiation of ThF/sub 4/ is described. During the neutron irradiation to produce Pa/sup 233/ a fluorinating agent such as HF, F/sub 2/, or HF + F/sub 2/ is passed through the ThF/sub 4/ powder to produce PaF/sub 5/. The PaF/sub 5/, being more volatile, is removed as a gas and allowed to decay radioactively to U/sup 233/ fluoride. A batch procedure in which ThO/sub 2/ or Th metal is irradiated and fluorinated is suggested. Some Pa and U fluoride volatilizes away. Then the remainder is fluorinated with F/sub 2/ to produce very volatile UF/sub 6/ which is recovered. (T.R.H.)

  9. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 2): Identification of nephrotoxic metabolites.

    PubMed

    Kharasch, Evan D; Schroeder, Jesara L; Liggitt, H Denny; Ensign, Dustin; Whittington, Dale

    2006-10-01

    Methoxyflurane nephrotoxicity results from its metabolism, which occurs by both dechlorination (to methoxydifluoroacetic acid [MDFA]) and O-demethylation (to fluoride and dichloroacetic acid [DCAA]). Inorganic fluoride can be toxic, but it remains unknown why other anesthetics, commensurately increasing systemic fluoride concentrations, are not toxic. Fluoride is one of many methoxyflurane metabolites and may itself cause toxicity and/or reflect formation of other toxic metabolite(s). This investigation evaluated the disposition and renal effects of known methoxyflurane metabolites. Rats were given by intraperitoneal injection the methoxyflurane metabolites MDFA, DCAA, or sodium fluoride (0.22, 0.45, 0.9, or 1.8 mmol/kg followed by 0.11, 0.22, 0.45, or 0.9 mmol/kg on the next 3 days) at doses relevant to metabolite exposure after methoxyflurane anesthesia, or DCAA and fluoride in combination. Renal histology and function (blood urea nitrogen, urine volume, urine osmolality) and metabolite excretion in urine were assessed. Methoxyflurane metabolite excretion in urine after injection approximated that after methoxyflurane anesthesia, confirming the appropriateness of metabolite doses. Neither MDFA nor DCAA alone had any effects on renal function parameters or necrosis. Fluoride at low doses (0.22, then 0.11 mmol/kg) decreased osmolality, whereas higher doses (0.45, then 0.22 mmol/kg) also caused diuresis but not significant necrosis. Fluoride and DCAA together caused significantly greater tubular cell necrosis than fluoride alone. Methoxyflurane nephrotoxicity seems to result from O-demethylation, which forms both fluoride and DCAA. Because their co-formation is unique to methoxyflurane compared with other volatile anesthetics and they are more toxic than fluoride alone, this suggests a new hypothesis of methoxyflurane nephrotoxicity. This may explain why increased fluoride formation from methoxyflurane, but not other anesthetics, is associated with toxicity. These results may have implications for the interpretation of clinical anesthetic defluorination, use of volatile anesthetics, and the laboratory methods used to evaluate potential anesthetic toxicity.

  10. Selective Fluorination and Separation of Metals with NF3 for Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Richard A.; Barinaga, Charles J.; McNamara, Bruce K.

    2016-03-01

    We report recent progress on the development of a new methodology based on the generation of volatile metal fluorides through the use of nitrogen trifluoride (NF3), and the separation and measurement of these metal fluorides by electron ionization mass spectrometry. Though unreactive under ambient conditions, NF3 reacts selectively at specified temperatures with various metal-containing species to form volatile metal fluorides. Utilizing these species-dependent traits, elements of a sample may be sequentially produced and thus separated on-line. Metals were reacted inside a thermogravimetric analyzer, the gas outlet of which was directly coupled to a quadrupole mass spectrometer with an electron impactmore » ionization source via a molecular leak valve. We present results of this project including the electron ionization mass spectrum of gaseous tellurium hexafluoride.« less

  11. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags

    USDA-ARS?s Scientific Manuscript database

    Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human ...

  12. 78 FR 37973 - Change of Address for Region 7; Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. 40 CFR Part 59 Environmental protection... requirements, Volatile organic compounds. 40 CFR Part 60 Environmental protection, Administrative practice and..., Cement industry, Chemicals, Coal, Copper, Dry cleaners, Electric power plants, Fertilizers, Fluoride...

  13. Effects of seasonal climatic variability on several toxic contaminants in urban lakes: Implications for the impacts of climate change.

    PubMed

    Wu, Qiong; Xia, Xinghui; Mou, Xinli; Zhu, Baotong; Zhao, Pujun; Dong, Haiyang

    2014-12-01

    Climate change is supposed to have influences on water quality and ecosystem. However, only few studies have assessed the effect of climate change on environmental toxic contaminants in urban lakes. In this research, response of several toxic contaminants in twelve urban lakes in Beijing, China, to the seasonal variations in climatic factors was studied. Fluorides, volatile phenols, arsenic, selenium, and other water quality parameters were analyzed monthly from 2009 to 2012. Multivariate statistical methods including principle component analysis, cluster analysis, and multiple regression analysis were performed to study the relationship between contaminants and climatic factors including temperature, precipitation, wind speed, and sunshine duration. Fluoride and arsenic concentrations in most urban lakes exhibited a significant positive correlation with temperature/precipitation, which is mainly caused by rainfall induced diffuse pollution. A negative correlation was observed between volatile phenols and temperature/precipitation, and this could be explained by their enhanced volatilization and biodegradation rates caused by higher temperature. Selenium did not show a significant response to climatic factor variations, which was attributed to low selenium contents in the lakes and soils. Moreover, the response degrees of contaminants to climatic variations differ among lakes with different contamination levels. On average, temperature/precipitation contributed to 8%, 15%, and 12% of the variations in volatile phenols, arsenic, and fluorides, respectively. Beijing is undergoing increased temperature and heavy rainfall frequency during the past five decades. This study suggests that water quality related to fluoride and arsenic concentrations of most urban lakes in Beijing is becoming worse under this climate change trend. Copyright © 2014. Published by Elsevier B.V.

  14. Molecular emission characteristics of various fluorides in a low-temperature-hydrogen diffusion flame.

    PubMed

    Dagnall, R M; Fleet, B; Risby, T H; Deans, D R

    1971-02-01

    A capillary burner supporting a nitrogen/hydrogen diffusion flame has been evaluated as a possible means of detection for several volatile fluorides after their gas-chromatographic separation. The fluorides of As, B, C, Ge, I, Mo, P, Re, S, Sb, Se, Si, Te and W were formed by the reaction of the element with chlorine trifluoride, and the intense molecular emission given by each was recorded. An attempt was made to identify the emitting species.

  15. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthetic development (part 1): Identification of the nephrotoxic metabolic pathway.

    PubMed

    Kharasch, Evan D; Schroeder, Jesara L; Liggitt, H Denny; Park, Sang B; Whittington, Dale; Sheffels, Pamela

    2006-10-01

    Methoxyflurane nephrotoxicity results from biotransformation; inorganic fluoride is a toxic metabolite. Concern exists about potential renal toxicity from volatile anesthetic defluorination, but many anesthetics increase fluoride concentrations without consequence. Methoxyflurane is metabolized by both dechlorination to methoxydifluoroacetic acid (MDFA, which may degrade to fluoride) and O-demethylation to fluoride and dichloroacetatic acid. The metabolic pathway responsible for methoxyflurane nephrotoxicity has not, however, been identified, which was the aim of this investigation. Experiments evaluated methoxyflurane metabolite formation and effects of enzyme induction or inhibition on methoxyflurane metabolism and toxicity. Rats pretreated with phenobarbital, barium sulfate, or nothing were anesthetized with methoxyflurane, and renal function and urine methoxyflurane metabolite excretion were assessed. Phenobarbital effects on MDFA metabolism and toxicity in vivo were also assessed. Metabolism of methoxyflurane and MDFA in microsomes from livers of pretreated rats was determined in vitro. Phenobarbital pretreatment increased methoxyflurane nephrotoxicity in vivo (increased diuresis and blood urea nitrogen and decreased urine osmolality) and induced in vitro hepatic microsomal methoxyflurane metabolism to inorganic fluoride (2-fold), dichloroacetatic acid (1.5-fold), and MDFA (5-fold). In contrast, phenobarbital had no influence on MDFA renal effects in vivo or MDFA metabolism in vitro or in vivo. MDFA was neither metabolized to fluoride nor nephrotoxic. Barium sulfate diminished methoxyflurane metabolism and nephrotoxicity in vivo. Fluoride from methoxyflurane anesthesia derives from O-demethylation. Phenobarbital increases in methoxyflurane toxicity do not seem attributable to methoxyflurane dechlorination, MDFA toxicity, or MDFA metabolism to another toxic metabolite, suggesting that nephrotoxicity is attributable to methoxyflurane O-demethylation. Fluoride, one of many metabolites from O-demethylation, may be toxic and/or reflect formation of a different toxic metabolite. These results may have implications for interpreting anesthetic defluorination, volatile anesthetic use, and methods to evaluate anesthetic toxicity.

  16. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride tedlar bags

    USDA-ARS?s Scientific Manuscript database

    Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar®) bags for ...

  17. Effects of deuteration on the metabolism of halogenated anesthetics in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarty, L.P.; Malek, R.S.; Larsen, E.R.

    1979-08-01

    The authors studied the effects of substituting deuterium for hydrogen in several volatile anesthetics on their metabolism in the Fischer rat. Substitution of deuterium in the ethyl portion of methoxyflurane increased the metabolic production of fluoride ion by 19 percent when administered at a concentration of 0.05%. Total replacement of hydrogen by deuterium resulted in a 29% decrease in the amount of fluoride produced, while deuteration of only the methoxyl group produced a 33% decrease in fluoride produced. Deuteration of halothane resulted in a 15 or 26% decrease in serum bromide at 0.75% or 1.0%, respectively. Deuteration in the ethylmore » portions of enflurane and two experimental agents, CF2HOCF2CFBrH and CF2HOCF2CCl2H resulted in 65, 76, and 29% decreases in urinary fluoride, respectively. Anesthesia with deuterated chloroform at a concentration of 0.36% produced a 35% decrease in serum glutamic pyruvic transaminase (SGPT). It is concluded that deuteration of volatile anesthetics changes their metabolism, in most cases producing decreases in metabolism. This effect may lessen the organ toxicity believed to occur with some of these anesthetics.« less

  18. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using eithermore » recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.« less

  19. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    NASA Astrophysics Data System (ADS)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Chan, Ngai Yui; Au, Kit; Yao, Jianjun; Ng, Sheung Mei; Leung, Chi Wah; Li, Qiang; Guo, Dong; Wa Chan, Helen Lai; Dai, Jiyan

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ˜62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  20. PLATINUM HEXAFLUORIDE AND METHOD OF FLUORINATING PLUTONIUM CONTAINING MIXTURES THERE-WITH

    DOEpatents

    Malm, J.G.; Weinstock, B.; Claassen, H.H.

    1959-07-01

    The preparation of platinum hexafluoride and its use as a fluorinating agent in a process for separating plutonium from fission products is presented. According to the invention, platinum is reacted with fluorine gas at from 900 to 1100 deg C to form platinum hexafluoride. The platinum hexafluoride is then contacted with the plutonium containing mixture at room temperature to form plutonium hexafluoride which is more volatile than the fission products fluorides and therefore can be isolated by distillation.

  1. Effect of a triclosan/PVM/MA copolymer/fluoride dentifrice on volatile sulfur compounds in vitro.

    PubMed

    Pilch, S; Williams, M I; Cummins, D

    2005-01-01

    The objective of the investigation was to document the in vitro efficacy of a triclosan/PVM/MA copolymer/fluoride (TCF) dentifrice against the formation of volatile sulfur compounds (VSC) as well as the growth of H2S-producing bacteria. Clinical studies using organoleptic judges, gas chromatography, or a portable sulfide monitor have generally been employed in the assessment of treatments for the control of oral malodor. However, these studies are not appropriate for screening purposes because of the expense and time required. An in vitro method was developed for the purpose of screening new compounds, agents or formulations for their ability to control VSC formation and for determining bio-equivalence of efficacy when implementing changes in existing formulations. The method combines basic microbiological methods, dynamic flow cell techniques and head space analysis. The in vitro VSC method was validated by comparing the efficacy of two dentifrices containing TCF with a control fluoride dentifrice as the TCF products have been clinically proven to control oral malodor. In the validation studies, the TCF-containing dentifrices were significantly better (P < 0.05) than the control dentifrice in inhibiting VSC formation and reducing H(2)S-producing bacteria. For example, when compared with baseline, the TCF dentifrices reduced VSC formation between 42 and 49% compared with the control dentifrice which reduced VSC formation 3%. There was no significant difference (P > 0.05) between the two TCF dentifrice formulations. Using an in vitro breath VSC model, it has been demonstrated that two variants of a dentifrice containing triclosan, PVM/MA copolymer and fluoride have efficacy that is significantly better than a control fluoridated dentifrice and that there is no significant difference between the triclosan/PVM/MA copolymer/fluoride dentifrice variants.

  2. Assessment of relative flammability and thermochemical properties of some thermoplastic materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1978-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermal mechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in an anaerobic and oxidative environment, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers which were evaluated included: acrylonitrile-butadiene-styrene, bisphenol A polycarbonate, bisphenol fluorenone carbonatedimethylsiloxane block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters including molding characteristics of some of the advanced polymers are described. Test results and relative rankings of some of the flammability, smoke and toxicity properties are presented.

  3. Thermoplastic polymers for improved fire safety

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.

    1976-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermomechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in anaerobic and oxidative environments, (4) oxygen index, (5) smoke evolution, (6) relative toxicity of the volatile products of pyrolysis, and (7) selected physical properties. The generic polymers that were evaluated included: acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonatepoly (dimethyl siloxane) block polymer, phenolphthalein bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative ranking of some of the flammability, smoke, and toxicity properties are presented.

  4. Method for removing oxide contamination from silicon carbide powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    1984-08-01

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  5. Separation of metallic residues from the dissolution of a high-burnup BWR fuel using nitrogen trifluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, Bruce K.; Buck, Edgar C.; Soderquist, Chuck Z.

    2014-03-23

    Nitrogen trifluoride (NF 3) was used to fluorinate the metallic residue from the dissolution of a high burnup, boiling water reactor fuel (~70 MWd/kgU). The metallic residue included the noble metal phase (containing ruthenium, rhodium, palladium, technetium, and molybdenum), and smaller amounts of zirconium, selenium, tellurium, and silver. Exposing the noble metal phase to 10% NF 3 in argon between 400 and 550°C, removed molybdenum and technetium near 400°C as their volatile fluorides, and ruthenium near 500C as its volatile fluoride. The events were thermally and temporally distinct and the conditions specified are a recipe to separate these transition metalsmore » from each other and from the noble metal phase nonvolatile residue. Depletion of the volatile fluorides resulted in substantial exothermicity. Thermal excursion behavior was recorded under non-adiabatic, isothermal conditions that typically minimize heat release. Physical characterization of the metallic noble phase and its thermal behavior are consistent with high kinetic velocity reactions encouraged by the nanoparticulate phase or perhaps catalytic influences of the mixed platinum metals with nearly pure phase structure. Post-fluorination, only two phases were present in the residual nonvolatile fraction. These were identified as a nano-crystalline, metallic palladium cubic phase and a hexagonal rhodium trifluoride (RhF 3) phase. The two phases were distinct as the sub-µm crystallites of metallic palladium were in contrast to the RhF 3 phase, which grew from the parent nano-crystalline noble-metal phase during fluorination, to acicular crystals exceeding 20-µm in length.« less

  6. 76 FR 49669 - Change of Address for Region 1; Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... organic compounds. 40 CFR Part 59 Environmental protection, Air pollution control, Confidential business information, Labeling, Ozone, Reporting and recordkeeping requirements, Volatile organic compounds. 40 CFR..., Copper, Dry cleaners, Electric power plants, Fertilizers, Fluoride, Gasoline, Glass and glass products...

  7. Thermochemical characterization of some thermoplastic materials. [flammability and toxicity properties for aircraft interiors

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; Hilado, C. J.

    1977-01-01

    The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use or being considered for use in aircraft interiors are described. The properties studied included thermomechanical properties such as glass-transition and melt temperature, changes in polymer enthalpy, thermogravimetric analysis in anerobic and oxidative environments, oxygen index, smoke evolution, relative toxicity of the volatile products of pyrolysis, and selected physical properties. The generic polymers evaluated included acrylonitrile butadiene styrene, bisphenol A polycarbonate, 9,9 bis (4-hydroxyphenyl) fluorene polycarbonate-poly (dimethylsiloxane) block polymer, phenolphthalein-bisphenol A polycarbonate, phenolphthalein polycarbonate, polyether sulfone, polyphenylene oxide, polyphenylene sulfide, polyaryl sulfone, chlorinated polyvinyl chloride homopolymer, polyvinyl fluoride, and polyvinylidene fluoride. Processing parameters, including molding characteristics of some of the advanced polymers, are described. Test results and relative rankings of some of the flammability, smoke, and toxicity properties are presented. Under these test conditions, some of the advanced polymers evaluated were significantly less flammable and toxic than or equivalent to polymers in current use.

  8. Dry halide method for separating the components of spent nuclear fuels

    DOEpatents

    Christian, Jerry Dale; Thomas, Thomas Russell; Kessinger, Glen F.

    1998-01-01

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.

  9. Dry halide method for separating the components of spent nuclear fuels

    DOEpatents

    Christian, J.D.; Thomas, T.R.; Kessinger, G.F.

    1998-06-30

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.

  10. Method of repressing the precipitation of calcium fluozirconate

    DOEpatents

    Newby, B.J.; Rhodes, D.W.

    1973-12-25

    Boric acid or a borate salt is added to aqueous solutions of fluoride containing radioactive wastes generated during the reprocessing of zirconium alloy nuclear fuels which are to be converted to solid form by calcining in a fluidized bed. The addition of calcium nitrate to the aqueous waste solutions to prevent fluoride volatility during calcination, causes the precipitation of calcium fluozirconate, which tends to form a gel at fluoride concentrations of 3.0 M or greater. The boron containing species introduced into the solution by the addition of the boric acid or borate salt retard the formation of the calcium fluozirconate precipitate and prevent formation of the gel. These boron containing species can be introduced into the solution by the addition of a borate salt but preferably are introduced by the addition of an aqueous solution of boric acid. (Official Gazette)

  11. Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor.

    PubMed

    Rodriguez Castillo, Alfredo Santiago; Guihéneuf, Solène; Le Guével, Rémy; Biard, Pierre-François; Paquin, Ludovic; Amrane, Abdeltif; Couvert, Annabelle

    2016-04-15

    Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF6(-), NTf2(-) and NfO(-). Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD28 of aqueous samples (compound concentration,1mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. WO3 and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms.

    PubMed

    Johnson, Nicholas R; George, Steven M

    2017-10-04

    The thermal atomic layer etching (ALE) of WO 3 and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO 3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl 3 ) and hydrogen fluoride (HF). BCl 3 converts the WO 3 surface to a B 2 O 3 layer while forming volatile WO x Cl y products. Subsequently, HF spontaneously etches the B 2 O 3 layer producing volatile BF 3 and H 2 O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl 3 and HF reactions were self-limiting versus exposure. The WO 3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl 3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO 3 layer using O 2 /O 3 . Subsequently, the WO 3 layer is etched with BCl 3 and HF. SE could simultaneously monitor the W and WO 3 thicknesses and conversion of W to WO 3 . SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl 3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

  13. Process for converting magnesium fluoride to calcium fluoride

    DOEpatents

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  14. Modelling of fluoride removal via batch monopolar electrocoagulation process using aluminium electrodes

    NASA Astrophysics Data System (ADS)

    Amri, N.; Hashim, M. I.; Ismail, N.; Rohman, F. S.; Bashah, N. A. A.

    2017-09-01

    Electrocoagulation (EC) is a promising technology that extensively used to remove fluoride ions efficiently from industrial wastewater. However, it has received very little consideration and understanding on mechanism and factors that affecting the fluoride removal process. In order to determine the efficiency of fluoride removal in EC process, the effect of operating parameters such as voltage and electrolysis time were investigated in this study. A batch experiment with monopolar aluminium electrodes was conducted to identify the model of fluoride removal using empirical model equation. The EC process was investigated using several parameters which include voltage (3 - 12 V) and electrolysis time (0 - 60 minutes) at a constant initial fluoride concentration of 25 mg/L. The result shows that the fluoride removal efficiency increased steadily with increasing voltage and electrolysis time. The best fluoride removal efficiency was obtained with 94.8 % removal at 25 mg/L initial fluoride concentration, voltage of 12 V and 60 minutes electrolysis time. The results indicated that the rate constant, k and number of order, n decreased as the voltage increased. The rate of fluoride removal model was developed based on the empirical model equation using the correlation of k and n. Overall, the result showed that EC process can be considered as a potential alternative technology for fluoride removal in wastewater.

  15. PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE

    DOEpatents

    Ellis, A.S.; Mooney, R.B.

    1953-08-25

    This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

  16. Dependence of microsomal methoxyflurane O-demethylation on cytochrome P-450 reductase and the stoichiometry of fluoride ion and formaldehyde release.

    PubMed

    Waskell, L; Gonzales, J

    1982-07-01

    In order to characterize further the in vitro liver microsomal O-demethylation and defluorination of the volatile anesthetic methoxyflurane, and obtain additional information regarding the participation of cytochrome P-450 in the oxidation, the stoichiometry of the reaction was determined and the effect of antibody to cytochrome P-450 reductase on this unique biotransformation was examined. Liver microsomes were isolated from rabbits and rats in which enzyme induction had previously been produced by phenobarbital. The O-demethylation of methoxyflurane by phenobarbital-induced microsomes results in the production of 1 mol of formaldehyde for every 2 mol of fluoride ion produced. Dichloroacetic acid is also a product of methoxyflurane O-demethylation. Antibody to cytochrome P-450 reductase inhibits by 85% the amount of fluoride ion produced by the microsomal metabolism of methoxyflurane. Thus critical indirect supportive data are contributed to the hypothesis that at least one, but perhaps more, cytochrome P-450 is indeed responsible for methoxyflurane O-demethylation and defluorination.

  17. Benefits of a silica-based fluoride toothpaste containing o-cymen-5-ol, zinc chloride and sodium fluoride.

    PubMed

    Newby, Craig S; Rowland, Joanna L; Lynch, Richard J M; Bradshaw, David J; Whitworth, Darren; Bosma, Mary Lynn

    2011-08-01

    Fluoride toothpastes in conjunction with tooth brushing are used to clean teeth, control plaque build-up and for anti-caries benefits. Toothpastes are designed with attractive flavours and appearances to encourage regular prolonged use to maximise these benefits. The incorporation of additional ingredients into toothpaste is a convenient way to provide supplementary protection that fits into people's everyday oral care routine. Such ingredients should not compromise the primary health benefits of toothpaste nor discourage its use. o-Cymen-5-ol and zinc chloride have been incorporated into a sodium fluoride (NaF)/silica toothpaste at 0.1%w/w and 0.6%w/w respectively to provide additional benefits. These include improved gingival health maintenance, in terms of the reduction of plaque, gingival index and bleeding, and an immediate and long lasting reduction in volatile sulfur compounds (VSCs) measured on breath. These benefits can be attributed to the antimicrobial and neutralisation actions of the toothpaste. The use of established fluoride models demonstrated no compromise in NaF bioavailability. The toothpaste was formulated without compromising product aesthetics. The combination of o-cymen-5-ol and zinc chloride in toothpaste gave superior maintenance of gingival health and reduction in malodour related VSCs without compromising the primary health benefits of the toothpaste or diminishing attributes preferred for the product's use. © 2011 FDI World Dental Federation.

  18. A hybrid approach for treating fluorided water and biogeophysical monitoring of treatment processes

    NASA Astrophysics Data System (ADS)

    Singh, K. P.

    2016-12-01

    A laboratory experiment has been conducted for investigating the possibility of development of novel techniques for treating fluoride contamination and monitoring of physico-chemical alterations caused by biogeochemical processes in the media. In the present study, high adsorption capacity and ion-exchange property of natural zeolites have been utilized in treating fluoride contamination. The preset goals are achieved by designing and constructing experimental setup consisting of three columns, first one is filled with 450 ppm fluorided water prepared by dissolving sodium fluoride in deionized water, the second is filled with zeolite and fluorided water, and the third is filled with zeolite, fluorided water, sodium lactate and the bacterial seed. The first and the second columns were poisoned with sodium azide for preventing the growth of microorganisms. The self-potential (SP) signals associated with physico-chemical alterations in natural zeolite induced by biogeochemical processes are measured by using Cu-CuSO4 gel electrodes. Liquid-phase analysis of samples from column two and three show the reduced concentrations of fluoride and aluminum and it indicates the possibility of precipitation of insoluble aluminum fluoride. This is further confirmed by the presence of fluoride and aluminum in the solid samples as detected by energy dispersive X-ray analysis. The distinct SP of the order of -50 mV and 200 mV have been associated with biostimulated fluoride remediation and geochemical fluoride remediation processes respectively. Thus, there is a possibility of non-invasive monitoring of fluoride remediation processes driven by both microbes and chemical processes. It is found that after thirty-day nitrate and sulfate is introduced in column two due chemical interaction between water and natural zeolite. Furthermore, this study demonstrates that a hybrid approach, a combination of ion exchange and adsorption properties of natural zeolite and the bioremediation is more effective and less expensive than the chemical methodologies.

  19. Investing in professional advocacy: a case study of a successful fluoridation campaign in rural New South Wales, Australia.

    PubMed

    Sivaneswaran, S; Chong, G T F

    2011-09-01

    In New South Wales (NSW), Australia, the responsibility to implement water fluoridation rests with local government Councils, partly accounting for the hindrance in its statewide implementation. Since 2003, the NSW Health Department has been actively promoting water fluoridation to the remaining unfluoridated rural communities. To describe the community education and consultation strategies which led to the implementation of fluoridation in two rural NSW towns. In February 2005, the Mid-Western Regional Council and the NSW Health Department undertook a comprehensive community education process followed by a consultation process. The education process included the organization of public forums; distribution of fluoridation information packs; building rapport with the local media; and the use of local disease and treatment data to demonstrate oral health disparities with neighbouring fluoridated towns. The consultation process to determine support for fluoridation included seeking written submissions from the community and conducting interviews on a random sample of households by an independent research organization. A total of 502 (N = 1,012) interviews to determine support for fluoridation were completed, achieving a response rate of 49.6%. 54% of respondents wanted their water supplies fluoridated, 25% did not and the remaining 21% were unsure. In June 2005, the Mid-Western Regional Council resolved to implement water fluoridation and fluoride was added to the towns' water supplies in November 2007. This case study demonstrates that it is possible to garner community support for water fluoridation with the use of a multifaceted approach in educating and consulting communities and stakeholders.

  20. High School Forum.

    ERIC Educational Resources Information Center

    Herron, J. Dudley, Ed.

    1980-01-01

    Presents questions and answers about the fluoridation of water regarding the compounds added to drinking water in the fluoridation process, how raw water is tested for fluoride content, and how fluoride reacts with tooth enamel. (CS)

  1. Rare earth elements in apatite: Uptake from H{sub 2}O-bearing phosphate-fluoride melts and the role of volatile components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleet, M.E.; Pan, Yuanming

    The partitioning of rare earth elements (REEs) between fluorapatite (FAp) and H{sub 2}O- bearing phosphate-fluoride melts has been studied at about 700 and 800{degrees}C and 0.10-0.15 GPa. REE uptake patterns, i.e., plots of D(REE:FAp/melt), are convex upwards and peak near Nd for single-REE substituted FAp at minor (0.03-0.25 wt% REE{sub 2}O{sub 3}) abundances, and binary (LREE + HREE)-substituted FAp, and hexa-REE-substituted FAp at minor to major (0.25-7.8 wt% REE{sub 2}O{sub 3}) abundances. Partition coefficients for minor abundances of REE and depolymerized phosphate melts are about 5, 8, and 1 for La, Nd, and Lu, respectively and broadly comparable to thosemore » for early fluorapatite in the fractionation of melts of basaltic composition. The Ca2 site exerts marked control on the selectivity of apatite for REE because it preferentially incorporates LREE and its effective size varies with substitution of the A-site volatile anion component (F, Cl, OH). Using simple crystal-chemical arguments, melt(or fluid)-normalized REE patterns are predicted to peak near Nd for fluorapatite and be more LREE-enriched for chlorapatite. These predictions are consistent with data from natural rocks and laboratory experiments. The wide variation in D(REE:apatite/melt) in nature (from <1 for whitlockite-bearing lunar rocks to about 100 for evolved alkalic rocks) is attributed largely to the influence of the volatile components. 49 refs., 8 figs., 3 tabs.« less

  2. Fluoride barriers in Nb/Pb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Asano, H.; Tanabe, K.; Michikami, O.; Igarashi, M.; Beasley, M. R.

    1985-03-01

    Josephson tunnel junctions are fabricated using a new class of artificial barriers, metal fluorides (Al fluoride and Zr fluoride). These fluoride barriers are deposited on the surface of a Nb base electrode, which are previously cleaned using a CF4 cleaning process, and covered by a Pb counterelectrode. The junctions with both Al fluoride and Zr fluoride barriers exhibit good tunneling characteristics and have low specific capacitance. In the case of Zr fluoride, it is observed that reasonable resistances are obtained even at thickness greater than 100 A. This phenomenon might be explained by tunneling via localized states in Zr fluoride.

  3. FY90 R&D Project Descriptions ESL (Engineering & Services Laboratory) Environics Division

    DTIC Science & Technology

    1989-07-01

    and Development Support for Subsurface Monitoring Technology 15 19007048 Pumping and Purging Contaminants 16 19007049 Methods for Selecting In Situ...Decontamination 40 3788VW17 Treatment of Chlorinated Organics with Aboveground Bioreactors 41 3788VW18 Improved Methods for Monitoring Fuel Biodegradation 42 2...Fluoride (HF) Dispersion Model 63 21036093 Solvent Capacity Field Test Method 64 21037097 Volatile Organic Compound (VOC) Control Technology 65 21037102

  4. Metabolite Identification of Halon Replacement Compounds.

    DTIC Science & Technology

    1992-06-01

    inhalation to a 1 % atmosphere for 2 h. Tlissues were analyzed for volatile metabolites, and urine was analyzed for fluoride and carboxylic acid metabolites...M*vass Spectrometry, lialocarbons, 35 lialon 1211, IICFC- 123, IICIFC 124, IICFC 142b, llvdro~chlorofluoro-tcarbIonis ( 1 ICFCs), Inhalation Exposure...trifluoroethane HCFC- 142b 1 -Chloro-1,1 - difluoroethane HCI Hydrochloric acid kg Kilogram L Liter m Meter M Moles/liter mg Milligram MHz Megahertz min Minute

  5. Discrimination of fluoride and phosphate contamination in central Florida for analyses of environmental effects

    NASA Technical Reports Server (NTRS)

    Coker, A. E.; Marshall, R.; Thomson, F.

    1972-01-01

    A study was made of the spatial registration of fluoride and phosphate pollution parameters in central Florida by utilizing remote sensing techniques. Multispectral remote sensing data were collected over the area and processed to produce multispectral recognition maps. These processed data were used to map land areas and waters containing concentrations of fluoride and phosphate. Maps showing distribution of affected and unaffected vegetation were produced. In addition, the multispectral data were processed by single band radiometric slicing to produce radiometric maps used to delineate areas of high ultraviolet radiance, which indicates high fluoride concentrations. The multispectral parameter maps and radiometric maps in combination showed distinctive patterns, which are correlated with areas known to be affected by fluoride and phosphate contamination. These remote sensing techniques have the potential for regional use to assess the environmental impact of fluoride and phosphate wastes in central Florida.

  6. [A fluoride-sensor for kink structure in DNA condensation process].

    PubMed

    Liu, Yan-Hui; Zhang, Jing; Chen, Ying-Bing; Li, Yu-Pu; Hu, Lin

    2014-01-01

    Bloomfield has pointed out that the kink structure occurs for sharp bending during DNA condensation process, until now, which has not been proved by experiments. Using UV Spectrophotometer, the effects of fluoride and chlorine on the polyamine-DNA condensation system can be detected. Fluoride and chlorine both belong to the halogen family, but their effects on spermine-DNA condensation system are totally different. Fluoride ions make blue-shift and hyperchromicity appear in the spermine-DNA condensation system, but chlorine ions only make insignificant hyperchromicity happen in this system. Both fluoride ions and chlorine ions only make insignificant hyperchromicity happen in spermidine-DNA condensation system. Based on the distinguished character of fluoride, a fluoride-sensor for "kink" structure in DNA condensation was developed and the second kind of "kink" structure only appear in the spermine-DNA condensation system.

  7. Design Manual: Removal of Fluoride from Drinking Water ...

    EPA Pesticide Factsheets

    This document is an updated version of the Design Manual: Removal of Fluoride from Drinking Water Supplies by Activated Alumina (Rubel, 1984). The manual is an in-depth presentation of the steps required to design and operate a fluoride removal plant using activated alumina (AA), which is a reliable and cost-effective process for treating excess fluoride from drinking water supplies. Design Manual on removing fluoride from drinking water to support the fluoride MCL - manual

  8. The development and validation of a new technology, based upon 1.5% arginine, an insoluble calcium compound and fluoride, for everyday use in the prevention and treatment of dental caries.

    PubMed

    Cummins, D

    2013-08-01

    This paper briefly discusses caries prevalence, the multi-factorial nature of caries etiology, caries risk and the role and efficacy of fluoride. The paper also highlights research on bacterial metabolism which provided understanding of the mouth's natural defenses against caries and the basis for the development of a new technology for the everyday prevention and treatment of caries. Finally, evidence that the technology complements and enhances the anti-caries efficacy of fluoride toothpaste is summarized. Global data show that dental caries is a prevalent disease, despite the successful introduction of fluoride. Caries experience depends on the balance between consumption of sugars and oral hygiene and the use of fluoride. Three scientific concepts are fundamental to new measures to detect, treat and monitor caries: (1) dental caries is a dynamic process, (2) dental caries is a continuum of stages from reversible, pre-clinical to irreversible, clinically detectable lesions, and (3) the caries process is a balance of pathological and protective factors that can be modulated to manage caries. Fluoride functions as a protective factor by arresting and reversing the caries process, but fluoride does not prevent pathological factors that initiate the process. A novel technology, based upon arginine and an insoluble calcium compound, has been identified which targets dental plaque to prevent initiation of the caries process by reducing pathological factors. As the mechanisms of action of arginine and fluoride are highly complementary, a new dentifrice, which combines arginine with fluoride, has been developed and clinically proven to provide superior caries prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Solution of rocks and refractory minerals by acids at high temperatures and pressures. Determination of silica after decomposition with hydrofluoric acid

    USGS Publications Warehouse

    May, I.; Rowe, J.J.

    1965-01-01

    A modified Morey bomb was designed which contains a removable nichromecased 3.5-ml platinium crucible. This bomb is particularly useful for decompositions of refractory samples for micro- and semimicro-analysis. Temperatures of 400-450?? and pressures estimated as great as 6000 p.s.i. were maintained in the bomb for periods as long as 24 h. Complete decompositions of rocks, garnet, beryl, chrysoberyl, phenacite, sapphirine, and kyanite were obtained with hydrofluoric acid or a mixture of hydrofluoric and sulfuric acids; the decomposition of chrome refractory was made with hydrochloric acid. Aluminum-rich samples formed difficultly soluble aluminum fluoride precipitates. Because no volatilization losses occur, silica can be determined on sample solutions by a molybdenum-blue procedure using aluminum(III) to complex interfering fluoride. ?? 1965.

  10. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    PubMed

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  11. Study on fluoride emission from soils at high temperature related to brick-making process.

    PubMed

    Xie, Z M; Wu, W H; Xu, J M

    2003-02-01

    Characteristics of fluoride emission from 12 soils at temperatures of 400-1,100 degrees C related to the brick-making process were studied. The results obtained in this study indicate that fluoride emission as gaseous HF and SiF4 was related to the firing temperature, soil total fluoride content, soil composition and calcium compounds added to soils. Soils began to release fluoride at temperatures between 500 and 700 degrees C. Marked increases of the average fluoride mission rate from 57.2% to 85.4% of soil total fluoride were noticed as the heating temperature was increased from 700 to 1,100 degrees C. It was found that the major proportion (over 50%) of the soil total fluoride was emitted from soils at approximate 800 degrees C. The amount of fluoride released into the atmosphere when heated depended on the total fluoride contents in the soils. Correlation analysis showed that the soil composition, such as cation exchange capacity, exchangeable calcium and CaCO3, had some influence on fluoride emission below 900 degrees C, but had no influence at temperatures above 900 degrees C. Addition of four calcium compounds (CaO, CaCO3, Ca(OH)2, and CaSO4) at 1.5% by weight raised the temperature at which fluoride began to be released to 700 degrees C. The greatest decrease in fluoride emission among the four calcium compound treatments was found with CaCO3.

  12. Critical factors determining fluoride concentration in tea leaves produced from Anhui province, China.

    PubMed

    Cai, Huimei; Zhu, Xiaohui; Peng, Chuanyi; Xu, Wei; Li, Daxiang; Wang, Yijun; Fang, Shihui; Li, Yeyun; Hu, Shaode; Wan, Xiaochun

    2016-09-01

    This study investigated the fluoride present in tea plants (Camellia sinensis (L.) O. Kuntze) and its relationship to soils, varieties, seasons and tea leaf maturity. The study also explored how different manufacturing processes affect the leaching of fluoride into tea beverages. The fluoride concentration in the tea leaves was significantly correlate to the concentration of water-soluble fluoride in the soil. Different tea varieties accumulated different levels of fluoride, with varieties, Anji baicha having the highest and Nongkang zao having the lowest fluoride concentration. In eight different varieties of tea plant harvested over three tea seasons, fluoride concentration were highest in the summer and lowest in the spring in china. The fluoride concentration in tea leaves was directly related to the maturity of the tea leaves at harvest. Importantly, the tea manufacturing process did not introduced fluoride contamination. The leaching of fluoride was 6.8% and 14.1% higher in black and white tea, respectively, than in fresh tea leaves. The manufacturing step most affecting the leaching of fluoride into tea beverage was withering used in white, black and oolong tea rather than rolling or fermentation. The exposure and associated health risks for fluoride concentration in infusions of 115 commercially available teas from Chinese tea markets was determined. The fluoride concentration ranged from 5.0 to 306.0mgkg(-1), with an average of 81.7mgkg(-1). The hazard quotient (HQ) of these teas indicated that there was no risk of fluorosis from drinking tea, based on statistical analysis by Monte Carlo simulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Anaerobic digestion of citrus waste using two-stage membrane bioreactor

    NASA Astrophysics Data System (ADS)

    Millati, Ria; Lukitawesa; Dwi Permanasari, Ervina; Wulan Sari, Kartika; Nur Cahyanto, Muhammad; Niklasson, Claes; Taherzadeh, Mohammad J.

    2018-03-01

    Anaerobic digestion is a promising method to treat citrus waste. However, the presence of limonene in citrus waste inhibits anaerobic digestion process. Limonene is an antimicrobial compound and could inhibit methane forming bacteria that takes a longer time to recover than the injured acid forming bacteria. Hence, volatile fatty acids will be accumulated and methane production will be decreased. One way to solve this problem is by conducting anaerobic digestion process into two stages. The first step is aimed for hydrolysis, acidogenesis, and acetogenesis reactions and the second stage is aimed for methanogenesis reaction. The separation of the system would further allow each stage in their optimum conditions making the process more stable. In this research, anaerobic digestion was carried out in batch operations using 120 ml-glass bottle bioreactors in 2 stages. The first stage was performed in free-cells bioreactor, whereas the second stage was performed in both bioreactor of free cells and membrane bioreactor. In the first stage, the reactor was set into ‘anaerobic’ and ‘semi-aerobic’ conditions to examine the effect of oxygen on facultative anaerobic bacteria in acid production. In the second stage, the protection of membrane towards the cells against limonene was tested. For the first stage, the basal medium was prepared with 1.5 g VS of inoculum and 4.5 g VS of citrus waste. The digestion process was carried out at 55°C for four days. For the second stage, the membrane bioreactor was prepared with 3 g of cells that were encased and sealed in a 3×6 cm2 polyvinylidene fluoride membrane. The medium contained 40 ml basal medium and 10 ml liquid from the first stage. The bioreactors were incubated at 55°C for 2 days under anaerobic condition. The results from the first stage showed that the maximum total sugar under ‘anaerobic’ and ‘semi-aerobic’ conditions was 294.3 g/l and 244.7 g/l, respectively. The corresponding values for total volatile fatty acids were 3.8 g/l and 2.9 g/l, respectively. Methane production of citrus waste taken from the first stage under ‘anaerobic’ condition in membrane and free-cells bioreactors was 11.2 Nml and 7.2 Nml, respectively. Whereas, methane production of citrus waste taken from the first stage under ‘semi-aerobic’ condition in membrane and free-cells bioreactors was 8.8 Nml and 5.7 Nml, respectively. It can be seen from the results of the first stage that volatile fatty acids from ‘anaerobic’ condition was higher than that of ‘semi-aerobic’ condition. The absence of oxygen provides the optimal condition for growth and metabolism of facultative and obligatorily anaerobic bacteria in the first stage. Furthermore, polyvinylidene fluoride membrane was able to protect the cells from antimicrobial compounds.

  14. Preparation of fly ash based zeolite for removal of fluoride from drinking water

    NASA Astrophysics Data System (ADS)

    Panda, Laxmidhar; Kar, Biswabandita; Dash, Subhakanta

    2018-05-01

    Fluoride contamination of drinking water is a worldwide phenomenon and scientists are working relentlessly to find ways to remove fluoride from drinking water. Out of the different methods employed for removal fluoride from drinking water adsorption process is the most suitable because in this process the adsorbent is regenerated and the process is cost effective. In the present study fly ash is used as the raw material, which is treated with alkali (NaOH) to form NaP1 zeolite. This zeolite is then subjected to characterization by standard procedures. It is found that the synthesized zeolite has more crystalline character than the raw fly ash and has also more voids and channels on its surface. The surface of the synthesized zeolite is modified with calcium chloride and the same is employed for removal of fluoride under varying pH, contact time, initial concentration of fluoride, temperature and adsorbent dose etc so as to assess the suitably or otherwise of the synthesized product.

  15. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  16. Preparation and characterization of γ-AlOOH @CS magnetic nanoparticle as a novel adsorbent for removing fluoride from drinking water.

    PubMed

    Wan, Zhen; Chen, Wei; Liu, Cheng; Liu, Yu; Dong, Changlong

    2015-04-01

    For this study, a novel adsorbent of γ-AlOOH @CS (pseudoboehmite and chitosan shell) magnetic nanoparticles (ACMN) with magnetic separation capabilities was developed to remove fluoride from drinking water. The adsorbent was first characterized, and then its performance in removing fluoride was evaluated. Kinetic data demonstrated rapid fluoride adsorption with more than 80% fluoride adsorption within the initial 20 min and equilibrium reached in 60 min. Based on the results of kinetic and isotherm models, the fluoride adsorption process on the ACMN's surface was a monolayer adsorption on a homogeneous surface. Thermodynamic parameters presented that the adsorption process is spontaneous and endothermic in nature. The mechanism for the adsorption involved electrostatic interaction and hydrogen bonding. Moreover, the calculated adsorption capacity of the ACMN for fluoride using the Langmuir model was 67.5 mg/g (20°C, pH=7.0±0.1), higher than other fluoride removal adsorbents. This nanoadsorbent performed well over a pH range of 4-10. The study found that PO4(3-) was the co-existing anion most able to hinder the nanoparticle's fluoride adsorption, followed by NO3(-) then Cl(-). Experimental results suggest that ACMN is a promising adsorbent for treating fluoride-contaminated water. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Performance of novel hydroxyapatite nanowires in treatment of fluoride contaminated water.

    PubMed

    He, Junyong; Zhang, Kaisheng; Wu, Shibiao; Cai, Xingguo; Chen, Kai; Li, Yulian; Sun, Bai; Jia, Yong; Meng, Fanli; Jin, Zhen; Kong, Lingtao; Liu, Jinhuai

    2016-02-13

    Novel ultralong hydroxyapatite (HAP) nanowires were successfully prepared for fluoride removal for the first time. The fluoride adsorption on the HAP nanowires was studied on a batch mode. The results revealed that the adsorption data could be well described by the Freundlich model, and the adsorption kinetic followed the pseudo-second-order model. The maximum of adsorption capacity was 40.65 mg/g at pH 7.0 when the fluoride concentration is 200mg/L. The thermodynamic parameters suggested that the adsorption of fluoride was a spontaneous endothermic process. The FT-IR, XPS and Zeta potential analysis revealed that both anion exchange and electrostatic interactions were involved in the adsorption of fluoride. Furthermore, the HAP nanowires were made into HAP membrane through a simple process of suction filtration. Membrane filtration experiments revealed that the fluoride removal capabilities depended on the membrane thickness, flow rate and initial concentration of fluoride. The as-prepared membrane could remove fluoride efficiently through continues filtration. The filtered water amount could reach 350, 192, and 64 L/m(2) when the fluoride concentrations were 4, 5 and 8 ppm, respectively, using the HAP membrane with only 150 μm thickness. The as-synthesized ultralong HAP nanowires were thus demonstrated to be very effective and biocompatible adsorbents for fluoride removal from contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fluoride glass: Crystallization, surface tension

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1988-01-01

    Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.

  19. The evolution of standards for naturally occurring fluorides: an example of scientific due process.

    PubMed Central

    Clark, N; Corbin, S

    1983-01-01

    In three quarters of a century of observation and research, the effects of fluoride on dental caries and on general bodily health have been well documented. An expanding data base has allowed a firming up of the guidance and standards for appropriate and safe levels of naturally occurring fluorides for human consumption. Over time, through specific recommendations, the maximum fluoride concentrations deemed appropriate have been altered, but by a process of considered adjustment. Although the Public Health Service has been responsible for the formalization of many of the recommended standards, those recommendations have been based on research from many fronts. In the most recent reconsideration of the standards for natural fluoride, the most exhaustive and thoroughly documented review to date was done, incorporating review by representatives from State, Federal, and private programs. Although the specific example of the development of standards for natural fluoride is used, it should be illustrative of similar processes that are constantly underway in regard to substances and factors with a potential impact on the public's health. Expansion of the data base through research and scientific inquiry will lay the foundation for future reconsideration of the standards for naturally occurring fluorides. PMID:6828638

  20. Salt fluoridation--an alternative in automatic prevention of dental caries.

    PubMed

    Marthaler, T M; Petersen, P E

    2005-12-01

    Despite great improvements in terms of reduced prevalence and amount of dental caries in populations worldwide, problems still persist particularly among the underprivileged groups of both developed and developing countries. Research and practical experience gained in several countries have demonstrated however, that dental caries can be prevented effectively through establishment of fluoride programmes. Water fluoridation, salt fluoridation, milk fluoridation and use of affordable fluoridated toothpastes play the major roles in public health. The present paper outlines the relevance and some practical aspects in relation to implementation of salt fluoridation programmes. The World Health Organisation Oral Health Programme provides technical assistance to countries in the process of planning, implementing and evaluating salt fluoridation projects.

  1. The role of troublesome components in plutonium vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hong; Vienna, J.D.; Peeler, D.K.

    1996-05-01

    One option for immobilizing surplus plutonium is vitrification in a borosilicate glass. Two advantages of the glass form are (1) high tolerance to feed variability and, (2) high solubility of some impurity components. The types of plutonium-containing materials in the United States inventory include: pits, metals, oxides, residues, scrap, compounds, and fuel. Many of them also contain high concentrations of carbon, chloride, fluoride, phosphate, sulfate, and chromium oxide. To vitrify plutonium-containing scrap and residues, it is critical to understand the impact of each component on glass processing and chemical durability of the final product. This paper addresses glass processing issuesmore » associated with these troublesome components. It covers solubility limits of chlorine, fluorine, phosphate, sulfate, and chromium oxide in several borosilicate based glasses, and the effect of each component on vitrification (volatility, phase segregation, crystallization, and melt viscosity). Techniques (formulation, pretreatment, removal, and/or dilution) to mitigate the effect of these troublesome components are suggested.« less

  2. Aerodynamic Levitation Reactor Studies of Fluorine Reactions with Refractory Ceramics

    DTIC Science & Technology

    1981-05-01

    Melting Points of Rare-Earth Metals and Rare-Earth Trifluorides . 14 3. Aerodynamic Lavitation Flow Reactor. 15 4 Lanthanutm-Boron-Carbon Ternary Phase...the least volatile fluorides (CaF , SrT and rare-earth trifluorides ) would yield a 10% increase in w* (initially O.O cam) in about 1 hour at 1300K...measurement, and are, therefore, somewhat uncertain. The melting points of the rare-earth metals and their trifluorides are illustrated in Fig. 2. The melting

  3. Volatiles on the surface of Apollo 15 green glass and trace-element distributions among Apollo 15 soils

    NASA Technical Reports Server (NTRS)

    Chou, C.-L.; Boynton, W. V.; Sundberg, L. L.; Wasson, J. T.

    1975-01-01

    Zn, Ge, Cd, In, and Au have been detected in surficial deposits on Apollo 15 green-glass spherules, and it is suggested that these deposits are condensates from the magmatic gas phase which was responsible for the pneumatic expulsion of the green glass from the lunar interior. Thermodynamic data indicate that chlorides and fluorides were the dominant forms of the volatile metals. The Ar-40x content of a nongreen-glass soil fraction is greater than that found in green-glass. Mare and low-K Fra Mauro basalts seem to be the most prominent components of Apollo 15 soil. The correlation of Zn with Ar-40x and with Pb-204 is studied, and the distribution of quartz-normative and olivine-normative basalts is considered.

  4. Fixed bed column study for water defluoridation using neem oil-phenolic resin treated plant bio-sorbent.

    PubMed

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Adhikari, Basudam; Das, Papita

    2018-04-15

    Fluoride has both detrimental and beneficial effects on living beings depending on the concentration and consumption periods. The study presented in this article investigated the feasibility of using neem oil phenolic resin treated lignocellulosic bio-sorbents for fluoride removal from water through fixed bed column study. Results indicated that treated bio-sorbents could remove fluoride both from synthetic and groundwater with variable bed depth, flow rate, fluoride concentration and column diameter. Data obtained from this study indicated that columns with the thickest bed, lowest flow rate, and fluoride concentration showed best column performance. Bio-sorbents used in this study are regenerable and reusable for more than five cycles. The initial materials cost needed to remove one gram of fluoride also found to be lower than the available alternatives. This makes the process more promising candidate to be used for fluoride removal. In addition, the process is also technically advantageous over the available alternatives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Lunar mining of oxygen using fluorine

    NASA Technical Reports Server (NTRS)

    Burt, Donald M.

    1992-01-01

    An important aspect of lunar mining will be the extraction of volatiles, particularly oxygen, from lunar rocks. Thermodynamic data show that oxygen could readily be recovered by fluorination of abundant lunar anorthite, CaAl2Si2O8. Fluorine is the most reactive element, and the only reagent able to extract 100 percent of the oxygen from any mineral, yet it can safely be stored or reacted in nickel or iron containers. The general fluorination reaction, mineral + 2F2 = mixed fluorides = O2, has been used for more than 30 years at a laboratory scale by stable-isotope geochemists. For anorthite, metallic Al and Si may be recovered from the mixed fluorides by Na-reduction, and CaO via exchange with Na2O; the resulting NaF may be recycled into F2 and Na by electrolysis, using lanthanide-doped CaF2 as the inert anode.

  6. Effect of fluoride ion on the stability of DNA hairpin

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Zhai, Weili; Gong, Hongling; Liu, Yanhui; Chen, Hu

    2017-06-01

    Fluoride prevents tooth decay as an additive in oral hygiene products, while high dose intake of fluoride from contaminated drinking water leads to fluorosis. Here we studied the effect of fluoride ion on the stability of DNA double helix using magnetic tweezers. The equilibrium critical force decreases with increasing concentration of fluoride in the range from 1 mM to 100 mM. Our results give the first quantitative measurement of DNA stability in the presence of fluoride ion, which might disturb DNA-related biological processes to cause fluorosis.

  7. Fluoride in drinking water and its removal.

    PubMed

    Meenakshi; Maheshwari, R C

    2006-09-01

    Excessive fluoride concentrations have been reported in groundwaters of more than 20 developed and developing countries including India where 19 states are facing acute fluorosis problems. Various technologies are being used to remove fluoride from water but still the problem has not been rooted out. In this paper, a broad overview of the available technologies for fluoride removal and advantages and limitations of each one have been presented based on literature survey and the experiments conducted in the laboratory with several processes. It has been concluded that the selection of treatment process should be site specific as per local needs and prevailing conditions as each technology has some limitations and no one process can serve the purpose in diverse conditions.

  8. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  9. The role of fluoride on the process of titanium corrosion in oral cavity.

    PubMed

    Noguti, Juliana; de Oliveira, Flavia; Peres, Rogério Correa; Renno, Ana Claudia Muniz; Ribeiro, Daniel Araki

    2012-10-01

    Titanium is known to possess excellent biocompatibility as a result of corrosion resistance, lack of allergenicity when compared with many other metals. Fluoride is well known as a specific and effective caries prophylactic agent and its systemic application has been recommended widely over recent decades. Nevertheless, high fluoride concentrations impair the corrosion resistance of titanium. The purpose of this article is to summarize the current data regarding the influence of fluoride on titanium corrosion process in the last 5 years. These data demonstrate noxious effects induced by high fluoride concentration as well as low pH in the oral cavity. Therefore, such conditions should be considered when prophylactic actions are administrated in patients containing titanium implants or other dental devices.

  10. Freeze concentration of proteins in Antarctic krill wash water

    NASA Astrophysics Data System (ADS)

    Qi, Xiangming; Xu, Jing; Zhao, Kuo; Guo, Hui; Ma, Lei

    2017-12-01

    Water-washing removes fluoride from Antarctic krill but produces large volumes of wash water containing water- soluble proteins and fluoride. The freeze concentration method was tested to determine if it could be used to recover water-soluble proteins while leaving the fluoride in solution. After freezing and thawing the wash water, protein and fluoride contents of the thawed fractions were determined to explore the melting regularity of components in the wash water. The highest concentration factors of protein and fluoride were obtained after 80 min of thawing, such as 1.48 ± 0.06 and 1.35 ± 0.04 times, respectively. The free amino-nitrogen (FAN) content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern results revealed that the highest concentrations of all ingredients were obtained after 80 min of the process. The degree of hydrolysis of all fractions from the thawing process fluctuated in a narrow range around 12% during the entire process, indicating that the thawing order did not change with various proteins or time during the entire thawing course. These results demonstrate that the freeze concentration method can be used to concentrate protein solutions, even those with fluoride. It was concluded that condensation was achieved and no ingredient could be separated, regardless of fluoride, amino acids, or different proteins in the water.

  11. 40 CFR 60.202 - Standard for fluorides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for fluorides. 60.202 Section... Industry: Wet-Process Phosphoric Acid Plants § 60.202 Standard for fluorides. (a) On and after the date on... facility any gases which contain total fluorides in excess of 10.0 g/Mg of equivalent P2O5 feed (0.020 lb...

  12. 40 CFR 60.202 - Standard for fluorides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for fluorides. 60.202 Section... Industry: Wet-Process Phosphoric Acid Plants § 60.202 Standard for fluorides. (a) On and after the date on... facility any gases which contain total fluorides in excess of 10.0 g/Mg of equivalent P2O5 feed (0.020 lb...

  13. Massachusetts Institute of Technology Lincoln Laboratory Facilities Replacement on Hanscom Air Force Base Phase 1 Final Environmental Assessment

    DTIC Science & Technology

    2014-07-24

    Service UST Underground Storage Tank VC Vitrified Clay VOCs Volatile Organic Compounds W Watts 1 1.0 PURPOSE AND NEED FOR ACTION 1.1 INTRODUCTION The...discharged to sanitary drain and the solids slurry is hauled off site for disposal Fluoride drain: welded stainless steel drain piping from wet...diameter vitrified clay (VC) gravity sewer collection pipe, flowing north/northeast to the upper pumping station at Building 1306, is located within the

  14. FUEL ELEMENT CONSTRUCTION

    DOEpatents

    Zumwalt, L.R.

    1961-08-01

    Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

  15. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Methods of controlling hydrogen fluoride pressure during chemical fabrication processes

    DOEpatents

    Solovyov, Vyacheslav [Rocky Point, NY; Wiesmann, Harold [Stony Brook, NY

    2009-11-24

    The present invention is a method for producing a crystalline end-product. The method comprising exposing a fluoride-containing precursor to a hydrogen fluoride absorber under conditions suitable for the conversion of the precursor into the crystalline end-product.

  17. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ardebili, Haleh

    2016-01-01

    The development of high-performance flexible batteries is imperative for several contemporary applications including flexible electronics, wearable sensors and implantable medical devices. However, traditional organic liquid-based electrolytes are not ideal for flexible batteries due to their inherent safety and stability issues. In this study, a non-volatile, non-flammable and safe ionic liquid (IL)-based polymer electrolyte film with solid-like feature is fabricated and incorporated in a flexible lithium ion battery. The ionic liquid is 1-Ethyl-3-methylimidazolium dicyanamide (EMIMDCA) and the polymer is composed of poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP). The electrolyte exhibits good thermal stability (i.e. no weight loss up to 300 °C) and relatively high ionic conductivity (6 × 10-4 S cm-1). The flexible thin-film lithium ion battery based on solid-like electrolyte film is encapsulated using a thermal-lamination process and demonstrates excellent electrochemical performance, in both flat and bent configurations.

  18. Combined electrocoagulation and electroflotation for removal of fluoride from drinking water.

    PubMed

    Zuo, Qianhai; Chen, Xueming; Li, Wei; Chen, Guohua

    2008-11-30

    A combined electrocoagulation (EC) and electroflotation (EF) process was proposed to remove fluoride from drinking water. Its efficacy was investigated under different conditions. Experimental results showed that the combined process could remove fluoride effectively. The total hydraulic retention time required was only 30 min. After treatment, the fluoride concentration was reduced from initial 4.0-6.0mg/L to lower than 1.0mg/L. The influent pH value was found to be a very important variable that affected fluoride removal significantly. The optimal influent pH range is 6.0-7.0 at which not only can effective defluoridation be achieved, but also no pH readjustment is needed after treatment. In addition, it was found that SO(4)(2-) had negative effect; Ca(2+) had positive effect; while Cl(-) had little effect on the fluoride removal. The EC charge loading, EF charge loading and energy consumption were 3.0 Faradays/m(3), 1.5 Faradays/m(3), and 1.2 kWh/m(3), respectively, under typical conditions where fluoride was reduced from initial 4.0 to 0.87 mg/L.

  19. Extracting Silicon From Sodium-Process Products

    NASA Technical Reports Server (NTRS)

    Kapur, V.; Sanjurjo, A.; Sancier, K. M.; Nanis, L.

    1982-01-01

    New acid leaching process purifies silicon produced in reaction between silicon fluoride and sodium. Concentration of sodium fluoride and other impurities and byproducts remaining in silicon are within acceptable ranges for semi-conductor devices. Leaching process makes sodium reduction process more attractive for making large quantities of silicon for solar cells.

  20. Topographic assessment of human enamel surface treated with different topical sodium fluoride agents: Scanning electron microscope consideration.

    PubMed

    Brar, Gurlal Singh; Arora, Amandeep Singh; Khinda, Vineet Inder Singh; Kallar, Shiminder; Arora, Karuna

    2017-01-01

    Continuous balanced demineralization and remineralization are natural dynamic processes in enamel. If the balance is interrupted and demineralization process dominates, it may eventually lead to the development of carious lesions in enamel and dentine. Fluoride helps control decay by enhancing remineralization and altering the structure of the tooth, making the surface less soluble. One hundred and twenty sound human permanent incisors randomly and equally distributed into six groups as follows: Group I - Control, II - Sodium fluoride solution, III - Sodium fluoride gel, IV - Sodium fluoride varnish, V - Clinpro Tooth Crème (3M ESPE), and VI-GC Tooth Mousse Plus or MI Paste Plus. The samples were kept in artificial saliva for 12 months, and the topical fluoride agents were applied to the respective sample groups as per the manufacturer instructions. Scanning electron microscope (SEM) evaluation of all the samples after 6 and 12 months was made. Morphological changes on the enamel surface after application of fluoride in SEM revealed the presence of globular precipitate in all treated samples. Amorphous, globular, and crystalline structures were seen on the enamel surface of the treated samples. Clear differences were observed between the treated and untreated samples. Globular structures consisting of amorphous CaF2precipitates, which acted as a fluoride reservoir, were observed on the enamel surface after action of different sodium fluoride agents. CPP-ACPF (Tooth Mousse) and Tricalcium phosphate with fluoride (Clinpro tooth crème) are excellent delivery vehicles available in a slow release amorphous form to localize fluoride at the tooth surface.

  1. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.

    PubMed

    Thakur, Lokendra Singh; Mondal, Prasenjit

    2017-04-01

    Co-existence of arsenic and fluoride in groundwater has raised severe health issues to living being. Thus, the present research has been conducted for simultaneous removal of arsenic and fluoride from synthetic groundwater by using electrocoagulation process with aluminum electrode. Effects of initial pH, current density, run time, inter electrode distance and NaCl concentration over percentage removal of arsenic and fluoride as well as operating cost have been studied. The optimum experimental conditions are found to be initial pH: 7, current density: 10 A/m 2 , run time: 95 min, inter electrode distance: 1 cm, NaCl concentration: 0.71 g/l for removal of 98.51% arsenic (initial concentration: 550 μg/l) and 88.33% fluoride (initial concentration: 12 mg/l). The concentration of arsenic and fluoride in treated water are found to be 8.19 μg/l and 1.4 mg/l, respectively, with an operating cost of 0.357 USD/m 3 treated water. Pseudo first and second order kinetic model of individual and simultaneous arsenic and fluoride removal in electrocoagulation have also been studied. Produced sludge characterization studies also confirm the presence of arsenic in As(III) form, and fluoride in sludge. The present electrocoagulation process is able to reduce the arsenic and fluoride concentration of synthetic as well as real groundwater to below 10 μg/l and 1.5 mg/l, respectively, which are maximum contaminant level of these elements in drinking water according to WHO guidelines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. [Effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes].

    PubMed

    Qiuxia, Yang; Ying, Yang; Han, Xu; Di, Wu; Ke, Guo

    2016-02-01

    This study aims to determine the effect of fluoride concentration on the corrosion behavior of cobalt-chromium alloy fabricated by two different technology processes in a simulated oral environment. A total of 15 specimens were employed with selective laser melting (SLM) and another 15 for traditional casting (Cast) in cobalt-chromium alloy powders and blocks with the same material composition. The corrosion behavior of the specimens was studied by potentiodynamic polarization test under different oral environments with varying solubilities of fluorine (0, 0.05%, and 0.20% for each) in acid artificial saliva (pH = 5.0). The specimens were soaked in fluorine for 24 h, and the surface microstructure was observed under a field emission scanning electron microscope after immersing the specimens in the test solution at constant temperature. The corrosion potential (Ecorr) value of the cobalt-chromium alloy cast decreased with increasing fluoride concentration in acidic artificial saliva. The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes changed significantly when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, Icorr, and Rp values of the cobalt-chromium alloy fabricated by two different technology processes exhibited a statistically significant difference. The Icorr value of the cobalt-chromium alloy cast was higher than that in the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P < 0.05). The Ecorr, tRp alues of the cobalt-chromium alloy cast were lower htan those of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20% (P< 0 .05). Fluoride ions adversely affected the corrosion resistance of the cobalt-chromium alloy fabricated by two different technology processes. The corrosion resistance of the cobalt-chromium alloy cast was worse than that of the SLM group cobalt-chromium alloy when the fluoride concentration was 0.20%.

  3. Design and development of sustainable remediation process for mitigation of fluoride contamination in ground water and field application for domestic use.

    PubMed

    Gwala, Poonam; Andey, Subhash; Nagarnaik, Pranav; Ghosh, Sarika Pimpalkar; Pal, Prashant; Deshmukh, Prashant; Labhasetwar, Pawan

    2014-08-01

    Decentralised household chemo defluoridation unit (CDU) was developed and designed based on a combination of coagulation and sorption processes. Chemo-defluoridation process was optimised to reduce use of chemicals and increase acceptability among beneficiaries without affecting palatability of water. Chemical dose optimization undertaken in the laboratory using jar test revealed the optimum calcium salt to initial fluoride ratio of 60 for fluoride removal. Performance of CDU was evaluated in the laboratory for removal efficiency, water quality parameters, filter bed cleaning cycle and desorption of fluoride. CDU evaluation in the laboratory with spiked water (5 mg/L) and field water (~4.2 mg/L) revealed treated water fluoride concentration of less than 1mg/L. Seventy five CDUs were installed in households at Sakhara Village, Yavatmal District in Maharashtra State of India. Monthly monitoring of CDUs for one year indicated reduction of the raw water fluoride concentration from around 4 mg/L to less than 1mg/L. Post implementation survey after regular consumption of treated drinking water by the users for one year indicated user satisfaction and technological sustainability. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE SOY MILK PRODUCTS IN THAILAND.

    PubMed

    Rirattanapong, Opas; Rirattanapong, Praphasri

    2016-01-01

    Abstract. In Thailand, the consumption of soy milk products is common but there is limited data about their fluoride content. The purpose of this study was to es- timate the fluoride content of soy milk products available in Thailand. Fluoride content was determined for 76 brands of soy milk using a F-ion-specific electrode. The fluoride concentrations ranged from 0.01 to 3.78 μg/ml. The fluoride content was not related to sugar content, soy bean content or the sterilization process. Among 3 brands of soy milk containing tea powder extract, the fluoride content was high (1.25 to 3.78 μg/ml). Most brands of soy milk tested in our study had fluoride content below the optimal daily intake but brands containing tea powder extract if consumed by children may increase their risk for fluorosis.

  5. A Review on Adsorption of Fluoride from Aqueous Solution

    PubMed Central

    Habuda-Stanić, Mirna; Ergović Ravančić, Maja; Flanagan, Andrew

    2014-01-01

    Fluoride is one of the anionic contaminants which is found in excess in surface or groundwater because of geochemical reactions or anthropogenic activities such as the disposal of industrial wastewaters. Among various methods used for defluoridation of water such as coagulation, precipitation, membrane processes, electrolytic treatment, ion-exchange, the adsorption process is widely used. It offers satisfactory results and seems to be a more attractive method for the removal of fluoride in terms of cost, simplicity of design and operation. Various conventional and non-conventional adsorbents have been assessed for the removal of fluoride from water. In this review, a list of various adsorbents (oxides and hydroxides, biosorbents, geomaterials, carbonaceous materials and industrial products and by-products) and its modifications from literature are surveyed and their adsorption capacities under various conditions are compared. The effect of other impurities on fluoride removal has also been discussed. This survey showed that various adsorbents, especially binary and trimetal oxides and hydroxides, have good potential for the fluoride removal from aquatic environments. PMID:28788194

  6. Defluoridation potential of jute fibers grafted with fatty acyl chain

    NASA Astrophysics Data System (ADS)

    Manna, Suvendu; Saha, Prosenjit; Roy, Debasis; Sen, Ramkrishna; Adhikari, Basudam

    2015-11-01

    Waterborne fluoride is usually removed from water by coagulation, adsorption, ion exchange, electro dialysis or reverse osmosis. These processes are often effective over narrow pH ranges, release ions considered hazardous to human health or produce large volumes of toxic sludge that are difficult to handle and dispose. Although plant matters have been shown to remove waterborne fluoride, they suffer from poor removal efficiency. Following from the insight that interaction between microbial carbohydrate biopolymers and anionic surfaces is often facilitated by lipids, an attempt has been made to enhance fluoride adsorption efficiency of jute by grafting the lignocellulosic fiber with fatty acyl chains found in vegetable oils. Fluoride removal efficiency of grafted jute was found to be comparable or higher than those of alternative defluoridation processes. Infrared and X-ray photoelectron spectroscopic evidence indicated that hydrogen bonding, protonation and C-F bonding were responsible for fluoride accumulation on grafted jute. Adsorption based on grafted jute fibers appears to be an economical, sustainable and eco-friendly alternative technique for removing waterborne fluoride.

  7. Enhanced Defluoridation Capacity From Aqueous Media via Hydroxyapatite Decorated With Carbon Nanotube.

    PubMed

    Tang, Qingzi; Duan, Tongdan; Li, Peng; Zhang, Ping; Wu, Daishe

    2018-01-01

    In this work, the potential of a novel hydroxyapatite decorated with carbon nanotube composite (CNT-HAP) for fluoride removal was investigated. The synthesized CNT-HAP composite was systematically characterized by X-ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), scanning electron microscope (SEM) and Brunauer-Emmett-Teller(BET). Batch adsorption experiments were conducted to investigate the defluorination capacity of CNT-HAP. The CNT-HAP composite has a maximum adsorption capacity of 11.05 mg·g -1 for fluoride, and the isothermal adsorption data were fitted by the Freundlich model to calculate the thermodynamic parameters. Thermodynamic analysis implies that the adsorption of fluoride on CNT-HAP is a spontaneous process. Furthermore, the adsorption of fluoride follows pseudo-second-order model. The effects of solution pH, co-existing anions and reaction temperature on defluorination efficiency were examined to optimize the operation conditions for fluoride adsorption. It is found that the optimized pH-value for fluoride removal by CNT-HAP composite is 6. In addition, among five common anions studied in this work, the presence of [Formula: see text] and [Formula: see text] could considerably affect the fluoride removal by CNT-HPA in aqueous media. Finally, the underlying mechanism for the fluoride removal by CNT-HAP is analyzed, and an anion exchange process is proposed.

  8. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube

    NASA Astrophysics Data System (ADS)

    Tang, Qingzi; Duan, Tongdan; Li, Peng; Zhang, Ping; Wu, Daishe

    2018-04-01

    In this work, the potential of a novel carbon nanotube-doped hydroxyapatite composite (CNT-HAP) for fluoride removal was investigated. The synthesized CNT-HAP composite was systematically characterized by X-ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), scanning electron microscope (SEM) and Brunauer–Emmett–Teller(BET). Batch adsorption experiments were conducted to investigate the defluorination capacity of CNT-HAP. The CNT-HAP composite has a maximum adsorption capacity of 11.05 mg·g-1 for fluoride, and the isothermal adsorption data were fitted by the Freundlich model to calculate the thermodynamic parameters. Thermodynamic analysis implies that the adsorption of fluoride on CNT-HAP is a spontaneous process. Furthermore, the adsorption of fluoride follows pseudo-second-order model. The effects of solution pH, co-existing anions and reaction temperature on defluorination efficiency were examined to optimize the operation conditions for fluoride adsorption. It is found that the optimized pH value for fluoride removal by CNT-HAP composite is 6. In addition, among five common anions studied in this work, the presence of HCO3- and PO43- could considerably affect the fluoride removal by CNT-HPA in aqueous media. Finally, the underlying mechanism for the fluoride removal by CNT-HAP is analysed, and an anion exchange process is proposed.

  9. Enhanced Defluoridation Capacity From Aqueous Media via Hydroxyapatite Decorated With Carbon Nanotube

    PubMed Central

    Tang, Qingzi; Duan, Tongdan; Li, Peng; Zhang, Ping; Wu, Daishe

    2018-01-01

    In this work, the potential of a novel hydroxyapatite decorated with carbon nanotube composite (CNT-HAP) for fluoride removal was investigated. The synthesized CNT-HAP composite was systematically characterized by X-ray diffraction(XRD), Fourier Transform infrared spectroscopy(FTIR), scanning electron microscope (SEM) and Brunauer–Emmett–Teller(BET). Batch adsorption experiments were conducted to investigate the defluorination capacity of CNT-HAP. The CNT-HAP composite has a maximum adsorption capacity of 11.05 mg·g−1 for fluoride, and the isothermal adsorption data were fitted by the Freundlich model to calculate the thermodynamic parameters. Thermodynamic analysis implies that the adsorption of fluoride on CNT-HAP is a spontaneous process. Furthermore, the adsorption of fluoride follows pseudo-second-order model. The effects of solution pH, co-existing anions and reaction temperature on defluorination efficiency were examined to optimize the operation conditions for fluoride adsorption. It is found that the optimized pH-value for fluoride removal by CNT-HAP composite is 6. In addition, among five common anions studied in this work, the presence of HCO3- and PO43- could considerably affect the fluoride removal by CNT-HPA in aqueous media. Finally, the underlying mechanism for the fluoride removal by CNT-HAP is analyzed, and an anion exchange process is proposed. PMID:29696138

  10. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water.

    PubMed

    Chai, Liyuan; Wang, Yunyan; Zhao, Na; Yang, Weichun; You, Xiangyu

    2013-08-01

    A novel adsorbent of sulfate-doped Fe3O4/Al2O3 nanoparticles with magnetic separability was developed for fluoride removal from drinking water. The nanosized adsorbent was characterized and its performance in fluoride removal was evaluated. Kinetic data reveal that the fluoride adsorption was rapid in the beginning followed by a slower adsorption process, nearly 90% adsorption can be achieved within 20 min and only 10-15% additional removal occurred in the following 8 h. The fluoride adsorption isotherm was well described by Elovich model. The calculated adsorption capacity of this nanoadsorbent for fluoride by two-site Langmuir model was 70.4 mg/g at pH 7.0. Moreover, this nanoadsorbent performed well over a considerable wide pH range of 4-10, and the fluoride removal efficiencies reached up to 90% and 70% throughout the pH range of 4-10 with initial fluoride concentrations of 10 mg/L and 50 mg/L, respectively. The observed sulfate-fluoride displacement and decreased sulfur content on the adsorbent surface reveal that anion exchange process was an important mechanism for fluoride adsorption by the sulfate-doped Fe3O4/Al2O3 nanoparticles. Moreover, a shift of the pH of zero point charge (pHPZC) of the nanoparticles and surface analysis based on X-ray photoelectron spectroscopy (XPS) suggest the formation of inner-sphere fluoride complex at the aluminum center as another adsorption mechanism. With the exception of PO4(3-), other co-existing anions (NO3(-), Cl(-) and SO4(2-)) did not evidently inhibit fluoride removal by the nanoparticles. Findings of this study demonstrate the potential utility of the nanoparticles as an effective adsorbent for fluoride removal from drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fluoride: A naturally-occurring health hazard in drinking-water resources of Northern Thailand.

    PubMed

    Chuah, C Joon; Lye, Han Rui; Ziegler, Alan D; Wood, Spencer H; Kongpun, Chatpat; Rajchagool, Sunsanee

    2016-03-01

    In Northern Thailand, incidences of fluorosis resulting from the consumption of high-fluoride drinking-water have been documented. In this study, we mapped the high-fluoride endemic areas and described the relevant transport processes of fluoride in enriched waters in the provinces of Chiang Mai and Lamphun. Over one thousand surface and sub-surface water samples including a total of 995 collected from shallow (depth: ≤ 30 m) and deep (> 30 m) wells were analysed from two unconnected high-fluoride endemic areas. At the Chiang Mai site, 31% of the shallow wells contained hazardous levels (≥ 1.5 mg/L) of fluoride, compared with the 18% observed in the deep wells. However, at the Lamphun site, more deep wells (35%) contained water with at least 1.5mg/L fluoride compared with the shallow wells (7%). At the Chiang Mai site, the high-fluoride waters originate from a nearby geothermal field. Fluoride-rich geothermal waters are distributed across the area following natural hydrological pathways of surface and sub-surface water flow. At the Lamphun site, a well-defined, curvilinear high-fluoride anomalous zone, resembling that of the nearby conspicuous Mae Tha Fault, was identified. This similarity provides evidence of the existence of an unmapped, blind fault as well as its likely association to a geogenic source (biotite-granite) of fluoride related to the faulted zone. Excessive abstraction of ground water resources may also have affected the distribution and concentration of fluoride at both sites. The distribution of these high-fluoride waters is influenced by a myriad of complex natural and anthropogenic processes which thus created a challenge for the management of water resources for safe consumption in affected areas. The notion of clean and safe drinking water can be found in deeper aquifers is not necessarily true. Groundwater at any depth should always be tested before the construction of wells. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. PRODUCTION OF THORIUM FLUORIDE

    DOEpatents

    Zachariasen, W.H.

    1959-08-11

    A process is presented for producing anhydrous thorium fluoride comprising the step of contacting a saturated aqueous solution of thorium nitrate with an aqueous solution of hydrofluoric acid having a concentration of about 45 to 50% by weight at a temperature above 70 deg C whereby anhydrous thorium fluoride precipitates.

  13. Analytical Determination of Fluoride Ion Using Gran's Semi-Antilog Plot.

    ERIC Educational Resources Information Center

    Barnhard, Ralph J.

    1983-01-01

    A quantitative determination for fluoride ion using a commercially available fluoride electrode is described. The procedure referred to as known-addition is employed with the data processed on Gran's Plot Paper. Background information, experimental procedures, and advantages/disadvantages of the method are discussed. (JN)

  14. Community-oriented administration of fluoride for the prevention of dental caries: a summary of the current situation in Asia.

    PubMed

    Petersen, P E; Baez, R J; Lennon, M A

    2012-02-01

    Dental caries is the most prevalent chronic disease affecting human populations around the world. It is recognized that fluoride plays a significant role in dental caries reduction. Meanwhile, several low- and middle-income countries of Asia have not yet implemented systematic fluoride programs; contributing factors relate to misconceptions about the mechanisms of fluoride, low priority given to oral health in national health policy and strategic plans, and lack of interest among public health administrators. A workshop on the effective use of fluoride in Asia took place in Phang-Nga, Thailand, in 2011. A series of country presentations addressed some of the topics mentioned above; in addition, speakers from countries of the region provided examples of successful fluoride interventions and discussed program limitations, barriers encountered, and solutions, as well as possibilities for expanding coverage. Participants acknowledged that automatic fluoridation through water, salt, and milk is the most effective and equitable strategy for the prevention of dental caries. Concerns were expressed that government-subsidized community fluoride prevention programs may face privatization. In addition, the use of affordable fluoride-containing toothpastes should be encouraged. The workshop identified: strengths and weaknesses of ongoing community-based fluoride programs, as well as the interest of countries in a particular method; the requirement for World Health Organization (WHO) technical assistance on various aspects, including fluoridation process, feasibility studies, and implementation of effective epidemiological surveillance of the program; exchange of information; and the need for inter-country collaboration. It was acknowledged that program process and evaluation at the local and country levels need further dissemination. The meeting was co-sponsored by the World Health Organization, the International Association for Dental Research, and the World Dental Federation.

  15. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  16. Genesis of kasolite associated with aplite-pegmatite at Jabal Sayid, Hijaz region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Dawood, Yehia H.; Harbi, Hesham M.; Abd El-Naby, Hamdy H.

    2010-01-01

    In this study, we report kasolite Pb(UO 2)SiO 4·(H 2O) for the first time as a main uranyl mineral in the mineralized aplite-pegmatite of Jabal Sayid, Hijaz region. It commonly forms clusters of yellow acicular crystals in the voids and fractures. The mineral chemistry and mineralogical characteristics of kasolite were investigated using different techniques. Calcium, iron and phosphorus are detected in kasolite in addition to its major constituents; uranium, lead and silicon. Lead does not exist as a radiogenic product and not even as a substitute for uranium in the mineral structure. Alternatively, galena mineralization could be considered as a source for lead. The fluoride and carbonate complexes played a significant role in the formation of kasolite. High temperature hydrothermal solutions reacted with pre-existing uranium-bearing metamictized accessory minerals such as pyrochlore, U-rich thorite and zircon to form uranous fluoride complexes. These complexes are predominant in reducing environment and at pH 4. When the fluids approached the surface passing through fracture system, the oxygen fugacity ( fO 2) and the pH increased because of the loss of volatile components. At these conditions, uranous fluorides would convert to uranyl fluoride complexes UO 2F 3-. Further decrease in temperature was associated with the decay of the activity of fluorine ion by the dilution of hydrothermal solutions and precipitation of fluorite. At this condition, uranyl-carbonate complexes are favoured. These complexes were combined later with silica and lead to form kasolite.

  17. THE EFFECT OF FLUORIDE ON CONVENTIONAL WATER TREATMENT USING ALUMINUM SULFATE

    EPA Science Inventory

    Based on the Information Collection Rule survey results of 600 large utilities, approximately 50% of them fluoridate their water and of those, 15-20% do so at the location of coagulant addition. In this case, the effect of fluoride on the coagulation process, floc properties, coa...

  18. 75 FR 17170 - Notice of Opportunity To Request a Hearing for the License Application From International...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Fluoride Extraction and Uranium Deconversion Facility in Lea County NM and Order Imposing Procedures for... application from International Isotopes Fluorine Products, Inc. (IIFP), for a proposed fluoride extraction and... applicant to process depleted uranium hexafluoride (DUF 6 ) into commercially resalable fluoride products...

  19. Fluoride content in caffeinated, decaffeinated and herbal teas.

    PubMed

    Chan, J T; Koh, S H

    1996-01-01

    The fluoride contents of infusions prepared from 44 different brands and types of teas were measured. Fluoride concentrations ranged from 0.34 to 3.71 ppm (mean = 1.50 ppm) in caffeinated tea infusions, 0.02-0.14 ppm (mean = 0.05 ppm) in herbal tea infusions, and 1.01-5.20 ppm (mean = 3.19) in decaffeinated tea infusions. This is the first report of the fluoride content of decaffeinated teas. The mean fluoride content of decaffeinated tea infusions is significantly (p < 0.01) higher than the corresponding caffeinated tea. The use of mineral water containing a naturally high fluoride level during the process of decaffeination is the most likely explanation of the above observation.

  20. Focus on Fluorides: Update on the Use of Fluoride for the Prevention of Dental Caries

    PubMed Central

    Carey, Clifton M.

    2014-01-01

    Declarative Title: Improving the efficacy of fluoride therapies reduces dental caries and lowers fluoride exposure. Background Fluoride is delivered to the teeth systemically or topically to aid in the prevention of dental caries. Systemic fluoride from ingested sources is in blood serum and can be deposited only in teeth that are forming in children. Topical fluoride is from sources such as community water, processed foods, beverages, toothpastes, mouthrinses, gels, foams, and varnishes. The United States Centers for Disease Control and Prevention (CDC) and the American Dental Association (ADA) have proposed changes in their long standing recommendations for the amount of fluoride in community drinking water in response to concerns about an increasing incidence of dental fluorosis in children. Current research is focused on the development of strategies to improve fluoride efficacy. The purpose of this update is to inform the reader about new research and policies related to the use of fluoride for the prevention of dental caries. Methods Reviews of the current research and recent evidence based systematic reviews on the topics of fluoride are presented. Topics discussed include: updates on community water fluoridation research and policies; available fluoride in dentifrices; fluoride varnish compositions, use, and recommendations; and other fluoride containing dental products. This update provides insights into current research and discusses proposed policy changes for the use of fluoride for the prevention of dental caries. Conclusions The dental profession is adjusting their recommendations for fluoride use based on current observations of the halo effect and subsequent outcomes. The research community is focused on improving the efficacy of fluoride therapies thus reducing dental caries and lowering the amount of fluoride required for efficacy. PMID:24929594

  1. Focus on fluorides: update on the use of fluoride for the prevention of dental caries.

    PubMed

    Carey, Clifton M

    2014-06-01

    Improving the efficacy of fluoride therapies reduces dental caries and lowers fluoride exposure. Fluoride is delivered to the teeth systemically or topically to aid in the prevention of dental caries. Systemic fluoride from ingested sources is in blood serum and can be deposited only in teeth that are forming in children. Topical fluoride is from sources such as community water, processed foods, beverages, toothpastes, mouthrinses, gels, foams, and varnishes. The United States Centers for Disease Control and Prevention (CDC) and the American Dental Association (ADA) have proposed changes in their long standing recommendations for the amount of fluoride in community drinking water in response to concerns about an increasing incidence of dental fluorosis in children. Current research is focused on the development of strategies to improve fluoride efficacy. The purpose of this update is to inform the reader about new research and policies related to the use of fluoride for the prevention of dental caries. Reviews of the current research and recent evidence based systematic reviews on the topics of fluoride are presented. Topics discussed include: updates on community water fluoridation research and policies; available fluoride in dentifrices; fluoride varnish compositions, use, and recommendations; and other fluoride containing dental products. This update provides insights into current research and discusses proposed policy changes for the use of fluoride for the prevention of dental caries. The dental profession is adjusting their recommendations for fluoride use based on current observations of the halo effect and subsequent outcomes. The research community is focused on improving the efficacy of fluoride therapies thus reducing dental caries and lowering the amount of fluoride required for efficacy. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. [Study on the relationship between renal apoptosis and expression of caspase protein in fluoride induced rat].

    PubMed

    Gao, Jiping; Song, Guohua; Liu, Maolin; Wang, Yu; Yang, Xia

    2014-01-01

    To study the relationship between death receptor pathway, mitochondrion pathway and fluoride-induced apoptosis of renal cell. Male Sprague-Dawley rats were divided randomly into four groups (control, low-fluoride, medium-fluoride,and high-fluoride) and administered 0, 50, 100, and 200 mg/L of sodium fluoride, respectively, via drinking water for 120 days. The incidence of dental fluorosis were observed, the body weights and urine fluoride levels were measured. Apoptosis was detected by the Flow Cytometry (FCM). The expressions of protein of Caspase-3, Caspase-8, Caspase-9, Cyt C were detectedby immunohistoehemistry. The apoptosis rate in the fluoride exposed low does group,middle dose group and high dose group increased significantly as compared with control group. The average optical density value of Caspase-3, Caspase-8, Caspase-9 and Cyt C were higher in the fluoride exposed middle dose group and high dose group than those in the control group (P < 0.05). Death receptor pathway and mitochondrion pathway may participate in the process of fluoride-induced apoptosis of renal cell.

  3. Technological survey of tellurium and its compounds

    NASA Technical Reports Server (NTRS)

    Steindler, M. J.; Vissers, D. R.

    1968-01-01

    Review includes data on the chemical and physical properties of tellurium, its oxides, and fluorides, pertinent to the process problem of handling fission product tellurium in fluoride form. The technology of tellurium handling in nonaqueous processing of nuclear fuels is also reviewed.

  4. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  5. Defluoridation of groundwater using aluminum-coated bauxite: Optimization of synthesis process conditions and equilibrium study.

    PubMed

    Salifu, Abdulai; Petrusevski, Branislav; Mwampashi, Emmanuel S; Pazi, Iddi A; Ghebremichael, Kebreab; Buamah, Richard; Aubry, Cyril; Amy, Gary L; Kenedy, Maria D

    2016-10-01

    There is no known effective treatment for fluoride-related health disorders, hence prevention through water defluoridation is necessary. This study explored the possibility of modifying the physico-chemical properties of bauxite, a locally available material in many countries including Ghana, by thermal treatment and an aluminum coating, for water defluoridation. The study mainly focused on investigating the effects of varying synthesis process conditions on the defluoridation efficiency of Granular Aluminum Coated Bauxite (GACB). GACB performed better than raw bauxite (RB) and was able to reduce fluoride concentration in groundwater from 5 ± 0.2 mg/L to ≤ 1.5 mg/L, World Health Organization (WHO) guideline. Based on nonlinear Chi-square (χ(2)) analysis, the best-fitting isotherm model for the fluoride-GACB system was in the order: Freundlich > Redlich-Perterson ≈ Langmuir > Temkin. The fluoride adsorption capacity of GACB (qmax = 12.29 mg/g) based on the Langmuir model was found to be either comparable or higher than the capacities of some reported fluoride adsorbents. Aluminum (Al) coating procedures optimized in this study could therefore be a useful approach for synthesizing an effective fluoride adsorbent using bauxite, a locally available material. Kinetic and isotherm analysis, thermodynamic calculations, as well as FTIR and Raman analysis suggested the mechanism of fluoride adsorption onto GACB was complex and involved both physical adsorption and chemisorption processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Anomalous piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene)/ionic liquid gels

    NASA Astrophysics Data System (ADS)

    Fukagawa, Miki; Koshiba, Yasuko; Fukushima, Tatsuya; Morimoto, Masahiro; Ishida, Kenji

    2018-04-01

    Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4-9 MV/m, and their remnant polarizations were maintained at 63-71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ˜300 pm/V at an applied voltage frequency of 4 kHz.

  7. The effect of a mouthrinse containing chlorine dioxide in the clinical reduction of volatile sulfur compounds.

    PubMed

    Soares, Leo Guimaraes; Guaitolini, Roberto Luiz; Weyne, Sergio de Carvalho; Falabella, Marcio Eduardo Vieira; Tinoco, Eduardo Muniz Barretto; da Silva, Denise Gomes

    2013-07-01

    This study sought to evaluate the clinical effect of a mouthrinse containing 0.3% chlorine dioxide (ClO2) in reducing oral volatile sulfur compounds (VSC). Halitosis was induced by L-cysteine in 11 volunteers, and 4 solutions were compared: a test solution containing 0.3% ClO2, 0.07% cetylpyridinium chloride (CPC), and 0.05% sodium fluoride; a placebo; a solution containing 0.05% CPC; and a control solution of 0.2% chlorhexidine gluconate (CHX). VSC levels were assessed using a Halimeter, and 6 measurements were made from baseline to 3 hours postrinse. The VSC reduction rate of the test mouthrinse was superior to the placebo and the CPC solution. There was no difference between the test solution and the CHX solution in VSC reduction rates immediately postrinse, or at 2 and 3 hours postrinse; both solutions were statistically superior to the placebo and the CPC solution.

  8. Effects of land use on water quality of the Fountain Creek alluvial aquifer, east-central Colorado

    USGS Publications Warehouse

    Chafin, Daniel T.

    1996-01-01

    Water-quality data were collected from the Fountain Creek alluvial aquifer in 1988 and 1989 as part of the Toxic-Waste Ground-Water Contamination Program. These data indicate that dissolved solids, most major ions, fluoride, ammonium, boron, lithium, selenium, and strontium were more concentrated in the agricultural land-use area than in the upgradient urban land-use area. Nitrate and phosphate had significantly larger concentrations, and volatile organic compounds had significantly greater detection frequencies in the urban land-use area.

  9. Thermal treatment of electronic waste in a fluidised bed and chemical digestion of solid products.

    PubMed

    Woynarowska, Amelia; Żukowski, Witold; Żelazny, Sylwester

    2016-07-01

    The article presents the results of e-waste thermal treatment in a fluidised bed reactor and solid products digestion under acidic conditions. During the processes, measurements of carbon monoxide, carbon dioxide, volatile organic compounds, nitrogen oxides, sulphur dioxide, hydrogen chloride, hydrogen bromide, hydrogen cyanide, ammonia, phenol, aliphatic and aromatic hydrocarbons, hydrogen fluoride and phosgene were carried out. Several digestion tests of the solid residue in sulphuric acid (VI) at 25 °C-65 °C, for 55 min-24 h were conducted. In each case, the dilution method was used, i.e. preliminary digestion in concentrated sulphuric acid (VI) (95%) for 40 min, and then dilution to expected concentrations (30%-50%). Most preferred results were obtained using sulphuric acid (VI) with a target concentration of 40% at 65 °C, where the leaching degrees were 76.56% for copper, 71.67% for iron, 91.89% for zinc and 97.40% for tin. The time necessary to effectively carry out the digestion process was 220 min. © The Author(s) 2016.

  10. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum

    NASA Astrophysics Data System (ADS)

    Wu, Liping; Lin, Xiaoyan; Zhou, Xingbao; Luo, Xuegang

    2016-10-01

    A novel dual functional microsphere adsorbent of alginate/carboxymethyl cellulose sodium composite loaded with calcium and aluminum (SA/CMC-Ca-Al) is prepared by an injection device to remove fluoride and uranium, respectively, from fluoro-uranium mixed aqueous solution. Batch experiments are performed at different conditions: pH, temperature, initial concentration and contact time. The results show that the maximum adsorption amount for fluoride is 35.98 mg/g at pH 2.0, 298.15 K concentration 100 mg/L, while that for uranium is 101.76 mg/g at pH 4.0, 298.15 K concentration 100 mg/L. Both of the adsorption process could be well described by Langmuir model. The adsorption kinetic data is fitted well with pseudo-first-order model for uranium and pseudo-second-order model for fluoride. Thermodynamic parameters are also evaluated, indicating that the adsorption of uranium on SA/CMC-Ca-Al is a spontaneous and exothermic process, while the removal of fluoride is non-spontaneous and endothermic process. The mechanism of modification and adsorption process on SA/CMC-Ca-Al is characterized by FT-IR, SEM, EDX and XPS. The results show that Ca (II) and Al (III) are loaded on SA/CMC through ion-exchange of sodium of SA/CMC. The coordination reaction and ion-exchange happen during the adsorption process between SA/CMC-Ca-Al and uranium, fluoride. Results suggest that the SA/CMC-Ca-Al adsorbent has a great potential in removing uranium and fluoride from aqueous solution.

  11. Lithological Influences on Occurrence of High-Fluoride Waters in The Central Kenya Rift

    NASA Astrophysics Data System (ADS)

    Olaka, L. A.; Musolff, A.; Mulch, A.; Olago, D.; Odada, E. O.

    2013-12-01

    Within the East African rift, groundwater recharge results from the complex interplay of geology, land cover, geomorphology, climate and on going volcano-tectonic processes across a broad range of spatial and temporal scales. The interrelationships between these factors create complex patterns of water availability, reliability and quality. The hydrochemical evolution of the waters is further complex due to the different climatic regimes and geothermal processes going on in this area. High fluoridic waters within the rift have been reported by few studies, while dental fluorosis is high among the inhabitants of the rift. The natural sources of fluoride in waters can be from weathering of fluorine bearing minerals in rocks, volcanic or fumarolic activities. Fluoride concentration in water depends on a number of factors including pH, temperature, time of water-rock formation contact and geochemical processes. Knowledge of the sources and dispersion of fluoride in both surface and groundwaters within the central Kenya rift and seasonal variations between wet and dry seasons is still poor. The Central Kenya rift is marked by active tectonics, volcanic activity and fumarolic activity, the rocks are majorly volcanics: rhyolites, tuffs, basalts, phonolites, ashes and agglomerates some are highly fractured. Major NW-SE faults bound the rift escarpment while the rift floor is marked by N-S striking faults We combine petrographic, hydrochemistry and structural information to determine the sources and enrichment pathways of high fluoridic waters within the Naivasha catchment. A total of 120 water samples for both the dry season (January-February2012) and after wet season (June-July 2013) from springs, rivers, lakes, hand dug wells, fumaroles and boreholes within the Naivasha catchment are collected and analysed for fluoride, physicochemical parameters and stable isotopes (δ2 H, δ18 O) in order to determine the origin and evolution of the waters. Additionally, 30 soil and rock samples were also collected and analysed for fluoride, and rock samples were subjected to petrographic investigations and X-ray diffraction. The fluoride levels in surface and groundwater for the dry season range from 0.019 - 50.14 mg/L, on average above the WHO permissible limit. The high fluoride occurs both in the lake and groundwater. Preliminary petrographic studies show considerable fluoride in micas. The study is on-going and plans to present the relative abundances of fluoride in the lithology as the sources and the fluoride enrichment pathways of the groundwater within the Central Kenya rift.

  12. FLUORIDE: A REVIEW OF USE AND EFFECTS ON HEALTH.

    PubMed

    Kanduti, Domen; Sterbenk, Petra; Artnik, Barbara

    2016-04-01

    Appropriate oral health care is fundamental for any individual's health. Dental caries is still one of the major public health problems. The most effective way of caries prevention is the use of fluoride. The aim of our research was to review the literature about fluoride toxicity and to inform physicians, dentists and public health specialists whether fluoride use is expedient and safe. Data we used in our review were systematically searched and collected from web pages and documents published from different international institutions. Fluoride occurs naturally in our environment but we consume it in small amounts. Exposure can occur through dietary intake, respiration and fluoride supplements. The most important factor for fluoride presence in alimentation is fluoridated water. Methods, which led to greater fluoride exposure and lowered caries prevalence, are considered to be one of the greatest accomplishments in the 20th century`s public dental health. During pregnancy, the placenta acts as a barrier. The fluoride, therefore, crosses the placenta in low concentrations. Fluoride can be transmitted through the plasma into the mother's milk; however, the concentration is low. The most important action of fluoride is topical, when it is present in the saliva in the appropriate concentration. The most important effect of fluoride on caries incidence is through its role in the process of remineralization and demineralization of tooth enamel. Acute toxicity can occur after ingesting one or more doses of fluoride over a short time period which then leads to poisoning. Today, poisoning is mainly due to unsupervised ingestion of products for dental and oral hygiene and over-fluoridated water. Even though fluoride can be toxic in extremely high concentrations, it`s topical use is safe. The European Academy of Paediatric Dentistry (EAPD) recommends a preventive topical use of fluoride supplements because of their cariostatic effect.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sungho, E-mail: shochoi@krict.re.kr; Park, Byung-Yoon; Jung, Ha-Kyun

    Highlights: {yields} Systematic study of the fluorides doped solution-processed ZnO thin films via the luminescence and electrical behaviors. {yields} Defect-related visible emission bands are affected by annealing ambient and fluoride addition. {yields} Adding lithium fluoride followed by annealing in oxygen ambient leads to a controlled defect density with proper TFT performance. -- Abstract: To develop an efficient channel layer for thin film transistors (TFTs), understanding the defect-related luminescence and electrical property is crucial for solution-processed ZnO thin films. Film growth with the fluorides addition, especially using LiF, followed by the oxygen ambient post-annealing leads to decreased defect-related emission as wellmore » as enhanced switching property. The saturation mobility and current on/off ratio are 0.31 cm{sup 2} V{sup -1} s{sup -1} and 1.04 x 10{sup 3}. Consequently, we can visualize an optimized process condition and characterization method for solution-processed TFT based on the fluorine-doped ZnO film channel layer by considering the overall emission behavior.« less

  14. TDDFT study on the sensing mechanism of a fluorescent sensor for fluoride anion: Inhibition of the ESPT process.

    PubMed

    Li, Guang-Yue; Liu, Dong; Zhang, Hang; Li, Wei-Wei; Wang, Feng; Liang, Ying-Hua

    2015-01-01

    The fluoride-sensing mechanism of a reported salicylaldehyde-based sensor (J. Photochem. Photobiol. B 2014, 138, 75) has been investigated by the TDDFT method. The present theoretical study indicates that there is an excited-state proton transfer (ESPT) process from the phenolic O-H moiety to the neighbor N atom in the sensor. The added fluoride anion could capture the proton in the O-H moiety and the corresponding phenolic anion is formed, which could inhibit the ESPT process. The experimental UV/Vis and fluorescence spectra are well reproduced by the calculated vertical excitation energies. Frontier molecular orbital analysis indicates that the local excited state of phenolic anion is responsible for its enhanced fluorescence. Due to this reason, the sensor can be used to sense fluoride anion by monitoring the fluorescent change. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOEpatents

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  16. Sorption of fluoride using chemically modified Moringa oleifera leaves

    NASA Astrophysics Data System (ADS)

    Dan, Shabnam; Chattree, Amit

    2018-05-01

    Contamination of drinking water due to fluoride is a severe health hazard problem. Excess of fluoride (> 1.5 mg/L) in drinking water is harmful to human health. Various treatment technologies for removing fluoride from groundwater have been investigated. The present study showed that the leaves of Moringa oleifera, a herbal plant is an effective adsorbent for the removal of fluoride from aqueous solution. Acid treated Moringa oleifera leaves powder showed good adsorption capacity than alkali treated Moringa oleifera leaves powder. Batch sorptive defluoridation was conducted under the variable experimental condition such as pH, contact time, adsorbent dose and initial fluoride ion concentration. Maximum defluoridation was achieved at pH 1. The percentage of fluoride removal increases with adsorbent dose. The equilibrium sorption data were fitted into Langmuir, Freundlich and Temkin isotherms. Of the three adsorption isotherms, the R 2 value of Langmuir isotherm model was the highest. The maximum monolayer coverage ( Q max) from Langmuir isotherm model was determined to be 1.1441 mg/g, the separation factor indicating a favorable sorption experiment is 0.035. It was also discovered that the adsorption did not conform to the Freundlich adsorption isotherm. The heat of sorption process was estimated from Temkin Isotherm model to be - 0.042 J/mol which vividly proved that the adsorption experiment followed a physical process.

  17. Assessment of fluoride contaminations in groundwater of hard rock aquifers in Madurai district, Tamil Nadu (India)

    NASA Astrophysics Data System (ADS)

    Thivya, C.; Chidambaram, S.; Rao, M. S.; Thilagavathi, R.; Prasanna, M. V.; Manikandan, S.

    2017-05-01

    The fluoride contamination in drinking water is already gone to the alarming level and it needs the immediate involvement and attention of all people to solve this problem. Fluoride problem is higher in hard rock terrains in worldwide and Madurai is such type of hard rock region. Totally 54 samples were collected from the Madurai district of Tamilnadu with respect to lithology. The samples collected were analysed for major cations and anions using standard procedures. The higher concentration of fluoride is noted in the Charnockite rock types of northern part of the study area. 20 % of samples are below 0.5 ppm and 6 % of samples are above 1.5 ppm exceeding the permissible limit. The affinity between the pH and fluoride ions in groundwater suggests that dissolution of fluoride bearing minerals in groundwater. The higher concentration of fluoride ions are observed in the lower EC concentration. The isotopic study suggests that fluoride is geogenic in nature. In factor scores, fluoride is noted in association with pH which indicates the dissolution process.

  18. Insights into the fluoride-resistant regulation mechanism of Acidithiobacillus ferrooxidans ATCC 23270 based on whole genome microarrays.

    PubMed

    Ma, Liyuan; Li, Qian; Shen, Li; Feng, Xue; Xiao, Yunhua; Tao, Jiemeng; Liang, Yili; Yin, Huaqun; Liu, Xueduan

    2016-10-01

    Acidophilic microorganisms involved in uranium bioleaching are usually suppressed by dissolved fluoride ions, eventually leading to reduced leaching efficiency. However, little is known about the regulation mechanisms of microbial resistance to fluoride. In this study, the resistance of Acidithiobacillus ferrooxidans ATCC 23270 to fluoride was investigated by detecting bacterial growth fluctuations and ferrous or sulfur oxidation. To explore the regulation mechanism, a whole genome microarray was used to profile the genome-wide expression. The fluoride tolerance of A. ferrooxidans cultured in the presence of FeSO4 was better than that cultured with the S(0) substrate. The differentially expressed gene categories closely related to fluoride tolerance included those involved in energy metabolism, cellular processes, protein synthesis, transport, the cell envelope, and binding proteins. This study highlights that the cellular ferrous oxidation ability was enhanced at the lower fluoride concentrations. An overview of the cellular regulation mechanisms of extremophiles to fluoride resistance is discussed.

  19. [Geographical distribution of fluoride in the public water supply in the province of Tucumán, Argentina].

    PubMed

    Durán, Raúl Alberto; Durán, Estela Liliana; Ojeda, Graciela de Jesús; Castellanos, Walter Alfredo

    2017-01-01

    This work studied the geographical distribution of fluoride content in the public water supply in the province of Tucumán, Argentina. A total of 1,210 samples were collected in 190 localities of the 17 departments of the province during the 2008-2012 period. The analytical determination was performed using the SPADNS method and QGis 2.16 was used for processing the information. The fluoride content requirements in the studied localities were determined according to the Argentine Food Code. The results showed that 94% of population studied consumed water with fluoride concentrations below the recommended limits, 5% were exposed to fluoride concentrations above the required maximum limit and 1% consumed water at optimal fluoride concentrations. The maps showed a heterogeneous geographical distribution of fluorides, in which areas with deficit, excess and recommended values of fluorides can be differentiated; in some departments an inverse relationship between the density of the hydrological network and fluoride concentration can be observed. In the capital of the province, the average value found was 0.32 mg/l, presenting a homogeneous geographical distribution. The information obtained is indispensable for the proper management of fluoride, so as to improve public health through policy.

  20. Method of making porous ceramic fluoride

    DOEpatents

    Reiner, Robert H.; Holcombe, Cressie E.

    1990-01-01

    A process for making a porous ceramic composite where fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  1. Fungus hyphae-supported alumina: An efficient and reclaimable adsorbent for fluoride removal from water.

    PubMed

    Yang, Weichun; Tian, Shunqi; Tang, Qiongzhi; Chai, Liyuan; Wang, Haiying

    2017-06-15

    A reclaimable adsorbent of fungus hyphae-supported alumina (FHSA) bio-nanocomposites was developed, characterized and applied in fluoride removal from water. This adsorbent can be fast assembled and disassemble reversibly, promising efficient reclamation and high accessible surface area for fluoride adsorption. Adsorption experiments demonstrate that the FHSA performed well over a considerable wide pH range of 3-10 with high fluoride removal efficiencies (>66.3%). The adsorption capacity was 105.60mgg -1 for FHSA, much higher than that for the alumina nanoparticles (50.55mgg -1 ) and pure fungus hyphae (22.47mgg -1 ). The adsorption capacity calculated by the pure content of alumina in the FHSA is 340.27mgg -1 of alumina. Kinetics data reveal that the fluoride adsorption process on the FHSA was fast, nearly 90% fluoride adsorption can be achieved within 40min. The fluoride adsorption on the FHSA is mainly due to the surface complexes formation of fluoride with AlOH and the attraction between protonated NH 2 and fluoride through hydrogen bonding. Findings demonstrate that the FHSA has potential applicability in fluoride removal due to its strong fluoride adsorbility and the easy reclamation by its fast reversible assembly and disassembly feature. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Association of vascular fluoride uptake with vascular calcification and coronary artery disease.

    PubMed

    Li, Yuxin; Berenji, Gholam R; Shaba, Wisam F; Tafti, Bashir; Yevdayev, Ella; Dadparvar, Simin

    2012-01-01

    The feasibility of a fluoride positron emission tomography/computed tomography (PET/CT) scan for imaging atherosclerosis has not been well documented. The purpose of this study was to assess fluoride uptake of vascular calcification in various major arteries, including coronary arteries. We retrospectively reviewed the imaging data and cardiovascular history of 61 patients who received whole-body sodium [¹⁸F]fluoride PET/CT studies at our institution from 2009 to 2010. Fluoride uptake and calcification in major arteries, including coronary arteries, were analyzed by both visual assessment and standardized uptake value measurement. Fluoride uptake in vascular walls was demonstrated in 361 sites of 54 (96%) patients, whereas calcification was observed in 317 sites of 49 (88%) patients. Significant correlation between fluoride uptake and calcification was observed in most of the arterial walls, except in those of the abdominal aorta. Fluoride uptake in coronary arteries was demonstrated in 28 (46%) patients and coronary calcifications were observed in 34 (56%) patients. There was significant correlation between history of cardiovascular events and presence of fluoride uptake in coronary arteries. The coronary fluoride uptake value in patients with cardiovascular events was significantly higher than in patients without cardiovascular events. sodium [¹⁸F]fluoride PET/CT might be useful in the evaluation of the atherosclerotic process in major arteries, including coronary arteries. An increased fluoride uptake in coronary arteries may be associated with an increased cardiovascular risk.

  3. Removal of fluoride from water with powdered corn cobs.

    PubMed

    Parmar, S; Patel, Jignesh B; Sudhakar, Padmaja; Koshy, V J

    2006-04-01

    The adsorption of fluoride on corn cobs powder was investigated in the present study. Neat powdered corn cobs did not show remarkable adsorption but aluminium treated corn cobs had good adsorption capacity. The parameters studied include the contact time, concentration, temperature and pH. Near neutral pH was identified as the optimum condition of the medium, and 90 to 120 minutes was the best contact time for maximum fluoride adsorption. The adsorption process was found to follow Freundlich isotherm. The adsorption process was found to be exothermic as adsorption decreased with increasing temperature.

  4. [Public water supply fluoridation in Brazil according to health sector leaders].

    PubMed

    Ferreira, Regina Glaucia Lucena Aguiar; Bógus, Cláudia Maria; Marques, Regina Auxiliadora de Amorim; Menezes, Léa Maria Bezerra de; Narvai, Paulo Capel

    2014-09-01

    Various groups have opposed water supply fluoridation in Brazil, while others have supported the measure based on scientific evidence. This article describes the perceptions of delegates to the 13th National Health Conference on mandatory fluoridation of the country's public water supply. Interviews were processed using collective subject discourse analysis. A certain degree of misinformation persists regarding basic characteristics of water fluoridation, which is frequently confused with chlorination. The delegates' discourses showed a continuing need for public awareness-raising regarding fluoridation and the delegates' desire that the National Congress not take measures impacting public health without consulting society's stakeholders. However, most of the interviewees agreed that to repeal mandatory water fluoridation or loosen the control of its implementation could increase the incidence of tooth decay in the population.

  5. 40 CFR 415.231 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Aluminum Fluoride Production... shall apply to this subpart. (b) The term product means aluminum fluoride produced by the dry process in...

  6. 40 CFR 415.231 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Aluminum Fluoride Production... shall apply to this subpart. (b) The term product means aluminum fluoride produced by the dry process in...

  7. The efficacy of two oral hygiene regimens in reducing oral malodour: a randomised clinical trial.

    PubMed

    Feres, Magda; Figueiredo, Luciene Cristina; Faveri, Marcelo; Guerra, Marcelo C; Mateo, Luis R; Stewart, Bernal; Williams, Malcolm; Panagakos, Foti

    2015-12-01

    This study compared the efficacy of two oral hygiene regimens in reducing oral malodour and the proportions of bacterial species involved in the production of volatile sulphur compounds. Seventy subjects who participated in a halitosis-induction phase and achieved an organoleptic score of ≥ 3.0 [time point 0 (T0)] randomised into two groups: brushing with regular fluoride toothpaste alone (control group) or brushing with regular fluoride toothpaste followed by rinsing with a 0.075% cetylpyridinium chloride (CPC) mouthwash (CPC group). Subjects followed their assigned oral hygiene regimen for 21 days. Then, they underwent an organoleptic examination and measurement of volatile sulphur compounds (VSCs) using a portable gas chromatograph, 12 hours after their last oral hygiene procedure (T1) and 4 hours after an on-site oral hygiene (T2). Microbiological samples (supragingival biofilm, tongue coating and saliva) were analysed using checkerboard DNA-DNA hybridisation. Both therapies statistically significantly improved the organoleptic scores (P < 0.05), but the VSC levels and/or concentrations were reduced only in the CPC group (P < 0.05). In subjects rinsing with CPC, oral malodour scores were reduced by 49% at the 4-hour assessment (T2) compared with those not rinsing (P < 0.05). Red-complex pathogens were reduced more effectively in the CPC group than in the control group. Brushing followed by rinsing with a 0.075% CPC mouthwash provided statistically significantly greater reductions in oral malodour, measured organoleptically and instrumentally, and in the proportions of red-complex species when compared with brushing alone. © 2015 FDI World Dental Federation.

  8. Analgesic use of inhaled methoxyflurane: Evaluation of its potential nephrotoxicity.

    PubMed

    Dayan, A D

    2016-01-01

    Methoxyflurane is a volatile, halogenated analgesic, self-administered in a controlled low dose from the Penthrox(®) inhaler for short-term pain relief. It was formerly used in significantly higher doses to produce anaesthesia, when it caused a specific type of dose-related renal tubular damage. The pathogenesis of the renal damage and clinical use of methoxyflurane are discussed here with evidence that a low but effective analgesic dose is not associated with the risk of renal adverse effects. The maximum dose employed to produce analgesia is limited to methoxyflurane 6 mL/day and 15 mL/week, producing a minimum alveolar concentration (MAC) of 0.59 MAC-hours. Renal damage is due to the metabolism of methoxyflurane and release of fluoride ions. Exposure of humans to methoxyflurane ≤2.0 MAC-hours, resulting in serum fluoride ≤40 µmol/L, has not been associated with renal tubular toxicity. The safety margin of analgesic use of methoxyflurane in the Penthrox ((®)) inhaler is at least 2.7- to 8-fold, based on methoxyflurane MAC-hours or serum fluoride level, with clinical experience suggesting it is higher. It is concluded from clinical experience in emergency medicine, surgical procedures and various experimental and laboratory investigations that the analgesic use of methoxyflurane in subanaesthetic doses in the Penthrox inhaler does not carry a risk of nephrotoxicity. © The Author(s) 2015.

  9. Surface chemistry associated with the cooling and subaerial weathering of recent basalt flows

    USGS Publications Warehouse

    White, A.F.; Hochella, M.F.

    1992-01-01

    The surface chemistry of fresh and weathered historical basalt flows was characterized using surface-sensitive X-ray photoelectron spectroscopy (XPS). Surfaces of unweathered 1987-1990 flows from the Kilauea Volcano, Hawaii, exhibited variable enrichment in Al, Mg, Ca, and F due to the formation of refractory fluoride compounds and pronounced depletion in Si and Fe from the volatilization of SiF4 and FeF3 during cooling. These reactions, as predicted from shifts in thermodynamic equilibrium with temperature, are induced by diffusion of HF from the flow interiors to the cooling surface. The lack of Si loss and solid fluoride formation for recent basalts from the Krafla Volcano, Iceland, suggest HF degassing at higher temperatures. Subsequent short-term subaerial weathering reactions are strongly influenced by the initial surface composition of the flow and therefore its cooling history. Successive samples collected from the 1987 Kilauea flow demonstrated that the fluoridated flow surfaces leached to a predominantly SiO2 composition by natural weathering within one year. These chemically depleted surfaces were also observed on Hawaiian basalt flows dating back to 1801 AD. Solubility and kinetic models, based on thermodynamic and kinetic data for crystalline AlF3, MgF2, and CaF2, support observed elemental depletion rates due to chemical weathering. Additional loss of alkalis from the Hawaiian basalt occurs from incongruent dissolution of the basalt glass substrate during weathering. ?? 1992.

  10. Water Atomization of Barium Fluoride: Calcium Fluoride for Enhanced Flow Characteristics of PS304 Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2003-01-01

    PS304 is a plasma spray deposited solid lubricant coating with feedstock composed of NiCr, Cr2O3, Ag, and BaF2-CaF2 powders. The effects of rounded BaF2-CaF2 particles on the gravity-fed flow characteristics of PS304 feedstock have been investigated. The BaF2-CaF2 powder was fabricated by water atomization using four sets of process parameters. Each of these powders was then characterized by microscopy and classified by screening to obtain 45 to 106 micron particles and added incrementally from 0 to 10 wt% to the other constituents of the PS304 feedstock, namely nichrome, chromia, and silver powders. The relationship between feedstock flow rate, measured with the Hall flowmeter, and concentration of fluorides was found to be linear in each case. The slopes of the lines were between those of the linear relationships previously reported using angular and spherical fluorides and were closer to the relationship predicted using the rule of mixtures. The results offer a fluoride fabrication technique potentially more cost-effective than gas atomization processes or traditional comminution processes.

  11. Origins of conductivity improvement in fluoride-enhanced silicon doping of ZnO films.

    PubMed

    Rashidi, Nazanin; Vai, Alex T; Kuznetsov, Vladimir L; Dilworth, Jonathan R; Edwards, Peter P

    2015-06-07

    Fluoride in spray pyrolysis precursor solutions for silicon-doped zinc oxide (SiZO) transparent conductor thin films significantly improves their electrical conductivity by enhancing silicon doping efficiency and not, as previously assumed, by fluoride doping. Containing only earth-abundant elements, SiZO thus prepared rivals the best solution-processed indium-doped ZnO in performance.

  12. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies.

    PubMed

    Lin, Kun-Yi Andrew; Liu, Yu-Ting; Chen, Shen-Yi

    2016-01-01

    To provide safe drinking water, fluoride in water must be removed and adsorption processes appear to be the most widely used method. Metal organic frameworks (MOFs) represent a new class of adsorbents that have been used in various adsorption applications. To study the adsorption mechanism of fluoride to MOFs in water and obtain related adsorption parameters, we synthesized a zirconium-based MOF with a primary amine group on its ligand, named UiO-66-NH2. The kinetics, adsorption isotherm and thermodynamics of fluoride adsorption to UiO-66-NH2 were investigated. The crystalline structure of UiO-66-NH2 remained intact and the local structure of zirconium in UiO-66-NH2 did not change significantly after being exposed to fluoride. The kinetics of the fluoride adsorption in UiO-66-NH2 could be well represented by the pseudo second order rate law. The enthalpy of the adsorption indicates that the F(-) adsorption to UiO-66-NH2 was classified as a physical adsorption. However, the comparison between the adsorption capacities of UiO-66-NH2 and UiO-66 suggests that the fluoride adsorption to UiO-66-NH2 might primarily involve a strong interaction between F(-) and the metal site. The fluoride adsorption capacity of UiO-66-NH2 was found to decrease when pH>7. While the presence of chloride/bromide ions did not noticeably change the adsorption capacity of UiO-66-NH2, the ionic surfactants slightly affected the adsorption capacity of UiO-66-NH2. These findings provide insights to further optimize the adsorption process for removal of fluoride using zirconium-based MOFs. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. PTH (1-34) affects bone turnover governed by osteocytes exposed to fluoride.

    PubMed

    Yu, Xiuhua; Yu, Haolan; Jiang, Ningning; Zhang, Xiuyun; Zhang, Mengmeng; Xu, Hui

    2018-05-15

    Exposure to fluoride from environmental sources remains an overlooked, but serious public health risk. In this study, we looked into the role osteocytes play on the mechanism underlying fluoride induced osteopathology. We analyzed bone formation and resorption related genes generated by osteocytes that were exposed to varied doses of fluoride with and without PTH in vitro. Correspondingly, osteogenesis and osteoclastogenesis related genes were also investigated in rats exposed to fluoride for 8 weeks, and the PTH(1-34)was applied at the last 3 weeks to observe its role in regulating bone turnover upon fluoride treatment. The data in vitro indicated that fluoride treatment inhibited Sost expression of mRNA and protein and stimulated RANKL mRNA protein expression as well as the RANKL/OPG ratio in the primary osteocytes. Single PTH treatment played the similar role on expression of these genes and proteins. The PTH combined administration enhanced the action of fluoride treatment on RNAKL/OPG and SOST/Sclerostin. The up-regulation of RANKL and decreasing of Sost induced by fluoride and/or PTH treatment was validated in vivo and suggests that osteocytes are a major source of RANKL and Sost, both of which play essential roles in fluoride affecting osteogenesis and osteoclastogenesis. Expression of Wnt/β-catenin was up-regulated in both in vitro osteocytes treated with high dose of fluoride and bone tissue of rats in the presence of fluoride and PTH. In vivo, fluoride and single PTH stimulated bone turnover respectively, furthermore, PTH combined with low dose of fluoride treatment reinforced the osteogenesis and osteoclastogenesis genes expression, however, co-treatment of PTH reversed the effect of high dose of fluoride on osteogenesis and osteoclastogenensis related factors. In conclusion, this study demonstrated that osteocytes play a key role in fluoride activated bone turnover, and PTH participates in the process of fluoride modulating SOST/Sclerostin and RANKL expression. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The effects of an anchovy (stolephorus insularis) substrate application on the level of fluor intrusion on Sprague Dawley rat teeth (in vivo)

    NASA Astrophysics Data System (ADS)

    Sakinah, N. R.; Gunawan, H. A.; Puspitawati, R.

    2017-08-01

    Fluoride intrusion is one of the efficacy parameters of fluoridation. Anchovy (Stolephorus insularis), which contains a high fluoride concentration in the CaF2compound, can be used as a fluoridative agent which is affordable and easily obtained. The aim of this study is to prove the effectiveness of the application of an anchovy substrate (Stolephorus insularis), either by a feeding method or a topical method, for tooth fluoridation based on the depth of fluoride intrusion on the enamel. An in vivo experimental laboratory method was used. The subjects were 14 Sprague Dawley rats divided into five groups. The groups included a baseline control, a feeding negative control, a topical negative control, an anchovy feeding method, and a topical solution anchovy method. After 15 days of treatment, the teeth were cut transversely with a 0.5 mm thickness then processed to test for fluoride intrusion using fluorescence microscopy. There was increased fluor intrusion on the enamel of the experimental groups compared to the negative control groups (p<0.05).Fluoride intrusion using the topical fluoride method is higher than with the feeding method (p <0.05). Thus, the application of an anchovy substrate, either by chewing or smearing, increases fluoride intrusion on the enamel.

  15. Sustainable approach for recycling waste lamb and chicken bones for fluoride removal from water followed by reusing fluoride-bearing waste in concrete.

    PubMed

    Ismail, Zainab Z; AbdelKareem, Hala N

    2015-11-01

    Sustainable management of waste materials is an attractive approach for modern societies. In this study, recycling of raw waste lamb and chicken bones for defluoridation of water has been estimated. The effects of several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existing anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal efficiency up to 99.4% and 99.8% using lamb and chicken bones, respectively at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the pseudo-second order kinetic model. Both, Langmuir and Freundlich isotherm models could fit the experimental data well with correlation coefficient values >0.99 suggesting favorable conditions of the process. Furthermore, for complete sustainable management of waste bones, the resulted fluoride-bearing sludge was reused in concrete mixes to partially replace sand. Tests of the mechanical properties of fluoride sludge-modified concrete mixes indicated a potential environmentally friendly approach to dispose fluoride sludge in concrete and simultaneously enhance concrete properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles.

    PubMed

    Kim, Dong Won; Kim, Kyung Tae; Min, Tae Sik; Kim, Kyung Ju; Kim, Soo Hyung

    2017-07-05

    Surface-mediated Al particles are synthesized by incorporating the stable fluoride reaction of Al-F on a pure Al surface in place of natural oxides. Al particles with fluoro-polymer directly adsorbed on the surface show a considerable capability to overcome limitations caused by the surface oxide. Here, we report that Al fluoride when spontaneously formed at the poly(vinylidene fluoride)/Al interface serves as an oxidation-protecting layer while also providing an efficient combustion path along which the internal Al rapidly reacts with external oxygen atoms. Both thermal oxidation and explosion tests of the poly(vinylidene fluoride)/Al particles show superior exothermic enthalpy energy and simultaneously rapid oxidation reactivity compared to those of Al 2 O 3 passivated Al particles. It is clearly elucidated that the enhanced energetic properties of Al particles mediated by poly(vinylidene fluoride) originate from the extraordinary pyrolytic process of Al fluoride occurring at a low temperature compared to Al 2 O 3 passivated Al. Hence, these results clarify that the surface mediation of Al particles can be significantly considered as advanced technology for many energetic applications.

  17. Fluoride and Oral Health.

    PubMed

    O'Mullane, D M; Baez, R J; Jones, S; Lennon, M A; Petersen, P E; Rugg-Gunn, A J; Whelton, H; Whitford, G M

    2016-06-01

    The discovery during the first half of the 20th century of the link between natural fluoride, adjusted fluoride levels in drinking water and reduced dental caries prevalence proved to be a stimulus for worldwide on-going research into the role of fluoride in improving oral health. Epidemiological studies of fluoridation programmes have confirmed their safety and their effectiveness in controlling dental caries. Major advances in our knowledge of how fluoride impacts the caries process have led to the development, assessment of effectiveness and promotion of other fluoride vehicles including salt, milk, tablets, toothpaste, gels and varnishes. In 1993, the World Health Organization convened an Expert Committee to provide authoritative information on the role of fluorides in the promotion of oral health throughout the world (WHO TRS 846, 1994). This present publication is a revision of the original 1994 document, again using the expertise of researchers from the extensive fields of knowledge required to successfully implement complex interventions such as the use of fluorides to improve dental and oral health. Financial support for research into the development of these new fluoride strategies has come from many sources including government health departments as well as international and national grant agencies. In addition, the unique role which industry has played in the development, formulation, assessment of effectiveness and promotion of the various fluoride vehicles and strategies is noteworthy. This updated version of 'Fluoride and Oral Health' has adopted an evidence-based approach to its commentary on the different fluoride vehicles and strategies and also to its recommendations. In this regard, full account is taken of the many recent systematic reviews published in peer reviewed literature.

  18. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    DOEpatents

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  19. PRODUCTION OF METALS

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1961-09-19

    A process is described producing metallic thorium, titanium, zirconium, or hafnium from the fluoride. In the process, the fluoride is reduced with alkali or alkaline earth metal and a booster compound (e.g. iodine or a decomposable oxysalt) in a sealed bomb at superatmospheric pressure and a temperature above the melting point of the metal to be produced.

  20. Processing fissile material mixtures containing zirconium and/or carbon

    DOEpatents

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  1. Effect of water fluoridation on the development of medial vascular calcification in uremic rats.

    PubMed

    Martín-Pardillos, Ana; Sosa, Cecilia; Millán, Ángel; Sorribas, Víctor

    2014-04-06

    Public water fluoridation is a common policy for improving dental health. Fluoride replaces the hydroxyls of hydroxyapatite, thereby improving the strength of tooth enamel, but this process can also occur in other active calcifications. This paper studies the effects of water fluoridation during the course of vascular calcification in renal disease. The effect of fluoride was studied in vitro and in vivo. Rat aortic smooth muscle cells were calcified with 2mM Pi for 5 days. Fluoride concentrations of 5-10 μM--similar to those found in people who drink fluoridated water--partially prevented calcification, death, and osteogene expression in vitro. The anticalcifying mechanism was independent of cell activity, matrix Gla protein, and fetuin A expressions, and it exhibited an IC50 of 8.7 μM fluoride. In vivo, however, fluoridation of drinking water at 1.5mg/L (concentration recommended by the WHO) and 15 mg/L dramatically increased the incipient aortic calcification observed in rats with experimental chronic kidney disease (CKD, 5/6-nephrectomy), fed a Pi-rich fodder (1.2% Pi). Fluoride further declined the remaining renal function of the CKD animals, an effect that most likely overwhelmed the positive effect of fluoride on calcification in vitro. Ultrastructural analysis revealed that fluoride did not modify the Ca/P atomic ratio, but it was incorporated into the lattice of in vivo deposits. Fluoride also converted the crystallization pattern from plate to rode-like structures. In conclusion, while fluoride prevents calcification in vitro, the WHO's recommended concentrations in drinking water become nephrotoxic to CKD rats, thereby aggravating renal disease and making media vascular calcification significant. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Feasibility Study on a Process for Electroless Metal Deposition in Pits and Fissures of Teeth for Use in Preventive Dentistry.

    DTIC Science & Technology

    1980-08-01

    been used in topical fluoride solutions applied to prevent caries . The use of SnF 2 . and similar chemical compounds, in the plating process appears to...Methods Tin fluoride solutions are prepared by dissolving SnF 2 in demineralized water at concentrations of 1, 5, 5.7, and 10%. The pH ranges from...saturated FeSO4 with or without 1 gpl thiourea a. .4 34 REFERENCES 1. P. Gron, "Chemistry of Topical Fluorides ", Caries Res. 11 (Suppl. 1): 172-204

  3. Optimizing School-Based Health-Promotion Programmes: Lessons from a Qualitative Study of Fluoridated Milk Schemes in the UK

    ERIC Educational Resources Information Center

    Foster, Geraldine R. K.; Tickle, Martin

    2013-01-01

    Background and objective: Some districts in the United Kingdom (UK), where the level of child dental caries is high and water fluoridation has not been possible, implement school-based fluoridated milk (FM) schemes. However, process variables, such as consent to drink FM and loss of children as they mature, impede the effectiveness of these…

  4. Materials processing apparatus development for fluoride glass

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Kosten, Sue; Workman, Gary L.

    1994-01-01

    Fluoride glasses have great potential for optical fiber communications due to the high transmittance when no microcrystallites occur during drawing operations. This work has developed apparatus to test the occurrence of microcrystallites during recrystallization in reduced gravity on the KC-135. The apparatus allows fluoride glass fiber, such as ZBLAN, to be melted and recrystallized during both the low and high g portions the parabolic flight.

  5. QUANTITATIVE RADIO-CHEMICAL ANALYSIS-SOLVENT EXTRACTION OF MOLYBDENUM-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wish, L.

    1961-09-12

    A method was developed for the rapid quantitative separation of Mo/sup 99/ from fission product mixtures. It is based on the extraction of Mo into a solution of alpha -benzoin oxime in chloroform. The main contaminants are Zr, Nb, and 1. The first two are eliminated by couple with fluoride and the third by volatilization or solvent extraction. About 5% of the Te/sup 99/ daughter is extracted with its parent, and it is necessary to wait 48 hrs for equilibrium of fission product mixtures by this method and a standard radiochemical gravimetric procedure showed agreement within 1 to 2%. (auth)

  6. Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador

    NASA Astrophysics Data System (ADS)

    Siegel, Karin; Vasyukova, Olga V.; Williams-Jones, Anthony E.

    2018-05-01

    Although it is well known that A-type granites are enriched in the rare earth elements (REE) and other high field strength elements (HFSE), the magmatic processes that concentrate these elements are still poorly understood. The 1.24 Ga Strange Lake pluton in northern Québec-Labrador provides an extraordinary example of hyper-enrichment in the REE, Zr, and Nb in a peralkaline A-type granite. The pluton consists of two hypersolvus granite units (southern and northern) and a transsolvus granite, all of which contain perthitic alkali feldspar as the earliest major mineral; the transsolvus granite also contains separate albite and microcline crystals. Arfvedsonite, a sodic amphibole, occurs exclusively as phenocrysts in the transsolvus granite, whereas in the hypersolvus granite it is present as a late, interstitial phase. The primary HFSE minerals are zircon, monazite-(Ce), gagarinite-(Ce) and the pyrochlore group minerals. Magma evolution was monitored by the alumina content in the bulk rock, which decreases from the southern to the northern hypersolvus granite and is lowest in the transsolvus granite. Alkalinity indices and bulk Si, Fe, Rb, REE, Zr, Nb concentrations show the opposite trend. Alkali feldspar compositions mirror the trend shown by the bulk rock, i.e., decreasing Al contents are accompanied by increasing Si, Fe3+, REE, Zr and Nb contents. The major driving forces for the evolution of the hypersolvus magma prior to emplacement were the early separation of a fluoride melt from the silicate melt and the crystallization of alkali feldspar and HFSE-rich phases (zircon, monazite-(Ce), pyrochlore group). An alkali feldspar-rich crystal-mush containing LREE-fluoride melt droplets was emplaced as the least evolved southern hypersolvus granite. Massive fractionation of alkali feldspar led to a sharp increase in ƒH2O and F- activity in the magma chamber that triggered the crystallization of arfvedsonite and was followed by emplacement of the northern hypersolvus granite, which contained a higher proportion of LREE-fluoride melt droplets. Further evolution in the magma chamber led to a transition from a miaskitic to an agpaitic composition. The transsolvus granite was intruded in the form of a low viscosity crystal mush of alkali feldspar, quartz, arfvedsonite (after appreciable crystallization of arfvedsonite) and LREE-fluoride melt droplets. Upon emplacement, arfvedsonite (and gagarinite-(Ce)) crystals segregated as cumulates in response to a combination of flow differentiation and gravity settling. The immiscible fluoride melt accumulated in a volatile-rich residual silicate magma, which migrated to the top of the pluton where it formed the F-REE-rich cores of highly mineralized pegmatites.

  7. Removal of fluoride from drinking water by cellulose@hydroxyapatite nanocomposites.

    PubMed

    Yu, Xiaolin; Tong, Shengrui; Ge, Maofa; Zuo, Junchao

    2013-01-30

    Cellulose@hydroxyapatite (HA) nanocomposites were prepared in NaOH/thiourea/urea/H(2)O solution via situ hybridization. The composite materials combine the advantage of cellulose and HA with the high specific surface area and the strong affinity toward fluoride. The composite materials were characterized by FTIR, SEM, XRD, TG and XPS, and the adsorption of fluoride was investigated. Adsorption kinetics indicated the adsorption equilibrium of fluoride was within 360 min and the adsorption process was well described by the pseudo-second-order kinetic model. The Langmuir and Freundlich isotherm models could fit the experimental data well. At the initial fluoride concentration of 10mg/L, the residual concentration using above 3g/L adsorbent dose could meet the drinking water standard of WHO norms. Furthermore, the coexisting anions had no significant effect on fluoride adsorption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. URANIUM RECOVERY PROCESS

    DOEpatents

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  9. Method for obtaining oxygen from lunar or similar soil

    NASA Technical Reports Server (NTRS)

    Downs, W. R. (Inventor)

    1973-01-01

    Recovery of oxygen from soil containing metal oxides such as alumina, silica, calcia, magnesia, and ilmenite wherein the material containing the oxides is placed in a vessel and reacted with fluorine to provide oxygen and metal fluorides. The oxygen produced from the reaction is recovered and stored, after further purifying processes, and the metal fluorides are further reacted with potassium vapor to provide potassium fluoride and free metals. The potassium fluoride is than subjected to electrolysis whereby the potassium and fluorine are separated and are recycled for further use in the system. Valuable free metals are recovered for other uses.

  10. Mechanisms of action of fluoride for caries control.

    PubMed

    Buzalaf, Marília Afonso Rabelo; Pessan, Juliano Pelim; Honório, Heitor Marques; ten Cate, Jacob Martien

    2011-01-01

    Fluoride was introduced into dentistry over 70 years ago, and it is now recognized as the main factor responsible for the dramatic decline in caries prevalence that has been observed worldwide. However, excessive fluoride intake during the period of tooth development can cause dental fluorosis. In order that the maximum benefits of fluoride for caries control can be achieved with the minimum risk of side effects, it is necessary to have a profound understanding of the mechanisms by which fluoride promotes caries control. In the 1980s, it was established that fluoride controls caries mainly through its topical effect. Fluoride present in low, sustained concentrations (sub-ppm range) in the oral fluids during an acidic challenge is able to absorb to the surface of the apatite crystals, inhibiting demineralization. When the pH is re-established, traces of fluoride in solution will make it highly supersaturated with respect to fluorhydroxyapatite, which will speed up the process of remineralization. The mineral formed under the nucleating action of the partially dissolved minerals will then preferentially include fluoride and exclude carbonate, rendering the enamel more resistant to future acidic challenges. Topical fluoride can also provide antimicrobial action. Fluoride concentrations as found in dental plaque have biological activity on critical virulence factors of S. mutans in vitro, such as acid production and glucan synthesis, but the in vivo implications of this are still not clear. Evidence also supports fluoride's systemic mechanism of caries inhibition in pit and fissure surfaces of permanent first molars when it is incorporated into these teeth pre-eruptively. Copyright © 2011 S. Karger AG, Basel.

  11. Topical fluoride for caries prevention

    PubMed Central

    Weyant, Robert J.; Tracy, Sharon L.; Anselmo, Theresa (Tracy); Beltrán-Aguilar, Eugenio D.; Donly, Kevin J.; Frese, William A.; Hujoel, Philippe P.; Iafolla, Timothy; Kohn, William; Kumar, Jayanth; Levy, Steven M.; Tinanoff, Norman; Wright, J. Timothy; Zero, Domenick; Aravamudhan, Krishna; Frantsve-Hawley, Julie; Meyer, Daniel M.

    2015-01-01

    Background A panel of experts convened by the American Dental Association (ADA) Council on Scientific Affairs presents evidence-based clinical recommendations regarding professionally applied and prescription-strength, home-use topical fluoride agents for caries prevention. These recommendations are an update of the 2006 ADA recommendations regarding professionally applied topical fluoride and were developed by using a new process that includes conducting a systematic review of primary studies. Types of Studies Reviewed The authors conducted a search of MEDLINE and the Cochrane Library for clinical trials of professionally applied and prescription-strength topical fluoride agents—including mouthrinses, varnishes, gels, foams and pastes—with caries increment outcomes published in English through October 2012. Results The panel included 71 trials from 82 articles in its review and assessed the efficacy of various topical fluoride caries-preventive agents. The panel makes recommendations for further research. Practical Implications The panel recommends the following for people at risk of developing dental caries: 2.26 percent fluoride varnish or 1.23 percent fluoride (acidulated phosphate fluoride) gel, or a prescription-strength, home-use 0.5 percent fluoride gel or paste or 0.09 percent fluoride mouthrinse for patients 6 years or older. Only 2.26 percent fluoride varnish is recommended for children younger than 6 years. The strengths of the recommendations for the recommended products varied from “in favor” to “expert opinion for.” As part of the evidence-based approach to care, these clinical recommendations should be integrated with the practitioner's professional judgment and the patient's needs and preferences. PMID:24177407

  12. Effects of Gravity on Processing Heavy Metal Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1997-01-01

    The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.

  13. Emissions of fluorides from welding processes.

    PubMed

    Szewczyńska, Małgorzata; Pągowska, Emilia; Pyrzyńska, Krystyna

    2015-11-01

    The levels of fluoride airborne particulates emitted from welding processes were investigated. They were sampled with the patented IOM Sampler, developed by J. H. Vincent and D. Mark at the Institute of Occupational Medicine (IOM), personal inhalable sampler for simultaneous collection of the inhalable and respirable size fractions. Ion chromatography with conductometric detection was used for quantitative analysis. The efficiency of fluoride extraction from the cellulose filter of the IOM sampler was examined using the standard sample of urban air particle matter SRM-1648a. The best results for extraction were obtained when water and the anionic surfactant N-Cetyl-N-N-N-trimethylammonium bromide (CTAB) were used in an ultrasonic bath. The limits of detection and quantification for the whole procedure were 8μg/L and 24μg/L, respectively. The linear range of calibration was 0.01-10mg/L, which corresponds to 0.0001-0.1mg of fluorides per m(3) in collection of a 20L air sample. The concentration of fluorides in the respirable fraction of collected air samples was in the range of 0.20-1.82mg/m(3), while the inhalable fraction contained 0.23-1.96mg/m(3) of fluorides during an eight-hour working day in the welding room. Copyright © 2015. Published by Elsevier B.V.

  14. The interaction of zinc oxide-based dental cements with aqueous solutions of potassium fluoride.

    PubMed

    Pawluk, K; Booth, S E; Coleman, N J; Nicholson, J W

    2008-09-01

    The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-betaq(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.

  15. Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED)

    PubMed Central

    Kim, Ilhwan; Kim, Bong Sung; Nam, Seunghoon; Lee, Hoo-Jeong; Chung, Ho Kyoon; Cho, Sung Min; Luu, Thi Hoai Thuong; Hyun, Seungmin; Kang, Chiwon

    2018-01-01

    Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) by electrospinning for a gel polymer electrolyte (GPE) for use in flexible Li-ion batteries (LIBs). As a solvent, we use N-methyl-2-pyrrolidone (NMP), which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP) separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED), demonstrating a fully flexible unit of LIB and OLED. PMID:29614800

  16. Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-co-HFP) Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED).

    PubMed

    Kim, Ilhwan; Kim, Bong Sung; Nam, Seunghoon; Lee, Hoo-Jeong; Chung, Ho Kyoon; Cho, Sung Min; Luu, Thi Hoai Thuong; Hyun, Seungmin; Kang, Chiwon

    2018-04-02

    Here, we fabricate poly(vinylidene fluoride- co -hexafluoropropene) (PVDF- co -HFP) by electrospinning for a gel polymer electrolyte (GPE) for use in flexible Li-ion batteries (LIBs). As a solvent, we use N -methyl-2-pyrrolidone (NMP), which helps produce the cross-linked morphology of PVDF- co -HFP separator, owing to its low volatility. The cross-linked PVDF- co -HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP) separator. Moreover, the PVDF- co -HFP separator shows an ionic conductivity of 2.3 × 10 -3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF- co -HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF- co -HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF- co -HFP GPE with a flexible organic light emitting diode (OLED), demonstrating a fully flexible unit of LIB and OLED.

  17. Magnesium incorporated bentonite clay for defluoridation of drinking water.

    PubMed

    Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J; Labhsetwar, Nitin

    2010-08-15

    Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mgg(-1) at an initial fluoride concentration of 5 mg L(-1), which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed ( approximately 97%) using 1M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  19. 78 FR 34405 - Notice of Lodging of Proposed Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ..., particularly fluorides, emanating from its phosphoric acid process equipment. The facility's cooling towers are... has confirmed that PCS's hydrogen fluoride (``HF'') emissions comply with 40 CFR part 63, Subpart A...

  20. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  1. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    DOEpatents

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  2. Inequalities in public water supply fluoridation in Brazil: An ecological study

    PubMed Central

    Gabardo, Marilisa CL; da Silva, Wander J; Olandoski, Marcia; Moysés, Simone T; Moysés, Samuel J

    2008-01-01

    Background The literature is scarce on the social and geographic inequalities in the access to and implementation of the fluoridation of public water supplies. This study adds knowledge to the Brazilian experience of the chronic privation of water and wastewater policies, access to potable water and fluoridation in the country. Thus, the aim of this study was to verify possible inequalities in the population's access to fluoridated drinking water in 246 Brazilian municipalities. Methods The information on the process of water fluoridation in the municipalities and in the macro region in which each municipality is located was obtained from the national epidemiological survey which was concluded in 2003. The data relating to the human development index at municipal level (HDI-M) and access to mains water came from the Brazilian Human Development Atlas, whilst the size of the population was obtained from a governmental source. The Fisher exact test (P < 0.05) was employed to identify significant associations between the explanatory variables and their ability to predict the principal outcomes of interest to this study, namely the presence or absence of the water fluoridation process in the municipalities as well as the length of time during which this measure has been implemented. Linear regression was used to observe the associations between the relevant variables in a multivariate environment. Results The results clearly showed that there is a relationship between municipalities with larger populations, located in more socio-economically advantaged regions and with better HDI-M, and where fluoridation is both present and has been implemented for a longer period of time (started before 1990). Conclusion The findings suggest that the aim of treating water with fluoride may not be being adequately achieved, requiring more effective strategies so that access to this measure can be expanded equitably. PMID:18402688

  3. Recovery of Agricultural Odors and Odorous Compounds from Polyvinyl Fluoride Film Bags

    PubMed Central

    Parker, David B.; Perschbacher-Buser, Zena L.; Cole, N. Andy; Koziel, Jacek A.

    2010-01-01

    Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human panelists using dynamic triangular forced-choice olfactometry. The purpose of this research was to simultaneously quantify and compare recoveries of odor and odorous compounds from both commercial and homemade PVF sampling bags. A standard gas mixture consisting of p-cresol (40 μg m−3) and seven volatile fatty acids: acetic (2,311 μg m−3), propionic (15,800 μg m−3), isobutyric (1,686 μg m−3), butyric (1,049 μg m−3), isovaleric (1,236 μg m−3), valeric (643 μg m−3), and hexanoic (2,158 μg m−3) was placed in the PVF bags at times of 1 h, 1 d, 2 d, 3 d, and 7 d prior to compound and odor concentration analyses. Compound concentrations were quantified using sorbent tubes and gas chromatography/mass spectrometry. Odor concentration, intensity, and hedonic tone were measured using a panel of trained human subjects. Compound recoveries ranged from 2 to 40% after 1 h and 0 to 14% after 7 d. Between 1 h and 7 d, odor concentrations increased by 45% in commercial bags, and decreased by 39% in homemade bags. Minimal changes were observed in intensity and hedonic tone over the same time period. These results suggest that PVF bags can bias individual compound concentrations and odor as measured by dynamic triangular forced-choice olfactometry. PMID:22163671

  4. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15

    NASA Astrophysics Data System (ADS)

    Yang, Jae Hwan; Park, Hwan Seo; Ahn, Do-Hee; Yim, Man-Sung

    2016-11-01

    The aim of this study was to stabilize bismuth-embedded SBA-15 that captured iodine gas by fabrication of monolithic waste forms. The iodine containing waste was mixed with Bi2O3 (a stabilizing additive) and low-temperature sintering glass followed by pelletizing and the sintering process to produce glass composite materials. Iodine volatility during the sintering process was significantly affected by the ratio of Bi2O3 and the glass composition. It was confirmed that BiI3, the main iodine phase within bismuth-embedded SBA-15, was effectively transformed to the mixed phases of Bi5O7I and BiOI. The initial leaching rates of iodine from the glass composite waste forms ranged 10-3-10-2 g/m2 day, showing the stability of the iodine phases encapsulated by the glassy networks. It was also observed that common groundwater anions (e.g., chloride, carbonate, sulfite, and fluoride) elevated the iodine leaching rate by anion exchange reactions. The present results suggest that the glass composite waste form of bismuth-embedded SBA-15 could be a candidate material for stable storage of 129I.

  5. Improving molten fluoride salt and Xe135 barrier property of nuclear graphite by phenolic resin impregnation process

    NASA Astrophysics Data System (ADS)

    He, Zhao; Lian, Pengfei; Song, Yan; Liu, Zhanjun; Song, Jinliang; Zhang, Junpeng; Feng, Jing; Yan, Xi; Guo, Quangui

    2018-02-01

    A densification process has been conducted on isostatic graphite (IG-110, TOYO TANSO CO., Ltd., Japan) by impregnating phenolic resin to get the densified isostatic graphite (D-IG-110) with pore diameter of nearly 11 nm specifically for molten salt reactor application. The microstructure, mechanical, thermophysical and other properties of graphite were systematically investigated and compared before and after the densification process. The molten fluoride salt and Xe135 penetration in the graphite were evaluated in a high-pressure reactor and a vacuum device, respectively. Results indicated that D-IG-110 exhibited improved properties including infiltration resistance to molten fluoride salt and Xe135 as compared to IG-110 due to its low porosity of 2.8%, the average pore diameter of 11 nm and even smaller open pores on the surface of the graphite. The fluoride salt infiltration amount of IG-110 was 13.5 wt% under 1.5 atm and tended to be saturated under 3 atm with the fluoride salt occupation of 14.8 wt%. As to the D-IG-110, no salts could be detected even up to 10 atm attempted loading. The helium diffusion coefficient of D-IG-110 was 6.92 × 10-8 cm2/s, significantly less than 1.21 × 10-2 cm2/s of IG-110. If these as-produced properties for impregnated D-IG-110 could be retained during MSR operation, the material could prove effective at inhibiting molten fluoride salt and Xe135 inventories in the graphite.

  6. Efficient fluoride removal using Al-Cu oxide nanoparticles supported on steel slag industrial waste solid.

    PubMed

    Blanco-Flores, Alien; Arteaga-Larios, Nubia; Pérez-García, Víctor; Martínez-Gutiérrez, José; Ojeda-Escamilla, María; Rodríguez-Torres, Israel

    2018-03-01

    A SSW/Al-Cu formed from an industrial solid waste and Al-Cu Nps are utilized for the removal of fluoride from aqueous solutions. The SSW/Al-Cu was obtained by a chemical reduction method. The SSW/Al-Cu was characterized by TEM, SEM, FT-IR, XRD, BET, and pH zpc techniques. The Nps were formed as bimetallic oxides and deposited in the form of spheroidal particles forming agglomerations. The sizes of these particles range from 1 to 3 nm. The surface area and average pore width of SSW/Al-Cu were 2.99 m 2 /g and 17.09 nm, respectively. The adsorption kinetics were better described using the second-order model, pointing to chemical adsorption with an equilibrium time of 540 min. The thermodynamic parameters obtained here confirm the spontaneous and endothermic nature of the process. The percentage of fluoride removal was 89.5% using the four-bladed disk turbine, and computational fluid dynamics (CFD) modeling demonstrated that using the four-bladed disk turbine helped improve the fluoride removal process. The maximum adsorption capacity was 3.99 mg/g. The Langmuir-Freundlich model best describes the adsorption process, which occurred by a combination of mechanisms, such as electrostatic interactions between the ions involved in the process. This study proves that the chemical modification of this waste solid created an efficient bimetallic nanomaterial for fluoride removal. Furthermore, the method of preparation of these nanocomposites is quite scalable.

  7. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOEpatents

    Windt, Norman F.; Williams, Joe L.

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  8. Role of endoplasmic reticulum stress-induced apoptosis in rat thyroid toxicity caused by excess fluoride and/or iodide.

    PubMed

    Liu, Hongliang; Hou, Changchun; Zeng, Qiang; Zhao, Liang; Cui, Yushan; Yu, Linyu; Wang, Lingzhi; Zhao, Yang; Nie, Junyan; Zhang, Bin; Wang, Aiguo

    2016-09-01

    Excess fluoride and iodide coexist in drinking water in many regions, but few studies have investigated the single or interactive effects on thyroid in vivo. In our study, Wistar rats were exposed to excess fluoride and/or iodide through drinking water for 2 or 8 months. The structure and function of the thyroid, cells apoptosis and the expression of inositol-requiring enzyme 1 (IRE1) pathway-related factors were analyzed. Results demonstrated that excess fluoride and/or iodide could change thyroid follicular morphology and alter thyroid hormone levels in rats. After 8 months treatment, both single and co-exposure of the two microelements could raise the thyroid cells apoptosis. However, the expressions of IRE1-related factors were only increased in fluoride-alone and the combined groups. In conclusion, thyroid structure and thyroid function were both affected by excess fluoride and/or iodide. IRE1-induced apoptosis were involved in this cytotoxic process caused by fluoride or the combination of two microelements. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Use of laterite for the removal of fluoride from contaminated drinking water.

    PubMed

    Sarkar, Mitali; Banerjee, Aparna; Pramanick, Partha Pratim; Sarkar, Asit R

    2006-10-15

    The effects of different operational variables on the mechanistic function of laterite in removal of fluoride have been investigated. Thermodynamic parameters such as free energy change, enthalpy, and entropy of the process, as well as the sorption isotherm, were evaluated. The extent of solute removal is determined by initial solute concentration, operational conditions, laterite dose, and solution pH. For a fixed set of experimental conditions, a model equation is developed from which the percent removal corresponding to each load of fluoride is determined. The mechanism of fluoride adsorption is governed by the zero point charge of laterite and follows a first-order rate equation. pH has a vital role influencing the surface characteristics of laterite. To simulate the flow dynamics, fluoride solution was run through a fixed bed column. The pattern of breakthrough curves for different influent fluoride concentration, pH, and column bed height was characterized. The column efficiency was tested from the bed depth-service time model. The elution of the retained fluoride was studied and the effectiveness of column operation was determined by the retention-elution cycles.

  10. Process for producing a clean hydrocarbon fuel from high calcium coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kindig, J.K.

    A method is described for substantially reducing the amount of at least one insoluble fluoride-forming species selected from the group consisting of Group IA species and Group IIA species. The species is present in a coal feed material comprising: forming a slurry of a coal feed; a fluoride acid in an amount to produce a first molar concentration of free-fluoride-ions; at least one fluoride-complexing species, the total of all fluoride-complexing species in the slurry being present in an amount to produce a second molar concentration, the second molar concentration being at least equal to that amount such that the ratiomore » of the first molar concentration to the second molar concentration is substantially equal to the stoichiometric ratio of fluoride in at least one tightly-bound complexion so as to from tightly-bound complexions with substantially all free-fluoride ions in the slurry to produce a leached coal product and a spent leach liquor; and separating the leached coal product from the spent leach liquor.« less

  11. Fluorine (soluble fluoride)

    Integrated Risk Information System (IRIS)

    Fluorine ( soluble fluoride ) ; CASRN 7782 - 41 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  12. Phase A design study of microgravity fluoride fiber puller

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.; Kosten, Susan

    1994-01-01

    Improved transmission properties for fluoride fibers due to space processing has great potential for commercial benefits. Phase A design study will determine conceptual feasibility and provide initial definition of the technical requirements and design issues for space.

  13. Fluoride in the diet of 2-years-old children.

    PubMed

    Martinez-Mier, E A; Spencer, Kathryn L; Sanders, Brian J; Jones, James E; Soto-Rojas, Armando E; Tomlin, Angela M; Vinson, LaQuia A; Weddell, James A; Eckert, George J

    2017-06-01

    This study aimed to calculate the fluoride concentrations of commonly consumed foods and beverages for 2-years-old children utilizing market basket information for the US Midwest region. Total Diet Study food lists were cross-referenced with National Health and Nutrition Examination Survey-What We Eat in America data to determine the foods and beverages to be included. Fluoride concentrations were determined using a modification of the hexamethyldisiloxane microdiffusion technique. Fluoride concentrations were summarized for each of the food categories. Daily dietary fluoride intake was estimated using a simulation analysis. Food and beverage fluoride concentrations varied widely, ranging from nondetectable for some oils and dairy products to more than 3.0 μgF/g food for some processed meats, fish and fruits. The estimated mean (±SD) daily dietary fluoride intake, excluding dentifrice and supplements, was 412±114 μgF/d. The estimated average ingestion for a 2-years-old weighing 12.24 kg was 0.034±0.009 mg/kg/d. A diet based on foods and beverages in the fifth percentile of fluoride intake distribution for an average child would result in 247 μgF/d or 0.020 mg/kg/d, while a diet with foods and beverages in the 95th percentile would result in a total intake of 622 μgF/d or 0.051 mg/kg/d. The fluoride concentrations of foods and beverages vary widely, and, if items in the 95th percentile of fluoride intake distribution are ingested, children could consume more fluoride than the recommended 0.05 mg/kg/d. Fluoride intake calculated in this study was higher than historically reported dietary levels. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Mus musculus bone fluoride concentration as a useful biomarker for risk assessment of skeletal fluorosis in volcanic areas.

    PubMed

    Linhares, Diana; Camarinho, Ricardo; Garcia, Patrícia Ventura; Rodrigues, Armindo Dos Santos

    2018-08-01

    Fluoride is often found in elevated concentrations in volcanic areas due to the release of magmatic fluorine as hydrogen fluorine through volcanic degassing. The exposure to high levels of fluoride can affect the processes of bone formation and resorption causing skeletal fluorosis, a pathology that can easily be mistaken for other skeletal diseases. In this study, we aimed to determine if fluoride concentration in the femoral bone of wild populations of the house mouse (Mus musculus) is a good biomarker of exposure to active volcanic environments naturally enriched in fluoride, allowing their use in biomonitoring programs. The fluoride concentration of the whole femoral bone of 9 mice from Furnas (5 males and 4 females) and 33 mice from Rabo de Peixe (16 males and 17 females) was measured by the potentiometric method with a fluoride ion selective electrode. Fluoride in bones was significantly higher in the mice from Furnas when compared with the mice from Rabo de Peixe (616.5 ± 129.3 μg F/g vs. 253.8 ± 10.5 μg F/g). Accumulation rates were also significantly higher in the mice collected in Furnas when compared with Rabo de Peixe individuals (3.84 ± 0.52 μg F/day vs. 1.22 ± 0.06 μg F/day). The results demonstrate a significant association between exposure to fluoride in the active volcanic environment and fluoride content in bone, revealing that bone fluoride concentration is a suitable biomarker of chronic environmental exposure to fluoride. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Fatigue and fluoride corrosion on Streptococcus mutans adherence to titanium-based implant/component surfaces.

    PubMed

    Correa, Cassia Bellotto; Pires, Juliana Rico; Fernandes-Filho, Romeu Belon; Sartori, Rafael; Vaz, Luis Geraldo

    2009-07-01

    The influence of fatigue and the fluoride ion corrosion process on Streptococcus mutans adherence to commercially pure Titanium (Cp Ti) implant/component set surfaces were studied. Thirty Nobel implants and 30 Neodent implants were used. Each commercial brand was divided into three groups. Group A: control, Group B: sets submitted to fatigue (10(5) cycles, 15 Hz, 150 N), and Group C: sets submitted to fluoride (1500 ppm, pH 5.5) and fatigue, simulating a mean use of 5 years in the oral medium. Afterward, the sets were contaminated with standard strains of S. mutans (NTCC 1023) and analyzed by scanning electronic microscopy (SEM) and colony-forming unit counts (CFU/mL). By SEM, bacterial adherence was verified only in group C in both brands. By CFU/mL counts, S. mutans was statistically higher in both brands in group C than in groups A and B (p < 0.05, ANOVA). The process of corrosion by fluoride ions on Cp Ti implant/component sets allowed greater S. mutans adherence than in the absence of corrosion and with the fatigue process in isolation.

  16. TRANSURANIC ELEMENT, COMPOSITION THEREOF, AND METHODS FOR PRODUCING SEPARATING AND PURIFYING SAME

    DOEpatents

    Wahl, A.C.

    1961-09-19

    A process of separating plutonium from fission products contained in an aqueous solution is described. Plutonium, in the tri- or tetravalent state, and the fission products are coprecipitated on lanthanum fluoride, lanthanum oxalate, cerous fluoride, cerous phosphate, ceric iodate, zirconyl phosphate, thorium iodate, or thorium fluoride. The precipitate is dissolved in acid, and the plutonium is oxidized to the hexavalent state. The fission products are selectively precipitated on a carrier of the above group but different from that used for the coprecipitation. The plutonium in the solution, after removal of the fission product precipitate, is reduced to at least the tetravalent state and precipitated on lanthanum fluoride, lanthanum phosphate, lanthanum oxalate, lanthanum hydroxide, cerous fluoride, cerous phosphate, cerous oxalate, cerous hydroxide, ceric iodate, zirconyl phosphate, zirconyl iodate, zirconium hydroxide, thorium fluoride, thorium oxalate, thorium iodate, thorium peroxide, uranium iodate, uranium oxalate, or uranium peroxide, again using a different carrier than that used for the precipitation of the fission products.

  17. Fluoride in weathered rock aquifers of southern India: Managed Aquifer Recharge for mitigation.

    PubMed

    Brindha, K; Jagadeshan, G; Kalpana, L; Elango, L

    2016-05-01

    Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physical or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.

  18. Estimated probability of arsenic in groundwater from bedrock aquifers in New Hampshire, 2011

    USGS Publications Warehouse

    Ayotte, Joseph D.; Cahillane, Matthew; Hayes, Laura; Robinson, Keith W.

    2012-01-01

    The statewide maps generated by the probability models are not designed to predict arsenic concentration in any single well, but they are expected to provide useful information in areas of the State that currently contain little to no data on arsenic concentration. They also may aid in resource decision making, in determining potential risk for private wells, and in ecological-level analysis of disease outcomes. The approach for modeling arsenic in groundwater could also be applied to other environmental contaminants that have potential implications for human health, such as uranium, radon, fluoride, manganese, volatile organic compounds, nitrate, and bacteria.

  19. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  20. A core-substituted naphthalene diimide fluoride sensor.

    PubMed

    Bhosale, Sheshanath V; Bhosale, Sidhanath V; Kalyankar, Mohan B; Langford, Steven J

    2009-12-03

    The synthesis and characterization of a highly fluorescent core-substituted naphthalene diimide sensor (varphi = 0.34) bearing a bis-sulfonamide group is described. The compound shows a unique selectivity and reactivity for the fluoride ion over other anions in CHCl(3) by a two-stage deprotonation process leading to a colorimetric response. In DMSO solution, the sensor is shown to be highly selective for fluoride (K(a) approximately 10(6) M(-1)) over other anions with more pronounced changes in absorption characteristics.

  1. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A biocompatible and novelly-defined Al-HAP adsorption membrane for highly effective removal of fluoride from drinking water.

    PubMed

    He, Junyong; Chen, Kai; Cai, Xingguo; Li, Yulian; Wang, Chengming; Zhang, Kaisheng; Jin, Zhen; Meng, Fanli; Wang, Xuguang; Kong, Lingtao; Liu, Jinhuai

    2017-03-15

    A biocompatible and novelly-defined adsorption membrane for rapid removal of fluoride was prepared. Both adsorption and membrane techniques were used in this research. Al(OH) 3 nanoparticles modified hydroxyapatite (Al-HAP) nanowires were developed and made into Al-HAP membrane. The adsorption data of Al-HAP adsorbent could be well described by Freundlich isotherm model while the adsorption kinetic followed pseudo-second-order model. The maximum of adsorption capacity was 93.84mg/g when the fluoride concentration was 200mg/L. The adsorption mechanism was anion exchanges and electrostatic interactions. The contribution rates of HAP nanowires and Al(OH) 3 nanoparticles in fluoride removal were 36.70% and 63.30%, respectively. The fixed-bed column test demonstrate that the Al-HAP was biocompatible and in a good stability during the process of water treatment. The fluoride removal abilities of Al-HAP membrane with 0.3mm thickness could reach 1568L/m 2 when fluoride concentrations were 5mg/L. This study indicated that the Al-HAP membrane could be developed into a very viable technology for highly effective removal of fluoride from drinking water. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. 40 CFR 60.201 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...

  4. 40 CFR 60.201 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...

  5. 40 CFR 60.201 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...

  6. 40 CFR 60.201 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...

  7. 40 CFR 60.201 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-Process Phosphoric Acid Plants § 60.201 Definitions. As used in this subpart, all terms not defined herein... acid plant means any facility manufacturing phosphoric acid by reacting phosphate rock and acid. (b) Total fluorides means elemental fluorine and all fluoride compounds as measured by reference methods...

  8. Aluminium removal from water after defluoridation with the electrocoagulation process.

    PubMed

    Sinha, Richa; Mathur, Sanjay; Brighu, Urmila

    2015-01-01

    Fluoride is the most electronegative element and has a strong affinity for aluminium. Owing to this fact, most of the techniques used for fluoride removal utilized aluminium compounds, which results in high concentrations of aluminium in treated water. In the present paper, a new approach is presented to meet the WHO guideline for residual aluminium concentration as 0.2 mg/L. In the present work, the electrocoagulation (EC) process was used for fluoride removal. It was found that aluminium content in water increases with an increase in the energy input. Therefore, experiments were optimized for a minimum energy input to achieve the target value (0.7 mg/L) of fluoride in resultant water. These optimized sets were used for further investigations of aluminium control. The experimental investigations revealed that use of bentonite clay as coagulant in clariflocculation brings down the aluminium concentration of water below the WHO guideline. Bentonite dose of 2 g/L was found to be the best for efficient removal of aluminium.

  9. Magnesium fluoride reduction-vessel liners. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham-Brown, C.E.

    1986-03-26

    The work described in this report details a program that demonstrated a method by which magnesium fluoride, the by-product of the reduction reaction of uranium tetrafluoride to uranium metal could be used to replace the present graphite used to line the reduction vessel. Utilization of magnesium fluoride (MgF2) as a reduction-vessel liner has the potential to decrease carbon contamination and thereby reduce DU derby rejects due to chemistry. Additionally, there would be the elimination of the cost of the graphite crucible liner and the associated disposal costs by replacement with the by-product of the reduction reaction, which is magnesium fluoride.more » The process would ultimately result in reduced manufacturing costs for derby metal and higher yield of finished penetrators. This was to be accomplished in such a manner as to produce uranium metal derbies which would be accommodated into the present Nuclear Metals-Carolina Metals penetrator production process with minimal changes in equipment and procedures.« less

  10. Molecular mechanisms of fluoride toxicity.

    PubMed

    Barbier, Olivier; Arreola-Mendoza, Laura; Del Razo, Luz María

    2010-11-05

    Halfway through the twentieth century, fluoride piqued the interest of toxicologists due to its deleterious effects at high concentrations in human populations suffering from fluorosis and in in vivo experimental models. Until the 1990s, the toxicity of fluoride was largely ignored due to its "good reputation" for preventing caries via topical application and in dental toothpastes. However, in the last decade, interest in its undesirable effects has resurfaced due to the awareness that this element interacts with cellular systems even at low doses. In recent years, several investigations demonstrated that fluoride can induce oxidative stress and modulate intracellular redox homeostasis, lipid peroxidation and protein carbonyl content, as well as alter gene expression and cause apoptosis. Genes modulated by fluoride include those related to the stress response, metabolic enzymes, the cell cycle, cell-cell communications and signal transduction. The primary purpose of this review is to examine recent findings from our group and others that focus on the molecular mechanisms of the action of inorganic fluoride in several cellular processes with respect to potential physiological and toxicological implications. This review presents an overview of the current research on the molecular aspects of fluoride exposure with emphasis on biological targets and their possible mechanisms of involvement in fluoride cytotoxicity. The goal of this review is to enhance understanding of the mechanisms by which fluoride affects cells, with an emphasis on tissue-specific events in humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Dentifrices, mouthwashes, and remineralization/caries arrestment strategies

    PubMed Central

    Zero, Domenick T

    2006-01-01

    While our knowledge of the dental caries process and its prevention has greatly advanced over the past fifty years, it is fair to state that the management of this disease at the level of the individual patient remains largely empirical. Recommendations for fluoride use by patients at different levels of caries risk are mainly based on the adage that more is better. There is a general understanding that the fluoride compound, concentration, frequency of use, duration of exposure, and method of delivery can influence fluoride efficacy. Two important factors are (1) the initial interaction of relatively high concentrations of fluoride with the tooth surface and plaque during application and (2) the retention of fluoride in oral fluids after application. Fluoride dentifrices remain the most widely used method of delivering topical fluoride. The efficacy of this approach in preventing dental caries is beyond dispute. However, the vast majority of currently marketed dentifrice products have not been clinically tested and have met only the minimal requirements of the FDA monograph using mainly laboratory testing and animal caries testing. Daily use of fluoride dental rinses as an adjunct to fluoride dentifrice has been shown to be clinically effective as has biweekly use of higher concentration fluoride rinses. The use of remineralizing agents (other than fluoride), directed at reversing or arresting non-cavitated lesions, remains a promising yet largely unproven strategy. High fluoride concentration compounds, e.g., AgF, Ag(NH3)2F, to arrest more advanced carious lesions with and without prior removal of carious tissue are being used in several countries as part of the Atraumatic Restorative Treatment (ART) approach. Most of the recent innovations in oral care products have been directed toward making cosmetic marketing claims. There continues to be a need for innovation and collaboration with other scientific disciplines to fully understand and prevent dental caries. PMID:16934126

  12. Evaluation of Fluoride Retention Due to Most Commonly Consumed Estuarine Fishes Among Fish Consuming Population of Andhra Pradesh as a Contributing Factor to Dental Fluorosis: A Cross-Sectional Study

    PubMed Central

    Ganta, Shravani; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti

    2015-01-01

    Background Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. Materials and Methods A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. Results For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. Conclusion It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption. PMID:26266208

  13. Evaluation of Fluoride Retention Due to Most Commonly Consumed Estuarine Fishes Among Fish Consuming Population of Andhra Pradesh as a Contributing Factor to Dental Fluorosis: A Cross-Sectional Study.

    PubMed

    Ganta, Shravani; Yousuf, Asif; Nagaraj, Anup; Pareek, Sonia; Sidiq, Mohsin; Singh, Kushpal; Vishnani, Preeti

    2015-06-01

    Fluoride in drinking water is known for both beneficial and detrimental effects on health. The principal sources of fluoride include water, some species of vegetation, certain edible marine animals, dust and industrial processes. The purpose of this study was to evaluate the fluoride retention of most commonly consumed estuarine fishes among fish consuming population of Andhra Pradesh. A cross-sectional study was conducted to evaluate the amount of fluoride retention due to ten most commonly consumed estuarine fishes as a contributing factor to Fluorosis by SPADNS Spectrophotometric method. The presence and severity of dental fluorosis among fish consuming population was recorded using Community Fluorosis Index. Statistical analysis was done using MedCalc v12.2.1.0 software. For Sea water fishes, the fluoride levels in bone were maximum in Indian Sardine (4.22 ppm). Amongst the river water fishes, the fluoride levels in bone were maximum in Catla (1.51 ppm). Also, the mean total fluoride concentrations of all the river fishes in skin, muscle and bone were less (0.86 ppm) as compared to the sea water fishes (2.59 ppm). It was unveiled that sea fishes accumulate relatively large amounts of Fluoride as compared to the river water fishes. The mean Community Fluorosis Index was found to be 1.06 amongst a sampled fish consuming population. Evaluation by Community Index for Dental fluorosis (CFI) suggested that fluorosis is of medium public health importance. It was analysed that bone tends to accumulate more amount of fluoride followed by muscle and skin which might be due to the increased permeability and chemical trapping of fluoride inside the tissues. The amount of fluoride present in the fishes is directly related to the severity of fluorosis amongst fish consuming population, suggesting fishes as a contributing factor to fluorosis depending upon the dietary consumption.

  14. Aqueous Assembly of Oxide and Fluoride Nanoparticles into 3D Microassemblies.

    PubMed

    Cui, Shanying; Guan, Xin N; Ghantous, Eliana; Vajo, John J; Lucas, Matthew; Hsiao, Ming-Siao; Drummy, Lawrence F; Collins, Joshua; Juhl, Abigail; Roper, Christopher S; Gross, Adam F

    2018-06-28

    We demonstrate rapid [∼mm 3 /(h·L)] organic ligand-free self-assembly of three-dimensional, >50 μm single-domain microassemblies containing up to 10 7 individual aligned nanoparticles through a scalable aqueous process. Organization and alignment of aqueous solution-dispersed nanoparticles are induced by decreasing their pH-dependent surface charge without organic ligands, which could be temperature-sensitive or infrared light absorbing. This process is exhibited by transforming both dispersed iron oxide hydroxide nanorods and lithium yttrium fluoride nanoparticles into high packing density microassemblies. The approach is generalizable to nanomaterials with pH-dependent surface charge (e.g., oxides, fluorides, and sulfides) for applications requiring long-range alignment of nanostructures as well as high packing density.

  15. RECOVERY OF URANIUM VALUES FROM RESIDUES

    DOEpatents

    Schaap, W.B.

    1959-08-18

    A process is described for the recovery of uranium from insoluble oxide residues resistant to repeated leaching with mineral acids. The residue is treated with gaseous hydrogen fluoride, then with hydrogen and again with hydrogen fluoride, preferably at 500 to 700 deg C, prior to the mineral acid leaching.

  16. The development and characterization of sol-gel substrates for chemical and optical applications

    NASA Astrophysics Data System (ADS)

    Powers, Kevin William

    1998-12-01

    The sol gel process can be used to make monolithic porous glass for various scientific and engineering uses. The porosity of the material imparts a large surface area which is advantageous in applications such as catalyst supports or in the study of surface mediated chemical reactions. The chemical stability and transparency of the porous glass also make it suitable for use in the emerging field of optical sensors. In this study fluoride catalysis is used to produce sol gel monoliths with pore radii of up to 400 Angstroms, four times larger than any previously reported using conventional drying techniques. Gel monoliths with pore radii of 200 Angstroms were found to have the best combination of surface area, pore volume and optical transparency. Typical monoliths have surface areas of 150 m2/g and pore volumes of 1.60 cm3/g with good transparency. The monoliths are chemically stable, have good mechanical strength and can be easily rehydrated without cracking. The substrates are also suitable for sintering into dense high purity silica glass with little tendency towards foaming. An in-depth study of the catalytic effect of fluoride on the sol gel process is also included. It has been theorized that fluoride serves to expand the coordination sphere of the silicon center making it more subject to nucleophilic attack. In this work an ion-specific fluoride electrode is used to monitor free fluoride concentrations in HF catalyzed sols while silicic acid is added in the form of tetramethoxysilane (TMOS). It is found that fluoride is rapidly bound by the silicic acid in a ratio of four to one, indicating the formation of silicon tetrafluoride. A concurrent decrease in pH suggests that a pentacoordinate species is formed that is more stable than previously thought. A polymerization mechanism is proposed that explains the hydrophobicity of fluoride catalyzed gels and the difficulty in retaining structural fluoride in fluoride catalyzed sol gel glasses. Finally, several porous monoliths are doped with colloidal gold and the optical properties evaluated as a function of heat treatment. This demonstrates the feasibility of using porous glass nanocomposites in sensors and other optical components.

  17. Lead enhances fluoride influence on apoptotic processes in the HepG2 liver cell line.

    PubMed

    Gutowska, Izabela; Baranowska-Bosiacka, Irena; Siwiec, Ewa; Szczuko, Małgorzata; Kolasa, Agnieszka; Kondarewicz, Anna; Rybicka, Marta; Dunaj-Stańczyk, Małgorzata; Wiernicki, Ireneusz; Chlubek, Dariusz; Stachowska, Ewa

    2016-03-01

    Chronic long-term exposure to high levels of fluoride leads to fluorosis, manifested by skeletal fluorosis and damage to internal organs, including kidneys, liver, parathyroid glands, and brain. Excess fluoride can also cause DNA damage, trigger apoptosis, and change cell cycle. The effect of fluoride may be exacerbated by lead (Pb), a potent inhibitor of many enzymes and a factor causing apoptosis, still present in the environment in excessive amounts. Therefore, in this study, we investigated the effects of sodium fluoride (NaF) and/or lead acetate (PbAc) on development of apoptosis, cell vitality, and proliferation in the liver cell line HepG2. We examined hepatocytes from the liver cell line HepG2, incubated for 48 h with NaF, PbAc, and their mixture (NaF + PbAc), and used for measuring apoptosis, index of proliferation, and vitality of cells. Incubation of the hepatocytes with NaF or PbAc increased apoptosis, more when fluoride and Pb were used simultaneously. Vitality of the cells depended on the compound used and its concentration. Proliferation slightly increased and then decreased in a high fluoride environment; it decreased significantly after addition of Pb in a dose-dependent manner. When used together, fluoride inhibited the decreasing effect of Pb on cell proliferation. © The Author(s) 2013.

  18. The Northland fluoridation advocacy programme: an evaluation.

    PubMed

    Gowda, Sunitha; Thomas, David R

    2008-12-01

    On 20 July 2006, the Far North District Council resolved to fluoridate Kaitaia and Kaikohe. This was the first such initiative by any Territorial Local Authority (TLA) in New Zealand for 23 years, and resulted from a fluoridation advocacy programme. This paper describes the programme implementation, assesses its consistency with the principles of the Treaty of Waitangi, and critically examines the collaboration between the fluoride advocate and the key stakeholders. Process evaluation identified three main categories of programme implementation: policy advocacy, community action projects, and media advocacy. The collaboration of iwi, Maori health providers and the community suggests that the programme was consistent with the principles (partnership, participation and protection) ofthe Treaty ofWaitangi. Media advocacy played an important role in reflecting and engaging community views on fluoridation, and it influenced decision-making by the Far North District Council. The simultaneous, combined 'top-down and bottom-up' approach was an effective and successful strategy for fluoridation advocacy in the community. Less integrated approaches implemented on their own (such as the 'top down' approach in Whangarei and the 'bottom-up' approach in Dargaville) were not effective.

  19. 40 CFR 421.322 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... refinery Chromium 32.270 13.200 Copper 139.300 73.340 Nickel 140.800 93.140 Fluoride 2,567.000 1,459.000... processed in the refinery Chromium (total) 2.009 0.822 Copper 8.675 4.566 Nickel 8.767 5.799 Fluoride 159... pounds) of uranium processed in the refinery Chromium (total) 2.802 1.146 Copper 12.100 6.369 Nickel 12...

  20. 40 CFR 421.322 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... refinery Chromium 32.270 13.200 Copper 139.300 73.340 Nickel 140.800 93.140 Fluoride 2,567.000 1,459.000... processed in the refinery Chromium (total) 2.009 0.822 Copper 8.675 4.566 Nickel 8.767 5.799 Fluoride 159... pounds) of uranium processed in the refinery Chromium (total) 2.802 1.146 Copper 12.100 6.369 Nickel 12...

  1. Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride

    NASA Astrophysics Data System (ADS)

    Qiao, Wei; Liu, Quan; Li, Zhipeng; Zhang, Hanqing; Chen, Zhuofan

    2017-12-01

    As the main inorganic component of xenogenic bone graft material, bone-derived biological apatite (BAp) has been widely used in implant dentistry, oral and maxillofacial surgery and orthopedics. However, BAp produced via calcination of animal bones still suffers from some drawbacks, such as insufficient mechanical strength and inadequate degradation rate, which impede its application. Fluoride is known to play important roles in both physiological and pathological processes of human hard tissues for its double effects on bones and teeth. In order to understand the effects of fluoride on the properties of BAp, as well as the mechanism behind them, porcine bone derived hydroxyapatite (PHAp) was prepared via thermal treatment, which was then fluoride incorporated at a series concentrations of sodium fluoride, and noted as 0.25-FPHAp, 0.50-FPHAp, and 0.75-FPHAp respectively. The physicochemical characteristics of the materials, including crystal morphology, crystallinity, functional groups, elemental composition, compressive strength, porosity and solubility, were then determined. The biological properties, such as protein adsorption and cell attachment, were also evaluated. It was found that the spheroid-like crystals of PHAp were changed into rod-like after fluoride substitution, resulting in a fluoride concentration-dependent increase in compressive strength, as well as a decreased porosity and solubility of the apatite. However, even though the addition of fluoride was demonstrated to enhance protein adsorption and cell attachment of the materials, the most favorable results were intriguingly achieved in FPHAp with the least fluoride content. Collectively, low level of fluoride incorporation is proposed promising for the modification of clinically used BAp based bone substitute materials, because of its being able to maintain a good balance between physicochemical and biological properties of the apatite.

  2. Caries status in 16 year-olds with varying exposure to water fluoridation in Ireland.

    PubMed

    Mullen, J; McGaffin, J; Farvardin, N; Brightman, S; Haire, C; Freeman, R

    2012-12-01

    Most of the Republic of Ireland's public water supplies have been fluoridated since the mid-1960s while Northern Ireland has never been fluoridated, apart from some small short-lived schemes in east Ulster. This study examines dental caries status in 16 year-olds in a part of Ireland straddling fluoridated and non-fluoridated water supply areas and compares two methods of assessing the effectiveness of water fluoridation. The cross-sectional survey tested differences in caries status by two methods: 1, Estimated Fluoridation Status as used previously in national and regional studies in the Republic and in the All-Island study of 2002; 2, Percentage Lifetime Exposure, a modification of a system described by Slade in 1995 and used in Australian caries research. Adolescents were selected for the study by a two-part random sampling process. Firstly, schools were selected in each area by creating three tiers based on school size, and selecting schools randomly from each tier. Then random sampling of 16-year-olds from these schools, based on a pre-set sampling fraction for each tier of schools. With both systems of measurement, significantly lower caries levels were found in those children with the greatest exposure to fluoridated water when compared to those with the least exposure. The survey provides further evidence of the effectiveness in reducing dental caries experience up to 16 years of age. The extra intricacies involved in using the Percentage Lifetime Exposure method did not provide much more information when compared to the simpler Estimated Fluoridation Status method.

  3. A randomised clinical study to evaluate experimental children's toothpastes in an in-situ palatal caries model in children aged 11-14 years.

    PubMed

    Newby, Evelyn E; Martinez-Mier, Esperanza A; Hara, Anderson; Lippert, Frank; Kelly, Sue A; Fleming, Nancy; Butler, Andrew; Bosma, Mary Lynn; Zero, Domenick T

    2013-12-01

    To compare three children's sodium fluoride toothpastes to placebo with respect to enamel remineralisation potential, enamel fluoride uptake and net acid resistance using an in situ palatal caries model in children aged 11-14 years following a single brushing. This was a randomised, single blind (laboratory analyst), single-centre, four-treatment, crossover study with a 7-day washout period between treatments. The treatments were 1,426 ppm fluoride, 1,000 ppm fluoride, 500 ppm fluoride and 0 ppm fluoride (placebo) toothpaste (NaF/silica). A custom made in situ palatal appliance was used by each subject in all treatment periods. At each of the four treatment visits subjects wore the appliance containing four partially demineralised human enamel specimens for 5 minutes and then brushed their teeth using a standardised procedure for 60 seconds under supervision using 1.0 g (±0.1 g) of their assigned toothpaste. After 4 hours the appliance was removed and enamel specimen recovered. This process was repeated until all subjects completed all four study treatment visits. Recovered enamel specimens were analysed for per cent surface microhardness recovery (%SMHR; Knoop) and enamel fluoride uptake (EFU; microdrill biopsy). Subsequently, specimens were demineralised in vitro to determine their % net acid resistance (%NAR; Knoop). All three fluoride toothpastes demonstrated significantly greater %SMHR, EFU and %NAR compared with 0 ppm F toothpaste. The model demonstrated a dose response over the range 0 to 1,426 ppm fluoride for %SMHR, EFU and %NAR. There was no significant difference between 500 ppm F and 1,000 ppm F for %SMHR and between 1,000 ppm F and 1,426 ppm F for %SMHR, EFU and %NAR. The present in situ study demonstrated that the children's fluoride toothpastes tested are capable of delivering cariostatic amounts of fluoride to early caries lesions following a single brushing. © 2013 FDI World Dental Federation.

  4. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    PubMed

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  6. MRI brain in monohalomethane toxic encephalopathy: A case report.

    PubMed

    Deshmukh, Yogeshwari S; Atre, Ashish; Shah, Darshan; Kothari, Sudhir

    2013-07-01

    Monohalomethanes are alkylating agents that have been used as methylating agents, laboratory reagents, refrigerants, aerosol propellants, pesticides, fumigants, fire-extinguishing agents, anesthetics, degreasers, blowing agents for plastic foams, and chemical intermediates. Compounds in this group are methyl chloride, methyl bromide, methyl iodide (MI), and methyl fluoride. MI is a colorless volatile liquid used as a methylating agent to manufacture a few pharmaceuticals and is also used as a fumigative insecticide. It is a rare intoxicant. Neurotoxicity is known with both acute and chronic exposure to MI. We present the characteristic magnetic resonance imaging (MRI) brain findings in a patient who developed neuropsychiatric symptoms weeks after occupational exposure to excessive doses of MI.

  7. An update of the federal drinking water regs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontius, F.W.

    1995-02-01

    Previous reviews have summarized the regulations promulgated for volatile organic chemicals (VOCs), fluoride, surface water treatment, total coliform bacteria, lead and copper, and Phase 2 and Phase 5 synthetic organic contaminants (SOCs) and inorganic contaminants (IOCs). Current developments related to these rules and anticipated new rules are reviewed in this article. Current numerical drinking water standards and best available technology (BAT) are summarized. The status of all current, proposed, and anticipated regulations is also summarized. Dates for anticipated agency actions are based on the US Environmental Protection Agency's (USEPA's) published regulatory agenda and on information released by the agency throughmore » December 1994; these dates can change as the agency reconsiders its regulatory policies.« less

  8. First fluorescent sensor for fluoride based on 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded AADD supramolecular assembly.

    PubMed

    Zhao, Yao-Peng; Zhao, Chun-Chang; Wu, Li-Zhu; Zhang, Li-Ping; Tung, Chen-Ho; Pan, Yuan-Jiang

    2006-03-03

    A simple, highly selective, neutral, fluorescent sensor for fluoride anions is reported. It is based on 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded AADD supramolecular assembly, and its assembling and disassembling processes are also able to respond to external stimuli reversibly.

  9. Role of the P-F bond in fluoride-promoted aqueous VX hydrolysis: an experimental and theoretical study.

    PubMed

    Marciano, Daniele; Columbus, Ishay; Elias, Shlomi; Goldvaser, Michael; Shoshanim, Ofir; Ashkenazi, Nissan; Zafrani, Yossi

    2012-11-16

    Following our ongoing studies on the reactivity of the fluoride ion toward organophosphorus compounds, we established that the extremely toxic and environmentally persistent chemical warfare agent VX (O-ethyl S-2-(diisopropylamino)ethyl methylphosphonothioate) is exclusively and rapidly degraded to the nontoxic product EMPA (ethyl methylphosphonic acid) even in dilute aqueous solutions of fluoride. The unique role of the P-F bond formation in the reaction mechanism was explored using both experimental and computational mechanistic studies. In most cases, the "G-analogue" (O-ethyl methylphosphonofluoridate, Et-G) was observed as an intermediate. Noteworthy and of practical importance is the fact that the toxic side product desethyl-VX, which is formed in substantial quantities during the slow degradation of VX in unbuffered water, is completely avoided in the presence of fluoride. A computational study on a VX-model, O,S-diethyl methylphosphonothioate (1), clarifies the distinctive tendency of aqueous fluoride ions to react with such organophosphorus compounds. The facility of the degradation process even in dilute fluoride solutions is due to the increased reactivity of fluoride, which is caused by the significant low activation barrier for the P-F bond formation. In addition, the unique nucleophilicity of fluoride versus hydroxide toward VX, in contrast to their relative basicity, is discussed. Although the reaction outcomes were similar, much slower reaction rates were observed experimentally for the VX-model (1) in comparison to VX.

  10. Experimental Demonstration of the Molten Oxide Electrolysis Method for Oxygen and Iron Production from Simulated Lunar Materials

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.

    2006-01-01

    This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT).

  11. Removal of fluoride by thermally activated carbon prepared from neem (Azadirachta indica) and kikar (Acacia arabica) leaves.

    PubMed

    Kumar, Sunil; Gupta, Asha; Yadav, J P

    2008-03-01

    The present investigation deals with fluoride removal from aqueous solution by thermally activated neem (Azadirachta indica) leaves carbon (ANC) and thermally activated kikar (Acacia arabica) leaves carbon (AKC) adsorbents. In this study neem leaves carbon and kikar leaves carbon prepared by heating the leaves at 400 degrees C in electric furnace was found to be useful for the removal of fluoride. The adsorbents of 0.3 mm and 1.0 mm sizes of neem and kikar leaves carbon was prepared by standard sieve. Batch experiments done to see the fluoride removal properties from synthetic solution of 5 ppm to study the influence of pH, adsorbent dose and contact time on adsorption efficiency The optimum pH was found to be 6 for both adsorbents. The optimum dose was found to be 0.5g/100 ml forANC (activated neem leaves carbon) and 0.7g/100 ml forAKC (activated kikar leaves carbon). The optimum time was found to be one hour for both the adsorbent. It was also found that adsorbent size of 0.3 mm was more efficient than the 1.0 mm size. The adsorption process obeyed Freundlich adsorption isotherm. The straight line of log (qe-q) vs time at ambient temperature indicated the validity of langergren equation consequently first order nature of the process involved in the present study. Results indicate that besides intraparticle diffusion there maybe other processes controlling the rate which may be operating simultaneously. All optimized conditions were applied for removal of fluoride from four natural water samples.

  12. Atomic layer deposition of magnesium fluoride via bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessy, John, E-mail: hennessy@caltech.edu; Jewell, April D.; Greer, Frank

    2015-01-15

    A new process has been developed to deposit magnesium fluoride (MgF{sub 2}) thin films via atomic layer deposition (ALD) for use as optical coatings in the ultraviolet. MgF{sub 2} was deposited in a showerhead style ALD reactor using bis(ethylcyclopentadienyl)magnesium and anhydrous hydrogen fluoride (HF) as precursors at substrate temperatures from 100 to 250 °C. The use of HF was observed to result in improved morphology and reduced impurity content compared to other reported MgF{sub 2} ALD approaches that use metal fluoride precursors as the fluorine-containing chemistry. Characterization of these films has been performed using spectroscopic ellipsometry, atomic force microscopy, and x-raymore » photoelectron spectroscopy for material deposited on silicon substrates. Films at all substrate temperatures were transparent at wavelengths down to 190 nm and the low deposition temperature combined with low surface roughness makes these coatings good candidates for a variety of optical applications in the far ultraviolet.« less

  13. Broadband X-ray edge-enhancement imaging of a boron fibre on lithium fluoride thin film detector

    NASA Astrophysics Data System (ADS)

    Nichelatti, E.; Bonfigli, F.; Vincenti, M. A.; Cecilia, A.; Vagovič, P.; Baumbach, T.; Montereali, R. M.

    2016-10-01

    The white beam (∼6-80 keV) available at the TopoTomo X-ray beamline of the ANKA synchrotron facility (KIT, Karlsruhe, Germany) was used to perform edge-enhancement imaging tests on lithium fluoride radiation detectors. The diffracted X-ray image of a microscopic boron fibre, consisting of tungsten wire wrapped by boron cladding, was projected onto lithium fluoride thin films placed at several distances, from contact to 1 m . X-ray photons cause the local formation of primary and aggregate colour centres in lithium fluoride; these latter, once illuminated under blue light, luminesce forming visible-light patterns-acquired by a confocal laser scanning microscope-that reproduce the intensity of the X-ray diffracted images. The tests demonstrated the excellent performances of lithium fluoride films as radiation detectors at the investigated photon energies. The experimental results are here discussed and compared with those calculated with a model that takes into account all the processes that concern image formation, storing and readout.

  14. Inhibition of Aspergillus niger Phosphate Solubilization by Fluoride Released from Rock Phosphate

    PubMed Central

    Mendes, Gilberto de Oliveira; Vassilev, Nikolay Bojkov; Bonduki, Victor Hugo Araújo; da Silva, Ivo Ribeiro; Ribeiro, José Ivo

    2013-01-01

    The simultaneous release of various chemical elements with inhibitory potential for phosphate solubilization from rock phosphate (RP) was studied in this work. Al, B, Ba, Ca, F, Fe, Mn, Mo, Na, Ni, Pb, Rb, Si, Sr, V, Zn, and Zr were released concomitantly with P during the solubilization of Araxá RP (Brazil), but only F showed inhibitory effects on the process at the concentrations detected in the growth medium. Besides P solubilization, fluoride decreased fungal growth, citric acid production, and medium acidification by Aspergillus niger. At the maximum concentration found during Araxá RP solubilization (22.9 mg F− per liter), fluoride decreased P solubilization by 55%. These findings show that fluoride negatively affects RP solubilization by A. niger through its inhibitory action on the fungal metabolism. Given that fluoride is a common component of RPs, the data presented here suggest that most of the microbial RP solubilization systems studied so far were probably operated under suboptimal conditions. PMID:23770895

  15. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less

  16. A comparative study of removal of fluoride from contaminated water using shale collected from different coal mines in India.

    PubMed

    Biswas, Gargi; Dutta, Manjari; Dutta, Susmita; Adhikari, Kalyan

    2016-05-01

    Low-cost water defluoridation technique is one of the most important issues throughout the world. In the present study, shale, a coal mine waste, is employed as novel and low-cost adsorbent to abate fluoride from simulated solution. Shale samples were collected from Mahabir colliery (MBS) and Sonepur Bazari colliery (SBS) of Raniganj coalfield in West Bengal, India, and used to remove fluoride. To increase the adsorption efficiency, shale samples were heat activated at a higher temperature and samples obtained at 550 °C are denoted as heat-activated Mahabir colliery shale (HAMBS550) and heat-activated Sonepur Bazari colliery shale (HASBS550), respectively. To prove the fluoride adsorption onto different shale samples and ascertain its mechanism, natural shale samples, heat-activated shale samples, and their fluoride-loaded forms were characterized using scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction study, and Fourier transform infrared spectroscopy. The effect of different parameters such as pH, adsorbent dose, size of particles, and initial concentration of fluoride was investigated during fluoride removal in a batch contactor. Lower pH shows better adsorption in batch study, but it is acidic in nature and not suitable for direct consumption. However, increase of pH of the solution from 3.2 to 6.8 and 7.2 during fluoride removal process with HAMBS550 and HASBS550, respectively, confirms the applicability of the treated water for domestic purposes. HAMBS550 and HASBS550 show maximum removal of 88.3 and 88.5 %, respectively, at initial fluoride concentration of 10 mg/L, pH 3, and adsorbent dose of 70 g/L.

  17. Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology.

    PubMed

    Samarghandi, Mohammad Reza; Khiadani, Mehdi; Foroughi, Maryam; Zolghadr Nasab, Hasan

    2016-01-01

    Adsorption by activated alumina is considered to be one of the most practiced methods for defluoridation of freshwater. This study was conducted, therefore, to investigate the effect of natural organic matters (NOMs) on the removal of fluoride by activated alumina using response surface methodology. To the authors' knowledge, this has not been previously investigated. Physico-chemical characterization of the alumina was determined by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffractometer (XRD). Response surface methodology (RSM) was applied to evaluate the effect of single and combined parameters on the independent variables such as the initial concentration of fluoride, NOMs, and pH on the process. The results revealed that while presence of NOM and increase of pH enhance fluoride adsorption on the activated alumina, initial concentration of fluoride has an adverse effect on the efficiency. The experimental data were analyzed and found to be accurately and reliably fitted to a second-order polynomial model. Under optimum removal condition (fluoride concentration 20 mg/L, NOM concentration 20 mg/L, and pH 7) with a desirability value of 0.93 and fluoride removal efficiency of 80.6%, no significant difference was noticed with the previously reported sequence of the co-exiting ion affinity to activated alumina for fluoride removal. Moreover, aluminum residual was found to be below the recommended value by the guideline for drinking water. Also, the increase of fluoride adsorption on the activated alumina, as NOM concentrations increase, could be due to the complexation between fluoride and adsorbed NOM. Graphical abstract ᅟ.

  18. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption.

    PubMed

    Mullick, Aditi; Neogi, Sudarsan

    2018-07-01

    Environmental concern associated with the side effects of high fluoride content in ground water and surface water has prompted the researchers to look for an efficient, convenient and easy method. Considering the potential of a good adsorbent, present study reports the synthesis of a composite by impregnating zirconium on powdered activated carbon (AC) using ultrasound as the tool for synthesis and applying it for fluoride adsorption from water. The nature of the composite was determined through characterization by scanning electron microscopy (SEM), energy dispersive Xray (EDX), Xray diffraction (XRD), N 2 adsorption analysis (BET) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The pH pzc (point of zero charge) of the adsorbent was found to be 5.03; with the optimum pH obtained at 4 for adsorption of strong electronegative fluoride ions. The initial fluoride concentration was varied from 2.5 up to 20 mg.L -1 and the maximum adsorption capacity of 5 mg.g -1 was obtained. A maximum fluoride removal of 94.4% was obtained for an initial concentration of 2.5 mg.L -1 within an equilibrium time of 180 min. The adsorption isotherm followed the Langmuir isotherm model indicating a monolayer adsorption process and the adsorption kinetics followed pseudo second order model. The effects of various coexisting ions (HCO 3 - , NO 3 - , SO 4 2- , Cl - ) commonly present in the water were found to have negligible impact on the process performance. Conducting the adsorption-desorption studies for five consecutive cycles for an initial fluoride concentration of 10 mg.L -1 , the removal efficiency reduced from 86.2 to 32.6%. The ultrasonic method provided an easy route to synthesize the composite in less time and significantly reduced energy consumption by more than 96% compared to the conventional method. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process?

    PubMed

    Gui, Jiadong; Fu, Xiumin; Zhou, Ying; Katsuno, Tsuyoshi; Mei, Xin; Deng, Rufang; Xu, Xinlan; Zhang, Linyun; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2015-08-12

    It was generally thought that aroma of oolong tea resulted from hydrolysis of glycosidically bound volatiles (GBVs). In this study, most GBVs showed no reduction during the oolong tea manufacturing process. β-Glycosidases either at protein or gene level were not activated during the manufacturing process. Subcellular localization of β-primeverosidase provided evidence that β-primeverosidase was located in the leaf cell wall. The cell wall remained intact during the enzyme-active manufacturing process. After the leaf cell disruption, GBV content was reduced. These findings reveal that, during the enzyme-active process of oolong tea, nondisruption of the leaf cell walls resulted in impossibility of interaction of GBVs and β-glycosidases. Indole, jasmine lactone, and trans-nerolidol were characteristic volatiles produced from the manufacturing process. Interestingly, the contents of the three volatiles was reduced after the leaf cell disruption, suggesting that mechanical damage with the cell disruption, which is similar to black tea manufacturing, did not induce accumulation of the three volatiles. In addition, 11 volatiles with flavor dilution factor ≥4(4) were identified as relatively potent odorants in the oolong tea. These results suggest that enzymatic hydrolysis of GBVs was not involved in the formation of volatiles of oolong tea, and some characteristic volatiles with potent odorants were produced from the manufacturing process.

  20. Approximation methods of European option pricing in multiscale stochastic volatility model

    NASA Astrophysics Data System (ADS)

    Ni, Ying; Canhanga, Betuel; Malyarenko, Anatoliy; Silvestrov, Sergei

    2017-01-01

    In the classical Black-Scholes model for financial option pricing, the asset price follows a geometric Brownian motion with constant volatility. Empirical findings such as volatility smile/skew, fat-tailed asset return distributions have suggested that the constant volatility assumption might not be realistic. A general stochastic volatility model, e.g. Heston model, GARCH model and SABR volatility model, in which the variance/volatility itself follows typically a mean-reverting stochastic process, has shown to be superior in terms of capturing the empirical facts. However in order to capture more features of the volatility smile a two-factor, of double Heston type, stochastic volatility model is more useful as shown in Christoffersen, Heston and Jacobs [12]. We consider one modified form of such two-factor volatility models in which the volatility has multiscale mean-reversion rates. Our model contains two mean-reverting volatility processes with a fast and a slow reverting rate respectively. We consider the European option pricing problem under one type of the multiscale stochastic volatility model where the two volatility processes act as independent factors in the asset price process. The novelty in this paper is an approximating analytical solution using asymptotic expansion method which extends the authors earlier research in Canhanga et al. [5, 6]. In addition we propose a numerical approximating solution using Monte-Carlo simulation. For completeness and for comparison we also implement the semi-analytical solution by Chiarella and Ziveyi [11] using method of characteristics, Fourier and bivariate Laplace transforms.

  1. Effect of discontinuation of fluoride intake from water and toothpaste on urinary excretion in young children.

    PubMed

    Martins, Carolina C; Paiva, Saul M; Cury, Jaime A

    2011-06-01

    As there is no homeostatic mechanism for maintaining circulating fluoride (F) in the human body, the concentration may decrease and increase again when intake is interrupted and re-started. The present study prospectively evaluated this process in children exposed to F intake from water and toothpaste, using F in urine as a biomarker. Eleven children from Ibiá, Brazil (with sub-optimally fluoridated water supply) aged two to four years who regularly used fluoridated toothpaste (1,100 ppm F) took part in the study. Twenty-four-hour urine was collected at baseline (Day 0, F exposure from water and toothpaste) as well as after the interruption of fluoride intake from water and dentifrice (Days 1 to 28) (F interruption) and after fluoride intake from these sources had been re-established (Days 29 to 34) (F re-exposure). Urinary volume was measured, fluoride concentration was determined and the amount of fluoride excreted was calculated and expressed in mg F/day. Urinary fluoride excretion (UFE) during the periods of fluoride exposure, interruption and re-exposure was analyzed using the Wilcoxon test. Mean UFE was 0.25 mg F/day (SD: 0.15) at baseline, dropped to a mean of 0.14 mg F/day during F interruption (SD: 0.07; range: 0.11 to 0.17 mg F/day) and rose to 0.21 (SD: 0.09) and 0.19 (SD: 0.08) following F re-exposure. The difference between baseline UFE and the period of F interruption was statistically significant (p<0.05), while the difference between baseline and the period of F re-exposure was non-significant (p>0.05). The findings suggest that circulating F in the body of young children rapidly decreases in the first 24 hours and again increases very fast after discontinuation and re-exposure of F from water and toothpaste.

  2. Effect of Discontinuation of Fluoride Intake from Water and Toothpaste on Urinary Excretion in Young Children

    PubMed Central

    Martins, Carolina C.; Paiva, Saul M.; Cury, Jaime A.

    2011-01-01

    As there is no homeostatic mechanism for maintaining circulating fluoride (F) in the human body, the concentration may decrease and increase again when intake is interrupted and re-started. The present study prospectively evaluated this process in children exposed to F intake from water and toothpaste, using F in urine as a biomarker. Eleven children from Ibiá, Brazil (with sub-optimally fluoridated water supply) aged two to four years who regularly used fluoridated toothpaste (1,100 ppm F) took part in the study. Twenty-four-hour urine was collected at baseline (Day 0, F exposure from water and toothpaste) as well as after the interruption of fluoride intake from water and dentifrice (Days 1 to 28) (F interruption) and after fluoride intake from these sources had been re-established (Days 29 to 34) (F re-exposure). Urinary volume was measured, fluoride concentration was determined and the amount of fluoride excreted was calculated and expressed in mg F/day. Urinary fluoride excretion (UFE) during the periods of fluoride exposure, interruption and re-exposure was analyzed using the Wilcoxon test. Mean UFE was 0.25 mg F/day (SD: 0.15) at baseline, dropped to a mean of 0.14 mg F/day during F interruption (SD: 0.07; range: 0.11 to 0.17 mg F/day) and rose to 0.21 (SD: 0.09) and 0.19 (SD: 0.08) following F re-exposure. The difference between baseline UFE and the period of F interruption was statistically significant (p < 0.05), while the difference between baseline and the period of F re-exposure was non-significant (p > 0.05). The findings suggest that circulating F in the body of young children rapidly decreases in the first 24 hours and again increases very fast after discontinuation and re-exposure of F from water and toothpaste. PMID:21776221

  3. Comparison of fluoride intercalation/de-intercalation processes on graphite electrodes in aqueous and aqueous methanolic HF media

    NASA Astrophysics Data System (ADS)

    Noel, M.; Santhanam, R.; Francisca Flora, M.

    The solvent can play a major role in the intercalation/de-intercalation process and the stability of graphite substrates towards this process. This fact is established in the present work that involves fluoride intercalation/de-intercatlation on graphite electrodes in aqueous and aqueous methanolic HF solutions where the HF concentration is varied between 1.0 and 18.0 M. In addition to cyclic voltammetry and potentiostatic polarization, open-circuit potential decay measurements, scanning electron microscopy and X-ray diffraction measurements have been employed. In general, addition of methanol and increasing concentration of HF raise the overall intercalation/de-intercalation efficiency. Methanol is adsorbed preferentially on the graphite lattice and, hence, suppresses both oxygen evolution and the formation of passive graphite oxides. In 15.0 M HF, the optimum methanol concentration is 5 vol.%. This suggests that, in addition to the adsorption effect, there is some weakening of the structured water molecules that facilitates the solvated fluoride ions for efficient intercalation.

  4. Optimisation of a sol-gel synthesis route for the preparation of MgF2 particles for a large scale coating process.

    PubMed

    Scheurell, K; Noack, J; König, R; Hegmann, J; Jahn, R; Hofmann, Th; Löbmann, P; Lintner, B; Garcia-Juan, P; Eicher, J; Kemnitz, E

    2015-12-07

    A synthesis route for the preparation of optically transparent magnesium fluoride sols using magnesium acetate tetrahydrate as precursor is described. The obtained magnesium fluoride sols are stable for several months and can be applied for antireflective coatings on glass substrates. Reaction parameters in the course of sol synthesis are described in detail. Thus, properties of the precursor materials play a crucial role in the formation of the desired magnesium fluoride nanoparticles, this is drying the precursor has to be performed under defined mild conditions, re-solvation of the dried precursor has to be avoided and addition of water to the final sol-system has to be controlled strictly. Important properties of the magnesium fluoride sols like viscosity, particle size distribution, and structural information are presented as well.

  5. Selective separation of phosphate and fluoride from semiconductor wastewater.

    PubMed

    Warmadewanthi, B; Liu, J C

    2009-01-01

    Hydrofluoric acid (HF) and phosphoric acid (H(3)PO(4)) are widely used in semiconductor industry for etching and rinsing purposes. Consequently, significant amount of wastewater containing phosphate and fluoride is generated. Selective separation of phosphate and fluoride from the semiconductor wastewater, containing 936 mg/L of fluoride, 118 mg/L of phosphate, 640 mg/L of sulfate, and 26.7 mg/L of ammonia, was studied. Chemical precipitation and flotation reactions were utilized in the two-stage treatment processes. The first-stage reaction involved the addition of magnesium chloride (MgCl(2)) to induce selective precipitation of magnesium phosphate. The optimal condition was pH 10 and molar ratio, [Mg(2 + )]/[(PO(4) (3-))], of 3:1, and 66.2% of phosphate was removed and recovered as bobierrite (Mg(3)(PO(4))(2).8H(2)O). No reaction was found between MgCl(2) and fluoride. Calcium chloride (CaCl(2)) was used in the second-stage reaction to induce precipitation of calcium fluoride and calcium phosphate. The optimum molar ratio, [Ca(2 + )]/[F(-)], was 0.7 at pH 10, and residual fluoride concentration of 10.7 mg/L and phosphate concentration of lower than 0.5 mg/L was obtained. Thermodynamic equilibrium was modeled with PHREEQC and compared with experimental results. Sodium dodecylsulfate (SDS) was an effective collector for subsequent solid-liquid removal via dispersed air flotation (DiAF). The study demonstrated that phosphate can be selectively recovered from the wastewater. Potential benefits include recovery of phosphate for reuse, lower required dosage of calcium for fluoride removal, and less amount of CaF(2) sludge.

  6. Dental fluorosis: chemistry and biology.

    PubMed

    Aoba, T; Fejerskov, O

    2002-01-01

    This review aims at discussing the pathogenesis of enamel fluorosis in relation to a putative linkage among ameloblastic activities, secreted enamel matrix proteins and multiple proteases, growing enamel crystals, and fluid composition, including calcium and fluoride ions. Fluoride is the most important caries-preventive agent in dentistry. In the last two decades, increasing fluoride exposure in various forms and vehicles is most likely the explanation for an increase in the prevalence of mild-to-moderate forms of dental fluorosis in many communities, not the least in those in which controlled water fluoridation has been established. The effects of fluoride on enamel formation causing dental fluorosis in man are cumulative, rather than requiring a specific threshold dose, depending on the total fluoride intake from all sources and the duration of fluoride exposure. Enamel mineralization is highly sensitive to free fluoride ions, which uniquely promote the hydrolysis of acidic precursors such as octacalcium phosphate and precipitation of fluoridated apatite crystals. Once fluoride is incorporated into enamel crystals, the ion likely affects the subsequent mineralization process by reducing the solubility of the mineral and thereby modulating the ionic composition in the fluid surrounding the mineral. In the light of evidence obtained in human and animal studies, it is now most likely that enamel hypomineralization in fluorotic teeth is due predominantly to the aberrant effects of excess fluoride on the rates at which matrix proteins break down and/or the rates at which the by-products from this degradation are withdrawn from the maturing enamel. Any interference with enamel matrix removal could yield retarding effects on the accompanying crystal growth through the maturation stages, resulting in different magnitudes of enamel porosity at the time of tooth eruption. Currently, there is no direct proof that fluoride at micromolar levels affects proliferation and differentiation of enamel organ cells. Fluoride does not seem to affect the production and secretion of enamel matrix proteins and proteases within the dose range causing dental fluorosis in man. Most likely, the fluoride uptake interferes, indirectly, with the protease activities by decreasing free Ca(2+) concentration in the mineralizing milieu. The Ca(2+)-mediated regulation of protease activities is consistent with the in situ observations that (a) enzymatic cleavages of the amelogenins take place only at slow rates through the secretory phase with the limited calcium transport and that, (b) under normal amelogenesis, the amelogenin degradation appears to be accelerated during the transitional and early maturation stages with the increased calcium transport. Since the predominant cariostatic effect of fluoride is not due to its uptake by the enamel during tooth development, it is possible to obtain extensive caries reduction without a concomitant risk of dental fluorosis. Further efforts and research are needed to settle the currently uncertain issues, e.g., the incidence, prevalence, and causes of dental or skeletal fluorosis in relation to all sources of fluoride and the appropriate dose levels and timing of fluoride exposure for prevention and control of dental fluorosis and caries.

  7. Investigating Long-Range Dependence in American Treasury Bills Variations and Volatilities during Stable and Unstable Periods

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-05-01

    Detrended fluctuation analysis (DFA) is used to examine long-range dependence in variations and volatilities of American treasury bills (TB) during periods of low and high movements in TB rates. Volatility series are estimated by generalized autoregressive conditional heteroskedasticity (GARCH) model under Gaussian, Student, and the generalized error distribution (GED) assumptions. The DFA-based Hurst exponents from 3-month, 6-month, and 1-year TB data indicates that in general the dynamics of the TB variations process is characterized by persistence during stable time period (before 2008 international financial crisis) and anti-persistence during unstable time period (post-2008 international financial crisis). For volatility series, it is found that; for stable period; 3-month volatility process is more likely random, 6-month volatility process is anti-persistent, and 1-year volatility process is persistent. For unstable period, estimation results show that the generating process is persistent for all maturities and for all distributional assumptions.

  8. 40 CFR 426.115 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (the fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water... 130.0 Fluoride 120.0 60.0 Lead 30.9 0.45 pH (1) (1) English units (lb/1,000 lb of furnace pull) Oil 0...

  9. 40 CFR 426.115 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (the fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water... 130.0 Fluoride 120.0 60.0 Lead 30.9 0.45 pH (1) (1) English units (lb/1,000 lb of furnace pull) Oil 0...

  10. 40 CFR 426.115 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (the fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water... 130.0 Fluoride 120.0 60.0 Lead 30.9 0.45 pH (1) (1) English units (lb/1,000 lb of furnace pull) Oil 0...

  11. 40 CFR 426.115 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (the fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water... 130.0 Fluoride 120.0 60.0 Lead 30.9 0.45 pH (1) (1) English units (lb/1,000 lb of furnace pull) Oil 0...

  12. Fluoride Induces Apoptosis in Mammalian Cells: In Vitro and In Vivo Studies.

    PubMed

    Ribeiro, Daniel Araki; Cardoso, Caroline Margonato; Yujra, Veronica Quispe; DE Barros Viana, Milena; Aguiar, Odair; Pisani, Luciana Pellegrini; Oshima, Celina Tizuko Fujiyama

    2017-09-01

    Apoptosis is genetically programmed cell death, an irreversible process of cell senescence with characteristic features different from other cellular mechanisms of death such as necrosis. In the last years, apoptosis has been extensively studied in the scientific literature, because it has been established that apoptosis plays a crucial role following the time course of chronic degenerative diseases, such as cancer. Thus, several researchers have strugged to detect what chemical agents are able to inter fere with the apoptotic process. Thus, the purpose of this literature review is to assess if fluoride induces apoptosis in mammalian cells using in vivo and in vitro test systems. Certain mammalian cell types such as oral cells, blood and brain were exetensively investigated; the results showed that fluoride is able to induce apoptosis in both intrinsinc and extrinsic pathways. Moreover, other cells types have been poorly investigated such as bone, kidney and reproductive cells with conflicting results so far. Therefore, this area needs further investigation for the safety of human populations exposed to fluoride in a chronic way, as for example in developing countries. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  14. The removal of fluoride from aqueous solution by a lateritic soil adsorption: Kinetic and equilibrium studies.

    PubMed

    Iriel, Analia; Bruneel, Stijn P; Schenone, Nahuel; Cirelli, Alicia Fernández

    2018-03-01

    The use of natural sorbents to remove fluoride from drinking water is a promising alternative because of its low-cost and easy implementation. In this article, fluoride adsorption on a latosol soil from Misiones province (Argentina) was studied regarding kinetic and equilibrium aspects. Experiments were conducted in batch at room temperature under controlled conditions of pH 4-8) and ionic strength (1-10mM KNO 3 ). Experimental data indicated that adsorption processes followed a PSO kinetic where initial rates have showed to be influenced by pH solution. The necessary time to reach an equilibrium state had resulted approximately 30min. Equilibrium adsorption studies were performed at pH 8 which is similar to the natural groundwater. For that, fluoride adsorption data were successfully adjusted to Dubinin-Ataskhov model determining that the fluoride adsorption onto soil particles mainly followed a physical mechanism with a removal capacity of 0.48mgg -1 . Finally, a natural groundwater was tested with laterite obtaining a reduction close to 30% from initial concentration and without changing significantly the physicochemical properties of the natural water. Therefore, it was concluded that the use of lateritic soils for fluoride removal is very promising on a domestic scale. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Thermodynamic Model of the Na-Al-Si-O-F Melts

    NASA Astrophysics Data System (ADS)

    Dolejs, D.; Baker, D. R.

    2004-05-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids which links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals or fluoride-silicate immiscibility in natural felsic melts. Configurational properties of the liquid are defined by mixing of alkali fluoride, polyhedral aluminofluoride and silicofluoride species and non-bridging terminations of the silicate network. Abundances of individual structural species are described by a homogeneous equilibrium, representing melt depolymerization: F- (free) + O0 (bridging) = F0 (terminal) + O- (non-bridging), which is a replacement of one oxygen bridge, Si-O-Si, by two terminations, Si-F | Na-O-Si. In cryolite-bearing systems, the self-dissociation of octahedral aluminofluoride complexes: Na3[AlF6] = Na[AlF4] + 2 NaF, and the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F, represent two additional interaction mechanisms. Portrayal of these equilibria in ternary Thompson reaction space allows to decrease the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the interaction parameters are incorporated directly in configurational properties, thus the complete melt speciation can be calculated, and the activities of any macroscopic species are readily derived. The model has been applied to subsystems of the Na2O-NaAlO2-SiO2-F2O-1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra in fluoride solvent. Phase-equilibria in cryolite-nepheline and cryolite-albite systems illustrate an overall increase of Na3AlF6 self-association in both joins. On the other hand, melt depolymerization by fluorine controls depression of silicate liquidi. The present model is useful for modeling the differentiation of peralkaline fluorine-bearing magmas and provides a starting point for predicting halide, carbonate, sulfide or sulfate saturation in natural melts.

  16. Chemical hazards from acid crater lakes

    NASA Astrophysics Data System (ADS)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pH<0.5) sulphate, chloride and fluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from <1 to 2.5-4 is largely due to dilution with moderately acid springs (pH= ca. 4) and neutral tributaries (pH= ca. 7) inside the Ijen caldera. Geochemical controls that regulate element transport are subject to seasonal fluctuations in rainfall. Long-term monitoring has shown that fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where volatile elements, derived from passively degassing magma, are intercepted by (sub) surface water bodies.

  17. Hydrogeochemical processes controlling changes in fluoride ion concentration within alluvial and hard rock aquifers in a part of a semi-arid region of Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Priyadarshini; Ashthana, Harshita; Rena, Vikas; Kumar, Pardeep; Mukherjee, Saumitra

    2017-04-01

    Geochemical signatures from alluvial and hard rock aquifers in a part of Northern India elucidate the chemical processes controlling fluctuations in fluoride ion concentration linked to changes in major ion groundwater chemistry. Majority of samples from the hard rock and the alluvial aquifers for pre-monsoon show both carbonate and silicate weathering, ion exchange, evaporation and rock water interaction as the processes controlling major ion chemistry whereas for post monsoon samples, contribution of silicate weathering and ion exchange process were observed. Evaporative processes causing the increase in Na+ ion concentration in premonsoon enhance the reverse ion exchange processes causing increase in Ca2+ ions which impedes fluorite mineral dissolution in the premonsoon groundwater samples within the study area. Alternately, it is observed that the removal of Ca2+ ion from solution plays a key role in increase in fluorite mineral dissolution despite its saturation in groundwater in the postmonsoon samples. Also, ion exchange process on clay surfaces is more pronounced in the postmonsoon samples leading to the uptake of Ca2+ ion upon release of Na+ and K+ ion in solution. Ca2+ ion concentration is inversely correlated with F- ion concentration in both the aquifers in the postmonsoon season validating the role of calcite precipitation as a major reason for the fluoride ion increase. Moreover, increase in silicate weathering in the postmonsoon samples leads to increase in clay particles acting as suitable sites for ion exchange enhancing Ca2+ removal from groundwater. Cationic dominance of Na+ ion in the post monsoon samples also validates the occurrence of this process. Collectively, these processes set the ideal conditions for increase in the fluoride ion concentration particularly in the alluvium aquifer waters in the postmonsoon season Keywords: geochemistry, ion-exchange, rock-water interaction, mineral dissolution, weathering.

  18. Photothermal radiometry and modulated luminescence examination of demineralized and remineralized dental lesions

    NASA Astrophysics Data System (ADS)

    Hellen, A.; Mandelis, A.; Finer, Y.

    2010-03-01

    Dental caries involves continuous challenges of acid-induced mineral loss and a counteracting process of mineral recovery. As an emerging non-destructive methodology, photothermal radiometry and modulated luminescence (PTR-LUM) has shown promise in measuring changes in tooth mineral content. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in remineralisation solutions (pH 6.7, 4 weeks) without or with fluoride (1 or 1000 ppm). PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. The non-fluoridated group exhibited opposite amplitude and phase trends to those of the highly fluoridated group: smaller phase lag and larger amplitude. These results point to a complex interplay between surface and subsurface processes during remineralization, confining the thermal-wave centroid toward the dominating layer.

  19. Fluoride anion sensing mechanism of 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded supramolecular assembly: photoinduced electron transfer and partial configuration change.

    PubMed

    Chen, Jun-Sheng; Zhou, Pan-Wang; Li, Guang-Yue; Chu, Tian-Shu; He, Guo-Zhong

    2013-05-02

    The fluoride anion sensing mechanism of 6-methyl-5-(9-methylene-anthracene)-(2-butylureido-4[1H]-pyrimidinone) (AnUP) has been investigated using the DFT/TDDFT method. The theoretical results indicate that the proton of the N3-H3 group in pyrimidine moiety is captured by the added fluoride anion and then deprotonated. The calculated vertical excitation energies of AnUP-dimer and its deprotonated form agree well with the experimental results. The molecular orbital analysis demonstrates that the first excited state (S1) of AnUP-dimer is a local excited state with a π-π* transition, whereas for the deprotonated form, S1 is a completely charge-separation state and is responsible for the photoinduced electron transfer (PET) process. The PET process from anthracene to the pyrimidine moiety leads to the fluorescence quenching.

  20. Inhibition of purified enolases from oral bacteria by fluoride.

    PubMed

    Guha-Chowdhury, N; Clark, A G; Sissons, C H

    1997-04-01

    Enolase activity in strains of oral streptococci previously has been found to be inhibited by 50% (Ki) by fluoride concentrations ranging from 50 to 300 microM or more in the presence of 0.5 to 1.0 mM inorganic phosphate ions. In this study, enolase was extracted and partly purified by a two-step process from five oral bacterial species and the effect of fluoride on the kinetics of enolase examined. The molecular weight of the putative enolase proteins was 46-48 kDa. The Vmax values ranged from 20 to 323 IU/mg and K(m) for glycerate-2-phosphate from 0.22 to 0.74 mM. Enolase activity was inhibited competitively by fluoride, with Ki values ranging from 16 to 54 microM in the presence of 5 mM inorganic phosphate ions. Ki values for phosphate ranged from 2 to 8 mM. The enolase from Streptococcus sanguis ATCC 10556 was more sensitive to fluoride (Ki = 16 +/- 2) than was enolase from Streptococcus salivarius ATCC 10575 (Ki = 19 +/- 2) or Streptococcus mutans NCTC 10449 (Ki = 40 +/- 4) and all three streptococcal strains were more sensitive to fluoride than either Actinomyces naeslundii WVU 627 (Ki = 46 +/- 6) or Lactobacillus rhamnosus ATCC 7469 (Ki = 54 +/- 6) enolases. The levels of fluoride found to inhibit the streptococcal enolases in this study are much lower than previously reported and are likely to be present in plaque, especially during acidogenesis, and could exert an anti-glycolytic effect.

  1. Fluoride removal from water using a magnesia-pullulan composite in a continuous fixed-bed column.

    PubMed

    Ye, Yuanyao; Yang, Jing; Jiang, Wei; Kang, Jianxiong; Hu, Ying; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen

    2018-01-15

    A magnesia-pullulan composite (MgOP) was previously shown to effectively remove fluoride from water. In the present study, a continuous fixed-bed column was used to examine the application of the composite at an industrial scale. The influencing parameters included bed mass (4.0, 6.0 and 8.0 g), influent flow rate (8, 16 and 32 mL/min), inlet fluoride concentration (5, 10 and 20 mg/L), reaction temperature (20, 30 and 40 °C), influent pH (4, 7 and 10) and other existing anions (HCO 3 - , SO 4 2- , Cl - and NO 3 - ), through which the breakthrough curves could be depicted for the experimental data analysis. The results indicated that MgOP is promising for fluoride removal with a defluoridation capacity of 16.6 mg/g at the bed mass of 6.0 g, influent flow rate of 16 mL/min and inlet fluoride concentration of 10 mg/L. The dynamics of the fluoride adsorption process were modeled using the Thomas and Yan models, in which the Yan model presented better predictions for the breakthrough curves than the Thomas model. Moreover, the concentration of magnesium in the effluent was monitored to determine Mg stability in the MgOP composite. Results indicated the effluent concentration of Mg 2+ ions could be kept at a safe level. Calcination of fluoride-loaded MgOP effectively regenerated the material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Enrichment of fluoride in groundwater under the impact of saline water intrusion at the salt lake area of Yuncheng basin, northern China

    NASA Astrophysics Data System (ADS)

    Gao, Xubo; Wang, Yanxin; Li, Yilian; Guo, Qinghai

    2007-12-01

    Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF{2/-}, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F- with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl-Na or SO4-Na type water).

  3. Brief communication: Extended chronology of the Cordón Caulle volcanic eruption beyond 2011 reveals toxic impacts

    NASA Astrophysics Data System (ADS)

    Flueck, Werner T.

    2016-11-01

    Aside of immediate impacts, the 2011 Puyehue-Cordón Caulle volcano (PCC) eruption also caused persisting chemical impacts. By 2012, toxicity resulted in overt dental fluorosis in deer, with bone fluoride increasing > 38-fold to 5175 ppm. Sheep, horses and cattle also succumbed to fluorosis. Due to eolian redeposition of tephra, exposure of ruminants continued, bone fluoride reached 10 396 ppm, and by 2014 skeletal fluorosis was found. Nonskeletal fluorosis resulted in reduced wool growth and major losses among periparturient cattle. Peculiarities of digestive processes make ruminants susceptible to fluoride-containing tephra, which averaged 548 ppm from PCC. Moreover, recent volcanic eruptions causing fluorosis could be aggravated by local iodine deficiency, which increases the incidence and harshness of fluorosis, and deficiency of selenium, which, among other things, also results in secondary deficiency of iodine. Notwithstanding, several measures are available to livestock producers to minimize chemical impacts of fluoride.

  4. Promoting social welfare through oral health: New Jersey's fluoridation experience.

    PubMed

    Mendoza, Roger Lee

    2009-01-01

    This study examines the contentious public health policy of treating community water with fluoride in the United States. The question for scholarly investigation is why water fluoridation has been unsuccessful in several parts of the United States relative to the rest. It addresses this question by looking into the processes of scientific discovery and information dissemination, benefits and risks of science-based health policy, related issues of provision and production, and spatial dimensions of policy development. The case method based on New Jersey's experience in public water fluoridation, was opted for this study. We find that policy debates, which are confined to single key issues, tend to breed binary choices and bipolar debates and result in policy stalemates. Consumer accessibility and desirability of merit goods thus become sharply conflicting social welfare values. They undermine the intent of science-based policies and often make alternative and second-best policies more practical to adopt.

  5. One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl bromides† †Electronic supplementary information (ESI) available: Experimental details and supporting characterisation data. See DOI: 10.1039/c6sc03924c Click here for additional data file.

    PubMed Central

    Davies, Alyn T.; Curto, John M.

    2017-01-01

    A mild, efficient synthesis of sulfonyl fluorides from aryl and heteroaryl bromides utilizing palladium catalysis is described. The process involves the initial palladium-catalyzed sulfonylation of aryl bromides using DABSO as an SO2 source, followed by in situ treatment of the resultant sulfinate with the electrophilic fluorine source NFSI. This sequence represents the first general method for the sulfonylation of aryl bromides, and offers a practical, one-pot alternative to previously described syntheses of sulfonyl fluorides, allowing rapid access to these biologically important molecules. Excellent functional group tolerance is demonstrated, with the transformation successfully achieved on a number of active pharmaceutical ingredients, and their precursors. The preparation of peptide-derived sulfonyl fluorides is also demonstrated. PMID:28451264

  6. A Laboratory Study of Natural Zeolite for Treatment of Fluorinated Water

    NASA Astrophysics Data System (ADS)

    Pandey, A.

    2015-12-01

    Fluoride contamination is mainly induced in ground water by chemical interaction between water and fluoride bearing rocks and natural fluoridation is further catalyzed by anthropogenic activities. Elevated fluoride concentrations in the water bodies above the permissible limits are not only degrading water for drinking purposes but also to the agricultural, industrial as well as daily household needs. Fluoride content in water has been constantly a subject of serious concern to the concerned authorities. It is significantly contributing in increasing tolls of arthritis, brain and kidney diseases, cancer, male fertility issues and cases of thyroid diseases. Hence, the present study has been conducted to investigate the possibility of treating fluorinated water using zeolites. The capabilities of natural zeolites are attributed to their catalytic, molecular sieve, adsorption and ion-exchange properties which have been utilized in our laboratory experiment. The experiment was carried out in two phases. In the first phase of the experiment, the properties of zeolites were tested in solid and liquid phases using ICP-OES, SEM, EDX and IC tests. Physio-chemical alterations induced by zeolites in the fluid chemistry were monitored by analyzing fluid sample regularly for pH, redox potential, electrical conductivity and total dissolved solids, and by conducting metal and anion tests. In second phase, zeolite was used for treatment of fluorinated water with known concentration of fluoride, and the geochemical processes associated with fluoride remediation were monitored by conducting non-invasive, invasive geochemical and physical measurements at regular time periods on the water samples collected from both control column and the experiment column. Results thus obtained in this study showed decrease in fluoride concentration over time, indicating the possibility of use of zeolites in treatment of fluorinated water.

  7. Microwave Extraction of Volatiles for Mars Science and ISRU

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaulker, William F.

    2012-01-01

    The greatest advantage of microwave heating for volatiles extraction is that excavation can be greatly reduced. Surface support operations would be simple consisting of rovers with drilling capability for insertion of microwaves down bore holes to heat at desired depths. The rovers would also provide support to scientific instruments for volatiles analysis and for volatiles collection and storage. The process has the potential for a much lower mass and a less complex system than other in-situ processes. Microwave energy penetrates the surface heating within with subsequent sublimation of water or decomposition of volatile containing minerals. On Mars the volatiles should migrate to the surface to be captured with a cold trap. The water extraction and transport process coupled with atmospheric CO2 collection could readily lead to a propellant production process, H2O + CO2 yields CH4 + O2.

  8. Geochemical and geostatistical appraisal of fluoride contamination: An insight into the Quaternary aquifer.

    PubMed

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, Dontireddy Venkat; Kaur, Harjeet

    2018-06-01

    Fluoride (F - ) in groundwater poses a severe public health threat in the Dwarka River Basin (DRB) of West Bengal, India, where many cases of fluorosis have been reported. This research evaluates the spatial distribution patterns of major cations and anions, delineates zones of high F - concentrations within alluvial sediments of the DRB, and identifies both the sources and the geochemical processes responsible for the release of F - to groundwater. A total of 607 groundwater samples were collected from shallow and deep tube wells located within the DRB, encompassing an area of 435 km 2 and including 211 villages. Fluoride levels range from 0.01 to 10.6 mg/L, and high concentrations (>1.5 mg/L) are restricted to isolated areas within the basin (occurring within nine of the villages and comprising 4.3% of the samples collected). The high-fluoride areas are characterized by mostly Na-HCO 3 type groundwater, where the abundance of cations and anions are Na +  > Ca 2+  > Mg 2+  > K + and HCO 3 -  > Cl -  > SO 4 2-  > F -  > NO 3 -  > Br - , respectively. Analyses of the groundwater geochemistry and sediment mineralogy suggest that fluoride is released to groundwater primarily through the hydrolysis of albite and biotite; however, the resulting alkaline conditions are also favorable for release of fluoride from weathered biotite and clay minerals through anion exchange (OH - in groundwater replacing F - within the mineral structure). Multiple linear regression models show that fluoride concentrations can be predicted from the measures of other dissolved constituents with a high degree of accuracy (R 2  = 0.96 for high fluoride samples and R 2  = 0.8 for low fluoride samples). Copyright © 2018. Published by Elsevier B.V.

  9. Fluoride and phosphate release from carbonate-rich fluorapatite during managed aquifer recharge

    NASA Astrophysics Data System (ADS)

    Schafer, David; Donn, Michael; Atteia, Olivier; Sun, Jing; MacRae, Colin; Raven, Mark; Pejcic, Bobby; Prommer, Henning

    2018-07-01

    Managed aquifer recharge (MAR) is increasingly used as a water management tool to enhance water availability and to improve water quality. Until now, however, the risk of fluoride release during MAR with low ionic strength injectate has not been recognised or examined. In this study we analyse and report the mobilisation of fluoride (up to 58 μM) and filterable reactive phosphorus (FRP) (up to 55 μM) during a field groundwater replenishment experiment in which highly treated, deionised wastewater (average TDS 33 mg/L) was injected into a siliciclastic Cretaceous aquifer. In the field experiment, maximum concentrations, which coincided with a rise in pH, exceeded background groundwater concentrations by an average factor of 3.6 for fluoride and 24 for FRP. The combined results from the field experiment, a detailed mineralogical characterisation and geochemical modelling suggested carbonate-rich fluorapatite (CFA: Ca10(PO4)5(CO3,F)F2) to be the most likely source of fluoride and phosphate release. An anoxic batch experiment with powdered CFA-rich nodules sourced from the target aquifer and aqueous solutions of successively decreasing ionic strength closely replicated the field-observed fluoride and phosphate behaviour. Based on the laboratory experiment and geochemical modelling, we hypothesise that the release of fluoride and phosphate results from the incongruent dissolution of CFA and the simultaneous formation of a depleted layer that has hydrated di-basic calcium phosphate (CaHPO4·nH2O) composition at the CFA-water interface. Disequilibrium caused by calcium removal following breakthrough of the deionised injectate triggered the release of fluoride and phosphate. Given the increasing use of highly treated, deionised water for MAR and the ubiquitous presence of CFA and fluorapatite (Ca10(PO4)6F2) in aquifer settings worldwide, the risk of fluoride and phosphate release needs to be considered in the MAR design process.

  10. 18 F-Fluoride positron emission tomography/computed tomography for noninvasive in vivo quantification of pathophysiological bone metabolism in experimental murine arthritis

    PubMed Central

    2014-01-01

    Introduction Evaluation of disease severity in experimental models of rheumatoid arthritis is inevitably associated with assessment of structural bone damage. A noninvasive imaging technology allowing objective quantification of pathophysiological alterations of bone structure in rodents could substantially extend the methods used to date in preclinical arthritis research for staging of autoimmune disease severity or efficacy of therapeutical intervention. Sodium 18 F-fluoride (18 F-NaF) is a bone-seeking tracer well-suited for molecular imaging. Therefore, we systematically examined the use of 18 F-NaF positron emission tomography/computed tomography (PET/CT) in mice with glucose-6-phosphate isomerase (G6PI)–induced arthritis for quantification of pathological bone metabolism. Methods F-fluoride was injected into mice before disease onset and at various time points of progressing experimental arthritis. Radioisotope accumulation in joints in the fore- and hindpaws was analyzed by PET measurements. For validation of bone metabolism quantified by 18 F-fluoride PET, bone surface parameters of high-resolution μCT measurements were used. Results Before clinical arthritis onset, no distinct accumulation of 18 F-fluoride was detectable in the fore- and hindlimbs of mice immunized with G6PI. In the course of experimental autoimmune disease, 18 F-fluoride bone uptake was increased at sites of enhanced bone metabolism caused by pathophysiological processes of autoimmune disease. Moreover, 18 F-fluoride signaling at different stages of G6PI-induced arthritis was significantly correlated with the degree of bone destruction. CT enabled identification of exact localization of 18 F-fluoride signaling in bone and soft tissue. Conclusions The results of this study suggest that small-animal PET/CT using 18 F-fluoride as a tracer is a feasible method for quantitative assessment of pathophysiological bone metabolism in experimental arthritis. Furthermore, the possibility to perform repeated noninvasive measurements in vivo allows longitudinal study of therapeutical intervention monitoring. PMID:25053370

  11. PREPARATION OF URANIUM HEXAFLUORIDE

    DOEpatents

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  12. 40 CFR 421.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Secondary Aluminum Smelting Subcategory § 421.32 Effluent limitations guidelines representing the... to the provisions of this subpart and which uses aluminum fluoride in its magnesium removal process... Fluoride 0.4 Ammonia (as N) 0.01 Aluminum 1.0 Copper 0.003 COD 1.0 pH (1) 1 Within the range of 7.5 to 9.0. ...

  13. Methods for globally treating silica optics to reduce optical damage

    DOEpatents

    Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

    2012-11-20

    A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

  14. Fluoride and apatite formation in vivo and in vitro.

    PubMed

    Aoba, Takaaki; Shimazu, Yoshihito; Taya, Yuji; Soeno, Yuuichi; Sato, Kaori; Miake, Yasuo

    2003-01-01

    In recent years, the biomineralization process has attracted much interest from academics and industries for potential technological application. The rule in biomineralization is to have a variety of interfaces and surfaces which can act as nucleators. The ultimate step in any biomineralization process, i.e. the deposition of mineral, must conform to the driving forces operating on the system. A new paradigm in the assessment of the driving force for biomineralization is that a variety of ions existing in the mineralizing milieu are not a bystander, but are instead an active player that directly regulates the precipitation process and nature of biogenic apatites. Thus, the most putative stoichiometric model of a biomineral is (Ca)(5-x)(Mg)q(Na)u(HPO4)v(CO3)w(PO4)(3-y)(OH,F)(1-z). Fluoride participates in many aspects of calcium phosphate formation in vivo and has enormous effects on its process and on the nature and properties of the final products. In the development of biogenic apatites, fluoride ion in the mineralizing media is supposed to accelerate the hydrolysis of acidic precursor(s) and increase the growth rates by augmenting the driving force for precipitation. Inhibitory activities of ions and molecules are related to their adsorption onto the apatite surfaces. From theoretical and practical points of view, it is of paramount importance to elucidate and predict the effect and outcome of fluoride (accelerator) and inhibitors of biological relevance, because of their use in combination for healthcare in dentistry and medicine, e.g. prevention of dental caries and calculus deposition and in the formulation of antiosteoporosis treatments.

  15. Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India.

    PubMed

    Reddy, A G S; Reddy, D V; Rao, P N; Prasad, K Maruthy

    2010-12-01

    The groundwater of Nalgonda district is well known for its very high fluoride content for the past five decades. Many researchers have contributed their scientific knowledge to unravel causes for fluoride enrichment of groundwater. In the present paper, an attempt has been made to relate the high fluoride content in the groundwater to hydrogeochemical characterization of the water in a fracture hard rock terrain--the Wailpally watershed. Groundwater samples collected from all the major geomorphic units in pre- and post-monsoon seasons were analyzed for its major ion constituents such as Ca(2+), Mg(2+), Na(+), K(+), CO3-, HCO3-, Cl(-), SO4(-2), NO3-, and F(-). The groundwaters in the watershed have the average fluoride content of 2.79 mg/l in pre-monsoon and 2.83 mg/l in post-monsoon. Fluoride concentration in groundwater does not show perceptible change neither with time nor in space. The ionic dominance pattern is in the order of Na(+) > Ca(2+) > Mg(2+) > K(-) among cations and HCO3- Cl(-) > SO4(-2) NO3- F(-) among anions in pre-monsoon. In post-monsoon, Mg replaces Ca(2+) and NO3- takes the place of SO4(-2). The Modified Piper diagram reflect that the water belong to Ca(+2)-Mg(+2)-HCO3- to Na(+)-HCO3- facies. Negative chloralkali indices in both the seasons prove that ion exchange between Na(+) and K(+) in aquatic solution took place with Ca(+2) and Mg(+2) of host rock. The interpretation of plots for different major ions and molar ratios suggest that weathering of silicate rocks and water-rock interaction is responsible for major ion chemistry of groundwater in Wailpally watershed. Chemical characteristics and evolution of this fluoride-contaminated groundwater is akin to normal waters of other hard rock terrain; hence, it can be concluded that aquifer material play an important role in the contribution of fluoride in to the accompanying water. High fluoride content in groundwater can be attributed to the continuous water-rock interaction during the process of percolation with fluoride-bearing country rocks under arid, low precipitation, and high evapotranspiration conditions.

  16. [Feasibility and Economic Analysis of Denitrification of Photovoltaic Wastewater Containing High Fluorine].

    PubMed

    Li, Xiang; Zhu, Liang; Huang, Yong; Yang, Peng-bing; Cui, Jian-hong; Ma, Hang

    2016-04-15

    In order to reduce acid and alkali dosing in wastewater treatment process of polycrystalline silicon by using denitrification after fluoride removal. This experiment studied the feasibility of first removing nitrogen using the denitrification process by start-up denitrifying reactor before fluoride removal. The results showed that the F⁻ concentration in the waste water to had a certain influence on the denitrification. When the concentration of F⁻ was controlled to about 750 mg · L⁻¹, the activity of denitrifying bacteria was not significantly influenced; when the concentration of F⁻ continued to increase, the denitrification efficiency of denitrifying sludge gradually reduced. In wastewater treatment of polycrystalline silicon, if the concentration of F⁻ was kept below 800 mg · L⁻¹, the denitrification performance of denitrifying sludge was not obviously affected. After 93 d operation, the total nitrogen in effluent was stabilized below 50 mg · L⁻¹, the total nitrogen removal efficiency reached 90%, and the removal rate reached 5 kg · (m³ · d)⁻¹. The calculation result showed, compared with the conventional denitrification process after fluoride removal, the proposed process could save about 70% of acid and 100% of alkali dosing, greatly reducing the cost of wastewater treatment.

  17. A Transmetalation Reaction Enables the Synthesis of [18F]5-Fluorouracil from [18F]Fluoride for Human PET Imaging

    PubMed Central

    2016-01-01

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [18F]fluoride of human doses of [18F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination. PMID:27087736

  18. A Transmetalation Reaction Enables the Synthesis of [18F]5-Fluorouracil from [18F]Fluoride for Human PET Imaging.

    PubMed

    Hoover, Andrew J; Lazari, Mark; Ren, Hong; Narayanam, Maruthi Kumar; Murphy, Jennifer M; van Dam, R Michael; Hooker, Jacob M; Ritter, Tobias

    2016-04-11

    Translation of new 18 F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18 F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18 F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18 F]fluoride of human doses of [ 18 F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18 F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18 F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18 F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18 F-fluorination.

  19. Effective use of fluorides in the People's Republic of China--a model for WHO Mega Country initiatives.

    PubMed

    Petersen, P E; Kwan, S; Zhu, L; Zhang, B X; Bian, J Y

    2008-12-01

    Poor dental health has been reported in the Chinese National Surveys of Oral Health. With the changing lifestyle and growing consumption of sugars, the incidence of dental caries may well continue to rise, compounded by limited access to professional care. The increasing oral disease burden could become a major public health problem in China, leading to considerable personal and health service costs. There is a desperate need for systematic implementation of preventive programmes. Currently, China is strengthening the prevention of chronic diseases, which provides an excellent opportunity to integrate oral disease prevention into the overall non-communicable disease (NCD) prevention programmes. In order to address this growing public health problem, the World Health Organization (WHO) Global Oral Health Programme advocates the effective use of fluoride as an essential approach to prevent dental caries in the 21st century--part of the WHO Global Oral Health Strategy. Population-wide automatic fluoridation measures are considered the most effective, complemented by appropriate use of toothpastes containing fluoride. There are wide variations of fluoride levels in drinking water in China and, in many areas, the levels of fluoride in drinking water are lower than the recommended levels. The use of toothpaste containing fluoride is still too low in some areas and decreases with age. Those who live in rural areas have limited access to affordable toothpastes containing fluoride. In March 2006, as part of the WHO Mega Country Health Promotion Network initiatives, the WHO Global Oral Health Programme organised a three-day symposium in Beijing, People's Republic of China. The aim of the symposium was to bring together international experience and Chinese expertise to facilitate policy development for effective use of fluoride in China, highlighting the benefits of, and barriers to, the implementation of different fluoridation programmes at the strategic levels as well as for operational planning. This article reports the proceedings of the meeting. In summary, China is a Mega country with much diversity and disparity. The situation in China is unique with endemic fluorosis due to other non-water sources of fluoride in some areas and a considerable dental caries burden in others. It is important to regulate the appropriate exposure to fluoride to obtain the benefits and avoid adverse effects of fluorides, controlling enamel fluorosis without jeopardising the prevention of dental caries. Various complementary fluoridation programmes can be considered for different population groups with varying needs, strategies that bring about additive effects. A multi-tier policy making approach at national, regional and provincial levels can be employed, based on sound evidence. The roles of WHO, Ministry of Health and the National Committee for Oral Health (NCOH) were emphasised. Lessons learned from the Chinese experience will prove invaluable to other countries with similar socio demographic characteristics that are in the same process of developing and implementing fluoridation policies and programmes.

  20. Spectral engineering of optical fiber through active nanoparticle doping

    NASA Astrophysics Data System (ADS)

    Lindstrom-James, Tiffany

    The spectral engineering of optical fiber is a method of intentional doping of the core region in order to absorb/emit specific wavelengths of light therby providing enhanced performance over current fibers. Efforts here focused on developing an understanding of optically active nanoparticles based on alkaline earth fluorides that could be easily and homogeneously incorporated into the core of a silica based optical fiber preform and result in efficient and tailorable spectral emissions. Doped and undoped calcium, strontium and barium fluoride nanoparticles were successfully synthesized and characterized for their physical, chemical, and optical behavior. Distinct spectroscopic differences as a result of different host materials, varying rare earth doping levels and processing conditions, indicated the ability to influence the spectral behavior of the doped nanoparticle. By using photoluminescence to predict diffusion behavior, the application of a simple one dimensional model for diffusion provided a method for predicting the diffusion coefficient of europium ions in alkaline earth fluorides with order of magnitude accuracy. Modified chemical vapor deposition derived silica preforms were individually solution doped with europium doped alkaline earth fluoride nanoparticles. By using the rare earth doped alkaline earth fluoride nanoparticles as the dopant materials in the core of optical fiber preforms, the resultant optical properties of the glass were significantly influenced by their presence in the core. The incorporation of these rare earth doped alkaline earth fluoride nanoparticles was found to significantly influence the local chemical and structural environment about the rare earth ion, demonstrated homogeneity and uniform distribution of the rare earth dopant and resulted in specifically unique spectral behavior when compared to conventional doping methods. A more detailed structural model of the doped core glass region has been developed based on the spectral behavior of these active fiber preforms. It has been shown that rare earth doping of alkaline earth fluoride nanoparticles provides a material which can be 'tuned' to specific applications through the use of different host materials, processing conditions and doping levels of the rare earth and when used as dopant materials for active optical fibers, provides a means to tailor the optical behavior.

  1. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study.

    PubMed

    Derlin, Thorsten; Tóth, Zoltán; Papp, László; Wisotzki, Christian; Apostolova, Ivayla; Habermann, Christian R; Mester, Janos; Klutmann, Susanne

    2011-07-01

    Formation and progression of atherosclerotic plaque is a dynamic and complex process involving various pathophysiologic steps including inflammation and calcification. The purpose of this study was to compare macrophage activity as determined by (18)F-FDG PET and ongoing mineral deposition as measured by (18)F-sodium fluoride PET in atherosclerotic plaque and to correlate these findings with calcified plaque burden as assessed by CT. Forty-five patients were examined by whole-body (18)F-FDG PET, (18)F-sodium fluoride PET, and CT. Tracer uptake in various arterial segments was analyzed both qualitatively and semiquantitatively by measuring the blood-pool-corrected standardized uptake value (target-to-background ratio [TBR]). The pattern of tracer uptake in atherosclerotic lesions was compared after color-coded multistudy image fusion of PET and CT studies. The Fisher exact test and the Spearman correlation coefficient r(s) were used for statistical analysis of image-based results and cardiovascular risk factors. Intra- and interrater reproducibility were evaluated using the Cohen κ. (18)F-sodium fluoride uptake was observed at 105 sites in 27 (60%) of the 45 study patients, and mean TBR was 2.3 ± 0.7. (18)F-FDG uptake was seen at 124 sites in 34 (75.6%) patients, and mean TBR was 1.5 ± 0.3. Calcified atherosclerotic lesions were observed at 503 sites in 34 (75.6%) patients. Eighty-one (77.1%) of the 105 lesions with marked (18)F-sodium fluoride uptake and only 18 (14.5%) of the 124 lesions with (18)F-FDG accumulation were colocalized with arterial calcification. Coincident uptake of both (18)F-sodium fluoride and (18)F-FDG was observed in only 14 (6.5%) of the 215 arterial lesions with radiotracer accumulation. PET/CT with (18)F-FDG and (18)F-sodium fluoride may allow evaluation of distinct pathophysiologic processes in atherosclerotic lesions and might provide information on the complex interactions involved in formation and progression of atherosclerotic plaque.

  2. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOEpatents

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  3. [Fluorine as a factor in premature aging].

    PubMed

    Machoy-Mokrzyńska, Anna

    2004-01-01

    The use of fluorine compounds in various areas of medicine, particularly in dentistry, as well as in agriculture and industry became very popular in the second half of the 20th century. Fluorine owed this widespread acceptance to observations that its compounds stimulate ossification processes and reduce the prevalence of caries. Unfortunately, growing expectations overshadowed the truth regarding interactions of fluoride on the molecular level. The fact was often ignored that fluoride is toxic, even though laboratory data stood for a careful approach to the benefits of usage. Excessive exposure to fluoride may lead to acute poisoning, hyperemia, cerebral edema, and degeneration of the liver and kidneys. Acute intoxication through the airways produces coughing, choking, and chills, followed by fever and pulmonary edema. Concentrated solutions of fluorine compounds produce difficult to heal necrotic lesions. In spite of these dramatic symptoms, acute intoxications are relatively rare; the more common finding is chronic intoxication attributable to the universal presence of fluorine compounds in the environment. The first noticeable signs of excessive exposure to fluoride in contaminated water, air, and food products include discolorations of the enamel. Dental fluorosis during tooth growth and loss of dentition in adulthood are two consequences of chronic intoxication with fluorine compounds. Abnormalities in mineralization processes affect by and large the osteoarticular system and are associated with changes in the density and structure of the bone presenting as irregular mineralization of the osteoid. Fluorine compounds also act on the organic part of supporting tissues, including collagen and other proteins, and on cells of the connective tissue. These interactions reduce the content of collagen proteins, modify the structure and regularity of collagen fibers, and induce mineralization of collagen. Interactions with cells produce transient activation of osteoblasts, stimulate fibroblasts to produce collagenase, and trigger toxic reactions in osteocytes and chondrocytes of trabecular bone. Growing deformations of the skeleton reduce mobility and result in permanent crippling of the patient. Fluoride increases the mass of non-collagen proteins such as proteoglycans and glucosaminoglycans, accelerating skin aging even though protein biosynthesis is generally suppressed. The final outcome includes progressive vascular lesions and disorders of energy metabolism in muscles. In conclusions, the use of fluoride, particularly by dentists and pediatricians, must be controlled and adapted to individual needs. It is worth remembering that fluoride: is the cause of disability due to bone deformations and abnormalities in the musculoskeletal system; reduces the incidence of caries but do not protect against tooth loss; exerts an adverse effect of metabolic processes in the skin; accelerates calcification of vessels and thus reduces their elasticity; inhibits bioenergetic reactions, in particular oxidative phosphorylation, reducing physical activity of muscles. These findings suggest that fluorine may be yet another factor in accelerated aging and revive the dispute started more than two and half thousand years ago whether aging is a physiologic or pathologic process. The understanding of factors modifying the process of aging is the basis for preventive measures aimed at extending life and maintaining full psychosocial activity.

  4. On Using the Volatile Mem-Capacitive Effect of TiO2 Resistive Random Access Memory to Mimic the Synaptic Forgetting Process

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplab; Mills, Steven; Lee, Bongmook; Pitts, W. Shepherd; Misra, Veena; Franzon, Paul D.

    2018-02-01

    In this work, we report on mimicking the synaptic forgetting process using the volatile mem-capacitive effect of a resistive random access memory (RRAM). TiO2 dielectric, which is known to show volatile memory operations due to migration of inherent oxygen vacancies, was used to achieve the volatile mem-capacitive effect. By placing the volatile RRAM candidate along with SiO2 at the gate of a MOS capacitor, a volatile capacitance change resembling the forgetting nature of a human brain is demonstrated. Furthermore, the memory operation in the MOS capacitor does not require a current flow through the gate dielectric indicating the feasibility of obtaining low power memory operations. Thus, the mem-capacitive effect of volatile RRAM candidates can be attractive to the future neuromorphic systems for implementing the forgetting process of a human brain.

  5. [Anticaries effectiveness of fluoride toothpaste: a meta-analysis].

    PubMed

    Chaves, Sônia Cristina Lima; Vieira-da-Silva, Lígia Maria

    2002-10-01

    To carry out a meta-analysis on the effectiveness of fluoride toothpaste for reducing dental caries to calculate the effect size of different hypothesis. MEDLINE and LILACS databases were studied in the period from 1980 to 1998. To evaluate the quality of the studies, methodological rigor criteria proposed by Kay & Locker (1996) were applied after the criteria were submitted to an expert committee of CNPq (National Scientific Council of Brazil) senior researchers. Of 43 papers selected, 22 met the proposed criteria. The effect size of intervention was calculated from differences among the groups and the overall effect of five groups of hypothesis. The high concentration of fluoride in the toothpaste is associated with a larger effect (overall effect = -0.17 CI 95% -0.22/-0.12). The largest caries reductions were observed when comparing fluoride toothpastes and no fluoride toothpastes (overall effect = -0.29 IC 95% -0.34/-0.24). The addiction of antimicrobial agents (overall effect = -0.03 IC 95% -0.07/+0.02), differences in abrasive systems (overall effect = -0.02 IC 95% -0.09/+0.04) and active components do not increase the effectiveness of fluoride toothpastes (overall effect = -0.04 IC 95% -0.10/+0.01). The highest caries reductions were seen in studies where there was supervised tooth brushing. This review reinforced the importance of tooth brushing with fluoride toothpastes for controlling dental caries. However it showed the emphasis put on medical approaches for disease control rather than specific educational actions. The heterogeneity of the results shows the need to consider issues such as the scenario for implementing preventive methods in the evaluation process.

  6. Prevention and Treatment of White Spot Lesions During and After Treatment with Fixed Orthodontic Appliances: a Systematic Literature Review.

    PubMed

    Lopatiene, Kristina; Borisovaite, Marija; Lapenaite, Egle

    2016-01-01

    The aim of the systematic literature review is to update the evidence for the prevention of white spot lesions, using materials containing fluoride and/or casein phosphopeptide-amorphous calcium phosphate during and after treatment with fixed orthodontic appliances. Information search for controlled studies on humans published between January 2008 and February 2016 was performed in PubMed, ScienceDirect, Embase, The Cochrane Library. Inclusion criteria were: the English language, study on humans, patients undergoing orthodontic treatment with fixed appliances, randomized or quasi-randomized controlled clinical studies fluoride-containing product or casein derivates used throughout the appliance therapy or straightaway after debonding. 326 articles were reviewed (Embase 141, PubMed 129, ScienceDirect 41, Cochrane 15). Twelve clinical studies fulfilled all inclusion criteria. Use of fluoridated toothpaste had a remineralizing effect on white spot lesions (WSLs) (P < 0.05); fluoride varnish and casein supplements were effective in prevention and early treatment of WSLs (P < 0.05). Early detection of white spot lesions during orthodontic treatment would allow implementing preventive measures to control the demineralization process before lesions progress. The systemic review has showed that the usage of fluoride and casein supplements in ameliorating white spot lesions during and after fixed orthodontic treatment is significantly effective. However the use of casein phosphopeptide-amorphous calcium phosphate can be more beneficial than fluoride rinse in the reduction of demineralization spots.

  7. Sodium fluoride and sulfur dioxide affected male reproduction by disturbing blood-testis barrier in mice.

    PubMed

    Zhang, Jianhai; Li, Zhihui; Qie, Mingli; Zheng, Ruibo; Shetty, Jagathpala; Wang, Jundong

    2016-08-01

    Fluoride and sulfur dioxide (SO2), two well-known environmental toxicants, have been implicated to have adverse effects on male reproductive health in humans and animals. The objective of this study to investigate if the BTB is one of the pathways that lead to reproductive toxicity of sodium fluoride and sulfur dioxide alone or in combination, in view of the key role of blood testis barrier (BTB) in testis. The results showed that a marked decrease in sperm quality, and altered morphology and ultrastructure of BTB in testis of mice exposure to fluoride (100 mg NaF/L in drinking water) or/and sulfur dioxide (28 mg SO2/m(3), 3 h/day). Meanwhile, the mRNA expression levels of some vital BTB-associated proteins, including occluding, claudin-11, ZO-1, Ncadherin, α-catenin, and connexin-43 were all strikingly reduced after NaF exposure, although only the reduction of DSG-2 was statistically significant in all treatment groups. Moreover, the proteins expressions also decreased significantly in claudin-11, N-cadherin, α-catenin, connexin-43 and desmoglein-2 in mice treated with fluoride and/or SO2. These changes in BTB structure and constitutive proteins may therefore be connected with the low sperm quality in these mice. The role of fluoride should deserves more attention in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Potentiality of a fruit peel (banana peel) toward abatement of fluoride from synthetic and underground water samples collected from fluoride affected villages of Birbhum district

    NASA Astrophysics Data System (ADS)

    Mondal, Naba Kumar; Roy, Arunabha

    2018-06-01

    Contamination of underground water with fluoride (F) is a tremendous health hazard. Excessive F (> 1.5 mg/L) in drinking water can cause both dental and skeletal fluorosis. A fixed-bed column experiments were carried out with the operating variables such as different initial F concentrations, bed depths, pH and flow rates. Results revealed that the breakthrough time and exhaustion time decrease with increasing flow rate, decreasing bed depth and increasing influent fluoride concentration. The optimized conditions are: 10 mg/L initial fluoride concentration; flow rate 3.4 mL/min, bed depth 3.5 and pH 5. The bed depth service time model and the Thomas model were applied to the experimental results. Both the models were in good agreement with the experimental data for all the process parameters studied except flow rate, indicating that the models were appropriate for removal of F by natural banana peel dust in fix-bed design. Moreover, column adsorption was reversible and the regeneration was accomplished by pumping of 0.1 M NaOH through the loaded banana peel dust column. On the other hand, field water sample analysis data revealed that 86.5% fluoride can be removed under such optimized conditions. From the experimental results, it may be inferred that natural banana peel dust is an effective adsorbent for defluoridation of water.

  9. A randomised clinical evaluation of a fluoride mouthrinse and dentifrice in an in situ caries model.

    PubMed

    Parkinson, Charles R; Hara, Anderson T; Nehme, Marc; Lippert, Frank; Zero, Domenick T

    2018-03-01

    Fluoride mouthrinses provide advantages for fluoride delivery by maintaining elevated intra-oral fluoride concentrations following fluoride dentifrice use. This in situ caries study investigated potential anti-caries efficacy of a 220 ppm fluoride mouthrinse. This was an analyst-blinded, four-treatment, randomised, crossover study using partially demineralised, gauze-wrapped, human enamel samples mounted in a mandibular partial denture. Participants brushed twice daily for 14 days with either a 1150 ppm fluoride or a fluoride-free placebo dentifrice and either rinsed once daily with the 220 ppm fluoride mouthrinse or not. Following each treatment period, percent surface microhardness recovery (%SMHR) and enamel fluoride uptake (EFU) were assessed. Fifty three participants completed the study. Compared with the placebo dentifrice/no rinse treatment, the fluoride-containing regimens demonstrated greater enamel remineralisation (%SMHR) and fluoridation (EFU): fluoride dentifrice/fluoride rinse (%SMHR difference: 21.55 [95% CI: 15.78,27.32]; EFU difference 8.35 [7.21,9.29]); fluoride dentifrice/no rinse: 19.48 [13.81,25.15]; 6.47 [5.35,7.60]; placebo dentifrice/fluoride rinse: 16.76 [11.06,22.45]; 5.87 [4.72,7.00] (all P < .0001). There were no significant differences in%SMHR between fluoride regimens. The fluoride dentifrice/fluoride rinse regimen was associated with higher EFU than the fluoride dentifrice/no rinse (1.88 [0.75,3.01], P = .0013) and placebo dentifrice/fluoride rinse regimens (2.48 [1.34,3.62], P < .0001). Treatments were generally well-tolerated. The in situ caries model demonstrated that the fluoride mouthrinse is effective in promoting enamel caries lesion remineralisation and fluoridation whether used following a fluoride or non-fluoride dentifrice. Additive (potential) anti-caries benefits of a fluoride rinse after a fluoride dentifrice were confined to enhancements in lesion fluoridation (EFU). In conjunction with a fluoride dentifrice, fluoride mouthrinses enhance enamel fluoridation, which may be useful in caries prevention. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Securing non-volatile memory regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faraboschi, Paolo; Ranganathan, Parthasarathy; Muralimanohar, Naveen

    Methods, apparatus and articles of manufacture to secure non-volatile memory regions are disclosed. An example method disclosed herein comprises associating a first key pair and a second key pair different than the first key pair with a process, using the first key pair to secure a first region of a non-volatile memory for the process, and using the second key pair to secure a second region of the non-volatile memory for the same process, the second region being different than the first region.

  11. Contemporary biological markers of exposure to fluoride.

    PubMed

    Rugg-Gunn, Andrew John; Villa, Alberto Enrique; Buzalaf, Marília Rabelo Afonso

    2011-01-01

    Contemporary biological markers assess present, or very recent, exposure to fluoride: fluoride concentrations in blood, bone surface, saliva, milk, sweat and urine have been considered. A number of studies relating fluoride concentration in plasma to fluoride dose have been published, but at present there are insufficient data on plasma fluoride concentrations across various age groups to determine the 'usual' concentrations. Although bone contains 99% of the body burden of fluoride, attention has focused on the bone surface as a potential marker of contemporary fluoride exposure. From rather limited data, the ratio surface-to-interior concentration of fluoride may be preferred to whole bone fluoride concentration. Fluoride concentrations in the parotid and submandibular/sublingual ductal saliva follow the plasma fluoride concentration, although at a lower concentration. At present, there are insufficient data to establish a normal range of fluoride concentrations in ductal saliva as a basis for recommending saliva as a marker of fluoride exposure. Sweat and human milk are unsuitable as markers of fluoride exposure. A proportion of ingested fluoride is excreted in urine. Plots of daily urinary fluoride excretion against total daily fluoride intake suggest that daily urinary fluoride excretion is suitable for predicting fluoride intake for groups of people, but not for individuals. While fluoride concentrations in plasma, saliva and urine have some ability to predict fluoride exposure, present data are insufficient to recommend utilizing fluoride concentrations in these body fluids as biomarkers of contemporary fluoride exposure for individuals. Daily fluoride excretion in urine can be considered a useful biomarker of contemporary fluoride exposure for groups of people, and normal values have been published. Copyright © 2011 S. Karger AG, Basel.

  12. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water... 150.0 Fluoride 140.0 70.0 Lead 39.0 4.5 pH (1) (1) English units (lb/1,000 lb of furnace pull) Oil 0...

  13. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water... 150.0 Fluoride 140.0 70.0 Lead 39.0 4.5 pH (1) (1) English units (lb/1,000 lb of furnace pull) Oil 0...

  14. Method of making carbide/fluoride/silver composites

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E. (Inventor); Dellacorte, Christopher (Inventor)

    1991-01-01

    A composition containing 30 to 70 percent chromium carbide, 5 to 20 percent soft noble metal, 5 to 20 percent metal fluorides, and 20 to 60 percent metal binder is used in a powdered metallurgy process for the production of self-lubricating components, such as bearings. The use of the material allows the self-lubricating bearing to maintain its low friction properties over an extended range of operating temperatures.

  15. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  16. PROCESS FOR PRODUCTION OF URANIUM

    DOEpatents

    Crawford, J.W.C.

    1959-09-29

    A process is described for the production of uranium by the autothermic reduction of an anhydrous uranium halide with an alkaline earth metal, preferably magnesium One feature is the initial reduction step which is brought about by locally bringing to reaction temperature a portion of a mixture of the reactants in an open reaction vessel having in contact with the mixture a lining of substantial thickness composed of calcium fluoride. The lining is prepared by coating the interior surface with a plastic mixture of calcium fluoride and water and subsequently heating the coating in situ until at last the exposed surface is substantially anhydrous.

  17. Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation.

    PubMed

    Aoudj, S; Khelifa, A; Drouiche, N

    2017-08-01

    Semiconductor industry effluents contain organic and inorganic pollutants, such as sodium dodecyl sulfate (SDS), fluoride and ammonia, at high levels which consists a major environmental issue. A combined EC-EF process is proposed as a post-treatment after precipitation for simultaneous clarification and removal of pollutants. In EC step, a hybrid Fe-Al was used as the soluble anode in order to avoid supplementary EC step. EC-Fe is more suitable for SDS removal; EC-Al is more suitable for fluoride removal, while EC with hybrid Al-Fe makes a good compromise. Clarification and ammonia oxidation were achieved in the EF step. Effects of anodic material, initial pH, current, anion nature, chloride concentration and initial pollutant concentration were studied. The final concentrations may reach 0.27, 6.23 and 0.22 mg L -1 for SDS, fluoride and ammonia respectively. These concentrations are far lower than the correspondent discharge limits. Similarly, the final turbidity was found 4.35 NTU which is lower than 5NTU and the treated water does not need further filtration before discharge. Furthermore, the EC-EF process proves to be sufficiently energy-efficient with less soluble electrode consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparative evaluation of the remineralizing efficacy of calcium sodium phosphosilicate agent and fluoride based on quantitative and qualitative analysis.

    PubMed

    Mony, Saranya; Rao, Arathi; Shenoy, Ramya; Suprabha, Baranya Srikrishna

    2015-01-01

    Calcium sodium phosphosilicate (NovaMin) is an agent that is claimed to release calcium and phosphate ions intraorally to help the self-repair process of enamel. It is used extensively as a desensitizing agent, but the chemical reactions that occur may promote apatite formation enhancing remineralization. The present study was undertaken to evaluate the ability of NovaMin to remineralize an experimentally induced demineralized lesion. The evaluation was done based on the quantitative and qualitative analysis of enamel over the period of 15 and 30 days. A sample of 120 noncarious premolar teeth extracted for orthodontic reasons were used for the study. Baseline data for hardness, Ca/PO 4 , and surface characteristics before and after demineralization process was obtained. All the teeth were brushed twice daily at 12 h interval with the test agents using a powered toothbrush for 2 min. The samples were tested on the 15 th and 30 th day. Calcium phosphate ratio and hardness in both the groups improved during the study period. Fluoride group showed higher values for Ca/PO 4 and hardness but was not statistically significant with the P > 0.05. Scanning electron microscope pictures showed that the deposition of the material over the decalcified enamel is more smoother and uniform with NovaMin and more irregular with fluoride. NovaMin is found to be as effective in improving the Ca/PO 4 ratio and hardness in a demineralized enamel as fluoride. Hence, it can be a new alternate material for remineralization of enamel with less toxic effects compared to fluorides.

  19. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph Collin

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrademore » structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H + and T +) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion products in the process. Alternatively, imposed currents and other high-temperature cathodic protection systems are envisioned for protection of the structural materials. This novel concept could prove to be enabling technology for such high-temperature molten-salt reactors. The use of UF 4 as a liquid-phase homogenous fuel is also complicated by redox control. For example, the oxidation of tetravalent uranium to hexavalent uranium could result in the formation of volatile UF 6. This too could be controlled through electrochemically manipulated oxidation and reduction reactions. In situ studies of pertinent electrochemical reactions in the molten salts are proposed, and are relevant to both the corrosive attack of structural materials, as well as the volatilization of fuel. Some consideration is given to the potential advantages of gravity fed falling-film blankets. Such systems may be easier to control than vortex systems, but would require that cylindrical reaction vessels be oriented with the centerline normal to the gravitational field.« less

  20. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  1. Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides

    PubMed Central

    Rehmer, Alexander; Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    2017-01-01

    The fluorolytic sol-gel synthesis for binary metal fluorides (AlF3, CaF2, MgF2) has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF5, Ca2AlF7, LiMgAlF6). The formation and crystallization of nanoscopic ternary CaAlF5 and Ca2AlF7 sols in ethanol were studied by 19F liquid and solid state NMR (nuclear magnetic resonance) spectroscopy, as well as transmission electron microscopy (TEM). The crystalline phases of the annealed CaAlF5, Ca2AlF7, and LiMgAlF6 xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD) and 19F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA). The obtained crystalline phases of CaAlF5 and Ca2AlF7 derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications. PMID:29099086

  2. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parametermore » estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.« less

  3. Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI

    NASA Astrophysics Data System (ADS)

    Chen, Kho Chia; Bahar, Arifah; Kane, Ibrahim Lawal; Ting, Chee-Ming; Rahman, Haliza Abd

    2015-02-01

    In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.

  4. Does implied volatility of currency futures option imply volatility of exchange rates?

    NASA Astrophysics Data System (ADS)

    Wang, Alan T.

    2007-02-01

    By investigating currency futures options, this paper provides an alternative economic implication for the result reported by Stein [Overreactions in the options market, Journal of Finance 44 (1989) 1011-1023] that long-maturity options tend to overreact to changes in the implied volatility of short-maturity options. When a GARCH process is assumed for exchange rates, a continuous-time relationship is developed. We provide evidence that implied volatilities may not be the simple average of future expected volatilities. By comparing the term-structure relationship of implied volatilities with the process of the underlying exchange rates, we find that long-maturity options are more consistent with the exchange rates process. In sum, short-maturity options overreact to the dynamics of underlying assets rather than long-maturity options overreacting to short-maturity options.

  5. Influence of partial replacement of NaCl with KCl on profiles of volatile compounds in dry-cured bacon during processing.

    PubMed

    Wu, Haizhou; Zhuang, Hong; Zhang, Yingyang; Tang, Jing; Yu, Xiang; Long, Men; Wang, Jiamei; Zhang, Jianhao

    2015-04-01

    This study investigated the influence of partial substitution of NaCl with KCl on the formation of volatile compounds in bacons during processing using a purge and trap dynamic headspace GC/MS system. Three substitutions were 0% KCl (I), 40% KCl (II), and 70% KCl (III). The profiles of the volatile compounds significantly changed during processing, particularly during the drying/ripening. At the end of process, the bacons from substitution III formed significantly higher levels of lipid-derived volatiles, such as straight chain aldehydes, hydrocarbons than bacons from substitution I and II, whereas the latter formed higher levels of volatiles from amino acid degradation such as 3-methylbutanal. There were very few differences in volatile formation between 0% and 40% KCl application. These results suggest that K(+) substitution of Na(+) by more than 40% may significantly change profiles of volatiles in finished dry-cured bacons and therefore would result in changes in the product aroma and/or flavour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Fluoride mechanisms.

    PubMed

    ten Cate, J M; van Loveren, C

    1999-10-01

    This article discusses fluoride mechanisms in relation to dental caries. The authors specifically address firmly bound versus loosely bound fluoride; different fluoride active ingredients; fluoride and demineralization and remineralization; fluoride slow-release devices and F-releasing dental materials; antimicrobial effects of fluoride; the uptake of fluoride by oral bacteria; inhibition of enolase, protein-intruding ATPase and sugar transport; the various aspects of plaque as it relates to fluoride; and the rational use of fluoride.

  7. Fast analysis of principal volatile compounds in crude and processed Atractylodes macrocephala by an automated static headspace gas chromatography-mass spectrometry

    PubMed Central

    Zhang, Jida; Cao, Gang; Xia, Yunhua; Wen, Chengping; Fan, Yongsheng

    2014-01-01

    Objective: Atractylodes macrocephala, a famous herbal medicine, is used extensively in the practice of Traditional Chinese Medicine (TCM). Processing procedure is a common approach that usually occurs before A. macrocephala is prescribed. This paper describes a sensitive and specific assay for the determination of principal volatile compounds in crude and processed A. macrocephala. Materials and Methods: The present study concentrated on the development of a static headspace gas chromatography-mass spectrometry (SHS-GC/MS) for separating and identifying of volatile compounds from crude and processed A. macrocephala samples. Results: The results showed that the volatile oil in crude and processed A. macrocephala was markedly quantitatively and qualitatively different. Processing resulted in the reduction of volatile oil contents and variation of chemical compositions in A. macrocephala. Conclusion: The proposed method proved that SHS-GC/MS is rapid and specific, and should also be useful for evaluating the quality of crude and processed medicinal herbs. PMID:25210311

  8. Bifluoride-catalysed sulfur(VI) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates

    NASA Astrophysics Data System (ADS)

    Gao, Bing; Zhang, Linda; Zheng, Qinheng; Zhou, Feng; Klivansky, Liana M.; Lu, Jianmei; Liu, Yi; Dong, Jiajia; Wu, Peng; Sharpless, K. Barry

    2017-11-01

    Polysulfates and polysulfonates possess exceptional mechanical properties making them potentially valuable engineering polymers. However, they have been little explored due to a lack of reliable synthetic access. Here we report bifluoride salts (Q+[FHF]-, where Q+ represents a wide range of cations) as powerful catalysts for the sulfur(VI) fluoride exchange (SuFEx) reaction between aryl silyl ethers and aryl fluorosulfates (or alkyl sulfonyl fluorides). The bifluoride salts are significantly more active in catalysing the SuFEx reaction compared to organosuperbases, therefore enabling much lower catalyst-loading (down to 0.05 mol%). Using this chemistry, we are able to prepare polysulfates and polysulfonates with high molecular weight, narrow polydispersity and excellent functional group tolerance. The process is practical with regard to the reduced cost of catalyst, polymer purification and by-product recycling. We have also observed that the process is not sensitive to scale-up, which is essential for its future translation from laboratory research to industrial applications.

  9. Can prevention eliminate caries?

    PubMed

    O'Mullane, D

    1995-07-01

    There are four main factors involved in the carious process: at-risk tooth structure, plaque flora, fermentable carbohydrates, and time. Based on our knowledge of the carious process, four main preventive strategies have been developed over the years, namely, fluorides, fissure sealing, dietary choice, and plaque control. Fluorides are having a major impact on smooth-surface caries; hence, strategies combining fluorides and fissure sealing are very effective. However, use of fissure sealing is still problematic. Changing dietary practices with a view to reducing dental caries seems to be having little impact on a global scale. Plaque control, as practiced routinely by the majority of people, is not sufficient to result in caries reductions. Deprivation and poverty are strongly associated with high caries levels. Although the preventive strategies currently available are likely to result in lower caries levels for many, for logistical reasons and because of factors associated with deprivation and poverty, caries is likely to remain a major public health problem in most communities for the foreseeable future.

  10. Application of 252Cf plasma desorption mass spectrometry in dental research

    NASA Astrophysics Data System (ADS)

    Fritsch, Hans-Walter; Schmidt, Lothar; Köhl, Peter; Jungclas, Hartmut; Duschner, Heins

    1993-07-01

    Topically applied fluorides introduced in dental hygiene products elevate the concentration levels of fluoride in oral fluids and thus also affect chemical reactions of enamel de- and remineralisation. The chemical reactions on the surface of tooth enamel still are a subject of controversy. Here 252Cf-plasma desorption mass spectrometry and argon ion etching are used to analyse the molecular structure of the upper layes of enamel. The mass spectrum of untreated enamel is characterised by a series of cluster ions containing phosphate. It is evident that under certain conditions the molecular structure of the surface enamel is completely transformed by treatment with fluorides. The result of the degradation and precipitation processes is reflected by a total replacement of the phosphate by fluoride in the measured cluster ion distribution. Stepwise etching of the upper layers by Ar+ ions reveals the transition from a nearly pure CaF2 structure to the unchanged composition of the enamel mineral.

  11. Double-Vacuum-Bag Process for Making Resin-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bradford, Larry J.

    2007-01-01

    A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.

  12. Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: Advantage of ultrasonication with precipitation method over conventional method.

    PubMed

    Mehta, Dhiraj; Mondal, Poonam; Saharan, Virendra Kumar; George, Suja

    2017-07-01

    This research work presents the synthesis of hydroxyapatite (Hap) nanorods for defluoridation of drinking water by using both conventional (CM) and ultrasonication with precipitation (USPM) methods. Calcium nitrate was reacted with potassium phosphate in presence of ammonia for controlled pH to synthesize Hap nanorods, which was characterized using FTIR, XRD, SEM, TG-DTA, and TEM/EDS for determining its phase composition, structural and thermal decomposition behavior. When USPM method was used for synthesis, the yield of the Hap nanorods was improved from 83.24±1.0% to 90.2±1.0%, and complete phase transformation occurred with formation of elongated Hap nanorods. Effects of process parameters such as solution pH, contact time and adsorbent dose were studied through response surface methodology (RSM). A simple quadratic model was developed using Central Composite Design (CCD) and optimum parameters for fluoride adsorption process were determined to be pH 7, contact time 3h and adsorbent dose 7g/L for maximum removal capacity. Fluoride removal efficiency was predicted to be 93.64% which was very close to the experimental value obtained at 92.86% using ultrasonically prepared Hap. Fluoride adsorption isotherms fitted the Freundlich isotherm with an adsorption capacity of 1.49mg/g, while the kinetic studies revealed that the process followed pseudo-second order model. The treated water quality parameters such as residual fluoride, calcium leached, total hardness and alkalinity was investigated, and it was observed that all these parameters were within the permissible limits as per WHO and BIS standards. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ultrastructure Processing of Advanced Materials.

    DTIC Science & Technology

    1992-11-01

    alkoxide) involving the sodium and the other metal [e.g., NaZr 2(OR)9]. The use of anhydrous ammonia usually solves this problem. MCIX + xNH 3 + xROH - M...the formation of pentacoordinate silicic acid complexes with hydroxide and fluoride ions, as well as neutral adducts with hydrogen fluoride, ammonia ...stable than that for any other small neutral adduct such as water, ammonia , and hydrogen chloride. Elimination of water is much easier by internal

  14. 40 CFR 421.323 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Chromium (total) 27.14 11.00 Copper 93.88 44.74 Nickel 40.34 27.14 Fluoride 2,567.00 1,459.00 (b) Slag... in the refinery Chromium (total) 1.689 0.685 Copper 5.844 2.785 Nickel 2.511 1.689 Fluoride 159.800... per million pounds) of uranium processed in the refinery Chromium (total) 2.357 0.955 Copper 8.152 3...

  15. 40 CFR 421.323 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Chromium (total) 27.14 11.00 Copper 93.88 44.74 Nickel 40.34 27.14 Fluoride 2,567.00 1,459.00 (b) Slag... in the refinery Chromium (total) 1.689 0.685 Copper 5.844 2.785 Nickel 2.511 1.689 Fluoride 159.800... per million pounds) of uranium processed in the refinery Chromium (total) 2.357 0.955 Copper 8.152 3...

  16. 40 CFR 421.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... discharged by a point source subject to the provisions of this subpart and which uses water for metal cooling... to the provisions of this subpart and which uses aluminum fluoride in its magnesium removal process... Fluoride 0.4 Ammonia (as N) 0.01 Aluminum 1.0 Copper 0.003 COD 1.0 pH (1) 1 Within the range of 7.5 to 9.0. ...

  17. 40 CFR 421.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... discharged by a point source subject to the provisions of this subpart and which uses water for metal cooling... to the provisions of this subpart and which uses aluminum fluoride in its magnesium removal process... Fluoride 0.4 Ammonia (as N) 0.01 Aluminum 1.0 Copper 0.003 COD 1.0 pH (1) 1 Within the range of 7.5 to 9.0. ...

  18. 40 CFR 421.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... discharged by a point source subject to the provisions of this subpart and which uses water for metal cooling... to the provisions of this subpart and which uses aluminum fluoride in its magnesium removal process... Fluoride 0.4 Ammonia (as N) 0.01 Aluminum 1.0 Copper 0.003 COD 1.0 pH (1) 1 Within the range of 7.5 to 9.0. ...

  19. 40 CFR 421.32 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... discharged by a point source subject to the provisions of this subpart and which uses water for metal cooling... to the provisions of this subpart and which uses aluminum fluoride in its magnesium removal process... Fluoride 0.4 Ammonia (as N) 0.01 Aluminum 1.0 Copper 0.003 COD 1.0 pH (1) 1 Within the range of 7.5 to 9.0. ...

  20. Electronic Devices with Barium Barrier Film and Process for Making Same

    DTIC Science & Technology

    1998-08-20

    structure of the barrier film on an atomic level 15 where the barrier .film is comprised of a plurality of contiguous monolayers, while FIG. 7B...yet another embodiment where the barrier film is comprised of a plurality of 20 contiguous monolayers in which different monolayers thereof are...barrier precursor compound effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a

  1. Electronic Devices with Barrier Film and Process for Making Same

    DTIC Science & Technology

    1998-08-20

    the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows another...embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed of different...compound effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a shutter 33. A

  2. Electronic Devices with Rubidium Barrier Film and Process for Making Same

    DTIC Science & Technology

    1998-08-20

    barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows another embodiment of the 20 invention where the barrier film is... plurality of contiguous monolayers in which different monolayers thereof are formed of different types of metal atoms. -10- FIG. 8 is a schematic...system directed toward the substrate 26. A diffusion barrier precursor compound effusion cell, for example a barium fluoride, strontium fluoride or the

  3. Enhanced mechanical energy harvesting ability of electrospun poly(vinylidene fluoride)/hectorite clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Rahman, Wahida; Ghosh, Sujoy Kumar; Middya, Tapas Ranjan; Mandal, Dipankar

    2018-04-01

    We report on enhanced piezoelectric properties of poly (vinylidene fluoride) (PVDF)/hectorite nano-clay composites prepared by electrospinning process. The investigation on the effects of the nano-filler in the crystalline phase and piezoelectric properties reveals dramatic enhancement of piezoelectric β-phase (95%) due to synergistic effect of electrospinning and nano-clay loading. As a result, the prepared nanocomposite possesses higher mechanical energy harvesting ability than that of pure PVDF.

  4. Thermodynamic modeling of melts in the system Na 2O-NaAlO 2-SiO 2-F 2O -1

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Baker, Don R.

    2005-12-01

    Fluorine is a common volatile element in magmatic-hydrothermal systems, but its solution mechanisms and thermodynamic description in highly polymerized silicate melts are poorly known. We have developed a thermodynamic model for fluorosilicate liquids that links experimentally determined phase equilibria and spectroscopic information on melt structure. The model is applicable to crystallization of fluoride minerals, fluoride-silicate immiscibility in natural felsic melts, and metallurgical processes. Configurational properties of fluorosilicate melts are described by mixing on three site levels (sublattices): (1) alkali fluoride, polyhedral aluminofluoride and silicofluoride species and nonbridging terminations of the aluminosilicate network, (2) alkali-aluminate and silicate tetrahedra within the network and (3) bridging oxygen, nonbridging oxygen and terminal fluorine atoms on tetrahedral apices of the network. Abundances of individual chemical species are described by a homogeneous equilibrium representing melt depolymerization: F - (free) + O 0 (bridging) = F 0 (terminal) + O - (nonbridging) which corresponds to a replacement of an oxygen bridging two tetrahedra by a pair of terminations, one with F and the other with an O and a charge-balancing Na. In cryolite-bearing systems two additional interaction mechanisms occur: (1) the self-dissociation of octahedral aluminofluoride complexes: [AlF 6] = [AlF 4] + 2 [F], and (2) the short-range order between (O,F)-corners and (Si,NaAl)-centers of tetrahedra: Si-O-Si + 2 [NaAl]-F = [NaAl]-O-[NaAl] + 2 Si-F. Portrayal of these equilibria in ternary Thompson reaction space allows for the decrease in the number of interaction mechanisms by linearly combining melt depolymerization with tetrahedral short-range order. In this formulation, the nonideal thermodynamic properties are represented by reaction energies of homogeneous equilibria, thus defining directly individual chemical species concentrations and configurational properties. Thermodynamic expressions for the activity-composition relationships are simplified if all entities are expressed using symbolic molecular notation (e.g., SiO 2, SiF 4, [NaAl]O 2, [NaAl]F 4, NaF etc.) with corresponding nonfractional site multiplicities (1, 2 or 4). The model has been applied to three subsystems of the Na 2O-NaAlO 2-SiO 2-F 2O -1 compositional space. Activity-composition relationships in the villiaumite-sodium silicate binaries require clustering of silicate tetrahedra and only negligible interaction between fluoride species and silicate polymer. Phase equilibria in the cryolite-albite system with a large depression of albite liquidus are interpreted via complete substitution of O 0 by O - and F 0 in the silicate framework. With increasing fluorine content, initial Al-F and Si-O short-range order evolves into the partial O-F disorder. The present model provides a useful relationship between experimental equilibria, macroscopic thermodynamics and melt speciation, thus it facilitates comparisons with, and interpretations of, spectroscopic and molecular simulation data.

  5. The effect of processing and compositional changes on the tribology of PM212 in air

    NASA Technical Reports Server (NTRS)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1993-01-01

    The effects of processing and compositional variations on the tribological performance of PM212 were studied. PM212 is a self lubricating powder metallurgy composite, comprised of a wear resistant metal bonded chromium carbide matrix, containing the solid lubricants barium fluoride/calcium fluoride eutectic and silver. Several composites were formulated which had lubricant, matrix, and processing variations. Processing variations included sintering and hot isostatic pressing. Pins fabricated from the composites were slid against superalloys disks in a pin-on-disk tribometer to study the tribological properties. Several composites exhibited low friction and wear in sliding against a nickel based superalloy. The tribological performance by several different composites showed that the composition of PM212 can be altered without dramatically affecting performance.

  6. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  7. Pricing foreign equity option under stochastic volatility tempered stable Lévy processes

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoli; Zhuang, Xintian

    2017-10-01

    Considering that financial assets returns exhibit leptokurtosis, asymmetry properties as well as clustering and heteroskedasticity effect, this paper substitutes the logarithm normal jumps in Heston stochastic volatility model by the classical tempered stable (CTS) distribution and normal tempered stable (NTS) distribution to construct stochastic volatility tempered stable Lévy processes (TSSV) model. The TSSV model framework permits infinite activity jump behaviors of return dynamics and time varying volatility consistently observed in financial markets through subordinating tempered stable process to stochastic volatility process, capturing leptokurtosis, fat tailedness and asymmetry features of returns. By employing the analytical characteristic function and fast Fourier transform (FFT) technique, the formula for probability density function (PDF) of TSSV returns is derived, making the analytical formula for foreign equity option (FEO) pricing available. High frequency financial returns data are employed to verify the effectiveness of proposed models in reflecting the stylized facts of financial markets. Numerical analysis is performed to investigate the relationship between the corresponding parameters and the implied volatility of foreign equity option.

  8. The occurrence and hydrochemistry of fluoride and boron in carbonate aquifer system, central and western Estonia.

    PubMed

    Karro, Enn; Uppin, Marge

    2013-05-01

    Silurian-Ordovician (S-O) aquifer system is an important drinking water source of central and western Estonia. The fluoride and boron contents of groundwater in aquifer system vary considerably. The fluoride concentration in 60 collected groundwater samples ranged from 0.1 to 6.1 mg/l with a mean of 1.95 mg/l in the study area. Boron content in groundwater varied from 0.05 mg/l to 2.1 mg/l with a mean value of 0.66 mg/l. Considering the requirements of EU Directive 98/83/EC and the Estonian requirements for drinking water quality, the limit value for fluoride (1.5 mg/l) and for boron (1.0 mg/l) is exceeded in 47 and 28 % of wells, respectively. Groundwater with high fluoride and boron concentrations is found mainly in western Estonia and deeper portion of aquifer system, where groundwater chemical type is HCO3-Cl-Na-Mg-Ca, water is alkaline, and its Ca(2+) content is low. Groundwater of the study area is undersaturated with respect to fluorite and near to equilibrium phase with respect to calcite. The comparison of TDS versus Na/(Na + Ca) and Cl/(Cl + HCO3) points to the dominance of rock weathering as the main process, which promotes the availability of fluoride and boron in the groundwater. The geological sources of B in S-O aquifer system have not been studied so far, but the dissolution of fluorides from carbonate rocks (F = 100-400 mg/kg) and K-bentonites (F = 2,800-4,500 mg/kg) contributes to the formation of F-rich groundwater.

  9. Fluoride intake of infants living in non-fluoridated and fluoridated areas.

    PubMed

    Zohoori, F V; Whaley, G; Moynihan, P J; Maguire, A

    2014-01-01

    Data on fluoride exposure of infants are sparse. This study aimed to estimate total daily fluoride intake (TDFI) of infants aged 1-12 months, living in non-fluoridated and fluoridated areas in north-east England. Daily dietary fluoride intake was assessed using a three-day food diary coupled with analysis of fluoride content of food/drink consumed, using a F-ISE and diffusion method. A questionnaire with an interview was used to collect information on toothbrushing habits. TDFI was estimated from diet, plus fluoride supplements and dentifrice ingestion where used. Thirty-eight infants completed the study; 19 receiving fluoridated water (mean 0.97 mgF/l) and 19 receiving non-fluoridated water (mean 0.19 mgF/l). Mean (SD) TDFI for the infants living in fluoridated and non-fluoridated areas was 0.107 (0.054) and 0.024 (0.015) mg/kg body weight per day, respectively. Diet was the only fluoride source for 87% of infants and none used fluoride supplements. For infants for whom mouth/teeth cleaning was undertaken, dentifrice contribution to TDFI ranged from 24 to 78%. Infants living in fluoridated areas, in general, may receive a fluoride intake, from diet only, of more than the suggested optimal range for TDFI. This emphasises the importance of estimating TDFI at an individual level when recommendations for fluoride use are being considered.

  10. Estimated dietary fluoride intake for New Zealanders.

    PubMed

    Cressey, Peter; Gaw, Sally; Love, John

    2010-01-01

    Existing fluoride concentration and consumption data were used to estimate fluoride intakes from the diet and toothpaste use, for New Zealand subpopulations, to identify any population groups at risk of high-fluoride intake. For each sub-population, two separate dietary intake estimates were made--one based on a non-fluoridated water supply (fluoride concentration of 0.1 mg/L), and the other based on a water supply fluoridated to a concentration of 1.0 mg/L. Fluoride concentration data were taken from historical surveys, while food consumption data were taken from national 24-hour dietary recall surveys or from simulated diets. Mean and 95th percentile estimations of dietary fluoride intake were well below the upper level of intake (UL), whether intakes were calculated on the basis of a non-fluoridated or fluoridated water supply. The use of fluoride-containing toothpastes provides additional fluoride intake. For many of the population groups considered, mean fluoride intakes were below the adequate intake (AI) level for caries protection, even after inclusion of the fluoride contribution from toothpaste. Intake of fluoride was driven by consumption of dietary staples (bread, potatoes),beverages (particularly tea, soft drinks, and beer), and the fluoride status of drinking water. Estimates of fluoride intake from the diet and toothpaste did not identify any groups at risk of exceeding the UL, with the exception of infants (6-12 months) living in areas with fluoridated water supplies and using high-fluoride toothpaste. In contrast, much of the adult population may be receiving insufficient fluoride for optimum caries protection from these sources, as represented by the AI.

  11. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélica Reis; MAGALHÃES, Ana Carolina; RIOS, Daniela; HONÓRIO, Heitor Marques; DELBEM, Alberto Carlos Botazzo

    2010-01-01

    Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e.g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments. PMID:20835565

  12. The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste

    NASA Astrophysics Data System (ADS)

    Smet, Erik; Van Langenhove, Herman; De Bo, Inge

    Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH 3 and H 2S during the aerobic composting process was 742 g ton -1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton -1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of its 17 times lower overall emission of the volatiles mentioned.

  13. Prevention and Treatment of White Spot Lesions During and After Treatment with Fixed Orthodontic Appliances: a Systematic Literature Review

    PubMed Central

    Lopatiene, Kristina; Lapenaite, Egle

    2016-01-01

    ABSTRACT Objectives The aim of the systematic literature review is to update the evidence for the prevention of white spot lesions, using materials containing fluoride and/or casein phosphopeptide-amorphous calcium phosphate during and after treatment with fixed orthodontic appliances. Material and Methods Information search for controlled studies on humans published between January 2008 and February 2016 was performed in PubMed, ScienceDirect, Embase, The Cochrane Library. Inclusion criteria were: the English language, study on humans, patients undergoing orthodontic treatment with fixed appliances, randomized or quasi-randomized controlled clinical studies fluoride-containing product or casein derivates used throughout the appliance therapy or straightaway after debonding. Results 326 articles were reviewed (Embase 141, PubMed 129, ScienceDirect 41, Cochrane 15). Twelve clinical studies fulfilled all inclusion criteria. Use of fluoridated toothpaste had a remineralizing effect on white spot lesions (WSLs) (P < 0.05); fluoride varnish and casein supplements were effective in prevention and early treatment of WSLs (P < 0.05). Conclusions Early detection of white spot lesions during orthodontic treatment would allow implementing preventive measures to control the demineralization process before lesions progress. The systemic review has showed that the usage of fluoride and casein supplements in ameliorating white spot lesions during and after fixed orthodontic treatment is significantly effective. However the use of casein phosphopeptide-amorphous calcium phosphate can be more beneficial than fluoride rinse in the reduction of demineralization spots. PMID:27489605

  14. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states.

    PubMed

    Mehdi, Hassan; Pang, Hongchang; Gong, Weitao; Dhinakaran, Manivannan Kalavathi; Wajahat, Ali; Kuang, Xiaojun; Ning, Guiling

    2016-07-07

    A novel smart supramolecular organic gelator G-16 containing anion and metal-coordination ability has been designed and synthesized. It shows excellent and robust gelation capability as a strong blue fluorescent supramolecular organic gel OG in DMF. Addition of Zn(2+) produced Zn(2+)-coordinated supramolecular metallogel OG-Zn. Organic gel OG and organometallic gel OG-Zn exhibited efficient and different sensing behaviors towards fluoride ion due to the variation in self-assembling nature. Supramolecular metallogel OG-Zn displayed specific selectivity for fluoride ion and formed OG-Zn-F with dramatic color change from blue to blue green in solution and gel to gel states. Furthermore after directly addition of fluoride into OG produced fluoride containing organic gel OG-F with drastically modulation in color from blue to greenish yellow fluorescence via strong aggregation-induced emission (AIE) property. A number of experiments were conducted such as FTIR, (1)H NMR, and UV/Vis spectroscopies, XRD, SEM and rheology. These results revealed that the driving forces involved in self-assembly of OG, OG-Zn, OG-Zn-F and OG-F were hydrogen bonding, metal coordination, π-π interactions, and van der Waal forces. In contrast to the most anion responsive gels, particularly fluoride ion responsive gels showed gel-sol state transition on stimulation by anions, the gel state of OG and OG-Zn did not show any gel-to-sol transition during the whole F(-) response process.

  15. [Adaptation of the (18)FDG module for the preparation of a sodium fluoride [(18)F] injection solution in agreement with the United States (USP 32) and European Pharmacopeia (PhEur 6)].

    PubMed

    Martínez, T; Cordero, B; Medín, S; Sánchez Salmón, A

    2011-01-01

    To establish an automated procedure for the preparation of sodium fluoride (18)F injection using the resources available in our laboratory for the preparation of (18)FDG and to analyze the repercussion of the conditioning column of the fluoride ion entrapment on the characteristics of the final product. The sequence of an (18)FDG synthesis module prepared so that it traps the fluoride ion from the cyclotron in ion-exchange resin diluted with 0.9% sodium chloride. The final solution was dosified and sterilized in a final vial in an automatized dispensing module. Three different column conditioning protocols within the process were tested. Quality controls were run according to USP 32 and EurPh 6, adding control of ethanol levels of residual solvent and quality controls of the solution at 8 h post-preparation. Activation of the resin cartridges with ethanol and water was the chosen procedure, with fluoride ion trapping > 95% and pH around 7. Ethanol levels were < 5.000 ppm. Quality controls at 8 h indicated that the solution was in compliance with the USP 32 and EurPh 6 specifications. This is an easy, low-cost, reliable automated method for sodium fluoride preparation in PET facilities with existing equipment for (18)FDG synthesis and quality control. Copyright © 2010 Elsevier España, S.L. y SEMNIM. All rights reserved.

  16. Industrial Applications of Graphite Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1991-01-01

    Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.

  17. Metabolism of 2-chloro-1,1-difluoroethene to glyoxylic and glycolic acid in rat hepatic microsomes.

    PubMed

    Baker, M T; Vasquez, M T; Bates, J N; Chiang, C K

    1990-01-01

    The complete metabolic fate of the volatile anesthetic halothane is unclear since 2-chloro-1,1-diflurorethene (CDE), a reductive halothane metabolite, is known to readily release inorganic fluoride upon oxidation by cytochrome P-450. This study sought to clarify the metabolism of CDE by determining its metabolites and the roles of induce cytochrome P-450 forms in its metabolism. Upon incubation of [14C]CDE with rat hepatic microsomes, two major radioactive products were found which accounted for greater than 94% of the total metabolites. These compounds were determined to be the nonhalogenated compounds, glyoxylic and glycolic acids, which were formed in a ratio of approximately 1 to 2 of glyoxylic to glycolic acid. No other radioactive metabolites could be detected. Following incubation of CDE with hepatic microsomes isolated from rats treated with cytochrome P-450 inducers, measurement of fluoride release showed that phenobarbital induced CDE metabolism to the greatest degree at high CDE levels, isoniazid was the most effective inducer at low CDE concentrations, and beta-naphthoflavone was ineffective as an inducer. These results suggest that CDE biotransformation primarily involves the generation of an epoxide intermediate, which undergoes mechanisms of decay leading to total dehalogenation of the molecule, and that this metabolism is preferentially carried out by the phenobarbital- and ethanol-inducible forms of cytochrome P-450.

  18. [Analysis of Volatile Oils from Different Processed Products of Zingiber officinale Rhizome by GC-MS].

    PubMed

    Zhao, Hong-bing; Wang, Zhi-hui; He, Fang; Meng, Han; Peng, Jian-hua; Shi, Ji-lian

    2015-04-01

    To analyze the volatile components in different processed products of Zingiber officinale rhizome, and to make clear the effect of different heating degree on them. The volatile components were extracted from four kinds of processed products by applying steam distillation, and then were analyzed by GC-MS. There were totally 43 components of volatile oil identified from four kinds of processed products of Zingiber officinale rhizome. Fresh product, dried product, and charcoal product of Zingiber officinale rhizome each had 27 components of volatile oil, while sand fried product contained 24 components. Fresh Zingiber officinale rhizome contained 22. 59% of zingiberene, 20. 87% of a-citral and 11. 01% of β-phellandrene, respectively. After processing in different heating degree, the volatile components changed greatly in both of their quantity and quality, For instance, dried Zingiber officinale rhizome contained 40. 48% of α-citral and 8-phellandrene content was slightly lower at 10. 38%. 32.73% of 3,7,11-trimethyl-l, 6, 10-dodecatriene,16. 38% of murolan-3, 9 (11)-diene-10-peroxy and 3. 36% of cubebene newly emerged in the sand fried Zingiber officinale rhizome, and eudesm-4 (14) and β-bisabolol, etc. However, β-phellandrene content was only 1. 95%. The zingiberene and β-sesquiphellandrene were the highest in charcoal product, besides, new components such as α-cedrene, decanal and γ-elemene appeared. Volatile components in different processed products of Zingiber officinale rhizome were different in both of their kinds and contents. This method is suitable for the analysis of volatile components in Zingiber officinale rhizome, and this study can provide the experimental evidence for quality evaluation and clinical application for ginger processed products.

  19. A survey of analytical methods employed for monitoring of Advanced Oxidation/Reduction Processes for decomposition of selected perfluorinated environmental pollutants.

    PubMed

    Trojanowicz, Marek; Bobrowski, Krzysztof; Szostek, Bogdan; Bojanowska-Czajka, Anna; Szreder, Tomasz; Bartoszewicz, Iwona; Kulisa, Krzysztof

    2018-01-15

    The monitoring of Advanced Oxidation/Reduction Processes (AO/RPs) for the evaluation of the yield and mechanisms of decomposition of perfluorinated compounds (PFCs) is often a more difficult task than their determination in the environmental, biological or food samples with complex matrices. This is mostly due to the formation of hundreds, or even thousands, of both intermediate and final products. The considered AO/RPs, involving free radical reactions, include photolytic and photocatalytic processes, Fenton reactions, sonolysis, ozonation, application of ionizing radiation and several wet oxidation processes. The main attention is paid to the most commonly occurring PFCs in the environment, namely PFOA and PFOS. The most powerful and widely exploited method for this purpose is without a doubt LC/MS/MS, which allows the identification and trace quantitation of all species with detectability and resolution power depending on the particular instrumental configurations. The GC/MS is often employed for the monitoring of volatile fluorocarbons, confirming the formation of radicals in the processes of C‒C and C‒S bonds cleavage. For the direct monitoring of radicals participating in the reactions of PFCs decomposition, the molecular spectrophotometry is employed, especially electron paramagnetic resonance (EPR). The UV/Vis spectrophotometry as a detection method is of special importance in the evaluation of kinetics of radical reactions with the use of pulse radiolysis methods. The most commonly employed for the determination of the yield of mineralization of PFCs is ion-chromatography, but there is also potentiometry with ion-selective electrode and the measurements of general parameters such as Total Organic Carbon and Total Organic Fluoride. The presented review is based on about 100 original papers published in both analytical and environmental journals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Transmetalation Reaction Enables the Synthesis of [ 18F]5-Fluorouracil from [ 18F]Fluoride for Human PET Imaging

    DOE PAGES

    Hoover, Andrew J.; Lazari, Mark; Ren, Hong; ...

    2016-02-14

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18F]fluoride of human doses of [ 18F]5-fluorouracil, a PET tracer for cancer imaging in humans. Here, the firstmore » preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.« less

  1. A Transmetalation Reaction Enables the Synthesis of [ 18F]5-Fluorouracil from [ 18F]Fluoride for Human PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Andrew J.; Lazari, Mark; Ren, Hong

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18F]fluoride of human doses of [ 18F]5-fluorouracil, a PET tracer for cancer imaging in humans. Here, the firstmore » preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.« less

  2. Fluoride toothpastes and fluoride mouthrinses for home use.

    PubMed

    Rugg-Gunn, Andrew; Bánóczy, Jolán

    2013-11-01

    To provide a brief commentary review of fluoride-containing toothpastes and mouthrinses with emphasis on their use at home. Toothpastes and mouthrinses are just two of many ways of providing fluoride for the prevention of dental caries. The first investigations into incorporating fluoride into toothpastes and mouthrinses were reported in the middle 1940s. Unlike water fluoridation (which is 'automatic fluoridation'), fluoride-containing toothpastes and fluoridecontaining mouthrinses are, primarily, for home use and need to be purchased by the individual. By the 1960s, research indicated that fluoride could be successfully incorporated into toothpastes and clinical trials demonstrated their effectiveness. By the end of the 1970s, almost all toothpastes contained fluoride. The widespread use of fluoride- containing toothpastes is thought to be the main reason for much improved oral health in many countries. Of the many fluoride compounds investigated, sodium fluoride, with a compatible abrasive, is the most popular, although amine fluorides are used widely in Europe. The situation is similar for mouthrinses. Concentrations of fluoride (F), commonly found, are 1500 ppm (1500 μg F/g) for toothpastes and 225 ppm (225 μg F/ml) for mouthrinse. Several systematic reviews have concluded that fluoride-containing toothpastes and mouthrinses are effective, and that there is added benefit from their use with other fluoride delivery methods such as water fluoridation. Guidelines for the appropriate use of fluoride toothpastes and mouthrinses are available in many countries. Fluoride toothpastes and mouthrinses have been developed and extensive testing has demonstrated that they are effective and their use should be encouraged. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  3. Oral fluoride retention after use of fluoride dentifrices.

    PubMed

    Duckworth, R M; Morgan, S N

    1991-01-01

    Fluoride is the only extensively clinically proven means of reducing dental caries. Despite a large body of epidemiological data on the effectiveness of fluoride, delivered in the form of dentifrices, mouthrinses, drinking water, etc., the precise mode of action of fluoride is not completely understood. The purpose of this paper is to report an investigation of the link between oral fluoride levels and applied fluoride dose from dentifrices. Human salivary fluoride clearance studies and equilibrium baseline studies of fluoride in saliva and plaque have been carried out with dentifrices which contained 1,000, 1,500 and 2,500 micrograms fluoride per gram as sodium monofluorophosphate. After a single brushing with a fluoride dentifrice, salivary fluoride decreased in two distinct phases: an initial rapid phase which lasted for 40-80 min, depending on the individual, and a second slow phase lasting for several hours. The latter phase is believed to be due to fluoride released from an oral fluoride reservoir. During regular repeated use of the test dentifrices, the equilibrium baseline fluoride concentration, attained in both saliva and plaque between one application and the next, increased significantly compared with placebo values. Such elevated baseline fluoride concentrations also increased with increasing Na2FPO3 content of the dentifrices. The present work supports the concept that labile fluoride, stored in an oral fluoride reservoir at the time of treatment application, may maintain a prolonged protective effect against dental caries.

  4. Space exploration and the history of solar-system volatiles

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.

    1976-01-01

    The thermochemical history of volatile substances in all solar-system planets, satellites, and planetoids is discussed extensively. The volatiles are viewed as an interface between the abiotic and biotic worlds and as a key to the history of bodies of the solar system. A flowsheet of processes and states is exhibited. Differences in bulk volatiles distribution between the planetary bodies and between the interior, surface, and atmosphere of each body are considered, as well as sinks for volatiles in degassing. The volatiles-rich Jovian and Saturnian satellites, the effect of large-planet magnetosphere sweeps on nearby satellites, volatiles of asteroids and comets, and the crucial importance of seismic, gravity, and libration data are treated. A research program encompassing analysis of the elemental and isotopic composition of rare gas in atmospheres, assay of volatiles-containing phases in regoliths, and examination of present or past atmospheric escape/accretion processes is recommended.

  5. Calibration of equipment for analysis of drinking water fluoride: a comparison study.

    PubMed

    Quock, Ryan L; Chan, Jarvis T

    2012-03-01

    Current American Dental Association evidence-based recommendations for prescription of dietary fluoride supplements are based in part on the fluoride concentration of a pediatric patient's drinking water. With these recommendations in mind, this study compared the relative accuracy of fluoride concentration analysis when a common apparatus is calibrated with different combinations of standard values. Fluoride solutions in increments of 0.1 ppm, from a range of 0.1 to 1.0 ppm fluoride, as well as 2.0 and 4.0 ppm, were gravimetrically prepared and fluoride concentration measured in pentad, using a fluoride ion-specific electrode and millivolt meter. Fluoride concentrations of these solutions were recorded after calibration with the following 3 different combinations of standard fluoride solutions: 0.1 ppm and 0.5 ppm, 0.1 ppm and 1.0 ppm, 0.5 ppm and 1.0 ppm. Statistical analysis showed significant differences in the fluoride content of water samples obtained with different two-standard fluoride solutions. Among the two-standard fluoride solutions tested, using 0.5 ppm and 1.0 ppm as two-standard fluoride solutions provided the most accurate fluoride measurement of water samples containing fluoride in the range of 0.1 ppm to 4.0 ppm. This information should be valuable to dental clinics or laboratories in fluoride analysis of drinking water samples.

  6. Geochemical appraisal of fluoride-laden groundwater in Suri I and II blocks, Birbhum district, West Bengal

    NASA Astrophysics Data System (ADS)

    Das, Shreya; Nag, S. K.

    2017-09-01

    The present study has been carried out covering two blocks—Suri I and II in Birbhum district, West Bengal, India. The evaluation focuses on occurrence, distribution and geochemistry in 26 water samples collected from borewells spread across the entire study area homogeneously. Quantitative chemical analysis of groundwater samples collected from the present study area has shown that samples from two locations—Gangta and Dhalla contain fluoride greater than the permissible limit prescribed by WHO during both post-monsoon and pre-monsoon sampling sessions. Significant factor controlling geochemistry of groundwater has been identified to be rock-water interaction processes during both sampling sessions based on the results of Gibb's diagrams. Geochemical modeling studies have revealed that fluorite (CaF2) is, indeed, present as a significant fluoride-bearing mineral in the groundwaters of this study area. Calcite or CaCO3 is one of the most common minerals with which fluorite remains associated, and saturation index calculations have revealed that the calcite-fluorite geochemistry is the dominant factor controlling fluoride concentration in this area during both post- and pre-monsoon. High fluoride waters have also been found to be of `bicarbonate' type showing increase of sodium in water with decrease of calcium.

  7. Effects of sodium fluoride on immune response in murine macrophages.

    PubMed

    De la Fuente, Beatriz; Vázquez, Marta; Rocha, René Antonio; Devesa, Vicenta; Vélez, Dinoraz

    2016-08-01

    Excessive fluoride intake may be harmful for health, producing dental and skeletal fluorosis, and effects upon neurobehavioral development. Studies in animals have revealed effects upon the gastrointestinal, renal and reproductive systems. Some of the disorders may be a consequence of immune system alterations. In this study, an in vitro evaluation is made of fluoride immunotoxicity using the RAW 264.7 murine macrophage line over a broad range of concentrations (2.5-75mg/L). The results show that the highest fluoride concentrations used (50-75mg/L) reduce the macrophage population in part as a consequence of the generation of reactive oxygen and/or nitrogen species and consequent redox imbalance, which in turn is accompanied by lipid peroxidation. A decrease in the expression of the antiinflammatory cytokine Il10 is observed from the lowest concentrations (5mg/L). High concentrations (50mg/L) in turn produce a significant increase in the proinflammatory cytokines Il6 and Mip2 from 4h of exposure. In addition, cell phagocytic capacity is seen to decrease at concentrations of ≥20mg/L. These data indicate that fluoride, at high concentrations, may affect macrophages and thus immune system function - particularly with regard to the inflammation autoregulatory processes, in which macrophages play a key role. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  9. Electronic Devices with Cesium Barrier Film and Process for Making Same

    DTIC Science & Technology

    1998-08-20

    interfacial structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another 20 embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed...compound effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a shutter 33. A

  10. Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulisashvili, Archil, E-mail: guli@math.ohiou.ed; Stein, Elias M., E-mail: stein@math.princeton.ed

    2010-06-15

    We study the asymptotic behavior of distribution densities arising in stock price models with stochastic volatility. The main objects of our interest in the present paper are the density of time averages of the squared volatility process and the density of the stock price process in the Stein-Stein and the Heston model. We find explicit formulas for leading terms in asymptotic expansions of these densities and give error estimates. As an application of our results, sharp asymptotic formulas for the implied volatility in the Stein-Stein and the Heston model are obtained.

  11. Urinary fluoride excretion in preschool children after intake of fluoridated milk and use of fluoride-containing toothpaste.

    PubMed

    Norman, M; Twetman, S; Hultgren Talvilahti, A; Granström, E; Stecksén-Blicks, C

    2017-03-01

    To assess the urinary fluoride excretion in preschool children after drinking fluoridated milk with 0.185 mg F and 0.375 mg F and to study the impact of use of fluoride toothpaste. Double-blind cross-over study. Nine healthy children, 2.5-4.5 years of age. In a randomized order, participants drank 1.5 dl milk once daily for 7 days with no fluoride added (control), 0.185 mg fluoride added and 0.375 mg fluoride added. The experiment was performed twice with (Part I) and without (Part II) parental tooth brushing with 1,000 ppm fluoride toothpaste. The fluoride content in the piped drinking water was 0.5 mg F/L. Urinary fluoride excretion. The 24-hour urinary fl uoride excretion/kg body weight varied from 0.014 mg F for the placebo intervention and non-fluoride toothpaste to 0.027 mg F for the 0.375 mg intervention with use of 1,000 ppm fluoride toothpaste. The difference compared with the placebo intervention was not statistically significant for any of the interventions when fluoride toothpaste was used (p⟩0.05) while it was statistically significantly different when non-fluoride toothpaste was used (p⟨0.05). All sources of fluoride must be considered when designing community programs. With 0.5 mg F/L in the drinking water and daily use of fluoride toothpaste, most children had a fluoride intake optimal for dental health. In this setting, additional intake of fluoride milk was within safe limits up to 0.185 mg/day while conclusions about the safety of 0.375 mg/day were uncertain. Copyright© 2017 Dennis Barber Ltd

  12. Determining the optimal fluoride concentration in drinking water for fluoride endemic regions in South India.

    PubMed

    Viswanathan, Gopalan; Jaswanth, A; Gopalakrishnan, S; Siva Ilango, S; Aditya, G

    2009-10-01

    Fluoride ion in drinking water is known for both beneficial and detrimental effects on health. The prevalence of fluorosis is mainly due to the intake of large quantities of fluoride through drinking water owing to more than 90% bioavailability. The objective of this study is to predict optimal fluoride level in drinking water for fluoride endemic regions by comprising the levels of fluoride and other water quality parameters in drinking water, prevalence of fluorosis, fluoride intake through water, food and beverages such as tea and coffee and also considering the progressive accumulation of fluoride in animal bones, by comparing with non fluoride endemic areas comprise of the same geological features with the aid of regression analysis. Result of this study shows that increase of fluoride level above 1.33 mg/l in drinking water increases the community fluorosis index (CFI) value more than 0.6, an optimum index value above which fluorosis is considered to be a public health problem. Regression plot between water fluoride and bone fluoride levels indicates that, every increase of 0.5mg/l unit of water fluoride level increases the bone fluoride level of 52 mg/kg unit within 2 to 3 years. Furthermore, the consumption of drinking water containing more than 0.65 mg/l of fluoride can raise the total fluoride intake per day more than 4 mg, which is the optimum fluoride dose level recommended for adults by the Agency for Toxic Substances and Disease Registry. From the result, the people in fluoride endemic areas in South India are advised to consume drinking water with fluoride level within the limit of 0.5 to 0.65 mg/l to avoid further fluorosis risk.

  13. [The dose-effect relationship of water fluoride levels and renal damage in children].

    PubMed

    Liu, Jun-Ling; Xia, Tao; Yu, Yao-Yong; Sun, Xian-Zhong; Zhu, Qilong; He, Weihong; Zhang, Ming; Wang, Aiguo

    2005-05-01

    To explore the dose-effect relationship of water fluoride levels and renal damage in children and observe the difference of renal function between high-loaded fluoride people and dental fluorosis people in the same water fluoride level region. 210 children were divided into seven groups in term of drinking water fluoride levels and whether they suffered from dental fluorosis. Fluoride concentrations in urine and serum and activities of urine NAG and gamma-GT were determined. The urine and serum fluoride of high-loaded fluoride people and dental fluorosis people increased compared with control, moreover fluoride contents in urine and serum increased gradually with the increase of fluoride level in drinking water. Urine NAG and gamma-GT activities significantly increased in dental fluorosis people from area of 2.58 mg/L fluoride in drinking water and in those two groups from area of 4.51 mg/L fluoride in drinking water. Moreover, there existed an obvious dose-effect relationship between the drinking water fluoride concentration and NAG and gamma-GT activity. Over 2.0 mg/L fluoride in drinking water can cause renal damage in children, and the damage degree increases with the drinking water fluoride content. Renal damage degree is not related to whether the children suffered from dental fluorosis and mainly due to water fluoride concentration.

  14. Urinary Fluoride Concentration in Children with Disabilities Following Long-Term Fluoride Tablet Ingestion

    ERIC Educational Resources Information Center

    Liu, Hsiu-Yueh; Chen, Jung-Ren; Hung, Hsin-Chia; Hsiao, Szu-Yu; Huang, Shun-Te; Chen, Hong-Sen

    2011-01-01

    Urine is the most commonly utilized biomarker for fluoride excretion in public health and epidemiological studies. Approximately 30-50% of fluoride is excreted from urine in children. Urinary fluoride excretion reflects the total fluoride intake from multiple sources. After administering fluoride tablets to children with disabilities, urinary…

  15. Fluoride content of tank water in Australia.

    PubMed

    Cochrane, N J; Hopcraft, M S; Tong, A C; Thean, H l; Thum, Y S; Tong, D E; Wen, J; Zhao, S C; Stanton, D P; Yuan, Y; Shen, P; Reynolds, E C

    2014-06-01

    The aims of this study were to: (1) analyse the fluoride content of tank water; (2) determine whether the method of water collection or storage influenced fluoride content; and (3) survey participant attitudes towards water fluoridation. Plastic tubes and a questionnaire were distributed through dentists to households with water tanks in Victoria. A midstream tank water sample was collected and fluoride analysed in triplicate using ion chromatography All samples (n = 123) contained negligible amounts of fluoride, with a mean fluoride concentration of <0.01 ppm (range: <0.01-0.18 ppm). No statistically significant association was found between fluoride content and variables investigated such as tank material, tank age, roof material and gutter material. Most people did not know whether their tank water contained fluoride and 40.8% preferred to have access to fluoridated water. The majority thought fluoride was safe and more than half of the respondents supported fluoridation. Fluoride content of tank water was well below the optimal levels for caries prevention. People who rely solely on tank water for drinking may require additional exposure to fluoride for optimal caries prevention. © 2014 Australian Dental Association.

  16. Kinetics of fluoride bioavailability in supernatant saliva and salivary sediment.

    PubMed

    Naumova, E A; Sandulescu, T; Bochnig, C; Gaengler, P; Zimmer, S; Arnold, W H

    2012-07-01

    The assessment of the fluoride kinetics in whole saliva as well as in the different salivary phases (supernatant saliva and sediment) is essential for the understanding of fluoride bioavailability. To assess the fluoride content, provided by sodium fluoride and amine fluoride, in the supernatant saliva and in salivary sediment. Seven trained volunteers were randomly attributed to 2 groups in a cross-over design and brushed their teeth in the morning for 3 min with a product containing either sodium fluoride or amine fluoride. Saliva was collected before, immediately after tooth brushing and 30, 120, and 360 min later and measured. The samples were centrifuged 10 min at 3024 × g. Fluoride content of the supernatant saliva and of the sediment was analysed using a fluoride sensitive electrode. All subjects repeated the study cycles 2 times, and statistical analyses were made using the nonparametric sign test for related samples, the Wilcoxon-Mann-Whitney-test for independent samples. There was a significant increase in fluoride immediately after tooth brushing in both groups in saliva and sediment. The distribution of fluoride between salivary sediment and supernatant saliva (ratio) varied considerably at the different collection times: decreased from 17.87 in baseline samples of saliva to 0.07 immediately and to 0.86 half an hour after tooth brushing in the sodium fluoride group and from 14.33 to 2.85 and to 3.09 in the amine fluoride group. Furthermore after 120 min and after 360 min after tooth brushing the ratio increased from 17.6 to 31.6 in the sodium fluoride group and from 20.5 to 25.76 in the amine fluoride group. No difference was found in the sediment-supernatant saliva ratio between the sodium fluoride and the amine fluoride groups 360 min after tooth brushing. For the assessment of fluoride kinetics in whole saliva it is necessary to pay attention to at least four factors: fluoride formulation, time after fluoride application, fluoride concentration in supernatant saliva and fluoride concentration in salivary sediment. This study was approved by the Ethical Committee of the University of Witten/Herdecke permission 21/2008. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The cariostatic mechanisms of fluoride.

    PubMed

    Rošin-Grget, Kata; Peroš, Kristina; Sutej, Ivana; Bašić, Krešimir

    2013-11-01

    This article discusses the possible cariostatic mechanisms of the action of fluoride. In the past, fluoride inhibition of caries was ascribed to reduced solubility of enamel due to incorporation of fluoride (F-) into the enamel minerals. The present evidence from clinical and laboratory studies suggests that the caries-preventive mode of action of fluoride is mainly topical. There is convincing evidence that fluoride has a major effect on demineralisation and remineralisation of dental hard tissue. The source of this fluoride could either be fluorapatite (formed due to the incorporation of fluoride into enamel) or calcium fluoride (CaF2)-like precipitates, which are formed on the enamel and in the plaque after application of topical fluoride. Calcium fluoride deposits are protected from rapid dissolution by a phosphate -protein coating of salivary origin. At lower pH, the coating is lost and an increased dissolution rate of calcium fluoride occurs. The CaF2, therefore, act as an efficient source of free fluoride ions during the cariogenic challenge. The current evidence indicates that fluoride has a direct and indirect effect on bacterial cells, although the in vivo implications of this are still not clear. A better understanding of the mechanisms of the action of fluoride is very important for caries prevention and control. The effectiveness of fluoride as a cariostatic agent depends on the availability of free fluoride in plaque during cariogenic challenge, i.e. during acid production. Thus, a constant supply of low levels of fluoride in biofilm/saliva/dental interference is considered the most beneficial in preventing dental caries. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  18. Fluoride Supplementation Adherence and Barriers in a Community Without Water Fluoridation.

    PubMed

    Flood, Shannon; Asplund, Karin; Hoffman, Benjamin; Nye, Allison; Zuckerman, Katharine E

    2017-04-01

    To prevent early childhood caries, the American Dental Association recommends oral fluoride supplementation for children in communities lacking water fluoridation who are at high caries risk. However, patient adherence to oral fluoride supplementation has not been studied in this population. This study assessed adherence to oral fluoride and barriers to adherence in a community lacking water fluoridation. A self-administered survey was completed in a systematic sample of 209 parents of children aged 6 months to 4 years, during a primary care visit in an urban academic medical center. Participants reported frequency of administering oral fluoride to their children, as well as agreement or disagreement with proposed barriers to supplementation. Bivariate and multivariate analyses were used to assess adherence with oral supplementation and the association of barriers to supplementation and child receipt of fluoride on the day before. More than half of parents either had not or did not know if their child had received fluoride on the day before. Approximately 1 in 4 of parents had given fluoride in 0 of the previous 7 days. Difficulty remembering to give fluoride and agreeing that the child does not need extra fluoride were associated with not receiving fluoride on the day before. Adherence to oral fluoride supplementation in the primary care setting is low. Difficulty remembering to give fluoride daily is the greatest barrier to adherence. Further research on interventions to reduce common barriers is needed to increase fluoride administration and reduce early childhood caries in communities lacking water fluoridation. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  19. Oral fluoride levels 1 h after use of a sodium fluoride rinse: effect of sodium lauryl sulfate.

    PubMed

    Vogel, Gerald L; Schumacher, Gary E; Chow, Laurence C; Tenuta, Livia M A

    2015-01-01

    Increasing the concentration of free fluoride in oral fluids is an important goal in the use of topical fluoride agents. Although sodium lauryl sulfate (SLS) is a common dentifrice ingredient, the influence of this ion on plaque fluid and salivary fluid fluoride has not been examined. The purpose of this study was to investigate the effect of SLS on these parameters and to examine the effect of this ion on total (or whole) plaque fluoride, an important source of plaque fluid fluoride after a sufficient interval following fluoride administration, and on total salivary fluoride, a parameter often used as a surrogate measure of salivary fluid fluoride. Ten subjects accumulated plaque for 48 h before rinsing with a 12 mmol/l NaF (228 µg/g F) rinse containing or not containing 0.5% (w/w) SLS. SLS had no statistically significant effect on total plaque and total saliva fluoride but significantly increased salivary fluid and plaque fluid fluoride (by 147 and 205%, respectively). These results suggest that the nonfluoride components of topical agents can be manipulated to improve the fluoride release characteristics from oral fluoride reservoirs and that statistically significant change may be observed in plaque fluid and salivary fluid fluoride concentrations that may not be observed in total plaque and total saliva fluoride concentrations.

  20. The effect of fluoridation and its discontinuation on fluoride profiles in the alveolar bone of rat.

    PubMed

    Ohmi, Kyohei; Nakagaki, Haruo; Tsuboi, Shinji; Okumura, Akihiro; Sugiyama, Tomoko; Thuy, Tran Thu; Robinson, Colin

    2005-10-01

    We investigated the effect of fluoridation and its discontinuation on fluoride content in the alveolar portion of the mandible in rats. Drinking water with three different fluoride contents (0, 50, 100 ppmF) was given to rats for three different periods (4, 13 and 25 weeks). Fluoride concentrations were measured in the crest, the middle, and the apical parts of the alveolar bone and in the body of the mandible. Furthermore, after fluoridated drinking water was given to rats for 4 or 13 weeks, distilled water was given to them for 21 or 12 weeks respectively; and the effect of the discontinuation on fluoride profiles was investigated. Layer samples were analyzed by abrasive microsampling. Fluoride and phosphorus concentrations were determined by ion-specific electrode and colorimetric procedures, respectively. There was an increase in fluoride concentrations in the mandible in proportion to the fluoride content in the drinking water and the duration of fluoridation. After fluoridation was discontinued, fluoride concentrations in the surface layers of the mandible presented a decrease. Among the four different parts of the mandible, the upper part of the alveolar bone and the alveolar crest part presented the highest rates of reduction. The relative reduction rate of fluoride concentration was closely related to the duration of discontinuation. The alveolar crest was affected most by the discontinuation of fluoridation, presenting the greatest reduction.

  1. Thermodynamics of Volatile Species in the Silicon-Oxygen-Hydrogen System Studied

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Opila, Elizabeth J.; Copland, Evan H.; Myers, Dwight

    2005-01-01

    The volatilization of silica (SiO2) to silicon hydroxides and oxyhydroxides because of reaction with water vapor is important in a variety of high-temperature corrosion processes. For example, the lifetimes of silicon carbide (SiC) and silicon nitride (Si3N4) - based components in combustion environments are limited by silica volatility. To understand and model this process, it is essential to have accurate thermodynamic data for the formation of volatile silicon hydroxides and oxyhydroxides.

  2. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.

    PubMed

    Li, Sanshu; Smith, Kathryn D; Davis, Jared H; Gordon, Patricia B; Breaker, Ronald R; Strobel, Scott A

    2013-11-19

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.

  3. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins

    PubMed Central

    Li, Sanshu; Smith, Kathryn D.; Davis, Jared H.; Gordon, Patricia B.; Breaker, Ronald R.; Strobel, Scott A.

    2013-01-01

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, 18F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions. PMID:24173035

  4. Process for Making a Semiconductor Device with Barrier Film Formation Using a Metal Halide and Products Thereof

    DTIC Science & Technology

    1998-08-20

    structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another embodiment where the barrier film is comprised of a plurality of i contiguous monolayers in which different monolayers thereof are formed... effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a shutter 33. A 15 shutter 35

  5. Fluoride metabolism when added to salt.

    PubMed

    Whitford, Gary M

    2005-01-01

    The purpose of this review is to present the general characteristics of the metabolism of fluoride particularly as it occurs when ingested with fluoridated salt. Following the absorption of salt-borne fluoride from the stomach and intestines, its metabolism is identical to that of water-borne fluoride or other vehicles containing ionized fluoride. Because fluoridated salt is almost always ingested with food, however, absorption from the gastrointestinal tract may be delayed or reduced. Reports dealing with this subject have shown that fluoride absorption is delayed and, therefore, peak plasma concentrations are lower than when fluoride is ingested with water. The amount of ingested fluoride that is finally absorbed, however, is not appreciably affected unless the meal is composed mainly of components with high calcium concentrations. In this case, the extent of absorption can be reduced by as much as 50%. Fluoridated salt is also ingested less frequently than fluoridated water. Data are presented to show that the dose size and frequency of ingestion have only minor effects on fluoride retention in the body and on the concentrations in plasma, bone and enamel. Finally, calculations are presented to show that the risk of acute toxicity from fluoridated salt is virtually non-existent.

  6. Fluoride content of still bottled water in Australia.

    PubMed

    Cochrane, N J; Saranathan, S; Morgan, M V; Dashper, S G

    2006-09-01

    Recently there has been a considerable increase in the consumption of bottled water in Australia. Overseas studies have found the fluoride levels in many bottled waters are well below levels considered optimal for preventing dental caries. This raises the concern that if bottled water is regularly consumed an effective means of preventing dental caries is unavailable. The aim of this study was to determine the fluoride concentration in 10 popular brands of still bottled water currently sold in Australia. The fluoride content of water samples were determined using an ion analyser and compared to a fluoride standard. The fluoride concentration of all bottled waters was less than 0.08 ppm. Only three of the 10 brands indicated the fluoride content on their labels. Melbourne reticulated water was found to be fluoridated at 1.02 ppm. All bottled waters tested contained negligible fluoride which justifies the concern that regular consumption of bottled water may reduce the benefits gained from water fluoridation. It is recommended that all bottled water companies should consider stating their fluoride content on their labels. This will inform consumers and dental care providers of the levels of fluoride in bottled water and allow an informed decision regarding consumption of fluoridated versus non-fluoridated drinking water.

  7. Fluoride toothpaste containing 1.5% arginine and insoluble calcium as a new standard of care in caries prevention.

    PubMed

    ten Cate, J M; Cummins, D

    2013-01-01

    In spite of obvious achievements in prevention, caries remains a prevalent disease. Fluorides are effective by inhibiting enamel and dentin demineralization and enhancing remineralization, but have little or no influence on bacterial processes in dental plaque. Dental caries is a continuum of stages from reversible, early lesions to irreversible, pre-cavitated lesions and, ultimately, to cavities. Prevention should focus on strengthening protective and reducing pathological factors, and careful monitoring of the disease state. While fluoride and the mineral aspects of caries have been in focus for decades, new insights into the etiology of caries have generated novel concepts and approaches to its prevention and treatment. The observation that some plaque bacteria can produce alkali metabolites and, thus, raise pH or neutralize acid formed in plaque has long been known. Such pH rise factors are related to caries susceptibility. Nourishing the plaque with substrates that encourage alkali-producing reactions is a protective factor in the caries continuum. This article reviews the results of clinical studies with a novel toothpaste containing 1.5% arginine, an insoluble calcium compound, and fluoride which have demonstrated superior remineralization of white spot enamel lesions and rehardening of root surface lesions, favorable effects on the de-/remineralization balance, as well as superior cavity prevention efficacy compared to toothpaste with fluoride alone. Studies have also confirmed formation of ammonia and elevated pH levels in subjects using the arginine-containing toothpaste. This novel toothpaste effectively combines the established effects of fluoride on de- and remineralization with reduction of caries-inducing pathological factors resulting from plaque metabolism.

  8. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study

    PubMed Central

    Lelli, Marco; Putignano, Angelo; Marchetti, Marco; Foltran, Ismaela; Mangani, Francesco; Procaccini, Maurizio; Roveri, Norberto; Orsini, Giovanna

    2014-01-01

    Consumption of acidic foods and drinks and other factors that cause enamel wear are responsible for the daily enamel loss and degradation. Use of some toothpastes that have been showed to possess different properties of remineralisation and/or repair of the enamel surface may help to protect tooth enamel. The aim of this study was to evaluate whether the use of toothpaste containing Zn-carbonate hydroxyapatite (CHA) nanostructured microcrystals may exert remineralization/repair effects of the enamel surface. Two groups of patients, aged between 18 and 75 years, used a Zn-CHA nanocrystals-based toothpaste (experimental group) and a potassium nitrate/sodium fluoride toothpaste (active control group) for 8 weeks. At the end of this period, extractions were performed in five subjects per study group. Negative controls consisted of two subjects treated with non-specified fluoride toothpaste. Teeth were processed for morphological and chemical-physic superficial characterizations by means of Scanning Electronic Microscopy with Elementary analysis, X-Ray Diffraction analysis and Infrared analysis. In this study, the use of a Zn-CHA nanocrystals toothpaste led to a remineralization/repair of the enamel surface, by deposition of a hydroxyapatite-rich coating. On the other hand, the use of both a nitrate potassium/sodium fluoride and non-specified fluoride toothpastes did not appreciably change the enamel surface. In conclusion, this study demonstrates that the toothpaste containing Zn-CHA nanostructured microcrystals, differently from nitrate potassium/sodium fluoride and non-specified fluoride toothpastes, may promote enamel superficial repair by means of the formation of a protective biomimetic CHA coating. PMID:25249980

  9. Evaluation of crystalline changes and resistance to demineralization of the surface of human dental enamel treated with Er:YAG laser and fluoride using x-ray diffraction analysis and Vickers microhardness

    NASA Astrophysics Data System (ADS)

    Behroozibakhsh, Marjan; Shahabi, Sima; Ghavami-Lahiji, Mehrsima; Sadeghian, Safura; Sadat Faal Nazari, Neda

    2018-06-01

    This study aimed to investigate the changes in crystalline structure and resistance to demineralization of human dental surface enamel treated with erbium-doped yttrium aluminium garnet laser (Er:YAG) laser and fluoride. The enamel surfaces were divided into four groups according to the treatment process including, (L): irradiated with Er:YAG; (F): treated with acidulated phosphate fluoride gel (LF): Pre-irradiated surfaces with Er:YAG subjected to acidulated phosphate fluoride gel and (FL): laser irradiation was performed on the fluoridated enamel surface. Before and after the treatment procedure, the samples were evaluated using X-ray diffraction, scanning electron microscope (SEM) and the Vickers microhardness test. The surface microhardness values also were measured after a pH-cycling regime and acid challenge. The a-axis of all lased groups was contracted after treatment procedure. Measurement of the area under the peaks showed the highest crysallinity in the FL group. The hardness values of all laser treated samples significantly reduced after treatment procedure compared to the F group (p  ⩽  0.001). The morphological observations showed remarkable changes on the lased enamel surfaces including cracks, craters and exposed prisms. These findings suggest, irradiation of the Er:YAG laser accompanying with fluoride application can induce some beneficial crystalline changes regarding the acid-resistance properties of enamel, however, the craters and cracks produced by laser irradiation can promote enamel demineralization and consequently the positive effects of the Er:YAG laser will be eliminated.

  10. Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix.

    PubMed

    Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard

    2015-03-21

    Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.

  11. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  12. Health Effects Associated with Water Fluoridation.

    ERIC Educational Resources Information Center

    Richmond, Virginia L.

    1979-01-01

    Discussion is presented concerning fluoridation of water supplies. Correlation between fluoride in drinking water and improved dental health is reviewed. Relationship is expressed between fluoridation and reduced tooth decay. Use of fluoride in treating skeletal disorders is discussed. Author advocates fluoridating water supplies. (SA)

  13. Desalination of brackish groundwater by direct contact membrane distillation.

    PubMed

    Hou, D Y; Wang, J; Qu, D; Luan, Z K; Zhao, C W; Ren, X J

    2010-01-01

    The direct contact membrane distillation (DCMD) applied for desalination of brackish groundwater with self-made polyvinylidene fluoride (PVDF) membranes was presented in the paper. The PVDF membrane exhibited high rejection of non-volatile inorganic salt solutes and a maximum permeate flux 24.5 kg m(-2) h(-1) was obtained with feed temperature at 70 degrees C. The DCMD experimental results indicated that the feed concentration had no significant influence on the permeate flux and the rejection of solute. When natural groundwater was used directly as the feed, the precipitation of CaCO(3) would be formed and clog the hollow fibre inlets with gradual concentration of the feed, which resulted in a rapid decline of the module efficiency. The negative influence of scaling could be eliminated by acidification of the feed. Finally, a 250 h DCMD continuous desalination experiment of acidified groundwater with the concentration factor at constant 4.0 was carried out. The permeate flux kept stable and the permeate conductivity was less than 7.0 microS cm(-1) during this process. Furthermore, there was no deposit observed on the membrane surface. All of these demonstrated that DCMD could be efficiently used for production of high-quality potable water from brackish groundwater with water recovery as high as 75%.

  14. A reconnaissance analysis of groundwater quality in the Eagle Ford shale region reveals two distinct bromide/chloride populations.

    PubMed

    Hildenbrand, Zacariah L; Carlton, Doug D; Meik, Jesse M; Taylor, Josh T; Fontenot, Brian E; Walton, Jayme L; Henderson, Drew; Thacker, Jonathan B; Korlie, Stephanie; Whyte, Colin J; Hudak, Paul F; Schug, Kevin A

    2017-01-01

    The extraction of oil and natural gas from unconventional shale formations has prompted a series of investigations to examine the quality of the groundwater in the overlying aquifers. Here we present a reconnaissance analysis of groundwater quality in the Eagle Ford region of southern Texas. These data reveal two distinct sample populations that are differentiable by bromide/chloride ratios. Elevated levels of fluoride, nitrate, sulfate, various metal ions, and the detection of exotic volatile organic compounds highlight a high bromide group of samples, which is geographically clustered, while encompassing multiple hydrogeological strata. Samples with bromide/chloride ratios representative of connate water displayed elevated levels of total organic carbon, while revealing the detection of alcohols and chlorinated compounds. These findings suggest that groundwater quality in the Western Gulf Basin is, for the most part, controlled by a series of natural processes; however, there is also evidence of episodic contamination events potentially attributed to unconventional oil and gas development or other anthropogenic activities. Collectively, this characterization of natural groundwater constituents and exogenous compounds will guide targeted remediation efforts and provides insight for agricultural entities, industrial operators, and rural communities that rely on groundwater in southern Texas. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Fluorine separation and generation device

    DOEpatents

    The Regents of the University of California

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  16. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates thatmore » the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.« less

  17. Positive influence of Tm3+ on effective Er3+: 3 μm emission in fluoride glass under 980 nm excitation

    NASA Astrophysics Data System (ADS)

    Huang, Feifei; Wang, Tao; Guo, Yanyan; Lei, Ruoshan; Xu, Shiqing

    2017-05-01

    Er3+ and Tm3+ singly doped and codoped new fluoride glasses were prepared by traditional melt-quenching method. Efficient 3 μm emission was obtained under 980 nm laser excitation. It is worthy to notice that one of the two ions can be the sensitizer to the other one by depressing the Er3+: 1.5 μm emission through the energy transfer process from Er3+:4I13/2 level to Tm3+:3F4 level. On the basis of measured absorption spectra, the Judd-Ofelt intensity parameters and radiation emission probability were calculated to evaluate the spectroscopic properties. Additionally, the micro-parameters together with the phonon assistance of Er3+:4I13/2 → Tm3+:3F4 and Er3+:4I11/2 → Tm3+:3H5 processes were quantitatively analyzed by using Dexter model. The theoretical micro-parameters results meet well with the experiments which indicates that Er3+/Tm3+ codoped fluoride glass is a potential kind laser glass for 3 μm laser.

  18. 75 FR 60013 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile Organic Compounds Emissions... Maryland's Volatile Organic Compounds from Specific Processes Regulation. Maryland has adopted standards... (RACT) requirements for sources of volatile organic compounds (VOCs) covered by control techniques...

  19. Ionic liquids in tribology.

    PubMed

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  20. Absorption, distribution and excretion of inhaled hydrogen fluoride in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, J.B.

    1979-01-01

    Rats were subjected to whole body HF exposure for 6 hrs or to nose-only HF exposure for 1 hr. Total and/or ionic fluoride concentrations in selected tissues were determined at various times following exposure. In rats sacrificed 6 hrs after whole body exposure, dose-dependent increases in lung, plasma, and kidney total and ionic fluoride concentration occurred. Rats excreted more fluoride in the urine after whole body exposure than could be explained by the amount of HF inhaled. Considerable evidence suggests that airborne HF deposits on fur and is then ingested due to preening activity. Urinary fluoride excretion was increased bymore » nose-only exposure. The urinary fluoride excretion accounted for approximately twice the fluoride estimated to be inhaled during exposure. Tissue fluoride concentrations were elevated immediately after nose-only exposure. Fluoride concentrations in lung and kidney returned to control levels within 12 hrs. Plasma fluoride concentration was slightly elevated 24 hrs after the start of the 1 hr exposure but was at control levels at 96 hrs. Immediately following nose-only exposure, lung ionic fluoride concentrations were less than plasma ionic fluoride concentrations suggesting that the fluoride in the lung had reached that site via plasma transport rather than by inhalation. A dose-dependent increase in plasma ionic fluoride concentration occurred after upper respiratory tract HF exposure providing strong evidence that fluoride is absorbed systemically from that site. The plasma ionic fluoride concentration after upper respiratory tract exposure was of sufficient magnitude to account for the plasma fluoride concentrations observed in intact nose-only exposed rats. (ERB)« less

  1. Exposure to water fluoridation and caries increment.

    PubMed

    Spencer, A J; Armfield, J M; Slade, G D

    2008-03-01

    The objective of this cohort study was to examine the association between exposure to water fluoridation and the increment of dental caries in two Australian states: Queensland (Qld)--5 per cent fluoridation coverage; and South Australia (SA)--70 per cent fluoridation coverage. Stratified random samples were drawn from fluoridated Adelaide and the largely non-fluoridated rest-of-state in SA, and fluoridated Townsville and non-fluoridated Brisbane in Qld. Children were enrolled between 1991 and 1992 (SA: 5-15 yrs old, n = 9,980; Qld: 5-12 yrs old, n = 10,695). Follow-up caries status data for 3 years (+/- 1/2 year) were available on 8,183 children in SA and 6,711 children in Qld. Baseline data on lifetime exposure to fluoridated water, use of other fluorides and socio-economic status (SES) were collected by questionnaire, and tooth surface caries status by dental examinations in school dental service clinics. Higher per cent lifetime exposure to fluoridated water (6 categories: 0;1-24; 25-49; 50-74; 75-99; 100 per cent) was a significant predictor (ANOVA, p < 0.01) of lower annualised Net Caries Increment (NCI) for the deciduous dentition in SA and Qld, but only for Qld in the permanent dentition. These associations persisted in multiple linear regression analyses controlling for age, gender, exposure to other fluorides and SES (p < 0.05). Water fluoridation was effective in reducing caries increment, even in the presence of a dilution effect from other fluorides. The effect of fluoridated water consumption was strongest in the deciduous dentition and where diffusion of food and beverages from fluoridated to non-fluoridated areas was less likely.

  2. Mapping fault-controlled volatile migration in equatorial layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Okubo, C. H.

    2006-12-01

    Research in terrestrial settings shows that clastic sedimentary deposits are productive host rocks for underground volatile reservoirs because of their high porosity and permeability. Within such reservoirs, faults play an important role in controlling pathways for volatile migration, because faults act as either barriers or conduits. Therefore faults are important volatile concentrators, which means that evidence of geochemical, hydrologic and biologic processes are commonly concentrated at these locations. Accordingly, faulted sedimentary deposits on Mars are plausible areas to search for evidence of past volatile activity and associated processes. Indeed, evidence for volatile migration through layered sedimentary deposits on Mars has been documented in detail by the Opportunity rover in Meridiani Planum. Thus evidence for past volatile- driven processes that could have occurred within the protective depths of these deposits may now exposed at the surface and more likely found around faults. Owing to the extensive distribution of layered deposits on Mars, a major challenge in looking for and investigating evidence of past volatile processes in these deposits is identifying and prioritizing study areas. Toward this end, this presentation details initial results of a multiyear project to develop quantitative maps of latent pathways for fault-controlled volatile migration through the layered sedimentary deposits on Mars. Available MOC and THEMIS imagery are used to map fault traces within equatorial layered deposits, with an emphasis on proposed regions for MSL landing sites. These fault maps define regions of interest for stereo imaging by HiRISE and identify areas to search for existing MOC stereo coverage. Stereo coverage of identified areas of interest allows for the construction of digital elevation models and ultimately extraction of fault plane and displacement vector orientations. These fault and displacement data will be fed through numerical modeling techniques that are developed for exploring terrestrial geologic reservoirs. This will yield maps of latent pathways for volatile migration through the faulted layered deposits and provide insight into the geologic history of volatiles on Mars.

  3. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gapsmore » exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.« less

  4. Development of volatile compounds during the manufacture of dry-cured "lacón," a Spanish traditional meat product.

    PubMed

    Purriños, Laura; Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2011-01-01

    Volatile compounds were determined throughout the manufacture of dry-cured "lacón," a traditional dry-salted, and ripened meat product made in the north-west of Spain from the foreleg of the pig following a similar process to that of dry-cured ham. Volatiles were extracted by a purge-and-trap method and analyzed by gas chromatographic/mass spectrometry. One hundred and two volatile compounds were identified. In raw material, only 34 volatile compounds were found and at very low levels. The number of volatile compounds increased during processing. The substances identified belonged to several chemical classes: aldehydes (23), alcohols (9), ketones (15), hydrocarbons (37), esters (4), acids (3), furans (4), sulphur compounds (1), chloride compounds (1), and other compounds (4). Results indicated that the most abundant chemical family in flavor at the end of the manufacturing process was aldehydes, followed by hydrocarbons and ketones. Lipids were the most important precursor of flavor compounds of dry-cured "lacón."

  5. Plutonium dissolution process

    DOEpatents

    Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.

    1994-01-01

    A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.

  6. Method for dissolving delta-phase plutonium

    DOEpatents

    Karraker, David G.

    1992-01-01

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  7. Process for production desulfurized of synthesis gas

    DOEpatents

    Wolfenbarger, James K.; Najjar, Mitri S.

    1993-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  8. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane.

    PubMed

    Kharasch, E D; Thummel, K E

    1993-10-01

    Renal and hepatic toxicity of the fluorinated ether volatile anesthetics is caused by biotransformation to toxic metabolites. Metabolism also contributes significantly to the elimination pharmacokinetics of some volatile agents. Although innumerable studies have explored anesthetic metabolism in animals, there is little information on human volatile anesthetic metabolism with respect to comparative rates or the identity of the enzymes responsible for defluorination. The first purpose of this investigation was to compare the metabolism of the fluorinated ether anesthetics by human liver microsomes. The second purpose was to test the hypothesis that cytochrome P450 2E1 is the specific P450 isoform responsible for volatile anesthetic defluorination in humans. Microsomes were prepared from human livers. Anesthetic metabolism in microsomal incubations was measured by fluoride production. The strategy for evaluating the role of P450 2E1 in anesthetic defluorination involved three approaches: for a series of 12 human livers, correlation of microsomal defluorination rate with microsomal P450 2E1 content (measured by Western blot analysis), correlation of defluorination rate with microsomal P450 2E1 catalytic activity using marker substrates (para-nitrophenol hydroxylation and chlorzoxazone 6-hydroxylation), and chemical inhibition by P450 isoform-selective inhibitors. The rank order of anesthetic metabolism, assessed by fluoride production at saturating substrate concentrations, was methoxyflurane > sevoflurane > enflurane > isoflurane > desflurane > 0. There was a significant linear correlation of sevoflurane and methoxyflurane defluorination with antigenic P450 2E1 content (r = 0.98 and r = 0.72, respectively), but not with either P450 1A2 or P450 3A3/4. Comparison of anesthetic defluorination with either para-nitrophenol or chlorzoxazone hydroxylation showed a significant correlation for sevoflurane (r = 0.93, r = 0.95) and methoxyflurane (r = 0.78, r = 0.66). Sevoflurane defluorination was also highly correlated with that of enflurane (r = 0.93), which is known to be metabolized by human P450 2E1. Diethyldithiocarbamate, a selective inhibitor of P450 2E1, produced a concentration-dependent inhibition of sevoflurane, methoxyflurane, and isoflurane defluorination. No other isoform-selective inhibitor diminished the defluorination of sevoflurane, whereas methoxyflurane defluorination was inhibited by the selective P450 inhibitors furafylline (P450 1A2), sulfaphenazole (P450 2C9/10), and quinidine (P450 2D6) but to a much lesser extent than by diethyldithiocarbamate. These results demonstrate that cytochrome P450 2E1 is the principal, if not sole human liver microsomal enzyme catalyzing the defluorination of sevoflurane. P450 2E1 is the principal, but not exclusive enzyme responsible for the metabolism of methoxyflurane, which also appears to be catalyzed by P450s 1A2, 2C9/10, and 2D6. The data also suggest that P450 2E1 is responsible for a significant fraction of isoflurane metabolism. Identification of P450 2E1 as the major anesthetic metabolizing enzyme in humans provides a mechanistic understanding of clinical fluorinated ether anesthetic metabolism and toxicity.

  9. Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride

    PubMed Central

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings. PMID:23840230

  10. Physiologic conditions affect toxicity of ingested industrial fluoride.

    PubMed

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  11. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used... fluoride resins consist of basic resins produced by the polymerization of vinylidene fluoride. (b) The...

  12. Endogenous Lunar Volatiles

    NASA Technical Reports Server (NTRS)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Boyce, J. W.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Magna, T.; Ni, P.; Tartese, R.; hide

    2017-01-01

    The chapter will begin with an introduction that defines magmatic volatiles (e.g., H, F, Cl, S) versus geochemical volatiles (e.g., K, Rb, Zn). We will discuss our approach of understanding both types of volatiles in lunar samples and lay the ground work for how we will determine the overall volatile budget of the Moon. We will then discuss the importance of endogenous volatiles in shaping the "Newer Views of the Moon", specifically how endogenous volatiles feed forward into processes such as the origin of the Moon, magmatic differentiation, volcanism, and secondary processes during surface and crustal interactions. After the introduction, we will include a re-view/synthesis on the current state of 1) apatite compositions (volatile abundances and isotopic compositions); 2) nominally anhydrous mineral phases (moderately to highly volatile); 3) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar pyroclastic glass beads; 4) volatile (moderately to highly volatile) abundances in and isotopic compositions of lunar basalts; 5) volatile (moderately to highly volatile) abundances in and isotopic compositions of melt inclusions; and finally 6) experimental constraints on mineral-melt partitioning of moderately to highly volatile elements under lunar conditions. We anticipate that each section will summarize results since 2007 and focus on new results published since the 2015 Am Min review paper on lunar volatiles [9]. The next section will discuss how to use sample abundances of volatiles to understand the source region and potential caveats in estimating source abundances of volatiles. The following section will include our best estimates of volatile abundances and isotopic compositions (where permitted by available data) for each volatile element of interest in a number of important lunar reservoirs, including the crust, mantle, KREEP, and bulk Moon. The final section of the chapter will focus upon future work, outstanding questions, and any in-sights on the types of samples or experimental studies that will be needed to answer these questions.

  13. Cl/Br ratios and chlorine isotope evidences for groundwater salinization and its impact on groundwater arsenic, fluoride and iodine enrichment in the Datong basin, China.

    PubMed

    Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2016-02-15

    In order to identify the salinization processes and its impact on arsenic, fluoride and iodine enrichment in groundwater, hydrogeochemical and environmental isotope studies have been conducted on groundwater from the Datong basin, China. The total dissolved solid (TDS) concentrations in groundwater ranged from 451 to 8250 mg/L, and 41% of all samples were identified as moderately saline groundwater with TDS of 3000-10,000 mg/L. The results of groundwater Cl concentrations, Cl/Br molar ratio and Cl isotope composition suggest that three processes including water-rock interaction, surface saline soil flushing, and evapotranspiration result in the groundwater salinization in the study area. The relatively higher Cl/Br molar ratio in groundwater from multiple screening wells indicates the contribution of halite dissolution from saline soil flushed by vertical infiltration to the groundwater salinization. However, the results of groundwater Cl/Br molar ratio model indicate that the effect of saline soil flushing practice is limited to account for the observed salinity variation in groundwater. The plots of groundwater Cl vs. Cl/Br molar ratio, and Cl vs δ(37)Cl perform the dominant effects of evapotranspiration on groundwater salinization. Inverse geochemical modeling results show that evapotranspiration may cause approximately 66% loss of shallow groundwater to account for the observed hydrochemical pattern. Due to the redox condition fluctuation induced by irrigation activities and evapotranspiration, groundwater salinization processes have negative effects on groundwater arsenic enrichment. For groundwater iodine and fluoride enrichment, evapotranspiration partly accounts for their elevation in slightly saline water. However, too strong evapotranspiration would restrict groundwater fluoride concentration due to the limitation of fluorite solubility. Copyright © 2015. Published by Elsevier B.V.

  14. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe3O4 and Ce-Ti oxide nanoparticles.

    PubMed

    Abo Markeb, Ahmad; Alonso, Amanda; Sánchez, Antoni; Font, Xavier

    2017-11-15

    Synthesized magnetic core-shell Ce-Ti@Fe 3 O 4 nanoparticles were tested, as an adsorbent, for fluoride removal and the adsorption studies were optimized. Adsorption capacity was compared with the synthesized Ce-Ti oxide nanoparticles. The adsorption equilibrium for the Ce-Ti@Fe 3 O 4 adsorbent was found to occur in <15min and it was demonstrated to be stable and efficient in a wide pH range of 5-11 with high fluoride removal efficiency over 80% of all cases. Furthermore, isotherm data were fitted using Langmuir and Freundlich models, and the adsorption capacities resulted in 44.37 and 91.04mg/g, at pH7, for Ce-Ti oxides and Ce-Ti@Fe 3 O 4 nanoparticles, respectively. The physical sorption mechanism was estimated using the Dubinin-Radushkevich model. An anionic exchange process between the OH - group on the surface of the Ce-Ti@Fe 3 O 4 nanomaterial and the F - was involved in the adsorption. Moreover, thermodynamic parameters proved the spontaneous process for the adsorption of fluoride on Ce-Ti@Fe 3 O 4 nanoparticles. The reusability of the material through magnetic recovery was demonstrated for five cycles of adsorption-desorption. Although the nanoparticles suffer slight structure modifications after their reusability, they keep their adsorption capacity. Likewise, the efficiency of the Ce-Ti@Fe 3 O 4 was demonstrated when applied to real water to obtain a residual concentration of F - below the maximum contaminated level, 1.5mg/L (WHO, 2006). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparison of in vitro fluoride uptake from whitening toothpastes and a conventional toothpaste in demineralised enamel.

    PubMed

    Altenburger, Markus J; Bernhart, Jasmin; Schicha, Thurid D; Wrbas, Karl-Thomas; Hellwig, Elmar

    2010-01-01

    Studies on the compatibility of abrasives and fluoride compounds deal exclusively with fluoride uptake and remineralization after storing the enamel specimens in a toothpaste-saliva mixture. The influence of brushing on the fluoride uptake when highly abrasive toothpastes are used has hardly been investigated so far. The aim of the present study was to investigate fluoride uptake in initially demineralised dental enamel after storage in, or brushing with, whitening toothpaste slurries, compared to a conventional toothpaste. For this purpose two widely available whitening toothpastes with ionically bound fluoride (sodium fluoride NaF), two with covalently-bound fluoride toothpastes (sodium monofluorophosphate, NaMFP) and a conventional amine fluoride toothpaste (AmF) were compared. The fluoride uptake after use of the AmF toothpaste was shown to be statistically significantly higher than that after application of the NaF toothpastes, which in turn was statistically significantly higher than the uptake resulting from NaMFP application. The fluoride uptake was slightly higher when the enamel samples were brushed with NaF toothpaste, rather than just stored in the respective toothpaste slurry. Brushing with highly abrasive toothpastes did not negatively influence fluoride uptake in demineralised dental enamel. The ionic form of the fluoride in toothpastes appears to be critical for increased fluoride uptake. The acidic components of the AmF toothpaste improved fluoride uptake compared to alkaline NaF toothpastes.

  16. The effective use of fluorides in public health.

    PubMed Central

    Jones, Sheila; Burt, Brian A.; Petersen, Poul Erik; Lennon, Michael A.

    2005-01-01

    Dental caries remain a public health problem for many developing countries and for underprivileged populations in developed countries. This paper outlines the historical development of public health approaches to the use of fluoride and comments on their effectiveness. Early research and development was concerned with waterborne fluorides, both naturally occurring and added, and their effects on the prevalence and incidence of dental caries and dental fluorosis. In the latter half of the 20th century, the focus of research was on fluoride toothpastes and mouth rinses. More recently, systematic reviews summarizing these extensive databases have indicated that water fluoridation and fluoride toothpastes both substantially reduce the prevalence and incidence of dental caries. We present four case studies that illustrate the use of fluoride in modern public health practice, focusing on: recent water fluoridation schemes in California, USA; salt fluoridation in Jamaica; milk fluoridation in Chile; and the development of "affordable" fluoride toothpastes in Indonesia. Common themes are the concern to reduce demands for compliance with fluoride regimes that rely upon action by individuals and their families, and the issue of cost. We recommend that a community should use no more than one systemic fluoride (i.e. water or salt or milk fluoridation) combined with the use of fluoride toothpastes, and that the prevalence of dental fluorosis should be monitored in order to detect increases in or higher-than-acceptable levels. PMID:16211158

  17. Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography-mass spectrometry combined with chemometrics.

    PubMed

    Ma, Chengying; Li, Junxing; Chen, Wei; Wang, Wenwen; Qi, Dandan; Pang, Shi; Miao, Aiqing

    2018-06-01

    Oolong tea is a typical semi-fermented tea and is famous for its unique aroma. The aim of this study was to compare the volatile compounds during manufacturing process to reveal the formation of aroma. In this paper, a method was developed based on head-space solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with chemometrics to assess volatile profiles during manufacturing process (fresh leaves, sun-withered leaves, rocked leaves and leaves after de-enzyming). A total of 24 aroma compounds showing significant differences during manufacturing process were identified. Subsequently, according to these aroma compounds, principal component analysis and hierarchical cluster analysis showed that the four samples were clearly distinguished from each other, which suggested that the 24 identified volatile compounds can represent the changes of volatile compounds during the four steps. Additionally, sun-withering, rocking and de-enzyming can influence the variations of volatile compounds in different degree, and we found the changes of volatile compounds in withering step were less than other two manufacturing process, indicating that the characteristic volatile compounds of oolong tea might be mainly formed in rocking stage by biological reactions and de-enzyming stage through thermal chemical transformations rather than withering stage. This study suggested that HS-SPME/GC-MS combined with chemometrics methods is accurate, sensitive, fast and ideal for rapid routine analysis of the aroma compounds changes in oolong teas during manufacturing processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A combined model of heat and mass transfer for the in situ extraction of volatile water from lunar regolith

    NASA Astrophysics Data System (ADS)

    Reiss, P.

    2018-05-01

    Chemical analysis of lunar soil samples often involves thermal processing to extract their volatile constituents, such as loosely adsorbed water. For the characterization of volatiles and their bonding mechanisms it is important to determine their desorption temperature. However, due to the low thermal diffusivity of lunar regolith, it might be difficult to reach a uniform heat distribution in a sample that is larger than only a few particles. Furthermore, the mass transport through such a sample is restricted, which might lead to a significant delay between actual desorption and measurable outgassing of volatiles from the sample. The entire volatiles extraction process depends on the dynamically changing heat and mass transfer within the sample, and is influenced by physical parameters such as porosity, tortuosity, gas density, temperature and pressure. To correctly interpret measurements of the extracted volatiles, it is important to understand the interaction between heat transfer, sorption, and gas transfer through the sample. The present paper discusses the molecular kinetics and mechanisms that are involved in the thermal extraction process and presents a combined parametrical computation model to simulate this process. The influence of water content on the gas diffusivity and thermal diffusivity is discussed and the issue of possible resorption of desorbed molecules within the sample is addressed. Based on the multi-physical computation model, a case study for the ProSPA instrument for in situ analysis of lunar volatiles is presented, which predicts relevant dynamic process parameters, such as gas pressure and process duration.

  19. Solid state electrochemical current source

    DOEpatents

    Potanin, Alexander Arkadyevich; Vedeneev, Nikolai Ivanovich

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  20. 76 FR 37129 - Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F-18) Injection, 10 to 200 Millicuries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ...] Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F-18) Injection, 10 to 200 Millicuries per Milliliter... FLUORIDE F 18 (sodium fluoride F-18) injection, 10 to 200 millicuries per milliliter (mCi/mL), was not... abbreviated new drug applications (ANDAs) for SODIUM FLUORIDE F 18 injection, 10 to 200 mCi/mL, if all other...

  1. Health effects of groundwater fluoride contamination.

    PubMed

    Nayak, Bishwajit; Roy, Madan Mohan; Das, Bhaskar; Pal, Arup; Sengupta, Mrinal Kumar; De, Shankar Prasad; Chakraborti, Dipankar

    2009-04-01

    The people in Berhait block, Sahibganj district, Jharkhand state, India, have been exposed chronically to fluoridecontaminated groundwater. Hereby, we report the clinical effects of chronic exposure to fluoride. The study population was a convenience sample of 342 adults and 258 children living in the affected area. All volunteers filled out questionnaires and were examined. Well water from the six affected villages and urine samples were analyzed for fluoride using an ion-sensitive electrode. Twenty nine percent of 89 well water samples had fluoride concentrations above the Indian permissible limit of fluoride in drinking water. Eighty-five children and 72 adults had clinical fluorosis. Urine fluoride concentrations in children were 0.758-2.88 mg/L whereas in adults they were 0.331-10.36 mg/L. Clinical effects of fluoride included abnormal tooth enamel in children; adults had joint pain and deformity of the limbs and spine, along with ligamentous calcifications and exostosis formations in seven patients. Elevated urine fluoride concentrations supported the clinical diagnosis of fluorosis. Owing to insufficient fluoride-safe wells and lack of awareness of the danger of fluoride toxicity, villagers often drink fluoride-contaminated water. Villagers of Berhait block, including children, are at risk from chronic fluoride toxicity. To combat the situation, villagers need fluoride-safe water, education, and awareness of the danger about fluoride toxicity.

  2. Adsorbent synthesis of polypyrrole/TiO(2) for effective fluoride removal from aqueous solution for drinking water purification: Adsorbent characterization and adsorption mechanism.

    PubMed

    Chen, Jie; Shu, Chiajung; Wang, Ning; Feng, Jiangtao; Ma, Hongyu; Yan, Wei

    2017-06-01

    More than 20 countries are still suffering problems of excessive fluoride containing water, and greater than 8mg/L fluoride groundwater has been reported in some villages in China. In order to meet the challenge in the drinking water defluoridation engineering, a high efficiency and affinity defluoridation adsorbent PPy/TiO 2 composite was designed and synthetized by in-situ chemical oxidative polymerization. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Investigator (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TG), N 2 isotherm analysis, Scanning Electron Microscopy (SEM) and Zeta potential analysis were conducted to characterize surface and textural properties of the as-prepared PPy/TiO 2 , and the possibility of fluoride adsorption was carefully estimated by adsorption isotherm and kinetic studies. Characterization investigations demonstrate the uniqueness of surface and textural properties, such as suitable specific surface area and abundant positively charged nitrogen atoms (N + ), which indicate the composite is a suitable material for the fluoride adsorption. Adsorption isotherms and kinetics follow better with Langmuir and pseudo-second-order model, respectively. The maximum adsorption capacity reaches 33.178mg/g at 25°C according to Langmuir model, and particular interest was the ability to reduce the concentration of fluoride from 11.678mg/L to 1.5mg/L for drinking water at pH of 7 within 30min. Moreover, the adsorbent can be easily recycled without the loss of adsorption capacity after six cycles, greatly highlighting its outstanding affinity to fluoride, low-cost and novel to be used in the purification of fluoride containing water for drinking. Furthermore, the adsorption mechanism was extensively investigated and discussed by FTIR investigation and batch adsorption studies including effect of pH, surface potential and thermodynamics. The adsorption is confirmed to be a spontaneous and exothermic process with decreasing entropy, which is prominently conducted through electrostatic attraction, and ionic exchange, and chelation may be also involved. Hydroxyls and positively charged nitrogen atoms play important roles in the adsorption. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Relation between volatility correlations in financial markets and Omori processes occurring on all scales

    NASA Astrophysics Data System (ADS)

    Weber, Philipp; Wang, Fengzhong; Vodenska-Chitkushev, Irena; Havlin, Shlomo; Stanley, H. Eugene

    2007-07-01

    We analyze the memory in volatility by studying volatility return intervals, defined as the time between two consecutive fluctuations larger than a given threshold, in time periods following stock market crashes. Such an aftercrash period is characterized by the Omori law, which describes the decay in the rate of aftershocks of a given size with time t by a power law with exponent close to 1. A shock followed by such a power law decay in the rate is here called Omori process. We find self-similar features in the volatility. Specifically, within the aftercrash period there are smaller shocks that themselves constitute Omori processes on smaller scales, similar to the Omori process after the large crash. We call these smaller shocks subcrashes, which are followed by their own aftershocks. We also show that the Omori law holds not only after significant market crashes as shown by Lillo and Mantegna [Phys. Rev. E 68, 016119 (2003)], but also after “intermediate shocks.” By appropriate detrending we remove the influence of the crashes and subcrashes from the data, and find that this procedure significantly reduces the memory in the records. Moreover, when studying long-term correlated fractional Brownian motion and autoregressive fractionally integrated moving average artificial models for volatilities, we find Omori-type behavior after high volatilities. Thus, our results support the hypothesis that the memory in the volatility is related to the Omori processes present on different time scales.

  4. [Study on two preparation methods for beta-CD inclusion compound of four traditional Chinese medicine volatile oils].

    PubMed

    Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin

    2012-04-01

    To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.

  5. Appropriate uses of fluorides for children: guidelines from the Canadian Workshop on the Evaluation of Current Recommendations Concerning Fluorides.

    PubMed Central

    Clark, D C

    1993-01-01

    OBJECTIVE: To prevent fluorosis caused by excessive fluoride ingestion by revising recommendations for fluoride intake by children. OPTIONS: Limiting fluoride ingestion from fluoridated water, fluoride supplements and fluoride dentifrices. OUTCOMES: Reduction in the prevalence of dental fluorosis and continued prevention of dental caries. EVIDENCE: Before the workshop, experts prepared comprehensive literature reviews of fluoride therapies, fluoride ingestion and the prevalence and causes of dental fluorosis. The papers, which were peer-reviewed, revised and circulated to the workshop participants, formed the basis of the workshop discussions. VALUES: Recommendations to limit fluoride intake were vigorously debated before being adopted as the consensus opinion of the workshop group. BENEFITS, HARMS AND COSTS: Decrease in the prevalence of dental fluorosis with continuing preventive effects of fluoride use. The only significant cost would be in preparing new, low-concentration fluoride products for distribution. RECOMMENDATIONS: Fluoride supplementation should be limited to children 3 years of age and older in areas where there is less than 0.3 ppm of fluoride in the water supply. Children in all areas should use only a "pea-sized" amount of fluoride dentifrice no more than twice daily under the supervision of an adult. VALIDATION: These recommendations are almost identical to changes to recommendations for the use of fluoride supplements recently proposed by a group of European countries. SPONSORS: The workshop was organized by Dr. D. Christopher Clark, of the University of British Columbia, and Drs. Hardy Limeback and Ralph C. Burgess, of the University of Toronto, and funded by Proctor and Gamble Inc., Toronto, the Medical Research Council of Canada and Health Canada (formerly the Department of National Health and Welfare). The recommendations were formally adopted by the Canadian Dental Association in April 1993. PMID:8261348

  6. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation.

    PubMed

    Wiegand, Annette; Buchalla, Wolfgang; Attin, Thomas

    2007-03-01

    The purpose of this article was to review the fluoride release and recharge capabilities, and antibacterial properties, of fluoride-releasing dental restoratives, and discuss the current status concerning the prevention or inhibition of caries development and progression. Information from original scientific full papers or reviews listed in PubMed (search term: fluoride release AND (restorative OR glass-ionomer OR compomer OR polyacid-modified composite resin OR composite OR amalgam)), published from 1980 to 2004, was included in the review. Papers dealing with endodontic or orthodontic topics were not taken into consideration. Clinical studies concerning secondary caries development were only included when performed in split-mouth design with an observation period of at least three years. Fluoride-containing dental materials show clear differences in the fluoride release and uptake characteristics. Short- and long-term fluoride releases from restoratives are related to their matrices, setting mechanisms and fluoride content and depend on several environmental conditions. Fluoride-releasing materials may act as a fluoride reservoir and may increase the fluoride level in saliva, plaque and dental hard tissues. However, clinical studies exhibited conflicting data as to whether or not these materials significantly prevent or inhibit secondary caries and affect the growth of caries-associated bacteria compared to non-fluoridated restoratives. Fluoride release and uptake characteristics depend on the matrices, fillers and fluoride content as well as on the setting mechanisms and environmental conditions of the restoratives. Fluoride-releasing materials, predominantly glass-ionomers and compomers, did show cariostatic properties and may affect bacterial metabolism under simulated cariogenic conditions in vitro. However, it is not proven by prospective clinical studies whether the incidence of secondary caries can be significantly reduced by the fluoride release of restorative materials.

  7. Streptozotocin Aggravated Osteopathology and Insulin Induced Osteogenesis Through Co-treatment with Fluoride.

    PubMed

    Yang, Chen; Zhang, Mengmeng; Li, Yagang; Wang, Yan; Mao, Weixian; Gao, Yuan; Xu, Hui

    2015-12-01

    The role of insulin in the mechanism underlying the excessive fluoride that causes skeletal lesion was studied. The in vitro bone marrow stem cells (BMSC) collected from Kunming mice were exposed to varying concentrations of fluoride with or without insulin. The cell viability and early differentiation of BMSC co-treated with fluoride and insulin were measured by using cell counting kit-8 and Gomori modified calcium-cobalt method, respectively. We further investigated the in vivo effects of varying dose of fluoride on rats co-treated with streptozotocin (STZ). Wistar rats were divided into six groups which included normal control, 10 mg fluoride/kg day group, 20 mg fluoride/kg day group, STZ control, STZ+10 mg fluoride/kg day group, and STZ+20 mg fluoride/kg day group. The rats were administered with sodium fluoride (NaF) by gavage with water at doses 10 and 20 mg fluoride/kg day for 2 months. In a period of one month, half of rats in every group were treated with streptozotocin (STZ) once through intraperitoneal injection at 52 mg/kg body weight. The serum glucose, HbA1c, and insulin were determined. Bone mineral content and insulin release were assessed. The results showed insulin combined with fluoride stimulated BMSC cell viability in vitro. The bone mineral content reduced in rats treated with higher dose of fluoride and decreased immensely in rat co-treated with fluoride and STZ. Similarly, a combination treatment of a high dose of fluoride and STZ decreased insulin sensitivity and activity. To sum up, these data indicated fluoride influenced insulin release, activity, and sensitivity. Furthermore, the insulin state in vivo interfered in the osteogenesis in turn and implied there was a close relation between insulin and bone pathogenesis in the mechanism of fluoride toxicity.

  8. FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE BOTTLED DRINKING WATER IN BANGKOK, THAILAND.

    PubMed

    Rirattanapong, Praphasri; Rirattanapong, Opas

    2016-09-01

    The use of bottled drinking water may be a source of fluoride and could be a risk factor for fluorosis among infants and young children. The aim of this study was to evaluate the fluoride content of commercially available bottled drinking water in Bangkok, Thailand. Forty-five water samples (15 samples of plain water and 30 samples of mineral water) were purchased from several supermarkets in Bangkok, Thailand. Three bottles of each water sample were purchased, and the fluoride content of each sample was measured twice using a combination fluoride-ion selective electrode. The average reading for each sample was then calculated. Data were analyzed by descriptive statistics. Differences between mineral and plain water samples were determined by Student’s t-test. The mean (±SD) fluoride content for all the water samples was 0.17 (±0.17) mg F/l (range: 0.01-0.89 mg F/l). Six brands (13%) tested stated the fluoride content on the label. The actual fluoride content in each of their brands varied little from the label. Eight samples (18%) had a fluoride content >0.3 mg F/l and two samples (4%) had a fluoride content >0.6 mg F/l. The mean mineral water fluoride concentration was significantly higher than the mean fluoride concentration of plain water (p=0.001). We found commercially sold bottled drinking water in Bangkok, Thailand contained varying concentrations of fluoride; some with high concentrations of fluoride. Health professions need to be aware this varying fluoride content of bottled drinking water and educate the parents of infants and small children about this when prescribing fluoride supplements. Consideration should be made to have fluoride content put on the label of bottled water especially among brands with a content >0.3 mg F/l.

  9. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams.

    PubMed

    Kim, Young Joo; Park, Sung Yong; Lee, Hong Chul; Yoo, Seung Seok; Oh, Sejong; Kim, Kwang Hyun; Chin, Koo Bok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham.

  10. Evaluation of Mixed Probiotic Starter Cultures Isolated from Kimchi on Physicochemical and Functional Properties, and Volatile Compounds of Fermented Hams

    PubMed Central

    Yoo, Seung Seok

    2016-01-01

    The objective of this study was to investigate the effects of mixed starter cultures isolated from kimchi on physicochemical properties, functionality and flavors of fermented ham. Physicochemical properties, microbial counts, shear force, cholesterol contents and volatile compounds of fermented ham were investigated during processing (curing and ripening time). Curing process for 7 d increased saltiness, however, decreased hunter color values (L, a, and b values). Ripening process for 21 d increased most parameters, such as saltiness, color values, weight loss, shear force and cholesterol content due to the drying process. The mixed starter culture had higher lactic acid bacteria than the commercial one. While eight volatile compounds were identified from fermented hams during curing process, total fiftyeight volatile compounds were identified from fermented hams during ripening process. The main volatile compounds were alcohols, esters and furans. However, no differences in volatile compounds were observed between two batches. Fermented hams (batch B) manufactured with probiotic starter culture (LPP) had higher sensory score in texture, color and overall acceptability than counterparts (batch A), while the opposite trend was observed in flavor. Therefore, mixed probiotic starter culture isolated from kimchi might be used as a starter culture to be able to replace with commercial starter culture (LK-30 plus) for the manufacture of fermented ham. PMID:27499673

  11. Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage.

    PubMed

    Song, Guo Hua; Gao, Ji Ping; Wang, Chun Fang; Chen, Chao Yang; Yan, Xiao Yan; Guo, Min; Wang, Yu; Huang, Fu Bing

    2014-09-01

    Long-term excessive sodium fluoride (NaF) intake can cause many bone diseases and nonskeletal fluorosis. The kidneys are the primary organs involved in the excretion and retention of NaF. The objective of the present study was to determine the effects of NaF treatment on renal cell apoptosis, DNA damage, and the protein expression levels of cytosolic cytochrome C (Cyt C) and cleaved caspases 9, 8, and 3 in vivo. Male Sprague-Dawley rats were divided randomly into four groups (control, low fluoride, medium fluoride, and high fluoride) and administered 0, 50, 100, and 200 mg/L of NaF, respectively, via drinking water for 120 days. Histopathological changes in the kidneys were visualized using hematoxylin and eosin staining. Renal cell apoptosis was examined using flow cytometry, and renal cell DNA damage was detected using the comet assay. Cytosolic Cyt C and cleaved caspases 9, 8, and 3 protein expression levels were visualized using immunohistochemistry and Western blotting. The results showed that NaF treatment increased apoptosis and DNA damage. In addition, NaF treatment increased the protein expression levels of cytosolic Cyt C and cleaved caspases 9, 8, and 3. These results indicated that NaF induces apoptosis in the kidney of rats through caspase-mediated pathway, and DNA damage may be involved in this process.

  12. Nuclear quantum effects in water exchange around lithium and fluoride ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell ismore » found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.« less

  13. Long-term Hyperglycemia Naturally Induces Dental Caries but Not Periodontal Disease in Type 1 and Type 2 Diabetic Rodents.

    PubMed

    Nakahara, Yutaka; Ozaki, Kiyokazu; Matsuura, Tetsuro

    2017-11-01

    Periodontal disease (PD) in patients with diabetes is described as the sixth complication of diabetes. We have previously shown that diabetes increases dental caries, and carious inflammation might have a strong effect on the adjacent periodontal tissue in diabetic rodent models. However, the possibility that hyperglycemia may induce PD in diabetic animals could not be completely eliminated. The goal of this study was to confirm the presence of PD in diabetic animal models by preventing carious inflammation with fluoride administration. F344 rats injected with alloxan (type 1 diabetic model) and db/db mice (type 2 diabetic model) were given either tap water alone or tap water containing fluoride. A cariostatic effect of fluoride was evident in the diabetic animals. Meanwhile, fluoride treatment drastically attenuated periodontal inflammation in addition to preventing dental caries. Furthermore, with fluoride treatment, periodontitis was notably nonexistent in the periodontal tissue surrounding the normal molars, whereas the caries-forming process was clearly observed in the teeth that were enveloped with persistent periodontitis, suggesting that enhanced periodontal inflammation might have been derived from the dental caries in the diabetic rodents rather than from the PD. In conclusion, long-term hyperglycemia naturally induces dental caries but not PD in type 1 and type 2 diabetic rodents. © 2017 by the American Diabetes Association.

  14. Evaluation of the direct and diffusion methods for the determination of fluoride content in table salt

    PubMed Central

    Martínez-Mier, E. Angeles; Soto-Rojas, Armando E.; Buckley, Christine M.; Margineda, Jorge; Zero, Domenick T.

    2010-01-01

    Objective The aim of this study was to assess methods currently used for analyzing fluoridated salt in order to identify the most useful method for this type of analysis. Basic research design Seventy-five fluoridated salt samples were obtained. Samples were analyzed for fluoride content, with and without pretreatment, using direct and diffusion methods. Element analysis was also conducted in selected samples. Fluoride was added to ultra pure NaCl and non-fluoridated commercial salt samples and Ca and Mg were added to fluoride samples in order to assess fluoride recoveries using modifications to the methods. Results Larger amounts of fluoride were found and recovered using diffusion than direct methods (96%–100% for diffusion vs. 67%–90% for direct). Statistically significant differences were obtained between direct and diffusion methods using different ion strength adjusters. Pretreatment methods reduced the amount of recovered fluoride. Determination of fluoride content was influenced both by the presence of NaCl and other ions in the salt. Conclusion Direct and diffusion techniques for analysis of fluoridated salt are suitable methods for fluoride analysis. The choice of method should depend on the purpose of the analysis. PMID:20088217

  15. [Estimation of exposure to fluoride in "Los Altos de Jalisco", México].

    PubMed

    Hurtado-Jiménez, Roberto; Gardea-Torresdey, Jorge

    2005-01-01

    To estimate the level of fluoride exposure and human health risks in Los Altos de Jalisco (Jalisco State Heights) region. This study was conducted between May and July 2002. The fluoride concentrations of 105 water wells and six tap water samples were electrochemically measured. Exposure doses to fluoride and total intake of fluoride were estimated for babies (10 kg), children (20 kg), and adults (70 kg). The fluoride concentration of the water samples ranged from 0.1 to 17.7 mg/l. More than 45% of the water samples exceeded the national guideline value for fluoride of 1.5 mg/l. The estimated values of the exposure doses to fluoride and total intake of fluoride were in the range of 0.04-1.8 mg/kg/d and 0.5-18.4 mg/d, respectively. Dental fluorosis, skeletal fluorosis, and bone fractures are some of the potential health risks due to the intake of high doses of fluoride for the population of Los Altos de Jalisco. In order to reduce health risks, fluoridated salt,fluoridated toothpastes, and drinking water containing more than 0.7 mg/l of fluoride should be avoided.

  16. Fluoride in the environment and its metabolism in humans.

    PubMed

    Jha, Sunil Kumar; Mishra, Vinay Kumar; Sharma, Dinesh Kumar; Damodaran, Thukkaram

    2011-01-01

    The presence of environmental fluoride and its impact on human health is well documented. When consumed in adequate quantity, fluoride prevents dental caries, assists in the formation of dental enamels, and prevents deficiencies in bone mineralization. At excessive exposure levels, ingestion of fluoride causes dental fluorosis skeletal fluorosis, and manifestations such as gastrointestinal, neurological, and urinary problems. The distribution of fluoride in the environment is uneven and largely is believed to derive from geogenic causes. The natural sources of fluoride are fluorite, fluorapatite, and cryolite, whereas anthropogenic sources include coal burning, oil refining, steel production, brick-making industries, and phosphatic fertilizer plants, among others. Among the various sources of fluoride in the environment, those of anthropogenic origin have occasionally been considered to be major ones. The gourndwater is more susceptible to fluoride accumulation and contamination than are other environmental media, primarily because of its contact with geological substrates underneath. The high fluoride concentration in water usually reflects the solubility of fluoride (CaF₂). High concentrations are also often associated with soft, alkaline, and calcium-deficient waters. The fluoride compounds that occur naturally in drinking water are almost totally bioavailable (90%) and are completely absorbed from the gastrointestinal tract. As a result, drinking water is considered to be the potential source of fluoride that causes fluorosis. Because the bioavailability of fluoride is generally reduced in humans when consumed with milk or a calcium-rich diet, it is highly recommended that the inhabitants of fluoride-contaminated areas should incorporate calcium-rich foods in their routine diet. Guidelines for limiting the fluoride intake from drinking water have been postulated by various authorities. Such limits are designed to protect public health and should reflect all fluoride intake sources, including dietary fluoride. The toxicological risks posed by fluoride could be better understood if epidemiological surveillance for dental and skeletal fluorosis would be systematically conducted in fluoride-affected areas. Such input would greatly improve understanding of the human dose-response relationship. Such surveillance of potentially high fluoride areas is also important because it would help to delineate, much earlier, the remedial measures that are appropriate for those areas.

  17. The role of volatiles and lithology in the impact cratering process

    NASA Technical Reports Server (NTRS)

    Kieffer, S. W.; Simonds, C. H.

    1980-01-01

    A survey of published descriptions of 32 of the largest, least eroded terrestrial impact structures shows that the amount of melt at craters in crystalline rocks is approximately two orders of magnitude greater than that at craters in sedimentary rocks. A model is proposed for the impact process, and it is examined whether the difference in melt abundance is due to differences in the amount of melt generated in various target materials or due to differences in the fate of the melt during late stages of the impact. The model accounts semiquantitatively for the effects of porosity and water and volatile content on the cratering process. Important features of the model are noted. Even if the recondensation of released volatiles is very efficient, the cumulative effect of repeated impacts on accreting planets would be to continually transfer volatiles toward the outer surface. By this process, volatiles might be enriched toward the outer layer of a growing planet.

  18. Potential fluoride toxicity from oral medicaments: A review.

    PubMed

    Ullah, Rizwan; Zafar, Muhammad Sohail; Shahani, Nazish

    2017-08-01

    The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, toxic effects, and management of fluoride toxicity. The main aim of this review is to highlight the potential adverse effects of fluoride overdose and poorly understood toxicity. In addition, the related clinical significance of fluoride overdose and toxicity has been discussed.

  19. Methoxyflurane nephropathy.

    PubMed

    Mazze, R I

    1976-06-01

    Investigations of methoxyflurane-induced nephrotoxicity in man have been extensively aided by the use of an animal model. To be of value the animal model must share similar metabolic pathways with man and have the same clinical manifestations of the diseases process. The Fischer 344 rat appears to meet these criteria. The predominant factors in the production of methoxyflurane nephrotoxicity appear to be high methoxyflurane dosage and serum inorganic fluoride concentration. It is likely that secondary factors include: (1) a high rate of methoxyflurane metabolism and sepsitivity of the kidney to inorganic fluoride toxicity: (2) concurrent treatment with other nephrotoxic drugs; (3) preexisting renal disease; (4) surgery of the urogenital tract, aorta, or renal vasculative; (5) repeat administration of methoxyflurane due to accumulation of inorganic fluoride and, perhaps, methoxyflurane induction of its own metabolism: and (6) concurrent treatment with enzyme-inducing drugs such as phenobarbital.

  20. Fluorination Induced the Surface Segregation of High Voltage Spinel on Lithium-Rich Layered Cathodes for Enhanced Rate Capability in Lithium Ion Batteries.

    PubMed

    Jin, Yi-Chun; Duh, Jenq-Gong

    2016-02-17

    This study is aimed to explore the effect of fluoride doping and the associated structural transformation on lithium-rich layered cathode materials. The polymeric fluoride source is first adopted for synthesizing lithium intercalated oxide through a newly developed organic precipitation process. A heterostructured spinel/layered composite cathode material is obtained after appreciable fluorination and a superior rate capability is successfully achieved. The fluoride dopant amount and the surface spinel phase are evidenced and systematically examined by various structural spectroscopy and electrochemical analysis. It appears the reversible Ni(2+/4+) redox couple at high voltage regime around 4.8 V because of the formation of spinel LiNi1/2Mn3/2O4 phase. The mechanism of "layer to spinel" phase transformation is discussed in detail.

  1. Potentiometric chip-based multipumping flow system for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples.

    PubMed

    Chango, Gabriela; Palacio, Edwin; Cerdà, Víctor

    2018-08-15

    A simple potentiometric chip-based multipumping flow system (MPFS) has been developed for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples. The proposed system was developed by using a poly(methyl methacrylate) chip microfluidic-conductor using the advantages of flow techniques with potentiometric detection. For this purpose, an automatic system has been designed and built by optimizing the variables involved in the process, such as: pH, ionic strength, stirring and sample volume. This system was applied successfully to water samples getting a versatile system with an analysis frequency of 12 samples per hour. Good correlation between chloride and fluoride concentration measured with ISE and ionic chromatography technique suggests satisfactory reliability of the system. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  3. Heat regeneration of hydroxyapatite/attapulgite composite beads for defluoridation of drinking water.

    PubMed

    Feng, Li; Xu, Weihua; Liu, Tengfei; Liu, Jason

    2012-06-30

    Regeneration is one of the key factors in evaluating an adsorbent. A novel heat regeneration method for hydroxyapatite/attapulgite (HAP/ATT) composite beads was studied. The investigation included heat regeneration temperature, regeneration time, and regeneration effects. A possible mechanism for the heat regeneration is described that explains the results of XPS, and SEM with EDAX. Exhausted HAP/ATT composite beads can be regenerated for more than 10 cycles using boiling water or steam. The total capacity increases by 10 times compared to a single defluoridation cycle. The regeneration process involves F(-) ions adsorbed on the surface of the beads to move quickly into the bulk of the HAP through the effect of heating this composite material. The surface active sites are thus re-exposed and the beads recover their fluoride sequestration properties. HAP/ATT composite beads were successfully used for the removal of fluoride from field water taken from a nearby village where fluoride contamination is endemic. Defluoridation and regeneration cycles performed in the same container provide a high efficient and simple operation. No chemical agents are used and no waste products are produced during the heat regeneration process, so this is a nearly zero emission process. This method can easily be up-scaled to a large throughput application. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Determination of total fluoride in HF/HNO3/H2SiF6 etch solutions by new potentiometric titration methods.

    PubMed

    Weinreich, Wenke; Acker, Jörg; Gräber, Iris

    2007-03-30

    In the photovoltaic industry the etching of silicon in HF/HNO(3) solutions is a decisive process for cleaning wafer surfaces or to produce certain surface morphologies like polishing or texturization. With regard to cost efficiency, a maximal utilisation of etch baths in combination with highest quality and accuracy is strived. To provide an etch bath control realised by a replenishment with concentrated acids the main constituents of these HF/HNO(3) etch solutions including the reaction product H(2)SiF(6) have to be analysed. Two new methods for the determination of the total fluoride content in an acidic etch solution based on the precipitation titration with La(NO(3))(3) are presented within this paper. The first method bases on the proper choice of the reaction conditions, since free fluoride ions have to be liberated from HF and H(2)SiF(6) at the same time to be detected by a fluoride ion-selective electrode (F-ISE). Therefore, the sample is adjusted to a pH of 8 for total cleavage of the SiF(6)(2-) anion and titrated in absence of buffers. In a second method, the titration with La(NO(3))(3) is followed by a change of the pH-value using a HF resistant glass-electrode. Both methods provide consistent values, whereas the analysis is fast and accurate, and thus, applicable for industrial process control.

  5. Thermodynamic analysis of the interaction of partially hydrophobic cationic polyelectrolytes with sodium halide salts in water

    NASA Astrophysics Data System (ADS)

    Bončina, Matjaž; Lukšič, Miha; Seručnik, Mojca; Vlachy, Vojko

    2014-05-01

    Isothermal titration calorimetry was used to determine the temperature and concentration dependence of the enthalpy of mixing of 3,3- and 6,6-ionene fluorides, bromides, and iodides with low molecular weight salts (NaF, NaCl, NaBr, and NaI) in water. The magnitudes of the enthalpies, measured in the temperature range from 273 to 318 K, depended on the number of methylene groups on the ionene polyion (hydrophobicity), and on the anion of the added salt (ion-specificity). All enthalpies of mixing of 3,3- and 6,6-ionene fluorides with low molecular weight salts (NaCl, NaBr, and NaI) were negative, which is in contrast to the predictions of standard theories of polyelectrolyte solutions. This fact was interpreted in the light of the ion-water short-range interactions that are not accounted for in those theories. In contrast, the enthalpies of mixing of 3,3- and 6,6-ionene bromides and iodides with NaF were positive, being in accord with theory. Using the calorimetric data, we performed a model thermodynamic analysis of the polyelectrolyte-salt mixing process to obtain changes in the apparent standard Gibbs free energy, enthalpy, entropy, and heat capacity relative to the pure ionene fluorides in water. The results prove that halide ions replace fluoride counterions with a strength increasing in the order chloride < bromide < iodide. The process is enthalpy governed, accompanied by a positive change in the heat capacity.

  6. Spectroscopic and TDDFT investigation on highly selective fluorogenic chemosensor and construction of molecular logic gates.

    PubMed

    Basheer, Sabeel M; Kumar, Saravana Loganathan Ashok; Kumar, Moorthy Saravana; Sreekanth, Anandaram

    2017-03-01

    1,5-Bis(2-fluorene)thiocarbohydrazone (FBTC) was designed and synthesized for selective sensing of fluoride and copper ions. The binding constants of FBTC towards fluoride and copper ions have been calculated using the Benesi-Hildebrand equation, and FBTC has more binding affinity towards copper ion than fluoride ion. The 1 H NMR and 13 C NMR titration studies strongly support the deprotonation was taken from the N-H protons followed by the formation of hydrogen bond via N-H … F. To understand the fluoride ion sensing mechanism, theoretical investigation had been carried out using the density functional theory and time-dependent density functional theory. The theoretical data well reproduced the experimental results. The deprotonation process has a moderate transition barrier (481.55kcal/mol). The calculated ΔE and ΔG values (-253.92 and -192.41kcal/mol respectively) suggest the feasibility of sensing process. The potential energy curves give the optimized structures of FBTC-F complex in the ground state and excited state, which states the proton transition occurs at the excited state. The excited state proton transition mechanism was further confirmed with natural bond orbital analysis. The reversibility of the sensor was monitored by the alternate addition of F - and Cu 2+ ions, which was explained with "Read-Erase-Write-Read" behaviour. The multi-ion detection of sensor used to construct the molecular logic gate, such as AND, OR, NOR and INHIBITION logic gates. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. SEPARATION OF METAL VALUES FROM NUCLEAR REACTOR

    DOEpatents

    Campbell, D.O.; Cathers, G.I.

    1962-06-19

    A method is given for separating beryllium fluoride and an alkali metal fluoride from a mixture containing same and rare earth fluorides. The method comprises contacting said mixture with a liquid hydrogen fluoride solvent containing no more than about 30 per cent water by weight and saturated with a fluoride salt characterized by its solubility in anhydrous hydrogen fluoride for a period of time sufficient to dissolve said beryllium fluoride in said solvent. (AEC)

  8. EMSOFT

    EPA Science Inventory

    Chemicals that readily vaporize at relatively low temperatures can migrate from contaminated soils into the atmosphere via a process called volatilization. Volatilization represents a potentially significant exposure pathway because humans can come in contact with volatilized com...

  9. Thirty years of fluoridation: a review.

    PubMed

    Richmond, V L

    1985-01-01

    Fluoride contributes to stability of both teeth and bones and to reduction of caries, especially if ingested before eruption of teeth. Reduction of caries continues at about 60% in persons drinking fluoridated water only as long as fluoride washes over teeth. One-half the population of the US does not have access to water with an optimal fluoride concentration of about 1 mg/L. Misinformation about fluoridation contributes to reluctance of communities to supplement the natural but inadequate fluoride of those water supplies. Fluoridation of water has no positive or negative effect on incidence or mortality rates due to cancer, heart disease, intracranial lesions, nephritis, cirrhosis, mongoloid births, or from all causes together. The collective decision to increase the natural fluoride content of water supplies is not an infringement of civil rights, nor does it establish a precedent in the binding sense of the law. Supplemental fluoride in water makes it available to all members of the community in a safe, practical, economical and reliable manner. Fluoridation saves money in dental costs and time lost from work. Fluoridation is an appropriate action of government in promoting the health and welfare of society.

  10. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    DOE PAGES

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.; ...

    2015-03-15

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore » of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less

  11. Mathematical modeling of positron emission tomography (PET) data to assess radiofluoride transport in living plants following petiolar administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Converse, Alexander K.; Ahlers, Elizabeth O.; Bryan, Tom W.

    Background: Ion transport is a fundamental physiological process that can be studied non-invasively in living plants with radiotracer imaging methods. Fluoride is a known phytotoxic pollutant and understanding its transport in plants after leaf absorption is of interest to those in agricultural areas near industrial sources of airborne fluoride. Here we report the novel use of a commercial, high-resolution, animal positron emission tomography (PET) scanner to trace a bolus of [¹⁸F]fluoride administered via bisected petioles of Brassica oleracea, an established model species, to simulate whole plant uptake of atmospheric fluoride. This methodology allows for the first time mathematical compartmental modelingmore » of fluoride transport in the living plant. Radiotracer kinetics in the stem were described with a single-parameter free- and trapped-compartment model and mean arrival times at different stem positions were calculated from the free-compartment time-activity curves. Results: After initiation of administration at the bisected leaf stalk, [¹⁸F] radioactivity climbed for approximately 10 minutes followed by rapid washout from the stem and equilibration within leaves. Kinetic modeling of transport in the stem yielded a trapping rate of 1.5 +/- 0.3%/min (mean +/- s.d., n = 3), velocity of 2.2 +/- 1.1 cm/min, and trapping fraction of 0.8 +/- 0.5%/cm. Conclusion: Quantitative assessment of physiologically meaningful transport parameters of fluoride in living plants is possible using standard positron emission tomography in combination with petiolar radiotracer administration. Movement of free fluoride was observed to be consistent with bulk flow in xylem, namely a rapid and linear change in position with respect to time. Trapping, likely in the apoplast, was observed. Future applications of the methods described here include studies of transport of other ions and molecules of interest in plant physiology.« less

  12. Evolution of Volatile Compounds during the Distillation of Cognac Spirit.

    PubMed

    Awad, Pierre; Athès, Violaine; Decloux, Martine Esteban; Ferrari, Gérald; Snakkers, Guillaume; Raguenaud, Patrick; Giampaoli, Pierre

    2017-09-06

    Cognac wine spirit has a complex composition in volatile compounds which contributes to its organoleptic profile. This work focused on the batch distillation process and, in particular, on volatile compounds specifically produced by chemical reactions during the distillation of Cognac wine spirit, traditionally conducted in two steps with charentais pot stills. The aim of this study was to characterize these volatile compounds formed during distillation. Sampling has been performed on the distillates and inside the boiler during a typical Cognac distillation. The analysis of these samples allowed us to perform a mass balance and to point out several types of volatile compounds whose quantities strongly increased during the distillation process. These compounds were distinguished by their chemical family. It has been found that the first distillation step was decisive for the formation of volatile compounds. Moreover, 2 esters, 3 aldehydes, 12 norisoprenoids, and 3 terpenes were shown to be generated during the process. These results suggest that some volatile compounds found in Cognac spirit are formed during distillation due to chemical reactions induced by high temperature. These findings give important indications to professional distillers in order to enhance the product's quality.

  13. Fluoride in groundwater: toxicological exposure and remedies.

    PubMed

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (<0.5 mg/L) is beneficial in promoting dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects.

  14. Chronologic Trends in Studies on Fluoride Mechanisms of Action.

    PubMed

    Oh, H J; Oh, H W; Lee, D W; Kim, C H; Ahn, J Y; Kim, Y; Shin, H B; Kim, C Y; Park, S H; Jeon, J G

    2017-11-01

    Fluoride has been widely used for the prevention of dental caries since the mid-20th century. The aim of this study was to investigate the chronologic trends in studies on fluoride mechanisms of action against dental caries during the years 1950 to 2015. To this aim, queries such as "fluoride," "fluoride and demineralization," "fluoride and remineralization," "fluoride and (plaque or biofilms)," and "fluoride and (bacteria or microbials)" were submitted to PubMed to collect research article information, including titles, abstracts, publication dates, author affiliations, and publication journals. The article information that PubMed produced was then collected by an automatic web crawler and examined through informetrics and linguistic analyses. We found that the number of articles concerned with fluoride mechanisms of action against dental caries was 6,903 and gradually increased over time during the years 1950 to 2015. They were published by 1,136 journals-most notably, Caries Research and Journal of Dental Research. Of the articles published, those related to bacteria/microbials had a higher percentage (44%) than those dealing with plaque/biofilms, demineralization, and remineralization. With regard to the geographic distribution of authors, Europe and North America accounted for 65% of the articles during the years 1987 to 2015, although the number of authors in Asia sharply increased in recent years. Among the fluoride compounds, NaF was mentioned more frequently than SnF 2 , Na 2 PO 3 F, amine fluoride, and acidulated phosphate fluoride during the years 1986 to 2015. Water fluoridation received the most attention among the various fluoride application methods (toothpastes, mouthwashes, fluoride varnishes, and fluoride gels) during the same period. These results, obtained from employing informetrics and linguistic analyses, suggest that in studies on fluoride mechanisms of action, 1) the unbalanced geographic distribution of articles and 2) the heavy concentration of articles on particular fluoride compounds and application methods should be overcome in future research.

  15. Fluoride content of infant formulas prepared with deionized, bottled mineral and fluoridated drinking water.

    PubMed

    Buzalaf, M A; Granjeiro, J M; Damante, C A; de Ornelas, F

    2001-01-01

    Usually infant milk formula is the major source of fluoride in infancy. Fluoride concentrations in ten samples of powdered milk formulas, prepared with deionized, bottled mineral, and fluoridated drinking water were determined after HMDS-facilitated diffusion, using a fluoride ion specific electrode(Orion 9609). Fluoride concentrations ranged from 0.01 to 0.75 ppm; from 0.02 to 1.37 ppm and from 0.91 to 1.65 ppm for formulas prepared with deionized, bottled mineral (0.02 to 0.69 ppm F) and fluorinated drinking water (0.9 ppm F), respectively. Possible fluoride ingestion per Kg body mass ws estimated. With deionized water, only the soy-based- formulas should provide a daily fluoride intake of above the suggested threshold for fluorosis. With water containing 0.9 ppm F, however, all of them would provide it. Hence, to limit fluoride intakes to amounts <0.1 mg/kg/day, it is necessary to avoid use fo fluoridated water (around 1 ppm) to dilute powdered infant formulas.

  16. The fractional urinary fluoride excretion of adults consuming naturally and artificially fluoridated water and the influence of water hardness: a randomized trial.

    PubMed

    Villa, A; Cabezas, L; Anabalón, M; Rugg-Gunn, A

    2009-09-01

    To assess whether there was any significant difference in the average fractional urinary fluoride excretion (FUFE) values among adults consuming (NaF) fluoridated Ca-free water (reference water), naturally fluoridated hard water and an artificially (H2SiF6) fluoridated soft water. Sixty adult females (N=20 for each treatment) participated in this randomized, double-blind trial. The experimental design of this study provided an indirect estimation of the fluoride absorption in different types of water through the assessment of the fractional urinary fluoride excretion of volunteers. Average daily FUFE values (daily amount of fluoride excreted in urine/daily total fluoride intake) were not significantly different between the three treatments (Kruskal-Wallis; p = 0.62). The average 24-hour FUFE value (n=60) was 0.69; 95% C.I. 0.65-0.73. The results of this study suggest that the absorption of fluoride is not affected by water hardness.

  17. Does fluoride in the water close the dental caries gap between Indigenous and non-Indigenous children?

    PubMed

    Lalloo, R; Jamieson, L M; Ha, D; Ellershaw, A; Luzzi, L

    2015-09-01

    Indigenous children experience significantly more dental caries than non-Indigenous children. This study assessed if access to fluoride in the water closed the gap in dental caries between Indigenous and non-Indigenous children. Data from four states and two territories were sourced from the Child Dental Health Survey (CDHS) conducted in 2010. The outcomes were dental caries in the deciduous and permanent dentitions, and the explanatory variables were Indigenous status and access to fluoridated water (≥0.5 mg/L) prior to 2008. Dental caries prevalence and severity for Indigenous and non-Indigenous children, in both dentitions, was lower in fluoridated areas compared to non-fluoridated areas. Among non-Indigenous children, there was a 50.9% difference in mean dmft scores in fluoridated (1.70) compared to non-fluoridated (2.86) areas. The difference between Indigenous children in fluoridated (3.29) compared to non-fluoridated (4.16) areas was 23.4%. Among non-Indigenous children there was a 79.7% difference in the mean DMFT scores in fluoridated (0.68) compared to non-fluoridated (1.58) areas. The difference between Indigenous children in fluoridated (1.59) and non-fluoridated (2.23) areas was 33.5%. Water fluoridation is effective in reducing dental caries, but does not appear to close the gap between non-Indigenous children and Indigenous children. © 2015 Australian Dental Association.

  18. Fluoride bioavailability in saliva and plaque

    PubMed Central

    2012-01-01

    Background Different fluoride formulations may have different effects on caries prevention. It was the aim of this clinical study to assess the fluoride content, provided by NaF compared to amine fluoride, in saliva and plaque. Methods Eight trained volunteers brushed their teeth in the morning for 3 minutes with either NaF or amine fluoride, and saliva and 3-day-plaque-regrowth was collected at 5 time intervals during 6 hours after tooth brushing. The amount of collected saliva and plaque was measured, and the fluoride content was analysed using a fluoride sensitive electrode. All subjects repeated all study cycles 5 times, and 3 cycles per subject underwent statistical analysis using the Wilcoxon-Mann-Whitney test. Results Immediately after brushing the fluoride concentration in saliva increased rapidly and dropped to the baseline level after 360 minutes. No difference was found between NaF and amine fluoride. All plaque fluoride levels were elevated after 30 minutes until 120 minutes after tooth brushing, and decreasing after 360 minutes to baseline. According to the highly individual profile of fluoride in saliva and plaque, both levels of bioavailability correlated for the first 30 minutes, and the fluoride content of saliva and plaque was back to baseline after 6 hours. Conclusions Fluoride levels in saliva and plaque are interindividually highly variable. However, no significant difference in bioavailability between NaF and amine fluoride, in saliva, or in plaque was found. PMID:22230722

  19. Gramicidin D enhances the antibacterial activity of fluoride.

    PubMed

    Nelson, James W; Zhou, Zhiyuan; Breaker, Ronald R

    2014-07-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice.

    PubMed

    Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang

    2017-03-01

    The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p < 0.05) higher contents of total phenolic, total flavonoid and resveratrol, and antioxidant activity of mulberry juice than thermal processing. The main volatile compounds of mulberry juice were aldehydes, alcohols, and ketones. High hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.

  1. The effect on human salivary fluoride concentration of consuming fluoridated salt-containing baked food items.

    PubMed

    Macpherson, L M; Stephen, K W

    2001-10-01

    Salt fluoridation is recognised world-wide as a proven and viable alternative means of consumer choice-related, community-based fluoridation where water fluoridation is either technically or politically impossible. However, as most salt consumed is contained within cooked food products, rather than sprinkled over prepared food at the table, the purpose of this study was to investigate the effects on salivary fluoride concentration of consuming baked food products prepared with 250 and 350 ppm fluoridated salt (as KF). Six food items were baked with (a) normal non-fluoridated salt, (b) 250 mg F/kg salt and (c) 350 mg F/kg salt. Eleven adult volunteers consumed these foodstuffs on separate occasions and salivary samples were collected for fluoride analyses before and at various time points (1-30 min) after eating. For most foodstuffs, small but significant increases in salivary fluoride concentration occurred for at least 5 min after ingestion of the fluoridated salt-containing items. Salivary fluoride concentrations peaked 1 or 2 min after eating, with highest values for the six test foods ranging from 0.16 to 0.25 ppm F, and from 0.18 to 0.44 ppm F for the 250 and 350 mg F/kg salt products, respectively. In all cases, salivary fluoride concentrations had returned to baseline by 20 min. The clinical significance of such small, short-term increases in salivary fluoride is uncertain, but the findings suggest that a more frequent intake of foods with fluoridated salt substituted for normal salt could help sustain slightly elevated salivary fluoride concentrations for more prolonged periods of the day, and might thus potentiate the cariostatic effects of saliva on tooth mineral.

  2. Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.

    2015-01-01

    Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.

  3. Concentration of Fluoride in Cow's and Buffalo's Milk in Relation to Varying Levels of Fluoride Concentration in Drinking Water of Mathura City in India- A Pilot Study.

    PubMed

    Gupta, Prahlad; Gupta, Nidhi; Meena, Komal; Moon, Ninad Joshirao; Kumar, Puneet; Kaur, Ravneet

    2015-05-01

    To estimate fluoride concentration in drinking water, cow's milk and buffalo's milk and to correlate the concentration of fluoride in cow's milk and buffalo's milk with varying levels of fluoride concentration in drinking water. Ten households having both cows and buffalo's were selected by convenience in each of the 3 zones (below optimum fluoride <0.7 ppm (parts per million), optimum fluoride 0.7-1.2 ppm and above optimum fluoride areas > 1.2 ppm). From these selected households, 200 ml of fresh milk of both cows and buffaloes was collected along with 200 ml of drinking water for estimation of fluoride concentration by using a fluoride ion selective electrode method. The data was analysed using SPSS, version 11.5 for windows. The mean fluoride concentration of drinking water, cow's milk and buffalo's milk in three different fluoride zones was 0.89±0.39, 0.09±0.07, 0.09±0.08 respectively. Pearson's correlation found a statistically significant correlation between fluoride concentrations in cow's and buffalo's milk with varying levels of fluoride concentration in drinking water in zone B and zone C. However, this correlation was not statistically significant in zone A. With an increase in fluoride concentration in drinking water there was an increase in concentration of fluoride in cow's and buffalo's milk. We conclude that this association is seen in conjunction to not only a single factor but rather due to culmination of several other aspects. So, there is a need to elucidate the other factors that might be contributing to this increase and dental fluorosis.

  4. Level of Fluoride in Soil, Grain and Water in Jalgaon District, Maharashtra, India.

    PubMed

    Naik, Rahul Gaybarao; Dodamani, Arun Suresh; Vishwakarma, Prashanth; Jadhav, Harish Chaitram; Khairnar, Mahesh Ravindra; Deshmukh, Manjiri Abhay; Wadgave, Umesh

    2017-02-01

    Fluoride has an influence on both oral as well as systemic health. The major source of fluoride to body is through drinking water as well as through diet. Staple diet mainly depends on local environmental factors, food grains grown locally, its availability etc. Determination of fluoride level in these food grains is important. So, estimation of the amount of fluoride in grains and its relation to the sources of fluoride used for their cultivation viz., soil and water is important. To estimate the relation of fluoride concentration in grains (Jowar) with respect to that of soil and water used for their cultivation. Fifteen samples each of soil, water and grains were collected using standardized method from the same farm fields of randomly selected villages of Jalgaon district. Fluoride ion concentration was determined in laboratory using SPADNS technique. Mean difference in fluoride levels in between the groups were analyzed using ANOVA and Post-Hoc Tukey test. Linear regression method was applied to analyse the association of the fluoride content of grain with water and soil. There was a significant difference in between mean fluoride levels of soil and water (p<0.001) and in between soil and grain (p<0.001); however, difference in between mean fluoride levels of water and grain was found to be non significant (p=0.591). Also fluoride levels in all the three groups showed significant association with each other. Fluoride level of soil, grains and water should be adjusted to an optimum level. Soil has positive correlation with respect to uptake of fluoride by Jowar grains. So, Jowar grains with optimum fluoride content should be made available in the commercial markets so that oral and general health can be benefitted.

  5. Development of resistance of mutans streptococci and Porphyromonas gingivalis to chlorhexidine digluconate and amine fluoride/stannous fluoride-containing mouthrinses, in vitro.

    PubMed

    Kulik, Eva M; Waltimo, Tuomas; Weiger, Roland; Schweizer, Irene; Lenkeit, Krystyna; Filipuzzi-Jenny, Elisabeth; Walter, Clemens

    2015-07-01

    The aim if this study was to determine the minimal inhibitory concentrations of chlorhexidine digluconate and an amine fluoride/stannous fluoride-containing mouthrinse against Porphyromonas gingivalis and mutans streptococci during an experimental long-term subinhibitory exposition. Five P. gingivalis strains and four mutans streptococci were subcultivated for 20-30 passages in subinhibitory concentrations of chlorhexidine digluconate or an amine fluoride/stannous fluoride-containing mouthrinse. Pre-passaging minimal inhibitory concentrations for chlorhexidine ranged from 0.5 to 2 mg/l for mutans streptococci and from 2 to 4 mg/l for the P. gingivalis isolates. For the amine fluoride/stannous fluoride-containing mouthrinse minimal inhibitory values from 0.125 to 0.25% for the mutans streptococci and from 0.063 to 0.125% for the P. gingivalis isolates were determined. Two- to fourfold increased minimal inhibitory concentrations against chlorhexidine were detected for two of the five P. gingivalis isolates, whereas no increase in minimal inhibitory concentrations was found for the mutans streptococci after repeated passaging through subinhibitory concentrations. Repeated exposure to subinhibitory concentrations of the amine fluoride/stannous fluoride-containing mouthrinse did not alter the minimally inhibitory concentrations of the bacterial isolates tested. Chlorhexidine and the amine fluoride/stannous fluoride-containing mouthrinse are effective inhibitory agents against the oral bacterial isolates tested. No general development of resistance against chlorhexidine or the amine fluoride/stannous fluoride-containing mouthrinse was detected. However, some strains showed potential to develop resistance against chlorhexidine after prolonged exposure. The use of chlorhexidine should be limited to short periods of time. The amine fluoride/stannous fluoride-containing mouthrinse appears to have the potential to be used on a long-term basis.

  6. An in situ caries study on the interplay between fluoride dose and concentration in milk.

    PubMed

    Lippert, F; Martinez-Mier, E A; Zero, D T

    2014-07-01

    This randomized, cross-over in situ study investigated the impact of sodium fluoride dose and concentration in milk on caries lesion rehardening, fluoridation and acid resistance. Twenty-eight subjects wore two gauze-covered enamel specimens with preformed lesions placed buccally on their mandibular partial dentures for three weeks. Participants used fluoride-free dentifrice throughout the study and consumed once daily one of the five study treatments: no fluoride in 200 ml milk (0F-200), 1.5 or 3 mg fluoride in either 100 (1.5F-100; 3F-100) or 200 ml milk (1.5F-200; 3F-200). After three weeks, specimens were retrieved. Knoop hardness was used to determine rehardening and resistance to a secondary acid challenge. Enamel fluoride uptake (EFU) was determined using a microbiopsy technique. A linear fluoride dose-response was observed for all study variables which exhibited similar overall patterns. All the treatments resulted in rehardening, with 0F-200 inducing the least and 3F-100 the most. Apart from 1.5F-200, all the treatments resulted in statistically significantly more rehardening compared to 0F-200. The fluoride doses delivered in 100 ml provided directionally although not statistically significantly more rehardening than those delivered in 200 ml milk. EFU data exhibited better differentiation between treatments: all fluoridated milk treatments delivered more fluoride to lesions than 0F-200; fluoride in 100 ml demonstrated statistically significantly higher EFU than fluoride in 200 ml milk. Findings for acid resistance were also more discerning than rehardening data. The present study has provided further evidence for the anti-caries benefits of fluoridated milk. Both fluoride dose and concentration appear to impact the cariostatic properties of fluoride in milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparison of short-term in vitro fluoride release and recharge from four different types of pit-and-fissure sealants.

    PubMed

    Koga, Hiroshi; Kameyama, Atsushi; Matsukubo, Takashi; Hirai, Yoshito; Takaesu, Yoshinori

    2004-08-01

    The purpose of this in vitro study was to assess the effects of four commercial fluoride-containing pit-and-fissure sealants on caries prevention. Four sealants containing fluoride, Fuji III, Fuji III LC (GC Co., Tokyo), Teethmate F-1 (Kuraray Medical Co., Osaka) and Helioseal F (Vivadent Co., Liechtenstein) were used to investigate fluoride release and recharge. Disk-shaped specimens prepared from each material were immersed in distilled water at a temperature of 37 degrees C. After seven days, acidulated phosphate fluoride solution (APF) was applied to each specimen, and it was then again immersed in distilled water for 14 days. We then determined how much fluoride had been released into the immersing water. Fuji III LC was used with APF solution to investigate the fluoride uptake. Fuji III had the highest fluoride release, and Fuji III LC had the highest fluoride recharge. Helioseal F and Teethmate F-1 had almost no fluoride recharge. Fuji III LC/APF had a higher fluoride uptake to enamel than Fuji III LC. These results suggest that GIC-sealants in the oral cavity can serve as a fluoride reservoir and contribute to retaining a low fluoride level in oral fluids, thereby preventing caries.

  8. Low-levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes.

    PubMed

    Lynch, R J M; Navada, R; Walia, R

    2004-01-01

    To summarise support for current consensus on the likely means by which fluoride toothpastes reduce caries and review some relevant studies of the effect of low levels of fluoride on the demineralisation and remineralisation of enamel. The major anti-caries effect of fluoride toothpastes is thought to result from small but protracted elevations in levels of fluoride in plaque and saliva. Fluoride incorporated into enamel systemically does not reduce enamel solubility sufficiently to exert an anti-caries effect. Fluoride has the potential to exert an anti-caries benefit largely through three mechanisms; inhibition of demineralisation, promotion of remineralisation and interference with bacterial growth and metabolism. However, the low levels of fluoride thought to influence caries are insufficient to have a significant effect via the latter mechanism. Thus reductions in caries resulting from the use of fluoride toothpastes can be linked to modification of the demineralisation/remineralisation balance by direct effects on dental mineral exerted topically by low levels of fluoride. Numerous in vitro studies have shown that low levels of fluoride, typical of those found after many hours in resting plaque and saliva, and resulting from the regular use of fluoride toothpastes, can have a profound effect on enamel demineralisation and remineralisation.

  9. Groundwater fluoride contamination and its possible health implications in Indi taluk of Vijayapura District (Karnataka State), India.

    PubMed

    Ugran, Vidyavati; Desai, Naveen N; Chakraborti, Dipankar; Masali, Kallappa A; Mantur, Prakash; Kulkarni, Shreepad; Deshmukh, Niranjan; Chadchan, Kailash S; Das, Swastika N; Tanksali, Anuradha S; Arwikar, Asha S; Guggarigoudar, Suresh P; Vallabha, Tejaswini; Patil, Shailaja S; Das, Kusal K

    2017-10-01

    Groundwater fluoride concentration and fluoride-related health problems were studied in twenty-two villages of Indi taluk of Vijayapura district, Karnataka, India. Present study (2015) was also used to compare groundwater fluoride concentration in same 22 villages with previous government report (2000). Groundwater fluoride concentrations of 62 bore wells of 22 villages were analyzed by using an ion-sensitive electrode. A total of 660 adults and 600 children were screened for fluorosis symptoms and signs. Sixty clinically suspected fluorosis patients' urine samples were further analyzed for fluoride. The mean value (1.22 ± 0.75 mg/L) of fluoride concentration of 62 bore wells and 54.83 % bore wells with ≥1.0 mg/L of fluoride concentrations in Indi taluk indicates higher than the permissible limit of drinking water fluoride concentration recommended for India. Clinical symptoms like arthritis, joint pains, gastrointestinal discomfort and lower limb deformities with high urinary fluoride concentrations in some subjects suggest fluorosis. Results also showed an increase in groundwater fluoride concentration of the same 22 villages between previous and present study. Preliminary arthritis symptom of the villagers could be due to drinking fluoride-contaminated water. Increase in fluoride concentration with time to the bore wells definitely indicates future danger.

  10. Black Tea Source, Production, and Consumption: Assessment of Health Risks of Fluoride Intake in New Zealand

    PubMed Central

    Godfrey, Michael; Limeback, Hardy

    2017-01-01

    In countries with fluoridation of public water, it is imperative to determine other dietary sources of fluoride intake to reduce the public health risk of chronic exposure. New Zealand has one of the highest per capita consumption rates of black tea internationally and is one of the few countries to artificially fluoridate public water; yet no information is available to consumers on the fluoride levels in tea products. In this study, we determined the contribution of black tea as a source of dietary fluoride intake by measuring the fluoride content in 18 brands of commercially available products in New Zealand. Fluoride concentrations were measured by potentiometric method with a fluoride ion-selective electrode and the contribution of black tea to Adequate Intake (AI) and Tolerable Upper Intake Level (UL) was calculated for a range of consumption scenarios. We examined factors that influence the fluoride content in manufactured tea and tea infusions, as well as temporal changes in fluoride exposure from black tea. We review the international evidence regarding chronic fluoride intake and its association with chronic pain, arthritic disease, and musculoskeletal disorders and provide insights into possible association between fluoride intake and the high prevalence of these disorders in New Zealand. PMID:28713433

  11. Fluoride release from fluoride varnishes under acidic conditions.

    PubMed

    Lippert, F

    2014-01-01

    The aim was to investigate the in vitro fluoride release from fluoride varnishes under acidic conditions. Poly(methyl methacrylate) blocks (Perspex, n=3 per group) were painted with 80 ± 5 mg fluoride varnish (n=10) and placed into artificial saliva for 30 min. Then, blocks were placed into either 1% citric acid (pH 2.27) or 0.3% citric acid (pH 3.75) solutions (n=3 per solution and varnish) for 30 min with the solutions being replaced every 5 min. Saliva and acid solutions were analyzed for fluoride content. Data were analyzed using three-way ANOVA (varnish, solution, time). The three-way interaction was significant (p>0.0001). Fluoride release and release patterns varied considerably between varnishes. Fluoride release in saliva varied by a factor of more than 10 between varnishes. Some varnishes (CavityShield, Nupro, ProFluorid, Vanish) showed higher fluoride release in saliva than during the first 5 min of acid exposure, whereas other varnishes (Acclean, Enamel-Pro, MI Varnish, Vella) showed the opposite behavior. There was little difference between acidic solutions. Fluoride release from fluoride varnishes varies considerably and also depends on the dissolution medium. Bearing in mind the limitations of laboratory research, the consumption of acidic drinks after fluoride varnish application should be avoided to optimize the benefit/risk ratio.

  12. Urinary fluoride as a monitoring tool for assessing successful intervention in the provision of safe drinking water supply in five fluoride-affected villages in Dhar district, Madhya Pradesh, India.

    PubMed

    Srikanth, R; Gautam, Anil; Jaiswal, Suresh Chandra; Singh, Pavitra

    2013-03-01

    Endemic fluorosis was detected in 31 villages in the Dhar district of Madhya Pradesh, Central India. Out of the 109 drinking water sources that were analyzed, about 67 % were found to contain high concentration of fluoride above the permissible level of 1.0 mg/l. Dental fluorosis among the primary school children in the age between 8 and 15 served as primary indicator for fluoride intoxication among the children. Urinary fluoride levels among the adults were found to be correlated with drinking water fluoride in 10 villages affected by fluoride. Intervention in the form of alternate safe water supply in five villages showed significant reduction in the urinary fluoride concentration when compared to the control village. Urinary fluoride serves as an excellent marker for assessing the effectiveness of intervention program in the fluoride-affected villages.

  13. Isothermal vapor-liquid equilibria for the systems 1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Y.W.; Lee, Y.Y.

    1997-03-01

    Isothermal vapor-liquid equilibria for the three binary systems (1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride) have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. All of the systems form minimum boiling heterogeneous azeotropes.

  14. Changes in the Concentration of Ions in Saliva and Dental Plaque after Application of CPP-ACP with and without Fluoride among 6-9 Year Old Children

    PubMed Central

    Poureslami, H.; Hoseinifar, Ra.; Khazaeli, P.; Hoseinifar, Re.; Sharifi, H.; Poureslami, P.

    2017-01-01

    Statement of Problem: The casein phospho peptide-amorphous calcium phosphate with or without fluoride (CPP-ACPF and CPP-ACP respectively) are of considerably new materials which are highly recommended for prevention of dental caries. However, there is a shortage in literature on how they affect the ion concentration of saliva or dental plaque. Objectives: The aim of this study was to evaluate the concentration of calcium, phosphate and fluoride in the plaque and saliva of children with Early Childhood Caries (ECC) after applying the CPP-ACP paste in comparison with the use of CPP-ACPF paste. Materials and Methods: One ml of un-stimulated saliva of 25 preschool children was collected and then 1 mg of the plaque sample was collected from the buccal surfaces of the two first primary molars on the upper jaw. CPP-ACP as well as CPP-ACPF pastes were applied on the tooth surfaces in two separate steps. In steps, plaque and saliva sampling was performed after 60 minutes. The amount of calcium ions was measured by Atomic Absorption Device and the amount of phosphate and fluoride ions was measured by Ion Chromatography instrument. Data were analyzed using Repeated Measurements ANOVA at a p < 0.05 level of significance. Results: Application of both CPP-ACPF and CPP-ACP significantly increased the concentration of calcium, phosphate, and fluoride in both saliva and dental plaque. Moreover, significantly higher salivary fluoride concentration was seen after application of CPP-ACPF compared to CPP-ACP. No other significant difference was observed between these two materials. Conclusions: CPP-ACPF can be more useful than CPP-ACP in protecting the primary teeth against caries process, especially when there is poor hygiene. PMID:28959766

  15. Detorque evaluation of dental abutment screws after immersion in a fluoridated artificial saliva solution.

    PubMed

    Duarte, Antônio R C; Neto, João P Silva; Souza, Júlio C M; Bonachela, Wellington C

    2013-06-01

    Implant-abutment connections still present failures in the oral cavity due to the loosening of mechanical integrity by detorque and corrosion of the abutment screws. The objective of this study was to evaluate the detorque of dental abutment screws before and after immersion in fluoridated solutions. Five commercial implant-abutment assemblies were assessed in this investigation: (C) Conexão®, (E) Emfils®, (I) INP®, (S) SIN®, and (T) Titanium Fix®. The implants were embedded in an acrylic resin and then placed in a holding device. The abutments were first connected to the implants and torqued to 20 Ncm using a handheld torque meter. The detorque values of the abutments were evaluated after 10 minutes. After applying a second torque of 20 Ncm, implant-abutment assemblies were withdrawn every 3 hours for 12 hours in a fluoridated solution over a period of 90 days. After that period, detorque of the abutments was examined. Scanning electronic microscopy (SEM) associated to energy dispersive spectroscopy (EDS) was applied to inspect the surfaces of abutments. Detorque values of systems C, E, and I immersed in the fluoridated solution were significantly higher than those of the initial detorque. ANOVA demonstrated no significant differences in detorque values between designs S and T. Signs of localized corrosion could not be detected by SEM although chemical analysis by EDS showed the presence of elements involved in corrosive processes. An increase of detorque values recorded on abutments after immersion in fluoridated artificial saliva solutions was noticed in this study. Regarding chemical analysis, such an increase of detorque can result from a corrosion layer formed between metallic surfaces at static contact in the implant-abutment joint during immersion in the fluoridated solutions. © 2012 by the American College of Prosthodontists.

  16. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less

  17. Changes in the Concentration of Ions in Saliva and Dental Plaque after Application of CPP-ACP with and without Fluoride among 6-9 Year Old Children.

    PubMed

    Poureslami, H; Hoseinifar, Ra; Khazaeli, P; Hoseinifar, Re; Sharifi, H; Poureslami, P

    2017-03-01

    The casein phospho peptide-amorphous calcium phosphate with or without fluoride (CPP-ACPF and CPP-ACP respectively) are of considerably new materials which are highly recommended for prevention of dental caries. However, there is a shortage in literature on how they affect the ion concentration of saliva or dental plaque. The aim of this study was to evaluate the concentration of calcium, phosphate and fluoride in the plaque and saliva of children with Early Childhood Caries (ECC) after applying the CPP-ACP paste in comparison with the use of CPP-ACPF paste. One ml of un-stimulated saliva of 25 preschool children was collected and then 1 mg of the plaque sample was collected from the buccal surfaces of the two first primary molars on the upper jaw. CPP-ACP as well as CPP-ACPF pastes were applied on the tooth surfaces in two separate steps. In steps, plaque and saliva sampling was performed after 60 minutes. The amount of calcium ions was measured by Atomic Absorption Device and the amount of phosphate and fluoride ions was measured by Ion Chromatography instrument. Data were analyzed using Repeated Measurements ANOVA at a p < 0.05 level of significance. Application of both CPP-ACPF and CPP-ACP significantly increased the concentration of calcium, phosphate, and fluoride in both saliva and dental plaque. Moreover, significantly higher salivary fluoride concentration was seen after application of CPP-ACPF compared to CPP-ACP. No other significant difference was observed between these two materials. CPP-ACPF can be more useful than CPP-ACP in protecting the primary teeth against caries process, especially when there is poor hygiene.

  18. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    PubMed

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions.

  19. The Community Innovation Process: A Conceptualization and Empirical Analysis.

    ERIC Educational Resources Information Center

    Agnew, John A.; And Others

    1978-01-01

    Previous research into the community innovation process has tended to emphasize either intercommunity communication or local socioeconomic and political factors. This article incorporates both sets of factors in an analysis of urban renewal, public housing, automated data processing by local municipalities, and public water fluoridation.…

  20. Community effectiveness of public water fluoridation in reducing children's dental disease.

    PubMed

    Armfield, Jason Mathew

    2010-01-01

    Water fluoridation is one of the most effective public health programs of the past century. However, efforts to extend water fluoridation into currently non-fluoridated areas are often thwarted. Despite considerable evidence regarding the effectiveness of water fluoridation at an individual level, published national community-based studies are rare. This study compared children's decay experience and prevalence between areas with and without water fluoridation in Australia. Oral health data were obtained from clinical examinations of 128, 990 5- to 15-year-old children attending for a regular visit with their respective Australian state or territory School Dental Service in 2002. Water fluoridation status, residence remoteness, and socioeconomic status (SES) were obtained for each child's recorded residential postcode area. Children from every age group had greater caries prevalence and more caries experience in areas with negligible fluoride concentrations in the water (<0.3 parts per million [ppm]) than in optimally fluoridated areas (> or = 0.7 ppm). Controlling for child age, residential location, and SES, deciduous and permanent caries experience was 28.7% and 31.6% higher, respectively, in low-fluoride areas compared with optimally fluoridated areas. The odds ratios for higher caries prevalence in areas with negligible fluoride compared with optimal fluoride were 1.34 (95% confidence interval [CI] 1.29, 1.39) and 1.24 (95% CI 1.21, 1.28) in the deciduous and permanent dentitions, respectively. This study demonstrates the continued community effectiveness of water fluoridation and provides support for the extension of this important oral health intervention to populations currently without access to fluoridated water.

  1. Fluoride-releasing restorative materials and secondary caries.

    PubMed

    Hicks, John; Garcia-Godoy, Franklin; Donly, Kevin; Flaitz, Catherine

    2003-03-01

    Secondary caries is responsible for 60 percent of all replacement restorations in the typical dental practice. Risk factors for secondary caries are similar to those for primary caries development. Unfortunately, it is not possible to accurately predict which patients are at risk for restoration failure. During the past several decades, fluoride-releasing dental materials have become a part of the dentist's armamentarium. Considerable fluoride is released during the setting reaction and for periods up to eight years following restoration placement. This released fluoride is readily taken up by the cavosurface tooth structure, as well as the enamel and root surfaces adjacent to the restoration. Resistance against caries along the cavosurface and the adjacent smooth surface has been shown in both in vitro and in vivo studies. Fluoride-releasing dental materials provide for improved resistance against primary and secondary caries in coronal and root surfaces. Plaque and salivary fluoride levels are elevated to a level that facilitates remineralization. In addition, the fluoride released to dental plaque adversely affects the growth of lactobacilli and mutans streptococci by interference with bacterial enzyme systems. Fluoride recharging of these dental materials is readily achieved with fluoridated toothpastes, fluoride mouthrinses, and other sources of topical fluoride. This allows fluoride-releasing dental materials to act as intraoral fluoride reservoirs. The improvement in the properties of dental materials with the ability to release fluoride has improved dramatically in the past decade, and it is anticipated that in the near future the vast majority of restorative procedures will employ fluoride-releasing dental materials as bonding agents, cavity liners, luting agents, adhesives for orthodontic brackets, and definitive restoratives.

  2. Prevalence of fluorosis and identification of fluoride endemic areas in Manur block of Tirunelveli District, Tamil Nadu, South India

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Subarayan Bothi; Viswanathan, Gopalan; Siva Ilango, S.

    2012-12-01

    Prevalence of fluorosis is mainly due to the consumption of more fluoride through drinking water. It is necessary to identify the fluoride endemic areas to adopt remedial measures for the people under the risk of fluorosis. The objectives of this study were to identify the exact location of fluoride endemic areas in Manur block of Tirunelveli District and to estimate fluoride exposure level through drinking water for different age groups. Identification of fluoride endemic areas was performed through Isopleth and Google earth mapping techniques. Fluoride level in drinking water samples was estimated by fluoride ion selective electrode method. A systematic clinical survey conducted in 19 villages of Manur block revealed the rate of prevalence of fluorosis. From this study, it has been found that Alavanthankulam, Melapilliyarkulam, Keezhapilliyarkulam, Nadupilliyarkulam, Keezhathenkalam and Papankulam are the fluoride endemic villages, where the fluoride level in drinking water is above 1 mg/l. Consumption of maximum fluoride exposure levels of 0.30 mg/kg/day for infants, 0.27 mg/kg/day for children and 0.15 mg/kg/day for adults were found among the respective age group people residing in high fluoride endemic area. As compared with adequate intake level of fluoride of 0.01 mg/kg/day for infants and 0.05 mg/kg/day for other age groups, the health risk due to excess fluoride intake to the people of Alavanthankulam and nearby areas has become evident. Hence the people of these areas are advised to consume drinking water with optimal fluoride to avoid further fluorosis risks.

  3. In Vitro Inhibition of Enamel Demineralisation by Fluoride-releasing Restorative Materials and Dental Adhesives.

    PubMed

    Dionysopoulos, Dimitrios; Koliniotou-Koumpia, Eugenia; Helvatzoglou-Antoniades, Maria; Kotsanos, Nikolaos

    2016-01-01

    To determine the ability of 5 contemporary fluoride-releasing restoratives and 3 fluoride-releasing adhesives to inhibit enamel demineralisation surrounding restorations, and the associations between inhibition and the levels of fluoride released from these materials. Five fluoride-releasing restoratives (Fuji IX GP, Ketac N100, Dyract Extra, Beautifil II and Wave) and 3 fluoride-releasing adhesives (Stae, Prime & Bond NT and Fluoro Bond II) were investigated. Eight disks of each material were prepared. Fluoride release was measured daily using a fluoride-ion-selective electrode for 15 days. Twenty-four cavities for each group were restored with a restorative and an adhesive. Specimens were subjected to thermal stress and stored for 30 days in saline solution. After a 15-day pH-cycling regimen, two 150-μm-thick sections were derived from each specimen. Enamel lesion depth was measured at 0, 100, and 200 μm from each restoration's margin via polarised light microscopy. Of the restoratives investigated, Fuji IX GP released the most fluoride. The fluoride-releasing restoratives tested exhibited shallower enamel lesions than did the control group at all distances tested (p < 0.05). Fuji IX GP yielded significantly lower enamel lesion depth than did the other experimental materials. The depths of enamel lesions did not differ significantly when comparing restoratives applied with a fluoride-releasing adhesive with those applied with a non-fluoride-releasing adhesive. The fluoride-releasing materials tested reduced enamel demineralisation but to different extents, depending on their levels of fluoride release. Fluoride-releasing adhesives did not influence enamel lesion formation.

  4. Alimentary fluoride intake in preschool children

    PubMed Central

    2011-01-01

    Background The knowledge of background alimentary fluoride intake in preschool children is of utmost importance for introducing optimal and safe caries preventive measures for both individuals and communities. The aim of this study was to assess the daily fluoride intake analyzing duplicate samples of food and beverages. An attempt was made to calculate the daily intake of fluoride from food and swallowed toothpaste. Methods Daily alimentary fluoride intake was measured in a group of 36 children with an average age of 4.75 years and an average weight of 20.69 kg at baseline, by means of a double plate method. This was repeated after six months. Parents recorded their child's diet over 24 hours and collected duplicated portions of food and beverages received by children during this period. Pooled samples of food and beverages were weighed and solid food samples were homogenized. Fluoride was quantitatively extracted from solid food samples by a microdiffusion method using hexadecyldisiloxane and perchloric acid. The content of fluoride extracted from solid food samples, as well as fluoride in beverages, was measured potentiometrically by means of a fluoride ion selective electrode. Results Average daily fluoride intake at baseline was 0.389 (SD 0.054) mg per day. Six months later it was 0.378 (SD 0.084) mg per day which represents 0.020 (SD 0.010) and 0.018 (SD 0.008) mg of fluoride respectively calculated per kg bw/day. When adding the values of unwanted fluoride intake from the toothpaste shown in the literature (0.17-1.21 mg per day) the estimate of the total daily intake of fluoride amounted to 0.554-1.594 mg/day and recalculated to the child's body weight to 0.027-0.077 mg/kg bw/day. Conclusions In the children studied, observed daily fluoride intake reached the threshold for safe fluoride intake. When adding the potential fluoride intake from swallowed toothpaste, alimentary intake reached the optimum range for daily fluoride intake. These results showed that in preschool children, when trying to maximize the benefit of fluoride in caries prevention and to minimize its risk, caution should be exercised when giving advice on the fluoride containing components of child's diet or prescribing fluoride supplements. PMID:21974798

  5. Effects of oral doses of fluoride on nestling European starlings

    USGS Publications Warehouse

    Fleming, W.J.; Grue, C.E.; Schuler, C.A.; Bunck, C.M.

    1987-01-01

    Nestling European starlings (Sturnus vulgaris), raised and fed by free-living adults, were given daily oral doses of either distilled water, 193 mg sodium as Na2CO3 per kg of body weight (sodium control group), or 6, 10, 13, 17,23, 30, 40, 80, 160 mg of the fluoride ion as NaF in distilled water per kg of body weight (mg/kg). Dosing began when nestlings were 24-48 hr old and continued for 16 days. The 24-hr LD50 of fluoride for day-old starlings was 50 mg/kg. The 16-day LD50 was 17 mg/kg. The sodium control group did not differ from the water control group with respect to any of the measured variables. Growth rates were significantly reduced in the 13 and 17 mg of fluoride/kg groups; weights of birds given higher dose levels were omitted from growth comparisons because of high, fluoride-induced mortality. Although pre-fledging weights for the 10, 13, and 17 mg of fluoride/kg groups averaged 3.6 to 8.6% less than controls at 17 days, this difference was not significant. Feather and bone growth of the fluoride and control groups were not different, except for keel length measured at 17 days of age which averaged less in the fluoride groups. Liver and spleen weights were not affected by fluoride treatments. No histological damage related to fluoride treatments was found in liver, spleen, or kidney. The logarithm of bone fluoride and magnesium concentration increased with the logarithm of increasing fluoride treatment levels and were significantly correlated with each other. Fluoride treatments had no effect on percent calcium or phosphorus in bone or plasma alkaline phosphatase activity. Oral doses of fluoride appear to be more toxic than equivalent dietary levels. Most birds probably acquire fluoride through their diet. Therefore, the results of the study may overestimate the potential effects of fluorides on songbirds living in fluoride-contaminated environments.

  6. Cryolite process for the solidification of radioactive wastes

    DOEpatents

    Wielang, Joseph A.; Taylor, Larry L.

    1976-01-01

    An improved method is provided for solidifying liquid wastes containing significant quantities of sodium or sodium compounds by calcining in a fluidized-bed calciner. The formation of sodium nitrate which will cause agglomeration of the fluidized-bed particles is retarded by adding aluminum and a fluoride to the waste in order to produce cryolite during calcination. The off-gas of the calciner is scrubbed with a solution containing aluminum in order to complex any fluoride which may be liberated by subsequent dissolution of cryolite and prevent corrosion in the off-gas cleanup system.

  7. Pilot Plant Makes Oxygen Difluoride

    NASA Technical Reports Server (NTRS)

    Humphrey, Marshall F.; Lawton, Emil A.

    1989-01-01

    Pilot plant makes oxygen difluoride highly-energetic, space-storable oxidizer not made commercially. Designed to handle reactants, product, and byproduct, most of which highly reactive, corrosive, and toxic. Oxygen difluoride evolves continuously from reactor containing potassium hydroxide in water at 10 degree C. Collection tanks alternated; one filled while other drained to storage cylinder. Excess OF2 and F2 dissipated in combustion of charcoal in burn barrel. Toxic byproduct, potassium fluoride, reacted with calcium hydroxide to form nontoxic calcium fluoride and to regenerate potassium hydroxide. Equipment processes toxic, difficult-to-make substance efficiently and safely.

  8. Effect of exercise on fluoride metabolism in adult humans: a pilot study.

    PubMed

    V Zohoori, Fatemeh; Innerd, Alison; Azevedo, Liane B; Whitford, Gary M; Maguire, Anne

    2015-11-19

    An understanding of all aspects of fluoride metabolism is critical to identify its biological effects and avoid fluoride toxicity in humans. Fluoride metabolism and subsequently its body retention may be affected by physiological responses to acute exercise. This pilot study investigated the effect of exercise on plasma fluoride concentration, urinary fluoride excretion and fluoride renal clearance following no exercise and three exercise intensity conditions in nine healthy adults after taking a 1-mg Fluoride tablet. After no, light, moderate and vigorous exercise, respectively, the mean (SD) baseline-adjusted i) plasma fluoride concentration was 9.6(6.3), 11.4(6.3), 15.6(7.7) and 14.9(10.0) ng/ml; ii) rate of urinary fluoride excretion over 0-8 h was 46(15), 44(22), 34(17) and 36(17) μg/h; and iii) rate of fluoride renal clearance was 26.5(9.0), 27.2(30.4), 13.1(20.4) and 18.3(34.9) ml/min. The observed trend of a rise in plasma fluoride concentration and decline in rate of fluoride renal clearance with increasing exercise intensity needs to be investigated in a larger trial. This study, which provides the first data on the effect of exercise with different intensities on fluoride metabolism in humans, informs sample size planning for any subsequent definitive trial, by providing a robust estimate of the variability of the effect.

  9. Fluoride metabolism.

    PubMed

    Buzalaf, Marília Afonso Rabelo; Whitford, Gary Milton

    2011-01-01

    Knowledge of all aspects of fluoride metabolism is essential for comprehending the biological effects of this ion in humans as well as to drive the prevention (and treatment) of fluoride toxicity. Several aspects of fluoride metabolism - including gastric absorption, distribution and renal excretion - are pH-dependent because the coefficient of permeability of lipid bilayer membranes to hydrogen fluoride (HF) is 1 million times higher than that of F(-). This means that fluoride readily crosses cell membranes as HF, in response to a pH gradient between adjacent body fluid compartments. After ingestion, plasma fluoride levels increase rapidly due to the rapid absorption from the stomach, an event that is pH-dependent and distinguishes fluoride from other halogens and most other substances. The majority of fluoride not absorbed from the stomach will be absorbed from the small intestine. In this case, absorption is not pH-dependent. Fluoride not absorbed will be excreted in feces. Peak plasma fluoride concentrations are reached within 20-60 min following ingestion. The levels start declining thereafter due to two main reasons: uptake in calcified tissues and excretion in urine. Plasma fluoride levels are not homeostatically regulated and vary according to the levels of intake, deposition in hard tissues and excretion of fluoride. Many factors can modify the metabolism and effects of fluoride in the organism, such as chronic and acute acid-base disturbances, hematocrit, altitude, physical activity, circadian rhythm and hormones, nutritional status, diet, and genetic predisposition. These will be discussed in detail in this review. Copyright © 2011 S. Karger AG, Basel.

  10. Electroactive fluorinate-based polymers: Ferroelectric and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Zhi; Chen Ang; Department of Physics and Department of Chemistry, University of Akron, Akron, Ohio 44325

    2004-12-15

    The dielectric, ferroelectric, and electroactive strain behavior of poly(vinylidene fluoride-trifluoroethylene) copolymers and poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers is studied in a wide temperature and frequency range. The dielectric response from two dielectric polarization processes, modes A(A{sup '}) and B, and the dielectric-background contribution can be identified for these polymers by using the Cole-Cole plot method. Therefore physically reasonable parameters are obtained by fitting the relaxation time to the Vogel-Fulcher relation. On the other hand, the dielectric relaxation step and high strain decrease simultaneously with decreasing temperature; this indicates that the dielectric relaxation process and high strain behavior are strongly correlated. The electron-irradiationmore » effect in copolymers and the monomer effect in terpolymers are discussed.« less

  11. Use of Isobestic and Isoemission Points in Absorption and Luminescence Spectra for Study of the Transformation of Radiation Defects in Lithium Fluoride

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Stupak, A. P.; Runets, L. P.

    2015-03-01

    Isobestic and isoemission points are recorded in the combined absorption and luminescence spectra of two types of radiation defects involved in complex processes consisting of several simultaneous parallel and sequential reactions. These points are observed if a constant sum of two terms, each formed by the product of the concentration of the corresponding defect and a characteristic integral coefficient associated with it, is conserved. The complicated processes involved in the transformation of radiation defects in lithium fluoride are studied using these points. It is found that the ratio of the changes in the concentrations of one of the components and the reaction product remains constant in the course of several simultaneous reactions.

  12. [Fluoridation of drinking water, why is it needed?].

    PubMed

    Zusman, S P; Natapov, L; Ramon, T

    2004-01-01

    Dental caries is a widespread disease. It causes irreversible damage, pain and considerable expense. Fluoride is the only known substance that raises the tooth's resistance to acid attack. Natural drinking waters contain fluoride at different concentration. The most effective method of fluoride administration to the community level is by adjustng the fluoride concentration in the drinking water to about 1 part per million. To describe the mode of action of fluoride, methods of administration and to describe water fluoridation, advantages and disadvantages. Fluoridation of drinking water started in 1945 in the world and in 1981 in Israel. Today more then 300 million people in some 60 countries enjoy the defending effect of fluoride in drinking water. This is the most effective method for decreasing incidence of caries, as well as being cost effective. Over the years there were many attempts to 'blame' fluoridation with negative side effects to human health. Till today, none of the allegations passed scientific scrutiny. There is overwhelming scientific support for the Regulations that oblige the Water supplier to adjust fluoride levels to 1 ppm in every town or municipality with more then 5,000 inhabitants.

  13. Community water fluoridation on the Internet and social media.

    PubMed

    Mertz, Aaron; Allukian, Myron

    2014-01-01

    In the United States, 95 percent of teens and 85 percent of adults use the Internet. Two social media outlets, Facebook and Twitter, reach more than 150 billion users. This study describes anti-fluoridation activity and dominance on the Internet and social media, both of which are community water fluoridation (CWF) information sources. Monthly website traffic to major fluoridation websites was determined from June 2011 to May 2012. Facebook, Twitter, and YouTube fluoridation activity was categorized as "proCWF" or "anti-CWF." Twitter's anti-CWF tweets were further subcategorized by the argument used against CWF. Anti-CWF website traffic was found to exceed proCWF activity five- to sixty-fold. Searching "fluoride" and "fluoridation" on Facebook resulted in 88 to 100 percent anti-CWF groups and pages; "fluoridation" on Twitter and YouTube resulted in 64 percent anti-CWF tweets and 99 percent anti-CWF videos, respectively. "Cancer, " "useless, " and "poisonous" were the three major arguments used against fluoridation. Anti-fluoridation information significantly dominates the Internet and social media. Thousands of people are being misinformed daily about the safety, health, and economic benefits of fluoridation.

  14. The Impact of Fluoride on Ameloblasts and the Mechanisms of Enamel Fluorosis

    PubMed Central

    Bronckers, A.L.J.J.; Lyaruu, D.M.; DenBesten, P.K.

    2009-01-01

    Intake of excess amounts of fluoride during tooth development cause enamel fluorosis, a developmental disturbance that makes enamel more porous. In mild fluorosis, there are white opaque striations across the enamel surface, whereas in more severe cases, the porous regions increase in size, with enamel pitting, and secondary discoloration of the enamel surface. The effects of fluoride on enamel formation suggest that fluoride affects the enamel-forming cells, the ameloblasts. Studies investigating the effects of fluoride on ameloblasts and the mechanisms of fluorosis are based on in vitro cultures as well as animal models. The use of these model systems requires a biologically relevant fluoride dose, and must be carefully interpreted in relation to human tooth formation. Based on these studies, we propose that fluoride can directly affect the ameloblasts, particularly at high fluoride levels, while at lower fluoride levels, the ameloblasts may respond to local effects of fluoride on the mineralizing matrix. A new working model is presented, focused on the assumption that fluoride increases the rate of mineral formation, resulting in a greater release of protons into the forming enamel matrix. PMID:19783795

  15. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  16. Assessment of fluoride-induced changes on physicochemical and structural properties of bone and the impact of calcium on its control in rabbits.

    PubMed

    Gopalakrishnan, Subarayan Bothi; Viswanathan, Gopalan

    2012-03-01

    Bone deformities caused by the chronic intake of large quantities of fluoride and the beneficial effect of calcium on its control have been studied for many years, but only limited data are available on the quantitative effect of fluoride intake and the beneficial impact of calcium on fluoride-induced changes in bone at the molecular level. It is necessary to determine the degree of fluoride-induced changes in bone at different levels of fluoride intake to evaluate the optimum safe intake level of fluoride for maintaining bone health and quality. The ameliorative effect of calcium at different dose levels on minimizing fluoride-induced changes in bone is important to quantify the amount of calcium intake necessary for reducing fluoride toxicity. Thirty rabbits, 2 months old, were divided into five groups. Group I animals received 1 mg/l fluoride and 0.11% calcium diet; groups II and III received 10 mg/l fluoride and diet with 0.11% or 2.11% calcium, respectively; and groups IV and V received 150 mg/l fluoride and diet with 2.11% or 0.11% calcium, respectively. Analysis of bone density, ash content, fluoride, calcium, phosphorus, and Ca:P molar ratio levels after 6 months of treatment indicated that animals that received high fluoride with low-calcium diet showed significant detrimental changes in physicochemical properties of bone. Animals that received fluoride with high calcium intake showed notable amelioration of the impact of calcium on fluoride-induced changes in bone. The degree of fluoride-induced characteristic changes in structural properties such as crystalline size, crystallinity, and crystallographic "c"-axis length of bone apatite cells was also assessed by X-ray diffraction and Fourier transform infrared studies. X-ray images showed bone deformity changes such as transverse stress growth lines, soft tissue ossification, and calcification in different parts of bones as a result of high fluoride accumulation and the beneficial role of calcium intake on its control.

  17. Water fluoridation: a critical review of the physiological effects of ingested fluoride as a public health intervention.

    PubMed

    Peckham, Stephen; Awofeso, Niyi

    2014-01-01

    Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed.

  18. Effect of fluoride on growth and acid production by Streptococcus mutans in dental plaque.

    PubMed Central

    van der Hoeven, J S; Franken, H C

    1984-01-01

    The aim of this study was to measure the effect of fluoride on the production of organic acids by Streptococcus mutans in dental plaque. The effect was studied in a simplified model of dental plaque with gnotobiotic rats monoinfected with S. mutans Ny341. Adaptation of S. mutans to fluoride was induced by feeding one group of the rats on fluoride-containing diet and drinking water. No difference was found in the accumulation of S. mutans on the teeth between the fluoride-adapted and the control groups. However, there was a significant difference in the amount of lactic acid in metabolically resting plaque between the groups, lactic acid being lower in the fluoride-adapted plaque. At 5 min after a rinse containing 10% sucrose, a high level of lactic acid was found in plaque from animals not exposed to fluoride. Rinses containing 4 or 20 mM fluoride before the sucrose rinse significantly inhibited the lactic acid production in the control group. In the plaque from rats on fluoridated diet and drinking water the sucrose-induced production of lactic acid was not inhibited by a 4 mM fluoride rinse. Moreover, the production of lactic acid in the fluoride-adapted plaque was prolonged. The results indicate that due to fluoride adaptation the inhibition of acid production is unlikely to be important for the caries-preventive action of fluoride. PMID:6746094

  19. Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention

    PubMed Central

    2014-01-01

    Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed. PMID:24719570

  20. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  1. Chemico-therapeutic approach to prevention of dental caries. [using stannous fluoride gel

    NASA Technical Reports Server (NTRS)

    Shannon, I. L.

    1975-01-01

    The program of chemical preventive dentistry is based primarily upon the development of a procedure for stabilizing stannous fluoride in solution by forcing it into glycerin. New topical fluoride treatment concentrates, fluoride containing gels and prophylaxis pastes, as well as a completely stable stannous fluoride dentifrice are made possible by the development of a rather complicated heat application method to force stannous fluoride into solution in glycerin. That the stannous fluoride is clinically effective in such a preparation is demonstrated briefly on orthodontic patients.

  2. Uptake of fluoride into developing sheep teeth, following the 1995 volcanic eruption of Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Coote, G. E.; Cutress, T. W.; Suckling, G. W.

    1997-07-01

    In the southern Spring of 1995 (mid-October) the active volcano Mt Ruapehu in the central North Island of New Zealand erupted explosively, spreading up to 40 million m 3 of rhyolite tephra over thousands of km 2 of farmland during the lambing season. This ash contained a high concentration of soluble fluoride, and more than 2000 lactating ewes died of acute fluoride poisoning. To investigate the effects of this brief but acute dose on the teeth of grazing animals we examined the distributions of fluorine and calcium in the permanent incisor teeth of sheep which were one year old at the time. Where part of an incisor had been in the first (secretory) stage of calcification the erupted tooth disclosed surface pitting, a thin layer of enriched mineral across the enamel with as much as 1000 ppm F w/w, and a separate layer with ˜4000 ppm down the dentine. The part of an incisor which had attained the later (maturation) stage showed enriched layers only in the outer enamel and in the dentine. This study has demonstrated some important features of the calcification process, and the risk of fluoride toxicity to grazing animals.

  3. Theoretical understanding of ruthenium(II) based fluoride sensor derived from 4,5-bis(benzimidazol-2-yl)imidazole (H3ImBzim) and bipyridine: electronic structure and binding nature.

    PubMed

    Wang, Jian; Bai, Fu-Quan; Xia, Bao-Hui; Sun, Lei; Zhang, Hong-Xing

    2011-03-17

    Using density functional theory (DFT) approach, we assessed the newly developed fluoride sensor: [(bpy)(2)Ru(H(3)ImBzim)](2+) (denoted as 1, where H(3)ImBzim = 4,5-bis(benzimidazol-2-yl)imidazole and byp = 2,2'-bipyridine). On the basis of our benchmark test, a PBE0 functional with a LanL2DZ basis set was chosen to explore the electronic structure of 1 in both ground and singlet excited states in acetonitrile solution. Both absorption bands at 426 and 352 nm are assigned as metal-to-ligand charge-transfer transition characters. By analyzing the difference of absorption spectrum between the binding adducts and the experimental measurement, the fluoride detection process was found to be driven by the proton transfer model, which makes 1 not only capable of detecting fluoride, but also for other Bønster base anions. And the result is in general accordance with the experimental observations. We hope the current exploration can give some knowledge about the detection mechanism of the F(-) anion sensor and provide some inspiration for the design of functional molecular detectors for F(-) anion.

  4. Effects of fluoridated milk on root dentin remineralization.

    PubMed

    Arnold, Wolfgang H; Heidt, Bastian A; Kuntz, Sebastian; Naumova, Ella A

    2014-01-01

    The prevalence of root caries is increasing with greater life expectancy and number of retained teeth. Therefore, new preventive strategies should be developed to reduce the prevalence of root caries. The aim of this study was to investigate the effects of fluoridated milk on the remineralization of root dentin and to compare these effects to those of sodium fluoride (NaF) application without milk. Thirty extracted human molars were divided into 6 groups, and the root cementum was removed from each tooth. The dentin surface was demineralized and then incubated with one of the following six solutions: Sodium chloride NaCl, artificial saliva, milk, milk+2.5 ppm fluoride, milk+10 ppm fluoride and artificial saliva+10 ppm fluoride. Serial sections were cut through the lesions and investigated with polarized light microscopy and quantitative morphometry, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The data were statistically evaluated using a one-way ANOVA for multiple comparisons. The depth of the lesion decreased with increasing fluoride concentration and was the smallest after incubation with artificial saliva+10 ppm fluoride. SEM analysis revealed a clearly demarcated superficial remineralized zone after incubation with milk+2.5 ppm fluoride, milk+10 ppm fluoride and artificial saliva+10 ppm fluoride. Ca content in this zone increased with increasing fluoride content and was highest after artificial saliva+10 ppm fluoride incubation. In the artificial saliva+10 ppm fluoride group, an additional crystalline layer was present on top of the lesion that contained elevated levels of F and Ca. Incubation of root dentin with fluoridated milk showed a clear effect on root dentin remineralization, and incubation with NaF dissolved in artificial saliva demonstrated a stronger effect.

  5. Evaluation of salivary fluoride retention from a new high fluoride mouthrinse.

    PubMed

    Mason, Stephen C; Shirodaria, Soha; Sufi, Farzana; Rees, Gareth D; Birkhed, Dowen

    2010-11-01

    To evaluate salivary fluoride retention from a new high fluoride daily use mouthrinse over a 120 min period. Sixteen subjects completed a randomised single-blind, four-treatment cross-over trial. Sensodyne® Pronamel® mouthrinse (A) contained 450 ppm fluoride; reference products were Colgate® Fluorigard® (B), Listerine® Total Care (C) and Listerine Softmint Sensation (D) containing 225, 100 and 0 ppm fluoride respectively. Salivary fluoride retention was monitored ex vivo after a single supervised use of test product (10 mL, 60 s). Samples were collected at 0, 1, 3, 5, 15, 30, 60 and 120 min post-rinse, generating fluoride clearance curves from which the area under the curve (AUC) was calculated. Differences in salivary fluoride concentrations for each product were analysed using ANCOVA at each time point using a 5% significance level, as well as lnAUC for the periods 0-120, 0-1, 1-15, 15-60 and 60-120 min. Pairwise comparisons between all treatment groups were performed. Salivary fluoride levels for A-C peaked immediately following use. Fluoride levels were statistically significantly higher for A versus B-D (p≤ 0.004), linear dose responses were apparent. AUC(0-120) was statistically significantly greater for A than for B (p = 0.035), C (p< 0.0001) and D (p< 0.0001). Post-hoc comparisons of lnAUC for the remaining time domains showed fluoride retention from A was statistically significantly greater versus B-D (p< 0.0001). Single-use treatment with the new mouthrinse containing 450 ppm fluoride resulted in statistically significantly higher salivary fluoride levels throughout the 120 min test period. Total fluoride retention (AUC(0-120)) was also statistically significantly greater versus comparator rinse treatments. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Fluoride Increase in Saliva and Dental Biofilm due to a Meal Prepared with Fluoridated Water or Salt: A Crossover Clinical Study.

    PubMed

    Lima, Carolina V; Tenuta, Livia M A; Cury, Jaime A

    2018-06-07

    Knowledge about fluoride delivery to oral fluids from foods cooked with fluoridated water and salt is scarce, and no study has evaluated fluoride concentrations in saliva or biofilm during meal consumption. In this randomized double-blind crossover study, 12 volunteers ingested meals (rice, beans, meat, and legumes) prepared with nonfluoridated water and salt (control group), fluoridated water (0.70 mg F/L; water group), and fluoridated salt (183.7 mg F/kg; salt group). Whole saliva was collected before meal ingestion, during mastication, and up to 2 h after meal ingestion. Dental biofilm was collected before and immediately after meal ingestion. Fluoride concentrations in saliva and dental biofilm were determined by an ion-specific electrode. The mean (±standard deviation; n = 4) fluoride concentrations in meals prepared for the control, water, and salt groups were 0.039 ± 0.01, 0.43 ± 0.04, and 1.71 ± 0.32 μg F/g, respectively. The three groups had significantly different fluoride concentrations in saliva collected during mastication (p < 0.0001) and after meal ingestion (p < 0.04; salt > water > control). The fluoride concentration in saliva returned to baseline 30 min after meal ingestion in the water group but remained high for up to 2 h in the salt group (p = 0.002). The fluoride concentration in biofilm fluid differed only between the salt and control groups (p = 0.008). The mastication of foods cooked with fluoridated water and salt increases fluoride concentrations in oral fluids and may contribute to the local effect of these community-based fluoride interventions on caries control. © 2018 S. Karger AG, Basel.

  7. Salt fluoridation and oral health.

    PubMed

    Marthaler, Thomas M

    2013-11-01

    The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the caries-protective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich, and several other cantons followed suit. Studies initiated in the early seventies showed that fluoride, when added to salt, inhibits dental caries. The addition of fluoride to salt for human consumption was officially authorized in 1980-82. In Switzerland 85% of domestic salt consumed is fluoridated and 67% in Germany. Salt fluoridation schemes are reaching more than one hundred million in Mexico, Colombia, Peru and Cuba. The cost of salt fluoridation is very low, within 0.02 and 0.05 € per year and capita. Children and adults of the low socio-economic strata tend to have substantially more untreated caries than higher strata. Salt fluoridation is by far the cheapest method for improving oral health. Salt fluoridation has cariostatic potential like water fluoridation (caries reductions up to 50%). In Europe, meaningful percentages of users have been attained only in Germany (67%) and Switzerland (85%). In Latin America, there are more than 100 million users, and several countries have arrived at coverage of 90 to 99%. Salt fluoridation is by far the cheapest method of caries prevention, and billions of people throughout the world could benefit from this method. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  8. 40 CFR 415.551 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...

  9. 40 CFR 415.551 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...

  10. 40 CFR 415.551 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT SOURCE CATEGORY Sodium Fluoride Production... shall apply to this subpart. (b) The term process wastewater means any water which, during manufacturing... wastewater shall mean any water which, during manufacturing or processing, comes into incidental contact with...

  11. VOLATILE CHLORIDE PROCESS FOR THE RECOVERY OF METAL VALUES

    DOEpatents

    Hanley, W.R.

    1959-01-01

    A process is presented for recovering uranium, iron, and aluminum from centain shale type ores which contain uranium in minute quantities. The ore is heated wiih a chlorinating agent. such as chlorine, to form a volatilized stream of metal chlorides. The chloride stream is then passed through granular alumina which preferentially absorbs the volatile uranium chloride and from which the uranium may later be recovered. The remaining volatilized chlorides, chiefly those of iron and aluminum, are further treated to recover chlorine gas for recycle, and to recover ferric oxide and aluminum oxide as valuable by-products.

  12. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants.

    PubMed

    Lichiheb, Nebila; Personne, Erwan; Bedos, Carole; Van den Berg, Frederik; Barriuso, Enrique

    2016-04-15

    Volatilization from plant foliage is known to have a great contribution to pesticide emission to the atmosphere. However, its estimation is still difficult because of our poor understanding of processes occurring at the leaf surface. A compartmental approach for dissipation processes of pesticides applied on the leaf surface was developed on the base of experimental study performed under controlled conditions using laboratory volatilization chamber. This approach was combined with physicochemical properties of pesticides and was implemented in SURFATM-Pesticides model in order to predict pesticide volatilization from plants in a more mechanistic way. The new version of SURFATM-Pesticide model takes into account the effect of formulation on volatilization and leaf penetration. The model was evaluated in terms of 3 pesticides applied on plants at the field scale (chlorothalonil, fenpropidin and parathion) which display a wide range of volatilization rates. The comparison of modeled volatilization fluxes with measured ones shows an overall good agreement for the three tested compounds. Furthermore the model confirms the considerable effect of the formulation on the rate of the decline in volatilization fluxes especially for systemic products. However, due to the lack of published information on the substances in the formulations, factors accounting for the effect of formulation are described empirically. A sensitivity analysis shows that in addition to vapor pressure, the octanol-water partition coefficient represents important physicochemical properties of pesticides affecting pesticide volatilization from plants. Finally the new version of SURFATM-Pesticides is a prospecting tool for key processes involved in the description of pesticide volatilization from plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Reversible sol-to-gel transformation of uracil gelators: specific colorimetric and fluorimetric sensor for fluoride ions.

    PubMed

    Xing, Ling-Bao; Yang, Bing; Wang, Xiao-Jun; Wang, Jiu-Ju; Chen, Bin; Wu, Qianhong; Peng, Hui-Xing; Zhang, Li-Ping; Tung, Chen-Ho; Wu, Li-Zhu

    2013-03-05

    A new type of anthracene organogelator based on uracil was obtained using organic aromatic solvents, cyclohexane, DMSO, ethanol, and ethyl acetate. It was further characterized by field-emission scanning electron microscopy and transmission electron microscopy. Specifically, the resulting organogels were demonstrated to be promising colorimetric and fluorescent sensors toward fluoride ions with high sensitivity and selectivity, accompanying the disruption of the gelators. Spectroscopic study and (1)H NMR titration experiment revealed that the deprotonation of the hydrogen atom on the N position of uracil moiety by fluoride ions is responsible for the recognition events, evidenced by immediate transformation from the sol phase to the gel state upon adding a small amount of a proton solvent, methanol. The process is reversible, with zero loss in sensing activity and sol-to-gel transformation ability even after five runs.

  14. Methoxyflurane nephropathy.

    PubMed Central

    Mazze, R I

    1976-01-01

    Investigations of methoxyflurane-induced nephrotoxicity in man have been extensively aided by the use of an animal model. To be of value the animal model must share similar metabolic pathways with man and have the same clinical manifestations of the diseases process. The Fischer 344 rat appears to meet these criteria. The predominant factors in the production of methoxyflurane nephrotoxicity appear to be high methoxyflurane dosage and serum inorganic fluoride concentration. It is likely that secondary factors include: (1) a high rate of methoxyflurane metabolism and sepsitivity of the kidney to inorganic fluoride toxicity: (2) concurrent treatment with other nephrotoxic drugs; (3) preexisting renal disease; (4) surgery of the urogenital tract, aorta, or renal vasculative; (5) repeat administration of methoxyflurane due to accumulation of inorganic fluoride and, perhaps, methoxyflurane induction of its own metabolism: and (6) concurrent treatment with enzyme-inducing drugs such as phenobarbital. Images FIGURE 5. a FIGURE 5. b FIGURE 5. c PMID:1001288

  15. An easy prepared dual-channel chemosensor for selective and instant detection of fluoride based on double Schiff-base

    NASA Astrophysics Data System (ADS)

    Leng, Yan-Li; Zhang, Jian-Hui; Li, Qiao; Zhang, You-Ming; Lin, Qi; Yao, Hong; Wei, Tai-Bao

    2016-10-01

    A colorimetric and fluorescent dual-channel fluoride chemosensor N,N‧-bis (4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been designed and synthesized. This structurally simple probe displays rapid response and high selectivity for fluoride over other common anions (Cl-, Br-, I-, AcO-, H2PO4-, HSO4-, ClO4-, CN- and SCN-) in a highly polar aqueous DMSO solution. Mechanism studies suggested that the sensor firstly combined with F- through hydrogen bonds and then experienced the deprotonation process at higher concentrations of F- anion to the two Ar-OH groups. The detection limit was 5.78 × 10- 7 M of F-, which points to the high detection sensitivity. Test strips based on sensor S were fabricated, which could act as a convenient and efficient F- test kit to detect F- for ;in-the-field; measurement.

  16. Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties

    NASA Astrophysics Data System (ADS)

    Kaleva, G. M.; Politova, E. D.; Mosunov, A. V.; Sadovskaya, N. V.

    2018-06-01

    A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.

  17. Emsoft User's Guide and Modeling Software (1997)

    EPA Science Inventory

    Chemicals that readily vaporize at relatively low temperatures can migrate from contaminated soils into the atmosphere via a process called volatilization. Volatilization represents a potentially significant exposure pathway because humans can come in contact with volatilized com...

  18. Emsoft User's Guide and Modeling Software (2002 Update)

    EPA Science Inventory

    Chemicals that readily vaporize at relatively low temperatures can migrate from contaminated soils into the atmosphere via a process called volatilization. Volatilization represents a potentially significant exposure pathway because humans can come in contact with volatilized com...

  19. Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics

    PubMed Central

    Everett, E.T.

    2011-01-01

    Fluorides are present in the environment. Excessive systemic exposure to fluorides can lead to disturbances of bone homeostasis (skeletal fluorosis) and enamel development (dental/enamel fluorosis). The severity of dental fluorosis is also dependent upon fluoride dose and the timing and duration of fluoride exposure. Fluoride’s actions on bone cells predominate as anabolic effects both in vitro and in vivo. More recently, fluoride has been shown to induce osteoclastogenesis in mice. Fluorides appear to mediate their actions through the MAPK signaling pathway and can lead to changes in gene expression, cell stress, and cell death. Different strains of inbred mice demonstrate differential physiological responses to ingested fluoride. Genetic studies in mice are capable of identifying and characterizing fluoride-responsive genetic variations. Ultimately, this can lead to the identification of at-risk human populations who are susceptible to the unwanted or potentially adverse effects of fluoride action and to the elucidation of fundamental mechanisms by which fluoride affects biomineralization. PMID:20929720

  20. Is the fluoride intake by diet and toothpaste in children living in tropical semi-arid city safe?

    PubMed

    Oliveira, Priscila Ferreira Torres de; Cury, Jaime Aparecido; Lima, Carolina Veloso; Vale, Glauber Campos; Lima, Marina de Deus Moura de; Moura, Lúcia de Fátima Almeida de Deus; Moura, Marcoeli Silva de

    2018-01-01

    Data about total fluoride intake in children living in a tropical semi-arid climate city is scarce, thus we conducted this study. Fifty-eight children aged two to five years, living in a Brazilian tropical city with optimally fluoridated water were selected. Dietary samples were collected using the duplicate diet method on two non-consecutive days in the children's home toothpaste was determined by subtracting the amount of fluoride recovered after brushing from the amount placed on the toothbrush. The mean total dose (SD) of fluoride intake was 0.043(0.016) mg F·kg-1·d-1, with the major (60.6%) contribution from water. The factors associated with the ingestion of fluoride from toothpaste were fluoride concentration of the toothpaste (p = 0.03) and the use of kids toothpaste (p = 0.02). The findings suggest that children have a low fluoride intake, measured by at-home meals and use of fluoride toothpaste; drinking water is the main source of fluoride ingestion.

Top