Sample records for fluorinated linear chain

  1. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer.

    PubMed

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu

    2013-02-01

    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Electronic structures of graphane with vacancies and graphene adsorbed with fluorine atoms

    NASA Astrophysics Data System (ADS)

    Wu, Bi-Ru; Yang, Chih-Kai

    2012-03-01

    We investigate the electronic structure of graphane with hydrogen vacancies, which are supposed to occur in the process of hydrogenation of graphene. A variety of configurations is considered and defect states are derived by density functional calculation. We find that a continuous chain-like distribution of hydrogen vacancies will result in conduction of linear dispersion, much like the transport on a superhighway cutting through the jungle of hydrogen. The same conduction also occurs for chain-like vacancies in an otherwise fully fluorine-adsorbed graphene. These results should be very useful in the design of graphene-based electronic circuits.

  3. Facing the rain after the phase out: Performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics.

    PubMed

    Schellenberger, S; Gillgard, P; Stare, A; Hanning, A; Levenstam, O; Roos, S; Cousins, I T

    2018-02-01

    Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with "long" perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids. Copyright © 2017. Published by Elsevier Ltd.

  4. Lithium/organosulfur redox cell having protective solid electrolyte barrier formed on anode and method of making same

    DOEpatents

    De Jonghe, Lutgard C.; Visco, Steven J.; Liu, Meilin; Mailhe, Catherine C.

    1990-01-01

    A lithium/organosulfur redox cell is disclosed which comprises a solid lium anode, a liquid organosulfur cathode, and a barrier layer formed adjacent a surface of the solid lithium anode facing the liquid organosulfur cathode consisting of a reaction product of the lithium anode with the organosulfur cathode. The organosulfur cathode comprises a material having the formula (R(S).sub.y).sub.N where y=1 to 6, n=2 to 20 and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the linear chain may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  5. Process for the preparation of fluorine containing crosslinked elastomeric polytriazine and product so produced

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Korus, R. A. (Inventor)

    1980-01-01

    Crosslinking elastomeric polytriazines are prepared by a 4 step procedure which consists of (1) forming a poly(imidoylamidine) by the reaction, under reflux conditions, of anhydrous ammonia with certain perfluorinated alkyl or alkylether dinitriles; (2) forming a linear polytriazine by cyclizing the imidoylamidine linkages by reaction with certain perfluorinated alkyl or alkylether acid anhydrides or halides; (3) extending the linear polytriazine chain by further refluxing in anhydrous ammonia; and (4) heating to cyclize the new imidoylamidine and thereby crosslink the polymer.

  6. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy deposition. These findings may suggest a role of the modifier as a moderator in the energy dissipation and relaxation process. The relatively low internal energy content of SPALDI-produced ions indicates that this is a "soft" desorption technique, with potential advantages in the analysis of labile compounds.

  7. Environmental Compliance Assessment and Management Program

    DTIC Science & Technology

    1994-04-01

    following classes: 1. cyclic, branched, or linear, completely fluorinated alkanes 2. cyclic, branched, or linear, completely fluorinated ethers with no...unsaturations 3. cyclic, branched, or linear, completely fluorinated tertiary amines with no unsaturations 4. sulfur containing perfluorocarbons with no...unsaturations and with sulfur bonds only to carbon and fluorine . 2.58. VOC Water Separator - a tank, box, or other container which is primarily

  8. [Study on the calcium-based sorbent for removal fluorine during coal combustion].

    PubMed

    Li, Shu-ling; Qi, Qing-jie; Liu, Jian-zhong; Cao, Xin-yu; Zhou, Jun-hu; Cen, Ke-fa

    2004-03-01

    In the paper, the reaction of CaO-HF and fluorine removal mechanics at high temperature by blending calcium-based sorbents with coal during coal combustion were discussed, and test results about fluorine retention during coal combustion in fluidized bed and chain-grate furnace were reported. The results identified that lime and calcium-based sorbets developed can restratin the emission of fluorine during coal combustion. The efficiency of fluorine removal can reach 66.7%-70.0% at Ca/F 60-70 by blending lime with coal in fluidized bed combustion, and the efficiency of fluorine removal are between 57.32% and 75.19% by blending calcium-based sorbets with coal in chain-grate furnace combustion. Blending CaO or lime with coal during coal combustion can remove SO2 and HF simultaneously.

  9. A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances.

    PubMed

    Gomis, Melissa Ines; Wang, Zhanyun; Scheringer, Martin; Cousins, Ian T

    2015-02-01

    Long-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) are persistent, bioaccumulative, and toxic contaminants that are globally present in the environment, wildlife and humans. Phase-out actions and use restrictions to reduce the environmental release of long-chain PFCAs, PFSAs and their precursors have been taken since 2000. In particular, long-chain poly- and perfluoroalkyl substances (PFASs) are being replaced with shorter-chain homologues or other fluorinated or non-fluorinated alternatives. A key question is: are these alternatives, particularly the structurally similar fluorinated alternatives, less hazardous to humans and the environment than the substances they replace? Several fluorinated alternatives including perfluoroether carboxylic acids (PFECAs) and perfluoroether sulfonic acids (PFESAs) have been recently identified. However, the scarcity of experimental data prevents hazard and risk assessments for these substances. In this study, we use state-of-the-art in silico tools to estimate key properties of these newly identified fluorinated alternatives. [i] COSMOtherm and SPARC are used to estimate physicochemical properties. The US EPA EPISuite software package is used to predict degradation half-lives in air, water and soil. [ii] In combination with estimated chemical properties, a fugacity-based multimedia mass-balance unit-world model - the OECD Overall Persistence (POV) and Long-Range Transport Potential (LRTP) Screening Tool - is used to assess the likely environmental fate of these alternatives. Even though the fluorinated alternatives contain some structural differences, their physicochemical properties are not significantly different from those of their predecessors. Furthermore, most of the alternatives are estimated to be similarly persistent and mobile in the environment as the long-chain PFASs. The models therefore predict that the fluorinated alternatives will become globally distributed in the environment similar to their predecessors. Although such in silico methods are coupled with uncertainties, this preliminary assessment provides enough cause for concern to warrant experimental work to better determine the properties of these fluorinated alternatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing.

    PubMed

    Holmquist, H; Schellenberger, S; van der Veen, I; Peters, G M; Leonards, P E G; Cousins, I T

    2016-05-01

    Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent substitution with alternatives has resulted in a market where both fluorinated and non-fluorinated DWRs are available. These DWR alternatives can be divided into four broad groups that reflect their basic chemistry: side-chain fluorinated polymers, silicones, hydrocarbons and other chemistries (includes dendrimer and inorganic nanoparticle chemistries). In this critical review, the alternative DWRs are assessed with regards to their structural properties and connected performance, loss and degradation processes resulting in diffuse environmental emissions, and hazard profiles for selected emitted substances. Our review shows that there are large differences in performance between the alternative DWRs, most importantly the lack of oil repellence of non-fluorinated alternatives. It also shows that for all alternatives, impurities and/or degradation products of the DWR chemistries are diffusively emitted to the environment. Our hazard ranking suggests that hydrocarbon based DWR is the most environmentally benign, followed by silicone and side-chain fluorinated polymer-based DWR chemistries. Industrial commitments to reduce the levels of impurities in silicone based and side-chain fluorinated polymer based DWR formulations will lower the actual risks. There is a lack of information on the hazards associated with DWRs, in particular for the dendrimer and inorganic nanoparticle chemistries, and these data gaps must be filled. Until environmentally safe alternatives, which provide the required performance, are available our recommendation is to choose DWR chemistry on a case-by-case basis, always weighing the benefits connected to increased performance against the risks to the environment and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fluorinated diglucose detergents for membrane-protein extraction.

    PubMed

    Boussambe, Gildas Nyame Mendendy; Guillet, Pierre; Mahler, Florian; Marconnet, Anaïs; Vargas, Carolyn; Cornut, Damien; Soulié, Marine; Ebel, Christine; Le Roy, Aline; Jawhari, Anass; Bonneté, Françoise; Keller, Sandro; Durand, Grégory

    2018-05-29

    Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25°C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichiacoli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins. Copyright © 2018. Published by Elsevier Inc.

  12. A computational study of vicinal fluorination in 2,3-difluorobutane: implications for conformational control in alkane chains.

    PubMed

    Fox, Stephen J; Gourdain, Stephanie; Coulthurst, Anton; Fox, Clare; Kuprov, Ilya; Essex, Jonathan W; Skylaris, Chris-Kriton; Linclau, Bruno

    2015-01-19

    A comprehensive conformational analysis of both 2,3-difluorobutane diastereomers is presented based on density functional theory calculations in vacuum and in solution, as well as NMR experiments in solution. While for 1,2-difluoroethane the fluorine gauche effect is clearly the dominant effect determining its conformation, it was found that for 2,3-difluorobutane there is a complex interplay of several effects, which are of similar magnitude but often of opposite sign. As a result, unexpected deviations in dihedral angles, relative conformational energies and populations are observed which cannot be rationalised only by chemical intuition. Furthermore, it was found that it is important to consider the free energies of the various conformers, as these lead to qualitatively different results both in vacuum and in solvent, when compared to calculations based only on the electronic energies. In contrast to expectations, it was found that vicinal syn-difluoride introduction in the butane and by extension, longer hydrocarbon chains, is not expected to lead to an effective stabilisation of the linear conformation. Our findings have implications for the use of the vicinal difluoride motif for conformational control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Status Quo, Uncertainties and Trends Analysis of Environmental Risk Assessment for PFASs].

    PubMed

    Hao, Xue-wen; Li, Li; Wang, Jie; Cao, Yan; Liu, Jian-guo

    2015-08-01

    This study systematically combed the definition and change of terms, category and application of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in international academic, focusing on the environmental risk and exposure assessment of PFASs, to comprehensively analyze the current status, uncertainties and trends of PFASs' environmental risk assessment. Overall, the risk assessment of PFASs is facing a complicated situation involving complex substance pedigrees, various types, complex derivative relations, confidential business information and risk uncertainties. Although the environmental risk of long-chain PFASs has been widely recognized, the short-chain PFASs and short-chain fluorotelomers as their alternatives still have many research gaps and uncertainties in environmental hazards, environmental fate and exposure risk. The scope of risk control of PFASs in the international community is still worth discussing. Due to trade secrets and market competition, the chemical structure and risk information of PFASs' alternatives are generally lack of openness and transparency. The environmental risk of most fluorinated and non-fluorinated alternatives is not clear. In total, the international research on PFASs risk assessment gradually transfer from long-chain perfluoroalkyl acids (PFAAs) represented by perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to short-chain PFAAs, and then extends to other PFASs. The main problems to be solved urgently and researched continuously are: the environmental hazardous assessment indexes, such as bioaccumulation and environmental migration, optimization method, the environmental release and multimedia environmental fate of short-chain PFASs; the environmental fate of neutral PFASs and the transformation and contribution as precursors of short-chain PFASs; the risk identification and assessment of fluorinated and non-fluorinated alternatives of PFASs.

  14. Finding the perfect spot for fluorine: improving potency up to 40-fold during a rational fluorine scan of a Bruton's Tyrosine Kinase (BTK) inhibitor scaffold.

    PubMed

    Lou, Yan; Sweeney, Zachary K; Kuglstatter, Andreas; Davis, Dana; Goldstein, David M; Han, Xiaochun; Hong, Junbae; Kocer, Buelent; Kondru, Rama K; Litman, Renee; McIntosh, Joel; Sarma, Keshab; Suh, Judy; Taygerly, Joshua; Owens, Timothy D

    2015-01-15

    A rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): Synthesis and characterizations

    DOE PAGES

    Xu, Yuewen; Wang, Weiyu; Wang, Yangyang; ...

    2015-11-25

    Bottlebrush polymers are densely grafted polymers with long side-chains attached to a linear polymeric backbone. Their unusual structures endow them with a number of unique and potentially useful properties in solution, in thin films, and in bulk. Despite the many studies of bottlebrushes that have been reported, the structure–property relationships for this class of materials are still poorly understood. In this contribution, we report the synthesis and characterization of fluorinated bottlebrush polymers based on poly(2,2,2-trifluoroethyl methacrylate). The synthesis was achieved by atom transfer radical polymerization (ATRP) using an α-bromoisobutyryl bromide functionalized norbornene initiator, followed by ring-opening metathesis polymerization (ROMP) usingmore » a third generation Grubbs’ catalyst (G3). Rheological characterization revealed that the bottlebrush polymer backbones remained unentangled as indicated by the lack of a rubbery plateau in the modulus. By tuning the size of the backbone of the bottlebrush polymers, near-spherical and elongated particles representing single brush molecular morphologies were observed in a good solvent as evidenced by TEM imaging, suggesting a semi-flexible nature of their backbones in dilute solutions. Thin films of bottlebrush polymers exhibited noticeably higher static water contact angles as compared to that of the macromonomer reaching the hydrophobic regime, where little differences were observed between each bottlebrush polymer. Further investigation by AFM revealed that the surface of the macromonomer film was relatively smooth; in contrast, the surface of bottlebrush polymers displayed certain degrees of nano-scale roughness (R q = 0.8–2.4 nm). The enhanced hydrophobicity of these bottlebrushes likely results from the preferential enrichment of the fluorine containing end groups at the periphery of the molecules and the film surface due to the side chain crowding effect. Furthermore, our results provide key information towards the design of architecturally tailored fluorinated polymers with desirable properties.« less

  16. Experimental study of electrochemical fluorination of trichloroethylene

    NASA Technical Reports Server (NTRS)

    Polisena, C.; Liu, C. C.; Savinell, R. F.

    1982-01-01

    The electrochemical fluorination of trichloroethylene in anhydrous hydrogen fluoride at 0 C and at constant cell potential was investigated. A microprocessor-aided electrochemical fluorination reactor system that yields highly reproducible results was utilized. The following major two-carbon-chain products were observed: CHCl2-CCl2F, CHCl2-CClF2, CHClF-CCl2F, and CCl2F-CClF2. The first step in the reaction sequence was determined to be fluorine addition to the double bond, followed by replacement of first hydrogen and then chlorine by fluorine. Polymerization reactions yielded higher molecular weight or possible ring-type chlorofluorohydrocarbons. A comparison of the reaction products of electrochemical and chemical fluorinations of trichloroethylene is also discussed.

  17. Metal-sulfur type cell having improved positive electrode

    DOEpatents

    Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.

    1989-01-01

    An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  18. Metal-sulfur type cell having improved positive electrode

    DOEpatents

    DeJonghe, L.C.; Visco, S.J.; Mailhe, C.C.; Armand, M.B.

    1988-03-31

    A novel metal-sulfur type cell operable at a temperature of 200/degree/C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S)/sub y/)n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon. 4 figs.

  19. Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants.

    PubMed

    Wagner, Olaf; Thiele, Julian; Weinhart, Marie; Mazutis, Linas; Weitz, David A; Huck, Wilhelm T S; Haag, Rainer

    2016-01-07

    In droplet-based microfluidics, non-ionic, high-molecular weight surfactants are required to stabilize droplet interfaces. One of the most common structures that imparts stability as well as biocompatibility to water-in-oil droplets is a triblock copolymer surfactant composed of perfluoropolyether (PFPE) and polyethylene glycol (PEG) blocks. However, the fast growing applications of microdroplets in biology would benefit from a larger choice of specialized surfactants. PEG as a hydrophilic moiety, however, is a very limited tool in surfactant modification as one can only vary the molecular weight and chain-end functionalization. In contrast, linear polyglycerol offers further side-chain functionalization to create custom-tailored, biocompatible droplet interfaces. Herein, we describe the synthesis and characterization of polyglycerol-based triblock surfactants with tailored side-chain composition, and exemplify their application in cell encapsulation and in vitro gene expression studies in droplet-based microfluidics.

  20. Organofluorine chemistry: synthesis and conformation of vicinal fluoromethylene motifs.

    PubMed

    O'Hagan, David

    2012-04-20

    The C-F bond is the most polar bond in organic chemistry, and thus the bond has a relatively large dipole moment with a significant -ve charge density on the fluorine atom and correspondingly a +ve charge density on carbon. The electrostatic nature of the bond renders it the strongest one in organic chemistry. However, the fluorine atom itself is nonpolarizable, and thus, despite the charge localization on fluorine, it is a poor hydrogen-bonding acceptor. These properties of the C-F bond make it attractive in the design of nonviscous but polar organic compounds, with a polarity limited to influencing the intramolecular nature of the molecule and less so intermolecular interactions with the immediate environment. In this Perspective, the synthesis of aliphatic chains carrying multivicinal fluoromethylene motifs is described. It emerges that the dipoles of adjacent C-F bonds orientate relative to each other, and thus, individual diastereoisomers display different backbone carbon chain conformations. These conformational preferences recognize the influence of the well-known gauche effect associated with 1,2-difluoroethane but extend to considering 1,3-fluorine-fluorine dipolar repulsions. The synthesis of carbon chains carrying two, three, four, five, and six vicinal fluoromethylene motifs is described, with an emphasis on our own research contributions. These motifs obey almost predictable conformational behavior, and they emerge as candidates for inclusion in the design of performance organic molecules. © 2012 American Chemical Society

  1. Per- and polyfluoroalkyl substances and fluorinated alternatives in urine and serum by on-line solid phase extraction-liquid chromatography-tandem mass spectrometry.

    PubMed

    Kato, Kayoko; Kalathil, Akil A; Patel, Ayesha M; Ye, Xiaoyun; Calafat, Antonia M

    2018-06-14

    Per- and polyfluoroalkyl substances (PFAS), man-made chemicals with variable length carbon chains containing the perfluoroalkyl moiety (C n F 2n+1 -), are used in many commercial applications. Since 1999-2000, several long-chain PFAS, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), have been detected at trace levels in the blood of most participants of the National Health and Nutrition Examination Survey (NHANES)-representative samples of the U.S. general population-while short-chain PFAS have not. Lower detection frequencies and concentration ranges may reflect lower exposure to short-chain PFAS than to PFOS or PFOA or that, in humans, short-chain PFAS efficiently eliminate in urine. We developed on-line solid phase extraction-HPLC-isotope dilution-MS/MS methods for the quantification in 50 μL of urine or serum of 15 C 3 -C 11 PFAS (C 3 only in urine), and three fluorinated alternatives used as PFOA or PFOS replacements: GenX (ammonium salt of 2,3,3,3,-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoate, also known as HFPO-DA), ADONA (ammonium salt of 4,8-dioxa-3H-perfluorononanoate), and 9Cl-PF3ONS (9-chlorohexadecafluoro-3-oxanonane-1-sulfonate), main component of F53-B. Limit of detection for all analytes was 0.1 ng/mL. To validate the method, we analyzed 50 commercial urine/serum paired samples collected in 2016 from U.S. volunteers with no known exposure to the chemicals. In serum, detection frequency and concentration patterns agreed well with those from NHANES. By contrast, except for perfluorobutanoate, we did not detect long-chain or short-chain PFAS in urine. Also, we did not detect fluorinated alternatives in either urine or serum. Together, these results suggest limited exposure to both short-chain PFAS and select fluorinated alternatives in this convenience population. Copyright © 2018. Published by Elsevier Ltd.

  2. Solution structure of a small protein containing a fluorinated side chain in the core

    PubMed Central

    Cornilescu, Gabriel; Hadley, Erik B.; Woll, Matthew G.; Markley, John L.; Gellman, Samuel H.; Cornilescu, Claudia C.

    2007-01-01

    We report the first high-resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5-Phe) mutants for the 35-residue chicken villin headpiece subdomain (c-VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5-Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5-Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5-Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c-VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability. PMID:17123960

  3. Self-assembly of phosphate fluorosurfactants in carbon dioxide.

    PubMed

    Keiper, Jason S; Behles, Jacqueline A; Bucholz, Tracy L; Simhan, Ruma; DeSimone, Joseph M; Lynn, Gary W; Wignall, George D; Melnichenko, Yuri B; Frielinghaus, Henrich

    2004-02-17

    Anionic phosphodiester surfactants, possessing either two fluorinated chains (F/F) or one hydrocarbon chain and one fluorinated chain (H/F), were synthesized and evaluated for solubility and self-assembly in liquid and supercritical carbon dioxide. Several surfactants, of both F/F and H/F types and having varied counterions, were found to be capable of solubilizing water-in-CO2 (W/C), via the formation of microemulsions, expanding upon the family of phosphate fluorosurfactants already found to stabilize W/C microemulsions. Small-angle neutron scatteringwas used to directly characterize the microemulsion particles at varied temperatures, pressures, and water loadings, revealing behavior consistent with previous results on W/C microemulsions.

  4. Synthesis and analytical follow-up of the mineralization of a new fluorosurfactant prototype.

    PubMed

    Peschka, M; Fichtner, N; Hierse, W; Kirsch, P; Montenegro, E; Seidel, M; Wilken, R D; Knepper, T P

    2008-08-01

    Fluorinated surfactants have become essential in numerous technical applications due to their unparalleled effectiveness and efficiency. The environmental persistence of the non-biodegradable perfluorinated alkyl moiety has become a matter of concern. Therefore, it was searched for new molecules with chemically stable fluorinated end groups which can be microbially transformed into labile fluorinated substances. One prototype substance, 10-(trifluoromethoxy)decane-1-sulfonate, has shown biomineralization. Monitoring the formation of metabolites over time elucidated the mechanism of biotransformation. Analysis was performed utilizing liquid chromatography-single quadrupole mass spectrometry (LC-MS) and quadrupole-time of flight tandem mass spectrometry (QqTOF-MS). It was possible to distinguish between two major degradation pathways of the fluorinated alkylsulfonate derivative: (i) a desulfonation and subsequent oxidation and degradation of the alkyl chain being predominant and (ii) an insertion of oxygen with a subsequent cleavage and degradation of the molecule. The utilized trifluoromethoxy-endgroup resulted in instable trifluoromethanol after degradation of the alkyl chain, which led to a high degree of mineralization of the molecule.

  5. Biodegradation of fluorinated alkyl substances.

    PubMed

    Frömel, Tobias; Knepper, Thomas P

    2010-01-01

    The incorporation of fluorine into organic molecules entails both positive and adverse effects. Although fluorine imparts positive and unique properties such as water-and oil-repellency and chemical stability, adverse effects often pervade members of this compound class. A striking property of long perfluoroalkyl chains is their very pronounced environmental persistence. The present review is the first one designed to summarize recent accomplishments in the field of biodegradation of fluorine-containing surfactants, their metabolites, and structural analogs. The pronounced scientific and public interest in these chemicals has given impetus to undertake numerous degradation studies to assess the sources and origins of different fluorinated analog chemical known to exist in the environment. It was shown that biodegradation plays an important role in understanding how fluorinated substances reach the environment and, once they do, what their fate is. Today, PFOS and PFOA are ubiquitously detected as environmental contaminants. Their prominence as contaminants is mainly due to their extreme persistence, which is linked to their perfluoroalkyl chain length. It appears that desulfonation of a highly fluorinated surfactants can be achieved if an α-situated H atom, in relation to the sulfonate group, is present, at least under sulfur-limiting conditions. Molecules that are less heavily fluorinated can show very complex metabolic behavior, as is the case for fluorotelomer alcohols. These compounds are degraded via different but simultaneous pathways, which produce different stable metabolites, one of which is the respective perfluoroalkanoate (8:2-FTOH is transformed to PFOA). Preliminary screening tests indicate that fluorinated functional groups, such as the trifluoromethoxy group and the p-(trifluoromethyl)phenoxy group, may be useful implementations in novel, environmentally benign fluorosurfactants. More specifically, trifluoromethoxy groups constitute a substitute for those that have been used in the past; this functionality is degradable when it appears in structures that are normally subject to biodegradation. Other compounds tested did not meet this criterion. Interdisciplinary investigations on fluorinated surfactants are still very much needed and will certainly continue during the next many years. For instance, the role of fluorinated polymers in contributing small fluorinated molecules to the environmental burden still has not been fully understood.

  6. Electrolytes including fluorinated solvents for use in electrochemical cells

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  7. Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.

    2012-01-20

    Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in themore » hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.« less

  8. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.

    PubMed

    Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan

    2015-02-14

    Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.

  9. Isolating isomers of perfluorocarboxylates in polar bears (Ursus maritimus) from two geographical locations.

    PubMed

    De Silva, Amila O; Mabury, Scott A

    2004-12-15

    The source of involatile, anthropogenic perfluorocarboxylate anions (PFCAs) in biota from remote regions is of heightened interest due to the persistence, toxicity, and bioaccumulation of these materials. Large-scale production of fluorinated compounds is carried out primarily by one of two methods: electrochemical fluorination (ECF) and telomerization. Products of the two processes may be distinguished based on constitutional isomer pattern as ECF products are characteristically comprised of a variety of constitutional isomers. The objective of this research was to develop a method for identifying the constitutional isomer profile of PFCAs in environmental samples and to apply the method to polar bear livers from two different locations. Resolution of constitutional isomers of derivatized PFCAs (8-13 carbons) was accomplished via GC-MS. Seven isomers of an authentic ECF perfluorooctanoate (PFOA) standard were separated. The linear isomer comprised 78% of this standard. Isomer profiles of PFCAs in liver samples of 15 polar bears (Ursus maritimus) from the Canadian Arctic and eastern Greenland were determined by GC-MS. The PFOA isomer pattern in Greenland polar bear samples showed a variety of branched isomers while only the linear PFOA isomer was determined in Canadian samples. Samples of both locations had primarily (>99%) linear isomers of perfluorononanoate and perfluorotridecanoate. Branched isomers of perfluorodecanoate, perfluoroundecanoate, and perfluorododecanoate were determined in the polar bear samples. Unlike the PFOA isomer signature, only a single branched isomer peak on the chromatograms was observed for these longer chain PFCAs. The presence of branched isomers suggests some contribution from ECF sources. However, in comparison to the amount of branched isomers in the ECF PFOA standard, such minor percentages of branched PFCAs may suggest additional input from an exclusively linear isomer source.

  10. Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance.

    PubMed

    Hill, Philippa J; Taylor, Mark; Goswami, Parikshit; Blackburn, Richard S

    2017-08-01

    Intensifying legislation and increased research on the toxicological and persistent nature of per- and polyfluoroalkyl substances (PFASs) have recently influenced the direction of liquid repellent chemistry use; environmental, social, and sustainability responsibilities are at the crux. Without PFAS chemistry, it is challenging to meet current textile industry liquid repellency requirements, which is a highly desirable property, particularly in outdoor apparel where the technology helps to provide the wearer with essential protection from adverse environmental conditions. Herein, complexities between required functionality, legislation and sustainability within outdoor apparel are discussed, and fundamental technical performance of commercially available long-chain (C8) PFASs, shorter-chain (C6) PFASs, and non-fluorinated repellent chemistries finishes are evaluated comparatively. Non-fluorinated finishes provided no oil repellency, and were clearly inferior in this property to PFAS-finished fabrics that demonstrated good oil-resistance. However, water repellency ratings were similar across the range of all finished fabrics tested, all demonstrating a high level of resistance to wetting, and several non-fluorinated repellent fabrics provide similar water repellency to long-chain (C8) PFAS or shorter-chain (C6) PFAS finished fabrics. The primary repellency function required in outdoor apparel is water repellency, and we would propose that the use of PFAS chemistry for such garments is over-engineering, providing oil repellency that is in excess of user requirements. Accordingly, significant environmental and toxicological benefits could be achieved by switching outdoor apparel to non-fluorinated finishes without a significant reduction in garment water-repellency performance. These conclusions are being supported by further research into the effect of laundering, abrasion and ageing of these fabrics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Photosensitized oxidation of nicotinamide adenine dinucleotide by diethoxyphosphorus(V)tetraphenylporphyrin and its fluorinated derivative: Possibility of chain reaction

    NASA Astrophysics Data System (ADS)

    Hirakawa, Kazutaka; Murata, Atsushi

    2018-01-01

    Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340 nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S1) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield.

  12. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the saltmore » in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.« less

  13. Fluorine-Rich Planetary Environments as Possible Habitats for Life

    PubMed Central

    Budisa, Nediljko; Kubyshkin, Vladimir; Schulze-Makuch, Dirk

    2014-01-01

    In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a “fluorous effect”, i.e., they are fluorophilic (neither hydrophilic nor lipophilic). Such polymers, capable of creating self-sorting assemblies, resist denaturation by organic solvents by exclusion of fluorocarbon side chains from the organic phase. Fluorous cores consist of a compact interior, which is shielded from the surrounding solvent. Thus, we can anticipate that fluorine-containing “teflon”-like or “non-sticking” building blocks might be monomers of choice for the synthesis of organized polymeric structures in fluorine-rich planetary environments. Although no fluorine-rich planetary environment is known, theoretical considerations might help us to define chemistries that might support life in such environments. For example, one scenario is that all molecular oxygen may be used up by oxidation reactions on a planetary surface and fluorine gas could be released from F-rich magma later in the history of a planetary body to result in a fluorine-rich planetary environment. PMID:25370378

  14. Effect of Partially Fluorinated N-Alkyl-Substituted Piperidine-2-carboxamides on Pharmacologically Relevant Properties.

    PubMed

    Vorberg, Raffael; Trapp, Nils; Zimmerli, Daniel; Wagner, Björn; Fischer, Holger; Kratochwil, Nicole A; Kansy, Manfred; Carreira, Erick M; Müller, Klaus

    2016-10-06

    The modulation of pharmacologically relevant properties of N-alkyl-piperidine-2-carboxamides was studied by selective introduction of 1-3 fluorine atoms into the n-propyl and n-butyl side chains of the local anesthetics ropivacaine and levobupivacaine. The basicity modulation by nearby fluorine substituents is essentially additive and exhibits an exponential attenuation as a function of topological distance between fluorine and the basic center. The intrinsic lipophilicity of the neutral piperidine derivatives displays the characteristic response noted for partially fluorinated alkyl groups attached to neutral heteroaryl systems. However, basicity decrease by nearby fluorine substituents affects lipophilicities at neutral pH, so that all partially fluorinated derivatives are of similar or higher lipophilicity than their non-fluorinated parents. Aqueous solubilities were found to correlate inversely with lipophilicity with a significant contribution from crystal packing energies, as indicated by variations in melting point temperatures. All fluorinated derivatives were found to be somewhat more readily oxidized in human liver microsomes, the rates of degradation correlating with increasing lipophilicity. Because the piperidine-2-carboxamide core is chiral, pairs with enantiomeric N-alkyl groups are diastereomeric. While little response to such stereoisomerism was observed for basicity or lipophilicity, more pronounced variations were observed for melting point temperatures and oxidative degradation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemical Probes for the Functionalization of Polyketide Intermediates**

    PubMed Central

    Riva, Elena; Wilkening, Ina; Gazzola, Silvia; Li, W M Ariel; Smith, Luke; Leadlay, Peter F; Tosin, Manuela

    2014-01-01

    A library of functionalized chemical probes capable of reacting with ketosynthase-bound biosynthetic intermediates was prepared and utilized to explore in vivo polyketide diversification. Fermentation of ACP mutants of S. lasaliensis in the presence of the probes generated a range of unnatural polyketide derivatives, including novel putative lasalocid A derivatives characterized by variable aryl ketone moieties and linear polyketide chains (bearing alkyne/azide handles and fluorine) flanking the polyether scaffold. By providing direct information on microorganism tolerance and enzyme processing of unnatural malonyl-ACP analogues, as well as on the amenability of unnatural polyketides to further structural modifications, the chemical probes constitute invaluable tools for the development of novel mutasynthesis and synthetic biology. PMID:25212788

  16. Fluorinated silica microchannel surfaces

    DOEpatents

    Kirby, Brian J.; Shepodd, Timothy Jon

    2005-03-15

    A method for surface modification of microchannels and capillaries. The method produces a chemically inert surface having a lowered surface free energy and improved frictional properties by attaching a fluorinated alkane group to the surface. The coating is produced by hydrolysis of a silane agent that is functionalized with either alkoxy or chloro ligands and an uncharged C.sub.3 -C.sub.10 fluorinated alkane chain. It has been found that the extent of surface coverage can be controlled by controlling the contact time from a minimum of about 2 minutes to a maximum of 120 minutes for complete surface coverage.

  17. The effect of the hydrogen fluoride chain on the aromaticity of C6H6 in the C6H6...(HF)1-4 complexes

    NASA Astrophysics Data System (ADS)

    Jouypazadeh, Hamidreza; Farrokhpour, Hossein; Solimannejad, Mohammad

    2018-02-01

    The effect of the hydrogen fluoride chain ((HF)n) on the aromaticity and π character of C-C bonds of C6H6 in the C6H6...(HF)n (n = 1-4) complexes were investigated using density functional theory employing RM05 functional. It was found that the binding energy between C6H6 and different (HF)n chains showed a maximum at n = 3 (C6H6...(HF)3). Also, the π-hydrogen interaction (πHI) and the bifurcated fluorine interaction (BFI) increased and decreased the π character of the C-C bond of C6H6, respectively. In addition, the change of aromaticity of the C6H6 due to the interaction with the HF chains was also studied using three different aspects such as aromatic fluctuation index (FLU), average two centre index (ATI) and proton nuclear magnetic resonance (HNMR) spectrum. The most change in the aromaticity happens when the C6H6 interacts with (HF)3 chain. The variation of aromaticity with the binding energy and the summation of two-body terms were investigated and very good linear correlations were observed.

  18. Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo,J.; Resnick, P.; Efimenko, K.

    2008-01-01

    The degradation of stain-resistant coating materials leads to the release of biopersistent perfluorooctanoic acid (PFOA) to the environment. In order to find the environmentally friendly substitutes, we have designed and synthesized a series of nonbiopersistant fluorinated polymers containing perfluorobutyl groups in the side chains. The surface properties of the new coating materials were characterized by static and dynamic contact angle measurements. The new coating materials demonstrate promising hydrophobic and oleophobic properties with low surfaces tensions. The wetting properties and surface structure of the polymers were tuned by varying the 'spacer' structures between the polymer backbones and the perfluorinated groups ofmore » the side chains. The relationship between orientations of the fluorinated side chains and performances of polymer surfaces were further investigated by near-edge X-ray fine absorption structure (NEXAFS) experiments and differential scanning calorimetry (DSC).« less

  19. Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids

    PubMed Central

    Luís, Andreia; Shimizu, Karina; Araújo, João M. M.; Carvalho, Pedro J.; Lopes-da-Silva, José A.; Canongia Lopes, José N.; Rebelo, Luís Paulo N.; Coutinho, João A. P.; Freire, Mara G.; Pereiro, Ana B.

    2017-01-01

    We have investigated, both theoretically and experimentally, the balance between the presence of alkyl and perfluoroalkyl side chains on the surface organization and surface tension of fluorinated ionic liquids (FILs). A series of ILs composed of 1-alkyl-3-methylimidazolium cations ([CnC1im] with n = 2, 4, 6, 8, 10 or 12) combined with the perfluorobutanesulfonate anion was used. The surface tensions of the investigated liquid salts are considerably lower than those reported for non-fluorinated ionic liquids. The most surprising and striking feature was the identification, for the first time, of a minimum at n = 8 in the surface tension versus the length of the IL cation alkyl side chain. Supported by molecular dynamic simulations it was found that this trend is a result of the competition between the two nonpolar domains (perfluorinated and aliphatic) on pointing towards the gas-liquid interface, a phenomenon which occurs in ionic liquids with perfluorinated anions. Furthermore, these ionic liquids present the lowest surface entropy reported to date. PMID:27218210

  20. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  1. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    PubMed

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  2. Photosensitized oxidation of nicotinamide adenine dinucleotide by diethoxyphosphorus(V)tetraphenylporphyrin and its fluorinated derivative: Possibility of chain reaction.

    PubMed

    Hirakawa, Kazutaka; Murata, Atsushi

    2018-01-05

    Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S 1 ) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S 1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Positional effects of monofluorinated phenylalanines on histone acetyltransferase stability and activity.

    PubMed

    Voloshchuk, Natalya; Zhu, Anita Y; Snydacker, David; Montclare, Jin Kim

    2009-09-15

    To explore the impact of global incorporation of fluorinated aromatic amino acids on protein function, we investigated the effects of three monofluorinated phenylalanine analogs para-fluorophenylalanine (pFF), meta-fluorophenylalanine (mFF), and ortho-fluorophenylalanine (oFF) on the stability and enzymatic activity of the histone acetyltransferase (HAT), tGCN5. We selected this set of fluorinated amino acids because they bear the same size and overall polarity but alter in side chain shape and dipole direction. Our experiments showed that among three fluorinated amino acids, the global incorporation of pFF affords the smallest perturbation to the structure and function of tGCN5.

  4. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    NASA Astrophysics Data System (ADS)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  5. Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating

    NASA Astrophysics Data System (ADS)

    Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan

    2016-03-01

    A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.

  6. Fluorotelomer ethoxylates: sources of highly fluorinated environmental contaminants part I: biotransformation.

    PubMed

    Frömel, Tobias; Knepper, Thomas P

    2010-09-01

    Polyethoxylated 2-perfluoroalkylethanols ('fluorotelomer ethoxylates', F-(CF(2)-CF(2)-)(x)-(CH(2)-CH(2)-O)(y)-H, FTEO) are an important class of non-ionic fluorinated surfactants, which have been disregarded as potential source of per- and polyfluorinated organic pollutants despite their high production and application amounts. A commercial mixture of FTEO with a perfluoroalkyl chain length between 6 and 10 carbon atoms and an ethoxymer distribution between 0 and 13 was subjected to a biodegradation test. Monitoring of the aerobic biotransformation process by HPLC-ESI-MS/MS showed that FTEO are rapidly transformed with a half-life of approximately 1d. Structural elucidation of the biotransformation products with the help of hybrid quadrupole--linear ion trap tandem mass spectrometry revealed oxidation to the respective carboxylic acid followed by sequential shortening of ethoxylate units which led to FTEO carboxylates (FTEOC). The conversion rate of FTEOC was found to diminish with decreasing number of ethoxylate units and virtually ceased for compounds with seven intact ethoxy units. These short-chain FTEOC were not further degraded within 48d. Nonetheless, perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) were detected, whose formation is ascribed to degradation of residual fluorotelomer alcohols present in the commercial product. This article represents the first of two parts of a series concerning FTEO. Whilst this part is clearly focused on results of a biodegradation study of FTEO, part two will pinpoint analytical aspects, synthesis of biotransformation products and first evidence of environmental presence of the biotransformation products. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Spectral properties of nanocomposites based on fluorine-containing polymer and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Barmina, E. V.; Mel’nik, N. N.; Rakov, I. I.; Ivanov, V. E.; Simakin, A. V.; Gudkov, S. V.; Shafeev, G. A.

    2018-04-01

    The optical properties of nanocomposites of gold nanoparticles and fluorine-containing polymer have been studied. Gold nanoparticles were obtained by laser ablation of gold or terbium targets in organic solvents. The thus formed colloidal solutions were used to prepare nanocomposites of gold nanoparticles in polymer matrices of transparent and colorless fluorine-containing polymer. The polymer matrix is found to promote aggregation of nanoparticles of metal under study into elongated chains. In turn, metal nanoparticles influence on the polymer matrix. Gold nanoparticles amplify the Raman signal of the polymer matrix. In addition, the Raman spectra of nanocomposites indicate aggregation of disordered carbon around the nanoparticles obtained by laser ablation in organic solvents.

  8. Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina

    EPA Science Inventory

    Long-chain per- and polyfluoroalkyl substances (PFASs) are being replaced by short-chain PFASs and fluorinated alternatives. For ten legacy PFASs and seven recently discovered perfluoroalkyl ether carboxylic acids (PFECAs), we report (1) their occurrence in the Cape Fear River (C...

  9. Highly sensitive and selective determination of fluorine ion by graphene oxide/nanogold resonance Rayleigh scattering-energy transfer analytical platform.

    PubMed

    Liang, Aihui; Peng, Jing; Liu, Qingye; Wen, Guiqing; Lu, Zhujun; Jiang, Zhiliang

    2015-08-15

    In pH 4.0 acetate buffer solution, fluorine ions react with fluorine reagent (FR) and La(III) to generate blue ternary complex that exhibited strong absorption at about 370 nm. Upon addition of graphene oxide/nanogold (GO/NG) as resonance Rayleigh scattering (RRS) spectral probe with strong RRS peak at 370 nm, the color changed to gray, and the RRS intensity decreased with the increase of fluorine ion concentration due to the RRS energy transfer (RRSET) from GO/NG to the complex. Under the selected condition, the decreased RRS peak ΔI370 nm was linear to fluorine ion concentration in the range of 6.0 × 10(-8)-1.3 × 10(-5)mol/L, with a detection limit of 3.0 × 10(-8)mol/L F(-). This RRSET method was applied to the analysis of fluorine in toothpaste and water samples, with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Fluorocarbons as oxygen carriers. II. An NMR study of partially or totally fluorinated alkanes and alkenes

    NASA Astrophysics Data System (ADS)

    Ali Hamza, M'Hamed; Serratrice, Guy; Stébé, Marie-José; Delpuech, Jean-Jacques

    Highly fluorinated compounds of the general type R FR H or R FR H'R F, with R F: n-C nF 2 n+1 n = 6, 7, or 8; R H: C 2H 5, CHCH 2, n-C 8H 17; R H': CHCH, CH 2CH 2, are studied either as pure degassed liquids or as solvents of oxygen, using 13C relaxation times T 1 measurements in each case. Comparison of the relaxation data for the degassed liquids with those relative to the analogous n-alkanes provides evidence for slower internal segmental motions in the perfluoroalkyl chains. This rate decrease is shown to arise mainly from purely inertial effects and not from increased rotational potential barriers, thus suggesting similar flexibilities of both hydrocarbon and perfluorocarbon chains. Solubilities of oxygen (in mole fractions) are higher in fluoroalkanes than in previously studied hexafluorobenzene (J-J. Delpuech, M. A. Hamza, G. Serratrice, and M. J. Stebe, J. Chem. Phys.70, 2680 (1979)). Relaxation data are expressed by the variation rates qx of relaxation rates T1-1 per mole fraction of dissolved oxygen. Values of qx. roughly decrease with the total length of the aliphatic chains, and from the ends of the center of each chain, except for C 6F 13CHCHC 6F 13. These results are not consistent with specific attractive oxygen-fluorine forces, the major factor for solubility being the liquid structure of the solvent, mainly determined by the shape of molecules, according to Chandler's viewpoint.

  11. Complete Genome Sequence of Streptomyces cattleya NRRL 8057, a Producer of Antibiotics and Fluorometabolites

    PubMed Central

    Barbe, Valérie; Bouzon, Madeleine; Mangenot, Sophie; Badet, Bernard; Poulain, Julie; Segurens, Béatrice; Vallenet, David; Marlière, Philippe; Weissenbach, Jean

    2011-01-01

    Streptomyces cattleya, a producer of the antibiotics thienamycin and cephamycin C, is one of the rare bacteria known to synthesize fluorinated metabolites. The genome consists of two linear replicons. The genes involved in fluorine metabolism and in the biosynthesis of the antibiotic thienamycin were mapped on both replicons. PMID:21868806

  12. A study of the degree of fluorination in regioregular poly(3-hexylthiophene)

    DOE PAGES

    Blaskovits, J. Terence; Bura, Thomas; Beaupre, Serge; ...

    2016-12-27

    Here, we systematically varied the degree of fluorination along the backbone of a series of highly regioregular 3-hexylthiophene-based polymers, P3HT-50F, P3HT-33F and P3HT-25F, in which 50%, 33% and 25% of the thiophene units within the polymer chain contain fluorine atoms in the available 4-position. These materials were homopolymerized using the Kumada catalyst transfer polycondensation method from a set of mono-fluorinated bi-, ter- and quarterthiophenes, to ensure high polymer regioregularity and evenly-spaced fluorine atoms along the conjugated thiophene backbone. The monomers were obtained from a synthetic route consisting of iterative Migita-Stille couplings of fluorinated and non-fluorinated 3- hexylthiophenes. The effect ofmore » the fluorine atoms on both polymer structure and properties is presented, with supporting quantum mechanical calculations that rationalize the intrinsic conformation preferences of the three P3HT derivatives. P3HT-50F (M¯ n = 34 kg/mol, 98.5% rr), P3HT-33F (M¯ n = 46 kg/mol, 98% rr) and P3HT-25F (M¯ n = 53 kg/mol, 95% rr) displayed HOMO levels of -5.34, -5.26 and -5.24 eV, bandgaps of 1.98, 1.98 and 1.97 eV, and average field-effect transistor hole mobilities of 4.5 × 10 -3, 2.7 × 10 -2, and 1.2 × 10 -2 cm 2 V -1s -1, respectively.« less

  13. Electro Optical Properties of Copolymer Blends: Lasing, Electroluminescence and Photophysics

    DTIC Science & Technology

    2006-04-15

    conjugated main chain structures with high photoluminescent and electroluminescent quantum yields. The structures incorporated fluorene containing moieties...The systems studied focused on novel conjugated main chain structures with high photoluminescent and electroluminescent quantum yields. The structures...the quantum efficient fluorine group. The properties of segmented copolymers that incorporate fluorenes were compared to the homo-PPV type systems

  14. Thermal Stability of Fluorinated Polydienes Synthesized by Addition of Difluorocarbene

    DTIC Science & Technology

    2012-01-01

    polydienes proceeds through a two-stage decomposition involving chain scission, crosslinking, dehydrogenation, and dehalogenation . The pyrolysis leads...polydienes proceeds through a two-stage decomposition involving chain scission, crosslinking, dehydrogenation, and dehalogenation . The pyrolysis leads to... dehalogenation . The pyrolysis leads to graphite-like residues, whereas their polydiene precursors decompose completely under the same conditions. The

  15. Supply Chain Modeling for Fluorspar and Hydrofluoric Acid and Implications for Further Analyses

    DTIC Science & Technology

    2015-04-01

    Supply Other usesUS Supply Fluorspar Mining HF Production Downstream Products Stages of Production Other uses “Upstream” Supply and Demand...chain, as follows: • The three stages of the chain considered in the analysis are listed across the top: Fluorspar Mining , HF Production, and (pro...consumption of HF is represented by the maroon rectangle. • The lines depict material flows from fluorspar mining , to HF production, to downstream fluorine

  16. Relationship between fluorine in drinking water and dental health of residents in some large cities in China.

    PubMed

    Wang, Binbin; Zheng, Baoshan; Zhai, Cheng; Yu, Guangqian; Liu, Xiaojing

    2004-10-01

    In this project, the relationship between fluorine content in drinking water and dental health of residents in some large cities in China was evaluated. The concentration of fluorine in tap water and in urine of local subjects of 28 cities and 4 high fluorine villages in China shows a strong positive correlation (r(2)=0.96, S.E.=0.9881). Our studies indicate that drinking water is the most important source of fluorine intake for Chinese people, and in more than 90% of urban cities, fluorine concentrations in drinking water are below levels recommended by the WHO (approximately 0.5-1.0 mg/l). A 1995 investigation by The National Committee on Oral Health of China (NCOH) shows the relationship between average number of decayed, missing and filled teeth (DMFT) of urban residents and fluorine concentration in drinking water to be negatively correlated but not forming a good linear relationship. Our results, together with the previous study, suggest that: (1) dental caries of the study population can be reduced by drinking water fluoridation and that (2) other factors such as economic level, weather, lifestyle, food habits, living condition, etc., of a city can also affect the incidence of dental caries that cannot be predicted by fluoridation alone. Research on the relation between index of fluorosis (IF) and the fluorine concentration in drinking water for the four high fluorine villages showed that the recommended concentration of fluorine in drinking water can protect from dental fluorosis.

  17. Nanoscale organization in the fluorinated room temperature ionic liquid: Tetraethyl ammonium (trifluoromethanesulfonyl)(nonafluorobutylsulfonyl)imide

    NASA Astrophysics Data System (ADS)

    Lo Celso, F.; Appetecchi, G. B.; Jafta, C. J.; Gontrani, L.; Canongia Lopes, J. N.; Triolo, A.; Russina, O.

    2018-05-01

    Fluorinated Room Temperature Ionic Liquids (FRTILs) are a branch of ionic liquids that is the object of growing interest for a wide range of potential applications, due to the synergic combination of specifically ionic features and those properties that stem from fluorous tails. So far limited experimental work exists on the micro- and mesoscopic structural organization in this class of compounds. Such a work is however necessary to fully understand morphological details at atomistic level that would have strong implications in terms of bulk properties. Here we use the synergy between X-ray and neutron scattering together with molecular dynamics simulations to access structural details of a technologically relevant FRTIL that is characterised by an anion bearing a long enough fluorinated tail to develop specific morphological features. In particular, we find the first experimental evidence that in FRTILs bearing an asymmetric bis(perfluoroalkyl)sulfonyl-imide anion, fluorous side chains tend to be spatially segregated into nm-scale spatial heterogeneities. This feature together with the well-established micro-segregation of side alkyl chains in conventional RTILs leads to the concept of triphilic ILs, whose technological applications are yet to be fully developed.

  18. Acute toxicity assessment of perfluorinated carboxylic acids towards the Baltic microalgae.

    PubMed

    Latała, Adam; Nędzi, Marcin; Stepnowski, Piotr

    2009-09-01

    The presence of high-energy carbon-fluorine bonds in perfluoro compounds lends them great stability and causes them to be environmentally persistent. Relatively little is known about the acute toxicity of perfluorinated carboxylic acids (PFCAs) to ecotoxicological markers such as aquatic plants and animals. This study tested the toxicity of these compounds to the green alga Chlorella vulgaris, the diatom Skeletonema marinoi and the blue-green alga Geitlerinema amphibium, which are species representative of the algal flora of the Baltic Sea. The EC(50) values obtained range from 0.28 mM to 12.84 mM. A distinct relationship between hydrophobicity and toxicity is demonstrated. For every extra perfluoromethylene group in the alkyl chain, the toxicity increases twofold. LogEC(50) values are very well correlated linearly with both the number of carbon atoms in the perfluoroalkyl chain and the partition coefficients. The results also indicate that there are clear differences between the responses of particular taxonomic groups of algae: blue-green algae and diatoms are far more sensitive to PFCAs than green algae, probably because of differences in cell wall structure.

  19. Inhibition effects of perfluoroalkyl acids on progesterone production in mLTC-1.

    PubMed

    Zhao, Wei; Cui, Ruina; Wang, Jianshe; Dai, Jiayin

    2017-06-01

    Perfluoroalkyl substances (PFASs) are a class of fluorine substituted carboxylic acid, sulfonic acid and alcohol, structurally similar to their corresponding parent compounds. Previous study demonstrated the potential endocrine disruption and reproductive toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid, two dominant PFASs in animals and humans. We explored the relationship between eleven perfluoroalkyl acids (PFAAs) with different carbon chain length and their ability to inhibit progesterone production in mouse Leydig tumor cells (mLTC-1). We found an obvious dose-response relationship between progesterone inhibition rate and PFAA exposure concentration in mLTC-1. The relative inhibition rate of progesterone by PFAAs was linearly related to the carbon chain length and molar refractivity of PFAAs. Mitochondrial membrane potential (MMP) decreased after PFAA exposure at the half-maximal inhibitory effect concentration (IC 50 ) of progesterone production in mLTC-1, while the reactive oxygen species (ROS) content increased significantly. These results imply that the inhibition effect of PFAAs on progesterone production might be due, in part, to ROS damage and the decrease in MMP in mLTC-1. Copyright © 2016. Published by Elsevier B.V.

  20. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.

    PubMed

    Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei

    2017-09-19

    Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donor-acceptor (D-A)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for D-A polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with "over-fluorination", i.e., when too many fluorine substituents are incorporated. Finally, while this Account focuses on studies in which the polymer is paired with fullerene derivatives as the electron accepting materials, non-fullerene acceptors (NFAs) are quickly becoming key players in the field of OSCs. The effect of fluorination of the polymers on the device performance may be different when NFAs are used as the electron-accepting materials, which remains to be investigated. However, the design of fluorinated polymers may provide guidelines for the design of more efficient NFAs. Indeed, the current highest-performing OSC (∼13%) features fluorination on both the donor polymer and the non-fullerene acceptor.

  1. Glasses having a low non-linear refractive index for laser applications

    DOEpatents

    Faulstich, Marga; Jahn, Walter; Krolla, Georg; Neuroth, Norbert

    1980-01-01

    Glass composition ranges are described which permit the introduction of laser activators into fluorphosphate glass with exceptionally high fluorine content while forming glasses of high crystallization stability and permitting the realization of large melt volumes. The high fluorine content imparts to the glasses an exceptionally low nonlinear refractive index n.sub.2 down to O,4 .times.10.sup.-13 esu.

  2. [Residue of organic fluorine pollutants in hair and nails collected from Tianjin].

    PubMed

    Yao, Dan; Zhang, Hong; Chai, Zhi-Fang; Shen, Jin-Can; Yang, Bo; Wang, Yan-Ping; Liu, Guo-Qing

    2013-02-01

    In order to explore the residue and distributions of organic fluorine pollutants in hair and nails, the residue levels of total fluorine (TF), extractable organic fluorine (EOF) and perfluorinated chemicals (PFCs) in hair and nails collected from Tianjin adults were measured by the cyclic neutron activation analysis (CNAA) combined with the high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The results showed that inorganic fluorine (mean: 2.0 mg.kg-1, 4.5 mg.kg-1) was the primary fluorine in TF while EOF(mean: 0.7 mg.kg-1, 1.8 mg.kg-1) was minor. The average amount of identified fluorine (IF) was 0.038 mg.kg-1 in hair and 0.047 mg.kg-1 in nails, accounting or 7.1% (2.6%-16%) and 3.5% (1.1%-11%) of EOF, respectively, which indicated that more than 84% of EOF was unknown. The major residue in hair and nails were medium-and short-chain PFCs,in which perfluorooctane sulfonate, perfluorooctanoic acid and perfluorononanoic acid were the main species. TF, EOF and IF levels in dyed and permed hair were significantly higher than untreated hair (P <0.05), and the concentrations of Sigma PFCs in hair and nails showed no difference between genders. With significantly higher levels of sigma PFCs and PFOS residues than hair (P <0.01), nails could potentially become a more sensitive bioindicator for the exposure level of PFCs in human.

  3. Perfluoroalkyl acids: recent research highlights

    EPA Science Inventory

    Perfluorinated compounds are organic chemicals in which all hydrogen molecules of the carbon-chain are substituted by fluorine molecules. Generally, there are two types of perfluorinated compounds, the perfluoroalkanes that are primarily used clinically for oxygenation and respir...

  4. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent.

    PubMed

    Kalhoff, Julian; Bresser, Dominic; Bolloli, Marco; Alloin, Fannie; Sanchez, Jean-Yves; Passerini, Stefano

    2014-10-01

    In this Full Paper we show that the use of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as conducting salt in commercial lithium-ion batteries is made possible by introducing fluorinated linear carbonates as electrolyte (co)solvents. Electrolyte compositions based on LiTFSI and fluorinated carbonates were characterized regarding their ionic conductivity and electrochemical stability towards oxidation and with respect to their ability to form a protective film of aluminum fluoride on the aluminum surface. Moreover, the investigation of the electrochemical performance of standard lithium-ion anodes (graphite) and cathodes (Li[Ni1/3 Mn1/3 Co1/3 ]O2 , NMC) in half-cell configuration showed stable cycle life and good rate capability. Finally, an NMC/graphite full-cell confirmed the suitability of such electrolyte compositions for practical lithium-ion cells, thus enabling the complete replacement of LiPF6 and allowing the realization of substantially safer lithium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  6. Surface properties of functional polymer systems

    NASA Astrophysics Data System (ADS)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was confined to the top 2--3 nm of the surface. Contact angle results showed also that the reorganization process proceeded as a function of (time) 1/2, indicating that it is likely diffusion controlled. The magnitudes of the activation energies determined from the experimental data according to the Arhenius equation, suggest that the process is possibly correlated with known bulk beta and gamma relaxations in the polymer.

  7. Exceptionally Stable Fluorous Emulsions for the Intravenous Delivery of Volatile General Anesthetics

    PubMed Central

    Jee, Jun-Pil; Parlato, Maria C.; Perkins, Mark G.; Mecozzi, Sandro; Pearce, Robert A.

    2012-01-01

    Background Intravenous delivery of volatile fluorinated anesthetics has a number of potential advantages when compared to the current inhalation method of administration. We reported previously that the IV delivery of sevoflurane can be achieved through an emulsion composed of a linear fluorinated diblock copolymer, a stabilizer, and the anesthetic. However, this original emulsion was subject to particle size growth that would limit its potential clinical utility. We hypothesized that the use of bulkier fluorous groups and smaller poly(ethylene glycol) moieties in the polymer design would result in improved emulsion stability while maintaining anesthetic functionality. Methods The authors prepared emulsions incorporating sevoflurane, perfluorooctyl bromide as a stabilizing agent, and combinations of linear fluorinated diblock copolymer and a novel dibranched fluorinated diblock copolymer. Emulsion stability was assessed using dynamic light scattering. The ability of the emulsions to induce anesthesia was tested in vivo by administering them intravenously to fifteen male Sprague-Dawley rats and measuring loss of the forepaw righting reflex. Results 20% (volume/volume) sevoflurane emulsions incorporating mixtures of dibranched- and linear diblock copolymers had improved stability, with those containing an excess of the dibranched polymers displaying stability of particle size for over one year. The ED50s for loss of forepaw righting reflex were all similar, and ranged between 0.55 and 0.60 ml/kg body weight. Conclusions Hemifluorinated dibranched polymers can be used to generate exceptionally stable sevoflurane nanoemulsions, as required of formulations intended for clinical use. Intravenous delivery of the emulsion in rats resulted in induction of anesthesia with rapid onset and smooth and rapid recovery. PMID:22354241

  8. Hydrophobic Tail Length, Degree of Fluorination and Headgroup Stereochemistry are Determinants of the Biocompatibility of (Fluorinated) Carbohydrate Surfactants

    PubMed Central

    Li, Xueshu; Turánek, Jaroslav; Knötigová, Pavlína; Kudláčková, Hana; Mašek, Josef; Parkin, Sean; Rankin, Stephen E; Knutson, Barbara L; Lehmler, Hans-Joachim

    2009-01-01

    A series of hydrocarbon and fluorocarbon carbohydrate surfactants with different headgroups (i.e., gluco-, galacto- and maltopyranoside) and (fluorinated) alkyl tails (i.e., C7 and C14 to C19) was synthesized to investigate trends in their cytotoxicity and haemolytic activity, and how surfactant-lipid interactions of selected surfactants contribute to these two measures of biocompatibility. All surfactants displayed low cytotoxicity (EC50 = 25 to > 250 μM) and low haemolytic activity (EC50 = 0.2 to > 3.3 mM), with headgroup structure, tail length and degree of fluorination being important structural determinants for both endpoints. The EC50 values of hydrocarbon and fluorocarbon glucopyranoside surfactants displayed a “cut-off” effect (i.e., a maximum with respect to the chain length). According to steady-state fluorescence anisotropy studies, short chain (C7) surfactants partitioned less readily into model membranes, which explains their low cytotoxicity and haemolytic activity. Interestingly, galactopyranosides were less toxic compared to glucopyranosides with the same hydrophobic tail. Although both surfactant types only differ in the stereochemistry of the 4-OH group, hexadecyl gluco- and galactopyranoside surfactants had similar apparent membrane partition coefficients, but differed in their overall effect on the phase behaviour of DPPC model membranes, as assessed using steady-state fluorescence anisotropy studies. These observations suggest that highly selective surfactant-lipid interactions may be responsible for the differential cytotoxicity and, possible, haemolytic activity of hydrocarbon and fluorocarbon carbohydrate surfactants intended for a variety of pharmaceutical and biomedical applications. PMID:19481909

  9. The biodegradation vs. biotransformation of fluorosubstituted aromatics.

    PubMed

    Kiel, Martina; Engesser, Karl-Heinrich

    2015-09-01

    Fluoroaromatics are widely and--in recent years--increasingly used as agrochemicals, starting materials for chemical syntheses and especially pharmaceuticals. This originates from the special properties the carbon-fluorine bond is imposing on organic molecules. Hence, fluoro-substituted compounds more and more are considered to be important potential environmental contaminants. On the other hand, the microbial potentials for their transformation and mineralization have received less attention in comparison to other haloaromatics. Due to the high electronegativity of the fluorine atom, its small size, and the extraordinary strength of the C-F bond, enzymes and mechanisms known to facilitate the degradation of chloro- or bromoarenes are not necessarily equally active with fluoroaromatics. Here, we review the literature on the microbial degradation of ring and side-chain fluorinated aromatic compounds under aerobic and anaerobic conditions, with particular emphasis being placed on the mechanisms of defluorination reactions.

  10. Deciphering the Fluorine Code-The Many Hats Fluorine Wears in a Protein Environment.

    PubMed

    Berger, Allison Ann; Völler, Jan-Stefan; Budisa, Nediljko; Koksch, Beate

    2017-09-19

    Deciphering the fluorine code is how we describe not only the focus of this Account, but also the systematic approach to studying the impact of fluorine's incorporation on the properties of peptides and proteins used by our groups and others. The introduction of fluorine has been shown to impart favorable, but seldom predictable, properties to peptides and proteins, but up until about two decades ago the outcomes of fluorine modification of peptides and proteins were largely left to chance. Driven by the motivation to extend the application of the unique properties of the element fluorine from medicinal and agro chemistry to peptide and protein engineering we have established extensive research programs that enable the systematic investigation of effects that accompany the introduction of fluorine into this class of biopolymers. The introduction of fluorine into amino acids offers a universe of options for modifications with regard to number and position of fluorine substituents in the amino acid side chain. Moreover, it is important to emphasize that the consequences of incorporating the C-F bond into a biopolymer can be attributed to two distinct yet related phenomena: (i) the fluorine substituent can directly engage in intermolecular interactions with its environment and/or (ii) the other functional groups present in the molecule can be influenced by the electron withdrawing nature of this element (intramolecular) and in turn interact differently with their immediate environment (intermolecular). Based on our studies, we have shown that a change in number and/or position of as subtle as one single fluorine substituent has the power to considerably modify key properties of amino acids such as hydrophobicity, polarity, and secondary structure propensity. These properties are crucial factors in peptide and protein engineering, and thus, fluorinated amino acids can be applied to fine-tune properties such as protein folding, proteolytic stability, and protein-protein interactions provided we understand and become able to predict the outcome of a fluorine substitution in this context. With this Account, we attempt to analyze information we gained from our recent projects on how the nature of the fluorine atom and C-F bond influence four key properties of peptides and proteins: peptide folding, protein-protein interactions, ribosomal translation, and protease stability. These results impressively show why the introduction of fluorine creates a new class of amino acids with a repertoire of functionalities that is unique to the world of proteins and in some cases orthogonal to the set of canonical and natural amino acids. Our concluding statements aim to offer a few conserved design principles that have emerged from systematic studies over the last two decades; in this way, we hope to advance the field of peptide and protein engineering based on the judicious introduction of fluorinated building blocks.

  11. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  12. The vicinal difluoro motif: The synthesis and conformation of erythro- and threo- diastereoisomers of 1,2-difluorodiphenylethanes, 2,3-difluorosuccinic acids and their derivatives

    PubMed Central

    O'Hagan, David; Rzepa, Henry S; Schüler, Martin; Slawin, Alexandra MZ

    2006-01-01

    Background It is well established that vicinal fluorines (RCHF-CHFR) prefer to adopt a gauche rather than an anti conformation when placed along aliphatic chains. This has been particularly recognised for 1,2-difluoroethane and extends to 2,3-difluorobutane and longer alkyl chains. It follows in these latter cases that if erythro and threo vicinal difluorinated stereoisomers are compared, they will adopt different overall conformations if the fluorines prefer to be gauche in each case. This concept is explored in this paper with erythro- and threo- diastereoisomers of 2,3-difluorosuccinates. Results A synthetic route to 2,3-difluorosuccinates has been developed through erythro- and threo- 1,2-difluoro-1,2-diphenylethane which involved the oxidation of the aryl rings to generate the corresponding 2,3-difluorosuccinic acids. Ester and amide derivatives of the erythro- and threo- 2,3-difluorosuccinic acids were then prepared. The solid and solution state conformation of these compounds was assessed by X-ray crystallography and NMR. Ab initio calculations were also carried out to model the conformation of erythro- and threo- 1,2-difluoro-1,2-diphenylethane as these differed from the 2,3-difluorosuccinates. Conclusion In general the overall chain conformations of the 2,3-difluorosuccinates diastereoisomers were found to be influenced by the fluorine gauche effect. The study highlights the prospects of utilising the vicinal difluorine motif (RCHF-CHFR) as a tool for influencing the conformation of performance organic molecules and particularly tuning conformation by selecting specific diastereoisomers (erythro or threo). PMID:17014729

  13. The vicinal difluoro motif: The synthesis and conformation of erythro- and threo- diastereoisomers of 1,2-difluorodiphenylethanes, 2,3-difluorosuccinic acids and their derivatives.

    PubMed

    O'Hagan, David; Rzepa, Henry S; Schüler, Martin; Slawin, Alexandra M Z

    2006-10-02

    It is well established that vicinal fluorines (RCHF-CHFR) prefer to adopt a gauche rather than an anti conformation when placed along aliphatic chains. This has been particularly recognised for 1,2-difluoroethane and extends to 2,3-difluorobutane and longer alkyl chains. It follows in these latter cases that if erythro and threo vicinal difluorinated stereoisomers are compared, they will adopt different overall conformations if the fluorines prefer to be gauche in each case. This concept is explored in this paper with erythro- and threo- diastereoisomers of 2,3-difluorosuccinates. A synthetic route to 2,3-difluorosuccinates has been developed through erythro- and threo- 1,2-difluoro-1,2-diphenylethane which involved the oxidation of the aryl rings to generate the corresponding 2,3-difluorosuccinic acids. Ester and amide derivatives of the erythro- and threo- 2,3-difluorosuccinic acids were then prepared. The solid and solution state conformation of these compounds was assessed by X-ray crystallography and NMR. Ab initio calculations were also carried out to model the conformation of erythro- and threo- 1,2-difluoro-1,2-diphenylethane as these differed from the 2,3-difluorosuccinates. In general the overall chain conformations of the 2,3-difluorosuccinates diastereoisomers were found to be influenced by the fluorine gauche effect. The study highlights the prospects of utilising the vicinal difluorine motif (RCHF-CHFR) as a tool for influencing the conformation of performance organic molecules and particularly tuning conformation by selecting specific diastereoisomers (erythro or threo).

  14. Accomplishment of Multifunctional π-Conjugated Polymers by Regulating the Degree of Side-Chain Fluorination for Efficient Dopant-Free Ambient-Stable Perovskite Solar Cells and Organic Solar Cells.

    PubMed

    Kranthiraja, Kakaraparthi; Park, Sang Ho; Kim, Hyunji; Gunasekar, Kumarasamy; Han, Gibok; Kim, Bumjoon J; Kim, Chang Su; Kim, Soohyun; Lee, Hyunjung; Nishikubo, Ryosuke; Saeki, Akinori; Jin, Sung-Ho; Song, Myungkwan

    2017-10-18

    We present an efficient approach to develop a series of multifunctional π-conjugated polymers (P1-P3) by controlling the degree of fluorination (0F, 2F, and 4F) on the side chain linked to the benzodithiophene unit of the π-conjugated polymer. The most promising changes were noticed in optical, electrochemical, and morphological properties upon varying the degree of fluorine atoms on the side chain. The properly aligned energy levels with respect to the perovskite and PCBM prompted us to use them in perovskite solar cells (PSCs) as hole-transporting materials (HTMs) and in bulk heterojunction organic solar cells (BHJ OSCs) as photoactive donors. Interestingly, P2 (2F) and P3 (4F) showed an enhanced power conversion efficiency (PCE) of 14.94%, 10.35% compared to P1 (0F) (9.80%) in dopant-free PSCs. Similarly, P2 (2F) and P3 (4F) also showed improved PCE of 7.93% and 7.43%, respectively, compared to P1 (0F) (PCE of 4.35%) in BHJ OSCs. The high photvoltaic performance of the P2 and P3 based photovotaic devices over P1 are well correlated with their energy level alignment, charge transporting, morphological and packing properties, and hole transfer yields. In addition, the P1-P3 based dopant-free PSCs and BHJ OSCs showed an excellent ambient stability up to 30 days without a significant drop in their initial performance.

  15. Development of a predictive model for lead, cadmium and fluorine soil-water partition coefficients using sparse multiple linear regression analysis.

    PubMed

    Nakamura, Kengo; Yasutaka, Tetsuo; Kuwatani, Tatsu; Komai, Takeshi

    2017-11-01

    In this study, we applied sparse multiple linear regression (SMLR) analysis to clarify the relationships between soil properties and adsorption characteristics for a range of soils across Japan and identify easily-obtained physical and chemical soil properties that could be used to predict K and n values of cadmium, lead and fluorine. A model was first constructed that can easily predict the K and n values from nine soil parameters (pH, cation exchange capacity, specific surface area, total carbon, soil organic matter from loss on ignition and water holding capacity, the ratio of sand, silt and clay). The K and n values of cadmium, lead and fluorine of 17 soil samples were used to verify the SMLR models by the root mean square error values obtained from 512 combinations of soil parameters. The SMLR analysis indicated that fluorine adsorption to soil may be associated with organic matter, whereas cadmium or lead adsorption to soil is more likely to be influenced by soil pH, IL. We found that an accurate K value can be predicted from more than three soil parameters for most soils. Approximately 65% of the predicted values were between 33 and 300% of their measured values for the K value; 76% of the predicted values were within ±30% of their measured values for the n value. Our findings suggest that adsorption properties of lead, cadmium and fluorine to soil can be predicted from the soil physical and chemical properties using the presented models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Reducing Supply Chain GHG Emissions from LCD Panel Manufacturing Webinar

    EPA Pesticide Factsheets

    Fluorinated greenhouse gases (F-GHGs) are among the most potent and persistent greenhouse gases contributing to global climate change. Learn about the manufacturing processes which release F-GHGs, and how LCD suppliers are working to reduce emissions.

  17. Photografting of perfluoroalkanes onto polyethylene surfaces via azide/nitrene chemistry

    NASA Astrophysics Data System (ADS)

    Siegmann, Konstantin; Inauen, Jan; Villamaina, Diego; Winkler, Martin

    2017-02-01

    The purpose of this study is to render polyethylene surfaces strongly and permanently hydrophobic. Polyethylene is a common plastic and, because of its inertness, difficult to graft. We chose polyethylene as example because of its ubiquity and model character. As graft chains linear perfluoroalkyl residues (-C4F9, -C6F13, -C8F17 and -C10F21) were chosen, and photografting was selected as grafting method. Photolytically generated nitrenes can insert into carbon-hydrogen bonds and are therefore suited for binding to polyethylene. Hydrophobic photo reactive surface modifiers based on azide/nitrene chemistry are designed, synthesized in high yield and characterized. Four new molecules are described. Water contact angles exceeding 110° were achieved on grafted polyethylene. One problem is to demonstrate that the photografted surface modifiers are bound covalently to the polyethylene. Abrasion tests show that all new molecules, when photografted to polyethylene, have a higher abrasion resistance than a polyethylene surface coated with a long-chain perfluoroalkane. Relative abrasion resitances of 1.4, 2.0, 2.1 and 2.5 compared to the fluoroalkane coating were obtained for the four compounds. An abrasion model using ice is developed. Although all four compounds have the same λmax of 266 nm in acetonitrile solution, their molar extincition coefficients increase from 1.6·104 to 2.2·104 with increasing length of the fluorotelomer chain. Exitonic coupling of the chromophores of the surface modifiers is observed for specific molecules in the neat state. A linear correlation of water contact angle with fluorine surface content, as measured by photoelectron spectroscopy, in grafted polyethylene surfaces is established.

  18. Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency.

    PubMed

    Bin, Haijun; Zhang, Zhi-Guo; Gao, Liang; Chen, Shanshan; Zhong, Lian; Xue, Lingwei; Yang, Changduk; Li, Yongfang

    2016-04-06

    Non-fullerene polymer solar cells (PSCs) with solution-processable n-type organic semiconductor (n-OS) as acceptor have seen rapid progress recently owing to the synthesis of new low bandgap n-OS, such as ITIC. To further increase power conversion efficiency (PCE) of the devices, it is of a great challenge to develop suitable polymer donor material that matches well with the low bandgap n-OS acceptors thus providing complementary absorption and nanoscaled blend morphology, as well as suppressed recombination and minimized energy loss. To address this challenge, we synthesized three medium bandgap 2D-conjugated bithienyl-benzodithiophene-alt-fluorobenzotriazole copolymers J52, J60, and J61 for the application as donor in the PSCs with low bandgap n-OS ITIC as acceptor. The three polymers were designed with branched alkyl (J52), branched alkylthio (J60), and linear alkylthio (J61) substituent on the thiophene conjugated side chain of the benzodithiophene (BDT) units for studying effect of the substituents on the photovoltaic performance of the polymers. The alkylthio side chain, red-shifted absorption down-shifted the highest occupied molecular orbital (HOMO) level and improved crystallinity of the 2D conjugated polymers. With linear alkylthio side chain, the tailored polymer J61 exhibits an enhanced JSC of 17.43 mA/cm(2), a high VOC of 0.89 V, and a PCE of 9.53% in the best non-fullerene PSCs with the polymer as donor and ITIC as acceptor. To the best of our knowledge, the PCE of 9.53% is one of the highest values reported in literature to date for the non-fullerene PSCs. The results indicate that J61 is a promising medium bandgap polymer donor in non-fullerene PSCs.

  19. Morphology and Surface Energy of a Si Containing Semifluorinated Di-block Copolymer Thin Films.

    NASA Astrophysics Data System (ADS)

    Shrestha, Umesh; Clarson, Stephen; Perahia, Dvora

    2013-03-01

    The structure and composition of an interface influence stability, adhesiveness and response to external stimuli of thin polymeric films. Incorporation of fluorine affects interfacial energy as well as thermal and chemical stability of the layers. The incompatibility between the fluorinated and non-fluorinated blocks induces segregation that leads to long range correlations where the tendency of the fluorine to migrate to interfaces impacts the surface tension of the films. Concurrently Si in a polymeric backbone enhances the flexibility of polymeric chains. Our previous studies of poly trifluoro propyl methyl siloxane-polystyrene thin films with SiF fraction 0.03-0.5 as a function of temperature have shown that the SiF block drives layering parallel to the surface of the diblock. Here in we report the structure and interfacial energies of SiF-PS in the plane of the films, as a function of the volume fraction of the SiF block obtained from Atomic Force microscopy and contact angle measurement studies. This work is supported by NSF DMR - 0907390

  20. Direct experimental observation of mesoscopic fluorous domains in fluorinated room temperature ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Celso, F.; Yoshida, Y.; Castiglione, F.

    Fluorinated room temperature ionic liquids (FRTILs) represent a class of solvent media that are attracting great attention due to their IL-specific properties as well as features stemming from their fluorous nature. Medium-to-long fluorous tails constitute a well-defined apolar moiety in the otherwise polar environment. Similarly to the case of alkyl tails, such chains are expected to result in the formation of self-assembled fluorous domains. So far, however, no direct experimental observation has been made of the existence of such structural heterogeneities on the nm scale. We report here the first experimental evidence of the existence of mesoscopic spatial segregation ofmore » fluorinated domains, on the basis of highly complementary X-ray and neutron scattering data sets (highlighting the importance of the latter probe) and NMR spectroscopy. Data are interpreted using atomistic molecular dynamics simulations, emphasizing the existence of a self-assembly mechanism that delivers segregated fluorous domains, where preferential solubilisation of fluorinated compounds can occur, thus paving the way for several smart applications.« less

  1. Electric current-producing device having sulfone-based electrolyte

    DOEpatents

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  2. Fluorine follows water: Effect on electrical conductivity of silicate minerals by experimental constraints from phlogopite

    NASA Astrophysics Data System (ADS)

    Li, Yan; Jiang, Haotian; Yang, Xiaozhi

    2017-11-01

    Fluorine and hydroxyl groups are minor constituents of silicate minerals, and share a lot of similarities concerning their physical and chemical properties. Hydroxyl groups significantly enhance the electrical conductivity of many silicate minerals, and it is expected that fluorine would have a comparable effect. This, however, has never been documented quantitatively. Here we present experimental approaches on this issue, by investigating the electrical conductivity of phlogopite with a wide range of fluorine content (but with broadly similar contents for other major elements). Electrical conductivities of gem-quality single crystal phlogopites, with samples prepared along the same orientation (normal to the (0 0 1) plane), were determined at 1 GPa and 200-650 °C using an end-loaded piston cylinder apparatus and a Solartron-1260 Impedance/Gain Phase Analyzer over the frequency range of 106 to 0.1 Hz. The complex spectra usually show an arc in the high frequency range and a short tail in the low frequency range, which are caused by lattice conduction and electrode effects, respectively. The electrical conductivity increases with increasing fluorine content, and the main charge carriers are fluorine. The activation enthalpies are ∼180 to 200 kJ/mol, nearly independent of fluorine content. The conductivity is linearly proportional to the content of fluorine, with an exponent factor of ∼1. The results demonstrate that conduction by fluorine leads to very high electrical conductivity at high temperatures. The influence of fluorine on electrical conductivity may be compared to that of hydrogen in nominally anhydrous minerals. This, along with the close association of fluorine and hydroxyl groups in silicate minerals and their similar crystal-chemical behaviors, suggests a more general role of fluorine in enhancing the electrical conductivity of many silicate minerals. Fluorine-rich assemblages, e.g., phlogopite and amphibole, could be locally enriched in the upper mantle, and if they form connected networks as observed for some natural samples, regionally high electrical conductivities could be produced. It has been recently proposed that the transition zone is probably a major reservoir for fluorine in the mantle, due to the significant dissolution of fluorine in wadsleyite and ringwoodite and the coupled incorporation with hydroxyl groups. As such, geophysically-resolved high electrical conductivities in the transition zone may be accounted for by fluorine in the dominant minerals, rather than by hydroxyl groups. The results of this work would stimulate a wide scope of future studies on the deep fluorine cycle, the deep water cycle and the geodynamical properties of the mantle.

  3. Supply Chain Modeling for Fluorspar and Hydroflouric Acid and Implications for Further Analyses

    DTIC Science & Technology

    2015-04-01

    Critical Materials, Volume 1 Chapter 2. Fluorspar-HF Supply Chain 4 Foreign Supply Other usesUS Supply Fluorspar Mining HF Production Downstream...analysis are listed across the top: Fluorspar Mining , HF Production, and (pro- duction of) Downstream Products (using HF). • U.S. supply is represented by...material flows from fluorspar mining , to HF production, to downstream fluorine-containing products. – Black lines are material flows included in the supply

  4. Incipient microphase separation in short chain perfluoropolyether-block-poly(ethylene oxide) copolymers.

    PubMed

    Chintapalli, Mahati; Timachova, Ksenia; Olson, Kevin R; Banaszak, Michał; Thelen, Jacob L; Mecham, Sue J; DeSimone, Joseph M; Balsara, Nitash P

    2017-06-07

    Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, R g . Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm -1 ) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.

  5. Investigation of the interfacial reaction between metal and fluorine-contained polyimides

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Yu; Chen, J. S.; Hsu, S. L. C.

    2005-07-01

    In this work, thin metal films (Cr and Ta) were deposited on fluorine-contained polyimides, 6FDA-BisAAF, and 6FDA-PPD. The chemical states of the metal/polyimide samples were characterized by using x-ray photoelectron spectroscopy (XPS). XPS analysis reveals that metal-C, C-O, and metal-O bondings are present in metallized 6FDA-BisAAF and 6FDA-PPD. C-F bonds are observed in bare 6FDA-BisAAF and 6FDA-PPD however, they are not seen in the metallized samples. Disappearance of the C-F bonding is attributed to the disruption of CF3 side groups from the main chains of 6FDA-BisAAF and 6FDA-PPD when the chains are exposed to the plasma during the metal deposition. Nevertheless, the disruption of CF3 side groups also creates sites for the formation of metal-C or C-O bondings, which provide a positive adhesion strength at the metal/polyimide interface, as revealed by the tape test.

  6. Reactivity assay of surface carboxyl chain-ends of poly(ethylene terephthalate) (PET) film and track-etched microporous membranes using fluorine labelled- and/or 3H-labelled derivatization reagents: tandem analysis by X-ray photoelectron spectroscopy (XPS) and liquid scintillation counting (LSC)

    NASA Astrophysics Data System (ADS)

    Deldime, Michèle; Dewez, Jean-Luc; Schneider, Yves-Jacques; Marchand-Brynaert, Jacqueline

    1995-09-01

    Poly(ethylene terephthalate) (PET) films and track-etched microporous membranes of two different porosities were pretreated by hydrolysis and/or oxidation in order to enhance the amount of carboxyl chain-ends displayed on their surface. The reactivity of these carboxyl functions was determined by derivatization assays in which the reactions were carried out under conditions likely to be encountered in the coupling of water-soluble biochemical signals on the surface of biomaterials. Original reagents, fluorine-labelled and/or 3H-labelled aminoacid compounds, were used. The derivatized PET samples were examined by X-ray photoelectron spectroscopy (XPS) to characterize their apparent surfaces, and by liquid scintillation counting (LSC) to quantify the amount of tags fixed on their open surfaces. Using this dual assay technique, we analyzed the surface of microporous membranes which are currently used as substrates for cell culture systems.

  7. Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental health impact, suggested substitutes and removal strategies.

    PubMed

    Mudumbi, John Baptist Nzukizi; Ntwampe, Seteno Karabo Obed; Matsha, Tandi; Mekuto, Lukhanyo; Itoba-Tombo, Elie Fereche

    2017-08-01

    Between the late 1940s and early 1950s, humans manufactured polyfluoroalkyl compounds (PFCs) using electrochemical fluorination and telomerisation technologies, whereby hydrogen atoms are substituted by fluorine atoms, thus conferring unnatural and unique physicochemical properties to these compounds. Presently, there are wide ranges of PFCs, and owing to their bioaccumulative properties, they have been detected in various environmental matrices and in human sera. It has thus been suggested that they are hazardous. Hence, this review aims at highlighting the recent development in PFC research, with a particular focus on perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), the most studied and predominantly found PFCs in various environmental matrices, although recent reports have included perfluorobutane sulfonate (PFBS), which was previously regarded as innocuously harmless, when compared to its counterparts, PFOA and PFOS. As such, proper investigations are thus required for a better understanding of short-chain PFC substitutes, which have been suggested as suitable replacements to long-chained PFCs, although these substitutes have also been suggested to pose various health risks comparable to those associated with long-chain PFCs. Similarly, several novel technologies, such as PFC reduction using zero-valent iron, including removal at point of use, adsorption and coagulation, have been proposed. However, regardless of how efficient removers some of these techniques have proven to be, short-chain PFCs remain a challenge to overcome for scientists, in this regard.

  8. A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells.

    PubMed

    Li, Sunsun; Ye, Long; Zhao, Wenchao; Yan, Hongping; Yang, Bei; Liu, Delong; Li, Wanning; Ade, Harald; Hou, Jianhui

    2018-05-21

    To simultaneously achieve low photon energy loss ( E loss ) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. -5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low E loss of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π-π interaction, the improved ordering structure, and thus the highest hole mobility, the most symmetric charge transport and reduced recombination are achieved for the linear decyl-substituted PDTB-EF-T (P2)-based PSCs, leading to the highest short-circuit current density and fill factor (FF). Due to the high Flory-Huggins interaction parameter (χ), surface-directed phase separation occurs in the P2:IT-4F blend, which is supported by X-ray photoemission spectroscopy results and cross-sectional transmission electron microscope images. By taking advantage of the vertical phase distribution of the P2:IT-4F blend, a high power conversion efficiency (PCE) of 14.2% with an outstanding FF of 0.76 was recorded for inverted devices. These results demonstrate the great potential of the DTBDT-EF unit for future organic photovoltaic applications.

  9. Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs).

    PubMed

    Ochoa-Herrera, Valeria; Field, Jim A; Luna-Velasco, Antonia; Sierra-Alvarez, Reyes

    2016-09-14

    Perfluorooctane sulfonate (PFOS) and related perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been widely applied in consumer and industrial applications for decades. However, PFOS has raised public concern due to its high bioaccumulative character, environmental persistence, and toxicity. Shorter PFASs such as perfluorobutane sulfonate (PFBS) and polyfluoroalkyl compounds have been proposed as alternatives to PFOS but it is unclear whether these fluorinated substances pose a risk for public health and the environment. The objective of this research was to investigate the microbial toxicity and the susceptibility to microbial degradation of PFOS and several related fluorinated compounds, i.e., short-chain perfluoroalkyl and polyfluoroalkyl sulfonic and carboxylic acids. None of the compounds tested were toxic to the methanogenic activity of anaerobic wastewater sludge even at very high concentrations (up to 500 mg L -1 ). All PFASs evaluated were highly resistant to microbial degradation. PFOS was not reductively dehalogenated by the anaerobic microbial consortium even after very long periods of incubation (3.4 years). Similarly, the tested short chain perfluoroalkyl substances (i.e., PFBS and trifluoroacetic acid) and a polyfluoroalkyl PFOS analogue, 6 : 2 fluorotelomer sulfonic acid (FTSA) were also resistant to anaerobic biodegradation. Likewise, no conclusive evidence of microbial degradation was observed under aerobic conditions for any of the short-chain perfluoroalkyl and polyfluoroalkyl carboxylic acids tested after 32 weeks of incubation. Collectively, these results indicate that PFOS and its alternatives such as short chain perfluoroalkyl sulfonates and carboxylates and their polyfluorinated homologues are highly resistant to microbial degradation.

  10. Enhanced mechanical properties of low-surface energy thin films by simultaneous plasma polymerization of fluorine and epoxy containing polymers

    NASA Astrophysics Data System (ADS)

    Karaman, Mustafa; Uçar, Tuba

    2016-01-01

    Thin films of poly(2,2,3,4,4,4 hexafluorobutyl acrylate-glycidyl methacrylate) (P(HFBA-GMA) were deposited on different surfaces using an inductively coupled RF plasma reactor. Fluorinated polymer was used to impart hydrophobicity, whereas epoxy polymer was used for improved durability. The deposition at a low plasma power and temperature was suitable for the functionalization of fragile surfaces such as textile fabrics. The coated rough textile surfaces were found to be superhydrophobic with water contact angles greater than 150° due to the high retention of long fluorinated side chains. The hydrophobicity of the surfaces was observed to be stable after many exposures to ultrasonification tests, which is attributed to the mechanical durability of the films due to their epoxide functionality. FTIR and XPS analyses of the deposited films confirmed that the epoxide functionality of the polymers increased with increasing glycidyl methacrylate fraction in the reactor inlet. The modulus and hardness values of the films also increase with increasing epoxide functionality.

  11. Electrical characterization of fluorinated benzothiadiazole based conjugated copolymer - a promising material for high-performance solar cells

    NASA Astrophysics Data System (ADS)

    Toušek, J.; Toušková, J.; Remeš, Z.; Chomutová, R.; Čermák, J.; Helgesen, M.; Carlé, J. E.; Krebs, F. C.

    2015-12-01

    Measurements of electrical conductivity, electron work function, carrier mobility of holes and the diffusion length of excitons were performed on samples of conjugated polymers relevant to polymer solar cells. A state of the art fluorinated benzothiadiazole based conjugated copolymer (PBDTTHD - DTBTff) was studied and benchmarked against the reference polymer poly-3-hexylthiophene (P3HT). We employed, respectively, four electrode conductivity measurements, Kelvin probe work function measurements, carrier mobility using charge extraction by linearly increasing voltage (CELIV) measurements and diffusion length determinaton using surface photovoltage measurements.

  12. Selection of RNA Aptamers Against Botulinum Neurotoxin Type A Light Chain Through a Non-Radioactive Approach.

    PubMed

    Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Cai, Shuowei

    2016-09-01

    Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive-based systematic evolution of ligands by exponential enrichment (SELEX) process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nanomolar range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting that they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that the 2'-fluorine-pyrimidine-modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for SELEX, by using regular nucleotide during SELEX, and 2'-fluorine-pyrimidine-modified nucleotide for final application to enhance their RNase-resistance.

  13. Selection of RNA aptamers against botulinum neurotoxin type A light chain through a non-radioactive approach

    PubMed Central

    Chang, Tzuu-Wang; Janardhanan, Pavithra; Mello, Charlene; Singh, Bal Ram; Cai, Shuowei

    2016-01-01

    Botulinum neurotoxin (BoNT), a category A agent, is the most toxic molecule known to mankind. The endopeptidase activity of light chain domain of BoNT is the cause for the inhibition of the neurotransmitter release and the flaccid paralysis that leads to lethality in botulism. Currently, antidotes are not available to reverse the flaccid paralysis caused by BoNT. In the present study, a non-radioactive based SELEX process is developed by utilizing surface plasmon resonance to monitor the binding enrichment. Two RNA aptamers have been identified as strong binders against light chain of botulinum neurotoxin type A. These two aptamers showed strong inhibition activity on LCA, with IC50 in nM range. Inhibition kinetic studies reveal mid nanomolar KI and non-competitive nature of their inhibition, suggesting they have strong potential as antidotes that can reverse the symptom caused by BoNT/A. More importantly, we observed that 2′-fluorine-pyrimidines modified RNA aptamers identified here do not change their binding and biological activities. This observation could lead to a cost-effective way for Systematic Evolution of Ligands by EXponential enrichment (SELEX), by using regular nucleotide during SELEX, and 2′-fluorine-pyrimidines modified nucleotide for final application to enhance their RNase-resistance. PMID:27085355

  14. Probing the mechanistic consequences of 5-fluorine substitution on cytidine nucleotide analogue incorporation by HIV-1 reverse transcriptase.

    PubMed

    Ray, Adrian S; Schinazi, Raymond F; Murakami, Eisuke; Basavapathruni, Aravind; Shi, Junxing; Zorca, Suzana M; Chu, Chung K; Anderson, Karen S

    2003-05-01

    Beta-D and beta-L-enantiomers of 2',3'-dideoxycytidine analogues are potent chain-terminators and antimetabolites for viral and cellular replication. Seemingly small modifications markedly alter their antiviral and toxicity patterns. This review discusses previously published and recently obtained data on the effects of 5- and 2'-fluorine substitution on the pre-steady state incorporation of 2'-deoxycytidine-5'-monophosphate analogues by HIV-1 reverse transcriptase (RT) in light of their biological activity. The addition of fluorine at the 5-position of the pyrimidine ring altered the kinetic parameters for all nucleotides tested. Only the 5-fluorine substitution of the clinically relevant nucleosides (-)-beta-L-2',3'-dideoxy-3'-thia-5-fluorocytidine (L-FTC, Emtriva), and (+)-beta-D-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine (D-D4FC, Reverset), caused a higher overall efficiency of nucleotide incorporation during both DNA- and RNA-directed synthesis. Enhanced incorporation by RT may in part explain the potency of these nucleosides against HIV-1. In other cases, a lack of correlation between RT incorporation in enzymatic assays and antiviral activity in cell culture illustrates the importance of other cellular factors in defining antiviral potency. The substitution of fluorine at the 2' position of the deoxyribose ring negatively affects incorporation by RT indicating the steric gate of RT can detect electrostatic perturbations. Intriguing results pertaining to drug resistance have led to a better understanding of HIV-1 RT resistance mechanisms. These insights serve as a basis for understanding the mechanism of action for nucleoside analogues and, coupled with studies on other key enzymes, may lead to the more effective use of fluorine to enhance the potency and selectivity of antiviral agents.

  15. Chlorination of low-band-gap polymers: Toward high-performance polymer solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Daize; Wang, Huan; Chen, Hui

    Here, halogenation is an effective way to tune the energy levels of organic semiconducting materials. To date, fluorination of organic semiconducting materials to fabricate polymer solar cells (PSCs) has been used far more than chlorination; however, fluorine exchange reactions suffer from low yields and the resulting fluorinated polymer always comes with higher price, which will greatly hinder their commercial applications. Herein, we designed and synthesized a series of chlorinated donor-acceptor (D-A) type polymers, in which benzo[1,2-b:4,5- b]dithiophene and chlorinated benzothiadiazole units are connected by thiophene π-bridges with an asymmetric alkyl chain. These chlorinated polymers showed deep highest occupied molecular orbitalmore » energy levels, which promoted the efficiency of their corresponding PSCs by increasing the device open circuit voltage. The asymmetric alkyl chain on the thiophene moieties gave the final polymer sufficient solubility for solution processing and strong π-π stacking in films allowed for high mobility. Although the introduction of a large chlorine atom increased the torsion angle of the polymer backbone, the chlorinated polymers maintained high crystallinity and a favorable backbone orientation in the blended films. These factors contributed to respectable device performances from thick-film devices, which showed PCEs as high as 9.11% for a 250 nm-thick active layer. These results demonstrate that chlorination is a promising method to fine tune the energy levels of conjugated polymers, and chlorinated benzothiadiazole may be a versatile building block in materials for efficient solar energy conversion.« less

  16. Chlorination of low-band-gap polymers: Toward high-performance polymer solar cells

    DOE PAGES

    Mo, Daize; Wang, Huan; Chen, Hui; ...

    2017-03-08

    Here, halogenation is an effective way to tune the energy levels of organic semiconducting materials. To date, fluorination of organic semiconducting materials to fabricate polymer solar cells (PSCs) has been used far more than chlorination; however, fluorine exchange reactions suffer from low yields and the resulting fluorinated polymer always comes with higher price, which will greatly hinder their commercial applications. Herein, we designed and synthesized a series of chlorinated donor-acceptor (D-A) type polymers, in which benzo[1,2-b:4,5- b]dithiophene and chlorinated benzothiadiazole units are connected by thiophene π-bridges with an asymmetric alkyl chain. These chlorinated polymers showed deep highest occupied molecular orbitalmore » energy levels, which promoted the efficiency of their corresponding PSCs by increasing the device open circuit voltage. The asymmetric alkyl chain on the thiophene moieties gave the final polymer sufficient solubility for solution processing and strong π-π stacking in films allowed for high mobility. Although the introduction of a large chlorine atom increased the torsion angle of the polymer backbone, the chlorinated polymers maintained high crystallinity and a favorable backbone orientation in the blended films. These factors contributed to respectable device performances from thick-film devices, which showed PCEs as high as 9.11% for a 250 nm-thick active layer. These results demonstrate that chlorination is a promising method to fine tune the energy levels of conjugated polymers, and chlorinated benzothiadiazole may be a versatile building block in materials for efficient solar energy conversion.« less

  17. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    PubMed Central

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.

    2012-01-01

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726

  18. Perfluoroalkyl substances and extractable organic fluorine in surface sediments and cores from Lake Ontario.

    PubMed

    Yeung, Leo W Y; De Silva, Amila O; Loi, Eva I H; Marvin, Chris H; Taniyasu, Sachi; Yamashita, Nobuyoshi; Mabury, Scott A; Muir, Derek C G; Lam, Paul K S

    2013-09-01

    Fourteen perfluoroalkyl substances (PFASs) including short-chain perfluorocarboxylates (PFCAs, C4-C6) and perfluoroalkane sulfonates (PFSAs, C4 and C6) were measured in surface sediment samples from 26 stations collected in 2008 and sediment core samples from three stations (Niagara, Mississauga, and Rochester basins) collected in 2006 in Lake Ontario. Perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), and perfluoroundecanoate (PFUnDA) were detected in all 26 surface sediment samples, whereas perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonamide (FOSA), perfluorododecanoate (PFDoDA) and perfluorobutanoate (PFBA) were detected in over 70% of the surface sediment samples. PFOS was detected in all of the sediment core samples (range: 0.492-30.1ngg(-1) d.w.) over the period 1952-2005. The C8 to C11 PFCAs, FOSA, and PFBA increased in early 1970s. An overall increasing trend in sediment PFAS concentrations/fluxes from older to more recently deposited sediments was evident in the three sediment cores. The known PFCAs and PFSAs accounted for 2-44% of the anionic fraction of the extractable organic fluorine in surface sediment, suggesting that a large proportion of fluorine in this fraction remained unknown. Sediment core samples collected from Niagara basin showed an increase in unidentified organic fluorine in recent years (1995-2006). These results suggest that the use and manufacture of fluorinated organic compounds other than known PFCAs and PFSAs has diversified and increased. © 2013.

  19. A Low-Cost and High-Performance Sulfonated Polyimide Proton-Conductive Membrane for Vanadium Redox Flow/Static Batteries.

    PubMed

    Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui

    2017-09-27

    A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.

  20. Tunable Affinity and Molecular Architecture Lead to Diverse Self-Assembled Supramolecular Structures in Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Chih-Hao; Dong, Xue-Hui; Lin, Zhiwei

    2015-12-03

    The self-assembly behaviors of specifically designed giant surfactants are systematically studied in thin films using grazing incident X-ray and transmission electron microscopy (TEM), focusing on the effects of head surface functionalities and molecular architectures on nanostructure formation. Two molecular nanoparticles (MNPs) with different affinities, i.e., hydrophilic carboxylic acid functionalized [60]fullerene (AC60) and omniphobic fluorinated polyhedral oligomeric silsesquioxane (FPOSS), are utilized as heads of the giant surfactants. By covalently tethering these functional MNPs onto the chain end or the junction point of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymer, linear and star-like giant surfactants possess distinct molecular architectures are constructed. With fixed lengthmore » of the PEO block, the molecular weight change of the PS block originates the phase formation and transition. Due to the distinct affinity, the AC60-based giant surfactants form two-component morphologies, while three-component morphologies are found in the FPOSS-based ones. A PS block stretching parameter is introduced to characterize the PS chain conformation in different morphologies. The highly diverse self-assembly behaviors and the tunable dimensions in thin films suggest the giant surfactants could be a promising and robust platform for nanolithography applications.« less

  1. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging

    PubMed Central

    Kislukhin, Alexander A.; Xu, Hongyan; Adams, Stephen R.; Narsinh, Kazim H.; Tsien, Roger Y.; Ahrens, Eric T.

    2016-01-01

    Fluorine-19 magnetic resonance imaging (19F MRI) probes enable quantitative in vivo detection of cell therapies and inflammatory cells. Here, we describe the formulation of perfluorocarbon-based nanoemulsions with improved sensitivity for cellular MRI. Reduction of the 19F spin-lattice relaxation time (T1) enables rapid imaging and an improved signal-to-noise ratio, thereby improving cell detection sensitivity. We synthesized metal-binding β-diketones conjugated to linear perfluoropolyether (PFPE), formulated these fluorinated ligands as aqueous nanoemulsions, and then metalated them with various transition and lanthanide ions in the fluorous phase. Iron(III) tris-β-diketonate ('FETRIS') nanoemulsions with PFPE have low cytotoxicity (<20%) and superior MRI properties. Moreover, the 19F T1 can readily be reduced by an order of magnitude and tuned by stoichiometric modulation of the iron concentration. The resulting 19F MRI detection sensitivity is enhanced by 3-to-5 fold over previously used tracers at 11.7 T, and is predicted to increase by at least 8-fold at clinical field strength of 3 T. PMID:26974409

  2. Method development for the determination of fluorine in water samples via the molecular absorption of strontium monofluoride formed in an electrothermal atomizer

    NASA Astrophysics Data System (ADS)

    Ozbek, Nil; Akman, Suleyman

    The presence of fluorine (F) was detected via the rotational molecular absorption line of diatomic strontium-monofluoride (SrF) generated in the gas phase at 651.187 nm using high-resolution continuum source electrothermal atomic absorption spectrometry. Upon the addition of excess strontium (Sr) as the nitrate, the fluorine in the sample was converted to SrF in the gas phase of a graphite furnace. The effects on the accuracy, precision and sensitivity of variables such as the SrF wavelength, graphite furnace program, amount of Sr, coating of the graphite tube and platform with Zr and Ir and the use of a modifier were investigated and optimized. It was determined that there was no need to use a modifier or to cover the platform/tubes with Zr or Ir. Fluorine concentrations in various water samples (certified waste water, tap water, drinking water and mineral water) were determined using 20 μg of Sr as the molecule-forming reagent and applying a maximum pyrolysis temperature of 800 °C and a molecule-forming temperature of 2200 °C with a heating rate of 2000 °C s- 1. Good linearity was maintained up to 0.1 μg of F. The accuracy and precision of the method were tested by analyzing certified reference wastewater. The results were in good agreement with certified values, and the precision was satisfactory (RSD < 10%). The limit of detection and the characteristic mass for the method were 0.36 ng and 0.55 ng, respectively. Finally, the fluorine concentrations in several drinking water and mineral water samples taken from the market were determined. The results were in good agreement with the values supplied by the producers. No significant differences were found between the results from the linear calibration and standard addition techniques. The method was determined to be simple, fast, accurate and sensitive.

  3. Selective separation of fluorinated compounds from complex organic mixtures by pyrolysis-comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry.

    PubMed

    Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi

    2014-12-29

    The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The effect of self-assembled monolayers on graphene conductivity and morphology

    NASA Astrophysics Data System (ADS)

    Moore, T. L.; Chen, J. H.; Riddick, B.; Williams, E. D.

    2009-03-01

    Graphene transport properties are limited by charge defects in SiO2, and by large charge density due to strong interaction with SiC. To modify these effects we have treated 300 nm SiO2 with tricholosilanes with different termination groups including pure and fluoro and amino-terminated hydrocarbons for use as substrates for mechanical exfoliation of graphene. XPS measurements verify the presence of the expected termination groups. AFM measurements reveal modified monolayer roughness and correlation lengths; for a fluorinated carbon chain the RMS roughness is 0.266 ± 0.017 nm and the correlation length is 10.2 ± 0.7 nm compared to 0.187 ± 0.011 nm and 19.8 ± 2.5 nm for SiO2. Surface free energies of the monolayers and the SiO2 blank have been computed from static contact angle measurements and all decrease the SiO2 surface free energy; for the fluorinated carbon chain monolayer a decrease of 20 mJ/m^2 from SiO2. We will discuss the ease of exfoliation, and the morphology and conductivity of graphene on these monolayers.

  5. Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for High-Efficiency Polymer Solar Cells.

    PubMed

    Xue, Lingwei; Yang, Yankang; Xu, Jianqiu; Zhang, Chunfeng; Bin, Haijun; Zhang, Zhi-Guo; Qiu, Beibei; Li, Xiaojun; Sun, Chenkai; Gao, Liang; Yao, Jia; Chen, Xiaofeng; Yang, Yunxu; Xiao, Min; Li, Yongfang

    2017-10-01

    Suppression of carrier recombination is critically important in realizing high-efficiency polymer solar cells. Herein, it is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D-conjugated D-A copolymer J91 is designed and synthesized with bi(alkyl-difluorothienyl)-benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low-lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n-type organic semiconductor acceptor m-ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(3-hexylphenyl)-dithieno[2,3-d:2,3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high V OC of 0.984 V and high J SC of 18.03 mA cm -2 is obtained for the polymer solar cells based on J91/m-ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Surface Partitioning and Stability of Mixed Films of Fluorinated Alcohols and Acids at the Air- Water Interface

    NASA Astrophysics Data System (ADS)

    Rontu, N. A.; Vaida, V.

    2007-05-01

    The production of fluorinated compounds over the past 50 years has had numerous industrial applications. For example, perfluorinated carboxylic acids are used in the synthesis of polymers and fire retardants, perfluoroalkyl sulfonates act as surface protectors, and fluorotelomer alcohols are incorporated into products such as paints, coatings, polymers, and adhesives. Fluorotelomer alcohols (FTOHs) are linear polyfluorinated alcohols with the formula CF3(CF2)nCH2CH2OH (n=1,3,5,...). They have been suggested as possible precursors for perfluorinated carboxylic acids and detected in the troposphere over several North American sites. Perfluorocarboxylic acids have even been detected in the arctic food chain, human blood, tissues of animals and environmental waters. We report the surface activity of fluorotelomer alcohols and perfluorinated carboxylic acids at the air-water interface by using a Langmuir trough. Isotherms of the pure compounds along with mixed films with other organic carboxylic acids were collected. The main objective of these experiments was to understand their heterogeneous chemistry by characterizing the pure and mixed films, which serves as a representative model for organic films on atmospheric surfaces such as those found on oceans and aqueous aerosols. Film properties and behavior, notably stabilization, evaporation from the subphase, and miscibility in the single-component mixtures as well as in the mixed films will be discussed. An important consequence of FTOHs and perfluorocarboxylic acids being found to partition to the air-water interface is the possibility of their transport and widespread distribution and deposition using atmospheric aerosols.

  7. Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.

    To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for themore » HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.« less

  8. pH-Driven Wetting Switchability of Electrodeposited Superhydrophobic Copolymers of Pyrene Bearing Acid Functions and Fluorinated Chains.

    PubMed

    Ramos Chagas, Gabriela; Kiryanenko, Denis; Godeau, Guilhem; Guittard, Frédéric; Darmanin, Thierry

    2017-12-06

    A smart stimuli-responsive surface was fabricated by the electro-copolymerization of pyrene monomers followed by base and acid treatment. Copolymers of pyrenes bearing fluorinated chains (Py-nF 6 ) and acid functions (Py-COOH) were produced with different molar concentrations of each monomer (0, 25, 50, 75, and 100 % of Py-nF 6 vs. Py-COOH) by an electrochemical process. Two different perfluorinated pyrenes containing ester and amide groups were used to reach superhydrophobic properties. The relation of those bonds with the final properties of the surface was explored. The pH-sensitive group of Py-COOH allowed the surfaces to be reversibly switched from superhydrophobic (water contact angle>θ w >150° and very low hysteresis) to hydrophilic (θ w <90°). The amide and ester bonds influenced the recovery of the original wettability after both base and acid treatment. Although the fluorinated homopolymer with ester bonds was insensitive to base and acid treatment due to its superhydrophobic properties with ultralow water adhesion, the recovery of the original wettability for the copolymers was much more important with amide bonds due to the amide functional groups be more resistant to the hydrolysis reaction. This strategy offered the opportunity to access superhydrophobic films with switchable wettability by simple pH treatment. The films proved to be a good tool for use in biological applications, for example, as a bacterial-resistant film if superhydrophobic and as a bacterial-adherent film if hydrophilic. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biocompatible Nanocoatings of Fluorinated Polyphosphazenes through Aqueous Assembly

    DOE PAGES

    Selin, Victor; Albright, Victoria; Ankner, John Francis; ...

    2018-02-23

    Nonionic fluorinated polyphosphazenes, such as poly[bis(trifluoroethoxy)phosphazene] (PTFEP), display superb biocompatibility, yet their deposition to surfaces has been limited to solution casting from organic solvents or thermal molding. Here in this paper, hydrophobic coatings of fluorinated polyphosphazenes are demonstrated through controlled deposition of ionic fluorinated polyphosphazenes (iFPs) from aqueous solutions using the layer-by-layer (LbL) technique. Specifically, the assemblies included poly[(carboxylatophenoxy)(trifluoroethoxy)phosphazenes] with varied content of fluorine atoms as iFPs (or poly[bis(carboxyphenoxy)phosphazene] (PCPP) as a control nonfluorinated polyphosphazene) and a variety of polycations. Hydrophobic interactions largely contributed to the formation of LbL films of iFPs with polycations, leading to linear growth and extremelymore » low water uptake. Hydrophobicity-enhanced ionic pairing within iFP/BPEI assemblies gave rise to large-amplitude oscillations in surface wettability as a function of capping layer, which were the largest for the most fluorinated iFP, while control PCPP/polycation systems remained hydrophilic regardless of the film top layer. Neutron reflectometry (NR) studies indicated superior layering and persistence of such layering in salt solution for iFP/BPEI films as compared to control PCPP/polycation systems. Hydrophobicity of iFP-capped LbL coatings could be further enhanced by using a highly porous polyester surgical felt rather than planar substrates for film deposition. Importantly, iFP/polycation coatings displayed biocompatibility which was similar to or superior to that of solution-cast coatings of a clinically validated material (PTFEP), as demonstrated by the hemolysis of the whole blood and protein adsorption studies.« less

  10. Biocompatible Nanocoatings of Fluorinated Polyphosphazenes through Aqueous Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selin, Victor; Albright, Victoria; Ankner, John Francis

    Nonionic fluorinated polyphosphazenes, such as poly[bis(trifluoroethoxy)phosphazene] (PTFEP), display superb biocompatibility, yet their deposition to surfaces has been limited to solution casting from organic solvents or thermal molding. Here in this paper, hydrophobic coatings of fluorinated polyphosphazenes are demonstrated through controlled deposition of ionic fluorinated polyphosphazenes (iFPs) from aqueous solutions using the layer-by-layer (LbL) technique. Specifically, the assemblies included poly[(carboxylatophenoxy)(trifluoroethoxy)phosphazenes] with varied content of fluorine atoms as iFPs (or poly[bis(carboxyphenoxy)phosphazene] (PCPP) as a control nonfluorinated polyphosphazene) and a variety of polycations. Hydrophobic interactions largely contributed to the formation of LbL films of iFPs with polycations, leading to linear growth and extremelymore » low water uptake. Hydrophobicity-enhanced ionic pairing within iFP/BPEI assemblies gave rise to large-amplitude oscillations in surface wettability as a function of capping layer, which were the largest for the most fluorinated iFP, while control PCPP/polycation systems remained hydrophilic regardless of the film top layer. Neutron reflectometry (NR) studies indicated superior layering and persistence of such layering in salt solution for iFP/BPEI films as compared to control PCPP/polycation systems. Hydrophobicity of iFP-capped LbL coatings could be further enhanced by using a highly porous polyester surgical felt rather than planar substrates for film deposition. Importantly, iFP/polycation coatings displayed biocompatibility which was similar to or superior to that of solution-cast coatings of a clinically validated material (PTFEP), as demonstrated by the hemolysis of the whole blood and protein adsorption studies.« less

  11. Conformational analysis investigation into the influence of nano-porosity of ultra-permeable ultra-selective polyimides on its diffusivity as potential membranes for use in the "green" separation of natural gases

    NASA Astrophysics Data System (ADS)

    Madkour, Tarek M.

    2013-08-01

    Nano-porous polymers of intrinsic microporosity, PIM, have exhibited excellent permeability and selectivity characteristics that could be utilized in an environmentally friendly gas separation process. A full understanding of the mechanism through which these membranes effectively and selectively allow for the permeation of specific gases will lead to further development of these membranes. Three factors obviously influenced the conformational behavior of these polymers, which are the presence of electronegative atoms, the presence of non-linearity in the polymeric backbones (backbone kinks) and the presence of bulky side groups on the polymeric chains. The dipole moment increased sharply with the presence of backbone kinks more than any other factor. Replacing the fluorine atoms with bulky alkyl groups didn't influence the dipole moment greatly indicating that the size of the side chains had much less dramatic influence on the dipole moment than having a bent backbone. Similarly, the presence of the backbone kinks in the polymeric chains influenced the polymeric chains to assume less extended configuration causing the torsional angles around the interconnecting bonds unable to cross the high potential energy barriers. The presence of the bulky side groups also caused the energy barriers of the cis-configurations to increase dramatically, which prevented the polymeric segments from experiencing full rotation about the connecting bonds. For these polymers, it was clear that the fully extended configurations are the preferred configurations in the absence of strong electronegative atoms, backbones kinks or bulky side groups. The addition of any of these factors to the polymeric structures resulted in the polymeric chains being forced to assume less extended configurations. Rather interestingly, the length or bulkiness of the side groups didn't affect the end-to-end distance distribution to a great deal since the presence of quite large bulky side chain such as the pentyl group has caused the polymeric chains to revert back to the fully extended configurations possibly due to the quite high potential energy barriers that the chains have to cross to reach the less extended configurational states.

  12. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastham, Nicholas D.; Dudnik, Alexander S.; Harutyunyan, Boris

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the twomore » SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.« less

  13. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends in stability and ionic mobility imparted by different alkyl substituents in linear carbonates.

  14. Fluorination of Boron-Doped Diamond Film Electrodes for Minimization of Perchlorate Formation.

    PubMed

    Gayen, Pralay; Chaplin, Brian P

    2017-08-23

    This research investigated the effects of surface fluorination on both rates of organic compound oxidation (phenol and terephthalic acid (TA)) and ClO 4 - formation at boron-doped diamond (BDD) film anodes at 22 °C. Different fluorination methods (i.e., electrochemical oxidation with perfluorooctanoic acid (PFOA), radio frequency plasma, and silanization) were used to incorporate fluorinated moieties on the BDD surface, which was confirmed by X-ray photoelectron spectroscopy (XPS). The silanization method was found to be the most effective fluorination method using a 1H,1H,2H,2H-perfluorodecyltrichlorosilane precursor to form a self-assembled monolayer (SAM) on the oxygenated BDD surface. The ClO 4 - formation decreased from rates of 0.45 ± 0.03 mmol m -2 min -1 during 1 mM NaClO 3 oxidation and 0.28 ± 0.01 mmol m -2 min -1 during 10 mM NaCl oxidation on the BDD electrode to below detectable levels (<0.12 μmoles m -2 min -1 ) for the BDD electrode functionalized by a 1H,1H,2H,2H-perfluorodecyltrichlorosilane SAM. These decreases in rates corresponded to 99.94 and 99.85% decreases in selectivity for ClO 4 - formation during the electrolysis of 10 mM NaCl and 1 mM NaClO 3 electrolytes, respectively. By contrast, the oxidation rates of phenol were reduced by only 16.3% in the NaCl electrolyte and 61% in a nonreactive 0.1 M KH 2 PO 4 electrolyte. Cyclic voltammetry with Fe(CN) 6 3-/4- and Fe 3+/2+ redox couples indicated that the long fluorinated chains created a blocking layer on the BDD surface that inhibited charge transfer via steric hindrance and hydrophobic effects. The surface coverages and thicknesses of the fluorinated films controlled the charge transfer rates, which was confirmed by estimates of film thicknesses using XPS and density functional theory simulations. The aliphatic silanized electrode also showed very high stability during OH • production. Perchlorate formation rates were below the detection limit (<0.12 μmoles m -2 min -1 ) for up to 10 consecutive NaClO 3 oxidation experiments.

  15. Design of fluorinated 5-HT(4)R antagonists: influence of the basicity and lipophilicity toward the 5-HT(4)R binding affinities.

    PubMed

    Fontenelle, Clement Q; Wang, Zhong; Fossey, Christine; Cailly, Thomas; Linclau, Bruno; Fabis, Frederic

    2013-12-01

    Analogues of potent 5-HT(4)R antagonists possessing a fluorinated N-alkyl chain have been synthesized in order to investigate the effect of the resulting change in basicity and lipophilicity on the affinity and selectivity profile. We demonstrate that for this series, the affinity is decreased with decreased basicity of the piperidine's nitrogen atom. In contrast, the resulting increase in lipophilicity has minimal impact on binding affinity and selectivity. 3,3,3-Trifluoropropyl and 4,4,4-trifluorobutyl derivatives 6d and 6e have shown to bind to the 5-HT(4)R while maintaining their pharmacological profile and selectivity toward other 5-HT receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Organocatalyzed Photocontrolled Radical Polymerization of Semifluorinated (Meth)acrylates Driven by Visible Light.

    PubMed

    Gong, Honghong; Zhao, Yucheng; Shen, Xianwang; Lin, Jun; Chen, Mao

    2018-01-02

    Fluorinated polymers are important materials that are widely used in many areas. Herein, we report the development of a metal-free photocontrolled radical polymerization of semifluorinated (meth)acrylates with a new visible-light-absorbing organocatalyst. This method enabled the production of a variety of semifluorinated polymers with narrow molar-weight distributions from semifluorinated trithiocarbonates or perfluoroalkyl iodides. The high performance of "ON/OFF" control and chain-extension experiments further demonstrate the utility and reliability of this method. Furthermore, to streamline the preparation of semifluorinated polymers, a scalable continuous-flow approach has been developed. Given the broad interest in fluorinated materials and photopolymerization, we expect that this method will facilitate the development of advanced materials with unique properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. An assessment of an F2 or N2O4 atmospheric injection from an aborted space shuttle mission

    NASA Technical Reports Server (NTRS)

    Watson, R. T.; Smokler, P. E.; Demore, W. B.

    1978-01-01

    Assuming a linear relationship between the stratosphere loading of NOx and the magnitude of the ozone perturbation, the change in ozone expected to result from space shuttle ejection of N2O4 was calculated based on the ozone change that is predicted for the (much greater) NOx input that would accompany large-scale operations of SSTs. Stratospheric fluorine reactions were critically reviewed to evaluate the magnitude of fluorine induced ozone destruction relative to the reduction that would be caused by addition of an equal amount of chlorine. The predicted effect on stratospheric ozone is vanishingly small.

  18. Air-water interface-induced smectic bilayer

    NASA Astrophysics Data System (ADS)

    El Abed, A.; Pouzet, E.; Fauré, M.-C.; Sanière, M.; Abillon, O.

    2000-11-01

    We show, using surface pressure versus molecular area isotherms measurements and x-ray reflectivity, that the long diblock semifluorinated n-hexaeicosane molecules, F(CF2)8-(CH2)18H, form a stable smectic bilayer phase, noted M1, with a total thickness of 3.3 nm, at an apparent molecular area about 0.3 nm2, though in the bulk the used molecules do not form smectic phases at any temperature. We discuss different molecular packing models according to our experimental data and deduce that molecules are antiparallel with fluorinated chains outwards and interleaved hydrocarbon chains inwards.

  19. Immobilization of isolated FI catalyst on polyhedral oligomeric silsesquioxane-functionalized silica for the synthesis of weakly entangled polyethylene.

    PubMed

    Li, Wei; Yang, Huaqin; Zhang, Jingjing; Mu, Jingshan; Gong, Dirong; Wang, Xiaodong

    2016-09-25

    Polyhedral oligomeric silsesquioxanes (POSSs) were adsorbed on methylaluminoxane-activated silica for the immobilization of fluorinated bis(phenoxyimine)Ti complexes (FI catalyst). These POSSs have been characterized as horizontal spacers isolating the active sites and hindering the chain overlap in polymerization. The heterogeneous catalyst exhibits considerable activity in the synthesis of weakly entangled polyethylene.

  20. [F-18]Fluorodihydrorotenone: Synthesis and evaluation of a mitochondrial electron transport chain (ETC) complex I probe for PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanBrocklin, H.F.; Enas, J.D.; Hanrahan, S.M.

    1994-05-01

    The mitochondrial electron transport chain (ETC) consists of five enzyme complexes (I-V) which participate in the transfer of electrons to oxygen and phosphorylation of ADP (oxidative phosphorylation). ETC dysfunction has been linked to several genetic neurological diseases as well as implicated in Parkinson`s (complex I) and Huntington`s (complex I) disease and normal aging processes. Dihydrorotenone (DHR) is a specific high affinity inhibitor of complex I. In order to develop a PET tracer for complex I, we have labeled DHR with fluorine-18. The tosylate precursor was produced in three steps from commercially available rotenone. Fluorine-18 was introduced by nucleophilic displacement ofmore » the tosylate using tetrabutyl-ammonium fluoride. Subsequent oxidation with MnO{sub 2} and HPLC purification gave the desired [{sup 18}F]fluoro-DHR. Initial biodistribution studies were carried out in {approximately}200 g male Sprague-Dawley rats. The tracer was taken up rapidly in the heart, an organ highly enriched with mitochondria, (5.5-6% injected dose (ID)/g at 30 minutes) and in the brain ({approximately}1.5% ID/g at 1 hour).« less

  1. Determination of fluorine and chlorine in geological materials by induction furnace pyrohydrolysis and standard-addition ion-selective electrode measurement.

    PubMed

    Rice, T D

    1988-03-01

    Fluorine and chlorine in geological materials are volatilized by pyrohydrolysis at about 1150 degrees in a stream of oxygen (1000 ml/min) plus steam in an induction furnace. The catalyst is a 7:2:1 mixture of silica gel, tungstic oxide and potassium dihydrogen phosphate. The sample/catalyst mixture is pyrohydrolysed in a re-usable alumina crucible (already containing four drops of 1 + 3 phosphoric acid) inserted in a silica-enclosed graphite crucible. The absorption solution is buffered at pH 6.5 and spiked with 1.6 mug of fluoride and 16 mug of chloride per g of solution, to ensure rapid and linear electrode response during subsequent standard-addition measurement. The simple plastic absorption vessel has 99.5% efficiency. The 3s limits of detection are 5-10 mug/g and 40-100 mug/g for fluorine and chlorine respectively. The procedure is unsuitable for determining chlorine in coal.

  2. Effect of water on the fluorine and chlorine partitioning behavior between olivine and silicate melt.

    PubMed

    Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L; Burgess, Ray; Ballentine, Christopher J

    2017-01-01

    Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H 2 O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H 2 O (D Cl ol/melt = 1.6 ± 0.9 × 10 -4 ) to 0.33 (6) wt% H 2 O (D Cl ol/melt = 2.2 ± 1.1 × 10 -4 ). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H 2 O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with ( R 2  = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.

  3. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins.

    PubMed

    Buck, Robert C; Franklin, James; Berger, Urs; Conder, Jason M; Cousins, Ian T; de Voogt, Pim; Jensen, Allan Astrup; Kannan, Kurunthachalam; Mabury, Scott A; van Leeuwen, Stefan P J

    2011-10-01

    The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers. Copyright © 2011 SETAC.

  4. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins

    PubMed Central

    Buck, Robert C; Franklin, James; Berger, Urs; Conder, Jason M; Cousins, Ian T; de Voogt, Pim; Jensen, Allan Astrup; Kannan, Kurunthachalam; Mabury, Scott A; van Leeuwen, Stefan PJ

    2011-01-01

    The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors. First, we define PFASs, classify them into various families, and recommend a pragmatic set of common names and acronyms for both the families and their individual members. Terminology related to fluorinated polymers is an important aspect of our classification. Second, we provide a brief description of the 2 main production processes, electrochemical fluorination and telomerization, used for introducing perfluoroalkyl moieties into organic compounds, and we specify the types of byproducts (isomers and homologues) likely to arise in these processes. Third, we show how the principal families of PFASs are interrelated as industrial, environmental, or metabolic precursors or transformation products of one another. We pay particular attention to those PFASs that have the potential to be converted, by abiotic or biotic environmental processes or by human metabolism, into long-chain perfluoroalkyl carboxylic or sulfonic acids, which are currently the focus of regulatory action. The Supplemental Data lists 42 families and subfamilies of PFASs and 268 selected individual compounds, providing recommended names and acronyms, and structural formulas, as well as Chemical Abstracts Service registry numbers. Integr Environ Assess Manag 2011;7:513–541. © 2011 SETAC PMID:21793199

  5. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion*

    PubMed Central

    He, Tao; Gershenson, Anne; Eyles, Stephen J.; Lee, Yan-Jiun; Liu, Wenshe R.; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F.

    2015-01-01

    Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728

  6. Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS): Building Blocks for Low Surface Energy Materials

    DTIC Science & Technology

    2010-10-21

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F...long chain fluorinated alkyl groups ranging from 6-12 carbon atoms in length. Herein, a disilanol perfluoroalkyl polyhedral oligomeric...FUNCTIONAL PERFLUOROALKYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (F-POSS): BUILDING BLOCKS FOR LOW SURFACE ENERGY MATERIA LS Sean M Rami,.e:, Yvonne Dia

  7. Fluorinated End-Groups in Electrolytes Induce Ordered Electrolyte/Anode Interface Even at Open-Circuit Potential as Revealed by Sum Frequency Generation Vibrational Spectroscopy

    DOE PAGES

    Horowitz, Yonatan; Han, Hui-Ling; Ralston, Walter T.; ...

    2017-05-12

    Fluorine-based additives have a tremendously beneficial effect on the performance of lithium-ion batteries, yet the origin of this phenomenon is unclear. This study shows that the formation of a solid-electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open-circuit potential (OCP). This study shows an anode-specific model system, the reduction of 1,2-diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2-trifluoroethoxy) ethane (BTFEOE), by summore » frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the —CF 3 end-groups of the linear ether BTFEOE change their adsorption orientation on the a-Si surface at OCP, leading to a better protective layer. Finally, supporting evidence from ex situ scanning electron microscopy and X-ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a-Si surface and enables lithium ions to intercalate deeper into the a-Si bulk.« less

  8. Fluorinated End-Groups in Electrolytes Induce Ordered Electrolyte/Anode Interface Even at Open-Circuit Potential as Revealed by Sum Frequency Generation Vibrational Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horowitz, Yonatan; Han, Hui-Ling; Ralston, Walter T.

    Fluorine-based additives have a tremendously beneficial effect on the performance of lithium-ion batteries, yet the origin of this phenomenon is unclear. This study shows that the formation of a solid-electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open-circuit potential (OCP). This study shows an anode-specific model system, the reduction of 1,2-diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2-trifluoroethoxy) ethane (BTFEOE), by summore » frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the —CF 3 end-groups of the linear ether BTFEOE change their adsorption orientation on the a-Si surface at OCP, leading to a better protective layer. Finally, supporting evidence from ex situ scanning electron microscopy and X-ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a-Si surface and enables lithium ions to intercalate deeper into the a-Si bulk.« less

  9. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic.

    PubMed

    Martin, Jonathan W; Smithwick, Marla M; Braune, Birgit M; Hoekstra, Paul F; Muir, Derek C G; Mabury, Scott A

    2004-01-15

    Recently it was discovered that humans and animals from various urban and remote global locations contained a novel class of persistent fluorinated contaminants, the most pervasive of which was perfluorooctane sulfonate (PFOS). Lower concentrations of perfluorooctanoate, perfluorohexane sulfonate, and heptadecafluorooctane sulfonamide have also been detected in various samples. Although longer perfluoroalkyl carboxylates (PFCAs) are used in industry and have been detected in fish following a spill of aqueous film forming foam, no studies have been conducted to examine the widespread occurrence of long-chain PFCAs (e.g., CF3(CF2)xCOO-, where x > 6). To provide a preliminary assessment of fluorinated contaminants, including PFCAs, in the Canadian Arctic, polar bears, ringed seals, arctic fox, mink, common loons, northern fulmars, black guillemots, and fish were collected at various locations in the circumpolar region. PFOS was the major contaminant detected in most samples and in polar bear liver was the most prominent organohalogen (mean PFOS = 3.1 microg/g wet weight) compared to individual polychlorinated biphenyl congeners, chlordane, or hexachlorocyclohexane-related chemicals in fat. Using two independent mass spectral techniques, it was confirmed that all samples also contained ng/g concentrations of a homologous series of PFCAs, ranging in length from 9 to 15 carbons. Sum concentrations of PFCAs (sum(PFCAs)) were lower than total PFOS equivalents (sum(PFOS)) in all samples except for mink. In mink, perfluorononanoate (PFNA) concentrations exceeded PFOS concentrations, indicating that PFNA and other PFCAs should be considered in future risk assessments. Mammals feeding at higher trophic levels had greater concentrations of PFOS and PFCAs than mammals feeding at lower trophic positions. In general, odd-length PFCAs exceeded the concentration of even-length PFCAs, and concentrations decreased with increasing chain length in mammals. PFOS and PFCA concentrations were much lower for animals living in the Canadian Arctic than for the same species living in mid-latitude regions of the United States. Future studies should continue to monitor all fluorinated contaminants and examine the absolute and relative toxicities for this novel suite of PFCAs.

  10. Fluorinated monomers useful for preparing fluorinated polyquinoline polymers

    NASA Technical Reports Server (NTRS)

    Hendricks, Neil H. (Inventor)

    1994-01-01

    A new class of polymers is provided, as well as the monomers used for their preparation. The polymers provided in accordance with practice of the present invention include repeating units comprising one or more quinoline groups, wherein at least a portion of the repeating units includes a hexafluoroisopropylidene (6F) group or a 1-aryl-2,2,2-trifluoroethylidene (3F) group, or both. The hexafluoroisopropylidene group is referred to herein as a 6F group and has the following structure: ##STR1## The 6F group includes a tetravalent carbon atom bound to two trifluoromethyl moieties, with its other two bonds forming linkages in the polymer chain. The 1-aryl-2,2,2-trifluoroethylidene group is referred to herein as a 3F group and has the following structure: ##STR2## wherein Ar' is an aryl group.

  11. Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost

    PubMed Central

    Wang, Shanlin; Zhang, Wenwen; Yu, Xinquan; Liang, Caihua; Zhang, Youfa

    2017-01-01

    Spontaneous movement of condensed matter provides a new insight to efficiently improve condensation heat transfer on superhydrophobic surface. However, very few reports have shown the jumping behaviors on the sprayable superhydrophobic coatings. Here, we developed a sprayable silica nano-porous coating assembled by fluorinated nano-chains to survey the condensates’ dynamics. The dewdrops were continuously removed by self- and/or trigger-propelling motion due to abundant nano-pores from random multilayer stacking of nano-chains. In comparison, the dewdrops just could be slipped under the gravity effect on lack of nano-pores coatings stacked by silica nano-spheres and nano-aggregates. More interestingly, the spontaneous jumping effect also occurred on micro-scale frost crystals under the defrosting process on nano-chains coating surfaces. Different from self-jumping of dewdrops motion, the propelling force of frost crystals were provided by a sudden increase of the pressure under the frost crystal. PMID:28074938

  12. Fluorine Substitution in Neurotransmitters: Microwave Spectroscopy and Modelling of the Conformational Space and Non Bonding Interactions

    NASA Astrophysics Data System (ADS)

    Melandri, S.; Maris, A.; Merloni, A.

    2011-06-01

    Fluorine substitution in molecules is a common practice in bio-organic chemistry in order to modulate physicochemical properties and biological activity of molecules and an increasing number of drugs on the market contain fluorine, the presence of which is often of major importance to modify pharmacokinetics properties and molecular activity. The rationale for such a strategy is that fluorine is generally a stronger electron acceptor than the other halogen atoms and its size is intermediate between that of hydrogen and oxygen. We have studied two fluorinated analogs of 2-phenylethylamine (PEA), the prototype molecule for adrenergic neurotransmitters, namely: 4-Fluoro (4FPEA) and 2-Fluoro-2-phenylethylamine (2FPEA) by Molecular Beam Fourier Transform Microwave Spectroscopy in the frequency range 6-18 GHz and ab initio calculations at the MP2/6311++G** level. The aim is to obtain information on the spatial arrangement of the ethylamine side chain and the effects of fluorination on the energy landscape. The conformational space is dominated by low energy gauche conformations stabilized by weak interactions between the aminic hydrogens and the electron cloud of the benzene ring and anti conformations higher in energy. In 2FPEA the presence of the fluorine atom almost duplicate the number of possible conformation with respect to 4FPEA. We observed two conformers of 4FPEA and five conformers of 2FPEA which have been classified with the guide provided by accurate ab initio calculations. The identification of the conformational species was helped by the analysis of the quadrupole hyperfine pattern which is greatly influenced by the orientation of the amino group and acts as a fingerprint for each conformation. The orientation of the dipole moment within the principal axis frame and the order of stability of the different conformations are other independent pieces of evidence for the unambiguous assignment and identification of the conformers. The order of stability was found to be altered in both molecules with respect to the prototype PEA molecule, especially in the case of 2FPEA where we observe a stabilization of some of the anti forms and great destabilization of some of the gauche forms. These observations are in agreement with the results of the theoretical calculation and can be rationalized in terms of the effect of the fluorine atom on the electron density of the molecule and in particular on the electron cloud on the benzene ring.

  13. Synthesis and evaluation of sensitizer drug photorelease chemistry: Micro-optic method applied to singlet oxygen generation and drug delivery

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam

    This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) from the probe tip at the distal end of the fiber. The aim is to develop a 1st and 2nd generation device for site specific delivery of photosensitizer and singlet oxygen to overcome the challenges involved in systemic administration of the sensitizer. Synthesis and evaluation of drug (pheophorbide-a) delivery applying micro-optic method from native and fluorinated silica probe tip was achieved. The amount of sensitizer photocleavage depends on the loading level of sensitizer onto the probe tips. We also found that photorelease efficiency depends on the nature of the solvents where sensitizer is photocleaved. For example, no photorelease was observed in an aqueous solvent where sensitizer remained adsorbed to the native silica probe-tip. But, 90% photocleavage was obtained in octanol. A significant amount of photosensitizer (formate ester of pyropheophorbide- a) diffused into the liposome when photocleavage study was carried out in liposome. Substantial increase of photorelease was observed in organic solvent when pyropheophorbide-a (PPa) sensitizer was attached to the partially fluorinated porous Vycor glass. We also explored sensitizer photorelease from the fluorinated silica surface at various temperatures and we found that autocatalytic photorelease happened at room temperature and above. No photorelease was observed at low temperature. Chlorin e6 and its one, two and three short chain methoxy triethylene glycol (PEG) conjugated derivatives were synthesized. A comparative study of photocytotoxicity and cellular uptake between each showed that 17 3,152,131- chlorin e6 methoxy triethylene glycol triester has the highest photocytotoxic activity and uptake by ovarian OVCAR-5 cancer cells. Therefore, we decided to load three short chain PEG conjugated chlorin e6 onto the silica surface through spacer alkene for delivery via a fiber-optic probe tip. In order to load chlorin e6-triPEG ester conjugate, in chapter 4, we explored different synthetic strategies. We have been successful in synthesizing spacer alkene succinate linker conjugated chlorin e6 -tri PEG ester, which was attached to the fiber-optic probe tip. Reactions were carried out in mild conditions to avoid detachment of the PEG ester from the carboxylic acid sites of chlorin. Photocleavage of the triPEG modified fluorinated probe tip system was studied in n-butanol.

  14. Synthesis of interlocked molecules by olefin metathesis

    NASA Astrophysics Data System (ADS)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic polyammonium scaffold. Diolefin polyether fragments were coordinated and "clipped" around the ammonium sites within the polymer backbone using ring-closing olefin metathesis, giving the molecular "charm bracelet". Confirmation of the interlocked nature of the product was achieved via 1H NMR spectroscopy and two-dimensional diffusion ordered NMR spectroscopy. A simple strategy for a one-pot, multi-component synthesis of polyrotaxanes using acyclic diene metathesis polymerization was developed. The polyrotaxanes were characterized by traditional 1H NMR spectroscopy as well as size exclusion chromatography, and the interlocked topology was confirmed using two-dimension diffusion-ordered NMR spectroscopy. The dynamic, self-correcting nature of the ADMET polymerization was also explored through the equilibration of a capped polyammonium polymer in the presence of dibenzo-24-crown-8 ether and olefin metathesis catalysts. The efficiency and ease with which these mechanically interlocked macromolecules can be assembled should facilitate rapid modulation to achieve versatile polyrotaxane architectures. Flexible, switchable [c2]daisy-chain dimers (DCDs) were synthesized, where the macromer ammonium binding site was adjacent to the crown-type recognition structure and separated from the cap by an alkyl chain. A DCD of this topology is expected to have an extended structure in the bound conformation (when the ammonium was coordinated to the crown). Several different macromer candidates were designed to allow access to DCDs with flexible alkyl chains between the ammonium binding site and the cap, and a number of synthetic routes were explored in an effort to access these challenging materials. While the first generation DCD structure proved to be unstable due to a labile ester linkage, work is continuing toward the development of several cap structures in an effort to replace the ester linkage with an ether linkage, which, in the second generation model systems, has proven much more stable to the acidic and basic conditions necessary to induce switching of the dimeric architecture. One of the efforts in our lab is directed at the synthesis of 18F-labeled nanoparticles to be used as tumor imaging agents in positron emission tomography. We have been working to optimize fluorine incorporation while minimizing NP crosslinking. Because of evidence of NP side-reactions with the potassium carbonate base, we have begun to use potassium benzoate solid-state beads. To analyze the fluorinated NPs, various sorbents were explored. It was found that silica sorbents rapidly reacted and bound to the NPs, while the NPs remained unreactive and mobile on alumina. Further analysis of the NPs has been accomplished using 2D-DOSY NMR spectroscopy. Future work with the NPs will involve a systematic evaluation of the role of water on the extent of fluorination, as well as functionalization of the NPs with Cy5.5 dye for use in studies on eyes to be done in collaboration with researchers at the Mayo Clinic.

  15. Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy.

    PubMed

    Moore, Jeremy K; Chen, Junjie; Pan, Hua; Gaut, Joseph P; Jain, Sanjay; Wickline, Samuel A

    2018-06-01

    To design a fluorine MRI/MR spectroscopy approach to quantify renal vascular damage after ischemia-reperfusion injury, and the therapeutic response to antithrombin nanoparticles (NPs) to protect kidney function. A total of 53 rats underwent 45 min of bilateral renal artery occlusion and were treated at reperfusion with either plain perfluorocarbon NPs or NPs functionalized with a direct thrombin inhibitor (PPACK:phenyalanine-proline-arginine-chloromethylketone). Three hours after reperfusion, kidneys underwent ex vivo fluorine MRI/MR spectroscopy at 4.7 T to quantify the extent and volume of trapped NPs, as an index of vascular damage and ischemia-reperfusion injury. Microscopic evaluation of structural damage and NP trapping in non-reperfused renal segments was performed. Serum creatinine was quantified serially over 7 days. The damaged renal cortico-medullary junction trapped a significant volume of NPs (P = 0.04), which correlated linearly (r = 0.64) with the severity of kidney injury 3 h after reperfusion. Despite global large vessel reperfusion, non-reperfusion in medullary peritubular capillaries was confirmed by MRI and microscopy, indicative of continuing hypoxia due to vascular compromise. Treatment of animals with PPACK NPs after acute kidney injury did not accelerate kidney functional recovery. Quantification of ischemia-reperfusion injury after acute kidney injury with fluorine MRI/MR spectroscopy of perfluorocarbon NPs objectively depicts the extent and severity of vascular injury and its linear relationship to renal dysfunction. The lack of kidney function improvement after early posttreatment thrombin inhibition confirms the rapid onset of ischemia-reperfusion injury as a consequence of vascular damage and non-reperfusion. The prolongation of medullary ischemia renders cortico-medullary tubular structures susceptible to continued necrosis despite restoration of large vessel flow, which suggests limitations to acute interventions after acute kidney injury, designed to interdict renal tubular damage. Magn Reson Med 79:3144-3153, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Substituent effects that control conjugated oligomer conformation through non-covalent interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharber, Seth A.; Baral, Rom Nath; Frausto, Fanny

    Although understanding the conformations and arrangements of conjugated materials as solids is key to their prospective applications, predictive power over these structural factors remains elusive. In this work, substituent effects tune non-covalent interactions between side-chain fluorinated benzyl esters and main-chain terminal arenes, in turn controlling the conformations and interchromophore aggregation of three-ring phenylene-ethynylenes (PEs). Cofacial fluoroarene–arene (ArF–ArH) interactions cause twisting in the PE backbone, interrupting intramolecular conjugation as well as blocking chromophore aggregation, both of which prevent the typically observed bathochromic shift observed upon transitioning PEs from solution to solid. This work highlights two structural factors that determine whether themore » ArF–ArH interactions, and the resulting twisted, unaggregated chromophores, occur in these solids: (i) the electron-releasing characteristic of substituents on ArH, with more electron-releasing character favoring ArF–ArH interactions, and (ii) the fluorination pattern of the ArF ring, with 2,3,4,5,6-pentafluorophenyl favoring ArF–ArH interactions over 2,4,6-trifluorophenyl. Furthermore, these trends indicate that considerations of electrostatic complementarity, whether through a polar-π or substituent–substituent mechanism, can serve as an effective design principle in controlling the interaction strengths, and therefore the optoelectronic properties, of these molecules as solids.« less

  17. Substituent effects that control conjugated oligomer conformation through non-covalent interactions

    DOE PAGES

    Sharber, Seth A.; Baral, Rom Nath; Frausto, Fanny; ...

    2017-03-31

    Although understanding the conformations and arrangements of conjugated materials as solids is key to their prospective applications, predictive power over these structural factors remains elusive. In this work, substituent effects tune non-covalent interactions between side-chain fluorinated benzyl esters and main-chain terminal arenes, in turn controlling the conformations and interchromophore aggregation of three-ring phenylene-ethynylenes (PEs). Cofacial fluoroarene–arene (ArF–ArH) interactions cause twisting in the PE backbone, interrupting intramolecular conjugation as well as blocking chromophore aggregation, both of which prevent the typically observed bathochromic shift observed upon transitioning PEs from solution to solid. This work highlights two structural factors that determine whether themore » ArF–ArH interactions, and the resulting twisted, unaggregated chromophores, occur in these solids: (i) the electron-releasing characteristic of substituents on ArH, with more electron-releasing character favoring ArF–ArH interactions, and (ii) the fluorination pattern of the ArF ring, with 2,3,4,5,6-pentafluorophenyl favoring ArF–ArH interactions over 2,4,6-trifluorophenyl. Furthermore, these trends indicate that considerations of electrostatic complementarity, whether through a polar-π or substituent–substituent mechanism, can serve as an effective design principle in controlling the interaction strengths, and therefore the optoelectronic properties, of these molecules as solids.« less

  18. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    NASA Astrophysics Data System (ADS)

    Sun, Aixia; Liu, Xiang; Tang, Ganghua

    2017-12-01

    Tumor cells have an increased nutritional demand for amino acids(AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] amino acids, labeling alpha-C- amino acids, the branched-chain of amino acids and N-substituted carbon-11 labeled amino acids. These tracers target protein synthesis or amino acid(AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non–small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications.

  19. Polymer functionalized single-walled carbon nanotube composites and semi-fluorinated quaternary ammonium polymer colloids and coatings

    NASA Astrophysics Data System (ADS)

    Paul, Abhijit

    Scope and Method of Study: Current study focused on understanding of "wetting" and "dewetting" phenomena between surfaces of single-walled carbon nanotubes (SWCNT) which are lightly grafted with polymer chains by reversible-deactivation radical polymerization, when they are mixed with matrix chains of the same architecture as grafts. Effects of grafts to matrix chain lengths on SWCNT dispersion in matrix polymers were studied by measuring electrical conductivity, glass transition temperature, and storage and loss moduli of nanocomposites. Another area of work was to design semi-fluorinated copolymers with core-shell morphology by emulsion polymerization, study their catalytic activities for hydrolyses of Paraoxon, a toxic insecticide, in the forms of both colloidal dispersions and films, and to characterize the surfaces of the films by atomic force microscopy and by dynamic contact angle measurements. Findings and Conclusions: The glass transition temperature ( Tg) of polystyrene (PS) filled with SWCNT grafted with PS of different lengths increased from 99 to 109 °C at 6 wt% of SWCNT followed by a plateau. The heat capacity (DeltaCp ) at Tg continued to decrease only for the smallest chain length grafted PS nanocomposites. SWCNT/PS nanocomposites had low electrical conductivity and showed no percolation threshold due to the thick polymer coatings. A key finding was that the SWCNT surface can accommodate only a fixed numbers of styrene units. Similar results on change in Tg were obtained for SWCNT/PMMA nanocomposites when molecular weight of matrix (Mmatrix) ≥ molecular weight of grafts (Mgraft). No change in DeltaCp was observed for SWCNT/PMMA nanocomposites. "Wetting" to "dewetting" occurred Mmatrix/ Mgraft ≈ 1. For Mmatrix > Mgraft, electrical conductivity of nanocomposites reached the value of 10-9 S cm-1 at 1.0 wt% nanotube loading and had percolation threshold of electrical conductivity at ˜0.25 wt% SWCNT. Raman and UV-vis-NIR data confirmed that grafting methods have little effect on inherent electronic properties of SWCNT. A key observation was that the behavior of polymer-SWCNT composites is analogous to polymer thin films containing two different lengths of chemically same polymers. On the other hand, semifluorinated copolymers had hydrophobic and lipophilic properties similar to homopolymers of poly(perfluoroalkyl methacrylates), but were not active in detoxification of Paraoxon. Therefore, semi-fluorinated latexes can either act as phase transfer catalysts for hydrolysis of organophosporous compounds or repel the compound, but cannot do both.

  20. Spectral separation of gaseous fluorocarbon mixtures and measurement of diffusion constants by 19F gas phase DOSY NMR.

    PubMed

    Marchione, Alexander A; McCord, Elizabeth F

    2009-11-01

    Diffusion-ordered (DOSY) NMR techniques have for the first time been applied to the spectral separation of mixtures of fluorinated gases by diffusion rates. A mixture of linear perfluoroalkanes from methane to hexane was readily separated at 25 degrees C in an ordinary experimental setup with standard DOSY pulse sequences. Partial separation of variously fluorinated ethanes was also achieved. The constants of self-diffusion of a set of pure perfluoroalkanes were obtained at pressures from 0.25 to 1.34 atm and temperatures from 20 to 122 degrees C. Under all conditions there was agreement within 20% of experimental self-diffusion constant D and values calculated by the semiempirical Fuller method.

  1. WO3 and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms.

    PubMed

    Johnson, Nicholas R; George, Steven M

    2017-10-04

    The thermal atomic layer etching (ALE) of WO 3 and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO 3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl 3 ) and hydrogen fluoride (HF). BCl 3 converts the WO 3 surface to a B 2 O 3 layer while forming volatile WO x Cl y products. Subsequently, HF spontaneously etches the B 2 O 3 layer producing volatile BF 3 and H 2 O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl 3 and HF reactions were self-limiting versus exposure. The WO 3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl 3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO 3 layer using O 2 /O 3 . Subsequently, the WO 3 layer is etched with BCl 3 and HF. SE could simultaneously monitor the W and WO 3 thicknesses and conversion of W to WO 3 . SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl 3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

  2. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    PubMed

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2018-03-01

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N 2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  3. Design strategies to minimize the radiative efficiency of global warming molecules

    PubMed Central

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2010-01-01

    A strategy is devised to screen molecules based on their radiative efficiency. The methodology should be useful as one additional constraint when determining the best molecule to use for an industrial application. The strategy is based on the results of a recent study where we examined molecular properties of global warming molecules using ab initio electronic structure methods to determine which fundamental molecular properties are important in assessing the radiative efficiency of a molecule. Six classes of perfluorinated compounds are investigated. For similar numbers of fluorine atoms, their absorption of radiation in the IR window decreases according to perfluoroethers > perfluorothioethers ≈ sulfur/carbon compounds > perfluorocarbons > perfluoroolefins > carbon/nitrogen compounds. Perfluoroethers and hydrofluorethers are shown to possess a large absorption in the IR window due to (i) the C─O bonds are very polar, (ii) the C-O stretches fall within the IR window and have large IR intensity due to their polarity, and (iii) the IR intensity for C-F stretches in which the fluorine atom is bonded to the carbon that is bonded to the oxygen atom is enhanced due to a larger C─F bond polarity. Lengthening the carbon chain leads to a larger overall absorption in the IR window, though the IR intensity per bond is smaller. Finally, for a class of partially fluorinated compounds with a set number of electronegative atoms, the overall absorption in the IR window can vary significantly, as much as a factor of 2, depending on how the fluorine atoms are distributed within the molecule. PMID:20439762

  4. Fluorine-19 magnetic resonance imaging probe for the detection of tau pathology in female rTg4510 mice.

    PubMed

    Yanagisawa, Daijiro; Ibrahim, Nor Faeizah; Taguchi, Hiroyasu; Morikawa, Shigehiro; Kato, Tomoko; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Tooyama, Ikuo

    2018-05-01

    Aggregation of tau into neurofibrillary tangles (NFTs) is characteristic of tauopathies, including Alzheimer's disease. Recent advances in tau imaging have attracted much attention because of its potential contributions to early diagnosis and monitoring of disease progress. Fluorine-19 magnetic resonance imaging ( 19 F-MRI) may be extremely useful for tau imaging once a high-quality probe has been formulated. In this investigation, a novel fluorine-19-labeling compound has been developed as a probe for tau imaging using 19 F-MRI. This compound is a buta-1,3-diene derivative with a polyethylene glycol side chain bearing a CF 3 group and is known as Shiga-X35. Female rTg4510 mice (a mouse model of tauopathy) and wild-type mice were intravenously injected with Shiga-X35, and magnetic resonance imaging of each mouse's head was conducted in a 7.0-T horizontal-bore magnetic resonance scanner. The 19 F-MRI in rTg4510 mice showed an intense signal in the forebrain region. Analysis of the signal intensity in the forebrain region revealed a significant accumulation of fluorine-19 magnetic resonance signal in the rTg4510 mice compared with the wild-type mice. Histological analysis showed fluorescent signals of Shiga-X35 binding to the NFTs in the brain sections of rTg4510 mice. Data collected as part of this investigation indicate that 19 F-MRI using Shiga-X35 could be a promising tool to evaluate tau pathology in the brain. © 2017 Wiley Periodicals, Inc.

  5. Fracture and damage evolution of fluorinated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. N.; Rae, P.; Orler, E. B.

    2004-01-01

    Fluoropolymers are often semi-crystalline in nature, with their linear chains forming complicated phases near room temperature and ambient pressure. The most widely used fluorocarbon polymer for engineering applications is polytetrafluoroethylene (PTFE), due to its extremely low coefficient of friction, outstanding resistance to corrosion, and excellent electrical properties. The phase structure of PTFE is complex with four well-characterized crystalline phases (three observed at atmospheric pressure) and substantial molecular motion well below the melting point. The first-order transition at 19 C between phases II and IV is an unraveling in the helical conformation. Further rotational disordering and untwisting of the helices occursmore » above 30 C giving way to phase I. The mechanical behavior, including fracture and damage evolution, of PTFE depends on the chain and segment motions dictated by crystalline phase microstructure. The presence of three unique phases at ambient pressure near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a preliminary study of fracture and damage evolution in PTFE with the effects of temperature-induced phase on fracture mechanisms. The quasi-static fracture of PTFE in the atmospheric pressure regime, over a range of temperatures, was found to be strongly phase dependent: phase II exhibits brittle-fracture, phase IV displays ductile-fracture with crazing and some stable crack growth, and plastic flow dominates phase 1. The bulk failure properties are correlated to failure mechanisms through fractography of the fracture surfaces (optical microscopy and scanning electron microscopy (SEM)).« less

  6. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam L.; van't Erve, Olaf M. J.; Robinson, Jeremy T.; Whitener, Keith E.; Jonker, Berend T.

    2016-05-01

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. Here, we demonstrate that hydrogenation or fluorination of graphene can be used to create a tunnel barrier. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures, and determine spin lifetimes with the non-local Hanle effect. We compare the results for hydrogenated and fluorinated tunnel and we discuss the possibility that ferromagnetic moments in the hydrogenated graphene tunnel barrier affect the spin transport of our devices.

  7. High performance anode based on a partially fluorinated sulfonated polyether for direct methanol fuel cells operating at 130 °C

    NASA Astrophysics Data System (ADS)

    Mack, Florian; Gogel, Viktor; Jörissen, Ludwig; Kerres, Jochen

    2014-06-01

    Due to the disadvantages of the Nafion polymer for the application in the direct methanol fuel cell (DMFC) especial at temperatures above 100 °C several polymers of the hydrocarbon type have already been investigated as membranes and ionomers in the DMFC. Among them were nonfluorinated and partially fluorinated arylene main-chain hydrocarbon polymers. In previous work, sulfonated polysulfone (sPSU) has been applied as the proton-conductive binder in the anode of a DMFC, ending up in good and stable performance. In continuation of this work, in the study presented here a polymer was prepared by polycondensation of decafluorobiphenyl and bisphenol AF. The formed polymer was sulfonated after polycondensation by oleum and the obtained partially fluorinated sulfonated polyether (SFS) was used as the binder and proton conductor in a DMFC anode operating at a temperature of 130 °C. The SFS based anode with 5% as ionomer showed comparable performance for the methanol oxidation to Nafion based anodes and significant reduced performance degradation versus Nafion and sPSU based anodes on the Nafion 115 membrane. Membrane electrode assemblies (MEAs) with the SFS based anode showed drastically improved performance compared to MEAs with Nafion based anodes during operation with lower air pressure at the cathode.

  8. Physiochemical Control of Composition and Location for Fundamental Studies of Biofouling Resistant, High Fouling Release Surfaces

    DTIC Science & Technology

    2016-06-22

    with increased legislation on toxicity requirements, the research community has been actively exploring and developing new, robust, and...with a brominated end functionality. The presence of active radical species only at locations where light interacts with the catalyst affords...i.e., the burying of the reactive bromo chain ends due to the high surface activity of the fluorinated repeat units, which imposes additional steric

  9. Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties

    DOE PAGES

    Yao, Xi; Dunn, Stuart S.; Kim, Philseok; ...

    2014-03-18

    In this study, omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti-biofouling behavior, while maintaining cytocompatiblity.

  10. NbF5 and TaF5: Assignment of 19F NMR resonances and chemical bond analysis from GIPAW calculations

    NASA Astrophysics Data System (ADS)

    Biswal, Mamata; Body, Monique; Legein, Christophe; Sadoc, Aymeric; Boucher, Florent

    2013-11-01

    The 19F isotropic chemical shifts (δiso) of two isomorphic compounds, NbF5 and TaF5, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D 19F MAS NMR spectra. In parallel, the corresponding 19F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M4F20] units of NbF5 and TaF5 being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced by such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the 19F NMR lines of NbF5 and TaF5 is obtained, ensured by the linearity between experimental 19F δiso values and calculated 19F isotropic chemical shielding σiso values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF5. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M-F bonds have been established. Additionally, for three of the 19F NMR lines of NbF5, distorted multiplets, arising from 1J-coupling and residual dipolar coupling between the 19F and 93Nb nuclei, were simulated yielding to values of 93Nb-19F 1J-coupling for the corresponding fluorine sites.

  11. Tunnel current across linear homocatenated germanium chains

    NASA Astrophysics Data System (ADS)

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e-βL, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge-Ge bond length is longer than the Si-Si bond length.

  12. Mechanism Underlying IκB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex

    PubMed Central

    Fujita, Hiroaki; Akita, Mariko; Kato, Ryuichi; Sasaki, Yoshiteru; Wakatsuki, Soichi

    2014-01-01

    The linear ubiquitin chain assembly complex (LUBAC) ligase, consisting of HOIL-1L, HOIP, and SHARPIN, specifically generates linear polyubiquitin chains. LUBAC-mediated linear polyubiquitination has been implicated in NF-κB activation. NEMO, a component of the IκB kinase (IKK) complex, is a substrate of LUBAC, but the precise molecular mechanism underlying linear chain-mediated NF-κB activation has not been fully elucidated. Here, we demonstrate that linearly polyubiquitinated NEMO activates IKK more potently than unanchored linear chains. In mutational analyses based on the crystal structure of the complex between the HOIP NZF1 and NEMO CC2-LZ domains, which are involved in the HOIP-NEMO interaction, NEMO mutations that impaired linear ubiquitin recognition activity and prevented recognition by LUBAC synergistically suppressed signal-induced NF-κB activation. HOIP NZF1 bound to NEMO and ubiquitin simultaneously, and HOIP NZF1 mutants defective in interaction with either NEMO or ubiquitin could not restore signal-induced NF-κB activation. Furthermore, linear chain-mediated activation of IKK2 involved homotypic interaction of the IKK2 kinase domain. Collectively, these results demonstrate that linear polyubiquitination of NEMO plays crucial roles in IKK activation and that this modification involves the HOIP NZF1 domain and recognition of NEMO-conjugated linear ubiquitin chains by NEMO on another IKK complex. PMID:24469399

  13. Monte Carlo simulation of star/linear and star/star blends with chemically identical monomers

    NASA Astrophysics Data System (ADS)

    Theodorakis, P. E.; Avgeropoulos, A.; Freire, J. J.; Kosmas, M.; Vlahos, C.

    2007-11-01

    The effects of chain size and architectural asymmetry on the miscibility of blends with chemically identical monomers, differing only in their molecular weight and architecture, are studied via Monte Carlo simulation by using the bond fluctuation model. Namely, we consider blends composed of linear/linear, star/linear and star/star chains. We found that linear/linear blends are more miscible than the corresponding star/star mixtures. In star/linear blends, the increase in the volume fraction of the star chains increases the miscibility. For both star/linear and star/star blends, the miscibility decreases with the increase in star functionality. When we increase the molecular weight of linear chains of star/linear mixtures the miscibility decreases. Our findings are compared with recent analytical and experimental results.

  14. Current and historical concentrations of poly and perfluorinated compounds in sediments of the northern Great Lakes - Superior, Huron, and Michigan.

    PubMed

    Codling, Garry; Hosseini, Soheil; Corcoran, Margaret B; Bonina, Solidea; Lin, Tian; Li, An; Sturchio, Neil C; Rockne, Karl J; Ji, Kyunghee; Peng, Hui; Giesy, John P

    2018-05-01

    Current and historical concentrations of 22 poly- and perfluorinated compounds (PFASs) in sediment collected from Lake Superior and northern Lake Michigan in 2011 and Lake Huron in 2012 are reported. The sampling was performed in two ways, Ponar grabs of surface sediments for current spatial distribution across the lake and dated cores for multi-decadal temporal trends. Mean concentrations of the sum of PFASs (∑PFASs) were 1.5, 4.6 and 3.1 ng g -1 dry mas (dm) in surface sediments for Lakes Superior, Michigan and Huron, respectively. Of the five Laurentian Lakes, the watersheds of Superior and Huron are the less densely populated by humans, and concentrations observed were typically less and from more diffuse sources, due to lesser urbanization and industrialization. However, some regions of greater concentrations were observed and might indicate more local, point sources. In core samples concentrations ranged from 7 that include perfluoro-n-octane sulfonate (PFOS) bind more strongly to sediment, which resulted in more accurate analyses of temporal trends. Shorter-chain PFASs, such as perfluoro-n-butanoic acid which is the primary replacement for C8 PFASs that have been phased out, are more soluble and were identified in some core layers at depths corresponding to pre-production periods. Thus, analyses of temporal trends of these more soluble compounds in cores of sediments were less accurate. Total elemental fluorine (TF) and extractable organic fluorine (EOF) indicated that identified PFASs were not a significant fraction of fluorine containing compounds in sediment (<0.01% in EOF). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur–fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and themore » flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.« less

  16. Giant Pockels effect in ZnO-F films deposited on bare glasses

    NASA Astrophysics Data System (ADS)

    Kityk, I. V.; Ebothe, J.; El Hichou, A.; Addou, M.; Bougrine, A.; Sahraoui, B.

    2002-06-01

    A giant linear electro-optics (Pockels) effect (up to 17 pm V-1) (for wavelength about 435 nm) in ZnO crystalline films doped with fluorine and deposited on bare glass has been found. For description of the observed phenomenon, a complex approach including self-consistent band structure calculations together with an appropriate molecular dynamics simulation of the interface structure was applied. Experimental ellipsometric and refractive index measurements confirm an efficiency of the mentioned approach for description of the observed interface (between the film and glass) processes. The origin of the observed effect is caused by substantial non-centrosymmetric charge density distribution between the ZnO wurtzite-like crystalline films and the bare glass substrate, as well as by additional charge density polarization caused by fluorine atoms.

  17. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    NASA Astrophysics Data System (ADS)

    Nasef, Mohamed Mahmoud; Dahlan, Khairul Zaman M.

    2003-04-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures ( Tm and Tc) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (Δ Hm) and the degree of crystallinity ( Xc) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved by irradiation compared to its rapid deterioration in ETFE films, which stemmed from the degradation prompted by the presence of radiation sensitive tetrafluoroethylene (TFE) comonomer units. The elongation at break of both films drops gradually with the dose increase indicating the formation of predominant crosslinked structures at high doses. However, the response of each polymer to crosslinking and main chain scission at various irradiation doses varies from PVDF to ETFE films.

  18. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva.

    PubMed

    Krishnan, Sitaraman; Wang, Nick; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Hexemer, Alexander; Sohn, Karen E; Kramer, Edward J; Fischer, Daniel A

    2006-05-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates.

  19. Optical studies of native defects in π-conjugated donor-acceptor copolymers

    NASA Astrophysics Data System (ADS)

    Baniya, Sangita; Khanal, Dipak; Lafalce, Evan; You, Wei; Valy Vardeny, Z.

    2018-04-01

    We used multiple spectroscopies such as photoinduced absorption (PIA), magneto photoinduced absorption, and doping induced absorption for studying native defects in π-conjugated donor-acceptor copolymer chains of benzodithio-phene fluorinated benzotriazole. The PIA spectrum contains characteristic photoinduced absorption bands that are due to polarons and triplet exciton species, whose strengths have different dependencies on the modulation frequency, temperature, and laser excitation, as well as magnetic field response. We found that the native defects in the copolymer chains serve as efficient traps that ionize the photoexcited excitons, thereby generating charge carriers whose characteristic optical properties are similar, but not equal to those of intrachain polarons formed by doping. The native defects density is of the order of 1017 cm-3 indicating that most of the copolymer chains contain native defects upon synthesis; however, this does not preclude their used-for photovoltaic applications.

  20. Layer-by-Layer Assembly of Fluorine-Free Polyelectrolyte-Surfactant Complexes for the Fabrication of Self-Healing Superhydrophobic Films.

    PubMed

    Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi

    2016-11-29

    Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.

  1. Determination of fluorine by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Tarsoly, G.; Óvári, M.; Záray, Gy.

    2010-04-01

    There is a growing interest in determination of low Z elements, i.e. carbon to phosphorus, in various samples. Total reflection X-ray fluorescence spectrometry (TXRF) has been already established as a suitable trace element analytical method with low sample demand and quite good quantification limits. Recently, the determinable element range was extended towards Z = 6 (carbon). In this study, the analytical performance of the total reflection X-ray fluorescence spectrometry for determination of fluorine was investigated applying a spectrometer equipped with Cr-anode X-ray tube, multilayer monochromator, vacuum chamber, and a silicon drift detector (SDD) with ultra thin window was used. The detection limit for fluorine was found to be 5 mg L - 1 (equivalent to 10 ng absolute) in aqueous matrix. The linear range of the fluorine determination is between 15 and 500 mg L - 1 , within this range the precision is below 10%. The matrix effects of the other halogens (chlorine, bromine and iodine), and sulfate were also investigated. It has been established that the upper allowed concentration limit of the above interfering elements is 100, 200, 50 and 100 mg L - 1 for Cl, Br, I and sulfate, respectively. Moreover, the role of the pre-siliconization of the quartz carrier plate was investigated. It was found, that the presence of the silicone results in poorer analytical performance, which can be explained by the thicker sample residue and stronger self-absorption of the fluorescent radiation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suhara, Tadahiro; Kanada-En'yo, Yoshiko

    We investigate the linear-chain structures in highly excited states of {sup 14}C using a generalized molecular-orbital model, by which we incorporate an asymmetric configuration of three {alpha} clusters in the linear-chain states. By applying this model to the {sup 14}C system, we study the {sup 10}Be+{alpha} correlation in the linear-chain state of {sup 14}C. To clarify the origin of the {sup 10}Be+{alpha} correlation in the {sup 14}C linear-chain state, we analyze linear 3 {alpha} and 3{alpha} + n systems in a similar way. We find that a linear 3{alpha} system prefers the asymmetric 2{alpha} + {alpha} configuration, whose origin ismore » the many-body correlation incorporated by the parity projection. This configuration causes an asymmetric mean field for two valence neutrons, which induces the concentration of valence neutron wave functions around the correlating 2{alpha}. A linear-chain structure of {sup 16}C is also discussed.« less

  3. A mechanical comparison of linear and double-looped hung supplemental heavy chain resistance to the back squat: a case study.

    PubMed

    Neelly, Kurt R; Terry, Joseph G; Morris, Martin J

    2010-01-01

    A relatively new and scarcely researched technique to increase strength is the use of supplemental heavy chain resistance (SHCR) in conjunction with plate weights to provide variable resistance to free weight exercises. The purpose of this case study was to determine the actual resistance being provided by a double-looped versus a linear hung SHCR to the back squat exercise. The linear technique simply hangs the chain directly from the bar, whereas the double-looped technique uses a smaller chain to adjust the height of the looped chain. In both techniques, as the squat descends, chain weight is unloaded onto the floor, and as the squat ascends, chain weight is progressively loaded back as resistance. One experienced and trained male weight lifter (age = 33 yr; height = 1.83 m; weight = 111.4 kg) served as the subject. Plate weight was set at 84.1 kg, approximately 50% of the subject's 1 repetition maximum. The SHCR was affixed to load cells, sampling at a frequency of 500 Hz, which were affixed to the Olympic bar. Data were collected as the subject completed the back squat under the following conditions: double-looped 1 chain (9.6 kg), double-looped 2 chains (19.2 kg), linear 1 chain, and linear 2 chains. The double-looped SHCR resulted in a 78-89% unloading of the chain weight at the bottom of the squat, whereas the linear hanging SHCR resulted in only a 36-42% unloading. The double-looped technique provided nearly 2 times the variable resistance at the top of the squat compared with the linear hanging technique, showing that attention must be given to the technique used to hang SHCR.

  4. Quantitative analysis of sitagliptin using the (19)F-NMR method: a universal technique for fluorinated compound detection.

    PubMed

    Zhang, Fen-Fen; Jiang, Meng-Hong; Sun, Lin-Lin; Zheng, Feng; Dong, Lei; Shah, Vishva; Shen, Wen-Bin; Ding, Ya

    2015-01-07

    To expand the application scope of nuclear magnetic resonance (NMR) technology in quantitative analysis of pharmaceutical ingredients, (19)F nuclear magnetic resonance ((19)F-NMR) spectroscopy has been employed as a simple, rapid, and reproducible approach for the detection of a fluorine-containing model drug, sitagliptin phosphate monohydrate (STG). ciprofloxacin (Cipro) has been used as the internal standard (IS). Influential factors, including the relaxation delay time (d1) and pulse angle, impacting the accuracy and precision of spectral data are systematically optimized. Method validation has been carried out in terms of precision and intermediate precision, linearity, limit of detection (LOD) and limit of quantification (LOQ), robustness, and stability. To validate the reliability and feasibility of the (19)F-NMR technology in quantitative analysis of pharmaceutical analytes, the assay result has been compared with that of (1)H-NMR. The statistical F-test and student t-test at 95% confidence level indicate that there is no significant difference between these two methods. Due to the advantages of (19)F-NMR, such as higher resolution and suitability for biological samples, it can be used as a universal technology for the quantitative analysis of other fluorine-containing pharmaceuticals and analytes.

  5. Analysis of Nuclear Factor-κB (NF-κB) Essential Modulator (NEMO) Binding to Linear and Lysine-linked Ubiquitin Chains and Its Role in the Activation of NF-κB*

    PubMed Central

    Kensche, Tobias; Tokunaga, Fuminori; Ikeda, Fumiyo; Goto, Eiji; Iwai, Kazuhiro; Dikic, Ivan

    2012-01-01

    Nuclear factor-κB (NF-κB) essential modulator (NEMO), a component of the inhibitor of κB kinase (IKK) complex, controls NF-κB signaling by binding to ubiquitin chains. Structural studies of NEMO provided a rationale for the specific binding between the UBAN (ubiquitin binding in ABIN and NEMO) domain of NEMO and linear (Met-1-linked) di-ubiquitin chains. Full-length NEMO can also interact with Lys-11-, Lys-48-, and Lys-63-linked ubiquitin chains of varying length in cells. Here, we show that purified full-length NEMO binds preferentially to linear ubiquitin chains in competition with lysine-linked ubiquitin chains of defined length, including long Lys-63-linked deca-ubiquitins. Linear di-ubiquitins were sufficient to activate both the IKK complex in vitro and to trigger maximal NF-κB activation in cells. In TNFα-stimulated cells, NEMO chimeras engineered to bind exclusively to Lys-63-linked ubiquitin chains mediated partial NF-κB activation compared with cells expressing NEMO that binds to linear ubiquitin chains. We propose that NEMO functions as a high affinity receptor for linear ubiquitin chains and a low affinity receptor for long lysine-linked ubiquitin chains. This phenomenon could explain quantitatively distinct NF-κB activation patterns in response to numerous cell stimuli. PMID:22605335

  6. Fluorine substitution and nonconventional OH...pi intramolecular bond: high-resolution UV spectroscopy and ab initio calculations of 2-(p-fluorophenyl)ethanol.

    PubMed

    Karaminkov, Rosen; Chervenkov, Sotir; Neusser, Hans J

    2008-05-21

    The para-fluorinated flexible neurotransmitter analogue 2-phenylethanol has been investigated by highly resolved resonance-enhanced two-photon ionisation two-colour UV laser spectroscopy with mass resolution and ab initio structural optimisations and energy calculations. Two stable conformations, gauche and anti, separated by a high potential barrier have been identified in the cold molecular beam by rotational analysis of the vibronic band structures. The theoretically predicted higher-lying conformations most likely relax to these two structures during the adiabatic expansion. The lowest-energy gauche conformer is stabilised by an intramolecular nonconventional OH...pi-type hydrogen bond between the terminal OH group of the side chain and the pi electrons of the phenyl ring. The good agreement between the experimental and theoretical results demonstrates that even the substitution with a strongly electronegative atom of 2-phenylethanol at the para position has no noticeable effect on the strength and orientation of the OH...pi bond.

  7. Homoepitaxial graphene tunnel barriers for spin transport

    NASA Astrophysics Data System (ADS)

    Friedman, Adam

    Tunnel barriers are key elements for both charge-and spin-based electronics, offering devices with reduced power consumption and new paradigms for information processing. Such devices require mating dissimilar materials, raising issues of heteroepitaxy, interface stability, and electronic states that severely complicate fabrication and compromise performance. Graphene is the perfect tunnel barrier. It is an insulator out-of-plane, possesses a defect-free, linear habit, and is impervious to interdiffusion. Nonetheless, true tunneling between two stacked graphene layers is not possible in environmental conditions (magnetic field, temperature, etc.) usable for electronics applications. However, two stacked graphene layers can be decoupled using chemical functionalization. We demonstrate successful tunneling, charge, and spin transport with a fluorinated graphene tunnel barrier on a graphene channel. We show that while spin transport stops short of room temperature, spin polarization efficiency values are the highest of any graphene spin devices. We also demonstrate that hydrogenation of graphene can also be used to create a tunnel barrier. We begin with a four-layer stack of graphene and hydrogenate the top few layers to decouple them from the graphene transport channel beneath. We demonstrate successful tunneling by measuring non-linear IV curves and a weakly temperature dependent zero-bias resistance. We demonstrate lateral transport of spin currents in non-local spin-valve structures and determine spin lifetimes with the non-local Hanle effect to be commensurate with previous studies. The measured spin polarization efficiencies for hydrogenated graphene are higher than most oxide tunnel barriers on graphene, but not as high as with fluorinated graphene tunnel barriers. However, here we show that spin transport persists up to room temperature. Our results for the hydrogenated graphene tunnel barriers are compared with fluorinated tunnel barriers and we discuss the possibility that magnetic moments in the graphene tunnel barriers affect the spin transport of our devices.

  8. Tracking the Effect of Adatom Electronegativity on Systematically Modified AlGaN/GaN Schottky Interfaces.

    PubMed

    Reiner, Maria; Pietschnig, Rudolf; Ostermaier, Clemens

    2015-10-21

    The influence of surface modifications on the Schottky barrier height for gallium nitride semiconductor devices is frequently underestimated or neglected in investigations thereof. We show that a strong dependency of Schottky barrier heights for nickel/aluminum-gallium nitride (0001) contacts on the surface terminations exists: a linear correlation of increasing barrier height with increasing electronegativity of superficial adatoms is observed. The negatively charged adatoms compete with the present nitrogen over the available gallium (or aluminum) orbital to form an electrically improved surface termination. The resulting modification of the surface dipoles and hence polarization of the surface termination causes observed band bending. Our findings suggest that the greatest Schottky barrier heights are achieved by increasing the concentration of the most polarized fluorine-gallium (-aluminum) bonds at the surface. An increase in barrier height from 0.7 to 1.1 eV after a 15% fluorine termination is obtained with ideality factors of 1.10 ± 0.05. The presence of surface dipoles that are changing the surface energy is proven by the sessile drop method as the electronegativity difference and polarization influences the contact angle. The extracted decrease in the Lifshitz-van-der-Waals component from 48.8 to 40.4 mJ/m(2) with increasing electronegativity and concentration of surface adatoms confirms the presence of increasing surface dipoles: as the polarizability of equally charged anions decreases with increasing electronegativity, the diiodomethane contact angles increase significantly from 14° up to 39° after the 15% fluorine termination. Therefore, a linear correlation between increasing anion electronegativity of the (Al)GaN termination and total surface energy within a 95% confidence interval is obtained. Furthermore, our results reveal a generally strong Lewis basicity of (Al)GaN surfaces explaining the high chemical inertness of the surfaces.

  9. Representing Lumped Markov Chains by Minimal Polynomials over Field GF(q)

    NASA Astrophysics Data System (ADS)

    Zakharov, V. M.; Shalagin, S. V.; Eminov, B. F.

    2018-05-01

    A method has been proposed to represent lumped Markov chains by minimal polynomials over a finite field. The accuracy of representing lumped stochastic matrices, the law of lumped Markov chains depends linearly on the minimum degree of polynomials over field GF(q). The method allows constructing the realizations of lumped Markov chains on linear shift registers with a pre-defined “linear complexity”.

  10. Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S. G.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1976-01-01

    Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc.

  11. Comparison of PFDA (Perfluoro-n-Decanoic Acid) and TCDD on Heart Membranes.

    DTIC Science & Technology

    1986-06-18

    AD-A171 960 COMPARISON OF PFDA ( PERFLUORO -N-DECANOIC ACID) AND TCDD 1/1 ON HEART NEMBRANES(U) WRIGHT STATE UNIY DAYTON OH SCHOOL OF MEDICINE A E...1986) Toxicol. Appl. Pharmacol. Perfluoro -n-decanoic acid ( PFDA ) is a synthetic chemical resembling a 10 carbon fatty acid. Several studies have...3 INTRODUCTION Perfluoro -n-decanoic acid ( PFDA ; nonadecafluorodecanoic acid, C10 F19 0 2H) is a straight-chain 10 carbon carboxylic acid with fluorine

  12. Prenatal exposure to perfluroalkyl substances and children’s IQ: The Taiwan maternal and infant cohort study

    PubMed Central

    Wang, Yan; Rogan, Walter J.; Chen, Hsin-Yi; Chen, Pau-Chung; Su, Pen-Hua; Chen, Hsiao-Yen; Wang, Shu-Li

    2017-01-01

    Background Perfluoroalkyl substances (PFASs) are a group of fluorinated organic substances that are widely used in consumer products and are often detectable in human tissues. Human studies on prenatal exposure to PFASs and neurodevelopment in children are few and inconsistent. Methods In the Taiwan Maternal and Infant Cohort Study, we collected serum samples from pregnant women during the third trimester and measured concentrations of 9 PFASs using a high performance liquid chromatography system. A subsample of their children was assessed with full scale intelligence quotient (FSIQ), verbal IQ (VIQ) and performance IQ (PIQ) at both age 5 (n = 120) and 8 years (n = 120). We used multivariate linear regression models to examine prenatal PFAS exposure in relation to IQ scores at each age period. Results Prenatal perfluoroundecanoic acid (PFUnDA) concentrations were inversely associated with children’s PIQ scores at age 5 years, with an adjusted coefficient (β) of −1.6 (95% confidence interval [CI]:(−3.0, −0.2). When children reached 8 years, most of the prenatal PFASs showed inverse association with children’s FSIQ, VIQ and PIQ scores. Among them, prenatal perfluorononanoic acid (PFNA) reached significance. Children with higher prenatal PFNA levels had lower VIQ with an adjusted of −2.1 (95% CI:−3.9, −0.2). Conclusions We found two prenatal PFAS exposure, both long-chain PFASs, in association with decreased IQ test scores in children. Our findings suggest more studies on long-chain PFASs and children’s neurodevelopment are needed. PMID:26205657

  13. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension

    PubMed Central

    Smit, Judith J; Monteferrario, Davide; Noordermeer, Sylvie M; van Dijk, Willem J; van der Reijden, Bert A; Sixma, Titia K

    2012-01-01

    Activation of the NF-κB pathway requires the formation of Met1-linked ‘linear' ubiquitin chains on NEMO, which is catalysed by the Linear Ubiquitin Chain Assembly Complex (LUBAC) E3 consisting of HOIP, HOIL-1L and Sharpin. Here, we show that both LUBAC catalytic activity and LUBAC specificity for linear ubiquitin chain formation are embedded within the RING-IBR-RING (RBR) ubiquitin ligase subunit HOIP. Linear ubiquitin chain formation by HOIP proceeds via a two-step mechanism involving both RING and HECT E3-type activities. RING1-IBR catalyses the transfer of ubiquitin from the E2 onto RING2, to transiently form a HECT-like covalent thioester intermediate. Next, the ubiquitin is transferred from HOIP onto the N-terminus of a target ubiquitin. This transfer is facilitated by a unique region in the C-terminus of HOIP that we termed ‘Linear ubiquitin chain Determining Domain' (LDD), which may coordinate the acceptor ubiquitin. Consistent with this mechanism, the RING2-LDD region was found to be important for NF-κB activation in cellular assays. These data show how HOIP combines a general RBR ubiquitin ligase mechanism with unique, LDD-dependent specificity for producing linear ubiquitin chains. PMID:22863777

  14. Linear ubiquitin chains: enzymes, mechanisms and biology

    PubMed Central

    2017-01-01

    Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. PMID:28446710

  15. Linear ubiquitin chains: enzymes, mechanisms and biology.

    PubMed

    Rittinger, Katrin; Ikeda, Fumiyo

    2017-04-01

    Ubiquitination is a versatile post-translational modification that regulates a multitude of cellular processes. Its versatility is based on the ability of ubiquitin to form multiple types of polyubiquitin chains, which are recognized by specific ubiquitin receptors to induce the required cellular response. Linear ubiquitin chains are linked through Met 1 and have been established as important players of inflammatory signalling and apoptotic cell death. These chains are generated by a ubiquitin E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) that is thus far the only E3 ligase capable of forming linear ubiquitin chains. The complex consists of three subunits, HOIP, HOIL-1L and SHARPIN, each of which have specific roles in the observed biological functions of LUBAC. Furthermore, LUBAC has been found to be associated with OTULIN and CYLD, deubiquitinases that disassemble linear chains and counterbalance the E3 ligase activity of LUBAC. Gene mutations in HOIP, HOIL-1L and OTULIN are found in human patients who suffer from autoimmune diseases, and HOIL-1L mutations are also found in myopathy patients. In this paper, we discuss the mechanisms of linear ubiquitin chain generation and disassembly by their respective enzymes and review our current understanding of their biological functions and association with human diseases. © 2017 The Authors.

  16. Linear and nonlinear dynamics of isospectral granular chains

    NASA Astrophysics Data System (ADS)

    Chaunsali, R.; Xu, H.; Yang, J.; Kevrekidis, P. G.

    2017-04-01

    We study the dynamics of isospectral granular chains that are highly tunable due to the nonlinear Hertz contact law interaction between the granular particles. The system dynamics can thus be tuned easily from being linear to strongly nonlinear by adjusting the initial compression applied to the chain. In particular, we introduce both discrete and continuous spectral transformation schemes to generate a family of granular chains that are isospectral in their linear limit. Inspired by the principle of supersymmetry in quantum systems, we also introduce a methodology to add or remove certain eigenfrequencies, and we demonstrate numerically that the corresponding physical system can be constructed in the setting of one-dimensional granular crystals. In the linear regime, we highlight the similarities in the elastic wave transmission characteristics of such isospectral systems, and emphasize that the presented mathematical framework allows one to suitably tailor the wave transmission through a general class of granular chains, both ordered and disordered. Moreover, we show how the dynamic response of these structures deviates from its linear limit as we introduce Hertzian nonlinearity in the chain and how nonlinearity breaks the notion of linear isospectrality.

  17. Method for fluorinating coal

    DOEpatents

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  18. Handling and Use of Fluorine and Fluorine - Oxygen Mixtures in Rocket Systems,

    DTIC Science & Technology

    1967-01-01

    with nitroso rubber, which could normally be expected to burn when exposed to the flow of liquid fluorine. The materials tested included (1) Nitroso...the system free of contamination. Most common metals of construction are compatible for use in a fluorine environment. Metals can burn with fluorine...conditions of contact), fluorinated compounds in their highest state of oxidation, and a few fluorinated polymers. Even these polymers may burn in fluorine

  19. Low Temperature Fluorination of Aerosol and Condensed Phase Sol Suspensions of Hydrocarbons Utilizing Elemental Fluorine.

    DTIC Science & Technology

    1980-10-01

    NEOPENTANE FLUORINATIONS Ref. No. Structure Name NA F-C(CF3)3 perfluoroisobutane NB C (CF3)4. perfluoroneopentane 14 ,3 2 NC CFH-C(CF3)3...Photochemical Fluorination Fluorination Perfluorination El~mental Fluorine 20. APOWACT (Continue on rover** aide It necessary and identify by block...aerosol fluorinator capable of achieving high yields of perfluorinated hydrocarbons via a photo- chemical fluorination stage. The aerosol system also

  20. Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery.

    PubMed

    Wang, Mingming; Cheng, Yiyun

    2016-12-01

    Fluorinated dendrimers have shown great promise in gene delivery due to their high transfection efficacy and low cytotoxicity, however, the structure-activity relationships of these polymers still remain unknown. Herein, we synthesized a library of fluorinated dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results show that fluorination significantly improves the transfection efficacy of G4-G7 polyamidoamine dendrimers in DNA and siRNA delivery. Fluorination on generation 5 dendrimer yields the most efficient polymers in gene delivery, and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. All the fluorinated dendrimers cause minimal toxicity on the transfected cells at their optimal transfection conditions. This study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. The structure-activity relationships of fluorinated dendrimers in gene delivery is still unknown and the behavior of fluorinated dendrimers in siRNA delivery has not yet been investigated. Herein, we synthesized a library of fluorinated PAMAM dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results clearly indicate that fluorination significantly improves the transfection efficacy of dendrimers in both DNA and siRNA delivery without causing additional toxicity. G5 PAMAM dendrimer is best scaffold to synthesize fluorinated dendrimers and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. This systematic study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Design and analysis of linear cascade DNA hybridization chain reactions using DNA hairpins

    NASA Astrophysics Data System (ADS)

    Bui, Hieu; Garg, Sudhanshu; Miao, Vincent; Song, Tianqi; Mokhtar, Reem; Reif, John

    2017-01-01

    DNA self-assembly has been employed non-conventionally to construct nanoscale structures and dynamic nanoscale machines. The technique of hybridization chain reactions by triggered self-assembly has been shown to form various interesting nanoscale structures ranging from simple linear DNA oligomers to dendritic DNA structures. Inspired by earlier triggered self-assembly works, we present a system for controlled self-assembly of linear cascade DNA hybridization chain reactions using nine distinct DNA hairpins. NUPACK is employed to assist in designing DNA sequences and Matlab has been used to simulate DNA hairpin interactions. Gel electrophoresis and ensemble fluorescence reaction kinetics data indicate strong evidence of linear cascade DNA hybridization chain reactions. The half-time completion of the proposed linear cascade reactions indicates a linear dependency on the number of hairpins.

  2. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery.

    PubMed

    He, Bingwei; Wang, Yitong; Shao, Naimin; Chang, Hong; Cheng, Yiyun

    2015-08-01

    Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen

    NASA Astrophysics Data System (ADS)

    Zhao, Ni; Nie, Yongjie; Li, Shengtao

    2018-04-01

    Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.

  4. Macromolecular 'size' and 'hardness' drives structure in solvent-swollen blends of linear, cyclic, and star polymers.

    PubMed

    Gartner, Thomas E; Jayaraman, Arthi

    2018-01-17

    In this paper, we apply molecular simulation and liquid state theory to uncover the structure and thermodynamics of homopolymer blends of the same chemistry and varying chain architecture in the presence of explicit solvent species. We use hybrid Monte Carlo (MC)/molecular dynamics (MD) simulations in the Gibbs ensemble to study the swelling of ∼12 000 g mol -1 linear, cyclic, and 4-arm star polystyrene chains in toluene. Our simulations show that the macroscopic swelling response is indistinguishable between the various architectures and matches published experimental data for the solvent annealing of linear polystyrene by toluene vapor. We then use standard MD simulations in the NPT ensemble along with polymer reference interaction site model (PRISM) theory to calculate effective polymer-solvent and polymer-polymer Flory-Huggins interaction parameters (χ eff ) in these systems. As seen in the macroscopic swelling results, there are no significant differences in the polymer-solvent and polymer-polymer χ eff between the various architectures. Despite similar macroscopic swelling and effective interaction parameters between various architectures, the pair correlation function between chain centers-of-mass indicates stronger correlations between cyclic or star chains in the linear-cyclic blends and linear-star blends, compared to linear chain-linear chain correlations. Furthermore, we note striking similarities in the chain-level correlations and the radius of gyration of cyclic and 4-arm star architectures of identical molecular weight. Our results indicate that the cyclic and star chains are 'smaller' and 'harder' than their linear counterparts, and through comparison with MD simulations of blends of soft spheres with varying hardness and size we suggest that these macromolecular characteristics are the source of the stronger cyclic-cyclic and star-star correlations.

  5. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    PubMed

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  6. Fabrication of Co3O4 mesoporous thin films by using cobalt/chitosan precursor on fluorine-doped tin oxide glass

    NASA Astrophysics Data System (ADS)

    Yang, Hui-Chia; Tsai, Jung-Che

    2017-06-01

    For the development of high-performance and low-cost electrode materials, many alternative materials have been fabricated by various groups. Among these materials, Co3O4 has been demonstrated to be a promising candidate for pseudocapacitors because of its low potential environmental pollution, low cost, and extremely high theoretical specific capacitance. Chitosan, a linear polysaccharide produced by the deacetylation of chitin, is a nontoxic, tissue-compatible polymeric biomaterial. It is usually used to eliminate or filter the heavy metals in wastewater. That is, chitosan can act as a deliverer of metal ions and a nanostructure constructer of metals (or metal oxides). In this study, a facile approach is developed to synthesize mesoporous cobalt oxide thin films on fluorine-doped tin oxide (FTO)-coated glass with environmentally friendly chitosan, which chelates cobalt ions.

  7. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twicemore » less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.« less

  8. Rapid quantification of inflammation in tissue samples using perfluorocarbon emulsion and fluorine-19 nuclear magnetic resonance

    PubMed Central

    Ahrens, Eric T.; Young, Won-Bin; Xu, Hongyan; Pusateri, Lisa K.

    2016-01-01

    Quantification of inflammation in tissue samples can be a time-intensive bottleneck in therapeutic discovery and preclinical endeavors. We describe a versatile and rapid approach to quantitatively assay macrophage burden in intact tissue samples. Perfluorocarbon (PFC) emulsion is injected intravenously, and the emulsion droplets are effectively taken up by monocytes and macrophages. These ‘in situ’ labeled cells participate in inflammatory events in vivo resulting in PFC accumulation at inflammatory loci. Necropsied tissues or intact organs are subjected to conventional fluorine-19 (19F) NMR spectroscopy to quantify the total fluorine content per sample, proportional to the macrophage burden. We applied these methods to a rat model of experimental allergic encephalomyelitis (EAE) exhibiting extensive inflammation and demyelination in the central nervous system (CNS), particularly in the spinal cord. In a cohort of EAE rats, we used 19F NMR to derive an inflammation index (IFI) in intact CNS tissues. Immunohistochemistry was used to confirm intracellular colocalization of the PFC droplets within CNS CD68+ cells having macrophage morphology. The IFI linearly correlated to mRNA levels of CD68 via real-time PCR analysis. This 19F NMR approach can accelerate tissue analysis by at least an order of magnitude compared with histological approaches. PMID:21548906

  9. Structures and properties of fluorinated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Huang, K. P.; Lin, P.; Shih, H. C.

    2004-07-01

    Fluorinated amorphous carbon (a-C:F) films were deposited by radio frequency bias assisted microwave plasma electron cyclotron resonance chemical vapor deposition with tetrafluoromethane (CF4) and acetylene (C2H2) as precursors. The deposition process was performed at two flow ratios R=0.90 and R=0.97, where R=CF4/(CF4+C2H2). The samples were annealed at 300 °C for 30 min. in a N2 atmosphere. Both Fourier transform infrared and electron spectroscopy for chemical analyzer were used to characterize the a-C:F film chemical bond and fluorine concentration, respectively. A high resolution electron energy loss spectrometer was applied to detect the electronic structure. The higher CF4 flow ratio (R=0.97) produced more sp3 linear structure, and it made the a-C:F film smoother and softer. A lifetime of around 0.34 μs and an energy gap of ˜2.75 eV were observed in both the as-deposited and after annealing conditions. The short carriers lifetime in the a-C:F film made the photoluminescence peak blueshift. The annealing changed both the structure and composition of the a-C:F film. The type of fluorocarbon bond and electronic structure characterized the mechanical and physical properties of a-C:F film.

  10. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    DOE PAGES

    Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; ...

    2014-10-10

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, compositionmore » and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.« less

  11. Fluorine-fixing efficiency on calcium-based briquette: pilot experiment, demonstration and promotion.

    PubMed

    Yang, Jiao-lan; Chen, Dong-qing; Li, Shu-min; Yue, Yin-ling; Jin, Xin; Zhao, Bing-cheng; Ying, Bo

    2010-02-05

    The fluorosis derived from coal burning is a very serious problem in China. By using fluorine-fixing technology during coal burning we are able to reduce the release of fluorides in coal at the source in order to reduce pollution to the surrounding environment by coal burning pollutants as well as decrease the intake and accumulating amounts of fluorine in the human body. The aim of this study was to conduct a pilot experiment on calcium-based fluorine-fixing material efficiency during coal burning to demonstrate and promote the technology based on laboratory research. A proper amount of calcium-based fluorine sorbent was added into high-fluorine coal to form briquettes so that the fluorine in high-fluorine coal can be fixed in coal slag and its release into atmosphere reduced. We determined figures on various components in briquettes and fluorine in coal slag as well as the concentrations of indoor air pollutants, including fluoride, sulfur dioxide and respirable particulate matter (RPM), and evaluated the fluorine-fixing efficiency of calcium-based fluorine sorbents and the levels of indoor air pollutants. Pilot experiments on fluorine-fixing efficiency during coal burning as well as its demonstration and promotion were carried out separately in Guiding and Longli Counties of Guizhou Province, two areas with coal burning fluorosis problems. If the calcium-based fluorine sorbent mixed coal was made into honeycomb briquettes the average fluorine-fixing ratio in the pilot experiment was 71.8%. If the burning calcium-based fluorine-fixing bitumite was made into a coalball, the average of fluorine-fixing ratio was 77.3%. The concentration of fluoride, sulfur dioxide and PM10 of indoor air were decreased significantly. There was a 10% increase in the cost of briquettes due to the addition of calcium-based fluorine sorbent. The preparation process of calcium-based fluorine-fixing briquette is simple yet highly flammable and it is applicable to regions with abundant bitumite coal. As a small scale application, villagers may make fluorine-fixing coalballs or briquettes by themselves, achieving the optimum fluorine-fixing efficiency and reducing indoor air pollutants providing environmental and social benefits.

  12. Self-assembly and omniphobic property of fluorinated unit end-functionalized poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Junyan, Liang; Pingdi, Xu; Jingxian, Bao; Ling, He; Nan, Zhu

    2018-03-01

    The self-assembly behavior of fluorinated unit end-functionalized poly(methyl methacrylate) (PDFHM-ef-PMMA) in solution and its influence on the surface microstructure, elemental composition and omniphobic property of cast film was investigated in this work. Specifically, three mixed solutions of tetrahydrofuran (THF)/methanol (MeOH), THF/H2O and THF/H2O/MeOH in various compositions were employed separately as the selective solvents. In THF/MeOH solution, the aggregate morphologies of PDFHM-ef-PMMA changed gradually from core-shell spheres to worm, and then to elliptical vesicles as MeOH content increased. In THF/H2O solution, spherical and bowl-shaped aggregates with significantly larger sizes than those in THF/MeOH solution were favored despite lower H2O content. The further addition of MeOH to THF/H2O mixture could reduce the size of aggregate but hardly change original aggregate morphology. During the film formation process, those self-assembled aggregates in THF/MeOH solution fused with one another to form a smooth surface. When such surface was fully covered by fluorinated segments, the outstanding hexadecane and water slide-off properties and ink-resistant property required for antifouling application were demonstrated. Instead, the aggregates formed in THF/H2O/MeOH mixture were subjected to secondary aggregation of PDFHM-ef-PMMA chains during solvent evaporation, leading to the formation of a particulate film with poor adhesion towards glass plate and hexadecane-repellent property.

  13. Relationship of Water Content With Silicon and Fluorine Contents of Silicone-Hydrogel Contact Lens Materials.

    PubMed

    Dupre, Terin E; Benjamin, William J

    2018-06-25

    The relationship between water (W) content and silicon (Si) content of silicone-hydrogel (SiHy) contact lens materials was inspected using identical methodologies, equipment, and operators for materials composing 16 types of commercially available SiHy contact lenses. Fluorine (F) content was included in the analysis for the three materials also containing a fluoropolymer. One type of lens consisted of a bulk SiHy material coated with thin layers of conventional hydrogel. SiHy materials were obtained in the form of 16 contact lens brands purchased on the open market in a common range of refractive powers from -3 to +6 D in single lots. All test lenses were equilibrated at room temperature in a standard saline recommended in the American National Standards Institute Z80.20-2016 and International Organization for Standardization (ISO) 18369-4:2017 standards. W content was obtained gravimetrically, in %, according to those standards for 16 lenses of each SiHy material. Si content was determined in % using inductively coupled plasma optical emission spectroscopy for four digested lenses of each material. F content was determined in % using an ion-selective electrode for four combusted lenses of each of the three fluorinated SiHy materials. W and Si contents of the bulk SiHy material of the coated lens were estimated by computational exclusion of the hydrogel layers. The linear coefficients of determination (R, n=16) were -0.7576 (relating mean dry Si content [n=4] to mean W content [n=16]) and -0.8819 (relating mean hydrated Si content [n=4] to mean W content [n=16]). When the 4 SiHy materials that were fluorinated or coated were excluded from the analysis, the R values (n=12) were -0.8869 and -0.9263, respectively. When F contents and the coating were added to the assessments, the linear coefficients of determination (R, n=16) became -0.8948 (relating mean dry [Si+F] content to mean W content) and -0.9397 (relating mean hydrated [Si+F] content to mean W content). There is a fundamental negative linear relationship between Si and W contents for SiHy contact lens materials above 35% W content that is followed when F content and hydrogel coatings are empirically added to the analysis below 35% W content. The relationship was tightest for hydrated (Si+F) content and W content, for which the regression equation had an R of -0.9397: (Si+F)=-0.3073 (W)+22.148. The relationship between (Si+F) and W therefore seems to be based on composition rather than structure of available SiHy contact lens materials.

  14. Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan

    2016-11-21

    This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blendmore » using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.« less

  15. Nonmetallic Material Compatibility with Liquid Fluorine

    NASA Technical Reports Server (NTRS)

    Price, Harold G , Jr; Douglass, Howard W

    1957-01-01

    Static tests were made on the compatibility of liquid fluorine with several nonmetallic materials at -3200 F and at pressures of 0 and 1500 pounds per square inch gage. The results are compared with those from previous work with gaseous fluorine at the same pressures, but at atmospheric temperature. In general, although environmental effects were not always consistent, reactivity was least with the low-temperature, low-pressure liquid fluorine. Reactivity was greatest with the warm, high-pressure gaseous fluorine. None of the liquids and greases tested was found to be entirely suitable for use in fluorine systems. Polytrifluorochloroethylene and N-43, the formula for which is (C4F9)3N, did not react with liquid fluorine at atmospheric pressure or 1500 pounds per square inch gage under static conditions, but they did react when injected into liquid fluorine at 1500 pounds per square inch gage; they also reacted with gaseous fluorine at 1500 pounds per square inch gage. While water did not react with liquid fluorine at 1500 pounds per square inch gage, it is known to react violently with fluorine under other conditions. The pipe-thread lubricant Q-Seal did not react with liquid fluorine, but did react with gaseous fluorine at 1500 pounds per square inch gage. Of the solids, ruby (Al2O3) and Teflon did not react under the test conditions. The results show that the compatibility of fluorine with nonmetals depends on the state of the fluorine and the system design.

  16. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  17. Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks

    DOE PAGES

    Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...

    2017-02-24

    The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less

  18. Exceptional sensitivity of metal-aryl bond energies to ortho-fluorine substituents: influence of the metal, the coordination sphere, and the spectator ligands on M-C/H-C bond energy correlations.

    PubMed

    Clot, Eric; Mégret, Claire; Eisenstein, Odile; Perutz, Robin N

    2009-06-10

    DFT calculations are reported of the energetics of C-H oxidative addition of benzene and fluorinated benzenes, Ar(F)H (Ar(F) = C(6)F(n)H(5-n), n = 0-5) at ZrCp(2) (Cp = eta(5)-C(5)H(5)), TaCp(2)H, TaCp(2)Cl, WCp(2), ReCp(CO)(2), ReCp(CO)(PH(3)), ReCp(PH(3))(2), RhCp(PH(3)), RhCp(CO), IrCp(PH(3)), IrCp(CO), Ni(H(2)PCH(2)CH(2)PH(2)), Pt(H(2)PCH(2)CH(2)PH(2)). The change in M-C bond energy of the products fits a linear function of the number of fluorine substituents, with different coefficients corresponding to ortho-, meta-, and para-fluorine. The values of the ortho-coefficient range from 20 to 32 kJ mol(-1), greatly exceeding the values for the meta- and para-coefficients (2.0-4.5 kJ mol(-1)). Similarly, the H-C bond energies of Ar(F)H yield ortho- and para-coefficients of 10.4 and 3.4 kJ mol(-1), respectively, and a negligible meta-coefficient. These results indicate a large increase in the M-C bond energy with ortho-fluorine substitution on the aryl ring. Plots of D(M-C) vs D(H-C) yield slopes R(M-C/H-C) that vary from 1.93 to 3.05 with metal fragment, all in excess of values of 1.1-1.3 reported with other hydrocarbyl groups. Replacement of PH(3) by CO decreases R(M-C/H-C) significantly. For a given ligand set and metals in the same group of the periodic table, the value of R(M-C/H-C) does not increase with the strength of the M-C bond. Calculations of the charge on the aryl ring show that variations in ionicity of the M-C bonds correlate with variations in M-C bond energy. This strengthening of metal-aryl bonds accounts for numerous experimental results that indicate a preference for ortho-fluorine substituents.

  19. Dental caries in fluorine exposure areas in China.

    PubMed

    Binbin, Wang; Baoshan, Zheng; Hongying, Wang; Yakun, Ping; Yuehua, Tao

    2005-12-01

    In this study, fluorine concentrations in drinking water and in urine of residents from a fluorine exposure area in China were tested. DMFT (average number of decayed, missing and filled teeth) of local residents in four age groups were also determined. The results of the study indicate that in fluorine exposure areas, there is a strictly positive correlation between fluorine content in urine and the fluorine content in drinking water. Effect of dental caries by high fluorine content drinking water is different for the different age groups. High fluorine content drinking water is more dangerous for 15-and 18-year-old groups than 5- and 12-year-old groups.

  20. Investigation of UF/sub 6/ behavior in a fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, W.R.

    Reactions between UF/sub 6/ and combustible gases and the potential for UF/sub 6/-filled cylinders to rupture when exposed to fire are addressed. Although the absence of kinetic data prevents specific identification and quantification of the chemical species formed, potential reaction products resulting from the release of UF/sub 6/ into a fire include UF/sub 4/, UO/sub 2/F/sub 2/, HF, C, CF/sub 4/,COF/sub 2/, and short chain, fluorinated or partially fluorinated hydrocarbons. Such a release adds energy to a fire relative to normal combustion reactions. Time intervals to an assumed point of rupture for UF/sub 6/-filled cylinders exposed to fire are estimatedmore » conservatively. Several related studies are also summarized, including a test series in which small UF/sub 6/-filled cylinders were immersed in fire resulting in valve failures and explosive ruptures. It is concluded that all sizes of UF/sub 6/ cylinders currently in use may rupture within 30 minutes when totally immersed in a fire. For cylinders adjacent to fires, rupture of the larger cylinders appears much less likely.« less

  1. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue.

    PubMed

    Pless, Stephan A; Millen, Kat S; Hanek, Ariele P; Lynch, Joseph W; Lester, Henry A; Lummis, Sarah C R; Dougherty, Dennis A

    2008-10-22

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains predominantly Phe residues. Homology models suggest that two of these Phe side chains, Phe159 and Phe207, and possibly a third, Phe63, are positioned such that they could contribute to a cation-pi interaction with the primary amine of glycine. Here, we test this hypothesis by incorporation of a series of fluorinated Phe derivatives using unnatural amino acid mutagenesis. The data reveal a clear correlation between the glycine EC(50) value and the cation-pi binding ability of the fluorinated Phe derivatives at position 159, but not at positions 207 or 63, indicating a single cation-pi interaction between glycine and Phe159. The data thus provide an anchor point for locating glycine in its binding site, and demonstrate for the first time a cation-pi interaction between Phe and a neurotransmitter.

  2. The Effect of Terminal Substitution on the Helical Carbon Structure of Fluoro-Alkane Chains: a Pure Rotational Study of CH2OH-Cn-1F2n-1 (n = 4, 5,& 6)

    NASA Astrophysics Data System (ADS)

    Schwartz, Aaron Z. A.; Maturo, Mark P.; Obenchain, Daniel A.; Cooke, S. A.

    2016-06-01

    Continuing a series of studies to investigate the change in structure of hydrocarbons as the amount of fluorination is increased to varying degrees of substitution, we present a survey on the change in the helical nature of the fluorinated carbon backbone when a -CH2OH group is substituted for a terminal - CF3 group. Spectra for 1H,1H-heptafluorobutan-1-ol, 1H,1H-nonafluoropentan-1-ol, and 1H,1H-undecafluorohexan-1-ol were collected separately using a chirped-pulse FTMW spectrometer in the range of 7-13 GHz. Only one conformation was observed for each molecule. Additional measurements of the 1H,1H-heptafluorobutan-1-ol were completed using a Balle-Flygare cavity instrument. Assignments of the singly-substituted 13C isotopologues of the 1H,1H-heptafluorobutan-1-ol were also measured. A comparison of both ab initio and experimental structures will be presented.

  3. Structure of 1-butylpyridinium tetrafluoroborate ionic liquid: quantum chemistry and molecular dynamic simulation studies.

    PubMed

    Sun, Hui; Qiao, Baofu; Zhang, Dongju; Liu, Chengbu

    2010-03-25

    Density functional theory (DFT) calculations combined with molecular dynamic (MD) simulations have been performed to show in detail the structure characteristic of 1-butylpyridinium tetrafluoroborate ([BPy(+)][BF(4)(-)]), a representative of pyridinium-based ionic liquids (ILs). It is found that the relative stability for ion pair configurations is synergically determined by the electrostatic attractions and the H-bond interactions between the ions of opposite charge. [BPy(+)][BF(4)(-)] IL possesses strong long-range ordered structure with cations and anions alternately arranging. The spatial distributions of anions and cations around the given cations are clearly shown, and T-shaped orientation is indicated to play a key role in the interaction between two pyridine rings. DFT calculations and MD simulations uniformly suggest that the H-bonds of the fluorine atoms with the hydrogen atoms on the pyridine rings are stronger than those of the fluorine atoms with the butyl chain hydrogens. The present results can offer useful information for understanding the physicochemical properties of [BPy(+)][BF(4)(-)] IL and further designing new pyridinium-based ILs.

  4. An Alkylated Indacenodithieno[3,2-b]thiophene-Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses.

    PubMed

    Fei, Zhuping; Eisner, Flurin D; Jiao, Xuechen; Azzouzi, Mohammed; Röhr, Jason A; Han, Yang; Shahid, Munazza; Chesman, Anthony S R; Easton, Christopher D; McNeill, Christopher R; Anthopoulos, Thomas D; Nelson, Jenny; Heeney, Martin

    2018-02-01

    A new synthetic route, to prepare an alkylated indacenodithieno[3,2-b]thiophene-based nonfullerene acceptor (C8-ITIC), is reported. Compared to the reported ITIC with phenylalkyl side chains, the new acceptor C8-ITIC exhibits a reduction in the optical band gap, higher absorptivity, and an increased propensity to crystallize. Accordingly, blends with the donor polymer PBDB-T exhibit a power conversion efficiency (PCE) up to 12.4%. Further improvements in efficiency are found upon backbone fluorination of the donor polymer to afford the novel material PFBDB-T. The resulting blend with C8-ITIC shows an impressive PCE up to 13.2% as a result of the higher open-circuit voltage. Electroluminescence studies demonstrate that backbone fluorination reduces the energy loss of the blends, with PFBDB-T/C8-ITIC-based cells exhibiting a small energy loss of 0.6 eV combined with a high J SC of 19.6 mA cm -2 . © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fluorine, fluorite, and fluorspar in central Colorado

    USGS Publications Warehouse

    Wallace, Alan R.

    2010-01-01

    Fluorine (F) is a widespread element that was deposited in a variety of rocks, minerals, and geologic environments in central Colorado. It occurs as a trace element, as a major component of the mineral fluorite (CaFs), and as a major economic source of fluorine in fluorspar deposits, which are massive concentrations of fluorite. This study has compiled available geochemical analyses of rocks, both unmineralized and mineralized, to determine the distribution of fluorine in specific age-lithologic categories, ranging from 1.8-giga-annum (Ga) metamorphic rocks to modern soils, throughout central Colorado. It also draws upon field studies of fluorine-rich mineral deposits, including fluorspar deposits, to decipher the nearly two-billion-year-long geologic history of fluorine in the study area, with implications for mineral-resource evaluations and exploration. The resulting compilation provides an important inventory of the naturally occurring levels and sources of fluorine that ultimately weather, erode, and become part of surface waters that are used for domestic water supplies in densely populated areas along the Colorado Front Range. Most commonly, fluorine is a trace element in virtually all rocks in the region. In the 3,798 unmineralized rocks that were analyzed for fluorine in the study area, the average fluorine content was 1,550 parts per million (ppm). The median was 640 ppm, nearly identical to the average crustal abundance of 650 ppm, and some high-fluorine rocks in the Pikes Peak area skewed the average to a value much greater than the median. Most unmineralized age-lithologic rock suites, including Proterozoic metamorphic rocks, 1.7- and 1.4-Ga granitic batholiths, Cambrian igneous rocks, Phanerozoic sedimentary rocks, and Laramide and Tertiary igneous rocks, had median fluorine values of 400 to 740 ppm fluorine. In all suites, however, a small number of analyzed samples contained more than 1 percent (10,000 ppm) fluorine. The 1.1-Ga plutonic rocks related to the Pikes Peak batholith had a mean fluorine content of 1,700 ppm, and primary magmatic fluorite and fluorite-bearing pegmatites are common throughout that igneous mass. Fluorine was deposited in many types of economic mineral deposits in central Colorado, and it currently is a significant trace element in some thermal springs. In the fluorspar deposits, fluorine contents were as high as 37 percent. Some fluorine-rich porphyry systems, such as Jamestown, had fluorine values that ranged from 200 ppm to nearly 37 percent fluorine, and veins in other deposits contained hydrothermal fluorite, although it was not ubiquitous. For the 495 samples from non-fluorspar mining districts (and excluding Jamestown), however, the median fluorine content was 990 ppm. This is above the crustal average but still relatively modest compared to the fluorspar deposits, and it indicates that the majority of the mineralizing systems in central Colorado did not deposit large amounts of fluorine. Nevertheless, the fluorine- and fluorite-rich mineral deposits could be used as guides for the evaluation and discovery of related but concealed porphyry and epithermal base- and precious-metal deposits. The Cenozoic geologic history of central Colorado included multiple periods during which fluorine-bearing rocks and mineral deposits were exposed, weathered, and eroded. This protracted history has released fluorine into soils and regoliths, and modern rainfall and snowmelt interact with these substrates to add fluorine to the hydrosphere. This study did not evaluate the fluorine contents of water or make any predictions about what areas might be major sources for dissolved fluorine. However, the abundant data that are available on fluorine in surface water and ground water can be coupled with the results of this study to provide additional insight into natural sources of fluorine in domestic drinking water.

  6. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas.

    PubMed

    Ekoue-Kovi, Kekeli; Yearick, Kimberly; Iwaniuk, Daniel P; Natarajan, Jayakumar K; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian

    2009-01-01

    We report the synthesis and in vitro antimalarial activities of more than 50 7-chloro-4-aminoquinolyl-derived sulfonamides 3-8 and 11-26, ureas 19-22, thioureas 23-26, and amides 27-54. Many of the CQ analogues prepared for this study showed submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strains of Plasmodium falciparum) and low resistance indices were obtained in most cases. Systematic variation of the side chain length and introduction of fluorinated aliphatic and aromatic termini revealed promising leads that overcome CQ resistance. In particular, sulfonamide 3 exhibiting a short side chain with a terminal dansyl moiety combined high antiplasmodial potency with a low resistance index and showed IC(50)s of 17.5 and 22.7 nM against HB3 and Dd2 parasites.

  7. Comparison of the tribological properties of fluorinated cokes and graphites

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1988-01-01

    The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.

  8. Comparison of the tribological properties of fluorinated cokes and graphites

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1987-01-01

    The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.

  9. Electronic band gaps of confined linear carbon chains ranging from polyyne to carbyne

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Rohringer, Philip; Wanko, Marius; Rubio, Angel; Waßerroth, Sören; Reich, Stephanie; Cambré, Sofie; Wenseleers, Wim; Ayala, Paola; Pichler, Thomas

    2017-12-01

    Ultralong linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes (DWCNTs), and they show a promising route to one-atom-wide semiconductors with a direct band gap. Theoretical studies predicted that this band gap can be tuned by the length of the chains, the end groups, and their interactions with the environment. However, different density functionals lead to very different values of the band gap of infinitely long carbyne. In this work, we applied resonant Raman excitation spectroscopy with more than 50 laser wavelengths to determine the band gap of long carbon chains encapsulated inside DWCNTs. The experimentally determined band gaps ranging from 2.253 to 1.848 eV follow a linear relation with Raman frequency. This lower bound is the smallest band gap of linear carbon chains observed so far. The comparison with experimental data obtained for short chains in gas phase or in solution demonstrates the effect of the DWCNT encapsulation, leading to an essential downshift of the band gap. This is explained by the interaction between the carbon chain and the host tube, which greatly modifies the chain's bond-length alternation.

  10. RECOVERY OF Pu VALUES BY FLUORINATION AND FRACTIONATION

    DOEpatents

    Brown, H.S.; Webster, D.S.

    1959-01-20

    A method is presented for the concentration and recovery of plutonium by fluorination and fractionation. A metallic mass containing uranium and plutonium is heated to 250 C and contacted with a stream of elemental fluorine. After fluorination of the metallic mass, the rcaction products are withdrawn and subjected to a distillation treatment to separate the fluorination products of uranium and to obtain a residue containing the fluorination products of plutonium.

  11. Fluorinated Graphene Prepared by Direct Fluorination of N, O-Doped Graphene Aerogel at Different Temperatures for Lithium Primary Batteries.

    PubMed

    Bi, Xu; Li, Yanyan; Qiu, Zhipeng; Liu, Chao; Zhou, Tong; Zhuo, Shuping; Zhou, Jin

    2018-06-25

    Fluorinated graphene (FG) has been a star material as a new derivative of graphene. In this paper, a series of fluorinated graphene materials are prepared by using N, O-doped graphene aerogel as precursor via a direct fluorination method, and the effect of fluorination temperature on the FG structure is investigated. The prepared FG samples are systematically characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. It is found that the structure of FG, including features such as layer size, chemical composition, chemical bond state of the component elements, etc., is significantly related to the fluorination temperature. With the change of the fluorination temperature, fluorine atoms enter the graphene framework by a substitution process of the N, O-containing groups, including residual phenol, ether, carbonyl groups, or C⁻N groups, and the addition to CC bonds, subsequently forming a fluoride with different fluorine contents. The fluorine content increases as the fluorination temperature increases from 200 °C to 300 °C, but decreases at a fluorination temperature of 350 °C due to the decomposition of the fluorinated graphene. The prepared FG samples are used as cathode material for lithium primary batteries. The FG sample prepared at 300 °C gives a high specific capacity of 632 mAh g −1 and a discharge plateau of 2.35 V at a current density of 10 mA g −1 , corresponding to a high energy density of 1485 Wh kg −1 .

  12. Biodegradability of fluorinated fire-fighting foams in water.

    PubMed

    Bourgeois, A; Bergendahl, J; Rangwala, A

    2015-07-01

    Fluorinated fire-fighting foams may be released into the environment during fire-fighting activities, raising concerns due to the potential environmental and health impacts for some fluorinated organics. The current study investigated (1) the biodegradability of three fluorinated fire-fighting foams, and (2) the applicability of current standard measures used to assess biodegradability of fluorinated fire-fighting foams. The biodegradability of three fluorinated fire-fighting foams was evaluated using a 28-day dissolved organic carbon (DOC) Die-Away Test. It was found that all three materials, diluted in water, achieved 77-96% biodegradability, meeting the criteria for "ready biodegradability". Defluorination of the fluorinated organics in the foam during biodegradation was measured using ion chromatography. It was found that the fluorine liberated was 1-2 orders of magnitude less than the estimated initial amount, indicating incomplete degradation of fluorinated organics, and incomplete CF bond breakage. Published biodegradability data may utilize biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) metrics to quantify organics. COD and TOC of four fluorinated compounds were measured and compared to the calculated carbon content or theoretical oxygen demand. It was found that the standard dichromate-based COD test did not provide an accurate measure of fluorinated organic content. Thus published biodegradability data using COD for fluorinated organics quantification must be critically evaluated for validity. The TOC measurements correlated to an average of 91% of carbon content for the four fluorinated test substances, and TOC is recommended for use as an analytical parameter in fluorinated organics biodegradability tests. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fluorinated graphenes as advanced biosensors - effect of fluorine coverage on electron transfer properties and adsorption of biomolecules

    NASA Astrophysics Data System (ADS)

    Urbanová, Veronika; Karlický, František; Matěj, Adam; Šembera, Filip; Janoušek, Zbyněk; Perman, Jason A.; Ranc, Václav; Čépe, Klára; Michl, Josef; Otyepka, Michal; Zbořil, Radek

    2016-06-01

    Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms.Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms. Electronic supplementary information (ESI) available: SEM, HRTEM, and AFM images the sheet in pristine graphene sample, survey XPS spectrum, high resolution C 1s XPS spectrum, and Raman spectrum of pristine graphene precursor used for controlled fluorination, survey and high resolution F 1s XPS spectra of the CF0.084, CF0.158, and CF0.218 samples, EDS chemical mapping of fluorine in CF0.158, contact angle measurement of CF0.084, CF0.158, CF0.218, and HOPG, and additional electrochemical data. See DOI: 10.1039/c6nr00353b

  14. Catalysis for Fluorination and Trifluoromethylation

    PubMed Central

    Furuya, Takeru; Kamlet, Adam S.; Ritter, Tobias

    2011-01-01

    Preface Recent advances in catalysis have made the incorporation of fluorine into complex organic molecules easier than ever before, but selective, general, and practical fluorination reactions remain sought after. Fluorination of molecules often imparts desirable properties such as metabolic and thermal stability, and fluorinated molecules are therefore frequently used as pharmaceuticals or materials. Even with the latest advances in chemistry, carbon–fluorine bond formation in complex molecules is still a significant challenge. Within the last few years, new reactions to make organofluorides have emerged and exemplify how to overcome some of the intricate challenges associated with fluorination. PMID:21614074

  15. Confined dynamics of grafted polymer chains in solutions of linear polymer

    DOE PAGES

    Poling-Skutvik, Ryan D.; Olafson, Katy N.; Narayanan, Suresh; ...

    2017-09-11

    Here, we measure the dynamics of high molecular weight polystyrene grafted to silica nanoparticles dispersed in semidilute solutions of linear polymer. Structurally, the linear free chains do not penetrate the grafted corona but increase the osmotic pressure of the solution, collapsing the grafted polymer and leading to eventual aggregation of the grafted particles at high matrix concentrations. Dynamically, the relaxations of the grafted polymer are controlled by the solvent viscosity according to the Zimm model on short time scales. On longer time scales, the grafted chains are confined by neighboring grafted chains, preventing full relaxation over the experimental time scale.more » Adding free linear polymer to the solution does not affect the initial Zimm relaxations of the grafted polymer but does increase the confinement of the grafted chains. Finally, our results elucidate the physics underlying the slow relaxations of grafted polymer.« less

  16. Confined dynamics of grafted polymer chains in solutions of linear polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poling-Skutvik, Ryan D.; Olafson, Katy N.; Narayanan, Suresh

    Here, we measure the dynamics of high molecular weight polystyrene grafted to silica nanoparticles dispersed in semidilute solutions of linear polymer. Structurally, the linear free chains do not penetrate the grafted corona but increase the osmotic pressure of the solution, collapsing the grafted polymer and leading to eventual aggregation of the grafted particles at high matrix concentrations. Dynamically, the relaxations of the grafted polymer are controlled by the solvent viscosity according to the Zimm model on short time scales. On longer time scales, the grafted chains are confined by neighboring grafted chains, preventing full relaxation over the experimental time scale.more » Adding free linear polymer to the solution does not affect the initial Zimm relaxations of the grafted polymer but does increase the confinement of the grafted chains. Finally, our results elucidate the physics underlying the slow relaxations of grafted polymer.« less

  17. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu; Freed, Karl F., E-mail: freed@uchicago.edu; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chainmore » stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.« less

  18. Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof

    DOEpatents

    Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa

    2000-12-12

    A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

  19. The storage capacity of fluorine in olivine and pyroxene under upper mantle conditions

    NASA Astrophysics Data System (ADS)

    Grützner, Tobias; Kohn, Simon C.; Bromiley, David W.; Rohrbach, Arno; Berndt, Jasper; Klemme, Stephan

    2017-07-01

    We present new experimental results on the fluorine storage capacity of olivine and orthopyroxene in the Earth's mantle. Experiments were performed in the system MgO-SiO2 + MgF2 at temperatures between 1350 °C and 1700 °C and pressures up to 17 GPa. Electron microprobe measurements show that fluorine concentrations in olivine reach up to 5100 μg/g. The storage capacity of fluorine in olivine shows only a small pressure dependence but a strong temperature dependence with a positive correlation between increasing temperature and fluorine storage capacity. Fluorine concentrations found in enstatite are one order of magnitude smaller and reach up to 670 μg/g. Our data show that concentrations of fluorine in fluorine-saturated olivine are in the same range as water concentrations in olivine. Nevertheless, fluorine and water solubility in olivine show opposing behavior with increasing pressure and temperature. The fluorine solubility in olivine increases with increasing temperature but is not much affected by pressure. In contrast, water solubility in olivine has previously been shown to decrease with increasing temperature and increase with increasing pressure. Our experiments show that nominally fluorine-free minerals like forsterite and enstatite are capable of storing the entire fluorine budget of the upper mantle, without the need to invoke accessory phases such as apatite or amphibole.

  20. Determination of fluorine, chlorine and bromine in household products by means of oxygen bomb combustion and ion chromatography.

    PubMed

    Zhang, Shuai; Zhao, Tianbo; Wang, Jia; Qu, Xiaoling; Chen, Wei; Han, Yin

    2013-01-01

    A method for routine determination of fluorine, chlorine and bromine in household products was developed and validated. In this work, halogen analyses were made based on oxygen bomb combustion followed by ion chromatography (IC). The chromatographic analysis was performed by an IonPac AS19 hydroxide-selective anion-exchange column, a reagent free ion chromatograph eluent generator and an anion self-regenerating suppressor in 10 min. The response was linear (r ≥ 0.9995) in the entire investigated domain. The limit of detection for the halogens was in the range of 2 to 9 × 10(-3) mg/L and the limit of quantification was lower than 8 mg/Kg with 20 µL of injection volume. The certified reference material of ERM-EC 681k was pretreated using an oxygen bomb combustion procedure to demonstrate the precision of the proposed method. The quantitative analysis results obtained by IC for the target elements were 797 ± 9 mg/Kg chlorine and 786 ± 25 mg/Kg bromine, which were in good agreement with the certified values of 800 ± 4 mg/Kg chlorine, 770 ± 5 mg/Kg bromine for ERM-EC 681k, respectively. This validated method was successfully applied for the analysis of fluorine, chlorine and bromine in household product samples, and the variation of halogen contained among the tested samples was remarkable.

  1. Influence of Fluorine Atoms and Aromatic Rings on the Acidity of Ethanol

    NASA Astrophysics Data System (ADS)

    Ramírez, Ramsés E.; García-Martínez, Cirilo; Méndez, Francisco

    2009-09-01

    Absolute gas-phase acidities ΔacidG0(OH) and ΔacidG0(CH) were calculated at the B3LYP and MP2 levels using six different standard basis sets for the OH and CH heterolytic bond cleavage of ethanol and twelve derivatives of the type CH3-nFnCHXrOH, where n ranges from zero to three and represents the number of fluorine atoms and r represents hydrogen and the type of aromatic ring, namely: X0 = hydrogen, X1 = phenyl, X2 = 1-naphthyl, and X3 = 9-anthryl. The similarity between calculated and experimental ΔacidG0(OH) values for ethanol (1a), 2-fluoroethanol (1b), 2,2-difluoroethanol (1c), 2,2,2-trifluoroethanol (1d), and 1-phenylethanol (2a) was used to validate the right theoretical method for this study. Substituent partial contributions to hydroxyl-, methylene-, and methine-hydrogen acidities were evaluated by linear combination. Good parameter fittings of the primary and secondary alcohols were obtained and interpreted as additive contribution of the substituent effects. The nonlinear contributions were identified. Calculations prove that fluoroalcohols exhibit C-H acidity, which is usually lower than O-H acidity. In principle, the inversion of this acidity order is possible by the introduction of a large aromatic ring instead to increase the number of fluorine atoms.

  2. [Risk and prevention of teeth fluorosis in infants by feeding pattern changes].

    PubMed

    Borinskaia, E Iu; Davydov, B N; Kushnir, S M; Borinskiĭ, Iu N; Mikin, V M

    2013-01-01

    Effect of fluorides in drinking water on fluorine content in breast milk, the food for infants of the 1-sty year of life, was investigated. On determining fluorine concentration in urine and its excretion, fluorine intake by the infants was calculated under various alternatives (breast, mixed and artificial) of feeding. It has been found the in mixed and especially in artificial feeding, fluorine intake by the infants acquires uncontrollable character exceeding several times the dose of fluorine intake with breast milk under natural feeding. That was predominantly fluorine of drinking water. Mathematical formula for calculation of fluorine content in the food cooked for feeding of infants was elaborated. A computer program was formed be means of which calculation, control and management of fluorine intake are carried out in feeding alteration.

  3. The surface chemical properties of multi-walled carbon nanotubes modified by thermal fluorination for electric double-layer capacitor

    NASA Astrophysics Data System (ADS)

    Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak

    2015-08-01

    The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.

  4. Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.

    1979-01-01

    Fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide was carried out on a laboratory scale in an advanced Simons type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. A variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. The solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.

  5. Space charge dynamics Of CF4 fluorinated LDPE samples from different fluorination conditions and their DC conductivities

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Li, Ziyun; Chen, George; Chen, Qiang; Li, Shengtao

    2017-07-01

    Taking advantage of plasma technology using mixing gas CF4/H2, a fluorination process was performed on LDPE samples in the present paper. Different exposure times and discharge voltage levels were applied to produce four different types of samples. It has been found that after fluorination, space charge injection is obviously suppressed. And with longer fluorination times and higher discharge voltage, injected homocharges are reduced. By employing x-ray photoelectron spectroscopy, new chemical groups of C-F bindings are confirmed to be introduced by fluorination process of the plasma treatment. The charge suppression effect can be explained as: surface traps introduced by fluorination will reduce the interface field at both electrodes. Moreover, for fluorinated samples, heterocharge emerges obviously under 30 kV \\text{m}{{\\text{m}}-1} , which are considered as charges ionized from degradation products of etching and/or lower weight molecular specifies. Through the conductivity measurements also performed at 30 kV \\text{m}{{\\text{m}}-1} , it is found that, for the fluorinated samples with the better charge blocking effect, the conductivity is lowered. However, the conductivity of the fluorinated sample with the lightest degree of fluorination is found to be higher than that of normal samples.

  6. Recent advances in fluorination techniques and their anticipated impact on drug metabolism and toxicity.

    PubMed

    Murphy, Cormac D; Sandford, Graham

    2015-04-01

    Fluorine's unique physicochemical properties make it a key element for incorporation into pharmacologically active compounds. Its presence in a drug can alter a number of characteristics that affect ADME-Tox, which has prompted efforts at improving synthetic fluorination procedures. This review describes the influence of fluorine on attributes such as potency, lipophilicity, metabolic stability and bioavailablility and how the effects observed are related to the physicochemical characteristics of the element. Examples of more recently used larger scale synthetic methods for introduction of fluorine into drug leads are detailed and the potential for using biological systems for fluorinated drug production is discussed. The synthetic procedures for carbon-fluorine bond formation largely still rely on decades-old technology for the manufacturing scale and new reagents and methods are required to meet the demands for the preparation of structurally more complex drugs. The improvement of in vitro and computational methods should make fluorinated drug design more efficient and place less emphasis on approaches such as fluorine scanning and animal studies. The introduction of new fluorinated drugs, and in particular those that have novel fluorinated functional groups, should be accompanied by rigorous environmental assessment to determine the nature of transformation products that may cause ecological damage.

  7. Characteristic α and 6He decays of linear-chain structures in 16C

    NASA Astrophysics Data System (ADS)

    Baba, T.; Kimura, M.

    2018-05-01

    The linear-chain states of 16C and their decay modes are theoretically investigated by using the antisymmetrized molecular dynamics. It is found that the positive-parity linear-chain states have the (3/2π-) 2(1/2σ-) 2 configuration and primary decay to 12Be(21+) as well as to 12Be(g.s.) by α -particle emission. Moreover, we show that they also decay via the 6He+10Be channel. In the negative-parity states, it is found that two types of linear chains exist. One has the valence neutrons occupying the molecular orbits (3/2π-) 2(1 /2σ-) (3 /2π+) , while the other's configuration cannot be explained in terms of the molecular orbits because of the strong parity mixing. Both configurations constitute the rotational bands with a large moment of inertia and intraband E 2 transitions. Their α and 6He reduced widths are sufficiently large to be distinguished from other noncluster states although they are smaller than those of the positive-parity linear chain.

  8. Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.

    PubMed

    Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla

    2015-01-01

    Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.

  9. Radiosyntheses using Fluorine-18: the Art and Science of Late Stage Fluorination

    PubMed Central

    Cole, Erin L.; Stewart, Megan N.; Littich, Ryan; Hoareau, Raphael; Scott, Peter J. H.

    2014-01-01

    Positron (β+) emission tomography (PE) is a powerful, noninvasive tool for the in vivo, three-dimensional imaging of physiological structures and biochemical pathways. The continued growth of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as possible has made development of methodologies that enable rapid and efficient late stage fluorination an area of research within its own right. In this review we describe strategies for radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging techniques for late stage fluorination reactions, as well as labeling technologies such as microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare, personalized medicine and drug discovery settings. PMID:24484425

  10. Polyfluorides and Neat Fluorine as Host Material in Matrix-Isolation Experiments.

    PubMed

    Brosi, Felix; Vent-Schmidt, Thomas; Kieninger, Stefanie; Schlöder, Tobias; Beckers, Helmut; Riedel, Sebastian

    2015-11-09

    The use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated. The fluorides have been characterized in solid fluorine by IR spectroscopy at 5 K. Also the fluorination of Kr and the photo-dismutation of XeO4 have been studied by using IR spectroscopy in neat fluorine. Formation of the [F5 ](-) ion was obtained by IR-laser ablation of platinum in the presence of fluorine and proven in a Ne matrix at 5 K by two characteristic vibrational bands of [F5 ](-) at $\\tilde \

  11. Fluorine interaction with defects on graphite surface by a first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, Song; Xuezhi, Ke; Zhang, Wei; Gong, Wenbin; Huai, Ping; Zhang, Wenqing; Zhu, Zhiyuan

    2014-02-01

    The interaction between fluorine atom and graphite surface has been investigated in the framework of density functional theory. Due to the consideration of molten salt reactor system, only carbon adatoms and vacancies are chemical reactive for fluorine atoms. Fluorine adsorption on carbon adatom will enhance the mobility of carbon adatom. Carbon adatom can also be removed easily from graphite surface in form of CF2 molecule, explaining the formation mechanism of CF2 molecule in previous experiment. For the interaction between fluorine and vacancy, we find that fluorine atoms which adsorb at vacancy can hardly escape. Both pristine surface and vacancy are impossible for fluorine to penetrate due to the high penetration barrier. We believe our result is helpful to understand the compatibility between graphite and fluorine molten salt in molten salt reactor system.

  12. FLUORINE IN THE SOLAR NEIGHBORHOOD: NO EVIDENCE FOR THE NEUTRINO PROCESS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jönsson, H.; Ryde, N.; Spitoni, E.

    Asymptotic giant branch (AGB) stars are known to produce “cosmic” fluorine, but it is uncertain whether these stars are the main producers of fluorine in the solar neighborhood or if any of the other proposed formation sites, Type II supernovae (SNe II) and/or Wolf-Rayet (W-R) stars, are more important. Recent articles have proposed both AGB stars and SNe II as the dominant sources of fluorine in the solar neighborhood. In this paper we set out to determine the fluorine abundance in a sample of 49 nearby, bright K giants for which we previously have determined the stellar parameters, as wellmore » as alpha abundances homogeneously from optical high-resolution spectra. The fluorine abundance is determined from a 2.3 μ m HF molecular line observed with the spectrometer Phoenix. We compare the fluorine abundances with those of alpha-elements mainly produced in SNe II and find that fluorine and the alpha-elements do not evolve in lockstep, ruling out SNe II as the dominating producers of fluorine in the solar neighborhood. Furthermore, we find a secondary behavior of fluorine with respect to oxygen, which is another evidence against the SNe II playing a large role in the production of fluorine in the solar neighborhood. This secondary behavior of fluorine will put new constraints on stellar models of the other two suggested production sites: AGB stars and W-R stars.« less

  13. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  14. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation.

    PubMed

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-14

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  15. An enhanced effective mode area fluorine doped octagonal photonic crystal fiber with extremely low loss

    NASA Astrophysics Data System (ADS)

    Kabir, Sumaiya; Razzak, S. M. Abdur

    2018-07-01

    In our paper an enhanced effective mode area octagonal photonic crystal fiber (PCF) is presented. This PCF ensures large effective mode area along with ultra-low confinement loss and bending loss. Both the elimination of air-holes from the rings near the core region and inclusion of low index fluorine doped silica rods in an octagonal pattern are the vital design features. We have used full vectorial finite element method (FEM) based software with circularly perfectly matched layer (PML) to simulate the guiding properties of PCF. Our proposed fiber achieves effective mode area of 1110 μm2. Moreover, it offers ultra-low confinement loss of 1.14 × 10-15 dB/m and can be bent as small as 30 cm without any significant bending loss of 6.49 × 10-9 dB/m. The PCF also ensures low non-linearity with small amount of splice loss. However, our proposed PCF can be used in applications like fiber amplifiers and lasers.

  16. Stress Corrosion Cracking and Fatigue Crack Growth Studies Pertinent to Spacecraft and Booster Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Hall, L. R.; Finger, R. W.

    1972-01-01

    This experimental program was divided into two parts. The first part evaluated stress corrosion cracking in 2219-T87 aluminum and 5Al-2.5Sn (ELI) titanium alloy plate and weld metal. Both uniform height double cantilever beam and surface flawed specimens were tested in environments normally encountered during the fabrication and operation of pressure vessels in spacecraft and booster systems. The second part studied compatibility of material-environment combinations suitable for high energy upper stage propulsion systems. Surface flawed specimens having thicknesses representative of minimum gage fuel and oxidizer tanks were tested. Titanium alloys 5Al-2.5Sn (ELI), 6Al-4V annealed, and 6Al-4V STA were tested in both liquid and gaseous methane. Aluminum alloy 2219 in the T87 and T6E46 condition was tested in fluorine, a fluorine-oxygen mixture, and methane. Results were evaluated using modified linear elastic fracture mechanics parameters.

  17. Two-Dimensional Model of Scrolled Packings of Molecular Nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Mazo, M. A.

    2018-04-01

    A simplified model of the in-plane molecular chain, allowing the description of folded and scrolled packings of molecular nanoribbons of different structures, is proposed. Using this model, possible steady states of single-layer nanoribbons scrolls of graphene, graphane, fluorographene, and fluorographane (graphene hydrogenated on the one side and fluorinated on the other side) are obtained. Their stability is demonstrated and their energy is calculated as a function of the nanoribbon length. It is shown that the scrolled packing is the most energetically favorable nanoribbon conformation at long lengths. The existences of scrolled packings for fluorographene nanoribbons and the existence of two different scroll types corresponding to left- and right-hand Archimedean spirals for fluorographane nanoribbons in the chain model are shown for the first time. The simplicity of the proposed model makes it possible to consider the dynamics of scrolls of rather long molecular nanoribbons at long enough time intervals.

  18. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    DOEpatents

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  19. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhen-Yu; Roelofs, Mark Gerrit

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionallymore » containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.« less

  20. Fluorine separation and generation device

    DOEpatents

    The Regents of the University of California

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  1. Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid.

    PubMed

    Li, Jiehua; Zhang, Yi; Yang, Jian; Tan, Hong; Li, Jianshu; Fu, Qiang

    2013-05-01

    To improve hemocompatibility of biomedical polyurethanes (PUs), a series of new fluorinated phospholipid end-capped polyurethanes (FPCPUs) as blending PU additives were designed and synthesized using diphenyl methane diisocyanate and 1,4-butanediol as hard segment, poly(tetramethylene glycol), polypropylene glycol, polycarbonate diols, and polyethylene glycol as soft segments, respectively, aminofunctionalized hybrid hydrocarbon/fluorocarbon double-chain phospholipid as end-capper. The bulk structures and surface properties of the obtained FPCPUs were fully characterized by (1)H NMR, Fourier transform infrared, gel permeation chromatography, X-ray photoelectron spectroscopy, differential scanning calorimetry, atomic force microscopy, and water contact angle measurement. It was found that the phosphatidylcholine groups could enrich on the surfaces and subsurfaces with the help of the fluorocarbon chains and self-assemble into mimic biomembrane on these polymer surfaces. These surfaces could effectively suppress fibrinogen adsorption, as evaluated by enzyme-linked immunosorbent assay method. Our work indicates that the FPCPUs should be one of the most potential modified additives for enhancing hemocompatibility of traditional medical PUs. Copyright © 2012 Wiley Periodicals, Inc.

  2. Biological effect of fluoride on plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collet, G.F.

    1969-10-01

    The action of several fluorine compounds was studied by means of hydroponics. Seedlings of several species were used. In leaves of Prunus armeniaca, a good correlation between the extent of necrosis and the leaf's total fluorine content was noted. Boron plays a spectacular role as it enhances the expected fluorine accumulation. Similar results were obtained with other plant material, an observation which suggests that this phenomenon is universal in plant life. Fluorine accumulation and leaf damage due to fluorine depend upon the chemical nature of the fluorine compound. 11 references, 3 figures, 2 tables.

  3. Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.

    1979-01-01

    The paper presents the results of experiments concerning the fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide carried out on a laboratory scale in an advanced 'Simons' type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. It is shown that a variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. Finally, the solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.

  4. Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts.

    PubMed

    Gadras, C; Santaella, C; Vierling, P

    1999-01-04

    The stability of fluorinated phospholipid-based vesicles in terms of detergent-induced release of encapsulated carboxyfluorescein has been evaluated. The fluorinated liposomes are substantially more resistant towards the lytic action of sodium taurocholate than conventional DSPC or even DSPC/CH 1/1 liposomes. Concerning structure/permeability relationships, the larger the fluorination degree of the membrane, the higher the resistance of the fluorinated liposomes to their destruction by the detergent. These results show that fluorinated liposomes have a promising potential as drug carrier and delivery systems for oral administration.

  5. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE PAGES

    Miller, Brad; Imel, Adam E.; Holley, Wade; ...

    2015-11-12

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  6. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Brad; Imel, Adam E.; Holley, Wade

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  7. Effect of nitrogen and fluorine on mechanical properties and bioactivity in two series of bioactive glasses.

    PubMed

    Bachar, Ahmed; Mercier, Cyrille; Tricoteaux, Arnaud; Hampshire, Stuart; Leriche, Anne; Follet, Claudine

    2013-07-01

    Bioactive glasses are able to bond to bone through formation of carbonated hydroxyapatite in body fluids, and fluoride-releasing bioactive glasses are of interest for both orthopaedic and, in particular, dental applications for caries inhibition. However, because of their poor strength their use is restricted to non-load-bearing applications. In order to increase their mechanical properties, doping with nitrogen has been performed on two series of bioactive glasses: series (I) was a "bioglass" composition (without P2O5) within the quaternary system SiO2-Na2O-CaO-Si3N4 and series (II) was a simple substitution of CaF2 for CaO in series (I) glasses keeping the Na:Ca ratio constant. The objective of this work was to evaluate the effect of the variation in nitrogen and fluorine content on the properties of these glasses. The density, glass transition temperature, hardness and elastic modulus all increased linearly with nitrogen content which indicates that the incorporation of nitrogen stiffens the glass network because N is mainly in 3-fold coordination with Si atoms. Fluorine addition significantly decreases the thermal property values but the mechanical properties of these glasses remain unchanged with fluorine. The combination of both nitrogen and fluorine in oxyfluoronitride glasses gives better mechanical properties at much lower melting temperatures since fluorine reduces the melting point, allows higher solubility of nitrogen and does not affect the higher mechanical properties arising from incorporation of nitrogen. The characterization of these N and F substituted bioactive glasses using (29)Si MAS NMR has shown that the increase in rigidity of the glass network can be explained by the formation of SiO3N, SiO2N2 tetrahedra and Q(4) units with extra bridging anions at the expense of Q(3) units. Bioactivity of the glasses was investigated in vitro by examining apatite formation on the surface of glasses treated in acellular simulated body fluid (SBF) with ion concentrations similar to those in human blood plasma. Formation of a bioactive apatite layer on the samples treated in SBF was confirmed by grazing incidence X-ray diffraction and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS). The crystallinity of this layer decreases with increasing N content suggesting that N may decrease bioactivity slightly. Copyright © 2013. Published by Elsevier Ltd.

  8. Fluorine in the UK environment.

    PubMed

    Fuge, R; Andrews, M J

    1988-12-01

    Relatively low concentrations of fluorine in drinking water (≤ 1 mg F/l) have been shown to significantly reduce the degree of dental caries in children and fluorine would also appear to have a beneficial effect on bone formation in both humans and farm animals. However, it is apparent that elevated levels of fluorine in the diet have sometimes resulted in problems of increased dental caries and of the development of bone deformities. Much of the fluorine in rocks and soils occurs in apatite and hydroxysilicate minerals, fluorite being the only relatively common rock forming mineral containing fluorine as an essential constituent.Little systematic data are available on fluorine concentrations in soils, plants and natural waters in the UK. General background soil concentrations lie in the range 200 - 400 mg F/kg. For waters the average fluorine content is low, <0.1 mg F/l.In the British Isles there are several areas where there are enhanced levels of fluorine. In the northern Pennines, Derbyshire, northeast Wales and Cornwall, fluorite occurs as a significant component of mineralisation and much fluorine has been added to the environment from mining waste dumps. Soils in northeast Wales contain up to 3,650 mg F/kg and in the northern Pennines up to 20,000 mg F/kg. Waters contain up to 2.3 mg F/l. In southwest England, the granites are generally fluorine-rich with the fluorite granites of the St Austell pluton containing as much as 1 percent fluorine. These rocks are frequently kaolinised and intensively worked as a source of china clay. Soils in the vicinity of the waste tips contain up to 3,300 mg F/kg and grasses up to 2,950 mg F/kg. Surface waters in the St Austell area contain up to 1.25 mg F/l.Atmospheric fluorine pollution around brickworks in the Peterborough and Bedford areas has resulted in fluorosis in farm animals. Other sources of atmospheric fluorine pollution are aluminium smelters, steelworks and fossil fuel burning.

  9. Palladium-catalysed electrophilic aromatic C-H fluorination

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias

    2018-02-01

    Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.

  10. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  11. DOS cones along atomic chains

    NASA Astrophysics Data System (ADS)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  12. Nephelometric determination of fluorine

    USGS Publications Warehouse

    Stevens, R.E.

    1936-01-01

    Fluorine in minerals may be determined with the nephelometer to about 1 per cent of the fluorine. The determination is made on an aliquot of the sodium chloride solution of the fluorine, obtained by the Berzelius method of extraction. The fluorine is precipitated as colloidal calcium fluoride in alcoholic solution, gelatin serving as a protective colloid. Arsenates, sulfates, and phosphates, which interfere with the determination, must be removed.

  13. 40 CFR Table I-2 to Subpart I - Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I Protection of... REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry Product type...

  14. Fluorination process using catalyst

    DOEpatents

    Hochel, Robert C.; Saturday, Kathy A.

    1985-01-01

    A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.

  15. Fluorination process using catalysts

    DOEpatents

    Hochel, R.C.; Saturday, K.A.

    1983-08-25

    A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.

  16. Fluorine distribution in aquatic environment and its health effect in the Western Region of the Songnen Plain, Northeast China.

    PubMed

    Zhang, Bo; Hong, Mei; Zhang, Bai; Zhang, Xue-lin; Zhao, Yong-sheng

    2007-10-01

    Endemic fluorosis was investigated and studied in the west region of the Songnen plain, Northeast China in 2001-2002. The results showed that the fluorine distribution in aquatic environment was that the fluorine concentrations in the lake water and unconfined ground water were higher than that in the river water and confined ground water. The lake water (Alkali lake) is connected with unconfined ground water. In unconfined ground water, from the east and southeast areas to the west and the northwest areas of the plain, fluorine concentration fluctuated with high and low alternatively. The fluorine in the water comes from the weathering of rocks and minerals in the mountains and hills around the Songnen Plain. The main influence factors of the fluorine distribution in aquatic environment are discussed. Unconfined ground water containing high fluorine is used as drinking water. In this region, the fluorine concentration in drinking water is evidently correlated to the morbidity of dental and skeletal fluorosis. High fluorine concentration in drinking water has endangered human health.

  17. Synthesis of Fluorinated Graphene/CoAl-Layered Double Hydroxide Composites as Electrode Materials for Supercapacitors.

    PubMed

    Peng, Weijun; Li, Hongqiang; Song, Shaoxian

    2017-02-15

    CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.

  18. Dipolar interactions and miscibility in binary Langmuir monolayers with opposite dipole moments of the hydrophilic heads.

    PubMed

    Petrov, Jordan G; Andreeva, Tonya D; Moehwald, Helmuth

    2009-04-09

    We investigate unusual binary Langmuir monolayers with the same long CH3(CH2)21 hydrocarbon chains and fluorinated -O-CH2CF3 (FEE) versus nonfluorinated -O-CH2CH3 (EE) hydrophilic heads, whose opposite dipoles assist miscibility, in contrast to the equally oriented polar head dipoles of almost all natural or synthetic amphiphiles that minister to phase separation. Although two-component bulk micelles, lipid bilayers, and monolayers with fluorinated and nonfluorinated chains, which also have opposite dipoles, often show phase separation, we find complete miscibility and nonideality of the FEE-EE mixtures demonstrated via deviation of the composition dependencies of the mean molecular area at fixed surface pressure from the additivity rule. The composition dependencies of the excess molecular areas exhibit minima and maxima which show specific structural changes at particular compositions. They originate from the dipolar and steric interactions between the polar heads, because the interactions between the same chains of FEE and EE do not vary. The pi/A isotherms and the pi/X(FEE) phase diagram reveal that mixtures with molar fractions X(FEE) > or = 0.3 exist in an upright solid phase even in uncompressed state. This result is confirmed by the compressibility values and via Brewster angle microscopy, which does not show optical anisotropy at X(FEE) > or = 0.3. Comparison of the collapse and phase-transition molecular areas with literature data suggests that the upright architecture corresponds to LS-phase or S-phase with more defects as the S-phase in the pure monolayers. The mixtures with X(FEE) < 0.3 exist in tilted L2' phase at low surface pressures. Their mean molecular areas are smaller than the corresponding values in the EE film, which manifests reduction of the tilt of the EE chains with increasing FEE content. We ascribe the chain erection to partial dehydration of the EE heads caused by dipolar attraction between the EE and FEE heads. The excess free energy of mixing deltaG(exc)pi is positive but much smaller than the negative total free energy of mixing AG mix(pi) showing a spontaneous miscibility at all compositions due to an entropy increase. The analysis of the conflict between the deltaG(mix)pi minimum at molar fraction X(FEE) = 0.5 and the minimum and negative value of the excess molecular area A(pi,exc) at X(FEE) = 0.8 shows that the A(pi,exc)/X(FEE) minimum has not an electrostatic but a short-range structural origin.

  19. 40 CFR Table I-2 to Subpart I of... - Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I of Part 98... GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I of Part 98—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry...

  20. Negative Hyperconjugation versus Electronegativity: Vibrational Spectra of Free Fluorinated Alkoxide Ions in the Gas Phase.

    PubMed

    Oomens, Jos; Berden, Giel; Morton, Thomas Hellman

    2015-06-22

    CO stretching frequencies of free, gaseous, fluorinated alkoxide ions shift substantially to the blue, relative to those of corresponding alcohols complexed with ammonia. Free α-fluorinated ions, pentafluoroethoxide and heptafluoroisopropoxide anions, display further blue shifts relative to cases with only β-fluorination, providing experimental evidence for fluorine negative hyperconjugation. DFT analysis with the atoms in molecules (AIM) method confirms an increase in CO bond order for the α-fluorinated ions, demonstrating an increase in carbonyl character for the free ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Can Csbnd H⋯Fsbnd C hydrogen bonds alter crystal packing features in the presence of Nsbnd H⋯Odbnd C hydrogen bond?

    NASA Astrophysics Data System (ADS)

    Yadav, Hare Ram; Choudhury, Angshuman Roy

    2017-12-01

    Intermolecular interactions involving organic fluorine have been the contemporary field of research in the area of organic solid state chemistry. While a group of researchers had refuted the importance of "organic fluorine" in guiding crystal structures, others have provided evidences for in favor of fluorine mediated interactions in the solid state. Many systematic studies have indicated that the "organic fluorine" is capable of offering weak hydrogen bonds through various supramolecular synthons, mostly in the absence of other stronger hydrogen bonds. Analysis of fluorine mediated interaction in the presence of strong hydrogen bonds has not been highlighted in detail. Hence a thorough structural investigation is needed to understand the role of "organic fluorine" in crystal engineering of small organic fluorinated molecules having the possibility of strong hydrogen bond formation in the solution and in the solid state. To fulfil this aim, we have synthesized a series of fluorinated amides using 3-methoxyphenylacetic acid and fluorinated anilines and studied their structural properties through single crystal and powder X-ray diffraction methods. Our results indicated that the "organic fluorine" plays a significant role in altering the packing characteristics of the molecule in building specific crystal lattices even in the presence of strong hydrogen bond.

  2. Coronary fluorine-18-sodium fluoride uptake is increased in healthy adults with an unfavorable cardiovascular risk profile: results from the CAMONA study.

    PubMed

    Blomberg, Björn A; Thomassen, Anders; de Jong, Pim A; Lam, Marnix G E; Diederichsen, Axel C P; Olsen, Michael H; Mickley, Hans; Mali, Willem P T M; Alavi, Abass; Høilund-Carlsen, Poul F

    2017-11-01

    Coronary artery fluorine-18-sodium fluoride (F-NaF) uptake reflects coronary artery calcification metabolism and is considered to be an early prognostic marker of coronary heart disease. This study evaluated the relationship between coronary artery F-NaF uptake and cardiovascular risk in healthy adults at low cardiovascular risk. Study participants underwent blood pressure measurements, blood analyses, and coronary artery F-NaF PET/CT imaging. In addition, the 10-year risk for the development of cardiovascular disease, on the basis of the Framingham Risk Score, was estimated. Multivariable linear regression evaluated the dependence of coronary artery F-NaF uptake on cardiovascular risk factors. We recruited 89 (47 men, 42 women) healthy adults aged 21-75 years. Female sex (0.34 kBq/ml; P=0.009), age (0.16 kBq/ml per SD; P=0.002), and BMI (0.42 kBq/ml per SD; P<0.001) were independent determinants of increased coronary artery F-NaF uptake (adjusted R=0.21; P<0.001). Coronary artery F-NaF uptake increased linearly according to the number of cardiovascular risk factors present (P<0.001 for a linear trend). The estimated 10-year risk for the development of cardiovascular disease was on average 2.4 times higher in adults with coronary artery F-NaF uptake in the highest quartile compared with those in the lowest quartile of the distribution (8.0 vs. 3.3%, P<0.001). Our findings indicate that coronary artery F-NaF PET/CT imaging is feasible in healthy adults at low cardiovascular risk and that an unfavorable cardiovascular risk profile is associated with a marked increase in coronary artery F-NaF uptake.

  3. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs.

    PubMed

    Qiu, Ling; Xiao, Heming

    2009-05-15

    To investigate the effect of polymer binders on the monoexplosive, molecular dynamics simulations were performed to study the binding energies, mechanical properties, and detonation performances of the bicyclo-HMX-based polymer-bonded explosives (PBXs). The results show that the binding energies on different crystalline surfaces of bicyclo-HMX decrease in the order of (010)>(100)>(001). On each crystalline surface, binding properties of different polymers with the same chain segment are different from each other, while those of the polymers in the same content decrease in the sequence of PVDF>F(2311)>F(2314) approximately PCTFE. The mechanical properties of a dozen of model systems (elastic coefficients, various moduli, Cauchy pressure, and Poisson's ratio) have been obtained. It is found that mechanical properties are effectively improved by adding small amounts of fluorine polymers, and the overall effect of fluorine polymers on three crystalline surfaces of bicyclo-HMX changes in the order of (010)>(001) approximately (100). In comparison with the base explosive, detonation performances of the PBXs decrease slightly, but they are still superior to TNT. These suggestions may be useful for the formulation design of bicyclo-HMX-based PBXs.

  4. 40 CFR 98.90 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...

  5. 40 CFR 98.90 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...

  6. 40 CFR 98.90 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...

  7. 40 CFR 98.90 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...

  8. Chemistry, Biochemistry, Pharmacology, and Toxicology of CS and Synthesis of Its Novel Analogs

    DTIC Science & Technology

    2007-10-01

    fluorine and fluorine -containing groups have been synthesized using microwave irradiation and novel catalysts. The structures and physical properties and...safe, and biologically more potent CS analogs. To this end, the synthesis of a novel group of CS-agents incorporating fluorine and fluorine ...CONCLUSION The new CS-analogs are expected to be more potent than CS. This observation is based on the following considerations. First, fluorine is

  9. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...

  10. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...

  11. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...

  12. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...

  13. Quantitative Assessment of the Impact of Fluorine Substitution on P-Glycoprotein (P-gp) Mediated Efflux, Permeability, Lipophilicity, and Metabolic Stability.

    PubMed

    Pettersson, Martin; Hou, Xinjun; Kuhn, Max; Wager, Travis T; Kauffman, Gregory W; Verhoest, Patrick R

    2016-06-09

    Strategic replacement of one or more hydrogen atoms with fluorine atom(s) is a common tactic to improve potency at a given target and/or to modulate parameters such as metabolic stability and pKa. Molecular weight (MW) is a key parameter in design, and incorporation of fluorine is associated with a disproportionate increase in MW considering the van der Waals radius of fluorine versus hydrogen. Herein we examine a large compound data set to understand the effect of introducing fluorine on the risk of encountering P-glycoprotein mediated efflux (as measured by MDR efflux ratio), passive permeability, lipophilicity, and metabolic stability. Statistical modeling of the MDR ER data demonstrated that an increase in MW as a result of introducing fluorine atoms does not lead to higher risk of P-gp mediated efflux. Fluorine-corrected molecular weight (MWFC), where the molecular weight of fluorine has been subtracted, was found to be a more relevant descriptor.

  14. NbF{sub 5} and TaF{sub 5}: Assignment of {sup 19}F NMR resonances and chemical bond analysis from GIPAW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, Mamata, E-mail: Mamata.Biswal-Susanta_Kumar_Nayak.Etu@univ-lemans.fr; Body, Monique, E-mail: monique.body@univ-lemans.fr; Legein, Christophe, E-mail: christophe.legein@univ-lemans.fr

    2013-11-15

    The {sup 19}F isotropic chemical shifts (δ{sub iso}) of two isomorphic compounds, NbF{sub 5} and TaF{sub 5}, which involve six nonequivalent fluorine sites, have been experimentally determined from the reconstruction of 1D {sup 19}F MAS NMR spectra. In parallel, the corresponding {sup 19}F chemical shielding tensors have been calculated using the GIPAW method for both experimental and DFT-optimized structures. Furthermore, the [M{sub 4}F{sub 20}] units of NbF{sub 5} and TaF{sub 5} being held together by van der Waals interactions, the relevance of Grimme corrections to the DFT optimization processes has been evaluated. However, the semi-empirical dispersion correction term introduced bymore » such a method does not show any significant improvement. Nonetheless, a complete and convincing assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained, ensured by the linearity between experimental {sup 19}F δ{sub iso} values and calculated {sup 19}F isotropic chemical shielding σ{sub iso} values. The effects of the geometry optimizations have been carefully analyzed, confirming among other matters, the inaccuracy of the experimental structure of NbF{sub 5}. The relationships between the fluorine chemical shifts, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds have been established. Additionally, for three of the {sup 19}F NMR lines of NbF{sub 5}, distorted multiplets, arising from {sup 1}J-coupling and residual dipolar coupling between the {sup 19}F and {sup 93}Nb nuclei, were simulated yielding to values of {sup 93}Nb–{sup 19}F {sup 1}J-coupling for the corresponding fluorine sites. - Graphical abstract: The complete assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} allow establishing relationships between the {sup 19}F δ{sub iso} values, the nature of the fluorine atoms (bridging or terminal), the position of the terminal ones (opposite or perpendicular to the bridging ones), the fluorine charges, the ionicity and the length of the M–F bonds. Display Omitted - Highlights: • The {sup 19}F δ{sub iso} values of NbF{sub 5} and TaF{sub 5} have been determined. • The {sup 19}F chemical shielding tensors have been calculated using the GIPAW method. • A confident assignment of the {sup 19}F NMR lines of NbF{sub 5} and TaF{sub 5} is obtained. • The relationships between the {sup 19}Fδ{sub iso} values and the M–F bonds features are established.« less

  15. Grafted functional groups on expanded tetrafluoroethylene (ePTFE) support for fuel cell and water transport membranes

    DOEpatents

    Fuller, Timothy J.; Jiang, Ruichun

    2017-01-24

    A method for forming a modified solid polymer includes a step of contacting a solid fluorinated polymer with a sodium sodium-naphthalenide solution to form a treated fluorinated solid polymer. The treated fluorinated solid polymer is contacted with carbon dioxide, sulfur dioxide, or sulfur trioxide to form a solid grafted fluorinated polymer. Characteristically, the grafted fluorinated polymer includes appended CO.sub.2H or SO.sub.2H or SO.sub.3H groups. The solid grafted fluorinated polymer is advantageously incorporated into a fuel cell as part of the ion-conducting membrane or a water transport membrane in a humidifier.

  16. Decarboxylative Fluorination Strategies for Accessing Medicinally-relevant Products

    PubMed Central

    Qiao, Yupu; Zhu, Lingui; Ambler, Brett R.

    2014-01-01

    Fluorinated organic compounds have a long history in medicinal chemistry, and synthetic methods to access target fluorinated compounds are undergoing a revolution. One powerful strategy for the installation of fluorine-containing functional groups includes decarboxylative reactions. Benefits of decarboxylative approaches potentially include: 1) readily available substrates or reagents 2) mild reaction conditions; 3) simplified purification. This focus review highlights the applications of decarboxylation strategies for fluorination reactions to access compounds with biomedical potential. The manuscript highlights on two general strategies, fluorination by decarboxylative reagents and by decarboxylation of substrates. Where relevant, examples of medicinally useful compounds that can be accessed using these strategies are highlighted. PMID:24484421

  17. Rheology modification with ring polymers

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    It is now established that experimental unconcatenated ring polymers can be purified effectively by means of fractionation at the critical condition. For molecular weights well above the entanglement threshold, purified rings relax stress via power-law (with an exponent of about -0.4), sharply departing from their linear counterparts. Experimental results are in harmony with modeling predictions and simulations. Here, we present results from recent interdisciplinary efforts and discuss two challenges: (i) the nonlinear shear rheology of purified ring melts is also very different from that of unlinked chains. Whereas the latter exhibit features that can be explained, to a first approach, in the framework in the tube model, the former behave akin to unentangled chains with finite extensibility and exhibit much small deformation at steady state. (ii) blends of rings and linear polymers exhibit unique features in different regimes: The addition of minute amounts of linear chains drastically affects ring dynamics. This relates to ring purity and the ability of unlinked linear chains to thread rings. With the help of simulations, it is possible to rationalize the observed surprisingly slow viscoelastic relaxation, which is attributed to ring-linear and ring-ring penetrations. On the other hand, adding small amounts of rings to linear polymers of different molecular weights influences their linear and nonlinear rheology in an unprecedented way. The blend viscosity exceeds that of the slower component (linear) in this non-interacting mixture, and its dependencies on composition and molecular weight ratio are examined, whereas the role of molecular architecture is also addressed. Consequently, closing the ends of a linear chain can serve as a powerful means for molecular manipulation of its rheology. This presentation reflects collaborative efforts with S. Costanzo, Z-C. Yan, R. Pasquino, M. Kaliva, S. Kamble, Y. Jeong, P. Lutz, J. Allgaier, T. Chang, D. Talikis, V. Mavrantzas and M. Rubinstein.

  18. Tuning the tunneling magnetoresistance by using fluorinated graphene in graphene based magnetic junctions

    NASA Astrophysics Data System (ADS)

    Meena, Shweta; Choudhary, Sudhanshu

    2017-12-01

    Spin polarized properties of fluorinated graphene as tunnel barrier with CrO2 as two HMF electrodes are studied using first principle methods based on density functional theory. Fluorinated graphene with different fluorine coverages is explored as tunnel barriers in magnetic tunnel junctions. Density functional computation for different fluorine coverages imply that with increase in fluorine coverages, there is increase in band gap (Eg) of graphene, Eg ˜ 3.466 e V was observed when graphene sheet is fluorine adsorbed on both-side with 100% coverage (CF). The results of CF graphene are compared with C4F (fluorination on one-side of graphene sheet with 25% coverage) and out-of-plane graphene based magnetic tunnel junctions. On comparison of the results it is observed that CF graphene based structure offers high TMR ˜100%, and the transport of carrier is through tunneling as there are no transmission states near Fermi level. This suggests that graphene sheet with both-side fluorination with 100% coverages acts as a perfect insulator and hence a better barrier to the carriers which is due to negligible spin down current (I ↓ ) in both Parallel Configuration (PC) and Antiparallel Configuration (APC).

  19. Surface modification of amorphous substrates by disulfide derivatives: A photo-assisted route to direct functionalization of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Amalric, Julien; Marchand-Brynaert, Jacqueline

    2011-12-01

    A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.

  20. [Fluorine speciation and its distribution characteristics in selected agricultural soils of North China Plain].

    PubMed

    Yi, Chun-Yao; Wang, Bing-Guo; Jin, Meng-Gui

    2013-08-01

    The objectives of this study were to study fluorine speciation and its distribution characteristics in the cultivated soils of wheat-corn fields at the typical areas, the North China Plain. The fluorine contents in cultivated soils and profile soils were measured by consecutive extraction. The results showed that the soil total fluorine (T-F) content at typical areas in the North China Plain ranged from 338.31 mg x kg(-1) to 781.67 mg x kg(-1), with a mean of 430.46 mg x kg(-1). The soil fluorine speciation with the highest content was Residual-Fluorine (Res-F), with a mean of 402.73 mg x kg(-1). The average content of Water soluble Fluorine (Ws-F) was 14.39 mg x kg(-1). The result indicated that the cultivated soil in the study area was at a relatively high fluoride pollution level, which may be harmful to human health and the ecological environment. The contents of Organic Fluorine (Or-F) and Fe/Mn Oxide-Fluorine (Fe/ Mn-F) were also quite high, with a mean of 8.90 mg x kg(-1) and 4.10 mg x kg(-1), respectively. The exchangeable fluorine (Ex-F) only had a very small amount of 0.33 mg x kg(-1). Soil Ws-F was positively correlated with soil pH and CEC, while it was negatively correlated with the percentage of soil clay. The content of soil Fe/Mn-F was positively correlated with soil pH, CEC and the sand grain content percentage, while it was negatively correlated with the clay grain content percentage. The soil pH value had the most significant influence on the water soluble fluorine (Ws-F) and Fe/Mn Oxide-Fluorine (Fe/Mn-F), and the soil CEC had the most significant influence on the soil total fluorine (T-F) and residual-Fluorine (Res-F) by stepwise regression analysis. In the soil profiles, the T-F content appeared as peaks and valleys representing the change of the soil lithology in the vadose zone. The Ws-F in the soil profiles mainly changed in the depth of 0-100 cm near the surface soil and was little influenced by the soil lithology. But it was strongly influenced by the soil pH, and was positively correlated with the soil pH. This study can provide a scientific evidence for soil fluorine pollution, prevention and a theoretical basis for soil fluorine mobility and its influence on ecology and environment.

  1. Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE

    NASA Astrophysics Data System (ADS)

    Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil

    2017-05-01

    The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.

  2. Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids.

    PubMed

    Pankratova, Nadezda; Cuartero, Maria; Jowett, Laura A; Howe, Ethan N W; Gale, Philip A; Bakker, Eric; Crespo, Gastón A

    2018-01-15

    Fluorinated tripodal compounds were recently reported to be efficient transmembrane transporters for a series of inorganic anions. In particular, this class of receptors has been shown to be suitable for the effective complexation of chloride, nitrate, bicarbonate and sulfate anions via hydrogen bonding. The potentiometric properties of urea and thiourea-based fluorinated tripodal receptors are explored here for the first time, in light of the need for reliable sensors for chloride monitoring in undiluted biological fluids. The ion selective electrode (ISE) membranes with tren-based tris-urea bis(CF 3 ) tripodal compound (ionophore I) were found to exhibit the best selectivity for chloride over major lipophilic anions such as salicylate ( [Formula: see text] ) and thiocyanate ( [Formula: see text] ). Ionophore I-based ISEs were successfully applied for chloride determination in undiluted human serum as well as artificial serum sample, the slope of the linear calibration at the relevant background of interfering ions being close to Nernstian (49.8±1.7mV). The results of potentiometric measurements were confirmed by argentometric titration. Moreover, the ionophore I-based ISE membrane was shown to exhibit a very good long-term stability of potentiometric performance over the period of 10 weeks. Nuclear magnetic resonance (NMR) titrations, potentiometric sandwich membrane experiments and density functional theory (DFT) computational studies were performed to determine the binding constants and suggest 1:1 complexation stoichiometry for the ionophore I with chloride as well as salicylate. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. PRODUCTION OF FLUORINE-CONTAINING HYDROCARBON

    DOEpatents

    Sarsfield, N.F.

    1949-08-01

    This patent relates to improvements in the production of fluorine- containing hydrocarbon derivatives. The process for increasing the degree of fluorination of a fluorochlorohydrocarbon comprises subjecting a highly fluorinated fluorochlorohydrocarbon to the action of a dehydrochlorinating agent, and treating the resulting unsaturated body with fluorine, cobalt trifluoride, or silver difluoride. A number of reagents are known as dehydrochlorinaling agents, including, for example, the caustic alkalies, either in an anhydrous condition or dissolved in water or a lower aliphatic alcohol.

  4. Fluorinated Alq3 derivatives with tunable optical properties.

    PubMed

    Shi, Yue-Wen; Shi, Min-Min; Huang, Jia-Chi; Chen, Hong-Zheng; Wang, Mang; Liu, Xiao-Dong; Ma, Yu-Guang; Xu, Hai; Yang, Bing

    2006-05-14

    This communication reports that not only the emission colour but also the photoluminescence quantum yield of Alq3 can be tuned by introducing fluorine atoms at different positions; with fluorination at C-5 the emission is red-shifted with a tremendously decreased intensity, fluorination at C-6 causes a blue-shift with a significantly increased intensity, and fluorination at C-7 has a minor effect on both the colour and intensity of Alq3's emission.

  5. Chemical Makeup and Hydrophilic Behavior of Graphene Oxide Nanoribbons after Low-Temperature Fluorination.

    PubMed

    Romero Aburto, Rebeca; Alemany, Lawrence B; Weldeghiorghis, Thomas K; Ozden, Sehmus; Peng, Zhiwei; Lherbier, Aurélien; Botello Méndez, Andrés Rafael; Tiwary, Chandra Sekhar; Taha-Tijerina, Jaime; Yan, Zheng; Tabata, Mika; Charlier, Jean-Christophe; Tour, James M; Ajayan, Pulickel M

    2015-07-28

    Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors. Direct (13)C pulse magic angle spinning (MAS) nuclear magnetic resonance (NMR) confirmed the presence of epoxy, hydroxyl, ester and ketone carbonyl, tertiary alkyl fluorides, as well as graphitic sp(2)-hybridized carbon. Moreover, (19)F-(13)C cross-polarization MAS NMR with (1)H and (19)F decoupling confirmed the presence of secondary alkyl fluoride (CF2) groups in the fluorinated graphene oxide nanoribbon (FGONR) structures fluorinated above 50 °C. First-principles density functional theory calculations gained insight into the atomic arrangement of the most dominant chemical groups. The fluorinated GONRs present atomic fluorine percentages in the range of 6-35. Interestingly, the FGONRs synthesized up to 100 °C, with 6-19% of atomic fluorine, exhibit colloidal similar stability in aqueous environments when compared to GONRs. This colloidal stability is important because it is not common for materials with up to 19% fluorine to have a high degree of hydrophilicity.

  6. Fluorinated graphite fibers as a new engineering material: Promises and challenges

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin

    1989-01-01

    Pitch based graphitized carbon fibers with electrical resistivity of 300 micro-Ohm/cm were brominated and partially debrominated to 18 percent bromine at room temperature, and then fluorinated at 300 to 450 C, either continuously or intermittently for several cycles. In addition, on fluorine and titanium fluoride intercalated fiber sample was fluorinated at 270 C from the same fiber source. The mass and conductivity of the brominated-debrominated then fluorinated fibers (with fluorine-to-carbon atom ratio of 0.54 or higher) stabilized at room temperature air in a few days. However, at 200 C, these values decreased rapidly and then more slowly, throughout a 2-week test period. The electrically insulative or semiconductive fibers were found to be compatible with epoxy and have the fluorine-to-carbon atom ratio of 0.65 to 0.68, thermal conductivity of 5 to 24 W/m-K, electrical resistivity of 10(exp 4) to 10(exp 11) Ohm/cm, tensile strength of 70 to 150 ksi, Young's modulus of 20 to 30 msi, and CTE (coefficient of thermal expansion) values of 7 ppm/deg C. Data of these physical property values are preliminary. However, it is concluded that these physical properties can be tailor-made. They depend largely on the fluorine content of the final products and the intercalant in the fibers before fluorination, and, to a smaller extent, on the fluorination temperature histogram.

  7. Low temperature preparation of highly fluorinated multiwalled carbon nanotubes activated by Fe3O4 towards enhanced microwave absorbing property.

    PubMed

    Liu, Yang; Zhang, Yichun; Zhang, Cheng; Huang, Benyuan; Li, Yulong; Lai, Wenchuan; Wang, Xu; Liu, Xiangyang

    2018-06-11

    Conventional approach to preparation highly fluorinated multiwalled carbon nanotubes (MWCNTs) always need high temperature. This paper presents a catalytic tactic realizing effective fluorination of MWNCTs at room temperature (RT). Fe3O4@MWCNTs composites with Fe3O4 loaded on MWCNTs were firstly prepared through solvothermal method, which is followed by fluorination treatment at RT. The attachment of Fe3O4 changes the charge distribution and dramatically improves the fluorination activity of MWCNTs. Consequently, the fluorine content of fluorinated Fe3O4@MWCNTs (F-Fe3O4@MWCNTs) can reach up to 17.13 at% (almost 6 times that of the unloaded sample) only after room temperature of fluorination, which lead to obvious decrease of permittivity. Besides, the partial fluorination of Fe3O4 brings about abnormal enhanced permeability due to strengthened exchange resonance. Benefiting from the lower permittivity and higher permeability, F-Fe3O4@CNTs composite exhibit increased impedance matching. As a result, F-Fe3O4@CNTs behave good microwave absorption property with minimal reflection loss -45 dB at 2.61 mm when filler content is 13 wt%. The efficient absorption bandwidth (<-10 dB) reaches 4.1 GHz when the thickness is 2.5 mm. This work illustrates a novel catalytic approach to prepare highly fluorinated MWCNTs as promising microwave absorbers, and the design concept can also be extended to the fluorination of other carbon materials. © 2018 IOP Publishing Ltd.

  8. Structural Characterization of Early Michaelis Complexes in the Reaction Catalyzed by (+)-Limonene Synthase from Citrus sinensis Using Fluorinated Substrate Analogues.

    PubMed

    Kumar, Ramasamy P; Morehouse, Benjamin R; Matos, Jason O; Malik, Karan; Lin, Hongkun; Krauss, Isaac J; Oprian, Daniel D

    2017-03-28

    The stereochemical course of monoterpene synthase reactions is thought to be determined early in the reaction sequence by selective binding of distinct conformations of the geranyl diphosphate (GPP) substrate. We explore here formation of early Michaelis complexes of the (+)-limonene synthase [(+)-LS] from Citrus sinensis using monofluorinated substrate analogues 2-fluoro-GPP (FGPP) and 2-fluoroneryl diphosphate (FNPP). Both are competitive inhibitors for (+)-LS with K I values of 2.4 ± 0.5 and 39.5 ± 5.2 μM, respectively. The K I values are similar to the K M for the respective nonfluorinated substrates, indicating that fluorine does not significantly perturb binding of the ligand to the enzyme. FGPP and FNPP are also substrates, but with dramatically reduced rates (k cat values of 0.00054 ± 0.00005 and 0.00024 ± 0.00002 s -1 , respectively). These data are consistent with a stepwise mechanism for (+)-LS involving ionization of the allylic GPP substrate to generate a resonance-stabilized carbenium ion in the rate-limiting step. Crystals of apo-(+)-LS were soaked with FGPP and FNPP to obtain X-ray structures at 2.4 and 2.2 Å resolution, respectively. The fluorinated analogues are found anchored in the active site through extensive interactions involving the diphosphate, three metal ions, and three active-site Asp residues. Electron density for the carbon chains extends deep into a hydrophobic pocket, while the enzyme remains mostly in the open conformation observed for the apoprotein. While FNPP was found in multiple conformations, FGPP, importantly, was in a single, relatively well-defined, left-handed screw conformation, consistent with predictions for the mechanism of stereoselectivity in the monoterpene synthases.

  9. Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Zhao, Weijia; Hao, Lifen; Wang, Sha; Pei, Mengmeng; Wang, Xuechuan

    2018-04-01

    Waterborne polyurethane (PU) emulsions are widely used in various fields and the demand for them is ever-increasing over the years. However, the hydrophilic chain extender inevitably bonded into the PU backbone can affect the water tolerance of PU. Thus, it is of great importance to improve PU water resistance effectively. Herein, novel fluoroalkyl-terminated hyperbranched polyurethane (HBPUF) latex was accordingly synthesized by graft reaction of perfluorohexyl ethyl alcohol and hyperbranched polyurethane (HBPU), which was previously obtained from interaction between hydroxyl-terminated hyperbranched polymer and PU prepolymer manufactured via the acetone process, as well as using neutralization, adding water, and high-speed stirring operations. We characterized the resultants and investigated its surface properties by IR, NMR, TEM, XRD, TGA, DSC, FE-SEM, AFM, XPS, and contact angle measurements, etc. IR and NMR tests confirmed that the fluorinated fragments had been grafted onto the tail end of HBPU. TEM, XRD, DSC, and FE-SEM results all accounted for the fact that there were multi-crystals in PU, HBPU and HBPUF. TGA results showed that thermal stabilities of the PU, HBPU, and HBPUF latex films were enhanced in turn. XPS and AFM analyses demonstrated that the fluorine-containing segments from the HBPUF terminals were prone to migrate and enrich on the film-air surface of the HBPUF latex film, which made water contact angle and water absorption of the HBPUF film be as 113.9° and 11.1%, respectively, compared to those of the PU film (77.8° and 136.2%). This research indicates that water resistance of the PU film can be efficiently enhanced by fluorinated polyurethane with novel fluoroalkyl-terminated hyperbranched structure.

  10. Method of preparing pure fluorine gas

    DOEpatents

    Asprey, Larned B.

    1976-01-01

    A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.

  11. PROGRAM TO DETERMINE PERFORMANCE OF FLUORINATED ETHERS AND FLUORINATED PROPANES IN A COMPRESSOR CALORIMETER

    EPA Science Inventory

    The paper discusses a program to determine the performance of fluorinated ethers and fluorinated propanes in a compressor calorimeter. These chlorine free ethers and propanes are being considered as potential long-term replacements for CFC-11, -12, -114, and -115. A standard comp...

  12. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  13. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  14. Compendium of fluorine data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detamore, J.A.

    1983-04-16

    Research was conducted to locate information about fluorine. This information includes chemical and physical properties of fluorine, physiological effects produced by the material, first-aid, personnel and facility protection, and materials of construction required when handling fluorine in piping and process vessels. The results of this research have been compiled in this report.

  15. Analysis of fluorine addition to the vanguard first stage

    NASA Technical Reports Server (NTRS)

    Tomazic, William A; Schmidt, Harold W; Tischler, Adelbert O

    1957-01-01

    The effect of adding fluorine to the Vanguard first-stage oxidant was anlyzed. An increase in specific impulse of 5.74 percent may be obtained with 30 percent fluorine. This increase, coupled with increased mass ratio due to greater oxidant density, gave up to 24.6-percent increase in first-stage burnout energy with 30 percent fluorine added. However, a change in tank configuration is required to accommodate the higher oxidant-fuel ratio necessary for peak specific impulse with fluorine addition.

  16. Enantioselective Organocatalytic α-Fluorination of Cyclic Ketones

    PubMed Central

    Kwiatkowski, Piotr; Beeson, Teresa D.; Conrad, Jay C.

    2011-01-01

    The first highly enantioselective α-fluorination of ketones using organocatalysis has been accomplished. The long-standing problem of enantioselective ketone α-fluorination via enamine activation has been overcome via high-throughput evaluation of a new library of amine catalysts. The optimal system, a primary amine functionalized Cinchona alkaloid, allows the direct and asymmetric α-fluorination of a variety of carbo- and heterocyclic substrates. Furthermore, this protocol also provides diastereo-, regio- and chemoselective catalyst control in fluorinations involving complex carbonyl systems. PMID:21247133

  17. Chain-Length-Dependent Exciton Dynamics in Linear Oligothiophenes Probed Using Ensemble and Single-Molecule Spectroscopy.

    PubMed

    Kim, Tae-Woo; Kim, Woojae; Park, Kyu Hyung; Kim, Pyosang; Cho, Jae-Won; Shimizu, Hideyuki; Iyoda, Masahiko; Kim, Dongho

    2016-02-04

    Exciton dynamics in π-conjugated molecular systems is highly susceptible to conformational disorder. Using time-resolved and single-molecule spectroscopic techniques, the effect of chain length on the exciton dynamics in a series of linear oligothiophenes, for which the conformational disorder increased with increasing chain length, was investigated. As a result, extraordinary features of the exciton dynamics in longer-chain oligothiophene were revealed. Ultrafast fluorescence depolarization processes were observed due to exciton self-trapping in longer and bent chains. Increase in exciton delocalization during dynamic planarization processes was also observed in the linear oligothiophenes via time-resolved fluorescence spectra but was restricted in L-10T because of its considerable conformational disorder. Exciton delocalization was also unexpectedly observed in a bent chain using single-molecule fluorescence spectroscopy. Such delocalization modulates the fluorescence spectral shape by attenuating the 0-0 peak intensity. Collectively, these results provide significant insights into the exciton dynamics in conjugated polymers.

  18. Improved retention of phosphorus donors in germanium using a non-amorphizing fluorine co-implantation technique

    NASA Astrophysics Data System (ADS)

    Monmeyran, Corentin; Crowe, Iain F.; Gwilliam, Russell M.; Heidelberger, Christopher; Napolitani, Enrico; Pastor, David; Gandhi, Hemi H.; Mazur, Eric; Michel, Jürgen; Agarwal, Anuradha M.; Kimerling, Lionel C.

    2018-04-01

    Co-doping with fluorine is a potentially promising method for defect passivation to increase the donor electrical activation in highly doped n-type germanium. However, regular high dose donor-fluorine co-implants, followed by conventional thermal treatment of the germanium, typically result in a dramatic loss of the fluorine, as a result of the extremely large diffusivity at elevated temperatures, partly mediated by the solid phase epitaxial regrowth. To circumvent this problem, we propose and experimentally demonstrate two non-amorphizing co-implantation methods; one involving consecutive, low dose fluorine implants, intertwined with rapid thermal annealing and the second, involving heating of the target wafer during implantation. Our study confirms that the fluorine solubility in germanium is defect-mediated and we reveal the extent to which both of these strategies can be effective in retaining large fractions of both the implanted fluorine and, critically, phosphorus donors.

  19. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  20. 21 CFR 170.45 - Fluorine-containing compounds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... § 170.45 Fluorine-containing compounds. The Commissioner of Food and Drugs has concluded that it is in the interest of the public health to limit the addition of fluorine compounds to foods (a) to that... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fluorine-containing compounds. 170.45 Section 170...

  1. Method for directly recovering fluorine from gas streams

    DOEpatents

    Orlett, Michael J.; Saraceno, Anthony J.

    1981-01-01

    This invention is a process for the direct recovery of gaseous fluorine from waste-gas streams or the like. The process comprises passing the gas stream through a bed of anhydrous K.sub.3 NiF.sub.6 pellets to fluorinate the same to K.sub.3 NiF.sub.7 and subsequently desorbing the fluorine by heating the K.sub.3 NiF.sub.7 pellets to a temperature re-converting them to K.sub.3 NiF.sub.6. The efficiency of the fluorine-absorption step is maximized by operating in a selected and conveniently low temperature. The desorbed fluorine is highly pure and is at a pressure of several atmospheres. Preferably, the K.sub.3 NiF.sub.6 pellets are prepared by a method including the steps of forming agglomerates of hydrated K.sub.3 NiF.sub.5, sintering the agglomerates to form K.sub.3 NiF.sub.5 pellets of enhanced reactivity with respect to fluorine, and fluorinating the sintered pellets to K.sub.3 NiF.sub.6.

  2. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from

  3. Conceptually new deltanoids (vitamin D analogs) inhibit multistage skin tumorigenesis.

    PubMed

    Kensler, T W; Dolan, P M; Gange, S J; Lee, J K; Wang, Q; Posner, G H

    2000-07-01

    Development of vitamin D analogs (deltanoids) as chemopreventive agents requires separation of desirable antiproliferative and pro-differentiating activities from the undesirable calcemic activity also found in the hormone calcitriol (1 alpha, 25-dihydroxyvitamin D(3)). Therefore, several conceptually new deltanoids were synthesized with modifications to the 1alpha- and/or 25-hydroxyl groups, positions traditionally considered essential for stimulating biological responses. In this study, 1 beta-hydroxymethyl-3-epi-25-hydroxyvitamin D(3), a non-calcemic CH(2) homolog of the natural hormone with antiproliferative activity in vitro, was ineffective as an inhibitor of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced induction of ornithine decarboxylase activity in mouse epidermis. However, a hybrid analog incorporating not only the calcemia-ablating 1 beta-hydroxymethyl alteration, but potentiating C,D ring 16-unsaturation and side chain 24,24-fluorination and 26, 27-homologation was found to be as effective as calcitriol. Several non-calcemic 24- or 25-t-butyl sulfones, some containing side chain fluorination but all lacking the 25-hydroxyl group, were also shown to be active in this assay. Three sulfones and the 1 beta-hydroxymethyl hybrid were evaluated as inhibitors of multistage carcinogenesis in mouse skin. Female CD-1 mice were initiated with a single dose of 7,12-dimethylbenz[a]anthracene and then promoted twice weekly for 20 weeks with TPA. Deltanoids were applied topically 30 min before TPA. Unlike calcitriol, none of the atypical deltanoids affected body weight gain in these animals. Minimal effects on urinary calcium excretion were observed following chronic treatment with these analogs. All deltanoids inhibited the incidence and multiplicity of papilloma formation, with the hybrid analog showing the greatest efficacy. With this deltanoid, tumor incidence was significantly reduced by 28% and tumor multiplicity by 63%. These results, coupled with the rich chemical diversity available in side chain sulfur-containing deltanoids, particularly when combined with A ring modifications such as 1 beta-hydroxylalkyl groups, provide important new advances in the fundamental understanding of chemical structure-biological activity relationships as well as more potent and safe vitamin D analogs for cancer chemoprevention and other medicinal uses.

  4. Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems.

    PubMed

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2018-04-30

    Fluorine can flow into the environment after leakage or spill accidents and these excessive amounts can cause adverse effects on terrestrial ecosystems. Using three media (filter paper, soil, and filter-paper-on-soil), we investigated the toxic effects of fluorine on the germination and growth of crops (barley, mung bean, sorghum, and wheat), on the activities of soil exoenzymes (acid phosphatase, arylsulfatase, fluorescein diacetate hydrolase, and urease) and on the survival, abnormality, and cytotoxicity of Eisenia andrei earthworms. The germination and growth of crops were affected by fluorine as exposure concentration increased. The activities of the four enzymes after 0-, 3-, 10-, and 20-day periods varied as exposure concentration increased. According to in vivo and in vitro earthworm assays, E. andrei mortality, abnormality, and cytotoxicity increased with increasing fluorine concentration. Overall, fluorine significantly affected each tested species in the concentration ranges used in this study. The activities of soil exoenzymes were also affected by soil fluorine concentration, although in an inconsistent manner. Albeit the abnormally high concentrations of fluorine in soil compared to that observed under natural conditions, its toxicity was much restrained possibly due to the adsorption of fluorine on soil particles and its combination with soil cations. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Two‐Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications

    PubMed Central

    Long, Peng; Feng, Yiyu; Li, Yu

    2016-01-01

    Fluorinated graphene, an up‐rising member of the graphene family, combines a two‐dimensional layer‐structure, a wide bandgap, and high stability and attracts significant attention because of its unique nanostructure and carbon–fluorine bonds. Here, we give an extensive review of recent progress on synthetic methods and C–F bonding; additionally, we present the optical, electrical and electronic properties of fluorinated graphene and its electrochemical/biological applications. Fluorinated graphene exhibits various types of C–F bonds (covalent, semi‐ionic, and ionic bonds), tunable F/C ratios, and different configurations controlled by synthetic methods including direct fluorination and exfoliation methods. The relationship between the types/amounts of C–F bonds and specific properties, such as opened bandgap, high thermal and chemical stability, dispersibility, semiconducting/insulating nature, magnetic, self‐lubricating and mechanical properties and thermal conductivity, is discussed comprehensively. By optimizing the C–F bonding character and F/C ratios, fluorinated graphene can be utilized for energy conversion and storage devices, bioapplications, electrochemical sensors and amphiphobicity. Based on current progress, we propose potential problems of fluorinated graphene as well as the future challenge on the synthetic methods and C‐F bonding character. This review will provide guidance for controlling C–F bonds, developing fluorine‐related effects and promoting the application of fluorinated graphene. PMID:27981018

  6. Fluorinated Compounds in US Fast Food Packaging | Science ...

    EPA Pesticide Factsheets

    Per- and polyfluoroalkyl substances (PFASs) are highly persistent synthetic chemicals, some of which have been associated with cancer, developmental toxicity, immunotoxicity, and other health effects. PFASs in grease-resistant food packaging can leach into food and increase dietary exposure. We collected ∼400 samples of food contact papers, paperboard containers, and beverage containers from fast food restaurants throughout the United States and measured total fluorine using particle-induced γ-ray emission (PIGE) spectroscopy. PIGE can rapidly and inexpensively measure total fluorine in solid-phase samples. We found that 46% of food contact papers and 20% of paperboard samples contained detectable fluorine (>16 nmol/cm2). Liquid chromatography/high-resolution mass spectrometry analysis of a subset of 20 samples found perfluorocarboxylates, perfluorosulfonates, and other known PFASs and/or unidentified polyfluorinated compounds (based on nontargeted analysis). The total peak area for PFASs was higher in 70% of samples (10 of 14) with a total fluorine level of >200 nmol/cm2 compared to six samples with a total fluorine level of <16 nmol/cm2. Samples with high total fluorine levels but low levels of measured PFASs may contain volatile PFASs, PFAS polymers, newer replacement PFASs, or other fluorinated compounds. The prevalence of fluorinated chemicals in fast food packaging demonstrates their potentially significant contribution to dietary PFAS exposure and envi

  7. Industrial Applications of Graphite Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1991-01-01

    Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.

  8. Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection LC/MS/MS—Characterization of Municipal Wastewaters

    PubMed Central

    Schultz, Melissa M.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 μL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization, and tandem mass spectrometry (LC/MS/MS). The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent ranged from 77% – 96% and 80% – 99%, respectively. The lower limit of quantitation ranged from 0.5 to 3.0 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 hr period from ten WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In nine out of the ten plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge. PMID:16433363

  9. Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes.

    PubMed

    Silvi, Mattia; Sandford, Christopher; Aggarwal, Varinder K

    2017-04-26

    Vinyl boronates react with electron-deficient alkyl iodides in the presence of visible light to give boronic esters in which two new C-C bonds have been created. The reaction occurs by radical addition of an electron-deficient alkyl radical to the vinyl boronate followed by electron transfer with another molecule of alkyl iodide, continuing the chain, and triggering a 1,2-metalate rearrangement. In a number of cases, the use of a photoredox catalyst enhances yields significantly. The scope of the radical precursor includes α-iodo ketones, esters, nitriles, primary amides, α-fluorinated halo-acetates and perfluoroalkyl iodides.

  10. Distribution and formation of high-fluorine groundwater in China

    NASA Astrophysics Data System (ADS)

    Fuhong, Ren; Shuqin, Jiao

    1988-08-01

    In China, high-fluorine groundwater, which contains more than 1.0 mg/l fluorine, is mainly distributed in shallow aquifers of unconsolidated deposits in some arid and semiarid areas, deep aquifers of unconsolidated deposits in semiarid areas, as well as in hot springs of bed rock mountainous area and aquifers of fluorite-mine area. Its formation is controlled by regional climate factors, seepage conditions of groundwater, as well as the hydrogeochemical environment. The physicochemical properties of soil mass of the aeration zone play an important role in fluorine concentration in shallow groundwater. In the coastal plain areas, where groundwater is mainly recharged and discharged vertically, and its regime type belongs to the type of infiltration—evaporation, the grain size of soil mass of aeration zone directly influences the amount of fluorine transferred from solid medium into water; and the chemical constituents of the soil mass of aeration zone controls the chemical characteristics of the shallow groundwater, consequently influencing the concentration condition of fluorine in water. Fluorine ion in groundwater continuously migrates and concentrates under the comprehensive influence of many factors. High-fluorine groundwater exceeding the sanitary standard (1.0 mg/l) has an obvious zonality in regional distribution in China. Based on current statistics, there are roughly 50 million people (Zheng Qifu 1986) who have consumed water which exceeds standards in China. In highfluorine groundwater areas, endemic fluorine-poisoning often arises to different extents, affecting human health seriously. At the end of 1983, over 20 million patients were suffering from fluorine-poisoning diseases in China (Xu Guozhang, unpublished data). Therefore, research of the distribution feature and formation mechanism of fluorine ion in groundwater has become an important task.

  11. Exotic states of matter with polariton chains

    NASA Astrophysics Data System (ADS)

    Kalinin, Kirill P.; Lagoudakis, Pavlos G.; Berloff, Natalia G.

    2018-04-01

    We consider linear periodic chains of exciton-polariton condensates formed by pumping polaritons nonresonantly into a linear network. To the leading order such a sequence of condensates establishes relative phases as to minimize a classical one-dimensional X Y Hamiltonian with nearest and next-to-nearest neighbors. We show that the low-energy states of polaritonic linear chains demonstrate various classical regimes: ferromagnetic, antiferromagnetic, and frustrated spiral phases where quantum or thermal fluctuations are expected to give rise to a spin-liquid state. At the same time nonlinear interactions at higher pumping intensities bring about phase chaos and novel exotic phases.

  12. Diastereocontrolled Electrophilic Fluorinations of 2-Deoxyribonolactone: Syntheses of All Corresponding 2-Deoxy-2-fluoro-lactones and 2’-Deoxy-2’-fluoro-NAD+s

    PubMed Central

    Cen, Yana; Sauve, Anthony A.

    2009-01-01

    Methods to construct 2’-deoxy-2’-fluoro-nucleosides have undergone limited improvement in the last twenty years in spite of substantially increased value of these compounds as pharmaceuticals and as tools for studying biological processes. We herein describe a consolidated approach to synthesize precursors to these commercially and scientifically valuable compounds via diastereocontrolled fluorination of the readily available precursor 2-deoxy-d-ribonolactone. With employment of appropriate sterically bulky silyl protecting groups at 3 and 5 positions, controlled electrophilic fluorination of the Li-ribonolactone enolate by N-fluorodibenezenesulfonamide yielded the corresponding 2-deoxy-2-fluoro-arabino-lactone in high isolated yield (72 %). The protected 2-deoxy-2, 2-difluoro-ribonolactone was obtained similarly in high yield from a second round of electrophilic fluorination (2 steps, 51% from protected ribonolactone starting material). Accomplishment of the difficult ribo-fluorination of the lactone was achieved by the directive effects of a diastereoselectively installed α-trimethylsilyl group. Electrophilic fluorination of a protected 2-deoxy-2-trimethylsilyl-arabino-lactone via enolate generation provided the protected 2-deoxy-2-fluoro-ribo-lactone as the exclusive fluorinated product. The reaction also yielded the starting material, the desilylated protected 2-deoxy-ribonolactone, which was recycled to provide a 38% chemical yield of the fluorinated product (versus initial protected ribonolactone) after consecutive silylation and fluorination cycles. Using our fluorinated sugar precursors we prepared the 2’-fluoro-arabino-, 2’-fluoro-ribo- and 2’,2’-difluoro-nicotinamide adenine dinucleotides (NAD+) of potential biological interest. These syntheses provide the most consolidated and efficient methods for production of sugar precursors of 2’-deoxy-2’-fluoronucleosides and have the advantage of utilizing an air-stable electrophilic fluorinating agent. The fluorinated NAD+s are anticipated to be useful for studying a variety of cellular metabolic and signaling processes. PMID:19958035

  13. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops.

    PubMed

    Szostek, Radosław; Ciećko, Zdzisław

    2017-03-01

    The research was based on a pot experiment, in which the response of eight species of crops to soil contamination with fluorine was investigated. In parallel, some inactivating substances were tested in terms of their potential use for the neutralization of the harmful influence of fluorine on plants. The response of crops to soil contamination with fluorine was assessed according to the volume of biomass produced by aerial organs and roots as well as their content of N-total, N-protein, and N-NO 3 - . The following crops were tested: maize, yellow lupine, winter oilseed rape, spring triticale, narrow-leaf lupine, black radish, phacelia, and lucerne. In most cases, soil pollution with fluorine stimulated the volume of biomass produced by the plants. The exceptions included grain and straw of spring triticale, maize roots, and aerial parts of lucerne, where the volume of harvested biomass was smaller in treatments with fluorine-polluted soil. Among the eight plant species, lucerne was most sensitive to the pollution despite smaller doses of fluorine in treatments with this plant. The other species were more tolerant to elevated concentrations of fluorine in soil. In most of the tested plants, the analyzed organs contained more total nitrogen, especially aerial organs and roots of black radish, grain and straw of spring triticale, and aerial biomass of lucerne. A decrease in the total nitrogen content due to soil contamination with fluorine was detected only in the aerial mass of yellow lupine. With respect to protein nitrogen, its increase in response to fluorine as a soil pollutant was found in grain of spring triticale and roots of black radish, whereas the aerial biomass of winter oilseed rape contained less of this nutrient. Among the analyzed neutralizing substances, lime most effectively alleviated the negative effect of soil pollution with fluorine. The second most effective substance was loam, while charcoal was the least effective in this respect. Our results showed the effect of soil contamination with fluorine on the yield and chemical composition of fluorine depended on the species and organ of a tested plant, on the rate of the xenobotic element and on the substance added to soil in order to neutralize fluorine.

  14. Synthesis, characterization and cell behavior of fluoridated hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Qu, Haibo

    Fluorine-containing hydroxyapatite (Ca5(PO4) 3(OH)1-xFx FHA), where F- partially replaces OH- in hydroxyapatite (HA), is recognized as a possible biomaterial for bone and tooth implants and gaining attention in the last several years as a possible alternative to HA. In this study, FHA powders were synthesized through a pH-cycling method. It was discovered that fluorine incorporation increased with the fluorine content in the initial solution and the number of pH cycles employed. A relatively low fluorine incorporation efficiency, ˜60%, was attained for most of the FHA samples. The short time of stay at each pH cycle and the limited number of cycles used are believed to be the main reasons of the low fluorine incorporation into the apatite structure. It was also revealed that the FHA particles produced by the pH-cycling method were inhomogeneous. They were a mixture of hydroxyapatite and F-rich apatite (or FA) particles. The mechanisms of incorporation of fluorine ions into hydroxyapatite by a pH cyclicing method were studied using TEM, XRD and fluorine measurement. Instead of forming laminated structures as reported by other research groups, a mixture of nano-sized F-rich apatite (FHA) and hydroxyapatite (HA) particles were obtained using the pH-cyclicing method. After calcination, these FHA particles were homogenized and became single phased FHA. The effect of fluorine content, preparing method, and sintering temperature on both the bulk density and biaxial flexural strength of sintered FHA was studied. Both uniaxially pressed un-milled (UPU) and cold isostatically pressed milled (IPM) FHA discs were sintered at temperatures between 1200˜400°C at an interval of 100°C. It was found that the fluorine content had a significant impact on the sintering behavior, densification, and mechanical properties of FHA discs. A close correlation between the sintered density and biaxial flexural strength of the specimens was revealed, where the biaxial flexural strength increased exponentially with the sintered density. FHA discs with various fluorine contents have been used to investigate the effect of fluorine content on osteoblastic cell behaviors. Rat osteosarcoma (ROS 17/28) cells were cultured on FHA discs for appropriate times. The osteoblastic cell behaviors were examined in terms of cell attachment, proliferation, morphology and differentiation. The fluorine content in FHA strongly affected the cell activities. More cell attachment and proliferation were observed on the fluorine-containing FHA than pure HA. Fluorine content also affected the differentiation behaviors of osteoblastic cells. Cells on fluorine-containing FHA had higher alkaline phosphatase (ALP) activity than pure HA in 2 weeks. The morphology of the cells showed that it took less time for cells to cover the surface of fluorine-containing samples than that of pure HA. These results suggested that fluorine ions had a significant impact on osteoblastic cell behaviors.

  15. The effect of polymer architecture on the interdiffusion in thin polymer films

    NASA Astrophysics Data System (ADS)

    Caglayan, Ayse; Yuan, Guangcui; Satija, Sushil K.; Uhrig, David; Hong, Kunlun; Akgun, Bulent

    Branched polymer chains have been traditionally used in industrial applications as additives. Recently they have found applications in electrochromic displays, lithography, biomedical coatings and targeting multidrug resistant bacteria. In some of these applications where they are confined in thin layers, it is important to understand the relation between the mobility and polymer chain architecture to optimize the processing conditions. Earlier interdiffusion measurements on linear and cyclic polymer chains demonstrated the key role of chain architecture on mobility. We have determined the vertical diffusion coefficients of the star polystyrene chains in thin films as a function of number of polymer arms, molecular weight per arm, and film thickness using neutron reflectivity (NR) and compare our results with linear chains of identical total molecular weight. Bilayer samples of 4-arm and 8-arm protonated polystyrenes (hPS) and deuterated polystyrenes (dPS) were used to elucidate the effect of polymer chain architecture on polymer diffusion. NR measurements indicate that the mobility of polymer chains in thin films get faster as the number of polymer arms increases and the arm molecular weight decreases. Both star polymers showed faster interdiffusion compared to their linear analog. Diffusion coefficient of branched PS chains has a weak dependence on the film thickness.

  16. Experience with fluorine and its safe use as a propellant

    NASA Technical Reports Server (NTRS)

    Bond, D. L.; Guenther, M. E.; Stimpson, L. D.; Toth, L. R.; Young, D. L.

    1979-01-01

    The industrial and the propulsion experience with fluorine and its derivatives is surveyed. The hazardous qualities of fluorine and safe handling procedures for the substance are emphasized. Procedures which fulfill the safety requirements during ground operations for handling fluorinated propulsion systems are discussed. Procedures to be implemented for use onboard the Space Transportation System are included.

  17. Self-formation of a nanonet of fluorinated carbon nanowires on the Si surface by combined etching in fluorine-containing plasma

    NASA Astrophysics Data System (ADS)

    Amirov, I. I.; Gorlachev, E. S.; Mazaletskiy, L. A.; Izyumov, M. O.; Alov, N. V.

    2018-03-01

    In this work, we report a technique of the self-formation of a nanonet of fluorinated carbon nanowires on the Si surface using a combined etching in fluorine-containing C4F8/Ar and SF6 plasmas. Using scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy, we show that after the etching of Si in the C4F8/Ar plasma, a fluorinated carbon film of nanometer-scale thickness is formed on its surface and its formation accelerates at elevated temperatures. After a subsequent short-term etching in the SF6 plasma, the film is modified into a nanonet of self-formed fluorinated carbon nanowires.

  18. Propagating synchrony in feed-forward networks

    PubMed Central

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2013-01-01

    Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety of neural circuits but their dynamical origin is still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains) may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of non-linear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons. PMID:24298251

  19. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    PubMed Central

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  20. Pulsed glow discharge enables direct mass spectrometric measurement of fluorine in crystal materials - Fluorine quantification and depth profiling in fluorine doped potassium titanyl phosphate

    NASA Astrophysics Data System (ADS)

    Bodnar, Victoria; Ganeev, Alexander; Gubal, Anna; Solovyev, Nikolay; Glumov, Oleg; Yakobson, Viktor; Murin, Igor

    2018-07-01

    A pulsed direct current glow discharge time-of-flight mass spectrometry (GD TOF MS) method for the quantification of fluorine in insoluble crystal materials with fluorine doped potassium titanyl phosphate (KTP) KTiOPO4:KF as an example has been proposed. The following parameters were optimized: repelling pulse delay, discharge duration, discharge voltage, and pressure in the discharge cell. Effective ionization of fluorine in the space between sampler and skimmer under short repelling pulse delay, related to the high-energy electron impact at the discharge front, has been demonstrated. A combination of instrumental and mathematical correction approaches was used to cope for the interferences of 38Ar2+ and 1H316O + on 19F+. To maintain surface conductivity in the dielectric KTP crystals and insure its effective sputtering in combined hollow cathode cell, silver suspension applied by the dip-coating method was employed. Fluorine quantification was performed using relative sensitivity factors. The analysis of a reference material and scanning electron microscope-energy dispersive X-ray spectroscopy was used for validation. Fluorine limit of detection by pulsed direct current GD TOF MS was 0.01 mass%. Real sample analysis showed that fluorine seems to be inhomogeneously distributed in the crystals. That is why depth profiling of F, K, O, and P was performed to evaluate the crystals' non-stoichiometry. The approaches designed allow for fluorine quantification in insoluble dielectric materials with minimal sample preparation and destructivity as well as performing depth profiling to assess crystal non-stoichiometry.

  1. The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.

    PubMed

    Chan, K K Jason; O'Hagan, David

    2012-01-01

    Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  3. Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James; Sun, Xuehui

    2002-01-01

    Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.

  4. Site-selective local fluorination of graphene induced by focused ion beam irradiation.

    PubMed

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-29

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  5. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.

  6. Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy.

    PubMed

    Wolters, Martijn; Mohades, Seyede G; Hackeng, Tilman M; Post, Mark J; Kooi, Marianne E; Backes, Walter H

    2013-05-01

    The number of applications of fluorine 19 (19F) magnetic resonance (MR) imaging and spectroscopy in biomedical and clinical research is steadily growing. The 100% natural abundance of fluorine and its relatively high sensitivity for MR (83% to that of protons) make it an interesting nucleus for a wide range of MR applications. Fluorinated contrast media have a number of advantages over the conventionally used gadolinium-based or iron-based contrast agents. The absence of an endogenous fluorine background intensity in the human body facilitates reliable quantification of fluorinated contrast medium or drugs. Anatomy can be visualized separately with proton MR imaging, creating the application of hybrid hydrogen 1 (1H)/19F MR imaging. The availability of 2 channels (ie, the 1H and 19F channels) enables dual-targeted molecular imaging. Recently, novel developments have emerged on fluorine-based contrast media in preclinical studies and imaging techniques. The developments in fluorine MR seem promising for clinical applications, with contributions in therapy monitoring, assessment of lung function, angiography, and molecular imaging. This review outlines the translation from recent advances in preclinical MR imaging and spectroscopy to future perspectives of clinical hybrid 1H/19/F MR imaging applications.

  7. Fluorine Scan of Inhibitors of the Cysteine Protease Human Cathepsin L: Dipolar and Quadrupolar Effects in the π-Stacking of Fluorinated Phenyl Rings on Peptide Amide Bonds.

    PubMed

    Giroud, Maude; Harder, Michael; Kuhn, Bernd; Haap, Wolfgang; Trapp, Nils; Schweizer, W Bernd; Schirmeister, Tanja; Diederich, François

    2016-05-19

    The π-stacking of fluorinated benzene rings on protein backbone amide groups was investigated, using a dual approach comprising enzyme-ligand binding studies complemented by high-level quantum chemical calculations. In the experimental study, the phenyl substituent of triazine nitrile inhibitors of human cathepsin L (hCatL), which stacks onto the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket, was systematically fluorinated, and differences in inhibitory potency were measured in a fluorimetric assay. Binding affinity is influenced by lipophilicity (clog P), the dipole and quadrupole moments of the fluorinated rings, but also by additional interactions of the introduced fluorine atoms with the local environment of the pocket. Generally, the higher the degree of fluorination, the better the binding affinities. Gas phase calculations strongly support the contributions of the molecular quadrupole moments of the fluorinated phenyl rings to the π-stacking interaction with the peptide bond. These findings provide useful guidelines for enhancing π-stacking on protein amide fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrochemical fluorination of La(2)CuO(4): a mild "chimie douce" route to superconducting oxyfluoride materials.

    PubMed

    Delville, M H; Barbut, D; Wattiaux, A; Bassat, J M; Ménétrier, M; Labrugère, C; Grenier, J C; Etourneau, J

    2009-08-17

    The fluorination of La(2)CuO(4) was achieved for the first time under normal conditions of pressure and temperature (1 MPa and 298 K) via electrochemical insertion in organic fluorinated electrolytes and led to lanthanum oxyfluorides of general formula La(2)CuO(4)F(x). Analyses showed that, underneath a very thin layer of LaF(3) (a few atomic layers), fluorine is effectively inserted in the material's structure. The fluorination strongly modifies the lanthanum environment, whereas very little modification is observed on copper, suggesting an insertion in the La(2)O(2) blocks of the structure. In all cases, fluorine insertion breaks the translation symmetry and introduces a long-distance disorder, as shown by electron spin resonance. These results highlight the efficiency of electrochemistry as a new "chimie douce" type fluorination technique for solid-state materials. Performed at room temperature, it additionally does not require any specific experimental care. The choice of the electrolytic medium is crucial with regard to the fluorine insertion rate as well as the material deterioration. Successful application of this technique to the well-known La(2)CuO(4) material provides a basis for further syntheses from other oxides.

  9. Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains

    NASA Astrophysics Data System (ADS)

    Nahali, Negar; Rosa, Angelo

    2018-05-01

    We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.

  10. Effect of fluorinated groups on photooxidative stability of polymeric protectives applied on marble.

    PubMed

    Chiantore, O; Poli, T; Colombo, C; Peruzzi, R; Toniolo, L

    2001-01-01

    Some new protective copolymers and a commercial one have been tested on Candoglia marble, a very low porosity stone. Two of the polymers contained a partially fluorinated methacrylic monomer, 2,2,2 trifluoro ethyl methacrylate (TFEMA), in combination with either an acrylic, methyl acrylate (MA) or a vinyl ether, n-butyl vinyl ether (n-BVE) unit. Two copolymers, ethyl methacrylate/n-butyl vinyl ether and ethyl methacrylate (EMA)/methyl acrylate (Paraloid B72), were non-fluorinated and similar in compositions and molar ratio. The aim of the work is to test the copolymers and compare the performances of fluorinated new polymers with the non fluorinated one and with the largely used commercial product. The results obtained demonstrate that the introduction, even in limited amounts, of fluorine atoms in the side ester groups of methacrylic type polymers really improves their protective effect and the durability of the stone treatments. The best results were obtained with the copolymer TFEM/MA which is the fluorinated homologous of Paraloid B72.

  11. The effect of fluorine substitutions on the refractive index properties for π-conjugated calamitic nematic materials

    NASA Astrophysics Data System (ADS)

    Arakawa, Yuki; Tsuji, Hideto

    2017-06-01

    In order to reveal the effect of fluorine substitutions on the refractive index properties for calamitic nematic materials, we carried out a comparative study with respect to non-fluorinated and two types of laterally fluorinated 1,4-bis[4-(hexyloxy)phenyl]ethynylbenzene molecules. Phase transition behaviours were investigated by differential scanning calorimetry and polarised optical microscopy. Additionally, extraordinary and ordinary refractive index and birefringence were evaluated from each single component system. All the analogues exhibited high birefringence values beyond 0.3 at 550 nm, of which an analogue with a fluorine substitution at the central benzene ring showed the highest Δn-value of 0.43. With respect to an analogue with the highest level of fluorination, Δn as well as ne and no values were declined due to decreased order parameter and diluted molecular density. Not only the mesomorphic behaviours but also optical properties strongly relied on the manner of fluorine substitution including the number and position.

  12. Aldolase-catalysed stereoselective synthesis of fluorinated small molecules.

    PubMed

    Windle, Claire L; Berry, Alan; Nelson, Adam

    2017-04-01

    The introduction of fluorine has been widely exploited to tune the biological functions of small molecules. Indeed, around 20% of leading drugs contain at least one fluorine atom. Yet, despite profound effects of fluorination on conformation, there is only a limited toolkit of reactions that enable stereoselective synthesis of fluorinated compounds. Aldolases are useful catalysts for the stereoselective synthesis of bioactive small molecules; however, despite fluoropyruvate being a viable nucleophile for some aldolases, the potential of aldolases to control the formation of fluorine-bearing stereocentres has largely been untapped. Very recently, it has been shown that aldolase-catalysed stereoselective carboncarbon bond formation with fluoropyruvate as nucleophile enable the synthesis of many α-fluoro β-hydroxy carboxyl derivatives. Furthermore, an understanding of the structural basis for the stereocontrol observed in these reactions is beginning to emerge. Here, we review the application of aldolase catalysis in the stereocontrolled synthesis of chiral fluorinated small molecules, and highlight likely areas for future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  14. Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy.

    PubMed

    Zhou, Ming; Zhu, Shufa; Liu, Yana; Wang, Xuejian

    2013-08-01

    Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3%, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency.

  15. Method for producing fluorinated diamond-like carbon films

    DOEpatents

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  16. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    PubMed

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  17. Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa).

    PubMed

    Felizeter, Sebastian; McLachlan, Michael S; de Voogt, Pim

    2012-11-06

    An uptake study was carried out to assess the potential human exposure to perfluorinated alkyl acids (PFAAs) through the ingestion of vegetables. Lettuce (Lactuca sativa) was grown in PFAA-spiked nutrient solutions at four different concentrations, ranging from 10 ng/L to 10 μg/L. Eleven perfluorinated carboxylic acids (PFCAs) and three perfluorinated sulfonic acids (PFSAs) were analyzed by HPLC-MS/MS. At the end of the experiment, the major part of the total mass of each of the PFAAs (except the short-chain, C4-C7, PFCAs) taken up by plants appeared to be retained in the nonedible part, viz. the roots. Root concentration factors (RCF), foliage/root concentration factors (FRCF), and transpiration stream concentration factors (TSCF) were calculated. For the long chained PFAAs, RCF values were highest, whereas FRCF were lowest. This indicates that uptake by roots is likely governed by sorption of PFAAs to lipid-rich root solids. Translocation from roots to shoots is restricted and highly depending on the hydrophobicity of the compounds. Although the TSCF show that longer-chain PFCAs (e.g., perfluorododecanoic acid) get better transferred from the nutrient solution to the foliage than shorter-chain PFCAs (e.g., perfluoroheptanoic acid), the major fraction of longer-chain PFCAs is found in roots due to additional adsorption from the spiked solution. Due to the strong electron-withdrawing effect of the fluorine atoms the role of the negative charge of the dissociated PFAAs is likely insignificant.

  18. Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrine-related activity in vitro.

    PubMed

    Rosenmai, A K; Taxvig, C; Svingen, T; Trier, X; van Vugt-Lussenburg, B M A; Pedersen, M; Lesné, L; Jégou, B; Vinggaard, A M

    2016-07-01

    Migration of chemicals from packaging materials to foods may lead to human exposure. Polyfluoroalkyl substances (PFAS) can be used in technical mixtures (TMs) for use in food packaging of paper and board, and PFAS have been detected in human serum and umbilical cord blood. The specific structures of the PFAS in TMs are often unknown, but polyfluorinated alkyl phosphate esters (PAPs) have been characterized in TMs, food packaging, and in food. PAPs can be metabolized into fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Some PFAS have endocrine activities, highlighting the need to investigate these effects. Herein, we studied the endocrine activity of less characterized PFAS, including short-chain PFCAs and FTOHs, PAPs, and TMs of unknown chemical composition. Long-chain PFCAs were also included. We applied seven assays covering effects on estrogen, glucocorticoid, androgen, and peroxisome proliferator-activated receptor (PPAR) activity, as well as steroidogenesis in vitro and ex vivo. In general, PAPs, FTOHs, TMs, and long-chain PFCAs showed estrogenic activity through receptor activation and/or increasing 17β-estradiol levels. Furthermore, short- and long-chain PFCAs activated PPARα and PPARγ. Collectively, this means that (i) PAPs, FTOHs, and PFCAs exhibit endocrine activity through distinct and sometimes different mechanisms, (ii) two out of three tested TMs exhibited estrogenic activity, and (iii) short-chain FTOHs showed estrogenic activity and short-chain PFCAs generally activate both PPARα and PPARγ with similar potency and efficacy as long-chain PFCAs. In conclusion, several new and divergent toxicological targets were identified for different groups of PFAS. © 2016 American Society of Andrology and European Academy of Andrology.

  19. Flow microreactor synthesis in organo-fluorine chemistry

    PubMed Central

    Nagaki, Aiichiro

    2013-01-01

    Summary Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry. PMID:24367443

  20. Flow microreactor synthesis in organo-fluorine chemistry.

    PubMed

    Amii, Hideki; Nagaki, Aiichiro; Yoshida, Jun-Ichi

    2013-12-05

    Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry.

  1. Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion

    DOEpatents

    Baker, L. Robert; Seo, Hyungtak; Hervier, Antoine; Somorjai, Gabor A.

    2016-04-12

    A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3 % oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO.sub.2 composition.

  2. Detections of Long Carbon Chains CH_{3}CCCCH, C_{6}H, LINEAR-C_{6}H_{2} and C_{7}H in the Low-Mass Star Forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-06-01

    Carbon chains in the warm carbon chain chemistry (WCCC) region has been searched in the 42-44 GHz region by using Green Bank 100 m telescope. Long carbon chains C_{7}H, C_{6}H, CH_{3}CCCCH, and linear-C_{6}H_{2} and cyclic species C_{3}H and C_{3}H_{2}O have been detected in the low-mass star forming region L1527, performing the WCCC. C_{7}H was detected for the first time in molecular clouds. The column density of C_{7}H is derived to be 6.2 × 10^{10} cm^{-2} by using the detected J = 24.5-23.5 and 25.5-24.5 rotational lines. The ^{2}Π_{1/2} electronic state of C_{6}H, locating 21.6 K above the ^{2}Π_{3/2} electronic ground state, and the K_a = 0 line of the para species of linear-C_{6}H_{2} were also detected firstly in molecular clouds. The column densities of the ^{2}Π_{1/2} and ^{2}Π_{3/2} states of C_{6}H in L1527 were derived to be 1.6 × 10^{11} and 1.1 × 10^{12} cm^{-2}, respectively. The total column density of linear-C_{6}H_{2} is obtained to be 1.86 × 10^{11} cm^{-2}. While the abundance ratios of carbon chains in between L1527 and the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) have a trend of decrease by extension of carbon-chain length, column densities of CH_{3}CCCCH and C_{6}H are on the trend. However, the column densities of linear-C_{6}H_{2}, and C_{7}H are as abundant as those of TMC-1 CP in spite of long carbon chain, i.e., they are not on the trend. The abundances of linear-C_{6}H_{2} and C_{7}H show that L1527 is rich for long carbon chains as well as TMC-1 CP.

  3. [Concentrations of fluorine, aluminum and magnesium in some structures of the central nervous system of rats exposed to aluminum and fluorine in drinking water].

    PubMed

    Lubkowska, Anna; Chlubek, Dariusz; Machoy-Mokrzyńska, Anna; Noceń, Iwona; Zyluk, Beata; Nowacki, Przemysław

    2004-01-01

    Fluorine and aluminum are able to pass through the blood-brain barrier and accumulate in the central nervous system (CNS) of exposed animals. Chronic intoxication is accompanied by behavioral disorders, degenerative changes, and abnormalities of aerobic metabolism of the neurons. Awareness of the role of aluminum in Alzheimer's disease stems from epidemiological studies demonstrating increased prevalence of this condition in areas with relatively high content of aluminum in drinking water. The uptake of aluminum in the gastrointestinal tract is decreased in the presence of iron, calcium, magnesium, phosphate, or fluoride. Many magnesium-containing enzymes are affected by aluminum, which is able to replace magnesium and thus reduce their activity. The purpose of this study was to determine the concentrations of fluorine, aluminum, and magnesium in some structures of the CNS of rats exposed to fluorine and aluminum in water. Our material consisted of 64 Wistar rats divided into eight equal groups. Groups I, II and III were female rats exposed, respectively, to 100 ppm fluorine ions, 300 ppm aluminum ions or both at same doses alternating every second day. Groups IA, IIA and IIIA consisted of male rats exposed like the respective female groups. Control groups K1--females and K2--males received distilled water ad libitum. Exposure lasted 31 days whereupon the animals were anesthetized with ketamine and sacrificed. The brain was collected and the cerebellum, brain cortex, and hippocampus were isolated. Concentrations of fluorine, aluminum, and magnesium were measured with prior mineralization of wet tissues in a microwave oven. Fluorine concentrations were determined with a potentiometric method and ion-selective electrode. Aluminum was measured with ICP (inductively coupled plasma) and magnesium with ASA (atomic absorption spectrometry). The highest concentrations of fluorine were observed in rats exposed to fluorine only. The same pattern was true for aluminum. Groups exposed alternatively to both elements demonstrated lower accumulation of fluorine whereas accumulation of aluminum did not change significantly. Apparently, aluminum reduced the availability of fluorine but there was no reciprocal effect. No significant changes in the concentrations of magnesium were noted, regardless of the brain structure or group. It can thus be concluded that exposure to fluorine, aluminum or both has little effect on the concentration of magnesium in the CNS of rats.

  4. In vivo quantification of bone-fluorine by delayed neutron activation analysis: a pilot study of hand-bone-fluorine levels in a Canadian population.

    PubMed

    Chamberlain, Mike; Gräfe, James L; Aslam; Byun, Soo-Hyun; Chettle, David R; Egden, Lesley M; Webber, Colin E; McNeill, Fiona E

    2012-03-01

    Humans can be exposed to fluorine (F) through their diet, occupation, environment and oral dental care products. Fluorine, at proper dosages, is believed to have positive effects by reducing the incidence of dental caries, but fluorine toxicity can occur when people are exposed to excessive quantities of fluorine. In this paper we present the results of a small pilot in vivo study on 33 participants living in Southwestern Ontario, Canada. The mean age of participants was 45 ± 18 years with a range of 20-87 years. The observed calcium normalized hand-bone-fluorine concentrations in this small pilot study ranged from 1.1 to 8.8 mg F/g Ca. Every person measured in this study had levels of fluorine in bone above the detection limit of the system. The average fluorine concentration in bone was found to be 3.5 ± 0.4 mg F/g Ca. No difference was observed in average concentration for men and women. In addition, a significant correlation (r(2) = 0.55, p < 0.001) was observed between hand-bone-fluorine content and age. The amount of fluorine was found to increase at a rate of 0.084 ± 0.014 mg F/g Ca per year. There was no significant difference observed in this small group of subjects between the accumulation rates in men and women. To the best of our knowledge, this is the first time data from in vivo measurement of fluorine content in humans by neutron activation analysis have been presented. The data determined by this technique were found to be consistent with results from ex vivo studies from other countries. We suggest that the data demonstrate that this low risk non-invasive diagnostic technique will permit the routine assessment of bone-fluorine content with potential application in the study of clinical bone-related diseases. This small study demonstrated that people in Southern Ontario are exposed to fluoride in measureable quantities, and that fluoride can be seen to accumulate in bone with age. However, all volunteers were found to have levels below those expected with clinical fluorosis, and only one older subject was found to have levels comparable with preclinical exposure.

  5. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains.

    PubMed

    Zardalidis, George; Mars, Julian; Allgaier, Jürgen; Mezger, Markus; Richter, Dieter; Floudas, George

    2016-10-04

    The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < M e ), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > M e undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.

  6. Radical-Mediated Enzymatic Carbon Chain Fragmentation-Recombination

    PubMed Central

    Zhang, Qi; Li, Yuxue; Chen, Dandan; Yu, Yi; Duan, Lian; Shen, Ben; Liu, Wen

    2010-01-01

    The radical S-adenosylmethionine (S-AdoMet) superfamily contains thousands of proteins that catalyze highly diverse conversions, most of which are poorly understood due to a lack of information regarding chemical products and radical-dependent transformations. We here report that NosL, involved in forming the indole side ring of the thiopeptide nosiheptide (NOS), is a radical S-AdoMet 3-methyl-2-indolic acid (MIA) synthase. NosL catalyzed an unprecedented carbon chain reconstitution of L-Trp to give MIA, showing removal of the Cα-N unit and shift of the carboxylate to the indole ring. Dissection of the enzymatic process upon the identification of products and a putative glycyl intermediate uncovered a radical-mediated, unusual fragmentation-recombination reaction. This finding unveiled a key step in radical S-AdoMet enzyme-catalyzed structural rearrangements during complex biotransformations. Additionally, NosL tolerated fluorinated L-Trps as the substrates, allowing for production of a regiospecifically halogenated thiopeptide that has not been found in over 80 entity-containing, naturally occurring thiopeptide family. PMID:21240261

  7. Low Temperature Fluorination of Aerosol Suspensions of Hydrocarbons Utilizing Elemental Fluorine.

    DTIC Science & Technology

    1982-09-01

    admitting boron trifluoride into the aerosol direct florination of neopentane. The aerosol direct fluorination of ketones indicates the carbonyl group...fluorination of molecules with primary, secondary and tertiary hydro- gens is also included as is the effect of admitting boron trifluoride into the...significantly different physical and chemical properties than either of their components. For example, both ammonia and boron trifluoride are low

  8. Enantioselective Cobalt-Catalyzed Sequential Nazarov Cyclization/Electrophilic Fluorination: Access to Chiral α-Fluorocyclopentenones.

    PubMed

    Zhang, Heyi; Cheng, Biao; Lu, Zhan

    2018-06-20

    A newly designed thiazoline iminopyridine ligand for enantioselective cobalt-catalyzed sequential Nazarov cyclization/electrophilic fluorination was developed. Various chiral α-fluorocyclopentenones were prepared with good yields and diastereo- and enantioselectivities. Further derivatizations could be easily carried out to provide chiral cyclopentenols with three contiguous stereocenters. Furthermore, a direct deesterification of fluorinated products could afford chiral α-single fluorine-substituted cyclopentenones.

  9. Fluorinated precursors of superconducting ceramics, and methods of making the same

    DOEpatents

    Wiesmann, Harold; Solovyov, Vyacheslav

    2014-02-18

    This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.

  10. Fluorinated precursors of superconducting ceramics, and methods of making the same

    DOEpatents

    Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY

    2008-04-22

    This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.

  11. Fluorinated precursors of superconducting ceramics, and methods of making the same

    DOEpatents

    Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY

    2012-07-10

    This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.

  12. Applications of the Strategic Defense Initiative's compact accelerators

    NASA Technical Reports Server (NTRS)

    Montanarelli, Nick; Lynch, Ted

    1991-01-01

    The Strategic Defense Initiative's (SDI) investment in particle accelerator technology for its directed energy weapons program has produced breakthroughs in the size and power of new accelerators. These accelerators, in turn, have produced spinoffs in several areas: the radio frequency quadrupole linear accelerator (RFQ linac) was recently incorporated into the design of a cancer therapy unit at the Loma Linda University Medical Center, an SDI-sponsored compact induction linear accelerator may replace Cobalt-60 radiation and hazardous ethylene-oxide as a method for sterilizing medical products, and other SDIO-funded accelerators may be used to produce the radioactive isotopes oxygen-15, nitrogen-13, carbon-11, and fluorine-18 for positron emission tomography (PET). Other applications of these accelerators include bomb detection, non-destructive inspection, decomposing toxic substances in contaminated ground water, and eliminating nuclear waste.

  13. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  14. Investigation of Fluorination on Donor Moiety of Donor-Acceptor 4,7-Dithienylbenzothiadiazole-Based Conjugated Polymers toward Enhanced Photovoltaic Efficiency.

    PubMed

    Li, Yonghai; Wang, Junyi; Liu, Yan; Qiu, Meng; Wen, Shuguang; Bao, Xichang; Wang, Ning; Sun, Mingliang; Yang, Renqiang

    2016-10-05

    It is known that fluorination on π-conjugated donor-acceptor (D-A) polymers can significantly affect the optoelectronic properties and fluorination on A moiety has been well established for design of efficient photovoltaic materials. For example, polymers based on 4,7-dithienyl-5,6-difluorobenzothiadiazole (DTffBT) have been intensively investigated and exhibited excellent performance, but the corresponding DTBT-based polymers without fluorine often display an unfavorable efficiency. With the purpose of improving photovoltaic efficiency of DTBT-based D-A polymers, we design three polymers PDTBT-TxfBT (x = 0, 1, 2) with fluorination on D moiety (TxfBT) and systematically investigate fluorination on the photophysical/electrochemical and photovoltaic properties. The results show that polymer solar cells (PSCs) based on PDTBT-TBT exhibit moderate power conversion efficiency (PCE) of 5.84%. However, the bis-fluorination on TffBT moiety (PDTBT-TffBT) can greatly enhance the molecular planarity and intermolecular interaction, improve the charge transport and heterojunction morphology, and further suppress the charge recombination losses. PSCs based on PDTBT-TffBT demonstrate obviously improved photovoltaic efficiency with the best PCE up to 7.53% without any processing additives, which ranks among the top DTBT-based PSCs. However, it should be noted that unsymmetrical fluorination on TfBT moiety (PDTBT-TfBT) impairs the regularity of polymer backbone and intermolecular interaction, increases the recombination losses, and seriously reduces the short-circuit current density and efficiency (5.44%). The results exhibit that fluorination on D moiety is a helpful strategy for design high-performance photovoltaic materials and the regularity of fluorination is crucial to improving efficiencies.

  15. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Photochemistry of fluorinated 4-iodophenylnitrenes: matrix isolation and spectroscopic characterization of phenylnitrene-4-yls.

    PubMed

    Grote, Dirk; Sander, Wolfram

    2009-10-02

    The photochemistry of a series of fluorinated p-iodophenyl azides 2 has been investigated using matrix isolation IR and EPR spectroscopy. In all cases, the corresponding phenylnitrenes 1 were formed as primary photoproducts. Further irradiation of the nitrenes 1 resulted in the formation of azirines 3, ketenimines 4, and nitreno radicals 5. The yield of 5 depends on the number of ortho fluorine substituents: with two ortho fluorine atoms the highest yield is observed, whereas without fluorine atoms the yield is too low for IR spectroscopic detection. The interconversion between the isomers 1, 3, and 4 proved to be rather complex. If the fluorine atoms are distributed unsymmetrically, two isomers of azirines 3 and ketenimines 4 can be formed. The yields of these isomers depend critically on the irradiation conditions.

  17. Fluorine (19F) MRS and MRI in biomedicine

    PubMed Central

    Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.

    2011-01-01

    Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758

  18. Electronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine

    DOE PAGES

    Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin

    2015-06-18

    To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine abovemore » the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.« less

  19. Room-Temperature Fluorine-Induced Decrease in the Stability of Bromine and Iodine Intercalated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.

  20. Highly Stereoselective Gold-Catalyzed Coupling of Diazo Reagents and Fluorinated Enol Silyl Ethers to Tetrasubstituted Alkenes.

    PubMed

    Liao, Fu-Min; Cao, Zhong-Yan; Yu, Jin-Sheng; Zhou, Jian

    2017-02-20

    We report a highly stereoselective synthesis of all-carbon or fluorinated tetrasubstituted alkenes from diazo reagents and fluorinated enol silyl ethers, using C-F bond as a synthetic handle. Cationic Au I catalysis plays a key role in this reaction. Remarkable fluorine effects on the reactivity and selectivity was also observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Aerosol Direct Fluorination. Syntheses of the Perfluoroalkyl Orthocarbonates, F-Tetramethyl and F-Ethylene Orthocarbonates.

    DTIC Science & Technology

    1984-03-30

    ff AD-AFRU9 98? AEROSOL DIRECT FLUORINATION SYNTHESES OF THE / 1 PERFLUOROALKYL ORTHOCRBONAT.-(U) TENNESSEE UNIY KNOXVILLE DEPT OF CHEMISTRY J L...SYNTHESES OF THE PERFLUOROALKYL ORTHOCARBONATES, F-TETRAMETHYL AND F-ETHYLENE ORTHOCARBONATES by James L. Adcock* and Mark L. Robin Department of...number) Aerosol, Direct Fluorination, Elemental Fluorine, Perfluoroalkyl % orthocarbonates 211,A’!S RACY (Contiue en reverse aide it neessary and

  2. Linear-to-λ-Shape P-O-P Bond Transmutation in Polyphosphates with Infinite (PO3)∞ Chain.

    PubMed

    Wang, Ying; Li, Lin; Han, Shujuan; Lei, Bing-Hua; Abudoureheman, Maierhaba; Yang, Zhihua; Pan, Shilie

    2017-09-05

    A new metal polyphosphate, α-CsBa 2 (PO 3 ) 5 , exhibiting the first example of a linear P-O-P bond angle in a one-dimensional (PO 3 ) ∞ chain has been reported. Interestingly, α → β phase transition occurs in CsBa 2 (PO 3 ) 5 along with the P-O-P bonds varying from linear to λ-shape, suggesting that α-CsBa 2 (PO 3 ) 5 with unfavorable linear P-O-P bonds is more stable at ambient temperature.

  3. Site-selective local fluorination of graphene induced by focused ion beam irradiation

    PubMed Central

    Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus

    2016-01-01

    The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases. PMID:26822900

  4. Fluorination effect of activated carbons on performance of asymmetric capacitive deionization

    NASA Astrophysics Data System (ADS)

    Jo, Hanjoo; Kim, Kyung Hoon; Jung, Min-Jung; Park, Jae Hyun; Lee, Young-Seak

    2017-07-01

    Activated carbons (ACs) were fluorinated and fabricated into electrodes to investigate the effect of fluorination on asymmetric capacitive deionization (CDI). Fluorine functional groups were introduced on the AC surfaces via fluorination. The specific capacitance of the fluorinated AC (Fsbnd AC) electrode increased drastically from 261 to 337 F/g compared with the untreated AC (Rsbnd AC) electrode at a scan rate of 5 mV/s, despite a decrease in the specific surface area and total pore volume after fluorination. The desalination behavior of asymmetric CDI cells assembled with an Rsbnd AC electrode as the counter electrode and an Fsbnd AC electrode as the cathode (R || F-) or anode (R || F +) was studied. For R || F-, the salt adsorption capacity and charge efficiency increased from 10.6 mg/g and 0.58-12.4 mg/g and 0.75, respectively, compared with the CDI cell assembled with identical Rsbnd AC electrodes at 1 V. This CDI cell exhibited consistently better salt adsorption capacity and charge efficiency at different applied voltages because Fsbnd AC electrodes have a cation attractive effect originating from the partially negatively charged fluorine functional groups on the AC surface. Therefore, co-ion expulsion in the Fsbnd AC electrode as the cathode is effectively diminished, leading to enhanced CDI performance.

  5. [Current trends in fluorine research].

    PubMed

    Machoy-Mokrzyńska, Anna; Machoy, Zygmunt

    2006-01-01

    Current topics in fluorine research are presented with emphasis on findings by researchers in Szczecin and Poland, as well as in the world. Reports are cited on the distribution of fluorine compounds in the environment, routes of penetration into living organisms, and analytical methods for the quantitative determinations of fluorine content in air, water, soil, and foods. Important contributions have been made by Polish researchers on the role and patterns of fluorides in body fluids, soft and hard tissues, which remain in direct relationship to accumulation and elimination of fluorine. So far, comprehensive studies on mutagenic effects of fluorine and its potential role in bone neoplasms, Down syndrome, and other genetic disorders have not been carried out in Poland. Worthy of mention are reports on mechanisms of action of fluorine compounds on the cellular and subcellular level. Finally, two achievements of recent years in the field of fluorine research are discussed briefly. The first is concerned with the use in dentistry of chemical analysis for studying mineral reconstruction of teeth throughout the lifetime of an individual. The second is in the field of medicine where molecular modeling has been applied to explain the mechanism of action of aluminofluoride complexes (AlFx) as a messenger of false information during protein biosynthesis and their apparent role in the etiology of Alzheimer's disease.

  6. Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Long, Martin; Stahl, Mark

    1987-01-01

    Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.

  7. X-ray photoelectron spectroscopy as detection tool for coordinated or uncoordinated fluorine atoms demonstrated on fluoride systems NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7

    NASA Astrophysics Data System (ADS)

    Boča, Miroslav; Barborík, Peter; Mičušík, Matej; Omastová, Mária

    2012-07-01

    While systems K3TaF8 and K3ZrF7 were prepared by modified molten salt method modified wet pathway was used for reproducible preparation of Na7Zr6F31. Its congruently melting character was demonstrated on simultaneous TG/DSC measurements and XRD patterns. X-ray photoelectron spectroscopy was applied for identification of differently bonded fluorine atoms in series of compounds NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Three different types of fluorine atoms were described qualitatively and quantitatively. Uncoordinated fluorine atoms (F-) provide signals at lowest binding energies, followed by signals from terminally coordinated fluorine atoms (M-F) and then bridging fluorine atoms (M-F-M) at highest energy. Based on XPS F 1s signals assigned to fluorine atoms in compounds with correctly determined structure it was suggested that fluorine atoms in K3ZrF7 have partially bridging character.

  8. Temporal and fluoride control of secondary metabolism regulates cellular organofluorine biosynthesis

    PubMed Central

    Walker, Mark C.; Wen, Miao; Weeks, Amy M.; Chang, Michelle C. Y.

    2018-01-01

    Elucidating mechanisms of natural organofluorine biosynthesis is essential for a basic understanding of fluorine biochemistry in living systems as well as for expanding biological methods for fluorine incorporation into probe or therapeutic molecules. To meet this goal we have combined massively parallel sequencing technologies, genetic knockout, and in vitro biochemical approaches to investigate the fluoride response of the only known genetic host of an organofluorine producing pathway, Streptomyces cattleya. Interestingly, we have discovered that the major mode of S. cattleya’s resistance to the fluorinated toxin it produces, fluoroacetate, may be due to temporal control of production rather than the ability of the host’s metabolic machinery to discriminate between fluorinated and non–fluorinated molecules. Indeed, neither the acetate kinase/phosphotransacetylase acetate assimilation pathway nor the TCA cycle enzymes (citrate synthase and aconitase) exclude fluorinated substrates based on in vitro biochemical characterization. Furthermore, disruption of the fluoroacetate resistance gene encoding a fluoroacetyl–CoA thioesterase (FlK) does not appear to lead to an observable growth defect related to organofluorine production. By showing that a switch in central metabolism can mediate and control molecular fluorine incorporation, our findings reveal a new potential strategy toward diversifying simple fluorinated building blocks into more complex products. PMID:22769062

  9. The Electrochemical Fluorination of Organosilicon Compounds

    NASA Technical Reports Server (NTRS)

    Seaver, Robert E.

    1961-01-01

    The electrochemical fluorination of tetramethylsilane, hexamethyl-disiloxane, diethyldichlorosilane, amyltrichlorosilane, and phenyltri-chlorosilane was conducted in an Inconel cell equipped with nickel electrodes. A potential of approximately 5.0 volts and a current of approximately 1.0 ampere were used for the electrolysis reaction. In all cases the fluorinations resulted in considerable scission of the carbon-silicon bonds yielding hydrogen and the various fluorinated decomposition products; no fluoroorganosilicon compounds were identified. The main decomposition products were silicon tetrafluoride, the corresponding fluorinated carbon compounds, and the various organofluorosilanes. It is suggested that this is due to the nucleophilic attack of the fluoride ion (or complex fluoride ion) on the carbon-silicon bond.

  10. Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.

    PubMed

    Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi

    2017-11-22

    We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.

  11. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less

  12. Incorporating fluorinated moieties in fully conjugated donor-acceptor block copolymers

    NASA Astrophysics Data System (ADS)

    Lee, Youngmin; Wang, Qing; Gomez, Enrique D.

    Fully conjugated donor-acceptor block copolymers are promising candidates for photovoltaics due to their ability to microphase separate at length scales commensurate with exciton diffusion lengths. These materials can also serve as model systems to study the relationship between molecular structure, microstructure, and optoelectronic properties of conjugated polymers. The development of new donor-acceptor block copolymers relies on the manipulation of the chemical structure to fine tune properties and improve overall performance when employed in photovoltaic devices. To this end, we have demonstrated the incorporation of fluorinated moieties in conjugated block copolymers. The introduction of fluorine, a strong electron withdrawing element, is known to influence phase separation and the bandgap, and as a result, optoelectronic properties. Fluorine was introduced to the acceptor block of poly(3-hexylthiophene-2,5-diyl)-block-poly((9,9-bis(2-octyl)fluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5 ',5?-diyl) (P3HT- b-PFTBT). PFTBTs were prepared with di-fluorinated and mono-fluorinated TBT. We find that fluorination impacts the bandgap, morphology and performance in devices.

  13. The Shear Properties of Langmuir-Blodgett Layers

    NASA Astrophysics Data System (ADS)

    Briscoe, B. J.; Evans, D. C. B.

    1982-04-01

    The sliding friction between two highly oriented monolayers has been studied by using molecularly smooth mica substrates in the form of contacting orthogonal cylinders. The monolayers in the form of various normal alipathic carboxylic acids and their soaps were deposited with the aid of the Langmuir-Blodgett technique by transfer from aqueous substrates. The normal alkyl group has been varied in length from 14 to 22 methylene repeat units. Data are reported also on the influence of partial saponification of the carboxylic acid and fluorination of the alkyl chain. Most of the investigation has been confined to two contacting single monolayers although a limited amount of data is presented for multilayers sliding over one another. The character of the sliding motion depends not only on the machine but also on the monolayers, particularly their chemistry. Most of the monolayers studied provide a continuous rate of energy dissipation. However, a small number, such as certain soaps, show discontinuous or stick-slip motion. The experimental arrangement allows simultaneous measurement of the sliding frictional force, contact area and film thickness to be made during sliding. In some experiments this friction is the monotonic sliding friction but in others it is the mean maximum value during the stick phase. The film thickness measurement is accurate to 0.2 mm which allows a precise assessment of the shear plane during sliding. In all cases the monolayers and multilayers were found to be extremely durable and shear invariably occurred at the original interface between the monolayers. The sliding friction data are presented as the dynamic specific friction force or interface shear strength, and a number of contact variables have been examined. These include the applied normal load per unit contact area or mean contact pressure, the temperature and the sliding velocity. The interface shear strength is found, to a good approximation, to increase linearly with mean contact pressure but to decrease linearly with temperature in the ranges studied. The influence of sliding velocity is more complex. In the case where intermittent motion is detected the mean maximum values decrease linearly with the logarithm of the velocity.

  14. Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries

    DOE PAGES

    Su, Chi -Cheung; He, Meinan; Redfern, Paul C.; ...

    2017-03-16

    New fluorinated sulfones were synthesized and evaluated in high voltage lithium-ion batteries using LiNi 0.5Mn 1.5O 4 (LNMO) cathode. Fluorinated sulfones with an α-trifluoromethyl group exhibit enhanced oxidation stability, reduced viscosity and superior separator wettability as compared to their non-fluorinated counterparts. Finally, the improved performance in high voltage cells makes it a promising high voltage electrolyte for 5-V lithium-ion chemistry.

  15. Geminal difunctionalization of α-diazo arylmethylphosphonates: synthesis of fluorinated phosphonates.

    PubMed

    Zhou, Yujing; Zhang, Yan; Wang, Jianbo

    2016-11-08

    A general approach towards diverse fluorinated phosphonates via geminal difunctionalization reactions of α-diazo arylmethylphosphonates is described. The diazo functionality (RR'C[double bond, length as m-dash]N 2 ) is successfully converted to RR'CF 2 , RR'CHF, RR'CFBr or RR'CFNR'' 2 groups by employing different fluorination reagents. A variety of fluorinated organophosphorus compounds were readily accessed in good to excellent yields from a common type of precursor.

  16. Fluorine (19F) MRS and MRI in biomedicine.

    PubMed

    Ruiz-Cabello, Jesús; Barnett, Brad P; Bottomley, Paul A; Bulte, Jeff W M

    2011-02-01

    Shortly after the introduction of (1)H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine ((19)F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, (19)F MRI of 'hotspots' of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    PubMed

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  18. Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology

    PubMed Central

    Ojima, Iwao

    2013-01-01

    Over the last three decades, my engagement in “fluorine chemistry” has evolved substantially, because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of “fluorine chemistry” in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy. PMID:23614876

  19. Determination of small and large amounts of fluorine in rocks

    USGS Publications Warehouse

    Grimaldi, F.S.; Ingram, B.; Cuttitta, F.

    1955-01-01

    Gelatinous silica and aluminum ions retard the distillation of fluorine in the Willard and Winter distillation method. A generally applicable, simple method for the determination of fluorine in rocks containing aluminum or silicon or both as major constituents was desired. In the procedure developed, the sample is fused with a mixture of sodium carbonate and zinc oxide, leached with water, and filtered. The residue is granular and retains nearly all of the silica. The fluorine in the filtrate is distilled directly from a perchloric acid-phosphoric acid mixture. Phosphoric acid permits the quantitative distillation of fluorine in the presence of much aluminum at the usual distillation temperature and without the collection of large volumes of distillate. The fluorine is determined either by microtitration with thorium nitrate or colorimetrically with thoron. The procedure is rapid and has yielded excellent results on silicate rocks and on samples from the aluminum phosphate (leached) zone of the Florida phosphate deposits.

  20. Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design.

    PubMed

    Meanwell, Nicholas A

    2018-02-05

    The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.

  1. Development of the titanium–TADDOLate-catalyzed asymmetric fluorination of β-ketoesters

    PubMed Central

    Hintermann, Lukas; Perseghini, Mauro

    2011-01-01

    Summary Titanium-based Lewis acids catalyze the α-fluorination of β-ketoesters by electrophilic N–F-fluorinating reagents. Asymmetric catalysis with TADDOLato–titanium(IV) dichloride (TADDOL = α,α,α',α'-tetraaryl-(1,3-dioxolane-4,5-diyl)-dimethanol) Lewis acids produces enantiomerically enriched α-fluorinated β-ketoesters in up to 91% enantiomeric excess, with either F–TEDA (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)) in acetonitrile solution or NFSI (N-fluorobenzenesulfonimide) in dichloromethane solution as fluorinating reagents. The effects of various reaction parameters and of the TADDOL ligand structure on the catalytic activity and enantioselectivity were investigated. The absolute configuration of several fluorination products was assigned through correlation. Evidence for ionization of the catalyst complex by chloride dissociation, followed by generation of titanium β-ketoenolates as key reaction intermediates, was obtained. Based on the experimental findings, a general mechanistic sketch and a steric model of induction are proposed. PMID:22043253

  2. [Caries and fluorine: role of water factor, problems and solutions].

    PubMed

    Rakhmanin, Iu A; Kir'ianova, L F; Mikhaĭlova, R I; Sevost'ianova, E M

    2001-01-01

    The epidemiological studies of the severity and spread of caries of deciduous and permanent teeth in Moscow schoolchildren (n = > 20,000) aged 7-17 years in relation to the content of fluoride in the drinking water, to the use of fluorine-containing tablets and varnishes have provided evidence for the high efficiency of drinking water fluorination for the primary prevention of caries as compared with other preventive alternatives. Based on sanitary studies, two main lines are now under way in solving the problem connected with low dietary fluoride intake: the introduction of routine water-purifying fluorine generators (based on a new technology of fluorination of limited water volumes for drinking and cooking) and the setting-up of plants manufacturing bottled drinking waters containing the optimum or higher fluorine levels for provision of different population groups, primarily children and pregnant women in particular.

  3. Transition Metal-Mediated and -Catalyzed C-F Bond Activation via Fluorine Elimination.

    PubMed

    Fujita, Takeshi; Fuchibe, Kohei; Ichikawa, Junji

    2018-06-28

    Activation of carbon-fluorine (C-F) bonds is an important topic in synthetic organic chemistry recently. Among the methods for C-F bond cleavage, metal mediated and catalyzed β- or α-fluorine elimination proceeds under mild conditions compared with oxidative addition of C-F bond. The β- or α-fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations via these elimination processes (C-F bond cleavage), which are typically preceded by carbon-carbon (or carbon-heteroatom) bond formation, have been remarkably developed as C-F bond activation methods in the past five years. In this minireview, we summarize the applications of transition metal-mediated and -catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective for early studies and from a systematic perspective for recent studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Volcanogenic fluorine in rainwater around active degassing volcanoes: Mt. Etna and Stromboli Island, Italy.

    PubMed

    Bellomo, S; D'Alessandro, W; Longo, M

    2003-01-01

    Many studies have assessed the strong influence of volcanic activity on the surrounding environment. This is particularly true for strong gas emitters such as Mt. Etna and Stromboli volcanoes. Among volcanic gases, fluorine compounds are potentially very harmful. Fluorine cycling through rainwater in the above volcanic areas was studied analysing more than 400 monthly bulk samples. Data indicate that only approximately 1% of fluorine emission through the plume is deposited on the two volcanic areas by meteoric precipitations. Although measured bulk rainwater fluorine fluxes are comparable to and sometimes higher than in heavily polluted areas, their influence on the surrounding vegetation is limited. Only annual crops, in fact, show some damage that could be an effect of fluorine deposition, indicating that long-living endemic plant species or varieties have developed some kind of resistance. Copyright 2002 Elsevier Science B.V.

  5. Molecular Recognition of Fluorine Impacts Substrate Selectivity in the Fluoroacetyl-CoA Thioesterase FlK

    PubMed Central

    2015-01-01

    The fluoroacetate-producing bacterium Streptomyces cattleya has evolved a fluoroacetyl-CoA thioesterase (FlK) that exhibits a remarkably high level of discrimination for its cognate substrate compared to the cellularly abundant analogue acetyl-CoA, which differs only by the absence of the fluorine substitution. A major determinant of FlK specificity derives from its ability to take advantage of the unique properties of fluorine to enhance the reaction rate, allowing fluorine discrimination under physiological conditions where both substrates are likely to be present at saturating concentrations. Using a combination of pH–rate profiles, pre-steady-state kinetic experiments, and Taft analysis of wild-type and mutant FlKs with a set of substrate analogues, we explore the role of fluorine in controlling the enzyme acylation and deacylation steps. Further analysis of chiral (R)- and (S)-[2H1]fluoroacetyl-CoA substrates demonstrates that a kinetic isotope effect (1.7 ± 0.2) is observed for only the (R)-2H1 isomer, indicating that deacylation requires recognition of the prochiral fluoromethyl group to position the α-carbon for proton abstraction. Taken together, the selectivity for the fluoroacetyl-CoA substrate appears to rely not only on the enhanced polarization provided by the electronegative fluorine substitution but also on molecular recognition of fluorine in both formation and breakdown of the acyl-enzyme intermediate to control active site reactivity. These studies provide insights into the basis of fluorine selectivity in a naturally occurring enzyme–substrate pair, with implications for drug design and the development of fluorine-selective biocatalysts. PMID:24635371

  6. Experiments shed new light on nickel-fluorine reactions

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Gunther, W.; Jarry, R. L.

    1967-01-01

    Isotopic tracer experiments and scale-impingement experiments show fluorine to be the migrating species through the nickel fluoride scale formed during the fluorination of nickel. This is in contrast to nickel oxide scales, where nickel is the migrating species.

  7. Unexpected power-law stress relaxation of entangled ring polymers

    PubMed Central

    KAPNISTOS, M.; LANG, M.; PYCKHOUT-HINTZEN, W.; RICHTER, D.; CHO, D.; CHANG, T.

    2016-01-01

    After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers. PMID:18953345

  8. Crystal structure and magnetic properties of a unique 3D coordination polymer constructed from flexible aliphatic tricarballylic acid ligands featuring linear trimeric Manganese(II)-based, metal carboxylate chains

    NASA Astrophysics Data System (ADS)

    Zou, Hua-Hong; Zhang, Shu-Hua; Zeng, Ming-Hua; Zhou, Yan-Ling; Liang, Hong

    2008-08-01

    A novel linear trimeric-based, Mn(II)-carboxylate chain well separated by long-linking flexible aliphatic tricarballylic acid ligands in a 3D coordination polymer [Mn 3(C 6H 5O 6) 2(H 2O) 4] n ( 1, C 6H 5O 6dbnd CH (COO -)(CH 2COO -) 2, TCA) exhibits low-dimensional antiferromagnetic order at 3.0 K. Such magnetic behavior is arises from the alternate Antiferro-Antiferro-Antiferro' ( J1J1J2) repeating interactions sequence, based on the nature of the binding modes of Mn(II)-carboxylate chain and the effect of interchains arrangement of 1. The reported carboxylate-bridged metal chain systems display a new structurally authenticated example of linear homometallic spin arranged antiferromagnet among metal carboxylates.

  9. Synthetic Aspects and Electro-Optical Properties of Fluorinated Arylenevinylenes for Luminescence and Photovoltaics

    PubMed Central

    Martinelli, Carmela; Farinola, Gianluca M.; Pinto, Vita; Cardone, Antonio

    2013-01-01

    In this review, the main synthetic aspects and properties of fluorinated arylenevinylene compounds, both oligomers and polymers, are summarized and analyzed. Starting from vinyl organotin derivatives and aryl halides, the Stille cross-coupling reaction has been successfully applied as a versatile synthetic protocol to prepare a wide series of π-conjugated compounds, selectively fluorinated on the aromatic and/or vinylene units. The impact of fluoro-functionalization on properties, the solid state organization and intermolecular interactions of the synthesized compounds are discussed, also in comparison with the non-fluorinated counterparts. Luminescent and photovoltaic applications are also discussed, highlighting the role of fluorine on the performance of devices. PMID:28809206

  10. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization.

    PubMed

    Struzzi, Claudia; Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla

    2017-01-01

    The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF 4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.

  11. Supercritical temperature synthesis of fluorine-doped VO2(M) nanoparticle with improved thermochromic property

    NASA Astrophysics Data System (ADS)

    Riapanitra, Anung; Asakura, Yusuke; Cao, Wenbin; Noda, Yasuto; Yin, Shu

    2018-06-01

    Fluorine-doped VO2(M) nanoparticles have been successfully synthesized using the hydrothermal method at a supercritical temperature of 490 °C. The pristine VO2(M) has the critical phase transformation temperature of 64 °C. The morphology and homogeneity of the monoclinic structure VO2(M) were adopted by the fluorine-doped system. The obtained particle size of the samples is smaller at the higher concentration of anion doping. The best reduction of critical temperature was achieved by fluorine doping of 0.13% up to 48 °C. The thin films of the fluorine-doped VO2(M) showed pronounced thermochromic property and therefore are suitable for smart window applications.

  12. Fluorination of vertically aligned carbon nanotubes: from CF4 plasma chemistry to surface functionalization

    PubMed Central

    Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla

    2017-01-01

    The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions. PMID:28904833

  13. Molecular beam epitaxy growth of SmFeAs(O,F) films with Tc = 55 K using the new fluorine source FeF3

    NASA Astrophysics Data System (ADS)

    Sakoda, Masahito; Ishii, Akihiro; Takinaka, Kenji; Naito, Michio

    2017-07-01

    REFeAs(O,F) (RE: rare-earth element) has the highest-Tc (˜58 K) among the iron-based superconductors, but a thin-film growth of REFeAs(O,F) is difficult. This is because it is not only a complex compound consisting of five elements but also requires doping of highly reactive fluorine to achieve superconductivity. We have reported in our previous article that fluorine can be supplied to a film by subliming solid-state fluorides such as FeF2 or SmF3. In this article, we report on the growth of SmFeAs(O,F) using FeF3 as an alternative fluorine source. FeF3 is solid at ambient temperatures and decomposes at temperatures as low as 100-200 °C, and releases fluorine-containing gas during the thermal decomposition. With this alternative fluorine source, we have grown SmFeAs(O,F) films with Tc as high as 55 K. This achievement demonstrates that FeF3 has potential as a fluorine source that can be employed ubiquitously for a thin-film growth of any fluorine containing compounds. One problem specific to FeF3 is that the compound is highly hydroscopic and contains a substantial amount of water even in its anhydrous form. In this article, we describe how to overcome this specific problem.

  14. Fluorine determination in human healthy and carious teeth using the PIGE technique

    NASA Astrophysics Data System (ADS)

    Carvalho, M. L.; Karydas, A. G.; Casaca, C.; Zarkadas, Ch; Paradellis, Th; Kokkoris, M.; Nsouli, B.; Cunha, A. S.

    2001-09-01

    The purpose of this study is to determine and compare the fluorine concentration in human teeth from two different populations, living in the Portuguese quite isolated islands of Açores: S. Miguel and Terceira. Both populations have similar dietary habits, similar occupational activities, mostly rural, and the age of both populations is more or less the same, around 40 years. No chronic diseases were registered in any of the donors. The two groups are exposed to different levels of fluorine in drinking water. Terceira island has moderate fluorine concentration levels (1-2 μg g -1) while S. Miguel island is known for the high fluorine concentration levels in its water (>3 μg g -1), especially in one area known as Furnas. Thirty-three teeth, 17 healthy and 16 carious without restoration (14 incisors and canines, 7 premolars and 12 molars), were collected and analyzed for the determination of fluorine concentration in the dentine region, using the nuclear reaction 19F( p, αγ) 16O. The teeth were cross-sectioned along the vertical plane and polished, in order to obtain a smooth and plane surface of about 1 mm thickness. In this work an association between caries prevalence and fluorine content of drinking water is discussed and the variation of fluorine concentration among different types of teeth (canines and incisors, premolars, molars) and physical state (carious and non-carious) is examined.

  15. Synthetic biology approaches to fluorinated polyketides

    PubMed Central

    Thuronyi, Benjamin W.; Chang, Michelle C. Y.

    2016-01-01

    Conspectus The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides. PMID:25719427

  16. Tuning the thermal conductivity of solar cell polymers through side chain engineering.

    PubMed

    Guo, Zhi; Lee, Doyun; Liu, Yi; Sun, Fangyuan; Sliwinski, Anna; Gao, Haifeng; Burns, Peter C; Huang, Libai; Luo, Tengfei

    2014-05-07

    Thermal transport is critical to the performance and reliability of polymer-based energy devices, ranging from solar cells to thermoelectrics. This work shows that the thermal conductivity of a low band gap conjugated polymer, poly(4,8-bis-alkyloxybenzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-(alkylthieno[3,4-b]thiophene-2-carboxylate)-2,6-diyl) (PBDTTT), for photovoltaic applications can be actively tuned through side chain engineering. Compared to the original polymer modified with short branched side chains, the engineered polymer using all linear and long side chains shows a 160% increase in thermal conductivity. The thermal conductivity of the polymer exhibits a good correlation with the side chain lengths as well as the crystallinity of the polymer characterized using small-angle X-ray scattering (SAXS) experiments. Molecular dynamics simulations and atomic force microscopy are used to further probe the molecular level local order of different polymers. It is found that the linear side chain modified polymer can facilitate the formation of more ordered structures, as compared to the branched side chain modified ones. The effective medium theory modelling also reveals that the long linear side chain enables a larger heat carrier propagation length and the crystalline phase in the bulk polymer increases the overall thermal conductivity. It is concluded that both the length of the side chains and the induced polymer crystallization are important for thermal transport. These results offer important guidance for actively tuning the thermal conductivity of conjugated polymers through molecular level design.

  17. Dynamics of a linear system coupled to a chain of light nonlinear oscillators analyzed through a continuous approximation

    NASA Astrophysics Data System (ADS)

    Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.

    2018-07-01

    The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.

  18. PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...

  19. 40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting under...

  20. 40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting under...

  1. Xenon fluorides show potential as fluorinating agents

    NASA Technical Reports Server (NTRS)

    Chernick, C. L.; Shieh, T. C.; Yang, N. C.

    1967-01-01

    Xenon fluorides permit the controlled addition of fluorine across an olefinic double bond. They provide a series of fluorinating agents that permit ready separation from the product at a high purity. The reactions may be carried out in the vapor phase.

  2. Topology of polymer chains under nanoscale confinement.

    PubMed

    Satarifard, Vahid; Heidari, Maziar; Mashaghi, Samaneh; Tans, Sander J; Ejtehadi, Mohammad Reza; Mashaghi, Alireza

    2017-08-24

    Spatial confinement limits the conformational space accessible to biomolecules but the implications for bimolecular topology are not yet known. Folded linear biopolymers can be seen as molecular circuits formed by intramolecular contacts. The pairwise arrangement of intra-chain contacts can be categorized as parallel, series or cross, and has been identified as a topological property. Using molecular dynamics simulations, we determine the contact order distributions and topological circuits of short semi-flexible linear and ring polymer chains with a persistence length of l p under a spherical confinement of radius R c . At low values of l p /R c , the entropy of the linear chain leads to the formation of independent contacts along the chain and accordingly, increases the fraction of series topology with respect to other topologies. However, at high l p /R c , the fraction of cross and parallel topologies are enhanced in the chain topological circuits with cross becoming predominant. At an intermediate confining regime, we identify a critical value of l p /R c , at which all topological states have equal probability. Confinement thus equalizes the probability of more complex cross and parallel topologies to the level of the more simple, non-cooperative series topology. Moreover, our topology analysis reveals distinct behaviours for ring- and linear polymers under weak confinement; however, we find no difference between ring- and linear polymers under strong confinement. Under weak confinement, ring polymers adopt parallel and series topologies with equal likelihood, while linear polymers show a higher tendency for series arrangement. The radial distribution analysis of the topology reveals a non-uniform effect of confinement on the topology of polymer chains, thereby imposing more pronounced effects on the core region than on the confinement surface. Additionally, our results reveal that over a wide range of confining radii, loops arranged in parallel and cross topologies have nearly the same contact orders. Such degeneracy implies that the kinetics and transition rates between the topological states cannot be solely explained by contact order. We expect these findings to be of general importance in understanding chaperone assisted protein folding, chromosome architecture, and the evolution of molecular folds.

  3. Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO2.

    PubMed

    Sagisaka, Masanobu; Ono, Shinji; James, Craig; Yoshizawa, Atsushi; Mohamed, Azmi; Guittard, Frédéric; Enick, Robert M; Rogers, Sarah E; Czajka, Adam; Hill, Christopher; Eastoe, Julian

    2018-08-01

    Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO 2 . To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO 2 (W/CO 2 ) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W 0 ) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO 2 microemulsions were found to increase in size with increasing W 0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO 2 microemulsion droplets increased linearly with W 0 , and finally reached ∼39 Å and ∼78 Å at W 0  = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO 2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO 2 interfaces, and so play important roles for tuning the W/CO 2 interfacial curvature. The super-efficient W/CO 2 -type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO 2 solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Laser-Excited Atomic Fluorescence and Ionization in a Graphite Furnace for the Determination of Metals and Nonmetals

    NASA Astrophysics Data System (ADS)

    Butcher, David James

    1990-01-01

    Here is reported novel instrumentation for atomic spectrometry that combined the use of a pulsed laser system as the light source and an electrothermal atomizer as the atom cell. The main goal of the research was to develop instrumentation that was more sensitive for elemental analysis than commercially available instruments and could be used to determine elements in real sample matrices. Laser excited atomic fluorescence spectrometry (LEAFS) in an electrothermal atomizer (ETA) was compared to ETA atomic absorption spectrometry (AAS) for the determination of thallium, manganese, and lead in food and agricultural standard reference materials (SRMs). Compared to ETA AAS, ETA LEAFS has a longer linear dynamic range (LDR) (5-7 orders of magnitude compared to 2-3 orders of magnitude) and higher sensitivity (10 ^{-16} to 10^{ -14} g as compared to 10^{ -13} to 10^{-11} g). Consequently, ETA LEAFS allows elemental analysis to be done over a wider range of concentrations with less dilution steps. Thallium was accurately determined in biological samples by ETA LEAFS at amounts five to one hundred times below the ETA AAS detection limit. ETA AAS and ETA LEAFS were compared for the determination of lead and manganese, and in general, the accuracies and precisions of ETA AAS were the same, with typical precisions between 3% and 6%. Fluorine was determined using laser excited molecular fluorescence spectrometry (LEMOFS) in an ETA. Molecular fluorescence from magnesium fluoride was collected, and the detection limit of 0.3 pg fluorine was two to six orders of magnitude more sensitive than other methods commonly used for the determination of fluorine. Significant interferences from ions were observed, but the sensitivity was high enough that fluorine could be determined in freeze dried urine SRMs by diluting the samples by a factor of one hundred to remove the interferences. Laser enhanced ionization (LEI) in an ETA was used for the determination of metals. For thallium, indium, and lithium, detection limits between 0.7 and 2 pg were obtained, with an LDR of 3.5 orders of magnitude. Sodium was shown to severely depress the indium LEI signal in an ETA.

  5. Long-Chain Perfluoroalkyl acids (PFAAs) Affect the Bioconcentration and Tissue Distribution of Short-Chain PFAAs in Zebrafish (Danio rerio).

    PubMed

    Wen, Wu; Xia, Xinghui; Hu, Diexuan; Zhou, Dong; Wang, Haotian; Zhai, Yawei; Lin, Hui

    2017-11-07

    Short- and long-chain perfluoroalkyl acids (PFAAs), ubiquitously coexisting in the environment, can be accumulated in organisms by binding with proteins and their binding affinities generally increase with their chain length. Therefore, we hypothesized that long-chain PFAAs will affect the bioconcentration of short-chain PFAAs in organisms. To testify this hypothesis, the bioconcentration and tissue distribution of five short-chain PFAAs (linear C-F = 3-6) were investigated in zebrafish in the absence and presence of six long-chain PFAAs (linear C-F = 7-11). The results showed that the concentrations of the short-chain PFAAs in zebrafish tissues increased with exposure time until steady states reached in the absence of long-chain PFAAs. However, in the presence of long-chain PFAAs, these short-chain PFAAs in tissues increased until peak values reached and then decreased until steady states, and the uptake and elimination rate constants of short-chain PFAAs declined in all tissues and their BCF ss decreased by 24-89%. The inhibitive effect of long-chain PFAAs may be attributed to their competition for transporters and binding sites of proteins in zebrafish with short-chain PFAAs. These results suggest that the effect of long-chain PFAAs on the bioconcentration of short-chain PFAAs should be taken into account in assessing the ecological and environmental effects of short-chain PFAAs.

  6. [Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat's body].

    PubMed

    Mou, Suhua; Qin, Si; Hu, Qituo; Duan, Xianyu

    2004-03-01

    To study the effect of fluorine, selenium and cadmium on lipid peroxide(LPO), the activity of glutathione peroxidase (GSH-Px) and microelements such as cadmium, selenium and zinc in rats. Measurement of the contents of LPO, GSH-Px and microelements such as cadmium, selenium and zinc in SD rats after killing that have drunk water containing fluorine, selenium and cadmium eight-week ago. The contents of GSH-Px in the serum, liver and kidney of rats that were contaminated with fluorine, selenium and cadmium respectively remarkably reduced and the content of LPO noticeably increased in comparison with those of rats without being contaminated. The contents of GSH-Px noticeably increased and LPO remarkably reduced in those contaminated with the combination of any two of the three elements when compared with those in the rats contaminated with any one element of them, while the contents of GSH-Px in those contaminated with the combination of the three elements increased even more. Excessive selenium or cadmium led to the increase of selenium content in kidney and cadmium content in liver by several times. Excessive fluorine or cadmium gave rise to the lack of selenium and zinc. Selenium brought out universal increase of zinc in liver and kidney. The combination of fluorine and selenium or the combination of cadmium and selenium or that of fluorine, selenium and cadmium produced remarkable decrease of the accumulation of selenium in kidney and cadmium in liver. They also lowed the loss of zinc caused by fluorine or cadmium. Excessive fluorine, selenium or cadmium could inhabit the activity of GSH-Px in rats, which could diminish the antioxidation ability of the body. But when two or three of the chemical elements coexisted, they reduced the inhabitation of each of them on the activity of GSH-Px and in the meantime decreased the accumulation of cadmium and selenium and diminished the loss of zinc caused by fluorine and cadmium.

  7. Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination

    DOE PAGES

    Hiszpanski, Anna M.; Woll, Arthur R.; Kim, Bumjung; ...

    2017-04-25

    Here, substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphism—the ability of a compound to adopt more than one crystal structure—has not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior ofmore » contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., P2 1/c crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination.« less

  8. Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiszpanski, Anna M.; Woll, Arthur R.; Kim, Bumjung

    Here, substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphism—the ability of a compound to adopt more than one crystal structure—has not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior ofmore » contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., P2 1/c crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination.« less

  9. A new microwave acid digestion bomb method for the determination of total fluorine.

    PubMed

    Grobler, S R; Louw, A J

    1998-01-01

    A new microwave acid digestion method for total fluorine analysis was compared to the reliable reverse-extraction technique. The commercially available Parr bombs which are compatible with microwave heating were modified for this purpose. The Mann-Whitney statistical test did not show any significant differences (p > 0.05) in the determinations of total fluorine in various samples between the two above-mentioned methods. The microwave method also gave high fluorine recoveries (> 97%) when fluoride was added to different samples. The great advantage of the microwave acid digestion bomb method is that the digestion under pressure is so aggressive that only a few minutes is needed for complete digestion (also of covalently bonded fluorine), which reduces the time for fluorine analysis dramatically, while no loss of fluorine or contamination from extraneous sources could take place during the ashing procedure. The digestion solution was made up of 300 microliter of concentrated nitric acid plus 537 microliter of water. After digestion 675 microliter of approximately 8.5 M sodium hydroxide plus 643 microliter of citrate/TISAB buffer was added resulting in an alkaline solution (pH approximately 12) which was finally adjusted to a pH of approximately 5.3 for fluoride determination.

  10. Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene

    NASA Astrophysics Data System (ADS)

    Xiao-Jiao, San; Bai, Han; Jing-Geng, Zhao

    2016-03-01

    We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 Å, the two graphene layers in AA stacking can form strong chemical bonds. Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor (direct gap of 3.46 eV). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semi-fluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010] polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices. Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131).

  11. The Ultra-filtration of Macromolecules with Different Conformations and Configurations through Nanopores

    NASA Astrophysics Data System (ADS)

    Ge, Hui

    This Ph. D. thesis presents our study on the ultrafiltration of polymers with different configurations and conformations; namly, theoretically, the passing of polymer chains through a nanopore under an elongational flow filed has been studied for years, but experimental studies are rare because of two following reasons: (1) lacks a precise method to investigate how individual single polymer chain pass through a nanopore; (2) it is difficult, if not impossible, to obtain a set of polymer samples with a narrow molar mass distribution and a uniform structures; except for linear chains. The central question in this study is to find the critical (minimum) flow rate (qc) for each kind of chains, at which the chains can pass through a given nanopore. A comparison of the measured and calculated qc leads to a better understanding how different chains are deformed, stretched and pulled through a nanopore. We have developed a novel method of combinating static and dynamic laser light scattering (LLS) to precisely measure the relative retention concentration ((C0 - C)/C0). Chapter 1 briefly introduces the theoretical background of how applications and lists some of resent research progresses in this area. Polymer with various configurations and conformations pass through nanopores; including polymer linear chains, stars polymer, branched polymers, polymer micelles are introduced. Among them, the de Gennes and Brochard-Wyart's predictions of polymer linear and star chains passing through nanopores are emphasized, in which they predicted that qc of linear chain is qc ≃ kBT/(3pieta), where kB, T and eta are the Boltzmann constant, the absolutely temperature, and the viscosity of solvent, respectively, independent of both the chain length and the pore size; and for star chains passing through nanopores, there exist a optimal entering arm numbers, namely, the star chains passing through nanopores. Chapter 2 details basic theory of static and dynamic laser light scattering (LLS), including its instrumentation and our ultrafiltration setup. Chapter 3 briefly introduces the sample preparation, including the history and mechanism of anionic living polymerization, as well as how we used a novel home-made set-up to prepare linear polystyrene with different chain lengths and star polystyrene with various arm numbers and lengths. Chapter 4 summarizes our measured critical flow rates (qc) of linear polymer chains with different lengths for nanopores with different sizes, since the flow rate is directly related to the hydrodynamic force, we have developed a sensitive method (down to tens fN) to directly assess how much the hydrodynamic force (Fh) is required to overcome the weak entropy elasticity and stretch individual coiled chains in solution. Our method is completely different from the using existing optical tweezers or AFM, because they measure the relatively stronger enthalpy elasticity. Our results confirm that qc is indeed independent of the chain length, but decreases as the pore size increases. The value of qc is ˜10--200 times smaller than kBT/(3pieta). Such a discrepancy has been attributed to the rough assumption made by de Gennes and his coworkers; namely, each chain segment "blob" confined inside the pore is not a hard sphere so that the effective length along the flow direction is much longer than the pore diameter. Finally, using the solution temperature, we varied the chain conformation, our result shows that q c has a minimum which is near, but not exactly located at the theta temperature, might leading to a better way to determine the true ideal state of a polymer solution, at which all viral coefficients, not only the second vanish. Chapter 5 uses polymer solutions made of different mixtures of linear and star chains, we have demonstrated that flushing these solution mixtures through a nanopore with a properly chosen flow rate can effectively and cleanly separate linear and star chains no matter whether linear chains are larger or smaller than star chains. Chapter 6 further investigates how star-like polystyrene pass through a given nanopore under the flow field. Star polystyrene chains with different arm lengths (LA) and numbers (f) passing through a nanopore (20 nm) under an elongational flow field was investigated in terms of the flow-rate dependent relative retention ((C0 - C)/C0), where C 0 and C are the polymer concentrations before and after the ultrafiltration. Our results reveal that for a given arm length (LA), the critical flow rate (qc,star), below which star chains are blocked, dramatically increases with the total arm numbers (f); but for a given f, is nearly independent on LA, contradictory to the previous prediction made by de Gennes and Brochard-Wyart. We have revised their theory in the region fin < fout and also accounted for the effective length of each blob, where fin and fout are the numbers of arms inside and outside the pore, respectively. In the revision, we show that qc,star is indeed independent of LA but related to f and f in in two different ways, depending on whether fin ≤ f/2 or ≥ f/2. A comparison of our experimental and calculated results reveals that most of star chains pass through the nanopores with fin ˜ f/2. Further study of the temperature dependent (C0 - C)/C 0 of polystyrene in cyclohexane reveals that there exists a minimum of qc,star at ˜38 °C, close to its theta temperature (-34.5 °C).

  12. 40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer (generic). 721.10146 Section 721.10146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...

  13. Fluorinated elastomeric materials

    DOEpatents

    Lagow, Richard J.; Dumitru, Earl T.

    1986-11-04

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  14. Fluorinated elastomeric materials

    DOEpatents

    Lagow, Richard J.; Dumitru, Earl T.

    1990-02-13

    This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.

  15. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    PubMed

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-06

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  16. Measurement of Fluorine Atom Concentrations and Reaction Rates in Chemical Laser Systems.

    DTIC Science & Technology

    1981-09-01

    AD-A1RA 070 AERODYNEERESEARCHUINC BEDFORDM MA F/6_20/5 MEASURE MENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATFS -ETC(U) SEP_ A A C STANT ON...0772 LEVELIg 00 ~ARI-RR-272 cO0 MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATES IN CHEMICAL LASER SYSTEMS ANNUAL TECHNICAL REPORT by...MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND Annual Report REACTION RATES IN CHEMICAL LASER SYSTEMS 23 July 1980 - 23 July 1981 S. PERFORMING ORG. REPORT

  17. Fluorine-18 patents (2009–2015). Part 2: new radiochemistry

    PubMed Central

    Mossine, Andrew V; Thompson, Stephen; Brooks, Allen F; Sowa, Alexandra R; Miller, Jason M; Scott, Peter JH

    2016-01-01

    Fluorine-18 (18F) is one of the most common positron-emitting radionuclides used in the synthesis of positron emission tomography radiotracers due to its ready availability, convenient half-life and outstanding imaging properties. In Part 1 of this review, we presented the first analysis of patents issued for novel radiotracers labeled with fluorine-18. In Part 2, we follow-up with a focus on patents issued for new radiochemistry methodology using fluorine-18 issued between January 2009 and December 2015. PMID:27610753

  18. Correlation of Calculated Halonium Ion Structures with Experimental Product Distributions from Terminal Alkenes: The Effect of Electron-Withdrawing Fluorine Substituents on the Structure and Charge Localization of Halonium Ions (PREPRINT)

    DTIC Science & Technology

    2006-04-03

    2) Substituting a vinyl hydrogen with a fluorine presents an interesting situation for electrophilic reactions. The π-bond is less...reactive toward electrophiles due to the electron-withdrawing effect of the vinyl fluorine . Therefore, carbocations or radical cations are destabilized...NUMBER Distributions from Terminal Alkenes: The Effect of Electron-Withdrawing Fluorine Substituents on the Structure and Charge Localization of

  19. Comparison of the Single Molecule Dynamics of Linear and Circular DNAs in Planar Extensional Flows

    NASA Astrophysics Data System (ADS)

    Li, Yanfei; Hsiao, Kai-Wen; Brockman, Christopher; Yates, Daniel; McKenna, Gregory; Schroeder, Charles; San Francisco, Michael; Kornfield, Julie; Anderson, Rae

    2015-03-01

    Chain topology has a profound impact on the flow behaviors of single macromolecules. The absence of free ends separates circular polymers from other chain architectures, i.e., linear, star, and branched. In the present work, we study the single chain dynamics of large circular and linear DNA molecules by comparing the relaxation dynamics, steady state coil-stretch transition, and transient molecular individualism behaviors for the two types of macromolecules. To this end, large circular DNA molecules were biologically synthesized and studied in a microfluidic device that has a cross-slot geometry to develop a stagnation point extensional flow. Although the relaxation time of rings scales in the same way as for the linear analog, the circular polymers show quantitatively different behaviors in the steady state extension and qualitatively different behaviors during a transient stretch. The existence of some commonality between these two topologies is proposed. Texas Tech University John R. Bradford Endowment.

  20. Linear and Nonlinear Elasticity of Networks Made of Comb-like Polymers and Bottle-Brushes

    NASA Astrophysics Data System (ADS)

    Liang, H.; Dobrynin, A.; Everhart, M.; Daniel, W.; Vatankhah-Varnoosfaderani, M.; Sheiko, S.

    We study mechanical properties of networks made of combs and bottle-brushes by computer simulations, theoretical calculations and experimental techniques. The networks are prepared by cross-linking backbones of combs or bottle-brushes with linear chains. This results in ``hybrid'' networks consisting of linear chains and strands of combs or bottle-brushes. In the framework of the phantom network model, the network modulus at small deformations G0 can be represented as a sum of contributions from linear chains, G0 , l, and strands of comb or bottle-brush, G0 , bb. If the length of extended backbone between crosslinks, Rmax, is much longer than the Kuhn length, bk, the modulus scales with the degree of polymerization of the side chains, nsc, and number of monomers between side chains, ng, as G0 , bb (nsc/ng + 1)-1. In the limit when bk becomes of the order of Rmax, the combs and bottle-brushes can be considered as semiflexible chains, resulting in a network modulus to be G0 , bb (nsc/ng + 1)-1(nsc2/2/ng) . In the nonlinear deformation regime, the strain-hardening behavior is described by the nonlinear network deformation model, which predicts that the true stress is a universal function of the structural modulus, G, first strain invariant, I1, and deformation ratio, β. The results of the computer simulations and predictions of the theoretical model are in a good agreement with experimental results. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.

  1. Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers

    NASA Astrophysics Data System (ADS)

    Wu, David

    At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration with: Renfeng Hu, Colorado School of Mines, and Mark Foster, University of Akron. This work was supported by NSF Grants No. CBET- 0730692 and No. CBET-0731319.

  2. Fluorine in the solar neighborhood: Chemical evolution models

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  3. Acidic attack of perfluorinated alkyl ether lubricant molecules by metal oxide surfaces

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Faut, Owen D.

    1990-01-01

    The reactions of linear perfluoropolyalkylether (PFAE) lubricants with alpha-Fe203 and Fe203-based solid superacids were studied. The reaction with alpha-Fe203 proceeds in two stages. The first stage is an initial slow catalytic decomposition of the fluid. This reaction releases reactive gaseous products which attach the metal oxide and convert it to FeF3. The second stage is a more rapid decomposition of the fluid, effected by the surface FeF3. A study of the initial breakdown step was performed using alpha-Fe203, alpha-Fe203 preconverted to FeF3, and sulfate-promoted alpha-Fe203 superacids. The results indicate that the breakdown reaction involves acidic attack at fluorine atoms on acetal carbons in the linear PFAE. Possible approaches to combat the problem are outlined.

  4. Revisited study of fluorine implantation impact on negative bias temperature instability for input/output device of automotive micro controller unit

    NASA Astrophysics Data System (ADS)

    Yoshida, Tetsuya; Maekawa, Keiichi; Tsuda, Shibun; Shimizu, Tatsuo; Ogasawara, Makoto; Aono, Hideki; Yamaguchi, Yasuo

    2018-04-01

    We investigate the effect of fluorine implanted in the polycrystalline silicon (poly-Si) gate and source/drain (S/D) region on negative bias temperature instability (NBTI) improvement. It is found that there is a trade-off implantation energy dependence of NBTI between fluorine in the poly-Si gate and that in the S/D region. Fluorine implanted in the poly-Si gate contributes to NBTI improvement under low energy implantation. On the other hand, NBTI is improved by fluorine implanted in the S/D region under high energy. We propose that the two-step implantation process with high and low energy is the optimum condition for NBTI improvement.

  5. Graphite fluoride lubrication: The effect of fluorine content, atmosphere, and burnishing technique

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1975-01-01

    Eight different graphite fluoride compounds with fluorine to carbon ratios varying from x = 0.25 to 1.1 were evaluated as burnished films in order to determine the effect of fluorine content on the solid lubricant properties of graphite fluoride. For comparison, similar experiments were conducted on graphite burnished films. It was found that even a small amount of fluorine in graphite fluoride (CF sub 0.25) sub n improved the lubricating properties of graphite. Such factors as burnishing atmosphere, burnishing technique, test atmosphere, and specimen temperature affected the results as much as varying the fluorine to carbon ratio of the compound. Best life was found for films that were machine-burnished in moist air and tested in moist air.

  6. Kα X-Ray Emission Spectra and K X-Ray Absorption-Edge Structures of Fluorine in 3d Transition-Metal Difluorides

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1991-08-01

    The fluorine Kα emission spectra in fluorescence from a series of 3d transition-metal difluorides MF2 (M=Mn, Fe, Co, Ni, Cu and Zn) have been measured with a high-resolution two-crystal vacuum spectrometer. It is shown that the observed FWHM of the Kα1,2 emission band is closely related to the difference in the electronegativity between the metal and fluorine atoms. The measured emission spectra are presented along with the UPS or XPS spectra of the valence bands and the fluorine K absorption spectra of the metal difluorides, reported previously. The structures at the fluorine K absorption edges are interpreted in terms of a molecular orbital (MO) model.

  7. Structure of Irreversibly Adsorbed Star Polymers

    NASA Astrophysics Data System (ADS)

    Akgun, Bulent; Aykan, Meryem Seyma; Canavar, Seda; Satija, Sushil K.; Uhrig, David; Hong, Kunlun

    Formation of irreversibly adsorbed polymer chains on solid substrates have a huge impact on the wetting, glass transition, aging and polymer chain mobility in thin films. In recent years there has been many reports on the formation, kinetics and dynamics of these layers formed by linear homopolymers. Recent studies showed that by varying the number of polymer arms and arm molecular weight one can tune the glass transition temperature of thin polymer films. Using polymer architecture as a tool, the behavior of thin films can be tuned between the behavior of linear chains and soft colloids. We have studied the effect of polymer chain architecture on the structure of dead layer using X-ray reflectivity (XR) and atomic force microscopy. Layer thicknesses and densities of flattened and loosely adsorbed chains has been measured for linear, 4-arm, and 8-arm star polymers with identical total molecular weight as a function of substrate surface energy, annealing temperature and annealing time. Star polymers have been synthesized using anionic polymerization. XR measurements showed that 8-arm star PS molecules form the densest and the thickest dead layers among these three molecules.

  8. Life cycle cost optimization of biofuel supply chains under uncertainties based on interval linear programming.

    PubMed

    Ren, Jingzheng; Dong, Liang; Sun, Lu; Goodsite, Michael Evan; Tan, Shiyu; Dong, Lichun

    2015-01-01

    The aim of this work was to develop a model for optimizing the life cycle cost of biofuel supply chain under uncertainties. Multiple agriculture zones, multiple transportation modes for the transport of grain and biofuel, multiple biofuel plants, and multiple market centers were considered in this model, and the price of the resources, the yield of grain and the market demands were regarded as interval numbers instead of constants. An interval linear programming was developed, and a method for solving interval linear programming was presented. An illustrative case was studied by the proposed model, and the results showed that the proposed model is feasible for designing biofuel supply chain under uncertainties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Substrate Material for Holographic Emulsions Utilizing Fluorinated Polyimide Film

    NASA Technical Reports Server (NTRS)

    Gierow, Paul A. (Inventor); Clayton, William R. (Inventor); St.Clair, Anne K. (Inventor)

    1999-01-01

    A new holographic substrate utilizing flexible. optically transparent fluorinated polyimides. Said substrates have 0 extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.

  10. Method to synthesize lanthanide fluoride materials from lanthanide fluorinated alkoxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, Timothy J.

    Lanthanide fluorinated alkoxide derivatives can be synthesized from the alcoholysis reaction of the lanthanide bis-trimethylsilyl amide and an excess amount of hexafluoro iso-propanol. Nanoparticles can be formed from the lanthanide fluorinated alkoxide derivatives by a solvothermal or solution precipitation process.

  11. Process for preparing fluorine-18

    DOEpatents

    Winchell, Harry S.; Wells, Dale K.; Lamb, James F.; Beaudry, Samuel B.

    1976-09-21

    An improved process for preparation of fluorine-18 by a neon (deuteron, alpha particle) fluorine-18 nuclear reaction in a non-reactive enclosed reaction zone wherein a ultrapure product is recovered by heating the reaction zone to a high temperature and removing the product with an inert gas.

  12. Superhydrophobicity of electrospray-synthesized fluorinated silica layers.

    PubMed

    Kim, Eun-Kyeong; Lee, Chul-Sung; Kim, Sang Sub

    2012-02-15

    The preparation of superhydrophobic SiO(2) layers through a combination of a nanoscale surface roughness and a fluorination treatment is reported. Electrospraying SiO(2) precursor solutions that had been prepared by a sol-gel chemical route produced very rough SiO(2) layers. Subsequent fluorination treatment with a solution containing trichloro(1H,1H,2H,2H-perfluorooctyl)silane resulted in highly rough, fluorinated SiO(2) layers. The fluorinated rough SiO(2) layers exhibited excellent repellency toward various liquid droplets. In particular, water repellency of 168° was observed. On the bases of Cassie-Baxter and Young-Dupre equations, the surface fraction and the work of adhesion of the rough, fluorinated SiO(2) layers were respectively estimated. In light of the durability in water, ultraviolet resistance, and thermal stability, the superhydrophobic SiO(2) layers prepared in this work hold promise in a range of practical applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Suppression of Sclerostin and Dickkopf-1 levels in patients with fluorine bone injury.

    PubMed

    Wang, Wenpeng; Xu, Jian; Liu, Kejian; Liu, Xiaoli; Li, Changcheng; Cui, Caiyan; Zhang, Yuzeng; Li, Huabing

    2013-05-01

    Evidence has been accumulating for the role of Sclerostin and Dickkopf-1 as the antagonists of Wnt/β-Catenin signaling pathway, which suppresses bone formation through inhibiting osteoblastic function. To get deep-inside information about the expression of the antagonists in patients with fluorine bone injury, a case-control study was conducted in two counties in Hubei Province. Urinary and serum fluoride were significantly higher in patients with fluorine bone injury than in healthy controls. Additionally, patients with fluorine bone injury had significantly lower serum Sclerostin and Dickkopf-1 levels compared with healthy controls (P<0.001). Serum Sclerostin and Dickkopf-1 levels were significantly correlated with serum fluoride in all studied subjects (n=186). Low Sclerostin and Dickkopf-1 levels were associated with a significantly increased risk of fluorine bone injury. In conclusion, serum Sclerostin and Dickkopf-1 might be used as important markers of bone metabolism change and potential therapeutic targets to treat fluorine bone injury. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    NASA Astrophysics Data System (ADS)

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-11-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

  15. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    PubMed Central

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-01-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697

  16. Oxidative aliphatic C-H fluorination with manganese catalysts and fluoride ion

    PubMed Central

    Liu, Wei; Huang, Xiongyi; Groves, John T

    2014-01-01

    Fluorination is a reaction that is useful in improving the chemical stability and changing the binding affinity of biologically active compounds. The protocol described here can be used to replace aliphatic, C(sp3)-H hydrogen in small molecules with fluorine. Notably, isolated methylene groups and unactivated benzylic sites are accessible. The method uses readily available manganese porphyrin and manganese salen catalysts and various fluoride ion reagents, including silver fluoride (AgF), tetrabutylammonium fluoride and triethylamine trihydrofluoride (TREAT·HF), as the source of fluorine. Typically, the reactions afford 50–70% yield of mono-fluorinated products in one step. Two representative examples, the fragrance component celestolide and the nonsteroidal anti-inflammatory drug ibuprofen, are described; they produced useful isolated quantities (250–300 mg, ~50% yield) of fluorinated material over periods of 1–8 h. The procedures are performed in a typical fume hood using ordinary laboratory glassware. No special precautions to rigorously exclude water are required. PMID:24177292

  17. A highly selective dispersive liquid-liquid microextraction approach based on the unique fluorous affinity for the extraction and detection of per- and polyfluoroalkyl substances coupled with high performance liquid chromatography tandem-mass spectrometry.

    PubMed

    Wang, Juan; Shi, Yali; Cai, Yaqi

    2018-04-06

    In the present study, a highly selective fluorous affinity-based dispersive liquid-liquid microextraction (DLLME) technique was developed for the extraction and analysis of per- and polyfluoroalkyl substances (PFASs) followed by high performance liquid chromatography tandem-mass spectrometry. Perfluoro-tert-butanol with multiple C-F bonds was chosen as the extraction solvent, which was injected into the aqueous samples with a dispersive solvent (acetonitrile) in a 120:800 (μL, v/v) mixture for PFASs enrichment. The fluorous affinity-based extraction mechanism was confirmed by the significantly higher extraction recoveries for PFASs containing multiple fluorine atoms than those for compounds with fewer or no fluorine atoms. The extraction recoveries of medium and long-chain PFASs (CF 2  > 5) exceeded 70%, except perfluoroheptanoic acid, while those of short-chain PFASs were lower than 50%, implying that the proposed DLLME may not be suitable for their extraction due to weak fluorous affinity. This highly fluoroselective DLLME technique can greatly decrease the matrix effect that occurs in mass spectrometry detection when applied to the analysis of urine samples. Under the optimum conditions, the relative recoveries of PFASs with CF 2  > 5 ranged from 80.6-121.4% for tap water, river water and urine samples spiked with concentrations of 10, 50 and 100 ng/L. The method limits of quantification for PFASs in water and urine samples were in the range of 0.6-8.7 ng/L. Furthermore, comparable concentrations of PFASs were obtained via DLLME and solid-phase extraction, confirming that the developed DLLME technique is a promising method for the extraction of PFASs in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Controlled Formation of Mixed Nanoscale Domains of High Capacity Fe 2O 3–FeF 3 Conversion Compounds by Direct Fluorination

    DOE PAGES

    Zhou, Hui; Ruther, Rose E.; Adcock, Jamie; ...

    2015-02-22

    In this paper, we report a direct fluorination method under fluorine gas atmosphere using a fluidized bed reactor for converting nanophase iron oxide (n-Fe 2O 3) to an electrochemically stable and higher energy density iron oxyfluoride/fluoride phase. Interestingly, no noticeable bulk iron oxyfluoride phase (FeOF) phase was observed even at fluorination temperature close to 300 °C. Instead, at fluorination temperatures below 250 °C, scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) and X-ray photoelectron spectroscopy (XPS) analysis showed surface fluorination with nominal composition, Fe 2O 3-xF 2x (x < 1). At fluorination temperatures of 275 °C, STEM-EELSmore » results showed porous interconnected nanodomains of FeF 3 and Fe 2O 3 coexisting within the same particle, and overall the particles become less dense after fluorination. We performed potentiometric intermittent titration and electrochemical impedance spectroscopy studies to understand the lithium diffusion (or apparent diffusion) in both the oxyfluoride and mixed phase FeF 3 + Fe 2O 3 composition, and correlate the results to their electrochemical performance. Finally and further, we analyze from a thermodynamical perspective, the observed formation of the majority fluoride phase (77% FeF 3) and the absence of the expected oxyfluoride phase based on the relative formation energies of oxide, fluoride, and oxyfluorides.« less

  19. A method to remove intercalates from bromine and iodine intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1993-01-01

    Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.

  20. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  1. Quantum conductance oscillation in linear monatomic silicon chains

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Ti; Cheng, Yan; Yang, Fu-Bin; Chen, Xiang-Rong

    2014-02-01

    The conductance of linear silicon atomic chains with n=1-8 atoms sandwiched between Au electrodes is investigated by using the density functional theory combined with non-equilibrium Green's function. The results show that the conductance oscillates with a period of two atoms as the number of atoms in the chain is varied. We optimize the geometric structure of nanoscale junctions in different distances, and obtain that the average bond-length of silicon atoms in each chain at equilibrium positions is 2.15±0.03 Å. The oscillation of average Si-Si bond-length can explain the conductance oscillation from the geometric structure of atomic chains. We calculate the transmission spectrum of the chains in the equilibrium positions, and explain the conductance oscillation from the electronic structure. The transport channel is mainly contributed by px and py orbital electrons of silicon atoms. The even-odd oscillation is robust under external voltage up to 1.2 V.

  2. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...

  3. 40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fluorinated alkylaryl amide. 721.9075 Section 721.9075 Protection of Environment ENVIRONMENTAL PROTECTION... amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688) is...

  4. 78 FR 69337 - Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Classification System NF 3 nitrogen trifluoride NODA notice of data availability NTTAA National Technology... Previously Produced Fluorinated GHGs and From Venting of Residual Fluorinated GHGs From Containers 7... emissions from production and transformation processes; emissions from venting of container heels and...

  5. 21 CFR 170.45 - Fluorine-containing compounds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fluorine-containing compounds. 170.45 Section 170.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.45 Fluorine-containing compounds...

  6. Gold nanoparticles as markers for fluorinated surfaces containing embedded amide groups

    NASA Astrophysics Data System (ADS)

    Ballarin, Barbara; Barreca, Davide; Bertola, Maurizio; Cristina Cassani, Maria; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Nanni, Daniele; Parise, Chiara; Ranieri, Silvia

    2018-05-01

    Indium tin oxide (ITO) substrates were functionalized with fluoroalkylsilanes (FAS) having formula RFC(O)N(R)(CH2)3Si(OMe)3 (1, R = H, RF = C5F11; 2, R = CH3, RF = C5F11;3, R = H, RF = C3F7) and containing embedded amide moieties between the perfluoroalkyl chain and the syloxanic moiety. Subsequently, Au nanoparticle deposition (AuNP) onto the ITO-FAS functionalized surfaces was carried out by immersion into a solution of citrate-stabilized AuNP. The ITO-FAS and AuNP/ITO-FAS modified systems were characterized by various complementary techniques and compared with AuNP/ITO modified with RF(CH2)2Si(OEt)3 (4, RF = C6F13), free from functional groups between the fluorinated tail and the syloxanic moiety. The results showed that only ITO glasses modified with 1, 2 and 3 displayed an oleophobic, as well as hydrophobic, behaviour and that the AuNP Surface Coverage (SC %) directly depended on the fluoroalkylsilane nature with the following trend: 60% ITO-2 > 16% ITO-3 > 9% ITO-1 > 3% ITO-4. The obtained results revealed that, in organosilane 2, the presence of a methyl group on the amide nitrogen increases the steric hindrance in the rotation around the Nsbnd CO bond, resulting in the co-presence of two stable conformers in comparable amounts. Their co-presence in solution, combined with the lack of intermolecular Nsbnd H⋯OCsbnd N hydrogen bonds among the anchored molecules, has dramatic influences on the functionalized ITO, yielding a disorderedly packed coating able to accommodate a large quantity of AuNP. These results indicate that AuNP can act as excellent probes to evaluate the coating layer quality but, at the same time, it is possible to tune the gold loading on electroactive surfaces depending on the chemical structure of the used fluorinated silane.

  7. High-performance polymer waveguide devices via low-cost direct photolithography process

    NASA Astrophysics Data System (ADS)

    Wang, Jianguo; Shustack, Paul J.; Garner, Sean M.

    2002-09-01

    All-optical networks provide unique opportunities for polymer waveguide devices because of their excellent mechanical, thermo-optic, and electro-optic properties. Polymer materials and components have been viewed as a viable solution for metropolitan and local area networks where high volume and low cost components are needed. In this paper, we present our recent progress on the design and development of photoresist-like highly fluorinated maleimide copolymers including waveguide fabrication and optical testing. We have developed and synthesized a series of thermally stable, (Tg>150 oC, Td>300 oC) highly fluorinated (>50%) maleimide copolymers by radical co-polymerization of halogenated maleimides with various halogenated co-monomers. A theoretical correlation between optical loss and different co-polymer structures has been quantitatively established from C-H overtone analysis. We studied this correlation through design and manipulation of the copolymer structure by changing the primary properties such as molecular weight, copolymer composition, copolymer sequence distribution, and variations of the side chain including photochemically functional side units. Detailed analysis has been obtained using various characterization methods such as (H, C13, F19) NMR, UV-NIR, FTIR, GPC and so forth. The co-polymers exhibit excellent solubility in ketone solvents and high quality thin films can be prepared by spin coating. The polymer films were found to have a refractive index range of 1.42-1.67 and optical loss in the range of 0.2 to 0.4 dB/cm at 1550nm depending on the composition as extrapolated from UV-NIR spectra. When glycidyl methacrylate is incorporated into the polymer backbone, the material behaves like a negative photoresist with the addition of cationic photoinitiator. The final crosslinked waveguides show excellent optical and thermal properties. The photolithographic processing of the highly fluorinated copolymer material was examined in detail using in-situ FTIR. The influence of various polymer

  8. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain.

    PubMed

    Iwaniuk, Daniel P; Whetmore, Eric D; Rosa, Nicholas; Ekoue-Kovi, Kekeli; Alumasa, John; de Dios, Angel C; Roepe, Paul D; Wolf, Christian

    2009-09-15

    We report the synthesis and in vitro antimalarial activity of several new 4-amino- and 4-alkoxy-7-chloroquinolines carrying a linear dibasic side chain. Many of these chloroquine analogues have submicromolar antimalarial activity versus HB3 (chloroquine sensitive) and Dd2 (chloroquine resistant strain of Plasmodium falciparum) and low resistance indices were obtained in most cases. Importantly, compounds 11-15 and 24 proved to be more potent against Dd2 than chloroquine. Branching of the side chain structure proved detrimental to the activity against the CQR strain.

  9. From Comb-like Polymers to Bottle-Brushes

    NASA Astrophysics Data System (ADS)

    Liang, Heyi; Cao, Zhen; Dobrynin, Andrey; Sheiko, Sergei

    We use a combination of the coarse-grained molecular dynamics simulations and scaling analysis to study conformations of bottle-brushes and comb-like polymers in a melt. Our analysis show that bottle-brushes and comb-like polymers can be in four different conformation regimes depending on the number of monomers between grafted side chains and side chain degree of polymerization. In loosely-grafted comb regime (LC) the degree of polymerization between side chains is longer than side chain degree of polymerization, such that the side chains belonging to the same macromolecule do not overlap. Crossover to a new densely-grafted comb regime (DC) takes place when side chains begin to overlap reducing interpenetration of side chains belonging to different macromolecules. In these two regimes both side-chains and backbone behave as unperturbed linear chains with the effective Kuhn length of the backbone being close to that of linear chain. Further decrease spacer degree of polymerization results in crossover to loosely-grafted bottle-brush regime (LB). In this regime, the bottle-brush backbone is stretched while the side-chains still maintain ideal chain conformation. Finally, for even shorter spacer between grafted side chains, which corresponds to densely-grafted bottle-brush regime (DB), the backbone adopts a fully extended chain conformation, and side-chains begin to stretch to maintain a constant monomer density. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.

  10. Linear rheology and structure of molecular bottlebrushes with short side chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Barrón, Carlos R., E-mail: carlos.r.lopez-barron@exxonmobil.com; Brant, Patrick; Crowther, Donna J.

    We investigate the microstructure and linear viscoelasticity of model molecular bottlebrushes (BBs) using rheological and small-angle X-ray and neutron scattering measurements. Our polymers have short atactic polypropylene (aPP) side chains of molecular weight ranging from 119 g/mol to 259 g/mol and narrow molecular weight distribution (M{sub w}/M{sub n} 1.02–1.05). The side chain molecular weights are a small fraction of the entanglement molecular weight of the corresponding linear polymer (M{sub e,aPP}= 7.05 kg/mol), and as such, they are unentangled. The morphology of the aPP BBs is characterized as semiflexible thick chains with small side chain interdigitation. Their dynamic master curves, obtained by time-temperature superposition,more » reveal two sequential relaxation processes corresponding to the segmental relaxation and the relaxation of the BB backbone. Due to the short length of the side chains, their fast relaxation could not be distinguished from the glassy relaxation. The fractional free volume is an increasing function of the side chain length (N{sub SC}). Therefore, the glassy behavior of these polymers as well as their molecular friction and dynamic properties are influenced by their N{sub SC} values. The apparent flow activation energies are a decreasing function of N{sub SC}, and their values explain the differences in zero-shear viscosity measured at different temperatures.« less

  11. Nonequilibrium generalised Langevin equation for the calculation of heat transport properties in model 1D atomic chains coupled to two 3D thermal baths.

    PubMed

    Ness, H; Stella, L; Lorenz, C D; Kantorovich, L

    2017-04-28

    We use a generalised Langevin equation scheme to study the thermal transport of low dimensional systems. In this approach, the central classical region is connected to two realistic thermal baths kept at two different temperatures [H. Ness et al., Phys. Rev. B 93, 174303 (2016)]. We consider model Al systems, i.e., one-dimensional atomic chains connected to three-dimensional baths. The thermal transport properties are studied as a function of the chain length N and the temperature difference ΔT between the baths. We calculate the transport properties both in the linear response regime and in the non-linear regime. Two different laws are obtained for the linear conductance versus the length of the chains. For large temperatures (T≳500 K) and temperature differences (ΔT≳500 K), the chains, with N>18 atoms, present a diffusive transport regime with the presence of a temperature gradient across the system. For lower temperatures (T≲500 K) and temperature differences (ΔT≲400 K), a regime similar to the ballistic regime is observed. Such a ballistic-like regime is also obtained for shorter chains (N≤15). Our detailed analysis suggests that the behaviour at higher temperatures and temperature differences is mainly due to anharmonic effects within the long chains.

  12. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...

  13. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...

  14. 40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...

  15. 40 CFR Table I-2 to Subpart I of... - Examples of Fluorinated GHGs Used by the Electronics Industry

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Electronics Industry I Table I-2 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics... the Electronics Industry Product type Fluorinated GHGs and fluorinated heat transfer fluids used...

  16. 40 CFR 98.92 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of fluorinated GHGs (as defined in § 98.6) and N2O. The fluorinated GHGs that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Fluorinated GHGs...

  17. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    PubMed Central

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  18. Method of forming fluorine-bearing diamond layer on substrates, including tool substrates

    DOEpatents

    Chang, R. P. H.; Grannen, Kevin J.

    2002-01-01

    A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.

  19. .sup.18 F-4-Fluoroantipyrine

    DOEpatents

    Shiue, Chyng-Yann; Wolf, Alfred P.

    1984-03-13

    The novel radioactive compound .sup.18 F-4-fluoroantipyrine having high specific activity which can be used in nuclear medicine in diagnostic applications, prepared by the direct fluorination of antipyrine in acetic acid with radioactive fluorine at room temperature and purifying said radioactive compound by means of gel chromatography with ethyl acetate as eluent is disclosed. The non-radioactive 4-fluoroantipyrine can also be prepared by the direct fluorination of antipyrine in acetic acid with molecular fluorine at room temperature and purified by means of gel chromotography with ethyl acetate eluent.

  20. Effects of Interfacial Fluorination on Performance Enhancement of High-k-Based Charge Trap Flash Memory

    NASA Astrophysics Data System (ADS)

    Wang, Chenjie; Huo, Zongliang; Liu, Ziyu; Liu, Yu; Cui, Yanxiang; Wang, Yumei; Li, Fanghua; Liu, Ming

    2013-07-01

    The effects of interfacial fluorination on the metal/Al2O3/HfO2/SiO2/Si (MAHOS) memory structure have been investigated. By comparing MAHOS memories with and without interfacial fluorination, it was identified that the deterioration of the performance and reliability of MAHOS memories is mainly due to the formation of an interfacial layer that generates excess oxygen vacancies at the interface. Interfacial fluorination suppresses the growth of the interfacial layer, which is confirmed by X-ray photoelectron spectroscopy depth profile analysis, increases enhanced program/erase efficiency, and improves data retention characteristics. Moreover, it was observed that fluorination at the SiO-HfO interface achieves a more effective performance enhancement than that at the HfO-AlO interface.

  1. Modern Approaches for Asymmetric Construction of Carbon-Fluorine Quaternary Stereogenic Centers: Synthetic Challenges and Pharmaceutical Needs.

    PubMed

    Zhu, Yi; Han, Jianlin; Wang, Jiandong; Shibata, Norio; Sodeoka, Mikiko; Soloshonok, Vadim A; Coelho, Jaime A S; Toste, F Dean

    2018-04-11

    New methods for preparation of tailor-made fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry. The asymmetric construction of quaternary C-F stereogenic centers is the most synthetically challenging and, consequently, the least developed area of research. As a reflection of this apparent methodological deficit, pharmaceutical drugs featuring C-F stereogenic centers constitute less than 1% of all fluorine-containing medicines currently on the market or in clinical development. Here we provide a comprehensive review of current research activity in this area, including such general directions as asymmetric electrophilic fluorination via organocatalytic and transition-metal catalyzed reactions, asymmetric elaboration of fluorine-containing substrates via alkylations, Mannich, Michael, and aldol additions, cross-coupling reactions, and biocatalytic approaches.

  2. Probing plasma fluorinated graphene via spectromicroscopy.

    PubMed

    Struzzi, C; Scardamaglia, M; Reckinger, N; Sezen, H; Amati, M; Gregoratti, L; Colomer, J-F; Ewels, C; Snyders, R; Bittencourt, C

    2017-11-29

    Plasma fluorination of graphene is studied using a combination of spectroscopy and microscopy techniques, giving insight into the yield and fluorination mechanism for functionalization of supported graphene with both CF 4 and SF 6 gas precursors. Ion acceleration during fluorination is used to probe the effect on grafting functionalities. Adatom clustering, which occurs with CF 4 plasma treatment, is suppressed when higher kinetic energy is supplied to the ions. During SF 6 plasma functionalization, the sulfur atoms tend to bond to bare copper areas instead of affecting the graphene chemistry, except when the kinetic energy of the ions is restricted. Using scanning photoelectron microscopy, with a 100 nm spatial resolution, the chemical bonding environment is evaluated in the fluorinated carbon network at selected regions and the functionalization homogeneity is controlled in individual graphene flakes.

  3. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR

    PubMed Central

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-01-01

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051

  4. Tuning conductivity in boron nanowire by edge geometry

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-04-01

    In present study, we have investigated electronic and temperature dependent transport properties of carbyne like linear chain and ribbon like zigzag structures of Boron (B) nanowire. The linear chain structure showed higher electric and thermal conductivity, as it is sp-hybridized, than its counterpart ribbon (R) structure. However the conductivity of ribbon structure increases with increases in width due to edge geometry effect. The ribbon (3R) structure showed high electric and thermal conductivity of 8.0×1019 1/Ω m s and 0.59×1015 W/ m K respectively. Interestingly we have observed that B linear chain showed higher thermal conductivity of 0.23×1015 W/ m K than its ribbon R and 2R structure above 600K. Because of high Seebeck co-efficient of boron chain and ribbon (R) structures at low temperature, they could find applications in thermoelectric sensors. Our results show that tuning conductivity property of boron nanowire could be of great interest in research for future electric connector in nanodevices.

  5. Target Specificity of the E3 Ligase LUBAC for Ubiquitin and NEMO Relies on Different Minimal Requirements*

    PubMed Central

    Smit, Judith J.; van Dijk, Willem J.; El Atmioui, Dris; Merkx, Remco; Ovaa, Huib; Sixma, Titia K.

    2013-01-01

    The ubiquitination of NEMO with linear ubiquitin chains by the E3-ligase LUBAC is important for the activation of the canonical NF-κB pathway. NEMO ubiquitination requires a dual target specificity of LUBAC, priming on a lysine on NEMO and chain elongation on the N terminus of the priming ubiquitin. Here we explore the minimal requirements for these specificities. Effective linear chain formation requires a precise positioning of the ubiquitin N-terminal amine in a negatively charged environment on the top of ubiquitin. Whereas the RBR-LDD region on HOIP is sufficient for targeting the ubiquitin N terminus, the priming lysine modification on NEMO requires catalysis by the RBR domain of HOIL-1L as well as the catalytic machinery of the RBR-LDD domains of HOIP. Consequently, target specificity toward NEMO is determined by multiple LUBAC components, whereas linear ubiquitin chain elongation is realized by a specific interplay between HOIP and ubiquitin. PMID:24030825

  6. Charge Mobility Enhancement for Conjugated DPP-Selenophene Polymer by Simply Replacing One Bulky Branching Alkyl Chain with Linear One at Each DPP Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhijie; Liu, Zitong; Ning, Lu

    Here, we demonstrate a simple, but efficient, approach for improving the semiconducting performances of DPP-based conjugated D-A polymers. This approach involves the replacement of one bulky branching alkyl chain with the linear one at each DPP unit in regular polymer PDPPSe-10 and PDPPSe-12. The UV–vis absorption, Raman spectra, PDS data, and theoretical calculations support that the replacement of bulky branching chains with linear ones can weaken the steric hindrance, and accordingly conjugated backbones become more planar and rigid. GIWAXS data show that the incorporation of linear alkyl chains as in PDPPSe-10 and PDPPSe-12 is beneficial for side-chain interdigitation and interchainmore » dense packing, leading to improvement of interchain packing order and thin film crystallinity by comparing with PDPPSe, which contains branching alkyl chains. On the basis of field-effect transistor (FET) studies, charge mobilities of PDPPSe-10 and PDPPSe-12 are remarkably enhanced. Hole mobilities of PDPPSe-10 and PDPPSe-12 in air are boosted to 8.1 and 9.4 cm 2 V –1 s –1, which are about 6 and 7 times, respectively, than that of PDPPSe (1.35 cm 2 V –1 s –1). Furthermore, both PDPPSe-10 and PDPPSe-12 behave as ambipolar semiconductors under a nitrogen atmosphere with increased hole/electron mobilities up to 6.5/0.48 cm 2 V –1 s –1 and 7.9/0.79 cm 2 V –1 s –1, respectively.« less

  7. Charge Mobility Enhancement for Conjugated DPP-Selenophene Polymer by Simply Replacing One Bulky Branching Alkyl Chain with Linear One at Each DPP Unit

    DOE PAGES

    Wang, Zhijie; Liu, Zitong; Ning, Lu; ...

    2018-04-17

    Here, we demonstrate a simple, but efficient, approach for improving the semiconducting performances of DPP-based conjugated D-A polymers. This approach involves the replacement of one bulky branching alkyl chain with the linear one at each DPP unit in regular polymer PDPPSe-10 and PDPPSe-12. The UV–vis absorption, Raman spectra, PDS data, and theoretical calculations support that the replacement of bulky branching chains with linear ones can weaken the steric hindrance, and accordingly conjugated backbones become more planar and rigid. GIWAXS data show that the incorporation of linear alkyl chains as in PDPPSe-10 and PDPPSe-12 is beneficial for side-chain interdigitation and interchainmore » dense packing, leading to improvement of interchain packing order and thin film crystallinity by comparing with PDPPSe, which contains branching alkyl chains. On the basis of field-effect transistor (FET) studies, charge mobilities of PDPPSe-10 and PDPPSe-12 are remarkably enhanced. Hole mobilities of PDPPSe-10 and PDPPSe-12 in air are boosted to 8.1 and 9.4 cm 2 V –1 s –1, which are about 6 and 7 times, respectively, than that of PDPPSe (1.35 cm 2 V –1 s –1). Furthermore, both PDPPSe-10 and PDPPSe-12 behave as ambipolar semiconductors under a nitrogen atmosphere with increased hole/electron mobilities up to 6.5/0.48 cm 2 V –1 s –1 and 7.9/0.79 cm 2 V –1 s –1, respectively.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun-Kyeong; Yeong Kim, Ji; Sub Kim, Sang, E-mail: sangsub@inha.ac.kr

    We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days,more » the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.« less

  9. One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination.

    PubMed

    Shinde, Sandip S; Patil, Sunil N

    2014-12-07

    The tert-alcohol and ionic liquid solvents in one molecule [mim-(t)OH][OMs] was immobilized on polystyrene and reported to be a highly efficient catalyst in aliphatic nucleophilic substitution using alkali metal salts. Herein, we investigated the catalytic activity of a new structurally modified polymer-supported tert-alcohol functionalized imidazolium salt catalyst in nucleophilic substitution of 2-(3-methanesulfonyloxypropyoxy)naphthalene as a model substrate with various metal nucleophiles. The tert-alcohol moiety of the ionic liquid with a hexyl chain distance from polystyrene had a better catalytic activity compared to the other resin which lacked an alkyl linker and tert-alcohol moiety. We found that the maximum [mim-(t)OH][OMs] loading had the best catalytic efficacy among the tested polystyrene-based ionic liquids (PSILs) in nucleophilic fluorination. The catalytic efficiency of the PS[him-(t)OH][OMs] as a phase transfer catalyst (PTC) was determined by carrying out various nucleophilic substitutions using the corresponding alkali metal salts from the third to sixth periodic in CH3CN or tert-BuOH media. The scope of this protocol with primary and secondary polar substrates containing many heteroatoms is also reported. This PS[him-(t)OH][OMs] catalyst not only enhances the reactivity of alkali metal salts and reduces the formation of by-products but also affords high yield with easy isolation.

  10. Molecular origins of fluorocarbon hydrophobicity

    PubMed Central

    Dalvi, Vishwanath H.; Rossky, Peter J.

    2010-01-01

    We have undertaken atomistic molecular simulations to systematically determine the structural contributions to the hydrophobicity of fluorinated solutes and surfaces compared to the corresponding hydrocarbon, yielding a unified explanation for these phenomena. We have transformed a short chain alkane, n-octane, to n-perfluorooctane in stages. The free-energy changes and the entropic components calculated for each transformation stage yield considerable insight into the relevant physics. To evaluate the effect of a surface, we have also conducted contact-angle simulations of water on self-assembled monolayers of hydrocarbon and fluorocarbon thiols. Our results, which are consistent with experimental observations, indicate that the hydrophobicity of the fluorocarbon, whether the interaction with water is as solute or as surface, is due to its “fatness.” In solution, the extra work of cavity formation to accommodate a fluorocarbon, compared to a hydrocarbon, is not offset by enhanced energetic interactions with water. The enhanced hydrophobicity of fluorinated surfaces arises because fluorocarbons pack less densely on surfaces leading to poorer van der Waals interactions with water. We find that interaction of water with a hydrophobic solute/surface is primarily a function of van der Waals interactions and is substantially independent of electrostatic interactions. This independence is primarily due to the strong tendency of water at room temperature to maintain its hydrogen bonding network structure at an interface lacking hydrophilic sites. PMID:20643968

  11. Probing the steric requirements of the γ-aminobutyric acid aminotransferase active site with fluorinated analogues of vigabatrin

    PubMed Central

    Juncosa, Jose I.; Groves, Andrew P.; Xia, Guoyao; Silverman, Richard B.

    2012-01-01

    We have synthesized three analogues of 4-amino-5-fluorohexanoic acids as potential inactivators of γ-aminobutyric acid aminotransferase (GABA-AT), which were designed to combine the potency of their shorter chain analogue, 4-amino-5-fluoropentanoic acid (AFPA), with the greater enzyme selectivity of the antiepileptic vigabatrin (Sabril®). Unexpectedly, these compounds failed to inactivate or inhibit the enzyme, even at high concentrations. On the basis of molecular modeling studies, we propose that the GABA-AT active site has an accessory binding pocket that accommodates the vinyl group of vigabatrin and the fluoromethyl group of AFPA, but is too narrow to support the extra width of one distal methyl group in the synthesized analogues. PMID:23306054

  12. Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N ,N'-bis(heptafluorobutyl)-3,4:9,10-perylene diimide

    NASA Astrophysics Data System (ADS)

    Oh, Joon Hak; Liu, Shuhong; Bao, Zhenan; Schmidt, Rüdiger; Würthner, Frank

    2007-11-01

    The thin-film transistor characteristics of n-channel organic semiconductor, N ,N'-bis(2,2,3,3,4,4,4-heptafluorobutyl)-perylene tetracarboxylic diimide, are described. The slip-stacked face-to-face molecular packing allows a very dense parallel arrangement of the molecules, leading to field-effect mobility as high as 0.72cm2V-1s-1. The mobility only slightly decreased after exposure to air and remained stable for more than 50days. Our results reveal that molecular packing effects such as close stacking of perylene diimide units and segregation effects imparted by the fluorinated side chains are crucial for the air stability.

  13. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2013-10-22

    Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic mixture, deuteration, nematic phase, birefringence, overtone...absorption compounds for LWIR and SWIR are also investigated. Key words: Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic ...the melting point significantly. We did careful investigation and formed a eutectic mixture consisting of five fluorinated compounds without any

  14. SIMULATION OF PERFORMANCE OF CHLORINE-FREE FLURORINATED ETHERS AND FLUORINATED HYDROCARBONS TO REPLACE CFC-11 AND CFC-114 IN CHILLERS

    EPA Science Inventory

    The paper discusses simulation of the performance of chlorine-free fluorinated ethers and fluorinated hydrocarbons as potential long-term replacements for CFC-11 and -114. Modeling has been done with in-house refrigeration models based on the Carnahan-Starling-DeSantis Equation o...

  15. THE HEAT CAPACITY OF FLUORINATED PROPANE AND BUTANE DERIVATIVES BY DIFFERENTIAL SCANNING CALORIMETRY

    EPA Science Inventory

    The paper gives results of the measurement (to 3% accuracy) of the constant-pressure liquid-phase heat capacities of 21 hydrogen-containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6 to 76.7 C, using diff...

  16. Catalytic Enantioselective Cyclization and C3-Fluorination of Polyenes

    PubMed Central

    Cochrane, Nikki A.; Nguyen, Ha; Gagne, Michel R.

    2013-01-01

    (xylyl-phanephos)Pt2+ in combination with XeF2 mediates the consecutive diastereoselective cation-olefin cyclization/fluorination of polyene substrates. Isolated yields were typically in the 60s while enantioselectivies reached as high as 87%. The data are consistent with a stereoretentive fluorination of a P2Pt-alkyl cation intermediate. PMID:23282101

  17. Chemical vapor deposition of fluorine-doped zinc oxide

    DOEpatents

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  18. THE PHASE BEHAVIOR OF FLUORINATED DIOLS, DIVINYL ADIPATE, AND A FLUORINATED POLYESTER IN SUPERCRITICAL CARBON DIOXIDE. (R828131)

    EPA Science Inventory

    The use of supercritical carbon dioxide as a reaction medium for polyester synthesis is hindered by the low solubility of diols in CO2. However, it has been previously demonstrated that fluorinated compounds can exhibit greater miscibility with carbon dioxide than t...

  19. Total fluorine, extractable organic fluorine, perfluorooctane sulfonate and other related fluorochemicals in liver of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from South China.

    PubMed

    Yeung, L W Y; Miyake, Y; Wang, Y; Taniyasu, S; Yamashita, N; Lam, P K S

    2009-01-01

    The concentrations of 10 PFCs (perfluorinated compounds: PFOS, PFHxS, PFOSA, N-EtFOSA, PFDoDA, PFUnDA, PFDA, PFNA, PFOA, and PFHpA) were measured in liver samples of Indo-Pacific humpback dolphins (Sousa chinensis) (n=10) and finless porpoises (Neophocaena phocaenoides) (n=10) stranded in Hong Kong between 2003 and 2007. PFOS was the dominant PFC in the tissues at concentrations ranging at 26-693 ng/g ww in dolphins and 51.3-262 ng/g ww in porpoises. A newly developed combustion ion chromatography for fluorine was applied to measure total fluorine (TF) and extractable organic fluorine (EOF) in these liver samples to understand PFC contamination using the concept of mass balance analysis. Comparisons between the amounts of known PFCs and EOF in the livers showed that a large proportion (approximately 70%) of the organic fluorine in both species is of unknown origin. These investigations are critical for a comprehensive assessment of the risks of these compounds to humans and other receptors.

  20. From toothpaste to topological insulators and materials for valleytronics: The journeys of fluorinated tin

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Rivero, Pablo; Yan, Jia-An; Garcia-Suarez, Victor Manuel; Ferrer, Jaime

    2015-03-01

    Tin fluoride has a vast literature. This material is stable in bulk form at room temperature and has commercial applications that include fluorinated toothpaste. Bulk tin fluoride has a pair of fluorine atoms bridging two tin atoms. In the recent past the electronic properties of 2D tin with honeycomb structure have been discussed thus generating a wealth of literature that emphasizes its non-topologically-trivial electronic properties due to the combination of a Dirac-like dispersion and a strong spin-orbit coupling given its large atomic mass. Nevertheless the stability of such freestanding structures has been contested recently. As it turns out, the most stable form of fluorinated tin does not possess a graphane-like structure either. In the most stable phase to be discussed here, fluorine atoms tilt away from (graphane-like) positions over/below tin atoms; in an atomistic arrangement similar to the one seen on their parent bulk structure. Electronic properties depend on atomistic coordination, and the most stable form of fluorinated tin does not possess non-trivial topological properties. Nevertheless it represents a new paradigm for valleytronics in 2D.

  1. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    PubMed Central

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  2. Novel Synthesis of Slightly Fluorinated Graphene Quantum Dots with Luminescent and Paramagnetic Properties through Thermal Cutting of Fluorinated Graphene

    PubMed Central

    Feng, Qian; Xiao, Wenqing; Zheng, Yongping; Lin, Yuda; Li, Jiaxin; Ye, Qingying; Huang, Zhigao

    2018-01-01

    A novel approach has been developed to synthesize slightly fluorinated graphene quantum dots (GQDs-F) through thermal cutting of highly fluorinated graphene. The fluorinated graphene with substantial structure defects is fragile and is readily attacked. The direct evaporation of abundant CFn (n = 2, 3) groups near structure defects lead to the loss of adjacent skelton C atoms, and the fluorinated graphene can be thermally cut into GQDs-F with a relatively uniform nanosize in pyrolysis at 810 K. The GQDs-F with a low F/C atomic ratio of ca. 0.03 exhibit excitation wavelength-dependent properties with multicolor photoluminescence (PL) from blue to green. At the same time, F adatoms that are most likely located at the edges of GQDs-F have a high efficiency of introducing paramagnetic centres, and GQDs-F show a strong paramagnetism because of sp3-type defects and magnetic zigzag edges. The graphene quantum dots with such multimodal capabilities should have great applied value in material science. PMID:29316730

  3. Photoemission studies of fluorine functionalized porous graphitic carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens

    2012-03-01

    Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated,more » PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.« less

  4. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine.

    PubMed

    Tang, Y; Ghirlanda, G; Vaidehi, N; Kua, J; Mainz, D T; Goddard III, W A; DeGrado, W F; Tirrell, D A

    2001-03-06

    Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.

  5. Negative differential resistance in partially fluorinated graphene films

    NASA Astrophysics Data System (ADS)

    Antonova, I. V.; Shojaei, S.; Sattari-Esfahlan, S. M.; Kurkina, Irina I.

    2017-07-01

    Partially fluorinated graphene films were created by chemical functionalization of graphene layers in an aqueous solution of hydrofluoric acid. The formation of graphene islands or graphene quantum dots (GQDs) and a fluorinated graphene network is demonstrated in such films. Negative differential resistance (NDR) resulting from the formation of the potential barrier system in the films was observed for different fluorination degrees of suspension. The origin of the NDR varies with an increase in the fluorination degree of the suspension. Numerical calculations were performed to elucidate the tunneling between adjacent energy levels and creation of NDR. It was found that in the case of films with smaller flake and smaller GQD sizes, multi-peak NDR appears in the I-V curve. We predict that the NDR peak position shifts towards lower voltage with a decrease in the GQD size. Surprisingly, we observed a negative step-like valley for positive biases in the I-V curve of samples. Our findings with detailed analysis shed light on understanding the mechanisms of the NDR phenomenon in a partially fluorinated graphene system.

  6. How can we make stable linear monoatomic chains? Gold-cesium binary subnanowires as an example of a charge-transfer-driven approach to alloying.

    PubMed

    Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S

    2007-02-16

    On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.

  7. A Linear Regression and Markov Chain Model for the Arabian Horse Registry

    DTIC Science & Technology

    1993-04-01

    as a tax deduction? Yes No T-4367 68 26. Regardless of previous equine tax deductions, do you consider your current horse activities to be... (Mark one...E L T-4367 A Linear Regression and Markov Chain Model For the Arabian Horse Registry Accesion For NTIS CRA&I UT 7 4:iC=D 5 D-IC JA" LI J:13tjlC,3 lO...the Arabian Horse Registry, which needed to forecast its future registration of purebred Arabian horses . A linear regression model was utilized to

  8. Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, N.; Xue, Z.; Rago, N. D.

    The fluorinated electrolyte containing a fluoroether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was investigated as a new electrolyte for lithium-sulfur (Li-S) batteries. The low solubility of lithium polysulfides (LiPS) in the fluorinated electrolyte reduced the parasitic reactions with Li anode and mitigated the self-discharge by limiting their diffusion from the cathode to the anode. The use of fluorinated ether as a co-solvent and LiNO3 as an additive in the electrolyte shows synergetic effect in suppressing the self-discharge of Li-S battery due to the formation of the solid electrolyte interphase (SEI) on both sulfur cathode and the lithium anode. The Li-S cell with themore » fluorinated electrolyte showed prolonged shelf life at fully charged state.« less

  9. Some Aspects of the Wavelength Dispersive X-Ray Determination of Fluorine Content in Various Matrices

    NASA Astrophysics Data System (ADS)

    Boča, M.; Gurišová, V.; Šimko, F.

    2017-05-01

    X-ray fluorescent signals of F Kα, Na Kα, Cl Kα, K Kα, and Ta Lα were measured by WD-XRF for various fluorine-containing systems: K2TaF7, Na3AlF6, K2ZrF6, NaF, and LiF (with NaCl and wax as additional additives). The data were recorded for 41 samples (in the form of pellets prepared in the laboratory) by more than 200 scans. The analysis of the measured fluorine X-ray fluorescence intensities demonstrated that the balance between absorption and enhancement effects depends strongly on the presence and concentration of other elements in the system. The experimental intensities of X-ray fluorescent radiation of fluorine for different systems with comparable fluorine content could differ by as much as 500%.

  10. Assessment of arsenic and fluorine in surface soil to determine environmental and health risk factors in the Comarca Lagunera, Mexico.

    PubMed

    Sariñana-Ruiz, Yareli A; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Labastida, Israel; Armienta, Ma Aurora; Aragón-Piña, Antonio; Escobedo-Bretado, Miguel A; González-Valdez, Laura S; Ponce-Peña, Patricia; Ramírez-Aldaba, Hugo; Lara, René H

    2017-07-01

    Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (<1-5 μm) including mimetite-vanadite (Pb 5 (AsO 4 ) 3 Cl, Pb 5 (AsO 4 , VO 4 ) 3 Cl)-like, lead arseniate (Pb 3 (AsO 4 ) 2 )-like and complex arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF 2 ) is the only fluorine-bearing phase. Total fluorine and arsenic concentrations in surface soil range from 89.75 to 926.63 and 2.7-78.6 mg kg -1 , respectively, exceeding in many points a typical baseline value for fluorine (321 mg kg -1 ), and trigger level criterion for arsenic soil remediation (20 mg kg -1 ); whereas fluoride and arsenic concentrations in groundwater vary from 0.24 to 1.8 mg L -1 and 0.12-0.650 mg L -1 , respectively. The main bioaccessible percentages of soil in the gastric phase (SBRC-G) are estimated for arsenic from 1 to 63%, and this parameter in the intestinal phase (SBRC-I) fluorine from 2 to 46%, suggesting human health risks for this region. While a negligible/low mobility is found in soil for arsenic (0.1-11%), an important mobility is determined for fluorine (2-39%), indicating environmental risk related to potential fluorine release. The environmental and health risks connected to arsenic and fluorine are discussed based on experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m 2g -1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  12. Mechanisms of intracellular defense and activity of free radical oxidation in rat myocardium in the dynamics of chronic fluorine intoxication.

    PubMed

    Zhukova, A G; Alekhina, D A; Sazontova, T G; Prokop'ev, Yu A; Gorokhova, L G; Stryapko, N V; Mikhailova, N N

    2013-12-01

    The mechanisms of intracellular defense and activity of free radical oxidation in the myocardium were studied in the dynamics of chronic fluorine intoxication. At the early stages of fluorine intoxication (day 3-week 3), the concentrations of defense proteins HIF-1α, HSC73, and HOx-2 and activity of the main metabolic enzymes increased, which promoted maintenance of cardiomyocyte structure and function at the normal physiological level. At late stages of fluorine intoxication (weeks 6 and 9), metabolic changes in the myocardium attest to high strain of the adaptive mechanisms.

  13. Domino-Fluorination-Protodefluorination Enables Decarboxylative Cross-Coupling of α-Oxocarboxylic Acids with Styrene via Photoredox Catalysis.

    PubMed

    Zhang, Muliang; Xi, Junwei; Ruzi, Rehanguli; Li, Nan; Wu, Zhongkai; Li, Weipeng; Zhu, Chengjian

    2017-09-15

    Domino-fluorination-protodefluorination decarboxylative cross-coupling of α-keto acids with styrene has been developed via photoredox catalysis. The critical part of this strategy is the formation of the carbon-fluorine (C-F) bond by the capture of a carbon-centered radical intermediate, which will overcome side reactions during the styrene radical functionalization process. Experimental studies have provided evidence indicating a domino-fluorination-protodefluorination pathway with α-keto acid initiating the photoredox cycle. The present catalytic protocol also affords a novel approach for the construction of α,β-unsaturated ketones under mild conditions.

  14. Diastereoselective Diels-Alder reactions of alpha-fluorinated alpha,beta-unsaturated carbonyl compounds: chemical consequences of fluorine substitution. 2.

    PubMed

    Essers, Michael; Mück-Lichtenfeld, Christian; Haufe, Günter

    2002-07-12

    Two alpha-fluoro alpha,beta-unsaturated carbonyl compounds, i.e., benzyl 2-fluoroacrylate (3) and 2-fluorooct-1-en-3-one (4), as well as the corresponding nonfluorinated parent compounds, were synthesized and subjected to Diels-Alder reactions with cyclopentadiene. The cycloadditions were conducted thermally, microwave-assisted, and Lewis acid-mediated (TiCl(4)). The fluorinated dienophiles exhibited a lower reactivity and exo diastereoselectivity, while the corresponding nonfluorinated parent compounds reacted endo selectively. DFT calculations suggest that kinetic effects of fluorine determine the stereoselectivity rather than higher thermodynamic stability of the exo products.

  15. Synthesis and Thermal Analysis of Nano-Aluminum/Fluorinated Polyurethane Elastomeric Composites for Structural Energetics.

    PubMed

    Zhang, Xianyu; Kim, Jin Seuk; Kwon, Younghwan

    2017-04-01

    Here we describe the synthesis of polyurethane (PU)-based energetic nanocomposites loaded with nano-aluminum (n-Al) particles. The energetic nanocomposite was prepared by polyurethane reaction of poly(glycidyl azide-co-tetramethylene glycol) (PGT) prepolymers and IPDI/N-100 isocyanates with simultaneous catalyst-free azide-alkyne Click reaction in the presence of n-Al. Initial study carried out with various n-Al/fluorinated PGT blends and demonstrated the potential of fluorinated PGT prepolymer for an energetic PU matrix. Thermal analysis of n-Al/fluorinated PGT-based PU energetic nanocomposite was performed using DSC and TGA.

  16. Stability analysis and stabilization strategies for linear supply chains

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi; Helbing, Dirk

    2004-04-01

    Due to delays in the adaptation of production or delivery rates, supply chains can be dynamically unstable with respect to perturbations in the consumption rate, which is known as “bull-whip effect”. Here, we study several conceivable production strategies to stabilize supply chains, which is expressed by different specifications of the management function controlling the production speed in dependence of the stock levels. In particular, we will investigate, whether the reaction to stock levels of other producers or suppliers has a stabilizing effect. We will also demonstrate that the anticipation of future stock levels can stabilize the supply system, given the forecast horizon τ is long enough. To show this, we derive linear stability conditions and carry out simulations for different control strategies. The results indicate that the linear stability analysis is a helpful tool for the judgement of the stabilization effect, although unexpected deviations can occur in the non-linear regime. There are also signs of phase transitions and chaotic behavior, but this remains to be investigated more thoroughly in the future.

  17. On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin-Spin Coupling Constants

    NASA Astrophysics Data System (ADS)

    Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.

    Locally dense basis sets (

  18. Provenance and geochemical behavior of fluorine in the soils of an endemic fluorosis belt, central Iran

    NASA Astrophysics Data System (ADS)

    Dehbandi, Reza; Moore, Farid; Keshavarzi, Behnam

    2017-05-01

    The concentration of fluorine, major, trace and rare earth elements (REEs) were used to estimate the probable sources and provenance of fluorine in the soils of an endemic fluorosis belt in central Iran. Total fluorine (TF) in soils varied from 146 to 406 mg/kg with a mean of 277.5 mg/kg. Calculated enrichment factor (EF) and single factor pollution index (SFPI) revealed that the majority of soil samples were moderately contaminated by fluorine. The very strong positive correlation of TF with weathering indices and soil's fine sized fractions indicated that chemical weathering and alteration of parent rocks/soils are the main controlling factors of fluorine behavior in soils. Fluorine affinity to immobile transition trace elements and REEs suggested the role of heavy minerals as the potential F host phases. Modal mineralogy along with SEM-EDX analysis indicated that apatite, fluorapophyllite, epidote, biotite, muscovite and chlorite, as well as, clay minerals are the main F-bearing minerals in the studied soils. Discriminant, bivariate and ternary diagrams of elemental compositions displayed similar geochemical signature of soils to intermediate-acidic rocks and local shales. Based on the weathering indices, soils were immature and showed a non-steady state weathering trend from upper continental crust (UCC), acidic and intermediate igneous source rocks towards shale composition possibly due to mixing of moderately weathered and un-weathered sources of different primary compositions.

  19. Molecular Dynamics Pinpoint the Global Fluorine Effect in Balanoid Binding to PKCε and PKA.

    PubMed

    Hardianto, Ari; Liu, Fei; Ranganathan, Shoba

    2018-02-26

    (-)-Balanol is an adenosine triphosphate mimic that inhibits protein kinase C (PKC) isozymes and cAMP-dependent protein kinase (PKA) with limited selectivity. While PKA is known as a tumor promoter, PKC isozymes can be tumor promoters or suppressors. In particular, PKCε is frequently involved in tumorigenesis and a potential target for anticancer drugs. We recently reported that stereospecific fluorination of balanol yielded a balanoid with enhanced selectivity for PKCε over other PKC isozymes and PKA, although the global fluorine effect behind the selectivity enhancement is not fully understood. Interestingly, in contrast to PKA, PKCε is more sensitive to this fluorine effect. Here we investigate the global fluorine effect on the different binding responses of PKCε and PKA to balanoids using molecular dynamics (MD) simulations. For the first time to the best of our knowledge, we found that a structurally equivalent residue in each kinase, Thr184 in PKA and Ala549 in PKCε, is essential for the different binding responses. Furthermore, the study revealed that the invariant Lys, Lys73 in PKA and Lys437 in PKCε, already known to have a crucial role in the catalytic activity of kinases, serves as the main anchor for balanol binding. Overall, while Thr184 in PKA attenuates the effect of fluorination, Ala549 permits remote response of PKCε to fluorine substitution, with implications for rational design of future balanol-based PKCε inhibitors.

  20. Defects in regular nanosystems and interference spectra at reemission of electromagnetic field attosecond pulses

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Makarov, D. N.

    2017-01-01

    The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.

Top