Method of preparing pure fluorine gas
Asprey, Larned B.
1976-01-01
A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.
Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
Marks, Tobin J.; Chen, You-Xian
2001-01-01
Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.
Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
Marks, Tobin J.; Chen, You-Xian
2002-01-01
Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.
Catalysis for Fluorination and Trifluoromethylation
Furuya, Takeru; Kamlet, Adam S.; Ritter, Tobias
2011-01-01
Preface Recent advances in catalysis have made the incorporation of fluorine into complex organic molecules easier than ever before, but selective, general, and practical fluorination reactions remain sought after. Fluorination of molecules often imparts desirable properties such as metabolic and thermal stability, and fluorinated molecules are therefore frequently used as pharmaceuticals or materials. Even with the latest advances in chemistry, carbon–fluorine bond formation in complex molecules is still a significant challenge. Within the last few years, new reactions to make organofluorides have emerged and exemplify how to overcome some of the intricate challenges associated with fluorination. PMID:21614074
Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein–Ligand Complexes
Pollock, Jonathan; Borkin, Dmitry; Lund, George; ...
2015-08-19
Multipolar interactions involving fluorine and the protein backbone have been frequently observed in protein–ligand complexes. Such fluorine–backbone interactions may substantially contribute to the high affinity of small molecule inhibitors. Here we found that introduction of trifluoromethyl groups into two different sites in the thienopyrimidine class of menin–MLL inhibitors considerably improved their inhibitory activity. In both cases, trifluoromethyl groups are engaged in short interactions with the backbone of menin. In order to understand the effect of fluorine, we synthesized a series of analogues by systematically changing the number of fluorine atoms, and we determined high-resolution crystal structures of the complexes withmore » menin. Here, we found that introduction of fluorine at favorable geometry for interactions with backbone carbonyls may improve the activity of menin–MLL inhibitors as much as 5- to 10-fold. In order to facilitate the design of multipolar fluorine–backbone interactions in protein–ligand complexes, we developed a computational algorithm named FMAP, which calculates fluorophilic sites in proximity to the protein backbone. We demonstrated that FMAP could be used to rationalize improvement in the activity of known protein inhibitors upon introduction of fluorine. Furthermore, FMAP may also represent a valuable tool for designing new fluorine substitutions and support ligand optimization in drug discovery projects. Analysis of the menin–MLL inhibitor complexes revealed that the backbone in secondary structures is particularly accessible to the interactions with fluorine. Lastly, considering that secondary structure elements are frequently exposed at protein interfaces, we postulate that multipolar fluorine–backbone interactions may represent a particularly attractive approach to improve inhibitors of protein–protein interactions.« less
Enantioselective Organocatalytic α-Fluorination of Cyclic Ketones
Kwiatkowski, Piotr; Beeson, Teresa D.; Conrad, Jay C.
2011-01-01
The first highly enantioselective α-fluorination of ketones using organocatalysis has been accomplished. The long-standing problem of enantioselective ketone α-fluorination via enamine activation has been overcome via high-throughput evaluation of a new library of amine catalysts. The optimal system, a primary amine functionalized Cinchona alkaloid, allows the direct and asymmetric α-fluorination of a variety of carbo- and heterocyclic substrates. Furthermore, this protocol also provides diastereo-, regio- and chemoselective catalyst control in fluorinations involving complex carbonyl systems. PMID:21247133
Oomens, Jos; Berden, Giel; Morton, Thomas Hellman
2015-06-22
CO stretching frequencies of free, gaseous, fluorinated alkoxide ions shift substantially to the blue, relative to those of corresponding alcohols complexed with ammonia. Free α-fluorinated ions, pentafluoroethoxide and heptafluoroisopropoxide anions, display further blue shifts relative to cases with only β-fluorination, providing experimental evidence for fluorine negative hyperconjugation. DFT analysis with the atoms in molecules (AIM) method confirms an increase in CO bond order for the α-fluorinated ions, demonstrating an increase in carbonyl character for the free ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brandt, Jochen R.; Lee, Eunsung; Boursalian, Gregory B.
2013-01-01
Electrophilic fluorinating reagents derived from fluoride are desirable for the synthesis of 18F-labeled molecules for positron emission tomography (PET). Here, we study the mechanism by which a Pd(IV)-complex captures fluoride and subsequently transfers it to nucleophiles. The intermediate Pd(IV)-F is formed with high rates even at the nano- to micromolar fluoride concentrations typical for radiosyntheses with 18F due to fast formation of an outer-sphere complex between fluoride and Pd(IV). The subsequent fluorine transfer from the Pd(IV)-F complex is proposed to proceed through an unusual SET/fluoride transfer/SET mechanism. The findings detailed in this manuscript provide a theoretical foundation suitable for addressing a more general approach for electrophilic fluorination with high specific activity 18F PET imaging. PMID:24376910
Liang, Aihui; Peng, Jing; Liu, Qingye; Wen, Guiqing; Lu, Zhujun; Jiang, Zhiliang
2015-08-15
In pH 4.0 acetate buffer solution, fluorine ions react with fluorine reagent (FR) and La(III) to generate blue ternary complex that exhibited strong absorption at about 370 nm. Upon addition of graphene oxide/nanogold (GO/NG) as resonance Rayleigh scattering (RRS) spectral probe with strong RRS peak at 370 nm, the color changed to gray, and the RRS intensity decreased with the increase of fluorine ion concentration due to the RRS energy transfer (RRSET) from GO/NG to the complex. Under the selected condition, the decreased RRS peak ΔI370 nm was linear to fluorine ion concentration in the range of 6.0 × 10(-8)-1.3 × 10(-5)mol/L, with a detection limit of 3.0 × 10(-8)mol/L F(-). This RRSET method was applied to the analysis of fluorine in toothpaste and water samples, with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen
NASA Astrophysics Data System (ADS)
Zhao, Ni; Nie, Yongjie; Li, Shengtao
2018-04-01
Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.
NASA Astrophysics Data System (ADS)
Urbanová, Veronika; Karlický, František; Matěj, Adam; Šembera, Filip; Janoušek, Zbyněk; Perman, Jason A.; Ranc, Václav; Čépe, Klára; Michl, Josef; Otyepka, Michal; Zbořil, Radek
2016-06-01
Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms.Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms. Electronic supplementary information (ESI) available: SEM, HRTEM, and AFM images the sheet in pristine graphene sample, survey XPS spectrum, high resolution C 1s XPS spectrum, and Raman spectrum of pristine graphene precursor used for controlled fluorination, survey and high resolution F 1s XPS spectra of the CF0.084, CF0.158, and CF0.218 samples, EDS chemical mapping of fluorine in CF0.158, contact angle measurement of CF0.084, CF0.158, CF0.218, and HOPG, and additional electrochemical data. See DOI: 10.1039/c6nr00353b
Kitamura, Tsugio; Muta, Kensuke; Muta, Kazutaka
2014-06-20
The direct fluorination reaction of acetophenone using iodosylarenes and TEA·5HF was conducted under mild conditions except for use of a HF reagent. The fluorination reaction was applied to acetophenone derivatives, acetonaphthones, benzyl phenyl ketone, propiophenone, butyrophenone, 1-indanone, and phenacyl chloride, giving selectively the corresponding α-fluoroketone derivatives in good yields.
The Electrochemical Fluorination of Organosilicon Compounds
NASA Technical Reports Server (NTRS)
Seaver, Robert E.
1961-01-01
The electrochemical fluorination of tetramethylsilane, hexamethyl-disiloxane, diethyldichlorosilane, amyltrichlorosilane, and phenyltri-chlorosilane was conducted in an Inconel cell equipped with nickel electrodes. A potential of approximately 5.0 volts and a current of approximately 1.0 ampere were used for the electrolysis reaction. In all cases the fluorinations resulted in considerable scission of the carbon-silicon bonds yielding hydrogen and the various fluorinated decomposition products; no fluoroorganosilicon compounds were identified. The main decomposition products were silicon tetrafluoride, the corresponding fluorinated carbon compounds, and the various organofluorosilanes. It is suggested that this is due to the nucleophilic attack of the fluoride ion (or complex fluoride ion) on the carbon-silicon bond.
Nie, Jing; Zhu, Hong-Wei; Cui, Han-Feng; Hua, Ming-Qing; Ma, Jun-An
2007-08-02
A new catalytic stereoselective tandem transformation via Nazarov cyclization/electrophilic fluorination has been accomplished. This sequence is efficiently catalyzed by a Cu(II) complex to afford fluorine-containing 1-indanone derivatives with two new stereocenters with high diastereoselectivity (trans/cis up to 49/1). Three examples of catalytic enantioselective tandem transformation are presented.
Natural and engineered biosynthesis of fluorinated natural products.
Walker, Mark C; Chang, Michelle C Y
2014-09-21
Both natural products and synthetic organofluorines play important roles in the discovery and design of pharmaceuticals. The combination of these two classes of molecules has the potential to be useful in the ongoing search for new bioactive compounds but our ability to produce site-selectively fluorinated natural products remains limited by challenges in compatibility between their high structural complexity and current methods for fluorination. Living systems provide an alternative route to chemical fluorination and could enable the production of organofluorine natural products through synthetic biology approaches. While the identification of biogenic organofluorines has been limited, the study of the native organisms and enzymes that utilize these compounds can help to guide efforts to engineer the incorporation of this unusual element into complex pharmacologically active natural products. This review covers recent advances in understanding both natural and engineered production of organofluorine natural products.
Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung
2015-11-11
A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors.
Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)
NASA Astrophysics Data System (ADS)
Crowder, Janell M.
beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the first investigation of the synthesis, isolation and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated Cu(II) and Co(II) complexes of bis(pentafluorobenzoyl)methanide ligand. These studies demonstrate how the electrophilicity of a coordinatively unsaturated metal complexed to highly-fluorinated â-diketone ligands can be utilized for the formation of new adducts or new and interesting heterometallic complexes. This body of work provides a basis upon which future research into unsolvated and unligated bis(pentafluorobenzoyl)methanide metal complexes can expand.
Fier, Patrick S.; Luo, Jingwei; Hartwig, John F.
2013-01-01
A method for the direct conversion of arylboronate esters to aryl fluorides under mild conditions with readily available reagents is reported. Tandem reactions have also been developed for the fluorination of arenes and aryl bromides through aryl-boronate ester intermediates. Mechanistic studies suggest that this fluorination reaction occurs through facile oxidation of Cu(I) to Cu(III) followed by rate-limiting transmetallation of a bound arylboronate to Cu(III). Fast C-F reductive elimination is proposed to occur from an aryl-copper(III)-fluoride complex. Cu(III) intermediates have been generated independently and identified by NMR spectroscopy and ESI-MS. PMID:23384209
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.; Lipschultz, Claudia A.; Wlodawer, Alexander; Li, Mi; Shanmuganathan, Aranganathan; Walter, Richard L.; Smith-Gill, Sandra; Barchi, Joseph J.
2012-01-01
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and 19F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan (5FW). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that 5FW incorporation lowered binding affinity for the HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when 5FW was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. 19F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each 5FW in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody–antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody–antigen complexes with altered function that may not be discernible by other biophysical techniques. PMID:22769726
Murphy, Cormac D; Sandford, Graham
2015-04-01
Fluorine's unique physicochemical properties make it a key element for incorporation into pharmacologically active compounds. Its presence in a drug can alter a number of characteristics that affect ADME-Tox, which has prompted efforts at improving synthetic fluorination procedures. This review describes the influence of fluorine on attributes such as potency, lipophilicity, metabolic stability and bioavailablility and how the effects observed are related to the physicochemical characteristics of the element. Examples of more recently used larger scale synthetic methods for introduction of fluorine into drug leads are detailed and the potential for using biological systems for fluorinated drug production is discussed. The synthetic procedures for carbon-fluorine bond formation largely still rely on decades-old technology for the manufacturing scale and new reagents and methods are required to meet the demands for the preparation of structurally more complex drugs. The improvement of in vitro and computational methods should make fluorinated drug design more efficient and place less emphasis on approaches such as fluorine scanning and animal studies. The introduction of new fluorinated drugs, and in particular those that have novel fluorinated functional groups, should be accompanied by rigorous environmental assessment to determine the nature of transformation products that may cause ecological damage.
Research in Inorganic Fluorine Chemistry.
1987-03-01
fluoride is bound to yield fluorine, the required reaction temperatures and conditions are so extreme that rapid reaction of the evolved fluorine with the... temperatures as low as -31 *C. indicating an ionic two-electra. oxidation mechanism. An unproved syntheisis of KtF’MF64 (M - As. Sb). Ramn data and...Fz. and PtF, at elevated temperature and praisurs. General aspects of the formaetion mechianisaw of coardinatively saturated complex fluoro cations
Grote, Dirk; Sander, Wolfram
2009-10-02
The photochemistry of a series of fluorinated p-iodophenyl azides 2 has been investigated using matrix isolation IR and EPR spectroscopy. In all cases, the corresponding phenylnitrenes 1 were formed as primary photoproducts. Further irradiation of the nitrenes 1 resulted in the formation of azirines 3, ketenimines 4, and nitreno radicals 5. The yield of 5 depends on the number of ortho fluorine substituents: with two ortho fluorine atoms the highest yield is observed, whereas without fluorine atoms the yield is too low for IR spectroscopic detection. The interconversion between the isomers 1, 3, and 4 proved to be rather complex. If the fluorine atoms are distributed unsymmetrically, two isomers of azirines 3 and ketenimines 4 can be formed. The yields of these isomers depend critically on the irradiation conditions.
Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acchione, Mauro; Lee, Yi-Chien; DeSantis, Morgan E.
To more fully understand the molecular mechanisms responsible for variations in binding affinity with antibody maturation, we explored the use of site specific fluorine labeling and {sup 19}F nuclear magnetic resonance (NMR). Several single-chain (scFv) antibodies, derived from an affinity-matured series of anti-hen egg white lysozyme (HEL) mouse IgG1, were constructed with either complete or individual replacement of tryptophan residues with 5-fluorotryptophan ({sup 5F}W). An array of biophysical techniques was used to gain insight into the impact of fluorine substitution on the overall protein structure and antigen binding. SPR measurements indicated that {sup 5F}W incorporation lowered binding affinity for themore » HEL antigen. The degree of analogue impact was residue-dependent, and the greatest decrease in affinity was observed when {sup 5F}W was substituted for residues near the binding interface. In contrast, corresponding crystal structures in complex with HEL were essentially indistinguishable from the unsubstituted antibody. {sup 19}F NMR analysis showed severe overlap of signals in the free fluorinated protein that was resolved upon binding to antigen, suggesting very distinct chemical environments for each {sup 5F}W in the complex. Preliminary relaxation analysis suggested the presence of chemical exchange in the antibody-antigen complex that could not be observed by X-ray crystallography. These data demonstrate that fluorine NMR can be an extremely useful tool for discerning structural changes in scFv antibody-antigen complexes with altered function that may not be discernible by other biophysical techniques.« less
Development of the titanium–TADDOLate-catalyzed asymmetric fluorination of β-ketoesters
Hintermann, Lukas; Perseghini, Mauro
2011-01-01
Summary Titanium-based Lewis acids catalyze the α-fluorination of β-ketoesters by electrophilic N–F-fluorinating reagents. Asymmetric catalysis with TADDOLato–titanium(IV) dichloride (TADDOL = α,α,α',α'-tetraaryl-(1,3-dioxolane-4,5-diyl)-dimethanol) Lewis acids produces enantiomerically enriched α-fluorinated β-ketoesters in up to 91% enantiomeric excess, with either F–TEDA (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)) in acetonitrile solution or NFSI (N-fluorobenzenesulfonimide) in dichloromethane solution as fluorinating reagents. The effects of various reaction parameters and of the TADDOL ligand structure on the catalytic activity and enantioselectivity were investigated. The absolute configuration of several fluorination products was assigned through correlation. Evidence for ionization of the catalyst complex by chloride dissociation, followed by generation of titanium β-ketoenolates as key reaction intermediates, was obtained. Based on the experimental findings, a general mechanistic sketch and a steric model of induction are proposed. PMID:22043253
N-Heterocyclic Carbene Complexes in Dehalogenation Reactions
NASA Astrophysics Data System (ADS)
Mas-Marzá, Elena; Page, Michael J.; Whittlesey, Michael K.
Catalytic dehalogenation represents an underdeveloped transformation in M-NHC chemistry with a small number of reports detailing the reactivity of Co, Ru, Ni and Pd catalysts. In situ generated nickel and palladium NHC complexes catalyse the hydrodechlorination of aryl chlorides. Lower coordinate Ni complexes are proposed to operate in the hydrodefluorination of mono- and poly-fluorinated substrates. The single example of Ru-NHC catalysed hydrodefluorination of fully and partially fluorinated aromatic substrates is characterised by an unusual regioselectivity. The highly regioselective dehydrohalogenation of relatively unreactive alkyl halide substrates is achieved with a cobalt NHC catalyst.
NASA Astrophysics Data System (ADS)
Leung, Helen O.; Marshall, Mark D.; Lee, Alex J.; Bozzi, Aaron T.; Cohen, Paul M.; Lam, Mable
2010-06-01
Previous work in our laboratory has demonstrated that increasing the degree of fluorine substitution in complexes of fluoroethylenes with protic acids results in a weaker primary hydrogen-bonding interaction. This has been interpreted as arising from a decrease in the nucleophilicity of the hydrogen bond-accepting fluorine atom as a consequence of the inductive, electron-withdrawing nature of the additional fluorine atoms. We have recently extended these studies to investigate the effects of substitution with the less electronegative, but more polarizable chlorine atom. Through analysis of their 6-21 GHz Fourier transform microwave spectra, molecular structures are obtained for the complexes of 1-chloro-1-fluoroethylene and the (E) isomer of 1-chloro-2-fluoroethylene with hydrogen fluoride. The structures are compared with each other and with their difluoroethylene counterparts.
NASA Astrophysics Data System (ADS)
Uedono, A.; Inumiya, S.; Matsuki, T.; Aoyama, T.; Nara, Y.; Ishibashi, S.; Ohdaira, T.; Suzuki, R.; Miyazaki, S.; Yamada, K.
2007-09-01
Vacancy-fluorine complexes in metal-oxide semiconductors (MOS) with high-k gate dielectrics were studied using a positron annihilation technique. F+ ions were implanted into Si substrates before the deposition of gate dielectrics (HfSiON). The shift of threshold voltage (Vth) in MOS capacitors and an increase in Fermi level position below the HfSiON/Si interface were observed after F+ implantation. Doppler broadening spectra of the annihilation radiation and positron lifetimes were measured before and after HfSiON fabrication processes. From a comparison between Doppler broadening spectra and those obtained by first-principles calculation, the major defect species in Si substrates after annealing treatment (1050 °C, 5 s) was identified as vacancy-fluorine complexes (V3F2). The origin of the Vth shift in the MOS capacitors was attributed to V3F2 located in channel regions.
Romero Aburto, Rebeca; Alemany, Lawrence B; Weldeghiorghis, Thomas K; Ozden, Sehmus; Peng, Zhiwei; Lherbier, Aurélien; Botello Méndez, Andrés Rafael; Tiwary, Chandra Sekhar; Taha-Tijerina, Jaime; Yan, Zheng; Tabata, Mika; Charlier, Jean-Christophe; Tour, James M; Ajayan, Pulickel M
2015-07-28
Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors. Direct (13)C pulse magic angle spinning (MAS) nuclear magnetic resonance (NMR) confirmed the presence of epoxy, hydroxyl, ester and ketone carbonyl, tertiary alkyl fluorides, as well as graphitic sp(2)-hybridized carbon. Moreover, (19)F-(13)C cross-polarization MAS NMR with (1)H and (19)F decoupling confirmed the presence of secondary alkyl fluoride (CF2) groups in the fluorinated graphene oxide nanoribbon (FGONR) structures fluorinated above 50 °C. First-principles density functional theory calculations gained insight into the atomic arrangement of the most dominant chemical groups. The fluorinated GONRs present atomic fluorine percentages in the range of 6-35. Interestingly, the FGONRs synthesized up to 100 °C, with 6-19% of atomic fluorine, exhibit colloidal similar stability in aqueous environments when compared to GONRs. This colloidal stability is important because it is not common for materials with up to 19% fluorine to have a high degree of hydrophilicity.
Ning, Yingying; Tang, Juan; Liu, Yi-Wei; Jing, Jing; Sun, Yuansheng; Zhang, Jun-Long
2018-04-21
Herein, we report the design and synthesis of biocompatible Yb 3+ complexes for near-infrared (NIR) living cell imaging. Upon excitation at either the visible (Soret band) or red region (Q band), these β-fluorinated Yb 3+ complexes display high NIR luminescence (quantum yields up to 23% and 13% in dimethyl sulfoxide and water, respectively) and have higher stabilities and prolonged decay lifetimes (up to 249 μs) compared to the β-non-fluorinated counterparts. This renders the β-fluorinated Yb 3+ complexes as a new class of biological optical probes in both steady-state imaging and time-resolved fluorescence lifetime imaging (FLIM). NIR confocal fluorescence images showed strong and specific intracellular Yb 3+ luminescence signals when the biocompatible Yb 3+ complexes were uptaken into the living cells. Importantly, FLIM measurements showed an intracellular lifetime distribution between 100 and 200 μs, allowing an effective discrimination from cell autofluorescence, and afforded high signal-to-noise ratios as firstly demonstrated in the NIR region. These results demonstrated the prospects of NIR lanthanide complexes as biological probes for NIR steady-state fluorescence and time-resolved fluorescence lifetime imaging.
[Current trends in fluorine research].
Machoy-Mokrzyńska, Anna; Machoy, Zygmunt
2006-01-01
Current topics in fluorine research are presented with emphasis on findings by researchers in Szczecin and Poland, as well as in the world. Reports are cited on the distribution of fluorine compounds in the environment, routes of penetration into living organisms, and analytical methods for the quantitative determinations of fluorine content in air, water, soil, and foods. Important contributions have been made by Polish researchers on the role and patterns of fluorides in body fluids, soft and hard tissues, which remain in direct relationship to accumulation and elimination of fluorine. So far, comprehensive studies on mutagenic effects of fluorine and its potential role in bone neoplasms, Down syndrome, and other genetic disorders have not been carried out in Poland. Worthy of mention are reports on mechanisms of action of fluorine compounds on the cellular and subcellular level. Finally, two achievements of recent years in the field of fluorine research are discussed briefly. The first is concerned with the use in dentistry of chemical analysis for studying mineral reconstruction of teeth throughout the lifetime of an individual. The second is in the field of medicine where molecular modeling has been applied to explain the mechanism of action of aluminofluoride complexes (AlFx) as a messenger of false information during protein biosynthesis and their apparent role in the etiology of Alzheimer's disease.
Temporal and fluoride control of secondary metabolism regulates cellular organofluorine biosynthesis
Walker, Mark C.; Wen, Miao; Weeks, Amy M.; Chang, Michelle C. Y.
2018-01-01
Elucidating mechanisms of natural organofluorine biosynthesis is essential for a basic understanding of fluorine biochemistry in living systems as well as for expanding biological methods for fluorine incorporation into probe or therapeutic molecules. To meet this goal we have combined massively parallel sequencing technologies, genetic knockout, and in vitro biochemical approaches to investigate the fluoride response of the only known genetic host of an organofluorine producing pathway, Streptomyces cattleya. Interestingly, we have discovered that the major mode of S. cattleya’s resistance to the fluorinated toxin it produces, fluoroacetate, may be due to temporal control of production rather than the ability of the host’s metabolic machinery to discriminate between fluorinated and non–fluorinated molecules. Indeed, neither the acetate kinase/phosphotransacetylase acetate assimilation pathway nor the TCA cycle enzymes (citrate synthase and aconitase) exclude fluorinated substrates based on in vitro biochemical characterization. Furthermore, disruption of the fluoroacetate resistance gene encoding a fluoroacetyl–CoA thioesterase (FlK) does not appear to lead to an observable growth defect related to organofluorine production. By showing that a switch in central metabolism can mediate and control molecular fluorine incorporation, our findings reveal a new potential strategy toward diversifying simple fluorinated building blocks into more complex products. PMID:22769062
Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand
2016-12-17
In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans . All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.
Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi
2016-11-29
Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.
Molecular beam epitaxy growth of SmFeAs(O,F) films with Tc = 55 K using the new fluorine source FeF3
NASA Astrophysics Data System (ADS)
Sakoda, Masahito; Ishii, Akihiro; Takinaka, Kenji; Naito, Michio
2017-07-01
REFeAs(O,F) (RE: rare-earth element) has the highest-Tc (˜58 K) among the iron-based superconductors, but a thin-film growth of REFeAs(O,F) is difficult. This is because it is not only a complex compound consisting of five elements but also requires doping of highly reactive fluorine to achieve superconductivity. We have reported in our previous article that fluorine can be supplied to a film by subliming solid-state fluorides such as FeF2 or SmF3. In this article, we report on the growth of SmFeAs(O,F) using FeF3 as an alternative fluorine source. FeF3 is solid at ambient temperatures and decomposes at temperatures as low as 100-200 °C, and releases fluorine-containing gas during the thermal decomposition. With this alternative fluorine source, we have grown SmFeAs(O,F) films with Tc as high as 55 K. This achievement demonstrates that FeF3 has potential as a fluorine source that can be employed ubiquitously for a thin-film growth of any fluorine containing compounds. One problem specific to FeF3 is that the compound is highly hydroscopic and contains a substantial amount of water even in its anhydrous form. In this article, we describe how to overcome this specific problem.
Synthetic biology approaches to fluorinated polyketides
Thuronyi, Benjamin W.; Chang, Michelle C. Y.
2016-01-01
Conspectus The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides. PMID:25719427
Chalmers, Kirsten H; De Luca, Elena; Hogg, Naomi H M; Kenwright, Alan M; Kuprov, Ilya; Parker, David; Botta, Mauro; Wilson, J Ian; Blamire, Andrew M
2010-01-04
The synthesis and spectroscopic properties of a series of CF(3)-labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide-substituted ligands based on 1,4,7,10-tetraazacyclododecane are described. The theoretical contributions of the (19)F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the Ln(III) ion and the fluorine nucleus, the applied magnetic field, and the re-rotational correlation time of the complex, for a given Ln(III) ion. Selected complexes exhibit pH-dependent chemical shift behaviour, and a pK(a) of 7.0 was determined in one example based on the holmium complex of an ortho-cyano DO3A-monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two (19)F resonances. Relaxation analyses of variable-temperature and variable-field (19)F, (17)O and (1)H NMR spectroscopy experiments are reported, aided by identification of salient low-energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the Ln(III) ion and the CF(3) reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in (19)F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.
2012-12-14
lactams that are readily reduced to β-lactams. Substitution of a vinyl hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so...hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so that a concerted pathway is favored. Rate constants were measured for...step pathway has not been demonstrated experimentally.3c In a recent paper, we found that substituting a hydrogen for a fluorine on the π-bond of an
NASA Astrophysics Data System (ADS)
Kilic, Ahmet; Alcay, Ferhat; Aydemir, Murat; Durgun, Mustafa; Keles, Armagan; Baysal, Akın
2015-05-01
A new series of Schiff base ligands (L1-L3) and their corresponding fluorine/phenyl boron hybrid complexes [LnBF2] and [LnBPh2] (n = 1, 2 or 3) have been synthesized and well characterized by both analytical and spectroscopic methods. The Schiff base ligands and their corresponding fluorine/phenyl boron hybrid complexes have been characterized by NMR (1H, 13C and 19F), FT-IR, UV-Vis, LC-MS, and fluorescence spectroscopy as well as melting point and elemental analysis. The fluorescence efficiencies of phenyl chelate complexes are greatly red-shifted compared to those of the fluorine chelate analogs based on the same ligands, presumably due to the large steric hindrance and hard π → π∗ transition of the diphenyl boron chelation, which can effectively prevent molecular aggregation. The boron hybrid complexes were applied to the transfer hydrogenation of acetophenone derivatives to 1-phenylethanol derivatives in the presence of 2-propanol as the hydrogen source. The catalytic studies showed that boron hybrid complexes are good catalytic precursors for transfer hydrogenation of aromatic ketones in 0.1 M iso-PrOH solution. Also, we have found that both steric and electronic factors have a significant impact on the catalytic properties of this class of molecules.
NASA Astrophysics Data System (ADS)
Li, Yan; Jiang, Haotian; Yang, Xiaozhi
2017-11-01
Fluorine and hydroxyl groups are minor constituents of silicate minerals, and share a lot of similarities concerning their physical and chemical properties. Hydroxyl groups significantly enhance the electrical conductivity of many silicate minerals, and it is expected that fluorine would have a comparable effect. This, however, has never been documented quantitatively. Here we present experimental approaches on this issue, by investigating the electrical conductivity of phlogopite with a wide range of fluorine content (but with broadly similar contents for other major elements). Electrical conductivities of gem-quality single crystal phlogopites, with samples prepared along the same orientation (normal to the (0 0 1) plane), were determined at 1 GPa and 200-650 °C using an end-loaded piston cylinder apparatus and a Solartron-1260 Impedance/Gain Phase Analyzer over the frequency range of 106 to 0.1 Hz. The complex spectra usually show an arc in the high frequency range and a short tail in the low frequency range, which are caused by lattice conduction and electrode effects, respectively. The electrical conductivity increases with increasing fluorine content, and the main charge carriers are fluorine. The activation enthalpies are ∼180 to 200 kJ/mol, nearly independent of fluorine content. The conductivity is linearly proportional to the content of fluorine, with an exponent factor of ∼1. The results demonstrate that conduction by fluorine leads to very high electrical conductivity at high temperatures. The influence of fluorine on electrical conductivity may be compared to that of hydrogen in nominally anhydrous minerals. This, along with the close association of fluorine and hydroxyl groups in silicate minerals and their similar crystal-chemical behaviors, suggests a more general role of fluorine in enhancing the electrical conductivity of many silicate minerals. Fluorine-rich assemblages, e.g., phlogopite and amphibole, could be locally enriched in the upper mantle, and if they form connected networks as observed for some natural samples, regionally high electrical conductivities could be produced. It has been recently proposed that the transition zone is probably a major reservoir for fluorine in the mantle, due to the significant dissolution of fluorine in wadsleyite and ringwoodite and the coupled incorporation with hydroxyl groups. As such, geophysically-resolved high electrical conductivities in the transition zone may be accounted for by fluorine in the dominant minerals, rather than by hydroxyl groups. The results of this work would stimulate a wide scope of future studies on the deep fluorine cycle, the deep water cycle and the geodynamical properties of the mantle.
Ferro, Stefania; De Luca, Laura; Barreca, Maria Letizia; Iraci, Nunzio; De Grazia, Sara; Christ, Frauke; Witvrouw, Myriam; Debyser, Zeger; Chimirri, Alba
2009-01-22
A new model of HIV-1 integrase-Mg-DNA complex that is useful for docking experiments has been built. It was used to study the binding mode of integrase strand transfer inhibitor 1 (CHI-1043) and other fluorine analogues. Molecular modeling results prompted us to synthesize the designed derivatives which showed potent enzymatic inhibition at nanomolar concentration, high antiviral activity, and low toxicity. Microwave assisted organic synthesis (MAOS) was employed in several steps of the synthetic pathway, thus reducing reaction times and improving yields.
Biodegradation of fluorinated alkyl substances.
Frömel, Tobias; Knepper, Thomas P
2010-01-01
The incorporation of fluorine into organic molecules entails both positive and adverse effects. Although fluorine imparts positive and unique properties such as water-and oil-repellency and chemical stability, adverse effects often pervade members of this compound class. A striking property of long perfluoroalkyl chains is their very pronounced environmental persistence. The present review is the first one designed to summarize recent accomplishments in the field of biodegradation of fluorine-containing surfactants, their metabolites, and structural analogs. The pronounced scientific and public interest in these chemicals has given impetus to undertake numerous degradation studies to assess the sources and origins of different fluorinated analog chemical known to exist in the environment. It was shown that biodegradation plays an important role in understanding how fluorinated substances reach the environment and, once they do, what their fate is. Today, PFOS and PFOA are ubiquitously detected as environmental contaminants. Their prominence as contaminants is mainly due to their extreme persistence, which is linked to their perfluoroalkyl chain length. It appears that desulfonation of a highly fluorinated surfactants can be achieved if an α-situated H atom, in relation to the sulfonate group, is present, at least under sulfur-limiting conditions. Molecules that are less heavily fluorinated can show very complex metabolic behavior, as is the case for fluorotelomer alcohols. These compounds are degraded via different but simultaneous pathways, which produce different stable metabolites, one of which is the respective perfluoroalkanoate (8:2-FTOH is transformed to PFOA). Preliminary screening tests indicate that fluorinated functional groups, such as the trifluoromethoxy group and the p-(trifluoromethyl)phenoxy group, may be useful implementations in novel, environmentally benign fluorosurfactants. More specifically, trifluoromethoxy groups constitute a substitute for those that have been used in the past; this functionality is degradable when it appears in structures that are normally subject to biodegradation. Other compounds tested did not meet this criterion. Interdisciplinary investigations on fluorinated surfactants are still very much needed and will certainly continue during the next many years. For instance, the role of fluorinated polymers in contributing small fluorinated molecules to the environmental burden still has not been fully understood.
He, Lei; Ma, Dongxin; Duan, Lian; Wei, Yongge; Qiao, Juan; Zhang, Deqiang; Dong, Guifang; Wang, Liduo; Qiu, Yong
2012-04-16
Intramolecular π-π stacking interaction in one kind of phosphorescent cationic iridium complexes has been controlled through fluorination of the pendant phenyl rings on the ancillary ligands. Two blue-green-emitting cationic iridium complexes, [Ir(ppy)(2)(F2phpzpy)]PF(6) (2) and [Ir(ppy)(2)(F5phpzpy)]PF(6) (3), with the pendant phenyl rings on the ancillary ligands substituted with two and five fluorine atoms, respectively, have been synthesized and compared to the parent complex, [Ir(ppy)(2)(phpzpy)]PF(6) (1). Here Hppy is 2-phenylpyridine, F2phpzpy is 2-(1-(3,5-difluorophenyl)-1H-pyrazol-3-yl)pyridine, F5phpzpy is 2-(1-pentafluorophenyl-1H-pyrazol-3-yl)-pyridine, and phpzpy is 2-(1-phenyl-1H-pyrazol-3-yl)pyridine. Single crystal structures reveal that the pendant phenyl rings on the ancillary ligands stack to the phenyl rings of the ppy ligands, with dihedral angles of 21°, 18°, and 5.0° between least-squares planes for complexes 1, 2, and 3, respectively, and centroid-centroid distances of 3.75, 3.65, and 3.52 Å for complexes 1, 2, and 3, respectively, indicating progressively reinforced intramolecular π-π stacking interactions from complexes 1 to 2 and 3. Compared to complex 1, complex 3 with a significantly reinforced intramolecular face-to-face π-π stacking interaction exhibits a significantly enhanced (by 1 order of magnitude) photoluminescent efficiency in solution. Theoretical calculations reveal that in complex 3 it is unfavorable in energy for the pentafluorophenyl ring to swing by a large degree and the intramolecular π-π stacking interaction remains on the lowest triplet state. © 2012 American Chemical Society
Schellenberger, S; Gillgard, P; Stare, A; Hanning, A; Levenstam, O; Roos, S; Cousins, I T
2018-02-01
Fluorinated durable water repellent (DWR) agents are used to obtain water and stain repellent textiles. Due to the on-going phase-out of DWRs based on side-chain fluorinated polymers (SFP) with "long" perfluoroalkyl chains, the textile industry lacks suitable alternatives with comparable material characteristics. The constant development and optimization of SFPs for textile applications initiated more than half a century ago has resulted in a robust and very efficient DWR-technology and textiles with exceptional hydro- and oleo-phobic properties. The industry is now in the predicament that the long-chain SFPs with the best technical performance have undesirable toxicological and environmental behaviour. This study provides a comprehensive overview of the technical performance of presently available fluorinated and non-fluorinated DWRs as part of a chemical alternatives assessment (CAA). The results are based on a study with synthetic outdoor fabrics treated with alternative DWRs and tested for repellency using industrial standard and complementary methods. Using this approach, the complex structure-property relationships of DWR-polymers could be explained on a molecular level. Both short-chain SFPs and non-fluorinated DWRs showed excellent water repellency and durability in some cases while short-chain SFPs were the more robust of the alternatives to long-chain SFPs. A strong decline in oil repellency and durability with perfluoroalkyl chain length was shown for SFP DWRs. Non-fluorinated alternatives were unable to repel oil, which might limit their potential for substitution in textile application that require repellency towards non-polar liquids. Copyright © 2017. Published by Elsevier Ltd.
2006-10-01
determined by imaging correlate well with those determined by immunoassay methods on surgical biopsies. Because of the short half-life of fluorine -18, this...immunoassay methods on surgical biopsies. Currently, the most effective ER imaging agent is a fluorine -18 labeled estrogen. However, because of the short...substituent to the central pentacycle, including nucleophilic addition of organometallic reagents, addition of electrophiles to the cyclopentadiene
SOLID ROCKET OXIDIZERS, *LIQUID ROCKET OXIDIZERS, CHLORATES, FLUORIDES, ACETONES, CHLORINE COMPOUNDS, NITROSO COMPOUNDS, *HALOGEN COMPOUNDS, ADDITION REACTIONS, CESIUM COMPOUNDS, CHLORIDES, COMPLEX COMPOUNDS
Effects of Alternating Hydrogenated and Protonated Segments in polymers on their Wettability.
NASA Astrophysics Data System (ADS)
Smith, Dennis; Traiphol, Rakchart; Cheng, Gang; Perahia, Dvora
2003-03-01
Polymers consisting of alternating hydrogenated and fluorinated segments exhibit unique interfacial characteristics governed by the components that dominate the interface. Presence of fluorine reduces the interfacial energy and is expected to decrease the adhesion to the polymer surface. Thin liquid crystalline (LC) layers of 4,4?-octyl-cyanobiphenyl, cast on top of a polymeric layer consisting of alternating methylstylbine protonated segments bridged by a fluorinated group was used as a mechanistic tool to study of interfacial effects on three parameters: wetting, interfacial alignment and surface induces structures. The liquid crystal cast on a low interfacial energy fluorinated polymeric film exhibits bulk homeotropic alignment as expected. However it fully wetted the polymer surface despite the incompatibility of the protonated LC and mainly fluorinated polymer interface. Further more, it was found to stabilize the interfacial Semitic layers to a higher temperature and induce different surface ordering that was not observed at the same temperature neither in the bulk nor at the interfaces with silicon or glass surface. These results indicate that the interfacial interactions of polymers with liquid crystals are a complex function of both surface energies and the interfacial structure of the polymer.
Sariñana-Ruiz, Yareli A; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Labastida, Israel; Armienta, Ma Aurora; Aragón-Piña, Antonio; Escobedo-Bretado, Miguel A; González-Valdez, Laura S; Ponce-Peña, Patricia; Ramírez-Aldaba, Hugo; Lara, René H
2017-07-01
Total, bioaccessible and mobile concentrations of arsenic and fluorine are determined in polluted surface soil within the Comarca Lagunera region using standardized protocols to obtain a full description of the environmental behavior for these elements. The composition of mineral phases associated with them is evaluated with microscopic and spectroscopic techniques. Mineralogical characterizations indicate that ultra-fine particles (<1-5 μm) including mimetite-vanadite (Pb 5 (AsO 4 ) 3 Cl, Pb 5 (AsO 4 , VO 4 ) 3 Cl)-like, lead arseniate (Pb 3 (AsO 4 ) 2 )-like and complex arsenic-bearing compounds are main arsenic-bearing phases, while fluorite (CaF 2 ) is the only fluorine-bearing phase. Total fluorine and arsenic concentrations in surface soil range from 89.75 to 926.63 and 2.7-78.6 mg kg -1 , respectively, exceeding in many points a typical baseline value for fluorine (321 mg kg -1 ), and trigger level criterion for arsenic soil remediation (20 mg kg -1 ); whereas fluoride and arsenic concentrations in groundwater vary from 0.24 to 1.8 mg L -1 and 0.12-0.650 mg L -1 , respectively. The main bioaccessible percentages of soil in the gastric phase (SBRC-G) are estimated for arsenic from 1 to 63%, and this parameter in the intestinal phase (SBRC-I) fluorine from 2 to 46%, suggesting human health risks for this region. While a negligible/low mobility is found in soil for arsenic (0.1-11%), an important mobility is determined for fluorine (2-39%), indicating environmental risk related to potential fluorine release. The environmental and health risks connected to arsenic and fluorine are discussed based on experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.
SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .
The influence of fluorine on phase relations and REE enrichment in alkaline magmas
NASA Astrophysics Data System (ADS)
Beard, C. D.; van Hinsberg, V.; Stix, J.; Wilke, M.
2017-12-01
Fluorine is a minor element in most magmas, but higher concentrations to wt% levels have been reported in alkaline systems, including those which host economic deposits of REE + HFSE1. Despite low abundance in most natural melts, fluorine has received great attention from the experimental community because it has a strong influence on melt structure, lowering melting points and drastically reducing viscosity. The effect of fluorine on element speciation has important implications for phase relations and the partitioning of trace elements between minerals and melts, thus metal enrichment processes in alkaline magmas. We have experimentally investigated the impact of fluorine on phase relations and partitioning of rare metals, the REE in particular, in evolved alkaline melts. Synthetic glasses of tephriphonolite to phonolite composition were doped with a wide range of elements at trace levels, and fluorine contents were varied from fluorine-free to 2.5 wt%. Experiments were performed water-saturated in an internally heated pressure vessel at 200 MPa with log fO2 at ca. QFM+1, which represents the intrinsic redox conditions of the setup. Charges were heated to super-liquidus conditions for 16 hours, cooled slowly (1˚C/min) to run temperature and subsequently equilibrated for at least 40 hours. Run products were analysed by EPMA and LA-ICP-MS. The experiments produce an equilibrium assemblage of sodic pyroxene, biotite, Fe-oxide, melt, fluid, ±K-feldspar, ±titanite, ±fluorite. Addition of fluorine markedly increases the mode of biotite, which initially buffers melt F content at low levels (< 0.2 wt%). Only in experiments with more than 0.6 wt% F do we observe a significant increase in the melt F-content. Here, fluorine decreases pyroxene/melt partitioning coefficients equally for all REE where pyroxene composition and P-T conditions are equivalent (ca. 1/2 with 0.6% F). We suggest that the formation of REE-F complexes in the melt2 lowers the availability of metals for incorporation into solid phases. An increasing fluorine content of the melt will thus make the REE progressively more incompatible and available for residual enrichment. 1. Vasyukova, O. & Williams-Jones, A. E. Geochim. Cosmochim. Acta 139, 110-130 (2014). 2. Ponader, C. W. & Brown Jr., G. E. Geochim. Cosmochim. Acta 53, 2905-2914 (1989).
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanBrocklin, H.F.; Enas, J.D.; Hanrahan, S.M.
1994-05-01
The mitochondrial electron transport chain (ETC) consists of five enzyme complexes (I-V) which participate in the transfer of electrons to oxygen and phosphorylation of ADP (oxidative phosphorylation). ETC dysfunction has been linked to several genetic neurological diseases as well as implicated in Parkinson`s (complex I) and Huntington`s (complex I) disease and normal aging processes. Dihydrorotenone (DHR) is a specific high affinity inhibitor of complex I. In order to develop a PET tracer for complex I, we have labeled DHR with fluorine-18. The tosylate precursor was produced in three steps from commercially available rotenone. Fluorine-18 was introduced by nucleophilic displacement ofmore » the tosylate using tetrabutyl-ammonium fluoride. Subsequent oxidation with MnO{sub 2} and HPLC purification gave the desired [{sup 18}F]fluoro-DHR. Initial biodistribution studies were carried out in {approximately}200 g male Sprague-Dawley rats. The tracer was taken up rapidly in the heart, an organ highly enriched with mitochondria, (5.5-6% injected dose (ID)/g at 30 minutes) and in the brain ({approximately}1.5% ID/g at 1 hour).« less
[Status Quo, Uncertainties and Trends Analysis of Environmental Risk Assessment for PFASs].
Hao, Xue-wen; Li, Li; Wang, Jie; Cao, Yan; Liu, Jian-guo
2015-08-01
This study systematically combed the definition and change of terms, category and application of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in international academic, focusing on the environmental risk and exposure assessment of PFASs, to comprehensively analyze the current status, uncertainties and trends of PFASs' environmental risk assessment. Overall, the risk assessment of PFASs is facing a complicated situation involving complex substance pedigrees, various types, complex derivative relations, confidential business information and risk uncertainties. Although the environmental risk of long-chain PFASs has been widely recognized, the short-chain PFASs and short-chain fluorotelomers as their alternatives still have many research gaps and uncertainties in environmental hazards, environmental fate and exposure risk. The scope of risk control of PFASs in the international community is still worth discussing. Due to trade secrets and market competition, the chemical structure and risk information of PFASs' alternatives are generally lack of openness and transparency. The environmental risk of most fluorinated and non-fluorinated alternatives is not clear. In total, the international research on PFASs risk assessment gradually transfer from long-chain perfluoroalkyl acids (PFAAs) represented by perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to short-chain PFAAs, and then extends to other PFASs. The main problems to be solved urgently and researched continuously are: the environmental hazardous assessment indexes, such as bioaccumulation and environmental migration, optimization method, the environmental release and multimedia environmental fate of short-chain PFASs; the environmental fate of neutral PFASs and the transformation and contribution as precursors of short-chain PFASs; the risk identification and assessment of fluorinated and non-fluorinated alternatives of PFASs.
Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon
Marks, Tobin J.; Chen, You-Xian
2001-01-01
The organo-Lewis acids are novel triarylboranes which are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.
Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon
Marks, Tobin J.; Chen, You-Xian
2002-01-01
The organo-Lewis acids are novel triarylboranes which are are highly fluorinated. Triarylboranes of one such type contain at least one ring substituent other than fluorine. These organoboranes have a Lewis acid strength essentially equal to or greater than that of the corresponding organoborane in which the substituent is replaced by fluorine, or have greater solubility in organic solvents. Another type of new organoboranes have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these triorganoboranes, because of their ligand abstracting properties, produce corresponding anions which are capable of only weakly, if at all, coordinating to the metal center, and thus do not interfere in various polymerization processes such as are described.
NASA Astrophysics Data System (ADS)
Prasanna, M. D.; Row, T. N. Guru
2001-05-01
The crystal structure of Flunazirine, an anticonvulsant drug, is analyzed in terms of intermolecular interactions involving fluorine. The structure displays motifs formed by only weak interactions C-H⋯F and C-H⋯π. The motifs thus generated show cavities, which could serve as hosts for complexation. The structure of Flunazirine displays cavities formed by C-H⋯F and C-H⋯π interactions. Haloperidol, an antipsychotic drug, shows F⋯F interactions in the crystalline lattice in lieu of Cl⋯Cl interactions. However, strong O-H⋯N interactions dominate packing. The salient features of the two structures in terms of intermolecular interactions reveal, even though organic fluorine has lower tendency to engage in hydrogen bonding and F⋯F interactions, these interactions could play a significant role in the design of molecular assemblies via crystal engineering.
Lanthanide Fluorobenzoates as Bio-Probes: a Quest for the Optimal Ligand Fluorination Degree.
Kalyakina, Alena S; Utochnikova, Valentina V; Bushmarinov, Ivan S; Le-Deygen, Irina M; Volz, Daniel; Weis, Patrick; Schepers, Ute; Kuzmina, Natalia P; Bräse, Stefan
2017-10-20
The thorough study of fluorinated benzoates of lanthanides (Eu, Tb, Nd, Er, Yb, Gd, La, Lu) is reported. Their composition in single crystal and powder state revealed two predominant structural motifs. An in-depth luminescence study has been performed on the reported fluorobenzoates, showing, that terbium and europium complexes in solid state possess high luminescence intensity with the quantum yield of up to 69 %. High solubility in most organic solvents, as well as in water, combined with the high luminescence intensity in water solution and non-toxicity allowed the testing of europium complexes as bioprobes in cellulo. Among all tested fluorobenzoates, europium 2-fluorobenzoate dihydrate combined the best luminescent properties, thermodynamic stability, aqueous solubility, and non-toxicity, and was shown to be a viable bio-marker. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Hai-Chuan; Zhang, Xin-Hao; Wu, Yun-Dong; Yang, Shihe
2005-03-07
Complexes of fluorinated benzenes (o-C6H4-nF2+n) and Mg*+ are subjected to ultraviolet photodissociation (260-340 nm), producing efficiently benzyne radical cations (C6H4-nFn*+) besides Mg*+ and MgF+. We show that the consecutive dissociation of C6H4-nFn*+ follows the [C4(+) + C2] pattern exclusively for n < or = 2 after the parent complexes absorb one or two photons. However, the dissociation pattern is switched to [C5(+) + C1] and [C1 + C5] for n > or = 3. In particular, upon two-photon absorption at 340 nm by the complexes of Mg*+ (C6HF5) (1) and Mg*+ (C6F6) (2), photoproducts of CF+, C5H+, and C5HF*+ from C6HF3*+ and CF+, C5F+, C5F2*+, and C5F3+ from C6F4*+ are detected, respectively. Theoretical calculations are used to explain the switching of the dissociation patterns induced by the fluorine substitutions. It was found that the formation of C5+ + C1 is energetically more favorable than that of C4(+) + C2 from C6HF3*+ and C6F4*+ and of C1(+) + C5. Except for C5H2F(+) + CF, all the channels of [C5(+) + C1] and [C1(+) + C5] are energetically less favorable than those of [C4(+) + C2] from C6H3F*+ and C6H2F2*+. In most cases, the calculated results agree well with the experimental observations.
In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence
Ribot, Emeline J; Gaudet, Jeffrey M; Chen, Yuhua; Gilbert, Kyle M; Foster, Paula J
2014-01-01
Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron. PMID:24748787
In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence.
Ribot, Emeline J; Gaudet, Jeffrey M; Chen, Yuhua; Gilbert, Kyle M; Foster, Paula J
2014-01-01
Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron.
2016-01-01
Many oncogenic mutants of the tumor suppressor p53 are conformationally unstable, including the frequently occurring Y220C mutant. We have previously developed several small-molecule stabilizers of this mutant. One of these molecules, PhiKan083, 1-(9-ethyl-9H-carbazole-3-yl)-N-methylmethanamine, binds to a mutation-induced surface crevice with a KD = 150 μM, thereby increasing the melting temperature of the protein and slowing its rate of aggregation. Incorporation of fluorine atoms into small molecule ligands can substantially improve binding affinity to their protein targets. We have, therefore, harnessed fluorine–protein interactions to improve the affinity of this ligand. Step-wise introduction of fluorines at the carbazole ethyl anchor, which is deeply buried within the binding site in the Y220C–PhiKan083 complex, led to a 5-fold increase in affinity for a 2,2,2-trifluoroethyl anchor (ligand efficiency of 0.3 kcal mol–1 atom–1). High-resolution crystal structures of the Y220C–ligand complexes combined with quantum chemical calculations revealed favorable interactions of the fluorines with protein backbone carbonyl groups (Leu145 and Trp146) and the sulfur of Cys220 at the mutation site. Affinity gains were, however, only achieved upon trifluorination, despite favorable interactions of the mono- and difluorinated anchors with the binding pocket, indicating a trade-off between energetically favorable protein–fluorine interactions and increased desolvation penalties. Taken together, the optimized carbazole scaffold provides a promising starting point for the development of high-affinity ligands to reactivate the tumor suppressor function of the p53 mutant Y220C in cancer cells. PMID:27267810
Manganese Catalyzed C–H Halogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Groves, John T.
2015-06-16
The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species thatmore » transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–Mn V$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond formation. Indeed, this idea led to the discovery of the first Mn-catalyzed direct aliphatic C–H fluorination reactions utilizing simple, nucleophilic fluoride salts. Mechanistic studies and DFT calculations have revealed a trans-difluoromanganese(IV) species as the key fluorine transfer intermediate. In addition to catalyzing normal 19F-fluorination reactions, manganese salen complexes were found to enable the incorporation of radioactive 18F fluorine via C–H activation. This advance represented the first direct C sp3–H bond 18F labeling with no-carrier-added [ 18F]fluoride and facilitated the late-stage labeling of drug molecules for PET imaging. Given the high reactivity and enzymatic-like selectively of metalloporphyrins, we envision that this new Heteroatom-Rebound Catalysis (HRC) strategy will find widespread application in the C–H functionalization arena and serve as an effective tool for forming new carbon–heteroatom bonds at otherwise inaccessible sites in target molecules.« less
Sarikaya, Ismet; Elgazzar, Abdelhamid H; Sarikaya, Ali; Alfeeli, Mahmoud
2017-10-01
Fluorine-18-sodium fluoride (F-NaF) PET/CT is a relatively new and high-resolution bone imaging modality. Since the use of F-NaF PET/CT has been increasing, it is important to accurately assess the images and be aware of normal distribution and major artifacts. In this pictorial review article, we will describe the normal uptake patterns of F-NaF in the bone tissues, particularly in complex structures, as well as its physiologic soft tissue distribution and certain artifacts seen on F-NaF PET/CT images.
Chen, Wenyi; Hooper, Thomas N; Ng, Jamues; White, Andrew J P; Crimmin, Mark R
2017-10-02
Through serendipitous discovery, a palladium bis(phosphine) complex was identified as a catalyst for the selective transformation of sp 2 C-F and sp 2 C-H bonds of fluoroarenes and heteroarenes to sp 2 C-Al bonds (19 examples, 1 mol % Pd loading). The carbon-fluorine bond functionalization reaction is highly selective for the formation of organoaluminium products in preference to hydrodefluorination products (selectivity=4.4:1 to 27:1). Evidence is presented for a tandem catalytic process in which hydrodefluorination is followed by sp 2 C-H alumination. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stetzenbach, K.; Farnham, I.
1996-06-01
Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability ofmore » these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.« less
Nakajima, Yoji; Arinami, Yuko; Yamamoto, Kiyoshi
2014-12-29
The usefulness of comprehensive two-dimensional gas chromatography (GC×GC) was demonstrated for the selective separation of fluorinated compounds from organic mixtures, such as kerosene/perfluorokerosene mixtures, pyrolysis products derived from polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture and poly[2-(perfluorohexyl)ethyl acrylate]. Perfluorocarbons were completely separated from hydrocarbons in the two-dimensional chromatogram. Fluorohydrocarbons in the pyrolysis products of polyethylene/ethylene-tetrafluoroethylene alternating copolymer mixture were selectively isolated from their hydrocarbon counterparts and regularly arranged according to their chain length and fluorine content in the two-dimensional chromatogram. A reliable structural analysis of the fluorohydrocarbons was achieved by combining effective GC×GC positional information with accurate mass spectral data obtained by high-resolution time-of-flight mass spectrometry (HRTOF-MS). 2-(Perfluorohexyl)ethyl acrylate monomer, dimer, and trimer as well as 2-(perfluorohexyl)ethyl alcohol in poly[2-(perfluorohexyl)ethyl acrylate] pyrolysis products were detected in the bottommost part of the two-dimensional chromatogram with separation from hydrocarbons possessing terminal structure information about the polymer, such as α-methylstyrene. Pyrolysis-GC×GC/HRTOF-MS appeared particularly suitable for the characterization of fluorinated polymer microstructures, such as monomer sequences and terminal groups. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of the Kinetics of NF3-Fluorination of NpO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casella, Andrew M.; Scheele, Randall D.; McNamara, Bruce K.
2015-12-23
The exploitation of selected actinide and fission product fluoride volatilities has long been considered as a potentially attractive compact method for recycling used nuclear fuels to avoid generating the large volumes of radioactive waste arising from aqueous reprocessing [1-7]. The most developed process uses the aggressive and hazardous fluorinating agents hydrogen fluoride (HF) and/or molecular fluorine (F2) at high temperatures to volatilize the greatest fraction of the used nuclear fuel into a single gas stream. The volatilized fluorides are subsequently separated using a series of fractionation and condensation columns to recover the valuable fuel constituents and fission products. In pursuitmore » of a safer and less complicated approach, we investigated an alternative fluoride volatility-based process using the less hazardous fluorinating agent nitrogen trifluoride (NF3) and leveraging its less aggressive nature to selectively evolve fission product and actinide fluorides from the solid phase based on their reaction temperatures into a single recycle stream [8-15]. In this approach, successive isothermal treatments using NF3 will first evolve the more thermally susceptible used nuclear fuel constituents leaving the other constituents in the residual solids until subsequent isothermal temperature treatments cause these others to volatilize. During investigation of this process, individual neat used fuel components were treated with isothermal NF3 in an attempt to characterize the kinetics of each fluorination reaction to provide input into the design of a new volatile fluoride separations approach. In these directed investigations, complex behavior was observed between NF3 and certain solid reactants such as the actinide oxides of uranium, plutonium, and neptunium. Given the similar thermal reaction susceptibilities of neptunium oxide (NpO2) and uranium dioxide (UO2) and the importance of Np and U, we initially focused our efforts on determining the reaction kinetic parameters for NpO2. Characterizing the NF3 fluorination of NpO2 using established models for gas-solid reactions [16] proved unsuccessful so we developed a series of successive fundamental reaction mechanisms to characterize the observed successive fluorination reactions leading to production of the volatile neptunium hexafluoride (NpF6).« less
Huston, John L.; Scott, Robert G.; Studier, Martin H.
1978-01-01
Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.
Handling and Use of Fluorine and Fluorine - Oxygen Mixtures in Rocket Systems,
1967-01-01
with nitroso rubber, which could normally be expected to burn when exposed to the flow of liquid fluorine. The materials tested included (1) Nitroso...the system free of contamination. Most common metals of construction are compatible for use in a fluorine environment. Metals can burn with fluorine...conditions of contact), fluorinated compounds in their highest state of oxidation, and a few fluorinated polymers. Even these polymers may burn in fluorine
1980-10-01
NEOPENTANE FLUORINATIONS Ref. No. Structure Name NA F-C(CF3)3 perfluoroisobutane NB C (CF3)4. perfluoroneopentane 14 ,3 2 NC CFH-C(CF3)3...Photochemical Fluorination Fluorination Perfluorination El~mental Fluorine 20. APOWACT (Continue on rover** aide It necessary and identify by block...aerosol fluorinator capable of achieving high yields of perfluorinated hydrocarbons via a photo- chemical fluorination stage. The aerosol system also
Structure-activity relationships of fluorinated dendrimers in DNA and siRNA delivery.
Wang, Mingming; Cheng, Yiyun
2016-12-01
Fluorinated dendrimers have shown great promise in gene delivery due to their high transfection efficacy and low cytotoxicity, however, the structure-activity relationships of these polymers still remain unknown. Herein, we synthesized a library of fluorinated dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results show that fluorination significantly improves the transfection efficacy of G4-G7 polyamidoamine dendrimers in DNA and siRNA delivery. Fluorination on generation 5 dendrimer yields the most efficient polymers in gene delivery, and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. All the fluorinated dendrimers cause minimal toxicity on the transfected cells at their optimal transfection conditions. This study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. The structure-activity relationships of fluorinated dendrimers in gene delivery is still unknown and the behavior of fluorinated dendrimers in siRNA delivery has not yet been investigated. Herein, we synthesized a library of fluorinated PAMAM dendrimers with different dendrimer generations and fluorination degrees and investigated their behaviors in both DNA and siRNA delivery. The results clearly indicate that fluorination significantly improves the transfection efficacy of dendrimers in both DNA and siRNA delivery without causing additional toxicity. G5 PAMAM dendrimer is best scaffold to synthesize fluorinated dendrimers and the transfection efficacy of fluorinated dendrimers depends on fluorination degree. This systematic study provides a general and facile strategy to prepare high efficient and low cytotoxic gene carriers based on fluorinated polymers. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hydrofluorination of Alkynes Catalysed by Gold Bifluorides.
Nahra, Fady; Patrick, Scott R; Bello, Davide; Brill, Marcel; Obled, Alan; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David; Nolan, Steven P
2015-01-01
We report the synthesis of nine new N -heterocyclic carbene gold bifluoride complexes starting from the corresponding N -heterocyclic carbene gold hydroxides. A new methodology to access N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) fluoride starting from N,N' -bis(2,6-diisopropylphenyl)imidazol-2-ylidene gold(I) hydroxide and readily available potassium bifluoride is also reported. These gold bifluorides were shown to be efficient catalysts in the hydrofluorination of symmetrical and unsymmetrical alkynes, thus affording fluorinated stilbene analogues and fluorovinyl thioethers in good to excellent yields with high stereo- and regioselectivity. The method is exploited further to access a fluorinated combretastatin analogue selectively in two steps starting from commercially available reagents.
GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates
Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi
2017-01-01
Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design. PMID:28467806
GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.
Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi
2017-06-13
Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.
Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids
NASA Astrophysics Data System (ADS)
Migdisov, Art A.; Williams-Jones, A. E.
2014-12-01
New technologies, particularly those designed to address environmental concerns, have created a great demand for the rare earth elements (REE), and focused considerable attention on the processes by which they are concentrated to economically exploitable levels in the Earth's crust. There is widespread agreement that hydrothermal fluids played an important role in the formation of the world's largest economic REE deposit, i.e. Bayan Obo, China. Until recently, many researchers have assumed that hydrothermal transport of the REE in fluorine-bearing ore-forming systems occurs mainly due to the formation of REE-fluoride complexes. Consequently, hydrothermal models for REE concentration have commonly involved depositional mechanisms based on saturation of the fluid with REE minerals due to destabilization of REE-fluoride complexes. Here, we demonstrate that these complexes are insignificant in REE transport, and that the above models are therefore flawed. The strong association of H+ and F- as HF° and low solubility of REE-F solids greatly limit transport of the REE as fluoride complexes. However, this limitation does not apply to REE-chloride complexes. Because of this, the high concentration of Cl- in the ore fluids, and the relatively high stability of REE-chloride complexes, the latter can transport appreciable concentrations of REE at low pH. The limitation also does not apply to sulphate complexes and in some fluids, the concentration of sulphate may be sufficient to transport significant concentrations of REE as sulphate complexes, particularly at weakly acidic pH. This article proposes new models for hydrothermal REE deposition based on the transport of the REE as chloride and sulphate complexes.
Yang, Jiao-lan; Chen, Dong-qing; Li, Shu-min; Yue, Yin-ling; Jin, Xin; Zhao, Bing-cheng; Ying, Bo
2010-02-05
The fluorosis derived from coal burning is a very serious problem in China. By using fluorine-fixing technology during coal burning we are able to reduce the release of fluorides in coal at the source in order to reduce pollution to the surrounding environment by coal burning pollutants as well as decrease the intake and accumulating amounts of fluorine in the human body. The aim of this study was to conduct a pilot experiment on calcium-based fluorine-fixing material efficiency during coal burning to demonstrate and promote the technology based on laboratory research. A proper amount of calcium-based fluorine sorbent was added into high-fluorine coal to form briquettes so that the fluorine in high-fluorine coal can be fixed in coal slag and its release into atmosphere reduced. We determined figures on various components in briquettes and fluorine in coal slag as well as the concentrations of indoor air pollutants, including fluoride, sulfur dioxide and respirable particulate matter (RPM), and evaluated the fluorine-fixing efficiency of calcium-based fluorine sorbents and the levels of indoor air pollutants. Pilot experiments on fluorine-fixing efficiency during coal burning as well as its demonstration and promotion were carried out separately in Guiding and Longli Counties of Guizhou Province, two areas with coal burning fluorosis problems. If the calcium-based fluorine sorbent mixed coal was made into honeycomb briquettes the average fluorine-fixing ratio in the pilot experiment was 71.8%. If the burning calcium-based fluorine-fixing bitumite was made into a coalball, the average of fluorine-fixing ratio was 77.3%. The concentration of fluoride, sulfur dioxide and PM10 of indoor air were decreased significantly. There was a 10% increase in the cost of briquettes due to the addition of calcium-based fluorine sorbent. The preparation process of calcium-based fluorine-fixing briquette is simple yet highly flammable and it is applicable to regions with abundant bitumite coal. As a small scale application, villagers may make fluorine-fixing coalballs or briquettes by themselves, achieving the optimum fluorine-fixing efficiency and reducing indoor air pollutants providing environmental and social benefits.
Tunable magnetism in metal adsorbed fluorinated nanoporous graphene
Kumar, Pankaj; Sharma, Vinit; Reboredo, Fernando A.; ...
2016-08-24
Developing nanostructures with tunable magnetic states is crucial for designing novel data storage and quantum information devices. Using density functional theory, we study the thermodynamic stability and magnetic properties of tungsten adsorbed tri-vacancy fluorinated (TVF) graphene. We demonstrate a strong structure-property relationship and its response to external stimuli via defect engineering in graphene-based materials. Complex interplay between defect states and the chemisorbed atom results in a large magnetic moment of 7 μ B along with high in-plane magneto-crystalline anisotropy energy (MAE) of 17 meV. Under the influence of electric field, spin crossover effect accompanied by a change in the MAEmore » is observed. The ascribed change in spin-configuration is caused by the modification of exchange coupling between defect states and a change in the occupation of d-orbitals of the metal complex. In conclusion, our predictions open a promising way towards controlling the magnetic properties in graphene based spintronic and non-volatile memory devices.« less
Improving Photoconductance of Fluorinated Donors with Fluorinated Acceptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, Logan E.; Larson, Bryon; Oosterhout, Stefan
2016-11-21
This work investigates the influence of fluorination of both donor and acceptor materials on the generation of free charge carriers in small molecule donor/fullerene acceptor BHJ OPV active layers. A fluorinated and non-fluorinated small molecule analogue were synthesized and their optoelectronic properties characterized. The intrinsic photoconductance of blends of these small molecule donors was investigated using time-resolved microwave conductivity. Blends of the two donor molecules with a traditional non-fluorinated fullerene (PC70BM) as well as a fluorinated fullerene (C60(CF3)2-1) were investigated using 5% and 50% fullerene loading. We demonstrate for the first time that photoconductance in a 50:50 donor:acceptor BHJ blendmore » using a fluorinated fullerene can actually be improved relative to a traditional non-fluorinated fullerene by fluorinating the donor molecule as well.« less
Nonmetallic Material Compatibility with Liquid Fluorine
NASA Technical Reports Server (NTRS)
Price, Harold G , Jr; Douglass, Howard W
1957-01-01
Static tests were made on the compatibility of liquid fluorine with several nonmetallic materials at -3200 F and at pressures of 0 and 1500 pounds per square inch gage. The results are compared with those from previous work with gaseous fluorine at the same pressures, but at atmospheric temperature. In general, although environmental effects were not always consistent, reactivity was least with the low-temperature, low-pressure liquid fluorine. Reactivity was greatest with the warm, high-pressure gaseous fluorine. None of the liquids and greases tested was found to be entirely suitable for use in fluorine systems. Polytrifluorochloroethylene and N-43, the formula for which is (C4F9)3N, did not react with liquid fluorine at atmospheric pressure or 1500 pounds per square inch gage under static conditions, but they did react when injected into liquid fluorine at 1500 pounds per square inch gage; they also reacted with gaseous fluorine at 1500 pounds per square inch gage. While water did not react with liquid fluorine at 1500 pounds per square inch gage, it is known to react violently with fluorine under other conditions. The pipe-thread lubricant Q-Seal did not react with liquid fluorine, but did react with gaseous fluorine at 1500 pounds per square inch gage. Of the solids, ruby (Al2O3) and Teflon did not react under the test conditions. The results show that the compatibility of fluorine with nonmetals depends on the state of the fluorine and the system design.
Electrolytes including fluorinated solvents for use in electrochemical cells
Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan
2015-07-07
Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.
Marks, Tobin J.; Chen, You-Xian
2001-01-01
The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.
NASA Astrophysics Data System (ADS)
Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio
2003-06-01
The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.
2016-01-01
Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [18F]fluoride of human doses of [18F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination. PMID:27087736
Hoover, Andrew J; Lazari, Mark; Ren, Hong; Narayanam, Maruthi Kumar; Murphy, Jennifer M; van Dam, R Michael; Hooker, Jacob M; Ritter, Tobias
2016-04-11
Translation of new 18 F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18 F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18 F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18 F]fluoride of human doses of [ 18 F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18 F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18 F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18 F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18 F-fluorination.
Marks, Tobin J.; Chen, You-Xian
2002-01-01
The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.
Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids.
Pankratova, Nadezda; Cuartero, Maria; Jowett, Laura A; Howe, Ethan N W; Gale, Philip A; Bakker, Eric; Crespo, Gastón A
2018-01-15
Fluorinated tripodal compounds were recently reported to be efficient transmembrane transporters for a series of inorganic anions. In particular, this class of receptors has been shown to be suitable for the effective complexation of chloride, nitrate, bicarbonate and sulfate anions via hydrogen bonding. The potentiometric properties of urea and thiourea-based fluorinated tripodal receptors are explored here for the first time, in light of the need for reliable sensors for chloride monitoring in undiluted biological fluids. The ion selective electrode (ISE) membranes with tren-based tris-urea bis(CF 3 ) tripodal compound (ionophore I) were found to exhibit the best selectivity for chloride over major lipophilic anions such as salicylate ( [Formula: see text] ) and thiocyanate ( [Formula: see text] ). Ionophore I-based ISEs were successfully applied for chloride determination in undiluted human serum as well as artificial serum sample, the slope of the linear calibration at the relevant background of interfering ions being close to Nernstian (49.8±1.7mV). The results of potentiometric measurements were confirmed by argentometric titration. Moreover, the ionophore I-based ISE membrane was shown to exhibit a very good long-term stability of potentiometric performance over the period of 10 weeks. Nuclear magnetic resonance (NMR) titrations, potentiometric sandwich membrane experiments and density functional theory (DFT) computational studies were performed to determine the binding constants and suggest 1:1 complexation stoichiometry for the ionophore I with chloride as well as salicylate. Copyright © 2017 Elsevier B.V. All rights reserved.
Dental caries in fluorine exposure areas in China.
Binbin, Wang; Baoshan, Zheng; Hongying, Wang; Yakun, Ping; Yuehua, Tao
2005-12-01
In this study, fluorine concentrations in drinking water and in urine of residents from a fluorine exposure area in China were tested. DMFT (average number of decayed, missing and filled teeth) of local residents in four age groups were also determined. The results of the study indicate that in fluorine exposure areas, there is a strictly positive correlation between fluorine content in urine and the fluorine content in drinking water. Effect of dental caries by high fluorine content drinking water is different for the different age groups. High fluorine content drinking water is more dangerous for 15-and 18-year-old groups than 5- and 12-year-old groups.
Fluorine, fluorite, and fluorspar in central Colorado
Wallace, Alan R.
2010-01-01
Fluorine (F) is a widespread element that was deposited in a variety of rocks, minerals, and geologic environments in central Colorado. It occurs as a trace element, as a major component of the mineral fluorite (CaFs), and as a major economic source of fluorine in fluorspar deposits, which are massive concentrations of fluorite. This study has compiled available geochemical analyses of rocks, both unmineralized and mineralized, to determine the distribution of fluorine in specific age-lithologic categories, ranging from 1.8-giga-annum (Ga) metamorphic rocks to modern soils, throughout central Colorado. It also draws upon field studies of fluorine-rich mineral deposits, including fluorspar deposits, to decipher the nearly two-billion-year-long geologic history of fluorine in the study area, with implications for mineral-resource evaluations and exploration. The resulting compilation provides an important inventory of the naturally occurring levels and sources of fluorine that ultimately weather, erode, and become part of surface waters that are used for domestic water supplies in densely populated areas along the Colorado Front Range. Most commonly, fluorine is a trace element in virtually all rocks in the region. In the 3,798 unmineralized rocks that were analyzed for fluorine in the study area, the average fluorine content was 1,550 parts per million (ppm). The median was 640 ppm, nearly identical to the average crustal abundance of 650 ppm, and some high-fluorine rocks in the Pikes Peak area skewed the average to a value much greater than the median. Most unmineralized age-lithologic rock suites, including Proterozoic metamorphic rocks, 1.7- and 1.4-Ga granitic batholiths, Cambrian igneous rocks, Phanerozoic sedimentary rocks, and Laramide and Tertiary igneous rocks, had median fluorine values of 400 to 740 ppm fluorine. In all suites, however, a small number of analyzed samples contained more than 1 percent (10,000 ppm) fluorine. The 1.1-Ga plutonic rocks related to the Pikes Peak batholith had a mean fluorine content of 1,700 ppm, and primary magmatic fluorite and fluorite-bearing pegmatites are common throughout that igneous mass. Fluorine was deposited in many types of economic mineral deposits in central Colorado, and it currently is a significant trace element in some thermal springs. In the fluorspar deposits, fluorine contents were as high as 37 percent. Some fluorine-rich porphyry systems, such as Jamestown, had fluorine values that ranged from 200 ppm to nearly 37 percent fluorine, and veins in other deposits contained hydrothermal fluorite, although it was not ubiquitous. For the 495 samples from non-fluorspar mining districts (and excluding Jamestown), however, the median fluorine content was 990 ppm. This is above the crustal average but still relatively modest compared to the fluorspar deposits, and it indicates that the majority of the mineralizing systems in central Colorado did not deposit large amounts of fluorine. Nevertheless, the fluorine- and fluorite-rich mineral deposits could be used as guides for the evaluation and discovery of related but concealed porphyry and epithermal base- and precious-metal deposits. The Cenozoic geologic history of central Colorado included multiple periods during which fluorine-bearing rocks and mineral deposits were exposed, weathered, and eroded. This protracted history has released fluorine into soils and regoliths, and modern rainfall and snowmelt interact with these substrates to add fluorine to the hydrosphere. This study did not evaluate the fluorine contents of water or make any predictions about what areas might be major sources for dissolved fluorine. However, the abundant data that are available on fluorine in surface water and ground water can be coupled with the results of this study to provide additional insight into natural sources of fluorine in domestic drinking water.
Effect of Fluorine on Near-Liquidus Phase Equilibria of Basalts
NASA Technical Reports Server (NTRS)
Filiberto, Justin; Wood, Justin; Loan, Le; Dasgupta, Rajdeep; Shimizu, Nobumichi; Treiman, Allan H.
2010-01-01
Volatile species such as H2O, CO2, F, and Cl have significant impact in generation and differentiation of basaltic melts. Thus far experimental work has primarily focused on the effect of water and carbon dioxide on basalt crystallization, liquid-line of descent, and mantle melting [e.g., 1, 2] and the effects of halogens have received far less attention [3-4]. However, melts in the planetary interiors can have non-negligible chlorine and fluorine concentrations. Here, we explore the effects of fluorine on near-liquidus phase equilibria of basalt. We have conducted nominally anhydrous piston cylinder experiments using graphite capsules at 0.6 - 1.5 GPa on an Fe-rich model basalt composition. 1.75 wt% fluorine was added to the starting mix in the form of AgF2. Fluorine in the experimental glass was measured by SIMS and major elements of glass and minerals were analyzed by EPMA. Nominally volatile free experiments yield a liquidus temperature from 1330 C at 0.8GPa to 1400 at 1.6GPa and an olivine(Fo72)-pyroxene(En68)-liquid multiple saturation point at 1.25 GPa and 1375 C. The F-bearing experiments yield a liquiudus temperature from 1260 C at 0.6GPa to 1305 at 1.5GPa and an ol(Fo66)-pyx(En64)-MSP at 1 GPa and 1260 C. This shows that F depresses the basalt liquidus, extends the pyroxene stability field to lower pressure, and forces the liquidus phases to be more Fe-rich. KD(Fe-Mg/mineral-melt) calculated for both pyroxenes and olivines show an increase with increasing F content of the melt. Therefore, we infer that F complexes with Mg in the melt and thus increases the melt s silica activity, depressing the liquidus and changing the composition of the crystallizing minerals. Our study demonstrates that on a weight percent basis, the effect of fluorine is similar to the effect of H2O [1] and Cl [3] on freezing point depression of basalts. But on an atomic fraction basis, the effect of F on liquidus depression of basalts is xxxx compared to the effect of H. Future studies on kimberlitic and subduction zone magmas, which could have significant amount of fluorine, will need to consider the combined effects of F, Cl, and H on their stability and chemical evolution.
Thallaj, Nasser K; Rotthaus, Olaf; Benhamou, Leila; Humbert, Nicolas; Elhabiri, Mourad; Lachkar, Mohammed; Welter, Richard; Albrecht-Gary, Anne-Marie; Mandon, Dominique
2008-01-01
We have synthesized the mono, di-, and tri-alpha-fluoro ligands in the tris(2-pyridylmethyl)amine (TPA) series, namely, FTPA, F(2)TPA and F(3)TPA, respectively. Fluorination at the alpha-position of these nitrogen-containing tripods shifts the oxidation potential of the ligand by 45-70 mV per added fluorine atom. The crystal structures of the dichloroiron(II) complexes with FTPA and F(2)TPA reveal that the iron center lies in a distorted octahedral geometry comparable to that already found in TPAFeCl(2). All spectroscopic data indicate that the geometry is retained in solution. These three isostructural complexes all react with molecular dioxygen to yield stable mu-oxodiiron(III) complexes. Crystal structure analyses are reported for each of these three mu-oxo compounds. With TPA, a symmetrical structure is obtained for a dicationic compound with the tripod coordinated in the kappa(4)N coordination mode. With FTPA, the compound is a neutral mu-oxodiiron(III) complex with a kappa(3)N coordination mode of the ligand. Oxygenation of the F(2)TPA complex gave a neutral unsymmetrical compound, the structure of which is reminiscent of that already found with the trifluorinated ligand. On reduction, all mu-oxodiiron(III) complexes revert to the starting iron(II) species. The oxygenation reaction parallels the well-known formation of mu-oxo derivatives from dioxygen in the chemistry of porphyrins reported almost three decades ago. The striking feature of the series of iron(II) precursors is the effect of the ligand on the kinetics of oxygenation of the complexes. Whereas the parent complex undergoes 90 % conversion over 40 h, the monofluorinated ligand provides a complex that has fully reacted after 30 h, whereas the reaction time for the complex with the difluorinated ligand is only 10 h. Analysis of the spectroscopic data reveals that formation of the mu-oxo complexes proceeds in two distinct reversible kinetic steps with k(1) approximately 10 k(2). For TPAFeCl(2) and FTPAFeCl(2) only small variations in the k(1) and k(2) values are observed. By contrast, F(2)TPAFeCl(2) exhibits k(1) and k(2) values that are ten times higher. These differences in kinetics are interpreted in the light of structural and electronic effects, especially the Lewis acidity at the metal center. Our results suggest coordination of dioxygen as an initial step in the process leading to formation of mu-oxodiiron(III) compounds, by contrast with an unlikely outer-sphere reduction of dioxygen, which generally occurs at negative potentials.
Comparison of the tribological properties of fluorinated cokes and graphites
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1988-01-01
The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.
Comparison of the tribological properties of fluorinated cokes and graphites
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1987-01-01
The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.
RECOVERY OF Pu VALUES BY FLUORINATION AND FRACTIONATION
Brown, H.S.; Webster, D.S.
1959-01-20
A method is presented for the concentration and recovery of plutonium by fluorination and fractionation. A metallic mass containing uranium and plutonium is heated to 250 C and contacted with a stream of elemental fluorine. After fluorination of the metallic mass, the rcaction products are withdrawn and subjected to a distillation treatment to separate the fluorination products of uranium and to obtain a residue containing the fluorination products of plutonium.
Bi, Xu; Li, Yanyan; Qiu, Zhipeng; Liu, Chao; Zhou, Tong; Zhuo, Shuping; Zhou, Jin
2018-06-25
Fluorinated graphene (FG) has been a star material as a new derivative of graphene. In this paper, a series of fluorinated graphene materials are prepared by using N, O-doped graphene aerogel as precursor via a direct fluorination method, and the effect of fluorination temperature on the FG structure is investigated. The prepared FG samples are systematically characterized by scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. It is found that the structure of FG, including features such as layer size, chemical composition, chemical bond state of the component elements, etc., is significantly related to the fluorination temperature. With the change of the fluorination temperature, fluorine atoms enter the graphene framework by a substitution process of the N, O-containing groups, including residual phenol, ether, carbonyl groups, or C⁻N groups, and the addition to CC bonds, subsequently forming a fluoride with different fluorine contents. The fluorine content increases as the fluorination temperature increases from 200 °C to 300 °C, but decreases at a fluorination temperature of 350 °C due to the decomposition of the fluorinated graphene. The prepared FG samples are used as cathode material for lithium primary batteries. The FG sample prepared at 300 °C gives a high specific capacity of 632 mAh g −1 and a discharge plateau of 2.35 V at a current density of 10 mA g −1 , corresponding to a high energy density of 1485 Wh kg −1 .
Biodegradability of fluorinated fire-fighting foams in water.
Bourgeois, A; Bergendahl, J; Rangwala, A
2015-07-01
Fluorinated fire-fighting foams may be released into the environment during fire-fighting activities, raising concerns due to the potential environmental and health impacts for some fluorinated organics. The current study investigated (1) the biodegradability of three fluorinated fire-fighting foams, and (2) the applicability of current standard measures used to assess biodegradability of fluorinated fire-fighting foams. The biodegradability of three fluorinated fire-fighting foams was evaluated using a 28-day dissolved organic carbon (DOC) Die-Away Test. It was found that all three materials, diluted in water, achieved 77-96% biodegradability, meeting the criteria for "ready biodegradability". Defluorination of the fluorinated organics in the foam during biodegradation was measured using ion chromatography. It was found that the fluorine liberated was 1-2 orders of magnitude less than the estimated initial amount, indicating incomplete degradation of fluorinated organics, and incomplete CF bond breakage. Published biodegradability data may utilize biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) metrics to quantify organics. COD and TOC of four fluorinated compounds were measured and compared to the calculated carbon content or theoretical oxygen demand. It was found that the standard dichromate-based COD test did not provide an accurate measure of fluorinated organic content. Thus published biodegradability data using COD for fluorinated organics quantification must be critically evaluated for validity. The TOC measurements correlated to an average of 91% of carbon content for the four fluorinated test substances, and TOC is recommended for use as an analytical parameter in fluorinated organics biodegradability tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex
Saris, Patrick J. G.; Thompson, Mark E.
2016-08-04
Here, the design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine free ligand for sky blue phosphorescence is demonstrated in a cyclometallated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 kelvin (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route.
Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saris, Patrick J. G.; Thompson, Mark E.
Here, the design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine free ligand for sky blue phosphorescence is demonstrated in a cyclometallated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 kelvin (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route.
Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof
Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa
2000-12-12
A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.
The storage capacity of fluorine in olivine and pyroxene under upper mantle conditions
NASA Astrophysics Data System (ADS)
Grützner, Tobias; Kohn, Simon C.; Bromiley, David W.; Rohrbach, Arno; Berndt, Jasper; Klemme, Stephan
2017-07-01
We present new experimental results on the fluorine storage capacity of olivine and orthopyroxene in the Earth's mantle. Experiments were performed in the system MgO-SiO2 + MgF2 at temperatures between 1350 °C and 1700 °C and pressures up to 17 GPa. Electron microprobe measurements show that fluorine concentrations in olivine reach up to 5100 μg/g. The storage capacity of fluorine in olivine shows only a small pressure dependence but a strong temperature dependence with a positive correlation between increasing temperature and fluorine storage capacity. Fluorine concentrations found in enstatite are one order of magnitude smaller and reach up to 670 μg/g. Our data show that concentrations of fluorine in fluorine-saturated olivine are in the same range as water concentrations in olivine. Nevertheless, fluorine and water solubility in olivine show opposing behavior with increasing pressure and temperature. The fluorine solubility in olivine increases with increasing temperature but is not much affected by pressure. In contrast, water solubility in olivine has previously been shown to decrease with increasing temperature and increase with increasing pressure. Our experiments show that nominally fluorine-free minerals like forsterite and enstatite are capable of storing the entire fluorine budget of the upper mantle, without the need to invoke accessory phases such as apatite or amphibole.
[Risk and prevention of teeth fluorosis in infants by feeding pattern changes].
Borinskaia, E Iu; Davydov, B N; Kushnir, S M; Borinskiĭ, Iu N; Mikin, V M
2013-01-01
Effect of fluorides in drinking water on fluorine content in breast milk, the food for infants of the 1-sty year of life, was investigated. On determining fluorine concentration in urine and its excretion, fluorine intake by the infants was calculated under various alternatives (breast, mixed and artificial) of feeding. It has been found the in mixed and especially in artificial feeding, fluorine intake by the infants acquires uncontrollable character exceeding several times the dose of fluorine intake with breast milk under natural feeding. That was predominantly fluorine of drinking water. Mathematical formula for calculation of fluorine content in the food cooked for feeding of infants was elaborated. A computer program was formed be means of which calculation, control and management of fluorine intake are carried out in feeding alteration.
NASA Astrophysics Data System (ADS)
Jung, Min-Jung; Jeong, Euigyung; Lee, Young-Seak
2015-08-01
The surfaces of multi-walled carbon nanotubes (MWCNTs) were thermally fluorinated at various temperatures to enhance the electrochemical properties of the MWCNTs for use as electric double-layer capacitor (EDLC) electrodes. The fluorine functional groups were added to the surfaces of the MWCNTs via thermal fluorination. The thermal fluorination exposed the Fe catalyst on MWCNTs, and the specific surface area increased due to etching during the fluorination. The specific capacitances of the thermally fluorinated at 100 °C, MWCNT based electrode increased from 57 to 94 F/g at current densities of 0.2 A/g, respectively. This enhancement in capacitance can be attributed to increased polarization of the thermally fluorinated MWCNT surface, which increased the affinity between the electrode surface and the electrolyte ions.
Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide
NASA Technical Reports Server (NTRS)
Hsu, L. C.
1979-01-01
Fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide was carried out on a laboratory scale in an advanced Simons type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. A variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. The solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.
NASA Astrophysics Data System (ADS)
Liu, Ning; Li, Ziyun; Chen, George; Chen, Qiang; Li, Shengtao
2017-07-01
Taking advantage of plasma technology using mixing gas CF4/H2, a fluorination process was performed on LDPE samples in the present paper. Different exposure times and discharge voltage levels were applied to produce four different types of samples. It has been found that after fluorination, space charge injection is obviously suppressed. And with longer fluorination times and higher discharge voltage, injected homocharges are reduced. By employing x-ray photoelectron spectroscopy, new chemical groups of C-F bindings are confirmed to be introduced by fluorination process of the plasma treatment. The charge suppression effect can be explained as: surface traps introduced by fluorination will reduce the interface field at both electrodes. Moreover, for fluorinated samples, heterocharge emerges obviously under 30 kV \\text{m}{{\\text{m}}-1} , which are considered as charges ionized from degradation products of etching and/or lower weight molecular specifies. Through the conductivity measurements also performed at 30 kV \\text{m}{{\\text{m}}-1} , it is found that, for the fluorinated samples with the better charge blocking effect, the conductivity is lowered. However, the conductivity of the fluorinated sample with the lightest degree of fluorination is found to be higher than that of normal samples.
Perfluorinated Ligands in Organometallic Chemistry
1989-12-12
C49t00ooVER ,or C M’ AD"OV’~mDecember 12) 199IFinal 1/1/86 to 8/31/89C smuS. FUNOING NUMgIERS cJ Perfluorinated Ligands in Organometallic Chemistry 612...compounds, stabilized by tridentate perfluorinated ligands. Dinuclear rhodium complexes of OFCOT undergo a selective C-F bond activation reaction...hexafluorocyclooctatrieneyne ligand. Stereospecific cleavage of a fluorinated C-C bond,#-bond in perfluorocyclopropene by platinum and iridium complexes has been achieved
Plasma fluorination of vertically aligned carbon nanotubes: functionalization and thermal stability.
Struzzi, Claudia; Scardamaglia, Mattia; Hemberg, Axel; Petaccia, Luca; Colomer, Jean-François; Snyders, Rony; Bittencourt, Carla
2015-01-01
Grafting of fluorine species on carbon nanostructures has attracted interest due to the effective modification of physical and chemical properties of the starting materials. Various techniques have been employed to achieve a controlled fluorination yield; however, the effect of contaminants is rarely discussed, although they are often present. In the present work, the fluorination of vertically aligned multiwalled carbon nanotubes was performed using plasma treatment in a magnetron sputtering chamber with fluorine diluted in an argon atmosphere with an Ar/F2 ratio of 95:5. The effect of heavily diluted fluorine in the precursor gas mixture is investigated by evaluating the modifications in the nanotube structure and the electronic properties upon plasma treatment. The existence of oxygen-based grafted species is associated with background oxygen species present in the plasma chamber in addition to fluorine. The thermal stability and desorption process of the fluorine species grafted on the carbon nanotubes during the fluorine plasma treatment were evaluated by combining different spectroscopic techniques.
Radiosyntheses using Fluorine-18: the Art and Science of Late Stage Fluorination
Cole, Erin L.; Stewart, Megan N.; Littich, Ryan; Hoareau, Raphael; Scott, Peter J. H.
2014-01-01
Positron (β+) emission tomography (PE) is a powerful, noninvasive tool for the in vivo, three-dimensional imaging of physiological structures and biochemical pathways. The continued growth of PET imaging relies on a corresponding increase in access to radiopharmaceuticals (biologically active molecules labeled with short-lived radionuclides such as fluorine-18). This unique need to incorporate the short-lived fluorine-18 atom (t1/2 = 109.77 min) as late in the synthetic pathway as possible has made development of methodologies that enable rapid and efficient late stage fluorination an area of research within its own right. In this review we describe strategies for radiolabeling with fluorine-18, including classical fluorine-18 radiochemistry and emerging techniques for late stage fluorination reactions, as well as labeling technologies such as microfluidics and solid-phase radiochemistry. The utility of fluorine-18 labeled radiopharmaceuticals is showcased through recent applications of PET imaging in the healthcare, personalized medicine and drug discovery settings. PMID:24484425
Polyfluorides and Neat Fluorine as Host Material in Matrix-Isolation Experiments.
Brosi, Felix; Vent-Schmidt, Thomas; Kieninger, Stefanie; Schlöder, Tobias; Beckers, Helmut; Riedel, Sebastian
2015-11-09
The use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated. The fluorides have been characterized in solid fluorine by IR spectroscopy at 5 K. Also the fluorination of Kr and the photo-dismutation of XeO4 have been studied by using IR spectroscopy in neat fluorine. Formation of the [F5 ](-) ion was obtained by IR-laser ablation of platinum in the presence of fluorine and proven in a Ne matrix at 5 K by two characteristic vibrational bands of [F5 ](-) at $\\tilde \
Fluorine interaction with defects on graphite surface by a first-principles study
NASA Astrophysics Data System (ADS)
Wang, Song; Xuezhi, Ke; Zhang, Wei; Gong, Wenbin; Huai, Ping; Zhang, Wenqing; Zhu, Zhiyuan
2014-02-01
The interaction between fluorine atom and graphite surface has been investigated in the framework of density functional theory. Due to the consideration of molten salt reactor system, only carbon adatoms and vacancies are chemical reactive for fluorine atoms. Fluorine adsorption on carbon adatom will enhance the mobility of carbon adatom. Carbon adatom can also be removed easily from graphite surface in form of CF2 molecule, explaining the formation mechanism of CF2 molecule in previous experiment. For the interaction between fluorine and vacancy, we find that fluorine atoms which adsorb at vacancy can hardly escape. Both pristine surface and vacancy are impossible for fluorine to penetrate due to the high penetration barrier. We believe our result is helpful to understand the compatibility between graphite and fluorine molten salt in molten salt reactor system.
FLUORINE IN THE SOLAR NEIGHBORHOOD: NO EVIDENCE FOR THE NEUTRINO PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jönsson, H.; Ryde, N.; Spitoni, E.
Asymptotic giant branch (AGB) stars are known to produce “cosmic” fluorine, but it is uncertain whether these stars are the main producers of fluorine in the solar neighborhood or if any of the other proposed formation sites, Type II supernovae (SNe II) and/or Wolf-Rayet (W-R) stars, are more important. Recent articles have proposed both AGB stars and SNe II as the dominant sources of fluorine in the solar neighborhood. In this paper we set out to determine the fluorine abundance in a sample of 49 nearby, bright K giants for which we previously have determined the stellar parameters, as wellmore » as alpha abundances homogeneously from optical high-resolution spectra. The fluorine abundance is determined from a 2.3 μ m HF molecular line observed with the spectrometer Phoenix. We compare the fluorine abundances with those of alpha-elements mainly produced in SNe II and find that fluorine and the alpha-elements do not evolve in lockstep, ruling out SNe II as the dominating producers of fluorine in the solar neighborhood. Furthermore, we find a secondary behavior of fluorine with respect to oxygen, which is another evidence against the SNe II playing a large role in the production of fluorine in the solar neighborhood. This secondary behavior of fluorine will put new constraints on stellar models of the other two suggested production sites: AGB stars and W-R stars.« less
Giant Pockels effect in ZnO-F films deposited on bare glasses
NASA Astrophysics Data System (ADS)
Kityk, I. V.; Ebothe, J.; El Hichou, A.; Addou, M.; Bougrine, A.; Sahraoui, B.
2002-06-01
A giant linear electro-optics (Pockels) effect (up to 17 pm V-1) (for wavelength about 435 nm) in ZnO crystalline films doped with fluorine and deposited on bare glass has been found. For description of the observed phenomenon, a complex approach including self-consistent band structure calculations together with an appropriate molecular dynamics simulation of the interface structure was applied. Experimental ellipsometric and refractive index measurements confirm an efficiency of the mentioned approach for description of the observed interface (between the film and glass) processes. The origin of the observed effect is caused by substantial non-centrosymmetric charge density distribution between the ZnO wurtzite-like crystalline films and the bare glass substrate, as well as by additional charge density polarization caused by fluorine atoms.
2007-08-08
McCarthy Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003 Electrophilic aromatic substitution reactions...with a fluorinated silane reagent. Reduction of the amide groups with borane-THF (BH 3-THF) complex leads to a 69% conversion of surface amides to the
Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite
NASA Technical Reports Server (NTRS)
West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.
2007-01-01
We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.
Hoover, Andrew J.; Lazari, Mark; Ren, Hong; ...
2016-02-14
Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18F]fluoride of human doses of [ 18F]5-fluorouracil, a PET tracer for cancer imaging in humans. Here, the firstmore » preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.« less
Marks, Tobin J.; Chen, You-Xian
2001-01-01
The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interefere in the ethylene polymerization process, while affecting the the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.
Kürschner, M; Nielsen, K; von Langen, J R; Schenk, W A; Zimmermann, U; Sukhorukov, V L
2000-01-01
The effects of the anionic tungsten carbonyl complex [W(CO)(5)SC(6)H(5)](-) and its fluorinated analog [W(CO)(5)SC(6)F(5)](-) on the electrical properties of the plasma membrane of mouse myeloma cells were studied by the single-cell electrorotation technique. At micromolar concentrations, both compounds gave rise to an additional antifield peak in the rotational spectra of cells, indicating that the plasma membrane displayed a strong dielectric dispersion. This means that both tungsten derivatives act as lipophilic ions that are able to introduce large amounts of mobile charges into the plasma membrane. The analysis of the rotational spectra allowed the evaluation not only of the passive electric properties of the plasma membrane and cytoplasm, but also of the ion transport parameters, such as the surface concentration, partition coefficient, and translocation rate constant of the lipophilic anions dissolved in the plasma membrane. Comparison of the membrane transport parameters for the two anions showed that the fluorine-substituted analog was more lipophilic, but its translocation across the plasma membrane was slower by at least one order of magnitude than that of the parent hydrogenated anion. PMID:10969010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, Andrew J.; Lazari, Mark; Ren, Hong
Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18F]fluoride of human doses of [ 18F]5-fluorouracil, a PET tracer for cancer imaging in humans. Here, the firstmore » preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.« less
Combinations of fluorinated solvents with imide salts or methide salts for electrolytes
Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W
2015-11-10
Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.
Fluorine separation and generation device
The Regents of the University of California
2008-12-23
A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.
Biological effect of fluoride on plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collet, G.F.
1969-10-01
The action of several fluorine compounds was studied by means of hydroponics. Seedlings of several species were used. In leaves of Prunus armeniaca, a good correlation between the extent of necrosis and the leaf's total fluorine content was noted. Boron plays a spectacular role as it enhances the expected fluorine accumulation. Similar results were obtained with other plant material, an observation which suggests that this phenomenon is universal in plant life. Fluorine accumulation and leaf damage due to fluorine depend upon the chemical nature of the fluorine compound. 11 references, 3 figures, 2 tables.
Electrochemical fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide
NASA Technical Reports Server (NTRS)
Hsu, L.-C.
1979-01-01
The paper presents the results of experiments concerning the fluorination of trichloroethylene and N, N-dimethyltrifluoroacetamide carried out on a laboratory scale in an advanced 'Simons' type electrochemical apparatus which could be operated automatically from ambient to 50 psi pressure. It is shown that a variety of fluorine-substituted products are formed, depending upon electrolysis conditions and concentrations of reactant relative to the NaF, KF, HF electrolyte. A new reaction mechanism of electrochemical fluorination of trichloroethylene is proposed. Finally, the solvency-to-fluorine content relationship of fluorinated N, N-dimethyltrifluoroacetamide is described.
Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts.
Gadras, C; Santaella, C; Vierling, P
1999-01-04
The stability of fluorinated phospholipid-based vesicles in terms of detergent-induced release of encapsulated carboxyfluorescein has been evaluated. The fluorinated liposomes are substantially more resistant towards the lytic action of sodium taurocholate than conventional DSPC or even DSPC/CH 1/1 liposomes. Concerning structure/permeability relationships, the larger the fluorination degree of the membrane, the higher the resistance of the fluorinated liposomes to their destruction by the detergent. These results show that fluorinated liposomes have a promising potential as drug carrier and delivery systems for oral administration.
Fluorine in the UK environment.
Fuge, R; Andrews, M J
1988-12-01
Relatively low concentrations of fluorine in drinking water (≤ 1 mg F/l) have been shown to significantly reduce the degree of dental caries in children and fluorine would also appear to have a beneficial effect on bone formation in both humans and farm animals. However, it is apparent that elevated levels of fluorine in the diet have sometimes resulted in problems of increased dental caries and of the development of bone deformities. Much of the fluorine in rocks and soils occurs in apatite and hydroxysilicate minerals, fluorite being the only relatively common rock forming mineral containing fluorine as an essential constituent.Little systematic data are available on fluorine concentrations in soils, plants and natural waters in the UK. General background soil concentrations lie in the range 200 - 400 mg F/kg. For waters the average fluorine content is low, <0.1 mg F/l.In the British Isles there are several areas where there are enhanced levels of fluorine. In the northern Pennines, Derbyshire, northeast Wales and Cornwall, fluorite occurs as a significant component of mineralisation and much fluorine has been added to the environment from mining waste dumps. Soils in northeast Wales contain up to 3,650 mg F/kg and in the northern Pennines up to 20,000 mg F/kg. Waters contain up to 2.3 mg F/l. In southwest England, the granites are generally fluorine-rich with the fluorite granites of the St Austell pluton containing as much as 1 percent fluorine. These rocks are frequently kaolinised and intensively worked as a source of china clay. Soils in the vicinity of the waste tips contain up to 3,300 mg F/kg and grasses up to 2,950 mg F/kg. Surface waters in the St Austell area contain up to 1.25 mg F/l.Atmospheric fluorine pollution around brickworks in the Peterborough and Bedford areas has resulted in fluorosis in farm animals. Other sources of atmospheric fluorine pollution are aluminium smelters, steelworks and fossil fuel burning.
Palladium-catalysed electrophilic aromatic C-H fluorination
NASA Astrophysics Data System (ADS)
Yamamoto, Kumiko; Li, Jiakun; Garber, Jeffrey A. O.; Rolfes, Julian D.; Boursalian, Gregory B.; Borghs, Jannik C.; Genicot, Christophe; Jacq, Jérôme; van Gastel, Maurice; Neese, Frank; Ritter, Tobias
2018-02-01
Aryl fluorides are widely used in the pharmaceutical and agrochemical industries, and recent advances have enabled their synthesis through the conversion of various functional groups. However, there is a lack of general methods for direct aromatic carbon-hydrogen (C-H) fluorination. Conventional methods require the use of either strong fluorinating reagents, which are often unselective and difficult to handle, such as elemental fluorine, or less reactive reagents that attack only the most activated arenes, which reduces the substrate scope. A method for the direct fluorination of aromatic C-H bonds could facilitate access to fluorinated derivatives of functional molecules that would otherwise be difficult to produce. For example, drug candidates with improved properties, such as increased metabolic stability or better blood-brain-barrier penetration, may become available. Here we describe an approach to catalysis and the resulting development of an undirected, palladium-catalysed method for aromatic C-H fluorination using mild electrophilic fluorinating reagents. The reaction involves a mode of catalysis that is unusual in aromatic C-H functionalization because no organometallic intermediate is formed; instead, a reactive transition-metal-fluoride electrophile is generated catalytically for the fluorination of arenes that do not otherwise react with mild fluorinating reagents. The scope and functional-group tolerance of this reaction could provide access to functional fluorinated molecules in pharmaceutical and agrochemical development that would otherwise not be readily accessible.
Fluorine compounds for doping conductive oxide thin films
Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L
2013-04-23
Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.
Nephelometric determination of fluorine
Stevens, R.E.
1936-01-01
Fluorine in minerals may be determined with the nephelometer to about 1 per cent of the fluorine. The determination is made on an aliquot of the sodium chloride solution of the fluorine, obtained by the Berzelius method of extraction. The fluorine is precipitated as colloidal calcium fluoride in alcoholic solution, gelatin serving as a protective colloid. Arsenates, sulfates, and phosphates, which interfere with the determination, must be removed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I Protection of... REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry Product type...
Hydrogen-fluorine exchange in NaBH4-NaBF4.
Rude, L H; Filsø, U; D'Anna, V; Spyratou, A; Richter, B; Hino, S; Zavorotynska, O; Baricco, M; Sørby, M H; Hauback, B C; Hagemann, H; Besenbacher, F; Skibsted, J; Jensen, T R
2013-11-07
Hydrogen-fluorine exchange in the NaBH4-NaBF4 system is investigated using a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state (19)F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2(-) complex ion, reproducing the observation of a (19)F chemical shift at -144.2 ppm, which is different from that of NaBF4 at -159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~310 °C. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF and BF3 or amorphous products such as closo-boranes, e.g. Na2B12H12. The NaBH4-NaBF4 composite decomposes at lower temperatures (300 °C) compared to NaBH4 (476 °C), as observed by thermogravimetric analysis. NaBH4-NaBF4 (1:0.5) preserves 30% of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8% for NaBH4 as measured using Sievert's method under identical conditions, but more than 50% using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na2B12H12. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH4-NaF.
Fluorination process using catalyst
Hochel, Robert C.; Saturday, Kathy A.
1985-01-01
A process for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3, AgF.sub.2 and NiF.sub.2, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF.sub.3 and AgF.sub.2, whereby the fluorination is significantly enhanced.
Fluorination process using catalysts
Hochel, R.C.; Saturday, K.A.
1983-08-25
A process is given for converting an actinide compound selected from the group consisting of uranium oxides, plutonium oxides, uranium tetrafluorides, plutonium tetrafluorides and mixtures of said oxides and tetrafluorides, to the corresponding volatile actinide hexafluoride by fluorination with a stoichiometric excess of fluorine gas. The improvement involves conducting the fluorination of the plutonium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/, AgF/sub 2/ and NiF/sub 2/, whereby the fluorination is significantly enhanced. The improvement also involves conducting the fluorination of one of the uranium compounds in the presence of a fluoride catalyst selected from the group consisting of CoF/sub 3/ and AgF/sub 2/, whereby the fluorination is significantly enhanced.
Zhang, Bo; Hong, Mei; Zhang, Bai; Zhang, Xue-lin; Zhao, Yong-sheng
2007-10-01
Endemic fluorosis was investigated and studied in the west region of the Songnen plain, Northeast China in 2001-2002. The results showed that the fluorine distribution in aquatic environment was that the fluorine concentrations in the lake water and unconfined ground water were higher than that in the river water and confined ground water. The lake water (Alkali lake) is connected with unconfined ground water. In unconfined ground water, from the east and southeast areas to the west and the northwest areas of the plain, fluorine concentration fluctuated with high and low alternatively. The fluorine in the water comes from the weathering of rocks and minerals in the mountains and hills around the Songnen Plain. The main influence factors of the fluorine distribution in aquatic environment are discussed. Unconfined ground water containing high fluorine is used as drinking water. In this region, the fluorine concentration in drinking water is evidently correlated to the morbidity of dental and skeletal fluorosis. High fluorine concentration in drinking water has endangered human health.
Peng, Weijun; Li, Hongqiang; Song, Shaoxian
2017-02-15
CoAl-layered double hydroxide/fluorinated graphene (CoAl-LDH/FGN) composites were fabricated via a two-step hydrothermal method. The synthesized CoAl-LDH/FGN composites have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and electrochemical measurements. The results indicated that the fluorinated carbon with various configuration forms were grafted onto the framework of graphene, and the C-F bond configuration and fluorine content could be tuned by the fluorination time. Most of semi-ionic C-F bonds were formed at an appropriate fluorination time and, then, converted into fluorine rich surface groups (such as CF 2 , CF 3 , etc.) which were electrochemically inactive as the fluorination time prolonged. Moreover, the CoAl-LDH/FGN composites prepared at the optimal fluorination time exhibited the highest specific capacitance (1222 F/g at 1 A/g), the best rate capability, and the most stable capacitance retention, which offered great promise as electrode materials for supercapacitors.
The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.
Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei
2017-09-19
Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donor-acceptor (D-A)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for D-A polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with "over-fluorination", i.e., when too many fluorine substituents are incorporated. Finally, while this Account focuses on studies in which the polymer is paired with fullerene derivatives as the electron accepting materials, non-fullerene acceptors (NFAs) are quickly becoming key players in the field of OSCs. The effect of fluorination of the polymers on the device performance may be different when NFAs are used as the electron-accepting materials, which remains to be investigated. However, the design of fluorinated polymers may provide guidelines for the design of more efficient NFAs. Indeed, the current highest-performing OSC (∼13%) features fluorination on both the donor polymer and the non-fullerene acceptor.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I of Part 98... GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I of Part 98—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry...
NASA Astrophysics Data System (ADS)
Yadav, Hare Ram; Choudhury, Angshuman Roy
2017-12-01
Intermolecular interactions involving organic fluorine have been the contemporary field of research in the area of organic solid state chemistry. While a group of researchers had refuted the importance of "organic fluorine" in guiding crystal structures, others have provided evidences for in favor of fluorine mediated interactions in the solid state. Many systematic studies have indicated that the "organic fluorine" is capable of offering weak hydrogen bonds through various supramolecular synthons, mostly in the absence of other stronger hydrogen bonds. Analysis of fluorine mediated interaction in the presence of strong hydrogen bonds has not been highlighted in detail. Hence a thorough structural investigation is needed to understand the role of "organic fluorine" in crystal engineering of small organic fluorinated molecules having the possibility of strong hydrogen bond formation in the solution and in the solid state. To fulfil this aim, we have synthesized a series of fluorinated amides using 3-methoxyphenylacetic acid and fluorinated anilines and studied their structural properties through single crystal and powder X-ray diffraction methods. Our results indicated that the "organic fluorine" plays a significant role in altering the packing characteristics of the molecule in building specific crystal lattices even in the presence of strong hydrogen bond.
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
40 CFR 98.90 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... uses plasma-generated fluorine atoms and other reactive fluorine-containing fragments, that chemically... thin films are cleaned periodically using plasma-generated fluorine atoms and other reactive fluorine-containing fragments. (3) Any electronics production process in which wafers are cleaned using plasma...
Chemistry, Biochemistry, Pharmacology, and Toxicology of CS and Synthesis of Its Novel Analogs
2007-10-01
fluorine and fluorine -containing groups have been synthesized using microwave irradiation and novel catalysts. The structures and physical properties and...safe, and biologically more potent CS analogs. To this end, the synthesis of a novel group of CS-agents incorporating fluorine and fluorine ...CONCLUSION The new CS-analogs are expected to be more potent than CS. This observation is based on the following considerations. First, fluorine is
40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...
40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...
40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...
40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Partially fluorinated condensation... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...
Pettersson, Martin; Hou, Xinjun; Kuhn, Max; Wager, Travis T; Kauffman, Gregory W; Verhoest, Patrick R
2016-06-09
Strategic replacement of one or more hydrogen atoms with fluorine atom(s) is a common tactic to improve potency at a given target and/or to modulate parameters such as metabolic stability and pKa. Molecular weight (MW) is a key parameter in design, and incorporation of fluorine is associated with a disproportionate increase in MW considering the van der Waals radius of fluorine versus hydrogen. Herein we examine a large compound data set to understand the effect of introducing fluorine on the risk of encountering P-glycoprotein mediated efflux (as measured by MDR efflux ratio), passive permeability, lipophilicity, and metabolic stability. Statistical modeling of the MDR ER data demonstrated that an increase in MW as a result of introducing fluorine atoms does not lead to higher risk of P-gp mediated efflux. Fluorine-corrected molecular weight (MWFC), where the molecular weight of fluorine has been subtracted, was found to be a more relevant descriptor.
Granulosa cell tumor induced massive recurrence of post hysterectomy leiomyoma
Chalanki, Mohana Vamsy; Dattatreya, Satya; Padmaja, Parvathaneni; Dayal, Monal; Parakh, Megha; Rao, Vatturi Venkata Satya Prabhakar
2014-01-01
The authors report a very unusual occurrence of a massive recurrence of leiomyoma from post hysterectomy stump diagnosed on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18-FDG PET/CT). The case also has an additional complexity of granulosa cell tumor (GCT) of ovary probably contributing to the recurrence and massive size. PMID:25210289
Lou, Yan; Sweeney, Zachary K; Kuglstatter, Andreas; Davis, Dana; Goldstein, David M; Han, Xiaochun; Hong, Junbae; Kocer, Buelent; Kondru, Rama K; Litman, Renee; McIntosh, Joel; Sarma, Keshab; Suh, Judy; Taygerly, Joshua; Owens, Timothy D
2015-01-15
A rational fluorine scan based on co-crystal structures was explored to increase the potency of a series of selective BTK inhibitors. While fluorine substitution on a saturated bicyclic ring system yields no apparent benefit, the same operation on an unsaturated bicyclic ring can increase HWB activity by up to 40-fold. Comparison of co-crystal structures of parent molecules and fluorinated counterparts revealed the importance of placing fluorine at the optimal position to achieve favorable interactions with protein side chains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fuller, Timothy J.; Jiang, Ruichun
2017-01-24
A method for forming a modified solid polymer includes a step of contacting a solid fluorinated polymer with a sodium sodium-naphthalenide solution to form a treated fluorinated solid polymer. The treated fluorinated solid polymer is contacted with carbon dioxide, sulfur dioxide, or sulfur trioxide to form a solid grafted fluorinated polymer. Characteristically, the grafted fluorinated polymer includes appended CO.sub.2H or SO.sub.2H or SO.sub.3H groups. The solid grafted fluorinated polymer is advantageously incorporated into a fuel cell as part of the ion-conducting membrane or a water transport membrane in a humidifier.
Decarboxylative Fluorination Strategies for Accessing Medicinally-relevant Products
Qiao, Yupu; Zhu, Lingui; Ambler, Brett R.
2014-01-01
Fluorinated organic compounds have a long history in medicinal chemistry, and synthetic methods to access target fluorinated compounds are undergoing a revolution. One powerful strategy for the installation of fluorine-containing functional groups includes decarboxylative reactions. Benefits of decarboxylative approaches potentially include: 1) readily available substrates or reagents 2) mild reaction conditions; 3) simplified purification. This focus review highlights the applications of decarboxylation strategies for fluorination reactions to access compounds with biomedical potential. The manuscript highlights on two general strategies, fluorination by decarboxylative reagents and by decarboxylation of substrates. Where relevant, examples of medicinally useful compounds that can be accessed using these strategies are highlighted. PMID:24484421
NASA Astrophysics Data System (ADS)
Meena, Shweta; Choudhary, Sudhanshu
2017-12-01
Spin polarized properties of fluorinated graphene as tunnel barrier with CrO2 as two HMF electrodes are studied using first principle methods based on density functional theory. Fluorinated graphene with different fluorine coverages is explored as tunnel barriers in magnetic tunnel junctions. Density functional computation for different fluorine coverages imply that with increase in fluorine coverages, there is increase in band gap (Eg) of graphene, Eg ˜ 3.466 e V was observed when graphene sheet is fluorine adsorbed on both-side with 100% coverage (CF). The results of CF graphene are compared with C4F (fluorination on one-side of graphene sheet with 25% coverage) and out-of-plane graphene based magnetic tunnel junctions. On comparison of the results it is observed that CF graphene based structure offers high TMR ˜100%, and the transport of carrier is through tunneling as there are no transmission states near Fermi level. This suggests that graphene sheet with both-side fluorination with 100% coverages acts as a perfect insulator and hence a better barrier to the carriers which is due to negligible spin down current (I ↓ ) in both Parallel Configuration (PC) and Antiparallel Configuration (APC).
2015-01-01
We report the late-stage functionalization of multisubstituted pyridines and diazines at the position α to nitrogen. By this process, a series of functional groups and substituents bound to the ring through nitrogen, oxygen, sulfur, or carbon are installed. This functionalization is accomplished by a combination of fluorination and nucleophilic aromatic substitution of the installed fluoride. A diverse array of functionalities can be installed because of the mild reaction conditions revealed for nucleophilic aromatic substitutions (SNAr) of the 2-fluoroheteroarenes. An evaluation of the rates for substitution versus the rates for competitive processes provides a framework for planning this functionalization sequence. This process is illustrated by the modification of a series of medicinally important compounds, as well as the increase in efficiency of synthesis of several existing pharmaceuticals. PMID:24918484
Yi, Chun-Yao; Wang, Bing-Guo; Jin, Meng-Gui
2013-08-01
The objectives of this study were to study fluorine speciation and its distribution characteristics in the cultivated soils of wheat-corn fields at the typical areas, the North China Plain. The fluorine contents in cultivated soils and profile soils were measured by consecutive extraction. The results showed that the soil total fluorine (T-F) content at typical areas in the North China Plain ranged from 338.31 mg x kg(-1) to 781.67 mg x kg(-1), with a mean of 430.46 mg x kg(-1). The soil fluorine speciation with the highest content was Residual-Fluorine (Res-F), with a mean of 402.73 mg x kg(-1). The average content of Water soluble Fluorine (Ws-F) was 14.39 mg x kg(-1). The result indicated that the cultivated soil in the study area was at a relatively high fluoride pollution level, which may be harmful to human health and the ecological environment. The contents of Organic Fluorine (Or-F) and Fe/Mn Oxide-Fluorine (Fe/ Mn-F) were also quite high, with a mean of 8.90 mg x kg(-1) and 4.10 mg x kg(-1), respectively. The exchangeable fluorine (Ex-F) only had a very small amount of 0.33 mg x kg(-1). Soil Ws-F was positively correlated with soil pH and CEC, while it was negatively correlated with the percentage of soil clay. The content of soil Fe/Mn-F was positively correlated with soil pH, CEC and the sand grain content percentage, while it was negatively correlated with the clay grain content percentage. The soil pH value had the most significant influence on the water soluble fluorine (Ws-F) and Fe/Mn Oxide-Fluorine (Fe/Mn-F), and the soil CEC had the most significant influence on the soil total fluorine (T-F) and residual-Fluorine (Res-F) by stepwise regression analysis. In the soil profiles, the T-F content appeared as peaks and valleys representing the change of the soil lithology in the vadose zone. The Ws-F in the soil profiles mainly changed in the depth of 0-100 cm near the surface soil and was little influenced by the soil lithology. But it was strongly influenced by the soil pH, and was positively correlated with the soil pH. This study can provide a scientific evidence for soil fluorine pollution, prevention and a theoretical basis for soil fluorine mobility and its influence on ecology and environment.
PRODUCTION OF FLUORINE-CONTAINING HYDROCARBON
Sarsfield, N.F.
1949-08-01
This patent relates to improvements in the production of fluorine- containing hydrocarbon derivatives. The process for increasing the degree of fluorination of a fluorochlorohydrocarbon comprises subjecting a highly fluorinated fluorochlorohydrocarbon to the action of a dehydrochlorinating agent, and treating the resulting unsaturated body with fluorine, cobalt trifluoride, or silver difluoride. A number of reagents are known as dehydrochlorinaling agents, including, for example, the caustic alkalies, either in an anhydrous condition or dissolved in water or a lower aliphatic alcohol.
Fluorinated Alq3 derivatives with tunable optical properties.
Shi, Yue-Wen; Shi, Min-Min; Huang, Jia-Chi; Chen, Hong-Zheng; Wang, Mang; Liu, Xiao-Dong; Ma, Yu-Guang; Xu, Hai; Yang, Bing
2006-05-14
This communication reports that not only the emission colour but also the photoluminescence quantum yield of Alq3 can be tuned by introducing fluorine atoms at different positions; with fluorination at C-5 the emission is red-shifted with a tremendously decreased intensity, fluorination at C-6 causes a blue-shift with a significantly increased intensity, and fluorination at C-7 has a minor effect on both the colour and intensity of Alq3's emission.
Fluorinated graphite fibers as a new engineering material: Promises and challenges
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Long, Martin
1989-01-01
Pitch based graphitized carbon fibers with electrical resistivity of 300 micro-Ohm/cm were brominated and partially debrominated to 18 percent bromine at room temperature, and then fluorinated at 300 to 450 C, either continuously or intermittently for several cycles. In addition, on fluorine and titanium fluoride intercalated fiber sample was fluorinated at 270 C from the same fiber source. The mass and conductivity of the brominated-debrominated then fluorinated fibers (with fluorine-to-carbon atom ratio of 0.54 or higher) stabilized at room temperature air in a few days. However, at 200 C, these values decreased rapidly and then more slowly, throughout a 2-week test period. The electrically insulative or semiconductive fibers were found to be compatible with epoxy and have the fluorine-to-carbon atom ratio of 0.65 to 0.68, thermal conductivity of 5 to 24 W/m-K, electrical resistivity of 10(exp 4) to 10(exp 11) Ohm/cm, tensile strength of 70 to 150 ksi, Young's modulus of 20 to 30 msi, and CTE (coefficient of thermal expansion) values of 7 ppm/deg C. Data of these physical property values are preliminary. However, it is concluded that these physical properties can be tailor-made. They depend largely on the fluorine content of the final products and the intercalant in the fibers before fluorination, and, to a smaller extent, on the fluorination temperature histogram.
Deciphering the Fluorine Code-The Many Hats Fluorine Wears in a Protein Environment.
Berger, Allison Ann; Völler, Jan-Stefan; Budisa, Nediljko; Koksch, Beate
2017-09-19
Deciphering the fluorine code is how we describe not only the focus of this Account, but also the systematic approach to studying the impact of fluorine's incorporation on the properties of peptides and proteins used by our groups and others. The introduction of fluorine has been shown to impart favorable, but seldom predictable, properties to peptides and proteins, but up until about two decades ago the outcomes of fluorine modification of peptides and proteins were largely left to chance. Driven by the motivation to extend the application of the unique properties of the element fluorine from medicinal and agro chemistry to peptide and protein engineering we have established extensive research programs that enable the systematic investigation of effects that accompany the introduction of fluorine into this class of biopolymers. The introduction of fluorine into amino acids offers a universe of options for modifications with regard to number and position of fluorine substituents in the amino acid side chain. Moreover, it is important to emphasize that the consequences of incorporating the C-F bond into a biopolymer can be attributed to two distinct yet related phenomena: (i) the fluorine substituent can directly engage in intermolecular interactions with its environment and/or (ii) the other functional groups present in the molecule can be influenced by the electron withdrawing nature of this element (intramolecular) and in turn interact differently with their immediate environment (intermolecular). Based on our studies, we have shown that a change in number and/or position of as subtle as one single fluorine substituent has the power to considerably modify key properties of amino acids such as hydrophobicity, polarity, and secondary structure propensity. These properties are crucial factors in peptide and protein engineering, and thus, fluorinated amino acids can be applied to fine-tune properties such as protein folding, proteolytic stability, and protein-protein interactions provided we understand and become able to predict the outcome of a fluorine substitution in this context. With this Account, we attempt to analyze information we gained from our recent projects on how the nature of the fluorine atom and C-F bond influence four key properties of peptides and proteins: peptide folding, protein-protein interactions, ribosomal translation, and protease stability. These results impressively show why the introduction of fluorine creates a new class of amino acids with a repertoire of functionalities that is unique to the world of proteins and in some cases orthogonal to the set of canonical and natural amino acids. Our concluding statements aim to offer a few conserved design principles that have emerged from systematic studies over the last two decades; in this way, we hope to advance the field of peptide and protein engineering based on the judicious introduction of fluorinated building blocks.
Liu, Yang; Zhang, Yichun; Zhang, Cheng; Huang, Benyuan; Li, Yulong; Lai, Wenchuan; Wang, Xu; Liu, Xiangyang
2018-06-11
Conventional approach to preparation highly fluorinated multiwalled carbon nanotubes (MWCNTs) always need high temperature. This paper presents a catalytic tactic realizing effective fluorination of MWNCTs at room temperature (RT). Fe3O4@MWCNTs composites with Fe3O4 loaded on MWCNTs were firstly prepared through solvothermal method, which is followed by fluorination treatment at RT. The attachment of Fe3O4 changes the charge distribution and dramatically improves the fluorination activity of MWCNTs. Consequently, the fluorine content of fluorinated Fe3O4@MWCNTs (F-Fe3O4@MWCNTs) can reach up to 17.13 at% (almost 6 times that of the unloaded sample) only after room temperature of fluorination, which lead to obvious decrease of permittivity. Besides, the partial fluorination of Fe3O4 brings about abnormal enhanced permeability due to strengthened exchange resonance. Benefiting from the lower permittivity and higher permeability, F-Fe3O4@CNTs composite exhibit increased impedance matching. As a result, F-Fe3O4@CNTs behave good microwave absorption property with minimal reflection loss -45 dB at 2.61 mm when filler content is 13 wt%. The efficient absorption bandwidth (<-10 dB) reaches 4.1 GHz when the thickness is 2.5 mm. This work illustrates a novel catalytic approach to prepare highly fluorinated MWCNTs as promising microwave absorbers, and the design concept can also be extended to the fluorination of other carbon materials. © 2018 IOP Publishing Ltd.
The paper discusses a program to determine the performance of fluorinated ethers and fluorinated propanes in a compressor calorimeter. These chlorine free ethers and propanes are being considered as potential long-term replacements for CFC-11, -12, -114, and -115. A standard comp...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1983-04-16
Research was conducted to locate information about fluorine. This information includes chemical and physical properties of fluorine, physiological effects produced by the material, first-aid, personnel and facility protection, and materials of construction required when handling fluorine in piping and process vessels. The results of this research have been compiled in this report.
Uranium mineralization in fluorine-enriched volcanic rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burt, D.M.; Sheridan, M.F.; Bikun, J.
1980-09-01
Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffsmore » are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).« less
Kumar, Ramasamy P; Morehouse, Benjamin R; Matos, Jason O; Malik, Karan; Lin, Hongkun; Krauss, Isaac J; Oprian, Daniel D
2017-03-28
The stereochemical course of monoterpene synthase reactions is thought to be determined early in the reaction sequence by selective binding of distinct conformations of the geranyl diphosphate (GPP) substrate. We explore here formation of early Michaelis complexes of the (+)-limonene synthase [(+)-LS] from Citrus sinensis using monofluorinated substrate analogues 2-fluoro-GPP (FGPP) and 2-fluoroneryl diphosphate (FNPP). Both are competitive inhibitors for (+)-LS with K I values of 2.4 ± 0.5 and 39.5 ± 5.2 μM, respectively. The K I values are similar to the K M for the respective nonfluorinated substrates, indicating that fluorine does not significantly perturb binding of the ligand to the enzyme. FGPP and FNPP are also substrates, but with dramatically reduced rates (k cat values of 0.00054 ± 0.00005 and 0.00024 ± 0.00002 s -1 , respectively). These data are consistent with a stepwise mechanism for (+)-LS involving ionization of the allylic GPP substrate to generate a resonance-stabilized carbenium ion in the rate-limiting step. Crystals of apo-(+)-LS were soaked with FGPP and FNPP to obtain X-ray structures at 2.4 and 2.2 Å resolution, respectively. The fluorinated analogues are found anchored in the active site through extensive interactions involving the diphosphate, three metal ions, and three active-site Asp residues. Electron density for the carbon chains extends deep into a hydrophobic pocket, while the enzyme remains mostly in the open conformation observed for the apoprotein. While FNPP was found in multiple conformations, FGPP, importantly, was in a single, relatively well-defined, left-handed screw conformation, consistent with predictions for the mechanism of stereoselectivity in the monoterpene synthases.
Analysis of fluorine addition to the vanguard first stage
NASA Technical Reports Server (NTRS)
Tomazic, William A; Schmidt, Harold W; Tischler, Adelbert O
1957-01-01
The effect of adding fluorine to the Vanguard first-stage oxidant was anlyzed. An increase in specific impulse of 5.74 percent may be obtained with 30 percent fluorine. This increase, coupled with increased mass ratio due to greater oxidant density, gave up to 24.6-percent increase in first-stage burnout energy with 30 percent fluorine added. However, a change in tank configuration is required to accommodate the higher oxidant-fuel ratio necessary for peak specific impulse with fluorine addition.
Experimental study of electrochemical fluorination of trichloroethylene
NASA Technical Reports Server (NTRS)
Polisena, C.; Liu, C. C.; Savinell, R. F.
1982-01-01
The electrochemical fluorination of trichloroethylene in anhydrous hydrogen fluoride at 0 C and at constant cell potential was investigated. A microprocessor-aided electrochemical fluorination reactor system that yields highly reproducible results was utilized. The following major two-carbon-chain products were observed: CHCl2-CCl2F, CHCl2-CClF2, CHClF-CCl2F, and CCl2F-CClF2. The first step in the reaction sequence was determined to be fluorine addition to the double bond, followed by replacement of first hydrogen and then chlorine by fluorine. Polymerization reactions yielded higher molecular weight or possible ring-type chlorofluorohydrocarbons. A comparison of the reaction products of electrochemical and chemical fluorinations of trichloroethylene is also discussed.
Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene.
Shu, Huabing; Li, Yunhai; Wang, Shudong; Wang, Jinlan
2015-02-14
Using density functional theory, the G0W0 method and Bethe-Salpeter equation calculations, we systematically explore the structural, electronic and optical properties of hydrogenated and fluorinated germanene. The hydrogenated/fluorinated germanene tends to form chair and zigzag-line configurations and its electronic and optical properties show close geometry dependence. The chair hydrogenated/fluorinated and zigzag-line fluorinated germanene are direct band-gap semiconductors, while the zigzag-line hydrogenated germanene owns an indirect band-gap. Moreover, the quasi-particle corrections are significant and strong excitonic effects with large exciton binding energies are observed. Moreover, the zigzag-line hydrogenated/fluorinated germanene shows highly anisotropic optical responses, which may be used as a good optical linear polarizer.
NASA Astrophysics Data System (ADS)
Monmeyran, Corentin; Crowe, Iain F.; Gwilliam, Russell M.; Heidelberger, Christopher; Napolitani, Enrico; Pastor, David; Gandhi, Hemi H.; Mazur, Eric; Michel, Jürgen; Agarwal, Anuradha M.; Kimerling, Lionel C.
2018-04-01
Co-doping with fluorine is a potentially promising method for defect passivation to increase the donor electrical activation in highly doped n-type germanium. However, regular high dose donor-fluorine co-implants, followed by conventional thermal treatment of the germanium, typically result in a dramatic loss of the fluorine, as a result of the extremely large diffusivity at elevated temperatures, partly mediated by the solid phase epitaxial regrowth. To circumvent this problem, we propose and experimentally demonstrate two non-amorphizing co-implantation methods; one involving consecutive, low dose fluorine implants, intertwined with rapid thermal annealing and the second, involving heating of the target wafer during implantation. Our study confirms that the fluorine solubility in germanium is defect-mediated and we reveal the extent to which both of these strategies can be effective in retaining large fractions of both the implanted fluorine and, critically, phosphorus donors.
Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium
Marks, Tobin J.; Chen, You-Xian
2000-01-01
Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.
21 CFR 170.45 - Fluorine-containing compounds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... § 170.45 Fluorine-containing compounds. The Commissioner of Food and Drugs has concluded that it is in the interest of the public health to limit the addition of fluorine compounds to foods (a) to that... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fluorine-containing compounds. 170.45 Section 170...
Method for directly recovering fluorine from gas streams
Orlett, Michael J.; Saraceno, Anthony J.
1981-01-01
This invention is a process for the direct recovery of gaseous fluorine from waste-gas streams or the like. The process comprises passing the gas stream through a bed of anhydrous K.sub.3 NiF.sub.6 pellets to fluorinate the same to K.sub.3 NiF.sub.7 and subsequently desorbing the fluorine by heating the K.sub.3 NiF.sub.7 pellets to a temperature re-converting them to K.sub.3 NiF.sub.6. The efficiency of the fluorine-absorption step is maximized by operating in a selected and conveniently low temperature. The desorbed fluorine is highly pure and is at a pressure of several atmospheres. Preferably, the K.sub.3 NiF.sub.6 pellets are prepared by a method including the steps of forming agglomerates of hydrated K.sub.3 NiF.sub.5, sintering the agglomerates to form K.sub.3 NiF.sub.5 pellets of enhanced reactivity with respect to fluorine, and fluorinating the sintered pellets to K.sub.3 NiF.sub.6.
Ozbek, Nil; Akman, Suleyman
2016-11-15
This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from
Effects of fluorine on crops, soil exoenzyme activities, and earthworms in terrestrial ecosystems.
Chae, Yooeun; Kim, Dokyung; An, Youn-Joo
2018-04-30
Fluorine can flow into the environment after leakage or spill accidents and these excessive amounts can cause adverse effects on terrestrial ecosystems. Using three media (filter paper, soil, and filter-paper-on-soil), we investigated the toxic effects of fluorine on the germination and growth of crops (barley, mung bean, sorghum, and wheat), on the activities of soil exoenzymes (acid phosphatase, arylsulfatase, fluorescein diacetate hydrolase, and urease) and on the survival, abnormality, and cytotoxicity of Eisenia andrei earthworms. The germination and growth of crops were affected by fluorine as exposure concentration increased. The activities of the four enzymes after 0-, 3-, 10-, and 20-day periods varied as exposure concentration increased. According to in vivo and in vitro earthworm assays, E. andrei mortality, abnormality, and cytotoxicity increased with increasing fluorine concentration. Overall, fluorine significantly affected each tested species in the concentration ranges used in this study. The activities of soil exoenzymes were also affected by soil fluorine concentration, although in an inconsistent manner. Albeit the abnormally high concentrations of fluorine in soil compared to that observed under natural conditions, its toxicity was much restrained possibly due to the adsorption of fluorine on soil particles and its combination with soil cations. Copyright © 2017 Elsevier Inc. All rights reserved.
Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan
Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the saltmore » in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.« less
Two‐Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications
Long, Peng; Feng, Yiyu; Li, Yu
2016-01-01
Fluorinated graphene, an up‐rising member of the graphene family, combines a two‐dimensional layer‐structure, a wide bandgap, and high stability and attracts significant attention because of its unique nanostructure and carbon–fluorine bonds. Here, we give an extensive review of recent progress on synthetic methods and C–F bonding; additionally, we present the optical, electrical and electronic properties of fluorinated graphene and its electrochemical/biological applications. Fluorinated graphene exhibits various types of C–F bonds (covalent, semi‐ionic, and ionic bonds), tunable F/C ratios, and different configurations controlled by synthetic methods including direct fluorination and exfoliation methods. The relationship between the types/amounts of C–F bonds and specific properties, such as opened bandgap, high thermal and chemical stability, dispersibility, semiconducting/insulating nature, magnetic, self‐lubricating and mechanical properties and thermal conductivity, is discussed comprehensively. By optimizing the C–F bonding character and F/C ratios, fluorinated graphene can be utilized for energy conversion and storage devices, bioapplications, electrochemical sensors and amphiphobicity. Based on current progress, we propose potential problems of fluorinated graphene as well as the future challenge on the synthetic methods and C‐F bonding character. This review will provide guidance for controlling C–F bonds, developing fluorine‐related effects and promoting the application of fluorinated graphene. PMID:27981018
Fluorinated Compounds in US Fast Food Packaging | Science ...
Per- and polyfluoroalkyl substances (PFASs) are highly persistent synthetic chemicals, some of which have been associated with cancer, developmental toxicity, immunotoxicity, and other health effects. PFASs in grease-resistant food packaging can leach into food and increase dietary exposure. We collected ∼400 samples of food contact papers, paperboard containers, and beverage containers from fast food restaurants throughout the United States and measured total fluorine using particle-induced γ-ray emission (PIGE) spectroscopy. PIGE can rapidly and inexpensively measure total fluorine in solid-phase samples. We found that 46% of food contact papers and 20% of paperboard samples contained detectable fluorine (>16 nmol/cm2). Liquid chromatography/high-resolution mass spectrometry analysis of a subset of 20 samples found perfluorocarboxylates, perfluorosulfonates, and other known PFASs and/or unidentified polyfluorinated compounds (based on nontargeted analysis). The total peak area for PFASs was higher in 70% of samples (10 of 14) with a total fluorine level of >200 nmol/cm2 compared to six samples with a total fluorine level of <16 nmol/cm2. Samples with high total fluorine levels but low levels of measured PFASs may contain volatile PFASs, PFAS polymers, newer replacement PFASs, or other fluorinated compounds. The prevalence of fluorinated chemicals in fast food packaging demonstrates their potentially significant contribution to dietary PFAS exposure and envi
Fluorinated diglucose detergents for membrane-protein extraction.
Boussambe, Gildas Nyame Mendendy; Guillet, Pierre; Mahler, Florian; Marconnet, Anaïs; Vargas, Carolyn; Cornut, Damien; Soulié, Marine; Ebel, Christine; Le Roy, Aline; Jawhari, Anass; Bonneté, Françoise; Keller, Sandro; Durand, Grégory
2018-05-29
Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25°C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichiacoli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins. Copyright © 2018. Published by Elsevier Inc.
Industrial Applications of Graphite Fluoride Fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Kucera, Donald
1991-01-01
Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.
Fluorine-Rich Planetary Environments as Possible Habitats for Life
Budisa, Nediljko; Kubyshkin, Vladimir; Schulze-Makuch, Dirk
2014-01-01
In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a “fluorous effect”, i.e., they are fluorophilic (neither hydrophilic nor lipophilic). Such polymers, capable of creating self-sorting assemblies, resist denaturation by organic solvents by exclusion of fluorocarbon side chains from the organic phase. Fluorous cores consist of a compact interior, which is shielded from the surrounding solvent. Thus, we can anticipate that fluorine-containing “teflon”-like or “non-sticking” building blocks might be monomers of choice for the synthesis of organized polymeric structures in fluorine-rich planetary environments. Although no fluorine-rich planetary environment is known, theoretical considerations might help us to define chemistries that might support life in such environments. For example, one scenario is that all molecular oxygen may be used up by oxidation reactions on a planetary surface and fluorine gas could be released from F-rich magma later in the history of a planetary body to result in a fluorine-rich planetary environment. PMID:25370378
Vorberg, Raffael; Trapp, Nils; Zimmerli, Daniel; Wagner, Björn; Fischer, Holger; Kratochwil, Nicole A; Kansy, Manfred; Carreira, Erick M; Müller, Klaus
2016-10-06
The modulation of pharmacologically relevant properties of N-alkyl-piperidine-2-carboxamides was studied by selective introduction of 1-3 fluorine atoms into the n-propyl and n-butyl side chains of the local anesthetics ropivacaine and levobupivacaine. The basicity modulation by nearby fluorine substituents is essentially additive and exhibits an exponential attenuation as a function of topological distance between fluorine and the basic center. The intrinsic lipophilicity of the neutral piperidine derivatives displays the characteristic response noted for partially fluorinated alkyl groups attached to neutral heteroaryl systems. However, basicity decrease by nearby fluorine substituents affects lipophilicities at neutral pH, so that all partially fluorinated derivatives are of similar or higher lipophilicity than their non-fluorinated parents. Aqueous solubilities were found to correlate inversely with lipophilicity with a significant contribution from crystal packing energies, as indicated by variations in melting point temperatures. All fluorinated derivatives were found to be somewhat more readily oxidized in human liver microsomes, the rates of degradation correlating with increasing lipophilicity. Because the piperidine-2-carboxamide core is chiral, pairs with enantiomeric N-alkyl groups are diastereomeric. While little response to such stereoisomerism was observed for basicity or lipophilicity, more pronounced variations were observed for melting point temperatures and oxidative degradation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schultz, Melissa M.; Barofsky, Douglas F.; Field, Jennifer A.
2008-01-01
A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 μL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization, and tandem mass spectrometry (LC/MS/MS). The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent ranged from 77% – 96% and 80% – 99%, respectively. The lower limit of quantitation ranged from 0.5 to 3.0 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 hr period from ten WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In nine out of the ten plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge. PMID:16433363
Wang, Binbin; Zheng, Baoshan; Zhai, Cheng; Yu, Guangqian; Liu, Xiaojing
2004-10-01
In this project, the relationship between fluorine content in drinking water and dental health of residents in some large cities in China was evaluated. The concentration of fluorine in tap water and in urine of local subjects of 28 cities and 4 high fluorine villages in China shows a strong positive correlation (r(2)=0.96, S.E.=0.9881). Our studies indicate that drinking water is the most important source of fluorine intake for Chinese people, and in more than 90% of urban cities, fluorine concentrations in drinking water are below levels recommended by the WHO (approximately 0.5-1.0 mg/l). A 1995 investigation by The National Committee on Oral Health of China (NCOH) shows the relationship between average number of decayed, missing and filled teeth (DMFT) of urban residents and fluorine concentration in drinking water to be negatively correlated but not forming a good linear relationship. Our results, together with the previous study, suggest that: (1) dental caries of the study population can be reduced by drinking water fluoridation and that (2) other factors such as economic level, weather, lifestyle, food habits, living condition, etc., of a city can also affect the incidence of dental caries that cannot be predicted by fluoridation alone. Research on the relation between index of fluorosis (IF) and the fluorine concentration in drinking water for the four high fluorine villages showed that the recommended concentration of fluorine in drinking water can protect from dental fluorosis.
Late Stage Azidation of Complex Molecules
2016-01-01
Selective functionalization of complex scaffolds is a promising approach to alter the pharmacological profiles of natural products and their derivatives. We report the site-selective azidation of benzylic and aliphatic C–H bonds in complex molecules catalyzed by the combination of Fe(OAc)2 and a PyBox ligand. The same system also catalyzes the trifluoromethyl azidation of olefins to form derivatives of natural products containing both fluorine atoms and azides. In general, both reactions tolerate a wide range of functional groups and occur with predictable regioselectivity. Azides obtained by functionalization of C–H and C=C bonds were converted to the corresponding amines, amides, and triazoles, thus providing a wide variety of nitrogen-containing complex molecules. PMID:27800554
Distribution and formation of high-fluorine groundwater in China
NASA Astrophysics Data System (ADS)
Fuhong, Ren; Shuqin, Jiao
1988-08-01
In China, high-fluorine groundwater, which contains more than 1.0 mg/l fluorine, is mainly distributed in shallow aquifers of unconsolidated deposits in some arid and semiarid areas, deep aquifers of unconsolidated deposits in semiarid areas, as well as in hot springs of bed rock mountainous area and aquifers of fluorite-mine area. Its formation is controlled by regional climate factors, seepage conditions of groundwater, as well as the hydrogeochemical environment. The physicochemical properties of soil mass of the aeration zone play an important role in fluorine concentration in shallow groundwater. In the coastal plain areas, where groundwater is mainly recharged and discharged vertically, and its regime type belongs to the type of infiltration—evaporation, the grain size of soil mass of aeration zone directly influences the amount of fluorine transferred from solid medium into water; and the chemical constituents of the soil mass of aeration zone controls the chemical characteristics of the shallow groundwater, consequently influencing the concentration condition of fluorine in water. Fluorine ion in groundwater continuously migrates and concentrates under the comprehensive influence of many factors. High-fluorine groundwater exceeding the sanitary standard (1.0 mg/l) has an obvious zonality in regional distribution in China. Based on current statistics, there are roughly 50 million people (Zheng Qifu 1986) who have consumed water which exceeds standards in China. In highfluorine groundwater areas, endemic fluorine-poisoning often arises to different extents, affecting human health seriously. At the end of 1983, over 20 million patients were suffering from fluorine-poisoning diseases in China (Xu Guozhang, unpublished data). Therefore, research of the distribution feature and formation mechanism of fluorine ion in groundwater has become an important task.
Cen, Yana; Sauve, Anthony A.
2009-01-01
Methods to construct 2’-deoxy-2’-fluoro-nucleosides have undergone limited improvement in the last twenty years in spite of substantially increased value of these compounds as pharmaceuticals and as tools for studying biological processes. We herein describe a consolidated approach to synthesize precursors to these commercially and scientifically valuable compounds via diastereocontrolled fluorination of the readily available precursor 2-deoxy-d-ribonolactone. With employment of appropriate sterically bulky silyl protecting groups at 3 and 5 positions, controlled electrophilic fluorination of the Li-ribonolactone enolate by N-fluorodibenezenesulfonamide yielded the corresponding 2-deoxy-2-fluoro-arabino-lactone in high isolated yield (72 %). The protected 2-deoxy-2, 2-difluoro-ribonolactone was obtained similarly in high yield from a second round of electrophilic fluorination (2 steps, 51% from protected ribonolactone starting material). Accomplishment of the difficult ribo-fluorination of the lactone was achieved by the directive effects of a diastereoselectively installed α-trimethylsilyl group. Electrophilic fluorination of a protected 2-deoxy-2-trimethylsilyl-arabino-lactone via enolate generation provided the protected 2-deoxy-2-fluoro-ribo-lactone as the exclusive fluorinated product. The reaction also yielded the starting material, the desilylated protected 2-deoxy-ribonolactone, which was recycled to provide a 38% chemical yield of the fluorinated product (versus initial protected ribonolactone) after consecutive silylation and fluorination cycles. Using our fluorinated sugar precursors we prepared the 2’-fluoro-arabino-, 2’-fluoro-ribo- and 2’,2’-difluoro-nicotinamide adenine dinucleotides (NAD+) of potential biological interest. These syntheses provide the most consolidated and efficient methods for production of sugar precursors of 2’-deoxy-2’-fluoronucleosides and have the advantage of utilizing an air-stable electrophilic fluorinating agent. The fluorinated NAD+s are anticipated to be useful for studying a variety of cellular metabolic and signaling processes. PMID:19958035
NASA Astrophysics Data System (ADS)
Peterson, Katie L.; Srivastava, Kriti; Pierre, Valérie C.
2018-05-01
Fluorine magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) of chemical and physiological processes is becoming more widespread. The strength of this technique comes from the negligible background signal in in vivo 19F MRI and the large chemical shift window of 19F that enables it to image concomitantly more than one marker. These same advantages have also been successfully exploited in the design of responsive 19F probes. Part of the recent growth of this technique can be attributed to novel designs of 19F probes with improved imaging parameters due to the incorporation of paramagnetic metal ions. In this review, we provide a description of the theories and strategies that have been employed successfully to improve the sensitivity of 19F probes with paramagnetic metal ions. The Bloch-Wangsness-Redfield theory accurately predicts how molecular parameters such as distance, geometry, rotational correlation times, as well as the nature, oxidation state, and spin state of the metal ion affect the sensitivity of the fluorine-based probes. The principles governing the design of responsive 19F probes are subsequently described in a “how to” guide format. Examples of such probes and their advantages and disadvantages are highlighted through a synopsis of the literature.
Platinum(0)-mediated C-O bond activation of ethers via an SN2 mechanism.
Ortuño, Manuel A; Jasim, Nasarella A; Whitwood, Adrian C; Lledós, Agustí; Perutz, Robin N
2016-11-29
A computational study of the C(methyl)-O bond activation of fluorinated aryl methyl ethers by a platinum(0) complex Pt(PCyp 3 ) 2 (Cyp = cyclopentyl) (N. A. Jasim, R. N. Perutz, B. Procacci and A. C. Whitwood, Chem. Commun., 2014, 50, 3914) demonstrates that the reaction proceeds via an S N 2 mechanism. Nucleophilic attack of Pt(0) generates an ion pair consisting of a T-shaped platinum cation with an agostic interaction with a cyclopentyl group and a fluoroaryloxy anion. This ion-pair is converted to a 4-coordinate Pt(ii) product trans-[PtMe(OAr F )(PCyp 3 ) 2 ]. Structure-reactivity correlations are fully consistent with this mechanism. The Gibbs energy of activation is calculated to be substantially higher for aryl methyl ethers without fluorine substituents and higher still for alkyl methyl ethers. These conclusions are in accord with the experimental results. Further support was obtained in an experimental study of the reaction of Pt(PCy 3 ) 2 with 2,3,5,6-tetrafluoro-4-allyloxypyridine yielding the salt of the Pt(η 3 -allyl) cation and the tetrafluoropyridinolate anion [Pt(PCy 3 ) 2 (η 3 -allyl)][OC 5 NF 4 ]. The calculated activation energy for this reaction is significantly lower than that for fluorinated aryl methyl ethers.
Szostek, Radosław; Ciećko, Zdzisław
2017-03-01
The research was based on a pot experiment, in which the response of eight species of crops to soil contamination with fluorine was investigated. In parallel, some inactivating substances were tested in terms of their potential use for the neutralization of the harmful influence of fluorine on plants. The response of crops to soil contamination with fluorine was assessed according to the volume of biomass produced by aerial organs and roots as well as their content of N-total, N-protein, and N-NO 3 - . The following crops were tested: maize, yellow lupine, winter oilseed rape, spring triticale, narrow-leaf lupine, black radish, phacelia, and lucerne. In most cases, soil pollution with fluorine stimulated the volume of biomass produced by the plants. The exceptions included grain and straw of spring triticale, maize roots, and aerial parts of lucerne, where the volume of harvested biomass was smaller in treatments with fluorine-polluted soil. Among the eight plant species, lucerne was most sensitive to the pollution despite smaller doses of fluorine in treatments with this plant. The other species were more tolerant to elevated concentrations of fluorine in soil. In most of the tested plants, the analyzed organs contained more total nitrogen, especially aerial organs and roots of black radish, grain and straw of spring triticale, and aerial biomass of lucerne. A decrease in the total nitrogen content due to soil contamination with fluorine was detected only in the aerial mass of yellow lupine. With respect to protein nitrogen, its increase in response to fluorine as a soil pollutant was found in grain of spring triticale and roots of black radish, whereas the aerial biomass of winter oilseed rape contained less of this nutrient. Among the analyzed neutralizing substances, lime most effectively alleviated the negative effect of soil pollution with fluorine. The second most effective substance was loam, while charcoal was the least effective in this respect. Our results showed the effect of soil contamination with fluorine on the yield and chemical composition of fluorine depended on the species and organ of a tested plant, on the rate of the xenobotic element and on the substance added to soil in order to neutralize fluorine.
Synthesis, characterization and cell behavior of fluoridated hydroxyapatite
NASA Astrophysics Data System (ADS)
Qu, Haibo
Fluorine-containing hydroxyapatite (Ca5(PO4) 3(OH)1-xFx FHA), where F- partially replaces OH- in hydroxyapatite (HA), is recognized as a possible biomaterial for bone and tooth implants and gaining attention in the last several years as a possible alternative to HA. In this study, FHA powders were synthesized through a pH-cycling method. It was discovered that fluorine incorporation increased with the fluorine content in the initial solution and the number of pH cycles employed. A relatively low fluorine incorporation efficiency, ˜60%, was attained for most of the FHA samples. The short time of stay at each pH cycle and the limited number of cycles used are believed to be the main reasons of the low fluorine incorporation into the apatite structure. It was also revealed that the FHA particles produced by the pH-cycling method were inhomogeneous. They were a mixture of hydroxyapatite and F-rich apatite (or FA) particles. The mechanisms of incorporation of fluorine ions into hydroxyapatite by a pH cyclicing method were studied using TEM, XRD and fluorine measurement. Instead of forming laminated structures as reported by other research groups, a mixture of nano-sized F-rich apatite (FHA) and hydroxyapatite (HA) particles were obtained using the pH-cyclicing method. After calcination, these FHA particles were homogenized and became single phased FHA. The effect of fluorine content, preparing method, and sintering temperature on both the bulk density and biaxial flexural strength of sintered FHA was studied. Both uniaxially pressed un-milled (UPU) and cold isostatically pressed milled (IPM) FHA discs were sintered at temperatures between 1200˜400°C at an interval of 100°C. It was found that the fluorine content had a significant impact on the sintering behavior, densification, and mechanical properties of FHA discs. A close correlation between the sintered density and biaxial flexural strength of the specimens was revealed, where the biaxial flexural strength increased exponentially with the sintered density. FHA discs with various fluorine contents have been used to investigate the effect of fluorine content on osteoblastic cell behaviors. Rat osteosarcoma (ROS 17/28) cells were cultured on FHA discs for appropriate times. The osteoblastic cell behaviors were examined in terms of cell attachment, proliferation, morphology and differentiation. The fluorine content in FHA strongly affected the cell activities. More cell attachment and proliferation were observed on the fluorine-containing FHA than pure HA. Fluorine content also affected the differentiation behaviors of osteoblastic cells. Cells on fluorine-containing FHA had higher alkaline phosphatase (ALP) activity than pure HA in 2 weeks. The morphology of the cells showed that it took less time for cells to cover the surface of fluorine-containing samples than that of pure HA. These results suggested that fluorine ions had a significant impact on osteoblastic cell behaviors.
Li, Wei; Yang, Huaqin; Zhang, Jingjing; Mu, Jingshan; Gong, Dirong; Wang, Xiaodong
2016-09-25
Polyhedral oligomeric silsesquioxanes (POSSs) were adsorbed on methylaluminoxane-activated silica for the immobilization of fluorinated bis(phenoxyimine)Ti complexes (FI catalyst). These POSSs have been characterized as horizontal spacers isolating the active sites and hindering the chain overlap in polymerization. The heterogeneous catalyst exhibits considerable activity in the synthesis of weakly entangled polyethylene.
Experience with fluorine and its safe use as a propellant
NASA Technical Reports Server (NTRS)
Bond, D. L.; Guenther, M. E.; Stimpson, L. D.; Toth, L. R.; Young, D. L.
1979-01-01
The industrial and the propulsion experience with fluorine and its derivatives is surveyed. The hazardous qualities of fluorine and safe handling procedures for the substance are emphasized. Procedures which fulfill the safety requirements during ground operations for handling fluorinated propulsion systems are discussed. Procedures to be implemented for use onboard the Space Transportation System are included.
NASA Astrophysics Data System (ADS)
Amirov, I. I.; Gorlachev, E. S.; Mazaletskiy, L. A.; Izyumov, M. O.; Alov, N. V.
2018-03-01
In this work, we report a technique of the self-formation of a nanonet of fluorinated carbon nanowires on the Si surface using a combined etching in fluorine-containing C4F8/Ar and SF6 plasmas. Using scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy, we show that after the etching of Si in the C4F8/Ar plasma, a fluorinated carbon film of nanometer-scale thickness is formed on its surface and its formation accelerates at elevated temperatures. After a subsequent short-term etching in the SF6 plasma, the film is modified into a nanonet of self-formed fluorinated carbon nanowires.
Soliman, Ahmed M; Zysman-Colman, Eli; Harvey, Pierre D
2015-04-01
Polymer 6, ([trans-Pt(PBu3 )2 (C≡C)2 ]-[Ir(dFMeppy)2 (N^N)](PF6 ))n , (([Pt]-[Ir](PF6 ))n ; N^N = 5,5'-disubstituted-2,2'-bipyridyl; dFMeppy = 2-(2,4-difluoro-phenyl)-5-methylpyridine) is prepared along with model compounds. These complexes are investigated by absorption and emission spectroscopy and their photophysical and electrochemical properties are measured and compared with their corresponding non fluorinated complexes. Density functional theory (DFT) and time-dependent DFT computations corroborate the nature of the excited state as being a hybrid between the metal-to-ligand charge transfer ((1,3) MLCT) for the trans-Pt(PBu3 )2 (C≡CAr)2 unit, [Pt] and the metal-to-ligand/ligand-to-ligand' charge transfer ((1,3) ML'CT/LL'CT) for [Ir] with L = dFMeppy. Overall, the fluorination of the phenylpyridine group expectedly does not change the nature of the excited state but desirably induces a small blue shift of the absorption and emission bands along a slight decrease in emission quantum yields and lifetimes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Souza, F.; Forsyth, T.P.; Fukuzumi, S.
1998-10-19
Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compoundmore » FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.« less
Mullapudi, Venkata Balarama Krishna; Dheram, Karunasagar
2018-01-01
A UV photolysis decomposition (UVPD) method for the determination of fluoride in fluorine containing pharmaceuticals by spectrophotometry is reported. It is based on the use of high intensity UV-irradiation in the presence of a digesting solution comprising a mixture of acetone and isopropanol. For the optimization of the UVPD procedure, three bulk drugs (levofloxacin, nebivolol and efavirenz) were chosen as representatives of three diverse compounds containing a single fluorine atom, two fluorine atoms, and trifluoromethyl groups respectively. Operational conditions of the UVPD method, such as concentration and volume of reagents (acetone and isopropyl alcohol), and UV irradiation time (1-6 minutes) were optimized. The efficiency of digestion was evaluated by the determination of fluoride in sample digests. Using the developed method, it was possible for complete conversion of the organofluoride to free fluoride ion for its subsequent determination by spectrophotometry based on bleaching of Zr-xylenol orange-color complex. Quantitative recovery (>98%) of the fluorine in the drug samples could be achieved using a mixture of 2% acetone + 2% isopropyl alcohol + 0.003% Na 2 CO 3 in just 5 minutes of UV irradiation, which can be considered an important aspect considering the difficulties involved in the cleavage of the CF bond. Accuracy was evaluated by comparison of results obtained by the UVPD method with the values estimated using formula weight of the compound and no statistical difference was observed between the results. Therefore, the proposed method is suitable for application in routine analysis of fluoride in organofluorine-containing drugs. Copyright © 2016. Published by Elsevier B.V.
Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance.
Hill, Philippa J; Taylor, Mark; Goswami, Parikshit; Blackburn, Richard S
2017-08-01
Intensifying legislation and increased research on the toxicological and persistent nature of per- and polyfluoroalkyl substances (PFASs) have recently influenced the direction of liquid repellent chemistry use; environmental, social, and sustainability responsibilities are at the crux. Without PFAS chemistry, it is challenging to meet current textile industry liquid repellency requirements, which is a highly desirable property, particularly in outdoor apparel where the technology helps to provide the wearer with essential protection from adverse environmental conditions. Herein, complexities between required functionality, legislation and sustainability within outdoor apparel are discussed, and fundamental technical performance of commercially available long-chain (C8) PFASs, shorter-chain (C6) PFASs, and non-fluorinated repellent chemistries finishes are evaluated comparatively. Non-fluorinated finishes provided no oil repellency, and were clearly inferior in this property to PFAS-finished fabrics that demonstrated good oil-resistance. However, water repellency ratings were similar across the range of all finished fabrics tested, all demonstrating a high level of resistance to wetting, and several non-fluorinated repellent fabrics provide similar water repellency to long-chain (C8) PFAS or shorter-chain (C6) PFAS finished fabrics. The primary repellency function required in outdoor apparel is water repellency, and we would propose that the use of PFAS chemistry for such garments is over-engineering, providing oil repellency that is in excess of user requirements. Accordingly, significant environmental and toxicological benefits could be achieved by switching outdoor apparel to non-fluorinated finishes without a significant reduction in garment water-repellency performance. These conclusions are being supported by further research into the effect of laundering, abrasion and ageing of these fabrics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantum chemical investigation of levofloxacin-boron complexes: A computational approach
NASA Astrophysics Data System (ADS)
Sayin, Koray; Karakaş, Duran
2018-04-01
Quantum chemical calculations are performed over some boron complexes with levofloxacin. Boron complex with fluorine atoms are optimized at three different methods (HF, B3LYP and M062X) with 6-31 + G(d) basis set. The best level is determined as M062X/6-31 + G(d) by comparison of experimental and calculated results of complex (1). The other complexes are optimized by using the best level. Structural properties, IR and NMR spectrum are examined in detail. Biological activities of mentioned complexes are investigated by some quantum chemical descriptors and molecular docking analyses. As a result, biological activities of complex (2) and (4) are close to each other and higher than those of other complexes. Additionally, NLO properties of mentioned complexes are investigated by some quantum chemical parameters. It is found that complex (3) is the best candidate for NLO applications.
NASA Astrophysics Data System (ADS)
Bodnar, Victoria; Ganeev, Alexander; Gubal, Anna; Solovyev, Nikolay; Glumov, Oleg; Yakobson, Viktor; Murin, Igor
2018-07-01
A pulsed direct current glow discharge time-of-flight mass spectrometry (GD TOF MS) method for the quantification of fluorine in insoluble crystal materials with fluorine doped potassium titanyl phosphate (KTP) KTiOPO4:KF as an example has been proposed. The following parameters were optimized: repelling pulse delay, discharge duration, discharge voltage, and pressure in the discharge cell. Effective ionization of fluorine in the space between sampler and skimmer under short repelling pulse delay, related to the high-energy electron impact at the discharge front, has been demonstrated. A combination of instrumental and mathematical correction approaches was used to cope for the interferences of 38Ar2+ and 1H316O + on 19F+. To maintain surface conductivity in the dielectric KTP crystals and insure its effective sputtering in combined hollow cathode cell, silver suspension applied by the dip-coating method was employed. Fluorine quantification was performed using relative sensitivity factors. The analysis of a reference material and scanning electron microscope-energy dispersive X-ray spectroscopy was used for validation. Fluorine limit of detection by pulsed direct current GD TOF MS was 0.01 mass%. Real sample analysis showed that fluorine seems to be inhomogeneously distributed in the crystals. That is why depth profiling of F, K, O, and P was performed to evaluate the crystals' non-stoichiometry. The approaches designed allow for fluorine quantification in insoluble dielectric materials with minimal sample preparation and destructivity as well as performing depth profiling to assess crystal non-stoichiometry.
The rare fluorinated natural products and biotechnological prospects for fluorine enzymology.
Chan, K K Jason; O'Hagan, David
2012-01-01
Nature has hardly evolved a biochemistry of fluorine although there is a low-level occurrence of fluoroacetate found in selected tropical and subtropical plants. This compound, which is generally produced in low concentrations, has been identified in the plants due to its high toxicity, although to date the biosynthesis of fluoroacetate in plants remains unknown. After that, fluorinated entities in nature are extremely rare, and despite increasingly sophisticated screening and analytical methods applied to natural product extraction, it has been 25 years since the last bona fide fluorinated natural product was identified from an organism. This was the reported isolation of the antibiotic 4-fluorothreonine and the toxin fluoroacetate in 1986 from Streptomyces cattleya. This bacterium has proven amenable to biochemical investigation, the fluorination enzyme (fluorinase) has been isolated and characterized, and the biosynthetic pathway to these bacterial metabolites has been elucidated. Also the fluorinase gene has been cloned into a host bacterium (Salinispora tropica), and this has enabled the de novo production of a bioactive fluorinated metabolite from fluoride ion, by genetic engineering. Biotechnological manipulation of the fluorinase offers the prospects for the assembly of novel fluorinated metabolites by fermentation technology. This is particularly attractive, given the backdrop that about 15-20% of pharmaceuticals licensed each year (new chemical entities) contain a fluorine atom. Copyright © 2012 Elsevier Inc. All rights reserved.
Somovilla, Víctor J; Bermejo, Iris A; Albuquerque, Inês S; Martínez-Sáez, Nuria; Castro-López, Jorge; García-Martín, Fayna; Compañón, Ismael; Hinou, Hiroshi; Nishimura, Shin-Ichiro; Jiménez-Barbero, Jesús; Asensio, Juan L; Avenoza, Alberto; Busto, Jesús H; Hurtado-Guerrero, Ramón; Peregrina, Jesús M; Bernardes, Gonçalo J L; Corzana, Francisco
2017-12-20
A structure-based design of a new generation of tumor-associated glycopeptides with improved affinity against two anti-MUC1 antibodies is described. These unique antigens feature a fluorinated proline residue, such as a (4S)-4-fluoro-l-proline or 4,4-difluoro-l-proline, at the most immunogenic domain. Binding assays using biolayer interferometry reveal 3-fold to 10-fold affinity improvement with respect to the natural (glyco)peptides. According to X-ray crystallography and MD simulations, the fluorinated residues stabilize the antigen-antibody complex by enhancing key CH/π interactions. Interestingly, a notable improvement in detection of cancer-associated anti-MUC1 antibodies from serum of patients with prostate cancer is achieved with the non-natural antigens, which proves that these derivatives can be considered better diagnostic tools than the natural antigen for prostate cancer.
Structure, wettability and thermal degradation of new fluoro-oligomer modified nanoclays.
Valsecchi, R; Viganò, M; Levi, M; Turri, S
2008-04-01
Quaternary ammonium salts based on monofunctionalized Perfluoropolyether (PFPE) oligomers were synthesized and used for the cation exchange process of sodium Montmorillonite nanoclays. The new fluoromodified nanoclays were characterized through X-rays diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), termogravimetric analysis (TGA), differential scanning calorimetry (DSC), electronic microscopy (SEM-EDS), and contact angle measurements (CA). In particular XRD showed rather complex patterns (presence of higher order reflections) which allowed the calculation of basal spacings, regularly increasing with the molecular weight of the fluorinated macrocation. Both IR and SEM confirmed the presence of fluorinated segments at clays interface, while TGA showed a limited thermal stability with an onset of degradation temperature which seems not dependent on the molecular weight of the macrocation. CA measurements showed a peculiar behaviour, with evident dynamic hysteresis phenomena and surface tension components quite different from those of commercially available, organomodified clays.
NASA Astrophysics Data System (ADS)
Erofeev, M. V.; Orlovskii, Viktor M.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, Viktor F.
2000-06-01
The spectral and amplitude—time characteristics of HF lasers pumped by a nonchain chemical reaction and initiated by radially convergent and planar electron beams were investigated. The principal channels leading to the formation of vibrationally excited HF molecules were analysed. It was confirmed that high efficiencies (~10%) of a nonchain HF laser may be attained only as a result of the simultaneous formation of atomic and molecular fluorine when the active mixture is acted upon by an electron beam and of the participation of molecular fluorine in population inversion. It was shown that a laser pulse has a complex spectral—temporal profile caused by the successive generation of P-lines and the overlap during the radiation pulse of both the rotational lines of the same vibrational band and of individual vibrational bands.
Environmental Compliance Assessment and Management Program
1994-04-01
following classes: 1. cyclic, branched, or linear, completely fluorinated alkanes 2. cyclic, branched, or linear, completely fluorinated ethers with no...unsaturations 3. cyclic, branched, or linear, completely fluorinated tertiary amines with no unsaturations 4. sulfur containing perfluorocarbons with no...unsaturations and with sulfur bonds only to carbon and fluorine . 2.58. VOC Water Separator - a tank, box, or other container which is primarily
Boron compounds as anion binding agents for nonaqueous battery electrolytes
Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili
2000-02-08
Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.
Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes
Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James; Sun, Xuehui
2002-01-01
Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.
Site-selective local fluorination of graphene induced by focused ion beam irradiation.
Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus
2016-01-29
The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.
Site-selective local fluorination of graphene induced by focused ion beam irradiation
NASA Astrophysics Data System (ADS)
Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus
2016-01-01
The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases.
Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy.
Wolters, Martijn; Mohades, Seyede G; Hackeng, Tilman M; Post, Mark J; Kooi, Marianne E; Backes, Walter H
2013-05-01
The number of applications of fluorine 19 (19F) magnetic resonance (MR) imaging and spectroscopy in biomedical and clinical research is steadily growing. The 100% natural abundance of fluorine and its relatively high sensitivity for MR (83% to that of protons) make it an interesting nucleus for a wide range of MR applications. Fluorinated contrast media have a number of advantages over the conventionally used gadolinium-based or iron-based contrast agents. The absence of an endogenous fluorine background intensity in the human body facilitates reliable quantification of fluorinated contrast medium or drugs. Anatomy can be visualized separately with proton MR imaging, creating the application of hybrid hydrogen 1 (1H)/19F MR imaging. The availability of 2 channels (ie, the 1H and 19F channels) enables dual-targeted molecular imaging. Recently, novel developments have emerged on fluorine-based contrast media in preclinical studies and imaging techniques. The developments in fluorine MR seem promising for clinical applications, with contributions in therapy monitoring, assessment of lung function, angiography, and molecular imaging. This review outlines the translation from recent advances in preclinical MR imaging and spectroscopy to future perspectives of clinical hybrid 1H/19/F MR imaging applications.
Giroud, Maude; Harder, Michael; Kuhn, Bernd; Haap, Wolfgang; Trapp, Nils; Schweizer, W Bernd; Schirmeister, Tanja; Diederich, François
2016-05-19
The π-stacking of fluorinated benzene rings on protein backbone amide groups was investigated, using a dual approach comprising enzyme-ligand binding studies complemented by high-level quantum chemical calculations. In the experimental study, the phenyl substituent of triazine nitrile inhibitors of human cathepsin L (hCatL), which stacks onto the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket, was systematically fluorinated, and differences in inhibitory potency were measured in a fluorimetric assay. Binding affinity is influenced by lipophilicity (clog P), the dipole and quadrupole moments of the fluorinated rings, but also by additional interactions of the introduced fluorine atoms with the local environment of the pocket. Generally, the higher the degree of fluorination, the better the binding affinities. Gas phase calculations strongly support the contributions of the molecular quadrupole moments of the fluorinated phenyl rings to the π-stacking interaction with the peptide bond. These findings provide useful guidelines for enhancing π-stacking on protein amide fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Delville, M H; Barbut, D; Wattiaux, A; Bassat, J M; Ménétrier, M; Labrugère, C; Grenier, J C; Etourneau, J
2009-08-17
The fluorination of La(2)CuO(4) was achieved for the first time under normal conditions of pressure and temperature (1 MPa and 298 K) via electrochemical insertion in organic fluorinated electrolytes and led to lanthanum oxyfluorides of general formula La(2)CuO(4)F(x). Analyses showed that, underneath a very thin layer of LaF(3) (a few atomic layers), fluorine is effectively inserted in the material's structure. The fluorination strongly modifies the lanthanum environment, whereas very little modification is observed on copper, suggesting an insertion in the La(2)O(2) blocks of the structure. In all cases, fluorine insertion breaks the translation symmetry and introduces a long-distance disorder, as shown by electron spin resonance. These results highlight the efficiency of electrochemistry as a new "chimie douce" type fluorination technique for solid-state materials. Performed at room temperature, it additionally does not require any specific experimental care. The choice of the electrolytic medium is crucial with regard to the fluorine insertion rate as well as the material deterioration. Successful application of this technique to the well-known La(2)CuO(4) material provides a basis for further syntheses from other oxides.
Effect of fluorinated groups on photooxidative stability of polymeric protectives applied on marble.
Chiantore, O; Poli, T; Colombo, C; Peruzzi, R; Toniolo, L
2001-01-01
Some new protective copolymers and a commercial one have been tested on Candoglia marble, a very low porosity stone. Two of the polymers contained a partially fluorinated methacrylic monomer, 2,2,2 trifluoro ethyl methacrylate (TFEMA), in combination with either an acrylic, methyl acrylate (MA) or a vinyl ether, n-butyl vinyl ether (n-BVE) unit. Two copolymers, ethyl methacrylate/n-butyl vinyl ether and ethyl methacrylate (EMA)/methyl acrylate (Paraloid B72), were non-fluorinated and similar in compositions and molar ratio. The aim of the work is to test the copolymers and compare the performances of fluorinated new polymers with the non fluorinated one and with the largely used commercial product. The results obtained demonstrate that the introduction, even in limited amounts, of fluorine atoms in the side ester groups of methacrylic type polymers really improves their protective effect and the durability of the stone treatments. The best results were obtained with the copolymer TFEM/MA which is the fluorinated homologous of Paraloid B72.
Molecular Packing of Functionalized Fluorinated Lipids in Langmuir Monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landsberg, Michael J.; Ruggles, Jeremy L.; Hussein, Waleed M.
2012-01-20
Fluorinated amphipaths are a fascinating class of compounds, which, despite significant challenges associated with their syntheses, have found use across a number of areas of biotechnology. Applications range from the in vitro stabilization of membrane proteins to the development of enhanced stability intravenous drug and gene delivery systems. More recently, monolayer-forming fluorinated lipids have found use in the 2D crystallization of detergent-solubilized hydrophobic or partially hydrophobic proteins at the air-water interface. In this study, we investigate the surface properties of a novel suite of monolayer forming, partially fluorinated lipids. These modular lipid structures contain a densely fluorinated insertion in themore » hydrocarbon tail and a synthetically modifiable headgroup. Analyses of surface-pressure area isotherms and X-ray reflectometry profiles reveal that the lipids spread into fluid monolayers and are more compressible than their non-fluorinated counterparts. Furthermore, the data support a model whereby the partially fluorinated chains of the lipid tails form a film which is fundamentally incompatible with detergents and other destabilizing amphipaths.« less
NASA Astrophysics Data System (ADS)
Arakawa, Yuki; Tsuji, Hideto
2017-06-01
In order to reveal the effect of fluorine substitutions on the refractive index properties for calamitic nematic materials, we carried out a comparative study with respect to non-fluorinated and two types of laterally fluorinated 1,4-bis[4-(hexyloxy)phenyl]ethynylbenzene molecules. Phase transition behaviours were investigated by differential scanning calorimetry and polarised optical microscopy. Additionally, extraordinary and ordinary refractive index and birefringence were evaluated from each single component system. All the analogues exhibited high birefringence values beyond 0.3 at 550 nm, of which an analogue with a fluorine substitution at the central benzene ring showed the highest Δn-value of 0.43. With respect to an analogue with the highest level of fluorination, Δn as well as ne and no values were declined due to decreased order parameter and diluted molecular density. Not only the mesomorphic behaviours but also optical properties strongly relied on the manner of fluorine substitution including the number and position.
Aldolase-catalysed stereoselective synthesis of fluorinated small molecules.
Windle, Claire L; Berry, Alan; Nelson, Adam
2017-04-01
The introduction of fluorine has been widely exploited to tune the biological functions of small molecules. Indeed, around 20% of leading drugs contain at least one fluorine atom. Yet, despite profound effects of fluorination on conformation, there is only a limited toolkit of reactions that enable stereoselective synthesis of fluorinated compounds. Aldolases are useful catalysts for the stereoselective synthesis of bioactive small molecules; however, despite fluoropyruvate being a viable nucleophile for some aldolases, the potential of aldolases to control the formation of fluorine-bearing stereocentres has largely been untapped. Very recently, it has been shown that aldolase-catalysed stereoselective carboncarbon bond formation with fluoropyruvate as nucleophile enable the synthesis of many α-fluoro β-hydroxy carboxyl derivatives. Furthermore, an understanding of the structural basis for the stereocontrol observed in these reactions is beginning to emerge. Here, we review the application of aldolase catalysis in the stereocontrolled synthesis of chiral fluorinated small molecules, and highlight likely areas for future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy.
Zhou, Ming; Zhu, Shufa; Liu, Yana; Wang, Xuejian
2013-08-01
Instead of direct current power supply, a series of electrokinetic remediation experiments driven by solar energy on fluorine-contaminated soil were conducted in a self-made electrolyzer, in order to reduce energy expenditure of electrokinetic remediation. After the 12-day electrokinetic remediation driven by solar energy, the removal efficiency of fluorine was 22.3%, and electrokinetic treatment had an impact on changes in partitioning of fluorine in soil. It proved that the combination of electrokinetics and solar energy was feasible and effective to some extent for the remediation of fluorine-contaminated soil. Meanwhile, the experimental results also indicated that the electromigration was a more dominant transport mechanism for the removal of fluorine from contaminated soil than electroosmosis, and the weather condition was the important factor in affecting the removal efficiency.
Method for producing fluorinated diamond-like carbon films
Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming
2003-06-03
Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.
Flow microreactor synthesis in organo-fluorine chemistry
Nagaki, Aiichiro
2013-01-01
Summary Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry. PMID:24367443
Flow microreactor synthesis in organo-fluorine chemistry.
Amii, Hideki; Nagaki, Aiichiro; Yoshida, Jun-Ichi
2013-12-05
Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry.
Baker, L. Robert; Seo, Hyungtak; Hervier, Antoine; Somorjai, Gabor A.
2016-04-12
A new composition of matter is disclosed wherein oxygen vacancies in a semiconducting transition metal oxide such as titanium dioxide are filled with a halogen such as Fluorine, whereby the conductivity of the composition is greatly enhanced, while at the same time the chemical stability of the composition is greatly improved. Stoichiometric titanium dioxide having less than 3 % oxygen vacancies is subject to fluorine insertion such that oxygen vacancies are filled, limited amounts of fluorine replace additional oxygen atoms and fluorine interstitially inserts into the body of the TiO.sub.2 composition.
Lubkowska, Anna; Chlubek, Dariusz; Machoy-Mokrzyńska, Anna; Noceń, Iwona; Zyluk, Beata; Nowacki, Przemysław
2004-01-01
Fluorine and aluminum are able to pass through the blood-brain barrier and accumulate in the central nervous system (CNS) of exposed animals. Chronic intoxication is accompanied by behavioral disorders, degenerative changes, and abnormalities of aerobic metabolism of the neurons. Awareness of the role of aluminum in Alzheimer's disease stems from epidemiological studies demonstrating increased prevalence of this condition in areas with relatively high content of aluminum in drinking water. The uptake of aluminum in the gastrointestinal tract is decreased in the presence of iron, calcium, magnesium, phosphate, or fluoride. Many magnesium-containing enzymes are affected by aluminum, which is able to replace magnesium and thus reduce their activity. The purpose of this study was to determine the concentrations of fluorine, aluminum, and magnesium in some structures of the CNS of rats exposed to fluorine and aluminum in water. Our material consisted of 64 Wistar rats divided into eight equal groups. Groups I, II and III were female rats exposed, respectively, to 100 ppm fluorine ions, 300 ppm aluminum ions or both at same doses alternating every second day. Groups IA, IIA and IIIA consisted of male rats exposed like the respective female groups. Control groups K1--females and K2--males received distilled water ad libitum. Exposure lasted 31 days whereupon the animals were anesthetized with ketamine and sacrificed. The brain was collected and the cerebellum, brain cortex, and hippocampus were isolated. Concentrations of fluorine, aluminum, and magnesium were measured with prior mineralization of wet tissues in a microwave oven. Fluorine concentrations were determined with a potentiometric method and ion-selective electrode. Aluminum was measured with ICP (inductively coupled plasma) and magnesium with ASA (atomic absorption spectrometry). The highest concentrations of fluorine were observed in rats exposed to fluorine only. The same pattern was true for aluminum. Groups exposed alternatively to both elements demonstrated lower accumulation of fluorine whereas accumulation of aluminum did not change significantly. Apparently, aluminum reduced the availability of fluorine but there was no reciprocal effect. No significant changes in the concentrations of magnesium were noted, regardless of the brain structure or group. It can thus be concluded that exposure to fluorine, aluminum or both has little effect on the concentration of magnesium in the CNS of rats.
Chamberlain, Mike; Gräfe, James L; Aslam; Byun, Soo-Hyun; Chettle, David R; Egden, Lesley M; Webber, Colin E; McNeill, Fiona E
2012-03-01
Humans can be exposed to fluorine (F) through their diet, occupation, environment and oral dental care products. Fluorine, at proper dosages, is believed to have positive effects by reducing the incidence of dental caries, but fluorine toxicity can occur when people are exposed to excessive quantities of fluorine. In this paper we present the results of a small pilot in vivo study on 33 participants living in Southwestern Ontario, Canada. The mean age of participants was 45 ± 18 years with a range of 20-87 years. The observed calcium normalized hand-bone-fluorine concentrations in this small pilot study ranged from 1.1 to 8.8 mg F/g Ca. Every person measured in this study had levels of fluorine in bone above the detection limit of the system. The average fluorine concentration in bone was found to be 3.5 ± 0.4 mg F/g Ca. No difference was observed in average concentration for men and women. In addition, a significant correlation (r(2) = 0.55, p < 0.001) was observed between hand-bone-fluorine content and age. The amount of fluorine was found to increase at a rate of 0.084 ± 0.014 mg F/g Ca per year. There was no significant difference observed in this small group of subjects between the accumulation rates in men and women. To the best of our knowledge, this is the first time data from in vivo measurement of fluorine content in humans by neutron activation analysis have been presented. The data determined by this technique were found to be consistent with results from ex vivo studies from other countries. We suggest that the data demonstrate that this low risk non-invasive diagnostic technique will permit the routine assessment of bone-fluorine content with potential application in the study of clinical bone-related diseases. This small study demonstrated that people in Southern Ontario are exposed to fluoride in measureable quantities, and that fluoride can be seen to accumulate in bone with age. However, all volunteers were found to have levels below those expected with clinical fluorosis, and only one older subject was found to have levels comparable with preclinical exposure.
Low Temperature Fluorination of Aerosol Suspensions of Hydrocarbons Utilizing Elemental Fluorine.
1982-09-01
admitting boron trifluoride into the aerosol direct florination of neopentane. The aerosol direct fluorination of ketones indicates the carbonyl group...fluorination of molecules with primary, secondary and tertiary hydro- gens is also included as is the effect of admitting boron trifluoride into the...significantly different physical and chemical properties than either of their components. For example, both ammonia and boron trifluoride are low
Zhang, Heyi; Cheng, Biao; Lu, Zhan
2018-06-20
A newly designed thiazoline iminopyridine ligand for enantioselective cobalt-catalyzed sequential Nazarov cyclization/electrophilic fluorination was developed. Various chiral α-fluorocyclopentenones were prepared with good yields and diastereo- and enantioselectivities. Further derivatizations could be easily carried out to provide chiral cyclopentenols with three contiguous stereocenters. Furthermore, a direct deesterification of fluorinated products could afford chiral α-single fluorine-substituted cyclopentenones.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold; Solovyov, Vyacheslav
2014-02-18
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2008-04-22
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Fluorinated precursors of superconducting ceramics, and methods of making the same
Wiesmann, Harold [Stony Brook, NY; Solovyov, Vyacheslav [Rocky Point, NY
2012-07-10
This invention provides a method of making a fluorinated precursor of a superconducting ceramic. The method comprises providing a solution comprising a rare earth salt, an alkaline earth metal salt and a copper salt; spraying the solution onto a substrate to provide a film-covered substrate; and heating the film-covered substrate in an atmosphere containing fluorinated gas to provide the fluorinated precursor.
Li, Yonghai; Wang, Junyi; Liu, Yan; Qiu, Meng; Wen, Shuguang; Bao, Xichang; Wang, Ning; Sun, Mingliang; Yang, Renqiang
2016-10-05
It is known that fluorination on π-conjugated donor-acceptor (D-A) polymers can significantly affect the optoelectronic properties and fluorination on A moiety has been well established for design of efficient photovoltaic materials. For example, polymers based on 4,7-dithienyl-5,6-difluorobenzothiadiazole (DTffBT) have been intensively investigated and exhibited excellent performance, but the corresponding DTBT-based polymers without fluorine often display an unfavorable efficiency. With the purpose of improving photovoltaic efficiency of DTBT-based D-A polymers, we design three polymers PDTBT-TxfBT (x = 0, 1, 2) with fluorination on D moiety (TxfBT) and systematically investigate fluorination on the photophysical/electrochemical and photovoltaic properties. The results show that polymer solar cells (PSCs) based on PDTBT-TBT exhibit moderate power conversion efficiency (PCE) of 5.84%. However, the bis-fluorination on TffBT moiety (PDTBT-TffBT) can greatly enhance the molecular planarity and intermolecular interaction, improve the charge transport and heterojunction morphology, and further suppress the charge recombination losses. PSCs based on PDTBT-TffBT demonstrate obviously improved photovoltaic efficiency with the best PCE up to 7.53% without any processing additives, which ranks among the top DTBT-based PSCs. However, it should be noted that unsymmetrical fluorination on TfBT moiety (PDTBT-TfBT) impairs the regularity of polymer backbone and intermolecular interaction, increases the recombination losses, and seriously reduces the short-circuit current density and efficiency (5.44%). The results exhibit that fluorination on D moiety is a helpful strategy for design high-performance photovoltaic materials and the regularity of fluorination is crucial to improving efficiencies.
[Study on the calcium-based sorbent for removal fluorine during coal combustion].
Li, Shu-ling; Qi, Qing-jie; Liu, Jian-zhong; Cao, Xin-yu; Zhou, Jun-hu; Cen, Ke-fa
2004-03-01
In the paper, the reaction of CaO-HF and fluorine removal mechanics at high temperature by blending calcium-based sorbents with coal during coal combustion were discussed, and test results about fluorine retention during coal combustion in fluidized bed and chain-grate furnace were reported. The results identified that lime and calcium-based sorbets developed can restratin the emission of fluorine during coal combustion. The efficiency of fluorine removal can reach 66.7%-70.0% at Ca/F 60-70 by blending lime with coal in fluidized bed combustion, and the efficiency of fluorine removal are between 57.32% and 75.19% by blending calcium-based sorbets with coal in chain-grate furnace combustion. Blending CaO or lime with coal during coal combustion can remove SO2 and HF simultaneously.
Fluorine (19F) MRS and MRI in biomedicine
Ruiz-Cabello, Jesús; Barnett, Brad P.; Bottomley, Paul A.; Bulte, Jeff W.M.
2011-01-01
Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. PMID:20842758
Synthesis of polymeric fluorinated sol-gel precursor for fabrication of superhydrophobic coating
NASA Astrophysics Data System (ADS)
Li, Qianqian; Yan, Yuheng; Yu, Miao; Song, Botao; Shi, Suqing; Gong, Yongkuan
2016-03-01
A fluorinated polymeric sol-gel precursor (PFT) is synthesized by copolymerization of 2,3,4,5,5,5-hexafluoro-2,4-bis(trifluorinated methyl)pentyl methacrylate (FMA) and 3-methacryloxypropyltrimethoxysilane (TSMA) to replace the expensive long chain fluorinated alkylsilanes. The fluorinated silica sol is prepared by introducing PFT as co-precursor of tetraethyl orthosilicate (TEOS) in the sol-gel process with ammonium hydroxide as catalyst, which is then used to fabricate superhydrophobic coating on glass substrate through a simple dip-coating method. The effects of PFT concentrations on the chemical structure of the formed fluorinated silica, the surface chemical composition, surface morphology, wetting and self-cleaning properties of the resultant fluorinated silica coatings were studied by using X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectrophotometer (XPS), scanning electron microscopy (SEM) and water contact angle measurements (WCA). The results show that the fluorinated silica sols are successfully obtained. The size and size distribution of the fluorinated silica particles are found greatly dependent on the concentration of PFT, which play a crucial role in the surface morphology of the corresponding fluorinated silica coatings. The suitable PFT concentration added in the sol-gel stage, i.e. for F-sol-1 and F-sol-2, is helpful to achieve both the low surface energy and multi-scaled microstructures, leading to the formation of the superhydrophobic coatings with bio-mimicking self-cleaning property similar to lotus leaves.
Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin
2015-06-18
To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine abovemore » the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.« less
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
1995-01-01
Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers, which were intercalated with 18 wt percent bromine, 1 hour of fluorine exposure resulted in a large weight increase but caused only a small decrease in thermal stability. An additional 89 hours of fluorine exposure time resulted in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena of weight increase and stability decrease do not occur if the intercalated fibers are exposed to 250 C fluorine. These observations suggest that, at room temperature, fluorine is absorbed quickly by the intercalated fibers and is intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. In an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for 2 weeks, the brominated fibers lost about 45% of their bromine, and their resistivity increased from 64 mu(Omega)-cm to a range of 95-170 mu(Omega)-cm. This is still much lower than the value of 300 mu(Omega)-cm for pristine P-100. For practical purposes, to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature or to any intercalate at a temperature where, upon direct contact with graphite, an intercalation compound can easily be formed.
Saya, Jordy M; Oppelaar, Barry; Cioc, Răzvan C; van der Heijden, Gydo; Vande Velde, Christophe M L; Orru, Romano V A; Ruijter, Eelco
2016-10-13
We report a highly diastereoselective interrupted Ugi reaction to construct a broad range of structurally congested and stereochemically complex spiroindolines from tryptamine-derived isocyanides. The reaction is facilitated by using fluorinated alcohols (TFE or HFIP) as solvents and tolerates a broad range of amines, aldehydes and 2-isocyanoethylindoles to give polycyclic products in moderate to excellent yields.
Liao, Fu-Min; Cao, Zhong-Yan; Yu, Jin-Sheng; Zhou, Jian
2017-02-20
We report a highly stereoselective synthesis of all-carbon or fluorinated tetrasubstituted alkenes from diazo reagents and fluorinated enol silyl ethers, using C-F bond as a synthetic handle. Cationic Au I catalysis plays a key role in this reaction. Remarkable fluorine effects on the reactivity and selectivity was also observed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
1984-03-30
ff AD-AFRU9 98? AEROSOL DIRECT FLUORINATION SYNTHESES OF THE / 1 PERFLUOROALKYL ORTHOCRBONAT.-(U) TENNESSEE UNIY KNOXVILLE DEPT OF CHEMISTRY J L...SYNTHESES OF THE PERFLUOROALKYL ORTHOCARBONATES, F-TETRAMETHYL AND F-ETHYLENE ORTHOCARBONATES by James L. Adcock* and Mark L. Robin Department of...number) Aerosol, Direct Fluorination, Elemental Fluorine, Perfluoroalkyl % orthocarbonates 211,A’!S RACY (Contiue en reverse aide it neessary and
Site-selective local fluorination of graphene induced by focused ion beam irradiation
Li, Hu; Daukiya, Lakshya; Haldar, Soumyajyoti; Lindblad, Andreas; Sanyal, Biplab; Eriksson, Olle; Aubel, Dominique; Hajjar-Garreau, Samar; Simon, Laurent; Leifer, Klaus
2016-01-01
The functionalization of graphene remains an important challenge for numerous applications expected by this fascinating material. To keep advantageous properties of graphene after modification or functionalization of its structure, local approaches are a promising road. A novel technique is reported here that allows precise site-selective fluorination of graphene. The basic idea of this approach consists in the local radicalization of graphene by focused ion beam (FIB) irradiation and simultaneous introduction of XeF2 gas. A systematic series of experiments were carried out to outline the relation between inserted defect creation and the fluorination process. Based on a subsequent X-ray photoelectron spectroscopy (XPS) analysis, a 6-fold increase of the fluorine concentration on graphene under simultaneous irradiation was observed when compared to fluorination under normal conditions. The fluorine atoms are predominately localized at the defects as indicated from scanning tunneling microscopy (STM). The experimental findings are confirmed by density functional theory which predicts a strong increase of the binding energy of fluorine atoms when bound to the defect sites. The developed technique allows for local fluorination of graphene without using resists and has potential to be a general enabler of site-selective functionalization of graphene using a wide range of gases. PMID:26822900
Fluorination effect of activated carbons on performance of asymmetric capacitive deionization
NASA Astrophysics Data System (ADS)
Jo, Hanjoo; Kim, Kyung Hoon; Jung, Min-Jung; Park, Jae Hyun; Lee, Young-Seak
2017-07-01
Activated carbons (ACs) were fluorinated and fabricated into electrodes to investigate the effect of fluorination on asymmetric capacitive deionization (CDI). Fluorine functional groups were introduced on the AC surfaces via fluorination. The specific capacitance of the fluorinated AC (Fsbnd AC) electrode increased drastically from 261 to 337 F/g compared with the untreated AC (Rsbnd AC) electrode at a scan rate of 5 mV/s, despite a decrease in the specific surface area and total pore volume after fluorination. The desalination behavior of asymmetric CDI cells assembled with an Rsbnd AC electrode as the counter electrode and an Fsbnd AC electrode as the cathode (R || F-) or anode (R || F +) was studied. For R || F-, the salt adsorption capacity and charge efficiency increased from 10.6 mg/g and 0.58-12.4 mg/g and 0.75, respectively, compared with the CDI cell assembled with identical Rsbnd AC electrodes at 1 V. This CDI cell exhibited consistently better salt adsorption capacity and charge efficiency at different applied voltages because Fsbnd AC electrodes have a cation attractive effect originating from the partially negatively charged fluorine functional groups on the AC surface. Therefore, co-ion expulsion in the Fsbnd AC electrode as the cathode is effectively diminished, leading to enhanced CDI performance.
Synthesis, physical and chemical properties, and potential applications of graphite fluoride fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Long, Martin; Stahl, Mark
1987-01-01
Graphite fluoride fibers can be produced by fluorinating pristine or intercalated graphite fibers. The higher the degree of graphitization of the fibers, the higher the temperature needed to reach the same degree of fluorination. Pitched based fibers were fluorinated to flourine-to-carbon atom rations between 0 and 1. The graphite fluoride fibers with a fluorine-to-carbon atom ration near 1 have extensive visible structural damage. On the other hand, fluorination of fibers pretreated with bromine or fluorine and bromine result in fibers with a fluorine-to-carbon atom ratio nearly equal to 0.5 with no visible structural damage. The electrical resistivity of the fibers is dependent upon the fluorine to carbon atom ratio and ranged from .01 to 10 to the 11th ohm/cm. The thermal conductivity of these fibers ranged from 5 to 73 W/m-k, which is much larger than the thermal conductivity of glass, which is the regular filler in epoxy composites. If graphite fluoride fibers are used as a filler in epoxy or PTFE, the resulting composite may be a high thermal conductivity material with an electrical resistivity in either the insulator or semiconductor range. The electrically insulating product may provide heat transfer with lower temperature gradients than many current electrical insulators. Potential applications are presented.
NASA Astrophysics Data System (ADS)
Boča, Miroslav; Barborík, Peter; Mičušík, Matej; Omastová, Mária
2012-07-01
While systems K3TaF8 and K3ZrF7 were prepared by modified molten salt method modified wet pathway was used for reproducible preparation of Na7Zr6F31. Its congruently melting character was demonstrated on simultaneous TG/DSC measurements and XRD patterns. X-ray photoelectron spectroscopy was applied for identification of differently bonded fluorine atoms in series of compounds NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Three different types of fluorine atoms were described qualitatively and quantitatively. Uncoordinated fluorine atoms (F-) provide signals at lowest binding energies, followed by signals from terminally coordinated fluorine atoms (M-F) and then bridging fluorine atoms (M-F-M) at highest energy. Based on XPS F 1s signals assigned to fluorine atoms in compounds with correctly determined structure it was suggested that fluorine atoms in K3ZrF7 have partially bridging character.
Miyasaka, Hitoshi; Motokawa, Natsuko; Atsuumi, Ryo; Kamo, Hiromichi; Asai, Yuichiro; Yamashita, Masahiro
2011-01-21
A series of paddlewheel diruthenium(ii, ii) complexes with various fluorine-substituted benzoate ligands were isolated as THF adducts and structurally characterized: [Ru(2)(F(x)PhCO(2))(4)(THF)(2)] (F(x)PhCO(2)(-) = o-fluorobenzoate, o-F; m-fluorobenzoate, m-F; p-fluorobenzoate, p-F; 2,6-difluorobenzoate, 2,6-F(2); 3,4-difluorobenzoate, 3,4-F(2); 3,5-difluorobenzoate, 3,5-F(2); 2,3,4-trifluorobenzoate, 2,3,4-F(3); 2,3,6-trifluorobenzoate, 2,3,6-F(3); 2,4,5-trifluorobenzoate, 2,4,5-F(3); 2,4,6-trifluorobenzoate, 2,4,6-F(3); 3,4,5-trifluorobenzoate, 3,4,5-F(3); 2,3,4,5-tetrafluorobenzoate, 2,3,4,5-F(4); 2,3,5,6-tetrafluorobenzoate, 2,3,5,6-F(4); pentafluorobenzoate, F(5)). By adding fluorine atoms on the benzoate ligands, it was possible to tune the redox potential (E(1/2)) for [Ru(2)(II,II)]/[Ru(2)(II,III)](+) over a wide range of potentials from -40 mV to 350 mV (vs. Ag/Ag(+) in THF). 2,3,6-F(3), 2,3,4,5-F(4), 2,3,5,6-F(4) and F(5) were relatively air-stable compounds even though they are [Ru(2)(II,II)] species. The redox potential in THF was dependent on an electronic effect rather than on a structural (steric) effect of the o-F atoms, although more than one substituent in the m- and p-positions shifted E(1/2) to higher potentials in relation to the general Hammett equation. A quasi-Hammett parameter for an o-F atom (σ(o)) was estimated to be ∼0.2, and a plot of E(1/2)vs. a sum of Hammett parameters including σ(o) was linear. In addition, the HOMO energy levels, which was calculated based on atomic coordinates of solid-state structures, as well as the redox potential were affected by adding F atoms. Nevertheless, a steric contribution stabilizing their static structures in the solid state was present in addition to the electronic effect. On the basis of the electronic effect, the redox potential of these complexes is correlated to the HOMO energy level, and the electronic effect of F atoms is the main factor controlling the ionization potential of the complexes with ligands free from the rotational constraint, i.e. complexes in solution.
Formation of anodic layers on InAs (111)III. Study of the chemical composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E.; Prosvirin, I. P.
2012-04-15
The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine andmore » elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.« less
Incorporating fluorinated moieties in fully conjugated donor-acceptor block copolymers
NASA Astrophysics Data System (ADS)
Lee, Youngmin; Wang, Qing; Gomez, Enrique D.
Fully conjugated donor-acceptor block copolymers are promising candidates for photovoltaics due to their ability to microphase separate at length scales commensurate with exciton diffusion lengths. These materials can also serve as model systems to study the relationship between molecular structure, microstructure, and optoelectronic properties of conjugated polymers. The development of new donor-acceptor block copolymers relies on the manipulation of the chemical structure to fine tune properties and improve overall performance when employed in photovoltaic devices. To this end, we have demonstrated the incorporation of fluorinated moieties in conjugated block copolymers. The introduction of fluorine, a strong electron withdrawing element, is known to influence phase separation and the bandgap, and as a result, optoelectronic properties. Fluorine was introduced to the acceptor block of poly(3-hexylthiophene-2,5-diyl)-block-poly((9,9-bis(2-octyl)fluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5 ',5?-diyl) (P3HT- b-PFTBT). PFTBTs were prepared with di-fluorinated and mono-fluorinated TBT. We find that fluorination impacts the bandgap, morphology and performance in devices.
Su, Chi -Cheung; He, Meinan; Redfern, Paul C.; ...
2017-03-16
New fluorinated sulfones were synthesized and evaluated in high voltage lithium-ion batteries using LiNi 0.5Mn 1.5O 4 (LNMO) cathode. Fluorinated sulfones with an α-trifluoromethyl group exhibit enhanced oxidation stability, reduced viscosity and superior separator wettability as compared to their non-fluorinated counterparts. Finally, the improved performance in high voltage cells makes it a promising high voltage electrolyte for 5-V lithium-ion chemistry.
Zhou, Yujing; Zhang, Yan; Wang, Jianbo
2016-11-08
A general approach towards diverse fluorinated phosphonates via geminal difunctionalization reactions of α-diazo arylmethylphosphonates is described. The diazo functionality (RR'C[double bond, length as m-dash]N 2 ) is successfully converted to RR'CF 2 , RR'CHF, RR'CFBr or RR'CFNR'' 2 groups by employing different fluorination reagents. A variety of fluorinated organophosphorus compounds were readily accessed in good to excellent yields from a common type of precursor.
Fluorine (19F) MRS and MRI in biomedicine.
Ruiz-Cabello, Jesús; Barnett, Brad P; Bottomley, Paul A; Bulte, Jeff W M
2011-02-01
Shortly after the introduction of (1)H MRI, fluorinated molecules were tested as MR-detectable tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert, are now being used in a broad range of biomedical applications, including anesthetics, chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood substitution. These compounds can be monitored by fluorine ((19)F) MRI and/or MRS, providing a noninvasive means to interrogate associated functions in biological systems. As a result of the lack of endogenous fluorine in living organisms, (19)F MRI of 'hotspots' of targeted fluorinated contrast agents has recently opened up new research avenues in molecular and cellular imaging. This includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell tracking of endogenous macrophages, injected immune cells and stem cell transplants. Copyright © 2010 John Wiley & Sons, Ltd.
Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.
Ojima, Iwao
2013-07-05
Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.
Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology
Ojima, Iwao
2013-01-01
Over the last three decades, my engagement in “fluorine chemistry” has evolved substantially, because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of “fluorine chemistry” in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy. PMID:23614876
Determination of small and large amounts of fluorine in rocks
Grimaldi, F.S.; Ingram, B.; Cuttitta, F.
1955-01-01
Gelatinous silica and aluminum ions retard the distillation of fluorine in the Willard and Winter distillation method. A generally applicable, simple method for the determination of fluorine in rocks containing aluminum or silicon or both as major constituents was desired. In the procedure developed, the sample is fused with a mixture of sodium carbonate and zinc oxide, leached with water, and filtered. The residue is granular and retains nearly all of the silica. The fluorine in the filtrate is distilled directly from a perchloric acid-phosphoric acid mixture. Phosphoric acid permits the quantitative distillation of fluorine in the presence of much aluminum at the usual distillation temperature and without the collection of large volumes of distillate. The fluorine is determined either by microtitration with thorium nitrate or colorimetrically with thoron. The procedure is rapid and has yielded excellent results on silicate rocks and on samples from the aluminum phosphate (leached) zone of the Florida phosphate deposits.
Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design.
Meanwell, Nicholas A
2018-02-05
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
[Caries and fluorine: role of water factor, problems and solutions].
Rakhmanin, Iu A; Kir'ianova, L F; Mikhaĭlova, R I; Sevost'ianova, E M
2001-01-01
The epidemiological studies of the severity and spread of caries of deciduous and permanent teeth in Moscow schoolchildren (n = > 20,000) aged 7-17 years in relation to the content of fluoride in the drinking water, to the use of fluorine-containing tablets and varnishes have provided evidence for the high efficiency of drinking water fluorination for the primary prevention of caries as compared with other preventive alternatives. Based on sanitary studies, two main lines are now under way in solving the problem connected with low dietary fluoride intake: the introduction of routine water-purifying fluorine generators (based on a new technology of fluorination of limited water volumes for drinking and cooking) and the setting-up of plants manufacturing bottled drinking waters containing the optimum or higher fluorine levels for provision of different population groups, primarily children and pregnant women in particular.
Transition Metal-Mediated and -Catalyzed C-F Bond Activation via Fluorine Elimination.
Fujita, Takeshi; Fuchibe, Kohei; Ichikawa, Junji
2018-06-28
Activation of carbon-fluorine (C-F) bonds is an important topic in synthetic organic chemistry recently. Among the methods for C-F bond cleavage, metal mediated and catalyzed β- or α-fluorine elimination proceeds under mild conditions compared with oxidative addition of C-F bond. The β- or α-fluorine elimination is initiated from organometallic intermediates having fluorine substituents on carbon atoms β or α to metal centers, respectively. Transformations via these elimination processes (C-F bond cleavage), which are typically preceded by carbon-carbon (or carbon-heteroatom) bond formation, have been remarkably developed as C-F bond activation methods in the past five years. In this minireview, we summarize the applications of transition metal-mediated and -catalyzed fluorine elimination to synthetic organic chemistry from a historical perspective for early studies and from a systematic perspective for recent studies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bellomo, S; D'Alessandro, W; Longo, M
2003-01-01
Many studies have assessed the strong influence of volcanic activity on the surrounding environment. This is particularly true for strong gas emitters such as Mt. Etna and Stromboli volcanoes. Among volcanic gases, fluorine compounds are potentially very harmful. Fluorine cycling through rainwater in the above volcanic areas was studied analysing more than 400 monthly bulk samples. Data indicate that only approximately 1% of fluorine emission through the plume is deposited on the two volcanic areas by meteoric precipitations. Although measured bulk rainwater fluorine fluxes are comparable to and sometimes higher than in heavily polluted areas, their influence on the surrounding vegetation is limited. Only annual crops, in fact, show some damage that could be an effect of fluorine deposition, indicating that long-living endemic plant species or varieties have developed some kind of resistance. Copyright 2002 Elsevier Science B.V.
Ekuase, E.J.; van ’t Erve, T.J.; Rahaman, A.; Robertson, L.W.; Duffel, M.W.; Luthe, G.
2015-01-01
Determining the relationships between the structures of substrates and inhibitors and their interactions with drug-metabolizing enzymes is of prime importance in predicting the toxic potential of new and legacy xenobiotics. Traditionally, quantitative structure activity relationship (QSAR) studies are performed with many distinct compounds. Based on the chemical properties of the tested compounds, complex relationships can be established so that models can be developed to predict toxicity of novel compounds. In this study, the use of fluorinated analogues as supplemental QSAR compounds was investigated. Substituting fluorine induces changes in electronic and steric properties of the substrate without substantially changing the chemical backbone of the substrate. In vitro assays were performed using purified human cytosolic sulfotransferase hSULT2A1 as a model enzyme. A mono-hydroxylated polychlorinated biphenyl (4-OH PCB 14) and its four possible mono-fluoro analogues were used as test compounds. Remarkable similarities were found between this approach and previously published QSAR studies for hSULT2A1. Both studies implicate the importance of dipole moment and dihedral angle as being important to PCB structure in respect to being substrates for hSULT2A1. We conclude that mono-fluorinated analogues of a target substrate can be a useful tool to study the structure activity relationships for enzyme specificity. PMID:26165989
2015-01-01
The fluoroacetate-producing bacterium Streptomyces cattleya has evolved a fluoroacetyl-CoA thioesterase (FlK) that exhibits a remarkably high level of discrimination for its cognate substrate compared to the cellularly abundant analogue acetyl-CoA, which differs only by the absence of the fluorine substitution. A major determinant of FlK specificity derives from its ability to take advantage of the unique properties of fluorine to enhance the reaction rate, allowing fluorine discrimination under physiological conditions where both substrates are likely to be present at saturating concentrations. Using a combination of pH–rate profiles, pre-steady-state kinetic experiments, and Taft analysis of wild-type and mutant FlKs with a set of substrate analogues, we explore the role of fluorine in controlling the enzyme acylation and deacylation steps. Further analysis of chiral (R)- and (S)-[2H1]fluoroacetyl-CoA substrates demonstrates that a kinetic isotope effect (1.7 ± 0.2) is observed for only the (R)-2H1 isomer, indicating that deacylation requires recognition of the prochiral fluoromethyl group to position the α-carbon for proton abstraction. Taken together, the selectivity for the fluoroacetyl-CoA substrate appears to rely not only on the enhanced polarization provided by the electronegative fluorine substitution but also on molecular recognition of fluorine in both formation and breakdown of the acyl-enzyme intermediate to control active site reactivity. These studies provide insights into the basis of fluorine selectivity in a naturally occurring enzyme–substrate pair, with implications for drug design and the development of fluorine-selective biocatalysts. PMID:24635371
Experiments shed new light on nickel-fluorine reactions
NASA Technical Reports Server (NTRS)
Fischer, J.; Gunther, W.; Jarry, R. L.
1967-01-01
Isotopic tracer experiments and scale-impingement experiments show fluorine to be the migrating species through the nickel fluoride scale formed during the fluorination of nickel. This is in contrast to nickel oxide scales, where nickel is the migrating species.
Martinelli, Carmela; Farinola, Gianluca M.; Pinto, Vita; Cardone, Antonio
2013-01-01
In this review, the main synthetic aspects and properties of fluorinated arylenevinylene compounds, both oligomers and polymers, are summarized and analyzed. Starting from vinyl organotin derivatives and aryl halides, the Stille cross-coupling reaction has been successfully applied as a versatile synthetic protocol to prepare a wide series of π-conjugated compounds, selectively fluorinated on the aromatic and/or vinylene units. The impact of fluoro-functionalization on properties, the solid state organization and intermolecular interactions of the synthesized compounds are discussed, also in comparison with the non-fluorinated counterparts. Luminescent and photovoltaic applications are also discussed, highlighting the role of fluorine on the performance of devices. PMID:28809206
Struzzi, Claudia; Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla
2017-01-01
The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF 4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions.
NASA Astrophysics Data System (ADS)
Riapanitra, Anung; Asakura, Yusuke; Cao, Wenbin; Noda, Yasuto; Yin, Shu
2018-06-01
Fluorine-doped VO2(M) nanoparticles have been successfully synthesized using the hydrothermal method at a supercritical temperature of 490 °C. The pristine VO2(M) has the critical phase transformation temperature of 64 °C. The morphology and homogeneity of the monoclinic structure VO2(M) were adopted by the fluorine-doped system. The obtained particle size of the samples is smaller at the higher concentration of anion doping. The best reduction of critical temperature was achieved by fluorine doping of 0.13% up to 48 °C. The thin films of the fluorine-doped VO2(M) showed pronounced thermochromic property and therefore are suitable for smart window applications.
Scardamaglia, Mattia; Colomer, Jean-François; Verdini, Alberto; Floreano, Luca; Snyders, Rony; Bittencourt, Carla
2017-01-01
The surface chemistry of plasma fluorinated vertically aligned carbon nanotubes (vCNT) is correlated to the CF4 plasma chemical composition. The results obtained via FTIR and mass spectrometry are combined with the XPS and Raman analysis of the sample surface showing the dependence on different plasma parameters (power, time and distance from the plasma region) on the resulting fluorination. Photoemission and absorption spectroscopies are used to investigate the evolution of the electronic properties as a function of the fluorine content at the vCNT surface. The samples suffer a limited ageing effect, with a small loss of fluorine functionalities after two weeks in ambient conditions. PMID:28904833
Fluorine determination in human healthy and carious teeth using the PIGE technique
NASA Astrophysics Data System (ADS)
Carvalho, M. L.; Karydas, A. G.; Casaca, C.; Zarkadas, Ch; Paradellis, Th; Kokkoris, M.; Nsouli, B.; Cunha, A. S.
2001-09-01
The purpose of this study is to determine and compare the fluorine concentration in human teeth from two different populations, living in the Portuguese quite isolated islands of Açores: S. Miguel and Terceira. Both populations have similar dietary habits, similar occupational activities, mostly rural, and the age of both populations is more or less the same, around 40 years. No chronic diseases were registered in any of the donors. The two groups are exposed to different levels of fluorine in drinking water. Terceira island has moderate fluorine concentration levels (1-2 μg g -1) while S. Miguel island is known for the high fluorine concentration levels in its water (>3 μg g -1), especially in one area known as Furnas. Thirty-three teeth, 17 healthy and 16 carious without restoration (14 incisors and canines, 7 premolars and 12 molars), were collected and analyzed for the determination of fluorine concentration in the dentine region, using the nuclear reaction 19F( p, αγ) 16O. The teeth were cross-sectioned along the vertical plane and polished, in order to obtain a smooth and plane surface of about 1 mm thickness. In this work an association between caries prevalence and fluorine content of drinking water is discussed and the variation of fluorine concentration among different types of teeth (canines and incisors, premolars, molars) and physical state (carious and non-carious) is examined.
PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS
Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...
40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting under...
40 CFR 721.10524 - Fluorinated alkylsulfonamidol urethane polymer (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... polymer (generic). 721.10524 Section 721.10524 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10524 Fluorinated alkylsulfonamidol urethane polymer (generic). (a... generically as fluorinated alkylsulfonamidol urethane polymer (PMN P-11-384) is subject to reporting under...
Xenon fluorides show potential as fluorinating agents
NASA Technical Reports Server (NTRS)
Chernick, C. L.; Shieh, T. C.; Yang, N. C.
1967-01-01
Xenon fluorides permit the controlled addition of fluorine across an olefinic double bond. They provide a series of fluorinating agents that permit ready separation from the product at a high purity. The reactions may be carried out in the vapor phase.
[Effect of fluorine, selenium and cadmium on anti-oxidase and microelements in rat's body].
Mou, Suhua; Qin, Si; Hu, Qituo; Duan, Xianyu
2004-03-01
To study the effect of fluorine, selenium and cadmium on lipid peroxide(LPO), the activity of glutathione peroxidase (GSH-Px) and microelements such as cadmium, selenium and zinc in rats. Measurement of the contents of LPO, GSH-Px and microelements such as cadmium, selenium and zinc in SD rats after killing that have drunk water containing fluorine, selenium and cadmium eight-week ago. The contents of GSH-Px in the serum, liver and kidney of rats that were contaminated with fluorine, selenium and cadmium respectively remarkably reduced and the content of LPO noticeably increased in comparison with those of rats without being contaminated. The contents of GSH-Px noticeably increased and LPO remarkably reduced in those contaminated with the combination of any two of the three elements when compared with those in the rats contaminated with any one element of them, while the contents of GSH-Px in those contaminated with the combination of the three elements increased even more. Excessive selenium or cadmium led to the increase of selenium content in kidney and cadmium content in liver by several times. Excessive fluorine or cadmium gave rise to the lack of selenium and zinc. Selenium brought out universal increase of zinc in liver and kidney. The combination of fluorine and selenium or the combination of cadmium and selenium or that of fluorine, selenium and cadmium produced remarkable decrease of the accumulation of selenium in kidney and cadmium in liver. They also lowed the loss of zinc caused by fluorine or cadmium. Excessive fluorine, selenium or cadmium could inhabit the activity of GSH-Px in rats, which could diminish the antioxidation ability of the body. But when two or three of the chemical elements coexisted, they reduced the inhabitation of each of them on the activity of GSH-Px and in the meantime decreased the accumulation of cadmium and selenium and diminished the loss of zinc caused by fluorine and cadmium.
Electronic Structure Theory Study of the Microsolvated F(-)(H2O) + CH3I SN2 Reaction.
Zhang, Jiaxu; Yang, Li; Sheng, Li
2016-05-26
The potential energy profile of microhydrated fluorine ion reaction with methyl iodine has been characterized by extensive electronic structure calculations. Both hydrogen-bonded F(-)(H2O)---HCH2I and ion-dipole F(-)(H2O)---CH3I complexes are formed for the reaction entrance and the PES in vicinity of these complexes is very flat, which may have important implications for the reaction dynamics. The water molecule remains on the fluorine side until the reactive system goes to the SN2 saddle point. It can easily move to the iodine side with little barrier, but in a nonsynchronous reaction path after the dynamical bottleneck to the reaction, which supports the previous prediction for microsolvated SN2 systems. The influence of solvating water molecule on the reaction mechanism is probed by comparing with the influence of the nonsolvated analogue and other microsolvated SN2 systems. Taking the CCSD(T) single-point calculations based on MP2-optimized geometries as benchmark, the DFT functionals B97-1 and B3LYP are found to better characterize the potential energy profile for the title reaction and are recommended as the preferred methods for the direct dynamics simulations to uncover the dynamic behaviors.
Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination
Hiszpanski, Anna M.; Woll, Arthur R.; Kim, Bumjung; ...
2017-04-25
Here, substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphism—the ability of a compound to adopt more than one crystal structure—has not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior ofmore » contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., P2 1/c crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination.« less
Altering the Polymorphic Accessibility of Polycyclic Aromatic Hydrocarbons with Fluorination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiszpanski, Anna M.; Woll, Arthur R.; Kim, Bumjung
Here, substituting hydrogen with fluorine is an extensively employed strategy to improve the macroscopic properties of compounds for use in fields as diverse as pharmaceutics and optoelectronics. The role fluorine substitution plays on polymorphism—the ability of a compound to adopt more than one crystal structure—has not been previously studied. Yet, this understanding is important as different polymorphs of the same compound can result in drastically different bulk properties (e.g., solubility, absorptivity, and conductivity). Strategies to either promote or suppress the crystallization of particular polymorphs are thus desired. Here, we show that substituting hydrogen with fluorine affects the polymorphic behavior ofmore » contorted hexabenzocoronene (cHBC). A polycyclic aromatic hydrocarbon and molecular semiconductor, cHBC exhibits two polymorphs (i.e., P2 1/c crystal structure which we refer to as polymorph I and a triclinic crystal structure which we refer to as polymorph II) that are accessible through postdeposition processing of amorphous films. While the same two polymorphs remain accessible in fluorinated derivatives of cHBC, fluorination appears to favor the formation of polymorph I, with progressively smaller energy barrier for transformation from polymorph II to polymorph I with fluorination.« less
A new microwave acid digestion bomb method for the determination of total fluorine.
Grobler, S R; Louw, A J
1998-01-01
A new microwave acid digestion method for total fluorine analysis was compared to the reliable reverse-extraction technique. The commercially available Parr bombs which are compatible with microwave heating were modified for this purpose. The Mann-Whitney statistical test did not show any significant differences (p > 0.05) in the determinations of total fluorine in various samples between the two above-mentioned methods. The microwave method also gave high fluorine recoveries (> 97%) when fluoride was added to different samples. The great advantage of the microwave acid digestion bomb method is that the digestion under pressure is so aggressive that only a few minutes is needed for complete digestion (also of covalently bonded fluorine), which reduces the time for fluorine analysis dramatically, while no loss of fluorine or contamination from extraneous sources could take place during the ashing procedure. The digestion solution was made up of 300 microliter of concentrated nitric acid plus 537 microliter of water. After digestion 675 microliter of approximately 8.5 M sodium hydroxide plus 643 microliter of citrate/TISAB buffer was added resulting in an alkaline solution (pH approximately 12) which was finally adjusted to a pH of approximately 5.3 for fluoride determination.
Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene
NASA Astrophysics Data System (ADS)
Xiao-Jiao, San; Bai, Han; Jing-Geng, Zhao
2016-03-01
We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 Å, the two graphene layers in AA stacking can form strong chemical bonds. Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor (direct gap of 3.46 eV). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semi-fluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010] polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices. Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131).
40 CFR 721.10146 - Partially fluorinated condensation polymer (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... polymer (generic). 721.10146 Section 721.10146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10146 Partially fluorinated condensation polymer (generic). (a) Chemical... as partially fluorinated condensation polymer (PMN P-07-87) is subject to reporting under this...
Fluorinated elastomeric materials
Lagow, Richard J.; Dumitru, Earl T.
1986-11-04
This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.
Fluorinated elastomeric materials
Lagow, Richard J.; Dumitru, Earl T.
1990-02-13
This invention relates to a method of making perfluorinated elastomeric materials, and to materials made by such methods. In the full synthetic scheme, a partially fluorinated polymeric compound, with moieties to prevent crystallization, is created. It is then crosslinked to a desired degree, then perfluorinated. Various intermediate materials, such as partially fluorinated crosslinked polymers, have useful properties, and are or may become commercially available. One embodiment of this invention therefore relates to perfluorination of a selected partially fluorinated, crosslinked material, which is one step of the full synthetic scheme.
Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.
Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C
2015-05-06
The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.
Measurement of Fluorine Atom Concentrations and Reaction Rates in Chemical Laser Systems.
1981-09-01
AD-A1RA 070 AERODYNEERESEARCHUINC BEDFORDM MA F/6_20/5 MEASURE MENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATFS -ETC(U) SEP_ A A C STANT ON...0772 LEVELIg 00 ~ARI-RR-272 cO0 MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATES IN CHEMICAL LASER SYSTEMS ANNUAL TECHNICAL REPORT by...MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND Annual Report REACTION RATES IN CHEMICAL LASER SYSTEMS 23 July 1980 - 23 July 1981 S. PERFORMING ORG. REPORT
Fluorine-18 patents (2009–2015). Part 2: new radiochemistry
Mossine, Andrew V; Thompson, Stephen; Brooks, Allen F; Sowa, Alexandra R; Miller, Jason M; Scott, Peter JH
2016-01-01
Fluorine-18 (18F) is one of the most common positron-emitting radionuclides used in the synthesis of positron emission tomography radiotracers due to its ready availability, convenient half-life and outstanding imaging properties. In Part 1 of this review, we presented the first analysis of patents issued for novel radiotracers labeled with fluorine-18. In Part 2, we follow-up with a focus on patents issued for new radiochemistry methodology using fluorine-18 issued between January 2009 and December 2015. PMID:27610753
2006-04-03
2) Substituting a vinyl hydrogen with a fluorine presents an interesting situation for electrophilic reactions. The π-bond is less...reactive toward electrophiles due to the electron-withdrawing effect of the vinyl fluorine . Therefore, carbocations or radical cations are destabilized...NUMBER Distributions from Terminal Alkenes: The Effect of Electron-Withdrawing Fluorine Substituents on the Structure and Charge Localization of
Fluorine in the solar neighborhood: Chemical evolution models
NASA Astrophysics Data System (ADS)
Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.
2018-04-01
Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.
NASA Astrophysics Data System (ADS)
Yoshida, Tetsuya; Maekawa, Keiichi; Tsuda, Shibun; Shimizu, Tatsuo; Ogasawara, Makoto; Aono, Hideki; Yamaguchi, Yasuo
2018-04-01
We investigate the effect of fluorine implanted in the polycrystalline silicon (poly-Si) gate and source/drain (S/D) region on negative bias temperature instability (NBTI) improvement. It is found that there is a trade-off implantation energy dependence of NBTI between fluorine in the poly-Si gate and that in the S/D region. Fluorine implanted in the poly-Si gate contributes to NBTI improvement under low energy implantation. On the other hand, NBTI is improved by fluorine implanted in the S/D region under high energy. We propose that the two-step implantation process with high and low energy is the optimum condition for NBTI improvement.
Graphite fluoride lubrication: The effect of fluorine content, atmosphere, and burnishing technique
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1975-01-01
Eight different graphite fluoride compounds with fluorine to carbon ratios varying from x = 0.25 to 1.1 were evaluated as burnished films in order to determine the effect of fluorine content on the solid lubricant properties of graphite fluoride. For comparison, similar experiments were conducted on graphite burnished films. It was found that even a small amount of fluorine in graphite fluoride (CF sub 0.25) sub n improved the lubricating properties of graphite. Such factors as burnishing atmosphere, burnishing technique, test atmosphere, and specimen temperature affected the results as much as varying the fluorine to carbon ratio of the compound. Best life was found for films that were machine-burnished in moist air and tested in moist air.
NASA Astrophysics Data System (ADS)
Sugiura, Chikara
1991-08-01
The fluorine Kα emission spectra in fluorescence from a series of 3d transition-metal difluorides MF2 (M=Mn, Fe, Co, Ni, Cu and Zn) have been measured with a high-resolution two-crystal vacuum spectrometer. It is shown that the observed FWHM of the Kα1,2 emission band is closely related to the difference in the electronegativity between the metal and fluorine atoms. The measured emission spectra are presented along with the UPS or XPS spectra of the valence bands and the fluorine K absorption spectra of the metal difluorides, reported previously. The structures at the fluorine K absorption edges are interpreted in terms of a molecular orbital (MO) model.
Substrate Material for Holographic Emulsions Utilizing Fluorinated Polyimide Film
NASA Technical Reports Server (NTRS)
Gierow, Paul A. (Inventor); Clayton, William R. (Inventor); St.Clair, Anne K. (Inventor)
1999-01-01
A new holographic substrate utilizing flexible. optically transparent fluorinated polyimides. Said substrates have 0 extremely low birefringence which results in a high signal to noise ratio in subsequent holograms. Specific examples of said fluorinated polyimides include 6FDA+APB and 6FDA+4BDAF.
Method to synthesize lanthanide fluoride materials from lanthanide fluorinated alkoxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, Timothy J.
Lanthanide fluorinated alkoxide derivatives can be synthesized from the alcoholysis reaction of the lanthanide bis-trimethylsilyl amide and an excess amount of hexafluoro iso-propanol. Nanoparticles can be formed from the lanthanide fluorinated alkoxide derivatives by a solvothermal or solution precipitation process.
Process for preparing fluorine-18
Winchell, Harry S.; Wells, Dale K.; Lamb, James F.; Beaudry, Samuel B.
1976-09-21
An improved process for preparation of fluorine-18 by a neon (deuteron, alpha particle) fluorine-18 nuclear reaction in a non-reactive enclosed reaction zone wherein a ultrapure product is recovered by heating the reaction zone to a high temperature and removing the product with an inert gas.
Superhydrophobicity of electrospray-synthesized fluorinated silica layers.
Kim, Eun-Kyeong; Lee, Chul-Sung; Kim, Sang Sub
2012-02-15
The preparation of superhydrophobic SiO(2) layers through a combination of a nanoscale surface roughness and a fluorination treatment is reported. Electrospraying SiO(2) precursor solutions that had been prepared by a sol-gel chemical route produced very rough SiO(2) layers. Subsequent fluorination treatment with a solution containing trichloro(1H,1H,2H,2H-perfluorooctyl)silane resulted in highly rough, fluorinated SiO(2) layers. The fluorinated rough SiO(2) layers exhibited excellent repellency toward various liquid droplets. In particular, water repellency of 168° was observed. On the bases of Cassie-Baxter and Young-Dupre equations, the surface fraction and the work of adhesion of the rough, fluorinated SiO(2) layers were respectively estimated. In light of the durability in water, ultraviolet resistance, and thermal stability, the superhydrophobic SiO(2) layers prepared in this work hold promise in a range of practical applications. Copyright © 2011 Elsevier Inc. All rights reserved.
Suppression of Sclerostin and Dickkopf-1 levels in patients with fluorine bone injury.
Wang, Wenpeng; Xu, Jian; Liu, Kejian; Liu, Xiaoli; Li, Changcheng; Cui, Caiyan; Zhang, Yuzeng; Li, Huabing
2013-05-01
Evidence has been accumulating for the role of Sclerostin and Dickkopf-1 as the antagonists of Wnt/β-Catenin signaling pathway, which suppresses bone formation through inhibiting osteoblastic function. To get deep-inside information about the expression of the antagonists in patients with fluorine bone injury, a case-control study was conducted in two counties in Hubei Province. Urinary and serum fluoride were significantly higher in patients with fluorine bone injury than in healthy controls. Additionally, patients with fluorine bone injury had significantly lower serum Sclerostin and Dickkopf-1 levels compared with healthy controls (P<0.001). Serum Sclerostin and Dickkopf-1 levels were significantly correlated with serum fluoride in all studied subjects (n=186). Low Sclerostin and Dickkopf-1 levels were associated with a significantly increased risk of fluorine bone injury. In conclusion, serum Sclerostin and Dickkopf-1 might be used as important markers of bone metabolism change and potential therapeutic targets to treat fluorine bone injury. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.
2016-11-01
Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.
Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.
2016-01-01
Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow. PMID:27830697
Oxidative aliphatic C-H fluorination with manganese catalysts and fluoride ion
Liu, Wei; Huang, Xiongyi; Groves, John T
2014-01-01
Fluorination is a reaction that is useful in improving the chemical stability and changing the binding affinity of biologically active compounds. The protocol described here can be used to replace aliphatic, C(sp3)-H hydrogen in small molecules with fluorine. Notably, isolated methylene groups and unactivated benzylic sites are accessible. The method uses readily available manganese porphyrin and manganese salen catalysts and various fluoride ion reagents, including silver fluoride (AgF), tetrabutylammonium fluoride and triethylamine trihydrofluoride (TREAT·HF), as the source of fluorine. Typically, the reactions afford 50–70% yield of mono-fluorinated products in one step. Two representative examples, the fragrance component celestolide and the nonsteroidal anti-inflammatory drug ibuprofen, are described; they produced useful isolated quantities (250–300 mg, ~50% yield) of fluorinated material over periods of 1–8 h. The procedures are performed in a typical fume hood using ordinary laboratory glassware. No special precautions to rigorously exclude water are required. PMID:24177292
Modular "Click" Preparation of Bifunctional Polymeric Heterometallic Catalysts.
Wang, Wenlong; Zhao, Liyuan; Lv, Hui; Zhang, Guodong; Xia, Chungu; Hahn, F Ekkehardt; Li, Fuwei
2016-06-27
Heterobimetallic molecular complexes or strictly alternating metallated polymers are obtained by a click reaction between mononuclear metal complexes (secondary building units, SBUs) bearing NHCs functionalized with either p-azidophenyl or p-ethynylphenyl wingtips. With a copper-NHC complex as SBU the formation of molecular or polymeric compounds did not require any additives as the copper complex catalyzes the click reaction. Transmetallation from heterobimetallic Cu/Ag derivatives to Cu/Pd derivatives was achieved. The linker between the SBUs (flexible or rigid) influences the catalytic activity of the heterobimetallic compounds. The polymer with alternating copper-NHC and silver-NHC units and a flexible methylene-triazole bridge between them shows the highest activity in the catalytic alkynylation of trifluoromethyl ketones to give fluorinated propargylic alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study of the degree of fluorination in regioregular poly(3-hexylthiophene)
Blaskovits, J. Terence; Bura, Thomas; Beaupre, Serge; ...
2016-12-27
Here, we systematically varied the degree of fluorination along the backbone of a series of highly regioregular 3-hexylthiophene-based polymers, P3HT-50F, P3HT-33F and P3HT-25F, in which 50%, 33% and 25% of the thiophene units within the polymer chain contain fluorine atoms in the available 4-position. These materials were homopolymerized using the Kumada catalyst transfer polycondensation method from a set of mono-fluorinated bi-, ter- and quarterthiophenes, to ensure high polymer regioregularity and evenly-spaced fluorine atoms along the conjugated thiophene backbone. The monomers were obtained from a synthetic route consisting of iterative Migita-Stille couplings of fluorinated and non-fluorinated 3- hexylthiophenes. The effect ofmore » the fluorine atoms on both polymer structure and properties is presented, with supporting quantum mechanical calculations that rationalize the intrinsic conformation preferences of the three P3HT derivatives. P3HT-50F (M¯ n = 34 kg/mol, 98.5% rr), P3HT-33F (M¯ n = 46 kg/mol, 98% rr) and P3HT-25F (M¯ n = 53 kg/mol, 95% rr) displayed HOMO levels of -5.34, -5.26 and -5.24 eV, bandgaps of 1.98, 1.98 and 1.97 eV, and average field-effect transistor hole mobilities of 4.5 × 10 -3, 2.7 × 10 -2, and 1.2 × 10 -2 cm 2 V -1s -1, respectively.« less
Zhou, Hui; Ruther, Rose E.; Adcock, Jamie; ...
2015-02-22
In this paper, we report a direct fluorination method under fluorine gas atmosphere using a fluidized bed reactor for converting nanophase iron oxide (n-Fe 2O 3) to an electrochemically stable and higher energy density iron oxyfluoride/fluoride phase. Interestingly, no noticeable bulk iron oxyfluoride phase (FeOF) phase was observed even at fluorination temperature close to 300 °C. Instead, at fluorination temperatures below 250 °C, scanning transmission electron microscopy coupled with electron energy loss spectroscopy (STEM-EELS) and X-ray photoelectron spectroscopy (XPS) analysis showed surface fluorination with nominal composition, Fe 2O 3-xF 2x (x < 1). At fluorination temperatures of 275 °C, STEM-EELSmore » results showed porous interconnected nanodomains of FeF 3 and Fe 2O 3 coexisting within the same particle, and overall the particles become less dense after fluorination. We performed potentiometric intermittent titration and electrochemical impedance spectroscopy studies to understand the lithium diffusion (or apparent diffusion) in both the oxyfluoride and mixed phase FeF 3 + Fe 2O 3 composition, and correlate the results to their electrochemical performance. Finally and further, we analyze from a thermodynamical perspective, the observed formation of the majority fluoride phase (77% FeF 3) and the absence of the expected oxyfluoride phase based on the relative formation energies of oxide, fluoride, and oxyfluorides.« less
A method to remove intercalates from bromine and iodine intercalated carbon fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh
1993-01-01
Upon exposure to room-temperature fluorine, intercalated carbon fibers (containing either bromine alone or iodine and bromine together) become heavier and less stable. For Amoco P-100 graphitized carbon fibers which were intercalated with 18 percent bromine by weight, 1 hr of fluorine exposure results in a large weight increase, but causes only a small decrease in thermal stability. More than l hr of fluorine exposure time results in small additional increases in fiber weight, but significant further decreases in fiber thermal stability. Such phenomena do not occur if the fluorine exposure is at 250 C. These observations suggest the mechanism that at room temperature, fluorine is absorbed quickly by the intercalated fibers and intercalated slowly into the fibers. Most of the original intercalates are replaced by fluorine in the process of fluorine intercalation. Under an inert environment, the bromine intercalated fibers are much more thermally stable. After 800 C vacuum heating for two weeks, the brominated fibers lost about 45 percent of their bromine, and their resistivity increased from 64 omega-cm to a range of 95 to 170 micro omega-cm. This is still much lower than the 300 micro omega-cm value for pristine P-100. For practical purposes, in order to preserve their thermal stability, brominated fibers need to be protected from exposure to fluorine at room temperature, or to any intercalate at a temperature where, upon direct contact to graphite, an intercalation compound can easily be formed.
40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal salts. 721.4663 Section 721.4663 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this...
40 CFR 721.9075 - Quaternary ammonium salt of fluorinated alkylaryl amide.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fluorinated alkylaryl amide. 721.9075 Section 721.9075 Protection of Environment ENVIRONMENTAL PROTECTION... amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as quaternary ammonium salt of fluorinated alkylaryl amide (PMN No. P-92-688) is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-19
... Classification System NF 3 nitrogen trifluoride NODA notice of data availability NTTAA National Technology... Previously Produced Fluorinated GHGs and From Venting of Residual Fluorinated GHGs From Containers 7... emissions from production and transformation processes; emissions from venting of container heels and...
21 CFR 170.45 - Fluorine-containing compounds.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fluorine-containing compounds. 170.45 Section 170.45 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES Specific Administrative Rulings and Decisions § 170.45 Fluorine-containing compounds...
Polyimides Containing Fluorine and Phosphorus for Potential Space Applications
NASA Technical Reports Server (NTRS)
Connell, John W.; Watson, Kent A.
2000-01-01
As part of an effort to develop low color, ultraviolet (UV) radiation and atomic oxygen resistant polyimides for potential space applications, a novel diamine containing fluorine and phosphorus was synthesized and used to prepare polyimides. The approach was to combine attributes from colorless, UV resistant polyimides and atomic oxygen (AO) resistant polymers into a single material. Preparation of colorless polyimides has focused on minimization of charge transfer complex formation by incorporation of bulky substituents and disrupting conjugation by using meta-catenated monomers. AO resistant polymer technology development has focused on placing phenylphosphine oxide groups into the backbone of aromatic polymers. However, polyimides prepared utilizing this approach thus far have all exhibited significant color. Thus in an attempt to combine these features in a polyimide a new diamine, bis(3-aminophenyl)-3,5-di(trifluoromethyl)phenylphosphine oxide (TFMDA) was synthesized and used to prepare polyimides. The polyimides were cast into films and characterized for physical and mechanical properties, optical transmission and AO and UV resistance.
Liquid fluorine/hydrazine rhenium thruster update
NASA Technical Reports Server (NTRS)
Appel, M. A.; Kaplan, R. B.; Tuffias, R. H.
1983-01-01
The status of a fluorine/hydrazine thruster development program is discussed. A solid rhenium metal sea-level thrust chamber was successfully fabricated and tested for a total run duration of 1075 s with 17 starts. Rhenium fabrication methods are discussed. A test program was conducted to evaluate performance and chamber cooling. Acceptable performance was reached and cooling was adequate. A flight-type injector was fabricated that achieved an average extrapolated performance value of 3608 N-s/kg (368 lbf-s/lbm). Altitude thrust chambers were fabricated. One chamber incorporates a rhenium combustor and nozzle with an area ratio of 15:1, and a columbium nozzle extension with area ratios from 15:1 to 60:1. The other chamber was fabricated completely with a carbon/carbon composite. Because of the attributes of rhenium for use in high-temperature applications, a program to provide the materials and processes technology needed to reliably fabricate and/or repair vapor-deposited rhenium parts of relatively large size and complex shape is recommended.
40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).
Code of Federal Regulations, 2012 CFR
2012-07-01
...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...
40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).
Code of Federal Regulations, 2014 CFR
2014-07-01
...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...
40 CFR 721.10413 - Fluorinated dialkyl ketone (generic) (P-10-135).
Code of Federal Regulations, 2013 CFR
2013-07-01
...) (P-10-135). 721.10413 Section 721.10413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10413 Fluorinated dialkyl ketone (generic) (P-10-135). (a) Chemical... as fluorinated dialkyl ketone (PMN P-10-135) is subject to reporting under this section for the...
40 CFR Table I-2 to Subpart I of... - Examples of Fluorinated GHGs Used by the Electronics Industry
Code of Federal Regulations, 2014 CFR
2014-07-01
... the Electronics Industry I Table I-2 to Subpart I of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics... the Electronics Industry Product type Fluorinated GHGs and fluorinated heat transfer fluids used...
40 CFR 98.92 - GHGs to report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.92 GHGs to report. (a) You must report emissions of fluorinated GHGs (as defined in § 98.6) and N2O. The fluorinated GHGs that are emitted from electronics... emitted from chemical vapor deposition and other electronics manufacturing processes. (5) Fluorinated GHGs...
Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis
Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.
2016-01-01
The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929
Method of forming fluorine-bearing diamond layer on substrates, including tool substrates
Chang, R. P. H.; Grannen, Kevin J.
2002-01-01
A method of forming a fluorine-bearing diamond layer on non-diamond substrates, especially on tool substrates comprising a metal matrix and hard particles, such as tungsten carbide particles, in the metal matrix. The substrate and a fluorine-bearing plasma or other gas are then contacted under temperature and pressure conditions effective to nucleate fluorine-bearing diamond on the substrate. A tool insert substrate is treated prior to the diamond nucleation and growth operation by etching both the metal matrix and the hard particles using suitable etchants.
Shiue, Chyng-Yann; Wolf, Alfred P.
1984-03-13
The novel radioactive compound .sup.18 F-4-fluoroantipyrine having high specific activity which can be used in nuclear medicine in diagnostic applications, prepared by the direct fluorination of antipyrine in acetic acid with radioactive fluorine at room temperature and purifying said radioactive compound by means of gel chromatography with ethyl acetate as eluent is disclosed. The non-radioactive 4-fluoroantipyrine can also be prepared by the direct fluorination of antipyrine in acetic acid with molecular fluorine at room temperature and purified by means of gel chromotography with ethyl acetate eluent.
NASA Astrophysics Data System (ADS)
Wang, Chenjie; Huo, Zongliang; Liu, Ziyu; Liu, Yu; Cui, Yanxiang; Wang, Yumei; Li, Fanghua; Liu, Ming
2013-07-01
The effects of interfacial fluorination on the metal/Al2O3/HfO2/SiO2/Si (MAHOS) memory structure have been investigated. By comparing MAHOS memories with and without interfacial fluorination, it was identified that the deterioration of the performance and reliability of MAHOS memories is mainly due to the formation of an interfacial layer that generates excess oxygen vacancies at the interface. Interfacial fluorination suppresses the growth of the interfacial layer, which is confirmed by X-ray photoelectron spectroscopy depth profile analysis, increases enhanced program/erase efficiency, and improves data retention characteristics. Moreover, it was observed that fluorination at the SiO-HfO interface achieves a more effective performance enhancement than that at the HfO-AlO interface.
Zhu, Yi; Han, Jianlin; Wang, Jiandong; Shibata, Norio; Sodeoka, Mikiko; Soloshonok, Vadim A; Coelho, Jaime A S; Toste, F Dean
2018-04-11
New methods for preparation of tailor-made fluorine-containing compounds are in extremely high demand in nearly every sector of chemical industry. The asymmetric construction of quaternary C-F stereogenic centers is the most synthetically challenging and, consequently, the least developed area of research. As a reflection of this apparent methodological deficit, pharmaceutical drugs featuring C-F stereogenic centers constitute less than 1% of all fluorine-containing medicines currently on the market or in clinical development. Here we provide a comprehensive review of current research activity in this area, including such general directions as asymmetric electrophilic fluorination via organocatalytic and transition-metal catalyzed reactions, asymmetric elaboration of fluorine-containing substrates via alkylations, Mannich, Michael, and aldol additions, cross-coupling reactions, and biocatalytic approaches.
Probing plasma fluorinated graphene via spectromicroscopy.
Struzzi, C; Scardamaglia, M; Reckinger, N; Sezen, H; Amati, M; Gregoratti, L; Colomer, J-F; Ewels, C; Snyders, R; Bittencourt, C
2017-11-29
Plasma fluorination of graphene is studied using a combination of spectroscopy and microscopy techniques, giving insight into the yield and fluorination mechanism for functionalization of supported graphene with both CF 4 and SF 6 gas precursors. Ion acceleration during fluorination is used to probe the effect on grafting functionalities. Adatom clustering, which occurs with CF 4 plasma treatment, is suppressed when higher kinetic energy is supplied to the ions. During SF 6 plasma functionalization, the sulfur atoms tend to bond to bare copper areas instead of affecting the graphene chemistry, except when the kinetic energy of the ions is restricted. Using scanning photoelectron microscopy, with a 100 nm spatial resolution, the chemical bonding environment is evaluated in the fluorinated carbon network at selected regions and the functionalization homogeneity is controlled in individual graphene flakes.
NASA Astrophysics Data System (ADS)
Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.
2016-09-01
Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eun-Kyeong; Yeong Kim, Ji; Sub Kim, Sang, E-mail: sangsub@inha.ac.kr
We describe the preparation of superhydrophobic SiO{sub 2} layers through a combination of surface roughness and fluorination. Electrospraying SiO{sub 2} precursor solutions that were prepared by a sol-gel route and included trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a fluorination source produced highly rough, fluorinated SiO{sub 2} layers. In sharp contrast to the fluorinated flat SiO{sub 2} layer, the fluorinated rough SiO{sub 2} layer showed much enhanced repellency toward liquid droplets of different surface tensions. The surface fraction and the work of adhesion of the superhydrophobic SiO{sub 2} layers were determined, respectively, based on Cassie-Baxter and Young-Dupre equations. The satisfactory long-term stability for 30 days,more » the ultraviolet resistance and the thermal stability up to 400 {sup o}C of the superhydrophobic SiO{sub 2} layers prepared in this work confirm a promising practical application. - Graphical abstract: A schematic illustration of the electrospray deposition used for preparing SiO{sub 2} layers. Shapes of liquid droplets of water, glycerol, coffee, juice and milk created on the fluorinated rough SiO{sub 2} layer deposited on a silicon wafer. Highlights: Black-Right-Pointing-Pointer Superhydrophobic SiO{sub 2} layers are realized by a combination of surface roughness and fluorination. Black-Right-Pointing-Pointer The fluorinated rough SiO{sub 2} layer shows enhanced repellency toward various liquid droplets. Black-Right-Pointing-Pointer The wetting behavior is explained based on Cassie-Baxter and Young-Dupre equations. Black-Right-Pointing-Pointer The superhydrophobic SiO{sub 2} layers confirm a promising practical application.« less
Low-Absorption Liquid Crystals for Infrared Beam Steering
2013-10-22
Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic mixture, deuteration, nematic phase, birefringence, overtone...absorption compounds for LWIR and SWIR are also investigated. Key words: Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic ...the melting point significantly. We did careful investigation and formed a eutectic mixture consisting of five fluorinated compounds without any
The paper discusses simulation of the performance of chlorine-free fluorinated ethers and fluorinated hydrocarbons as potential long-term replacements for CFC-11 and -114. Modeling has been done with in-house refrigeration models based on the Carnahan-Starling-DeSantis Equation o...
THE HEAT CAPACITY OF FLUORINATED PROPANE AND BUTANE DERIVATIVES BY DIFFERENTIAL SCANNING CALORIMETRY
The paper gives results of the measurement (to 3% accuracy) of the constant-pressure liquid-phase heat capacities of 21 hydrogen-containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6 to 76.7 C, using diff...
Catalytic Enantioselective Cyclization and C3-Fluorination of Polyenes
Cochrane, Nikki A.; Nguyen, Ha; Gagne, Michel R.
2013-01-01
(xylyl-phanephos)Pt2+ in combination with XeF2 mediates the consecutive diastereoselective cation-olefin cyclization/fluorination of polyene substrates. Isolated yields were typically in the 60s while enantioselectivies reached as high as 87%. The data are consistent with a stereoretentive fluorination of a P2Pt-alkyl cation intermediate. PMID:23282101
Chemical vapor deposition of fluorine-doped zinc oxide
Gordon, Roy G.; Kramer, Keith; Liang, Haifan
2000-06-06
Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.
The use of supercritical carbon dioxide as a reaction medium for polyester synthesis is hindered by the low solubility of diols in CO2. However, it has been previously demonstrated that fluorinated compounds can exhibit greater miscibility with carbon dioxide than t...
Yeung, L W Y; Miyake, Y; Wang, Y; Taniyasu, S; Yamashita, N; Lam, P K S
2009-01-01
The concentrations of 10 PFCs (perfluorinated compounds: PFOS, PFHxS, PFOSA, N-EtFOSA, PFDoDA, PFUnDA, PFDA, PFNA, PFOA, and PFHpA) were measured in liver samples of Indo-Pacific humpback dolphins (Sousa chinensis) (n=10) and finless porpoises (Neophocaena phocaenoides) (n=10) stranded in Hong Kong between 2003 and 2007. PFOS was the dominant PFC in the tissues at concentrations ranging at 26-693 ng/g ww in dolphins and 51.3-262 ng/g ww in porpoises. A newly developed combustion ion chromatography for fluorine was applied to measure total fluorine (TF) and extractable organic fluorine (EOF) in these liver samples to understand PFC contamination using the concept of mass balance analysis. Comparisons between the amounts of known PFCs and EOF in the livers showed that a large proportion (approximately 70%) of the organic fluorine in both species is of unknown origin. These investigations are critical for a comprehensive assessment of the risks of these compounds to humans and other receptors.
NASA Astrophysics Data System (ADS)
Barraza-Lopez, Salvador; Rivero, Pablo; Yan, Jia-An; Garcia-Suarez, Victor Manuel; Ferrer, Jaime
2015-03-01
Tin fluoride has a vast literature. This material is stable in bulk form at room temperature and has commercial applications that include fluorinated toothpaste. Bulk tin fluoride has a pair of fluorine atoms bridging two tin atoms. In the recent past the electronic properties of 2D tin with honeycomb structure have been discussed thus generating a wealth of literature that emphasizes its non-topologically-trivial electronic properties due to the combination of a Dirac-like dispersion and a strong spin-orbit coupling given its large atomic mass. Nevertheless the stability of such freestanding structures has been contested recently. As it turns out, the most stable form of fluorinated tin does not possess a graphane-like structure either. In the most stable phase to be discussed here, fluorine atoms tilt away from (graphane-like) positions over/below tin atoms; in an atomistic arrangement similar to the one seen on their parent bulk structure. Electronic properties depend on atomistic coordination, and the most stable form of fluorinated tin does not possess non-trivial topological properties. Nevertheless it represents a new paradigm for valleytronics in 2D.
Inversion of Supramolecular Chirality by Sonication-Induced Organogelation
Maity, Sibaprasad; Das, Priyadip; Reches, Meital
2015-01-01
Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508
Feng, Qian; Xiao, Wenqing; Zheng, Yongping; Lin, Yuda; Li, Jiaxin; Ye, Qingying; Huang, Zhigao
2018-01-01
A novel approach has been developed to synthesize slightly fluorinated graphene quantum dots (GQDs-F) through thermal cutting of highly fluorinated graphene. The fluorinated graphene with substantial structure defects is fragile and is readily attacked. The direct evaporation of abundant CFn (n = 2, 3) groups near structure defects lead to the loss of adjacent skelton C atoms, and the fluorinated graphene can be thermally cut into GQDs-F with a relatively uniform nanosize in pyrolysis at 810 K. The GQDs-F with a low F/C atomic ratio of ca. 0.03 exhibit excitation wavelength-dependent properties with multicolor photoluminescence (PL) from blue to green. At the same time, F adatoms that are most likely located at the edges of GQDs-F have a high efficiency of introducing paramagnetic centres, and GQDs-F show a strong paramagnetism because of sp3-type defects and magnetic zigzag edges. The graphene quantum dots with such multimodal capabilities should have great applied value in material science. PMID:29316730
Photoemission studies of fluorine functionalized porous graphitic carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganegoda, Hasitha; Olive, Daniel; Cheng, Lidens
2012-03-01
Porous graphitic carbon (PGC) has unique properties desirable for liquid chromatography applications when used as a stationary phase. The polar retention effect on graphite (PREG) allows efficient separation of polar and non-polar solutes. Perfluorinated hydrocarbons however lack polarizabilty and display strong lipo- and hydrophobicity, hence common lipophilic and hydrophilic analytes have low partition coefficiency in fluorinated stationary phases. Attractive interaction between fluorinated stationary phase and fluorinated analytes results in strong retention compared to non-fluorinated analytes. In order to change the selectivities of PGC, it is necessary to develop a bonded PGC stationary phase. In this study, we have synthesized perfluorinated,more » PGC using hepatadecafluoro-1-iodooctane, under different temperature conditions. Surface functionalization of the raw material was studied using photoelectron spectroscopy (PES). Results indicate the existence of fluorine containing functional groups, -CF, -CF{sub 2} along with an intercalated electron donor species. Multiple oxygen functional groups were also observed, likely due to the presence of oxygen in the starting material. These oxygen species may be responsible for significant modifications to planer and tetrahedral carbon ratios.« less
Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine.
Tang, Y; Ghirlanda, G; Vaidehi, N; Kua, J; Mainz, D T; Goddard III, W A; DeGrado, W F; Tirrell, D A
2001-03-06
Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.
Negative differential resistance in partially fluorinated graphene films
NASA Astrophysics Data System (ADS)
Antonova, I. V.; Shojaei, S.; Sattari-Esfahlan, S. M.; Kurkina, Irina I.
2017-07-01
Partially fluorinated graphene films were created by chemical functionalization of graphene layers in an aqueous solution of hydrofluoric acid. The formation of graphene islands or graphene quantum dots (GQDs) and a fluorinated graphene network is demonstrated in such films. Negative differential resistance (NDR) resulting from the formation of the potential barrier system in the films was observed for different fluorination degrees of suspension. The origin of the NDR varies with an increase in the fluorination degree of the suspension. Numerical calculations were performed to elucidate the tunneling between adjacent energy levels and creation of NDR. It was found that in the case of films with smaller flake and smaller GQD sizes, multi-peak NDR appears in the I-V curve. We predict that the NDR peak position shifts towards lower voltage with a decrease in the GQD size. Surprisingly, we observed a negative step-like valley for positive biases in the I-V curve of samples. Our findings with detailed analysis shed light on understanding the mechanisms of the NDR phenomenon in a partially fluorinated graphene system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azimi, N.; Xue, Z.; Rago, N. D.
The fluorinated electrolyte containing a fluoroether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was investigated as a new electrolyte for lithium-sulfur (Li-S) batteries. The low solubility of lithium polysulfides (LiPS) in the fluorinated electrolyte reduced the parasitic reactions with Li anode and mitigated the self-discharge by limiting their diffusion from the cathode to the anode. The use of fluorinated ether as a co-solvent and LiNO3 as an additive in the electrolyte shows synergetic effect in suppressing the self-discharge of Li-S battery due to the formation of the solid electrolyte interphase (SEI) on both sulfur cathode and the lithium anode. The Li-S cell with themore » fluorinated electrolyte showed prolonged shelf life at fully charged state.« less
NASA Astrophysics Data System (ADS)
Boča, M.; Gurišová, V.; Šimko, F.
2017-05-01
X-ray fluorescent signals of F Kα, Na Kα, Cl Kα, K Kα, and Ta Lα were measured by WD-XRF for various fluorine-containing systems: K2TaF7, Na3AlF6, K2ZrF6, NaF, and LiF (with NaCl and wax as additional additives). The data were recorded for 41 samples (in the form of pellets prepared in the laboratory) by more than 200 scans. The analysis of the measured fluorine X-ray fluorescence intensities demonstrated that the balance between absorption and enhancement effects depends strongly on the presence and concentration of other elements in the system. The experimental intensities of X-ray fluorescent radiation of fluorine for different systems with comparable fluorine content could differ by as much as 500%.
FTIR cryospectroscopic and ab initio studies of desflurane-dimethyl ether H-bonded complexes.
Melikova, S M; Rutkowski, K S; Rospenk, M
2017-09-05
The IR spectra of mixtures of desflurane and dimethyl ether are studied with the help of FTIR cryospectroscopy in liquefied Kr at T~118-158K. Comparative analysis of the experimental data and results of ab initio calculations show that either of the two C-H groups of desflurane is involved in heterodimer formation of comparable strengths. The blue frequency shift is found for stretching vibrations of those C-H donors which directly participate in H-bond formation. Additionally the complexes are stabilized by weaker contacts between hydrogen atoms of dimethyl ether and fluorine atoms of desflurane. Copyright © 2017 Elsevier B.V. All rights reserved.
Sky-blue emitting bridged diiridium complexes: beneficial effects of intramolecular π-π stacking.
Congrave, Daniel G; Hsu, Yu-Ting; Batsanov, Andrei S; Beeby, Andrew; Bryce, Martin R
2018-02-06
The potential of intramolecular π-π interactions to influence the photophysical properties of diiridium complexes is an unexplored topic, and provides the motivation for the present study. A series of diarylhydrazide-bridged diiridium complexes functionalised with phenylpyridine (ppy)-based cyclometalating ligands is reported. It is shown by NMR studies in solution and single crystal X-ray analysis that intramolecular π-π interactions between the bridging and cyclometalating ligands rigidify the complexes leading to high luminescence quantum efficiencies in solution and in doped films. Fluorine substituents on the phenyl rings of the bridge promote the intramolecular π-π interactions. Notably, these non-covalent interactions are harnessed in the rational design and synthesis of the first examples of highly emissive sky-blue diiridium complexes featuring conjugated bridging ligands, for which they play a vital role in the structural and photophysical properties. Experimental results are supported by computational studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya
2016-02-08
Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m 2g -1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.
Zhukova, A G; Alekhina, D A; Sazontova, T G; Prokop'ev, Yu A; Gorokhova, L G; Stryapko, N V; Mikhailova, N N
2013-12-01
The mechanisms of intracellular defense and activity of free radical oxidation in the myocardium were studied in the dynamics of chronic fluorine intoxication. At the early stages of fluorine intoxication (day 3-week 3), the concentrations of defense proteins HIF-1α, HSC73, and HOx-2 and activity of the main metabolic enzymes increased, which promoted maintenance of cardiomyocyte structure and function at the normal physiological level. At late stages of fluorine intoxication (weeks 6 and 9), metabolic changes in the myocardium attest to high strain of the adaptive mechanisms.
Zhang, Muliang; Xi, Junwei; Ruzi, Rehanguli; Li, Nan; Wu, Zhongkai; Li, Weipeng; Zhu, Chengjian
2017-09-15
Domino-fluorination-protodefluorination decarboxylative cross-coupling of α-keto acids with styrene has been developed via photoredox catalysis. The critical part of this strategy is the formation of the carbon-fluorine (C-F) bond by the capture of a carbon-centered radical intermediate, which will overcome side reactions during the styrene radical functionalization process. Experimental studies have provided evidence indicating a domino-fluorination-protodefluorination pathway with α-keto acid initiating the photoredox cycle. The present catalytic protocol also affords a novel approach for the construction of α,β-unsaturated ketones under mild conditions.
Essers, Michael; Mück-Lichtenfeld, Christian; Haufe, Günter
2002-07-12
Two alpha-fluoro alpha,beta-unsaturated carbonyl compounds, i.e., benzyl 2-fluoroacrylate (3) and 2-fluorooct-1-en-3-one (4), as well as the corresponding nonfluorinated parent compounds, were synthesized and subjected to Diels-Alder reactions with cyclopentadiene. The cycloadditions were conducted thermally, microwave-assisted, and Lewis acid-mediated (TiCl(4)). The fluorinated dienophiles exhibited a lower reactivity and exo diastereoselectivity, while the corresponding nonfluorinated parent compounds reacted endo selectively. DFT calculations suggest that kinetic effects of fluorine determine the stereoselectivity rather than higher thermodynamic stability of the exo products.
Zhang, Xianyu; Kim, Jin Seuk; Kwon, Younghwan
2017-04-01
Here we describe the synthesis of polyurethane (PU)-based energetic nanocomposites loaded with nano-aluminum (n-Al) particles. The energetic nanocomposite was prepared by polyurethane reaction of poly(glycidyl azide-co-tetramethylene glycol) (PGT) prepolymers and IPDI/N-100 isocyanates with simultaneous catalyst-free azide-alkyne Click reaction in the presence of n-Al. Initial study carried out with various n-Al/fluorinated PGT blends and demonstrated the potential of fluorinated PGT prepolymer for an energetic PU matrix. Thermal analysis of n-Al/fluorinated PGT-based PU energetic nanocomposite was performed using DSC and TGA.
NASA Astrophysics Data System (ADS)
Tarakeshwar, P.; Kim, Kwang S.; Kraka, Elfi; Cremer, Dieter
2001-10-01
The van der Waals complexes benzene-argon (BAr), fluorobenzene-argon (FAr), p-difluorobenzene-argon (DAr) are investigated at the second-order Møller-Plesset (MP2) level of theory using the 6-31+G(d), cc-pVDZ, aug-cc-pVTZ, and [7s4p2d1f/4s3p1d/3s1p] basis sets. Geometries, binding energies, harmonic vibrational frequencies, and density distribution are calculated where basis set superposition errors are corrected with the counterpoise method. Binding energies turn out to be almost identical (MP2/[7s4p2d1f/4s3p1d/3s1p]: 408, 409, 408 cm-1) for BAr, FAr, and DAr. Vibrationally corrected binding energies (357, 351, 364 cm-1) agree well with experimental values (340, 344, and 339 cm-1). Symmetry adapted perturbation theory (SAPT) is used to decompose binding energies and to examine the influence of attractive and repulsive components. Fluorine substituents lead to a contraction of the π density of the benzene ring, thus reducing the destabilizing exchange-repulsion and exchange-induction effects. At the same time, both the polarizing power and the polarizability of the π-density of the benzene derivative decreases thus reducing stabilizing induction and dispersion interactions. Stabilizing and destabilizing interactions largely cancel each other out to give comparable binding energies. The equilibrium geometry of the Ar complex is also a result of the decisive influence of exchange-repulsion and dispersive interactions.
NASA Astrophysics Data System (ADS)
Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.
Locally dense basis sets (
NASA Astrophysics Data System (ADS)
Dehbandi, Reza; Moore, Farid; Keshavarzi, Behnam
2017-05-01
The concentration of fluorine, major, trace and rare earth elements (REEs) were used to estimate the probable sources and provenance of fluorine in the soils of an endemic fluorosis belt in central Iran. Total fluorine (TF) in soils varied from 146 to 406 mg/kg with a mean of 277.5 mg/kg. Calculated enrichment factor (EF) and single factor pollution index (SFPI) revealed that the majority of soil samples were moderately contaminated by fluorine. The very strong positive correlation of TF with weathering indices and soil's fine sized fractions indicated that chemical weathering and alteration of parent rocks/soils are the main controlling factors of fluorine behavior in soils. Fluorine affinity to immobile transition trace elements and REEs suggested the role of heavy minerals as the potential F host phases. Modal mineralogy along with SEM-EDX analysis indicated that apatite, fluorapophyllite, epidote, biotite, muscovite and chlorite, as well as, clay minerals are the main F-bearing minerals in the studied soils. Discriminant, bivariate and ternary diagrams of elemental compositions displayed similar geochemical signature of soils to intermediate-acidic rocks and local shales. Based on the weathering indices, soils were immature and showed a non-steady state weathering trend from upper continental crust (UCC), acidic and intermediate igneous source rocks towards shale composition possibly due to mixing of moderately weathered and un-weathered sources of different primary compositions.
Molecular Dynamics Pinpoint the Global Fluorine Effect in Balanoid Binding to PKCε and PKA.
Hardianto, Ari; Liu, Fei; Ranganathan, Shoba
2018-02-26
(-)-Balanol is an adenosine triphosphate mimic that inhibits protein kinase C (PKC) isozymes and cAMP-dependent protein kinase (PKA) with limited selectivity. While PKA is known as a tumor promoter, PKC isozymes can be tumor promoters or suppressors. In particular, PKCε is frequently involved in tumorigenesis and a potential target for anticancer drugs. We recently reported that stereospecific fluorination of balanol yielded a balanoid with enhanced selectivity for PKCε over other PKC isozymes and PKA, although the global fluorine effect behind the selectivity enhancement is not fully understood. Interestingly, in contrast to PKA, PKCε is more sensitive to this fluorine effect. Here we investigate the global fluorine effect on the different binding responses of PKCε and PKA to balanoids using molecular dynamics (MD) simulations. For the first time to the best of our knowledge, we found that a structurally equivalent residue in each kinase, Thr184 in PKA and Ala549 in PKCε, is essential for the different binding responses. Furthermore, the study revealed that the invariant Lys, Lys73 in PKA and Lys437 in PKCε, already known to have a crucial role in the catalytic activity of kinases, serves as the main anchor for balanol binding. Overall, while Thr184 in PKA attenuates the effect of fluorination, Ala549 permits remote response of PKCε to fluorine substitution, with implications for rational design of future balanol-based PKCε inhibitors.
Lubin, Hodney; Dupuis, Christophe; Pytkowicz, Julien; Brigaud, Thierry
2013-04-05
A highly efficient crystallization-induced dynamic resolution (CIDR) of trans-Fox (fluorinated oxazolidine) chiral auxiliary is reported. This chiral auxiliary was used for highly diastereoselective (>98% de) electrophilic fluorination of amide enolates. After removal of the chiral auxiliary, highly valuable enantiopure α-fluorocarboxylic acids and β-fluoroalcohols are obtained.
NASA Technical Reports Server (NTRS)
Lagow, R. J.; Dumitru, E. T.
1983-01-01
The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. The membranes of paragraph two were successfully fluorinated.
Vanadium-Catalyzed C(sp3)–H Fluorination Reactions†
Xia, Ji-Bao; Ma, Yuyong; Chen, Chuo
2014-01-01
Vanadium(III) oxide catalyzes the direct fluorination of C(sp3)–H groups with Selectfluor. This reaction is operationally simple. The catalyst and the reaction byproduct can be removed easily by filtration. Using this method, a fluorine atom can be introduced to the tertiary position of 1,4-cineole and L-menthone selectively. PMID:24976971
2015-01-01
The origin of selectivity in the α-fluorination of cyclic ketones catalyzed by cinchona alkaloid-derived primary amines is determined with density functional calculations. The chair preference of a seven-membered ring at the fluorine transfer transition state is key in determining the sense and level of enantiofacial selectivity. PMID:24967514
The Insulation of Copper Wire by the Electrostatic Coating Process.
1983-06-30
fluorinated ethylene propylene), ECFTE (ethylene- chlorotrifluoro ethylene), and PFA (perfluoroalkoxy resin). Another material of interest with good...Fluoroplastics - Fluoroplastics are a family of polymers with the general paraffin structure that have some or all of the hydrogen replaced by fluorine ...ETFE (ethylene-tetrafluoroethylene copolymer), PFA (perfluoroalkoxy resin), ECTFE (ethylene-chlorotrifluoroethylene), and FEP ( fluorinated ethylene
New Chelators for Low Temperature Al(18)F-Labeling of Biomolecules.
Cleeren, Frederik; Lecina, Joan; Billaud, Emilie M F; Ahamed, Muneer; Verbruggen, Alfons; Bormans, Guy M
2016-03-16
The Al(18)F labeling method is a relatively new approach that allows radiofluorination of biomolecules such as peptides and proteins in a one-step procedure and in aqueous solution. However, the chelation of the {Al(18)F}(2+) core with the macrocyclic chelators NOTA or NODA requires heating to 100-120 °C. Therefore, we have developed new polydentate ligands for the complexation of {Al(18)F}(2+) with good radiochemical yields at a temperature of 40 °C. The stability of the new Al(18)F-complexes was tested in phosphate buffered saline (PBS) at pH 7.4 and in rat serum. The stability of the Al(18)F-L3 complex was found to be comparable to that of the previously reported Al(18)F-NODA complex up to 60 min in rat serum. Moreover, the biodistribution of Al(18)F-L3 in healthy mice showed the absence of in vivo defluorination since no significant bone uptake was observed, whereas the major fraction of activity at 60 min p.i. was observed in liver and intestines, indicating hepatobiliary clearance of the radiolabeled ligand. The acyclic chelator H3L3 proved to be a good lead candidate for labeling of heat-sensitive biomolecules with fluorine-18. In order to obtain a better understanding of the different factors influencing the formation and stability of the complex, we carried out more in-depth experiments with ligand H3L3. As a proof of concept, we successfully conjugated the new AlF-chelator with the urea-based PSMA inhibitor Glu-NH-CO-NH-Lys to form Glu-NH-CO-NH-Lys(Ahx)L3, and a biodistribution study in healthy mice was performed with the Al(18)F-labeled construct. This new class of AlF-chelators may have a great impact on PET radiochemical space as it will stimulate the rapid development of new fluorine-18 labeled peptides and other heat-sensitive biomolecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrada, J.J.
2000-04-03
Public Law (PL) 105-204 requires the U.S. Department of Energy to develop a plan for inclusion in the fiscal year 2000 budget for conversion of the Department's stockpile of depleted uranium hexafluoride (DUF{sub 6}) to a more stable form over an extended period. The conversion process into a more stable form will produce fluorine compounds (e.g., elemental fluorine or hydrofluoric acid) that need to be handled safely. This document compiles the requirements necessary to handle these materials within health and safety standards, which may apply in order to ensure protection of the environment and the safety and health of workersmore » and the public. Fluorine is a pale-yellow gas with a pungent, irritating odor. It is the most reactive nonmetal and will react vigorously with most oxidizable substances at room temperature, frequently with ignition. Fluorine is a severe irritant of the eyes, mucous membranes, skin, and lungs. In humans, the inhalation of high concentrations causes laryngeal spasm and broncospasms, followed by the delayed onset of pulmonary edema. At sublethal levels, severe local irritation and laryngeal spasm will preclude voluntary exposure to high concentrations, unless the individual is trapped or incapacitated. A blast of fluorine gas on the shaved skin of a rabbit causes a second degree burn. Lower concentrations cause severe burns of insidious onset, resulting in ulceration, similar to the effects produced by hydrogen fluoride. Hydrofluoric acid is a colorless, fuming liquid or gas with a pungent odor. It is soluble in water with release of heat. Ingestion of an estimated 1.5 grams produced sudden death without gross pathological damage. Repeated ingestion of small amounts resulted in moderately advanced hardening of the bones. Contact of skin with anhydrous liquid produces severe burns. Inhalation of AHA or aqueous hydrofluoric acid mist or vapors can cause severe respiratory tract irritation that may be fatal. Based on the extreme chemical properties of these chemicals as noted above, fluorine or fluorine compounds must be handled appropriately within the boundaries of many safety requirements for the protection of the environment and the public. This report analyzes the safety requirements that regulatory agencies have issued to handle fluorine or fluorine compounds and lists them in Table 1. Table 1 lists the source of the requirements, the specific section of the source document, and a brief description of the requirements.« less
Kinetic Monte Carlo simulations of fluorine and vacancies concentration at the CeO2(111) surface
NASA Astrophysics Data System (ADS)
Mattiello, S.; Kolling, S.; Heiliger, C.
2017-09-01
Recently, a new identification of the experimental depressions of scanning tunnelling microscopy images on the {{CeO}}2(111) surface as fluorine impurities has been proposed in Kullgren et al (2014 Phys. Rev. Lett. 112 156102). In particular, the high immobility of the depressions seems to be in contradiction with the low diffusion barrier for the oxygen vacancies. Consequently, the oxygen vacancies concentration has to disappear. The first aim of this paper is to confirm dynamically the recent interpretation of the experimental finding. For this purpose, we investigate the competition between fluorine and oxygen vacancies using two dimensional kinetic Monte Carlo simulations (kMC) as compared to an appropriate Langmuir model. We calculate the concentration of the vacancies and of the fluorine for the surface (111) of {{CeO}}2 for a UHV condition as a function of the fluorine-oxygen mixture in the gas phase as well as of the binding energies of fluorine and oxygen. We found that at a temperature of T=573 {{K}}, at which the experimental measurements were conducted, vacancies cannot exist. This confirms the possibility of fluorine impurities in Kullgren et al (2014 Phys. Rev. Lett. 112 156102). The second aim of the present paper is to perform a first dynamical estimation of the fluorine binding energy value {E}{Fl} that allows one to describe the experimental data in Pieper et al (2012 Phys. Chem. Chem. Phys. 14 15361). Using 2D-kMC simulations, we found {E}{Fl}\\in [-5.53,-5.27] {eV} which can be used for comparison to density functional theory calculations in further works.
Graphite fluoride fibers and their applications in the space industry
NASA Technical Reports Server (NTRS)
Hung, Ching-Chen; Long, Martin; Dever, Therese
1990-01-01
Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.
Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2013-02-01
This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not formmore » volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.« less
Systems and methods for treating material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D; McNamara, Bruce K
Systems for treating material are provided that can include a vessel defining a volume, at least one conduit coupled to the vessel and in fluid communication with the vessel, material within the vessel, and NF.sub.3 material within the conduit. Methods for fluorinating material are provided that can include exposing the material to NF.sub.3 to fluorinate at least a portion of the material. Methods for separating components of material are also provided that can include exposing the material to NF.sub.3 to at least partially fluorinate a portion of the material, and separating at least one fluorinated component of the fluorinated portionmore » from the material. The materials exposed to the NF.sub.3 material can include but are not limited to one or more of U, Ru, Rh, Mo, Tc, Np, Pu, Sb, Ag, Am, Sn, Zr, Cs, Th, and/or Rb.« less
19F DOSY NMR analysis for spin systems with nJFF couplings.
Dal Poggetto, Guilherme; Favaro, Denize C; Nilsson, Mathias; Morris, Gareth A; Tormena, Cláudio F
2014-04-01
NMR is a powerful method for identification and quantification of drug components and contaminations. These problems present themselves as mixtures, and here, one of the most powerful tools is DOSY. DOSY works best when there is no spectral overlap between components, so drugs containing fluorine substituents are well-suited for DOSY analysis as (19)F spectra are typically very sparse. Here, we demonstrate the use of a modified (19)F DOSY experiment (on the basis of the Oneshot sequences) for various fluorinated benzenes. For compounds with significant (n) JFF coupling constants, as is common, the undesirable J-modulation can be efficiently suppressed using the Oneshot45 pulse sequence. This investigation highlights (19)F DOSY as a valuable and robust method for analysis of molecular systems containing fluorine atoms even where there are large fluorine-fluorine couplings. Copyright © 2014 John Wiley & Sons, Ltd.
Enantioselective aldol reactions with masked fluoroacetates
NASA Astrophysics Data System (ADS)
Saadi, Jakub; Wennemers, Helma
2016-03-01
Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds.
Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang
2016-01-01
Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is <9%. Here we report three novel solution-processable small molecules, which contain π-bridges with gradient-decreased electron density and end acceptors substituted with various fluorine atoms (0F, 1F and 2F, respectively). Fluorination leads to an optimal active layer morphology, including an enhanced domain purity, the formation of hierarchical domain size and a directional vertical phase gradation. The optimal morphology balances charge separation and transfer, and facilitates charge collection. As a consequence, fluorinated molecules exhibit excellent inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule. PMID:27991486
Mutasynthesis of fluorinated pactamycin analogues and their antimalarial activity.
Almabruk, Khaled H; Lu, Wanli; Li, Yuexin; Abugreen, Mostafa; Kelly, Jane X; Mahmud, Taifo
2013-04-05
A mutasynthetic strategy has been used to generate fluorinated TM-025 and TM-026, two biosynthetically engineered pactamycin analogues produced by Streptomyces pactum ATCC 27456. The fluorinated compounds maintain excellent activity and selectivity toward chloroquine-sensitive and multidrug-resistant strains of malarial parasites as the parent compounds. The results also provide insights into the biosynthesis of 3-aminobenzoic acid in S. pactum.
Ultrahydrophobic Fluorinated Polyhedral Oligomeric Silsesquioxanes (F-POSS) (Preprint)
2007-01-25
From - To) 25-01-2007 Journal Article 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Ultrahydrophobic Fluorinated Polyhedral Oligomeric Silsesquioxanes...Ultrahydrophobic Fluorinated Polyhedral Oligomeric Silsesquioxanes (F-POSS) Joseph M. Mabry,* Ashwani Vij,* Scott T. Iacono, and Brent D. Viers Recently...there exists a demand to construct ultrahydrophobic materials inspired by nature that are easy to prepare on a large scale. Polyhedral oligomeric
2014-06-01
Canada), telle que representee par le ministre de la Defense nationale, 2014 i Abstract Under certain conditions, military coatings...μm Particle C: a compound of fluorinated polymer and polypropylene , mean particle size 9 μm Due to the fact that all three types of particles have...functional particles, which are either pure fluorinated polymer or compound of fluorinated polymer and polypropylene , possessing certain degrees of
Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm
NASA Technical Reports Server (NTRS)
Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.
1988-01-01
Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.
Defect pair formation in fluorine and nitrogen codoped TiO2
NASA Astrophysics Data System (ADS)
Kordatos, A.; Kelaidis, N.; Chroneos, A.
2018-04-01
Titanium oxide is extensively investigated because of its high chemical stability and its photocatalytic properties; nevertheless, the large band gap limits its activity to a small portion of the solar spectrum. Nitrogen and fluorine codoping is an efficient defect engineering strategy to increase the photocatalytic activity of titanium oxide. In the present study, we apply density functional theory to investigate the interaction of nitrogen with fluorine and the formation of defect pairs. We show that in fluorine and nitrogen codoped titanium oxide, the FiNi, FONi, and FiNTi defects can form. Their impact on the electronic structure of titanium oxide is discussed.
Super-hydrophobic fluorine containing aerogels
Coronado, Paul R [Livermore, CA; Poco, John F [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA
2007-05-01
An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.
NASA Technical Reports Server (NTRS)
Lowry, Lynn E.; Macwilliams, Kenneth P.; Isaac, Mary
1991-01-01
The use of fluorinated gate oxides may provide an improvement in nMOSFET reliability by enhancing hot carrier resistance. In order to clarify the mechanisms by which polysilicon processing and fluorination influence the oxide behavior, a matrix of nMOSFET structures was prepared using various processing, doping, and implantation strategies. These structures were evaluated for crystalline morphology and chemical element distribution. Mechanical stress measurements were taken on the polysilicon films from room temperature to cryogenic temperature. These examinations showed that fluorination of a structure with randomly oriented polysilicon can reduce residual mechanical stress and improve hot carrier resistance at room temperature.
Method for fluorination of uranium oxide
Petit, George S.
1987-01-01
Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.
Prakash, G. K. Surya; Mathew, Thomas; Panja, Chiradeep; Alconcel, Steevens; Vaghoo, Habiba; Do, Clement; Olah, George A.
2007-01-01
The synthesis of α-aminonitriles and their fluorinated analogs has been carried out in high yield and purity by the Strecker reaction from the corresponding ketones and amines with trimethylsilyl cyanide using gallium triflate in dichloromethane. Monofluoro-, difluro-, or trifluoromethyl groups can be incorporated into the α-aminonitrile product by varying the nature of the fluorinated ketones. Study with various fluorinated and nonfluorinated ketones reveals that the choice of proper catalyst and the solvent system (suitable metal triflates as a catalyst and dichloromethane as a solvent) plays the key role in the direct Strecker reactions of ketones. PMID:17360416
A Highly Stretchable and Robust Non-fluorinated Superhydrophobic Surface.
Ju, Jie; Yao, Xi; Hou, Xu; Liu, Qihan; Zhang, Yu Shrike; Khademhosseini, Ali
2017-08-21
Superhydrophobic surface simultaneously possessing exceptional stretchability, robustness, and non-fluorination is highly desirable in applications ranging from wearable devices to artificial skins. While conventional superhydrophobic surfaces typically feature stretchability, robustness, or non-fluorination individually, co-existence of all these features still remains a great challenge. Here we report a multi-performance superhydrophobic surface achieved through incorporating hydrophilic micro-sized particles with pre-stretched silicone elastomer. The commercial silicone elastomer (Ecoflex) endowed the resulting surface with high stretchability; the densely packed micro-sized particles in multi-layers contributed to the preservation of the large surface roughness even under large strains; and the physical encapsulation of the microparticles by silicone elastomer due to the capillary dragging effect and the chemical interaction between the hydrophilic silica and the elastomer gave rise to the robust and non-fluorinated superhydrophobicity. It was demonstrated that the as-prepared fluorine-free surface could preserve the superhydrophobicity under repeated stretching-relaxing cycles. Most importantly, the surface's superhydrophobicity can be well maintained after severe rubbing process, indicating wear-resistance. Our novel superhydrophobic surface integrating multiple key properties, i.e. stretchability, robustness, and non-fluorination, is expected to provide unique advantages for a wide range of applications in biomedicine, energy, and electronics.
Name that compound: The numbers game for CFCs, HFCs, HCFCs, and Halons
Blasing, T. J.; Jones, Sonja
2012-02-01
Chlorofluorocarbons (CFCs) contain Carbon and some combination of Fluorine and Chlorine atoms. Hydrofluorocarbons (HFCs) contain Hydrogen, Fluorine, and Carbon (no chlorine). Hydrochlorofluorocarbons (HCFCs) contain Hydrogen, Chlorine, Fluorine, and Carbon atoms. Hydrobromofluorocarbons (HBFCs) contain Hydrogen, Bromine, Fluorine, and Carbon atoms. Perfluorocarbons contain Fluorine, Carbon, and Bromine atoms, and some contain Chlorine and/or Hydrogen atoms. These compounds are often designated by a combination of letters and numbers (e.g., CFC-11, HCFC-142b). In the latter example, the lower-case b refers to an isomer, which has no relationship to the chemical formula (C2H3F2Cl), but designates a particular structural arrangement of the atoms included. For example, HCFC-142b identifies the isomer in which all three hydrogen atoms are attached to the same carbon atom, and the structural formula is written as CH3CF2Cl. By contrast, HCFC-142 (without the b) refers to an arrangement in which one carbon atom is attached to two hydrogen atoms and one chlorine atom, while the other carbon atom is attached to the third hydrogen atom and two fluorine atoms. Hence, it has a different structural formula (CH2ClCHF2).
Pang, Ruizhi; Zhang, Kaisong
2018-01-15
Thin film nanocomposite reverse osmosis (TFN RO) membranes incorporated with hydrophilic nanoparticles show a potential problem that the salt rejection can not be improved significantly. In this study, novel TFN RO membranes incorporated with hydrophobic fluorinated silica nanoparticles were fabricated to improve the salt rejection. Fluorinated silica nanoparticles were well dispersed in organic phase during the interfacial polymerization (IP) process. The TFN RO membranes were characterized with attenuated total reflectance infra-red, field emission scanning electron microscopy, atomic force microscopy and water contact angle measurements. The preparation conditions of TFN RO membranes, including IP reaction time, organic solvent removal time, and fluorinated silica loading, were optimized by characterizing desalination performance using 2000ppm NaCl aqueous solution at 1.55MPa and 25°C. The salt rejection increased significantly from 96.0% without fluorinated silica nanoparticles to 98.6% with the optimal 0.12% (w/v) fluorinated silica nanoparticles, while the water flux decreased slightly from 0.99m 3 /m 2 /day to 0.93m 3 /m 2 /day. This study demonstrated the potential use of hydrophobic nanoparticles in high-performance TFN RO membranes. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vega-Cantu, Yadira Itzel
Poly(acrylonitrile-co-butadiene) or nitrile-butadiene rubber (NBR) is frequently used as an O-ring material in the oil extraction industry due to its excellent chemical properties and resistance to oil. However, degradation of NBR gaskets is known to occur during the well completion and oil extraction process where packers are exposed to completion fluids such as ZnBr2 brine. Under these conditions NBR exhibits accelerated chemical degradation resulting in embrittlement and cracking. Samples of NBR, poly(acrylonitrile) (PAN) and poly(butadiene) (PB) have been exposed to ZnBr2 based completion fluid, and analyzed by ATR and diffuse reflectance IR. Analysis shows the ZnBr2 based completion fluid promotes hydrolysis of the nitrile group to form amides and carboxylic groups. Analysis also shows that carbon-carbon double bonds in NBR are unaffected after short exposure to zinc bromide based completion fluid, but are quickly hydrolyzed in acidic bromide mixtures. Although fluoropolymers have excellent chemical resistance, their strength is less than nitrile rubber and replacing the usual gasket materials with fluoroelastomers is expensive. However, a fluoropolymer surface on a nitrile elastomer can provide the needed chemical resistance while retaining their strength. In this study, we have shown that this can be achieved by direct fluorination, a rather easy and inexpensive process. Samples of NBR O-rings have been fluorinated by exposure to F2 and F2/HF mixtures at various temperatures. Fluorination with F 2 produces the desired fluoropolymer layer; however, fluorination by F2/HF mixtures gave a smoother fluorinated layer at lower temperatures and shorter times. Fluorinated samples were exposed to ZnBr2 drilling fluid and solvents. Elemental analysis shows that the fluorinated layer eliminates ZnBr2 diffusion into the NBR polymeric matrix. It was also found that surface fluorination significantly retards the loss of mechanical properties such as elasticity, tensile strength, toughness and compression set of nitrile rubber when exposed to zinc bromide fluid. This surface fluorination can be applied to extend the useful life of O-rings and packers in the field during oil extraction. The extended life can save millions of dollars by limiting the downtime of the well.
Lubkowska, Anna; Chlubek, Dariusz; Machoy-Mokrzyniska, Anna
2006-01-01
Fluorine and aluminum remain a very interesting research topic due to equivocal and relatively unknown toxic action, role in the etiology of various diseases, and interactions of both elements. Fluorine and aluminum compounds are absorbed by organisms through the gastric and respiratory systems, although the latter route operates only at very high concentrations in air. Chronic exposure to fluorine and aluminum leads to accumulation of both elements, especially in bones and teeth, but also in lung, brain, kidney, and liver. Organisms excrete these elements with urine, faeces, and to a minor extent with sweat and bile. In the light of reports suggesting that aluminum has protective properties against fluorine toxicity during exposure to both elements, we decided to examine the effect of alternating doses of aluminum fluoride and sodium fluoride in drinking water on rats. Four female groups received: I--100 ppm fluorine ions during one month; II--100 ppm fluorine ions alternating every two days with 300 ppm aluminum ions during one month; III--100 ppm fluoride ions during four months; IV--100 ppm fluorine ions alternating every two days with 300 ppm aluminum ions during four months. The respective male groups called IA, IIA, IIIA, and IVA were treated identically. Subsequently, the animals were anesthetized and sacrificed. Blood was sampled from the heart and the right femur was removed for fluorine determination. Fluorine content in the femur and serum was determined with an ion-selective electrode (Orion). The results were analyzed statistically (Statistica 6). We observed higher fluoride concentrations in serum as compared with control values in all groups of female and male rats exposed to sodium fluoride only. Longer exposure time (4 months) did not result in further increase in serum fluoride concentration. However, longer exposure increased fluoride accumulation in the femur (p < 0.001). All groups exposed to NaF had significantly higher fluoride concentration in the femur as compared with control animals. Groups receiving NaF and AlCl3 showed lower fluoride concentration in serum and femur compared with those exposed to NaF only and higher in comparison with controls. Fluorine content in the femur of rats exposed to NaF and AlCI3 for four months was similar to the results obtained after one month of exposure.
NASA Astrophysics Data System (ADS)
Yoshida, Naofumi; Bermundo, Juan Paolo; Ishikawa, Yasuaki; Nonaka, Toshiaki; Taniguchi, Katsuto; Uraoka, Yukiharu
2018-03-01
We investigated a fluorine-containing polysiloxane (Poly-SX) passivation layer fabricated by solution process for amorphous InGaZnO (a-IGZO) thin-film transistors (TFT). This passivation layer greatly improved the stability of the a-IGZO device even after being subjected to positive bias stress (PBS) and negative bias stress (NBS). The mobility (µ) of TFTs passivated by fluorine-containing Poly-SX increased by 31%-56% (10.50-12.54 cm2 V-1 s-1) compared with TFTs passivated by non-fluorinated Poly-SX (8.04 cm2 V-1 s-1). Increasing the amount of fluorine additives led to a higher µ in passivated TFTs. Aside from enhancing the performance, these passivation layers could increase the reliability of a-IGZO TFTs under PBS and NBS with a minimal threshold voltage shift (ΔV th) of up to +0.2 V and -0.1 V, respectively. Additionally, all TFTs passivated by the fluorinated passivation materials did not exhibit a hump effect after NBS. We also showed that fluorinated photosensitive Poly-SX, which can be fabricated without any dry etching process, had an effective passivation property. In this report, we demonstrated the photolithography of Poly-SX, and electrical properties of Poly-SX passivated TFTs, and analyzed the state of the a-IGZO layer to show the large potential of Poly-SX as an effective solution-processed passivation material.
Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu
2013-02-01
Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Najafi, Navid; Rozati, S. M.
2018-03-01
Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.
[Residue of organic fluorine pollutants in hair and nails collected from Tianjin].
Yao, Dan; Zhang, Hong; Chai, Zhi-Fang; Shen, Jin-Can; Yang, Bo; Wang, Yan-Ping; Liu, Guo-Qing
2013-02-01
In order to explore the residue and distributions of organic fluorine pollutants in hair and nails, the residue levels of total fluorine (TF), extractable organic fluorine (EOF) and perfluorinated chemicals (PFCs) in hair and nails collected from Tianjin adults were measured by the cyclic neutron activation analysis (CNAA) combined with the high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The results showed that inorganic fluorine (mean: 2.0 mg.kg-1, 4.5 mg.kg-1) was the primary fluorine in TF while EOF(mean: 0.7 mg.kg-1, 1.8 mg.kg-1) was minor. The average amount of identified fluorine (IF) was 0.038 mg.kg-1 in hair and 0.047 mg.kg-1 in nails, accounting or 7.1% (2.6%-16%) and 3.5% (1.1%-11%) of EOF, respectively, which indicated that more than 84% of EOF was unknown. The major residue in hair and nails were medium-and short-chain PFCs,in which perfluorooctane sulfonate, perfluorooctanoic acid and perfluorononanoic acid were the main species. TF, EOF and IF levels in dyed and permed hair were significantly higher than untreated hair (P <0.05), and the concentrations of Sigma PFCs in hair and nails showed no difference between genders. With significantly higher levels of sigma PFCs and PFOS residues than hair (P <0.01), nails could potentially become a more sensitive bioindicator for the exposure level of PFCs in human.
Highly fluorinated polyurethanes
NASA Technical Reports Server (NTRS)
Stump, E. C., Jr.; Rochow, S. E. (Inventor)
1972-01-01
New polyurethanes containing a high degree of fluorine atoms are reported. The presence of the fluorine atoms in the polyurethane resins provides material having good thermal stability and chemical resistance. These polyurethanes are derived from a new hydroxy-terminated perfluoro polyether. The hydroxy terminated material is reacted with a diisocyanate to produce the polyurethanes. The polyurethanes can be used to form seals, coatings, potting material, hoses and the like.
NASA Technical Reports Server (NTRS)
Chen, Philip T.; Benna, Mehdi
2015-01-01
Please note that these charts were not presented at the CCMPP July 2015 Workshop; however, we would like to include these charts in the Workshop Proceedings.These charts present an overview of the NGIMS fluorine evaluation conducted for the MAVEN mission. The charts show that fluorine may be generated by the following mechanisms:-Reaction with water-Elevated temperature-Radiation, atomic oxygen, ultraviolet, spacecraft charging, and vacuum-Space environmental synergy
1983-03-01
81.16 ppm (in) 3 *CF 2 - -126.31 ppm (an) 2 *CF2 - -118.66 ppm (an) 2 (a) See Ref. 11. (b) A. L. Renne and Win. C. Francis, 3. Amr. Cbes. Sat...Knoxville’>Tennessee 37916 1 Professor R. Neilson Dr. A. Cowley Department of Chemistry Department of Chemistry Texas Christian University University
Improved performance of lithium–sulfur battery with fluorinated electrolyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azimi, Nasim; Weng, Wei; Takoudis, Christos
An organo-fluorine compound, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), was investigated for the first time as the electrolyte solvent in the lithium–sulfur battery. The new fluorinated electrolyte suppressed the deleterious shuttling effect and improved the capacity retention and coulombic efficiency in cell tests. In addition, it was found to eliminate the self-discharge of the lithium–sulfur battery.
Ozone Depleting Chemical (ODC) Replacement - Alternative Cleaning Solvents and Lubricants.
1995-02-01
surface. This phenomenon helps to explain why some aqueous based cleaners (such as Daraclean®) can effectively remove fluorinated greases (such as...structurally similar to hydrocarbon oils, waxes, and greases it removes. In some fluorinated greases such as Krytox®, only solvents identically similar to...the contaminant (such as Tribolube®, a fluorinated solvent) effectively dissolves them. Hexane and methanol, being members of different chemical
Oxygen extraction from lunar soil by fluorination
NASA Technical Reports Server (NTRS)
Seboldt, W.; Lingner, S.; Hoernes, S.; Grimmeisen, W.
1991-01-01
Mining and processing of lunar material could possibly lead to more cost-efficient scenarios for permanent presence of man in space and on the Moon. Production of oxygen for use as propellant seems especially important. Different candidate processes for oxygen-extraction from lunar soil were proposed, of which the reduction of ilmenite by hydrogen was studied most. This process, however, needs the concentration of ilmenite from lunar regolith to a large extent and releases oxygen only with low efficiency. Another possibility - the fluorination method - which works with lunar bulk material as feedstock is discussed. Liberation of oxygen from silicate or oxide materials by fluorination methods has been applied in geoscience since the early sixties. The fact that even at moderate temperatures 98 to 100 percent yields can be attained, suggests that fluorination of lunar regolith could be an effective way of propellant production. Lunar soil contains about 50 percent oxygen by weight which is gained nearly completely through this process as O2 gas. The second-most element Si is liberated as gaseous SiF4. It could be used for production of Si-metal and fluorine-recycling. All other main elements of lunar soil will be converted into solid fluorides which also can be used for metal-production and fluorine-recycling. Preliminary results of small scale experiments with different materials are discussed, giving information on specific oxygen-yields and amounts of by-products as functions of temperature. These experiments were performed with an already existing fluorine extraction and collection device at the University of Bonn, normally used for determination of oxygen-isotopic abundances. Optimum conditions, especially concerning energy consumption, are investigated. Extrapolation of the experimental results to large industrial-type plants on the Moon is tried and seems to be promising at first sight. The recycling of the fluorine is, however, crucial for the process. It might be achieved by means of electrolysis. This needs further investigation. The technical problem of transport and handling of the toxic and corrosive fluorine seems to be solvable and could be done by inert storage vessels.
The Influence of Fluorination on Structure of the Trifluoroacetonitrile Water Complex
NASA Astrophysics Data System (ADS)
Lin, Wei; Wu, Anan; Lu, Xin; Obenchain, Daniel A.; Novick, Stewart E.
2015-06-01
Acetonitrile, CH_3CN, and trifluoroacetonitrile, CF_3CN, are symmetric tops. In a recent study of the rotational spectrum of the acetonitrile and water complex, it was observed that the structure was also an effective symmetric top, with the external hydrogen freely rotating about the O-H bond aligned towards the nitrogen of the cyanide of CH_3CN. Unlike the CH_3CN-H_2O complex, the CH_3CN-Ar and CF_3CN-Ar complexes were observed to be asymmetric tops. Having a series of symmetric and asymmetric top complexes of acetonitrile and trifluoracetonitrile for comparison, we report the rotational spectrum of the weakly bound complex between trifluoroacetonitrile and water. Rotational constants and quadrupole coupling constants will be presented, and the structure of CF_3CN-H_2O will be revealed. Lovas, F.J.; Sobhanadri, J. Microwave rotational spectral study of CH_3CN-H_2O and Ar-CH_3CN. J. Mol. Spetrosc. 2015, 307, 59-64. SPOILER ALERT: It's an asymmetric top.
Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex.
Jiang, Ling; Chen, Wangchao; Zheng, Jiawei; Zhu, Liangzheng; Mo, Li'e; Li, Zhaoqian; Hu, Linhua; Hayat, Tasawar; Alsaedi, Ahmed; Zhang, Changneng; Dai, Songyuan
2017-08-16
Organometal halide perovskite solar cells (PSCs) have shown high photovoltaic performance but poor utilization of ultraviolet (UV) irradiation. Lanthanide complexes have a wide absorption range in the UV region and they can down-convert the absorbed UV light into visible light, which provides a possibility for PSCs to utilize UV light for higher photocurrent, efficiency, and stability. In this study, we use a transparent luminescent down-converting layer (LDL) of Eu-4,7-diphenyl-1,10-phenanthroline (Eu-complex) to improve the light utilization efficiency of PSCs. Compared with the uncoated PSC, the PSC coated with Eu-complex LDL on the reverse of the fluorine-doped tin oxide glass displayed an enhancement of 11.8% in short-circuit current density (J sc ) and 15.3% in efficiency due to the Eu-complex LDL re-emitting UV light (300-380 nm) in the visible range. It is indicated that the Eu-complex LDL plays the role of enhancing the power conversion efficiency as well as reducing UV degradation for PSCs.
Materials Refining for Solar Array Production on the Moon
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2005-01-01
Silicon, aluminum, and glass are the primary raw materials that will be required for production of solar arrays on the moon. A process sequence is proposed for producing these materials from lunar regolith, consisting of separating the required materials from lunar rock with fluorine. The fluorine is brought to the moon in the form of potassium fluoride, and is liberated from the salt by electrolysis in a eutectic salt melt. Tetrafluorosilane produced by this process is reduced to silicon by a plasma reduction stage; the fluorine salts are reduced to metals by reaction with metallic potassium. Fluorine is recovered from residual MgF and CaF2 by reaction with K2O.
Prediction of Quantum Anomalous Hall Insulator in half-fluorinated GaBi Honeycomb
Chen, Sung-Ping; Huang, Zhi-Quan; Crisostomo, Christian P.; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Lin, Hsin; Bansil, Arun
2016-01-01
Using first-principles electronic structure calculations, we predict half-fluorinated GaBi honeycomb under tensile strain to harbor a quantum anomalous Hall (QAH) insulator phase. We show that this QAH phase is driven by a single inversion in the band structure at the Γ point. Moreover, we have computed the electronic spectrum of a half-fluorinated GaBi nanoribbon with zigzag edges, which shows that only one edge band crosses the Fermi level within the band gap. Our results suggest that half-fluorination of the GaBi honeycomb under tensile strain could provide a new platform for developing novel spintronics devices based on the QAH effect. PMID:27507248
Aromatic fluorine compounds. II. 1,2,4,5-Tetrafluorobenzene and related compounds
Finger, G.C.; Reed, F.H.; Burness, D.M.; Fort, D.M.; Blough, R.R.
1951-01-01
The synthesis and properties of 1,2,4,5-tetrafluorobenzene and a group of bromofluoro and chlorofluorobenzenes with a predominating 1,2,4,5-structure are described. Flash point and surface tension data for the fluorinated benzenes and the influence of chlorine substitution upon these values were studied. Under nitration conditions, 1,2,4,5-tetrafluorobenzene will not form a nitro derivative, but will undergo a preferential 1,4-fluorine displacement-oxidation mechanism to give 2,5-difluoro-1,4-benzoquinone. Diazotization reactions on 2-nitro-3,4,6-trifluoroaniline reveal that the nitro group or a fluorine atom in the 4- or 6-position may become labilized, under certain conditions, and undergo replacement.
Materials refining on the Moon
NASA Astrophysics Data System (ADS)
Landis, Geoffrey A.
2007-05-01
Oxygen, metals, silicon, and glass are raw materials that will be required for long-term habitation and production of structural materials and solar arrays on the Moon. A process sequence is proposed for refining these materials from lunar regolith, consisting of separating the required materials from lunar rock with fluorine. The fluorine is brought to the Moon in the form of potassium fluoride, and is liberated from the salt by electrolysis in a eutectic salt melt. Tetrafluorosilane produced by this process is reduced to silicon by a plasma reduction stage; the fluorine salts are reduced to metals by reaction with metallic potassium. Fluorine is recovered from residual MgF and CaF2 by reaction with K2O.
Prediction of Quantum Anomalous Hall Insulator in half-fluorinated GaBi Honeycomb
Chen, Sung-Ping; Huang, Zhi-Quan; Crisostomo, Christian P.; ...
2016-08-10
Using first-principles electronic structure calculations, we predict half-fluorinated GaBi honeycomb under tensile strain to harbor a quantum anomalous Hall (QAH) insulator phase. We show that this QAH phase is driven by a single inversion in the band structure at the Γ point. Moreover, we have computed the electronic spectrum of a half-fluorinated GaBi nanoribbon with zigzag edges, which shows that only one edge band crosses the Fermi level within the band gap. In conclusion, our results suggest that half-fluorination of the GaBi honeycomb under tensile strain could provide a new platform for developing novel spintronics devices based on the QAHmore » effect.« less
Determination of fluorine in organic compounds: Microcombustion method
Clark, H.S.
1951-01-01
A reliable and widely applicable means of determining fluorine in organic compounds has long been needed. Increased interest in this field of research in recent years has intensified the need. Fluorine in organic combinations may be determined by combustion at 900?? C. in a quartz tube with a platinum catalyst, followed by an acid-base titration of the combustion products. Certain necessary precautions and known limitations are discussed in some detail. Milligram samples suffice, and the accuracy of the method is about that usually associated with the other halogen determinations. Use of this method has facilitated the work upon organic fluorine compounds in this laboratory and it should prove to be equally valuable to others.
Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping.
Kapylou, Andrei; Song, Jay Hyok; Missiul, Aleksandr; Ham, Dong Jin; Kim, Dong Han; Moon, San; Park, Jin Hwan
2018-01-05
The thermal stability of lithium-rich layered oxide with the composition Li(Li 1/6 Ni 1/6 Co 1/6 Mn 1/2 )O 2-x F x (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F.; Brown, Suree S.; Adcock, Jamie
Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 °C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol–formaldehyde as a carbon precursor in the presence of triblock ethylene oxide–propylene oxide–ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from ~0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m² g⁻¹ after fluorination as calculated from nitrogen adsorption isotherms at -196 °C. Furthermore, the materialsmore » exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CF x batteries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulvio, Pasquale F; Dai, Sheng; Guo, Bingkun
Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol formaldehyde as a carbon precursor in the presence of triblock ethylene oxide propylene oxide ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from 0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m2 g 1 after fluorination as calculated from nitrogen adsorption isotherms at 196more » C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CFx batteries.« less
Vicinal fluorine-fluorine coupling constants: Fourier analysis.
San Fabián, J; Westra Hoekzema, A J A
2004-10-01
Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn> or =3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation. (c) 2004 American Institute of Physics
Vicinal fluorine-fluorine coupling constants: Fourier analysis
NASA Astrophysics Data System (ADS)
San Fabián, J.; Westra Hoekzema, A. J. A.
2004-10-01
Stereochemical dependences of vicinal fluorine-fluorine nuclear magnetic resonance coupling constants (3JFF) have been studied with the multiconfigurational self-consistent field in the restricted active space approach, with the second-order polarization propagator approximation (SOPPA), and with density functional theory. The SOPPA results show the best overall agreement with experimental couplings. The relationship with the dihedral angle between the coupled fluorines has been studied by Fourier analysis, the result is very different from that of proton-proton couplings. The Fourier coefficients do not resemble those of a typical Karplus equation. The four nonrelativistic contributions to the coupling constants of 1,2-difluoroethane configurations have been studied separately showing that up to six Fourier coefficients are required to reproduce the calculated values satisfactorily. Comparison with Fourier coefficients for matching hydrogen fluoride dimer configurations suggests that the higher order Fourier coefficients (Cn⩾3) originate mainly from through-space Fermi contact interaction. The through-space interaction is the main reason 3JFF do not follow the Karplus equation.
Magnetic phase investigations on fluorine (F) doped LiFePO4
NASA Astrophysics Data System (ADS)
Radhamani, A. V.
2018-03-01
LiFePO4 (LFP) is a very promising cathode material for Li-ion batteries due to its high thermal stability, less toxicity and high theoretical capacity (170 mAh g-1). Anion doping, especially fluorine (F) at the oxygen site is one way to improve the low electronic conductivity of the material. In this line, fluorine doped LFP was prepared at different fluorine concentrations (1 to 40 mol%) to study the structural, spectroscopic and magnetic properties in view of the material property optimization for battery applications. The investigation of the magnetic properties was found to be successful for the determination of small amounts of magnetic impurities which were not noticeably observed from structural characterizations. Determination of conducting magnetic impurities has its own relevance in the current scenario of Li-ion based battery applications. Systematic characterization studies along with the implications of magnetic phases on the material activity of fluorine doped LiFePO4 nanoparticles will be discussed in detail.
Controllable preparation of fluorine-containing fullerene-like carbon film
NASA Astrophysics Data System (ADS)
Wang, Jia; Liang, Aimin; Wang, Fuguo; Xu, Longhua; Zhang, Junyan
2016-05-01
Fluorine-containing fullerene-like carbon (F-FLC) films were prepared by high frequency unipolar pulse plasma-enhanced chemical vapor deposition. The microstructures, mechanical properties as well as the tribological properties of the films were investigated. The results indicate that fullerene-like microstructures appear in amorphous carbon matrix and increase greatly with the increase of bias voltage from -600 to -1600 V. And the fluorine contents in F-FLC films also show a minor rise. In addition, the hardness enhances with the bias voltage and the outstanding elastic recovery maintains because of the formation of fullerene-like microstructures in the F-FLC films. Undoubtedly, the F-FLC film deposited under high bias voltage owns a superiorly low friction, which combines the merits of fluorinated carbon film and fullerene-like carbon film. Moreover, the film also shows a remarkable wear resistance, which is mainly attributed to the excellent mechanical properties. This study provides new insights for us to prepare fluorine-containing FLC films with good mechanical and tribological properties.
Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D
2017-09-01
1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3. 19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.
Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate
Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo
2011-01-01
Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, L. N.; Choi, H. W.; Lai, P. T., E-mail: laip@eee.hku.hk
2015-11-23
GaAs metal-oxide-semiconductor capacitor with TaYON/LaTaON gate-oxide stack and fluorine-plasma treatment is fabricated and compared with its counterparts without the LaTaON passivation interlayer or the fluorine treatment. Experimental results show that the sample exhibits better characteristics: low interface-state density (8 × 10{sup 11 }cm{sup −2}/eV), small flatband voltage (0.69 V), good capacitance-voltage behavior, small frequency dispersion, and small gate leakage current (6.35 × 10{sup −6} A/cm{sup 2} at V{sub fb} + 1 V). These should be attributed to the suppressed growth of unstable Ga and As oxides on the GaAs surface during gate-oxide annealing by the LaTaON interlayer and fluorine incorporation, and the passivating effects of fluorine atoms on the acceptor-likemore » interface and near-interface traps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
San Fabián, J.; Omar, S.; García de la Vega, J. M., E-mail: garcia.delavega@uam.es
The effect of a fraction of Hartree-Fock exchange on the calculated spin-spin coupling constants involving fluorine through a hydrogen bond is analyzed in detail. Coupling constants calculated using wavefunction methods are revisited in order to get high-level calculations using the same basis set. Accurate MCSCF results are obtained using an additive approach. These constants and their contributions are used as a reference for density functional calculations. Within the density functional theory, the Hartree-Fock exchange functional is split in short- and long-range using a modified version of the Coulomb-attenuating method with the SLYP functional as well as with the original B3LYP.more » Results support the difficulties for calculating hydrogen bond coupling constants using density functional methods when fluorine nuclei are involved. Coupling constants are very sensitive to the Hartree-Fock exchange and it seems that, contrary to other properties, it is important to include this exchange for short-range interactions. Best functionals are tested in two different groups of complexes: those related with anionic clusters of type [F(HF){sub n}]{sup −} and those formed by difluoroacetylene and either one or two hydrogen fluoride molecules.« less
Nucleophile Assisting Leaving Groups: A Strategy for Aliphatic 18F-Fluorination
Lu, Shuiyu; Lepore, Salvatore D.; Li, Song Ye; Mondal, Deboprosad; Cohn, Pamela C.; Bhunia, Anjan K.; Pike, Victor W.
2009-01-01
A series of arylsulfonate nucleophile assisting leaving groups (NALGs) were prepared in which the metal chelating unit is attached to the aryl ring via an ether linker. These NALGs exhibited significant rate enhancements in halogenation reactions using metal halides. Studies with a NALG containing a macrocyclic ether unit suggest that rate enhancements of these nucleophilic halogenation reactions are facilitated by stabilization of charge in the transition state rather than through strong pre-complexation with metal cation. In several cases, a primary substrate containing one of the new leaving groups rivaled or surpassed the reactivity of triflates when exposed to nucleophile but was otherwise highly stable and isolable. These and previously disclosed chelating leaving groups were used in 18F-fluorination reactions using no-carrier-added [18F]fluoride ion (t1/2 = 109.7 min, β+ = 97%) in CH3CN. Under microwave irradiation and without the assistance of a cryptand, such as K2.2.2, primary substrates with select NALGs led to a substantial improvement (2 to 3 fold) in radiofluorination yields over traditional leaving groups. PMID:19572583
Berglin, Mattias; Wynne, Kenneth J; Gatenholm, Paul
2003-01-15
Surface properties of pristine and water-aged polymeric films made of alpha,omega-dihydroxypoly(dimethylsiloxane) (PDMS) cross-linked with (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethoxysilane (FTEOS17) or tetraethoxysilane (TEOS) were investigated. The FTEOS17-cured coatings showed stable advancing and receding contact angles over a period of 3 months of water exposure, compared to a 70 degrees decrease in receding contact angle for the TEOS-cured coatings. After immersion in water, hydroxyl groups were detected on the TEOS-cured coatings with attenuated total reflection infrared spectroscopy (ATR-FT/IR). Tapping-mode atomic force microscopy (TM-AFM) on pristine FTEOS17-cured coatings showed surfaces topologies ranging from smooth and featureless to topologically complex, depending on FTEOS17 concentration. The fluorinated coatings showed a stable surface morphology after water immersion, which we believe is due to the formation of a fluorinated siliceous phase that prevented the surface reconstruction, water penetration, and hydrolysis. The smooth pristine TEOS-cured coatings showed an increased roughness with cracks and erosion pits present on the surface after water immersion.
NASA Astrophysics Data System (ADS)
Kumar, Amit; La, Thanh Giang; Li, Xinda; Chung, Hyun Joong
The recent development of stretchable electronics expands the scope of wearable and healthcare applications. This creates a high demand in stretchy conductor that can maintain conductivity at high strain conditions. Here, we describe a simple fabrication pathway to achieve stretchable, 3D-printable and low-cost conductive composite ink. The ink is used to print complex stretchable patterns with high conductivity. The elastic ink is composed of silver(Ag) flakes, fluorine rubber, an organic solvent and surfactant. The surfactant plays multiple roles in in the composite. The surfactant promotes compatibility between silver flakes and fluorine rubber; at the same time, it affects the mechanical properties of the hosting fluoropolymers and adhesion properties of the composite. Based on experimental observations, we discuss the exact role of the surfactant in the composite. The resulting composite exhibits high conductivity value of 8.49 *10 4 S/m along with high reliability against repeated stretching/releasing cycles. Interesting examples of transfer printing of the printed ink and its applications in working devices, such as RFID tag and antennas, are also showcased.
Reactivity of simulated lunar material with fluorine
NASA Technical Reports Server (NTRS)
Odonnell, P. M.
1972-01-01
Simulated lunar surface material was caused to react with fluorine to determine the feasibility of producing oxygen by this method. The maximum total fluorine pressure used was 53.3 kilonewtons per square meter (400 torr) at temperatures up to 523 K (250 C). Postreaction analysis of both the gas and solid phases indicated that the reaction is feasible but that the efficiency is only about 4 percent of that predicted by theory.
NASA Technical Reports Server (NTRS)
Lagow, R. J.; Dumitru, E. T.
1982-01-01
The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. These membranes were successfully fluorinated and are potentially competitive with commercial membranes in performance, and potentially much cheaper in price.
Mondal, Pradip Kumar; Yadav, Hare Ram; Choudhury, Angshuman Roy; Chopra, Deepak
2017-10-01
Strong hydrogen bonds play a significant role in crystal packing. In particular, the involvement of interactions involving fluorine in controlling the crystal packing requires appropriate attention, especially in the presence of other strong hydrogen bonds. In the present study, a detailed quantitative assessment has been performed of the nature, energetics and topological properties derived from the electron density in model compounds based on fluorinated benzamides (a total of 46 fluorine-substituted benzamides containing multiple fluorine atoms) in the solid state. The primary motivation in the design of such molecules is to enhance the acidity of the interacting H atoms in the presence of an increasing number of F atoms on the molecular scaffold, resulting in increased propensity towards the formation of intermolecular interactions involving organic fluorine. This exercise has resulted in the identification of new and frequently occurring supramolecular synthons involving F atoms in the packing of molecules in the solid state. The energetics associated with short and directional intermolecular Csp 2 -H...F-Csp 2 interactions with significantly high electrostatic contributions is noteworthy, and the topological analysis reveals the bonding character of these ubiquitous interactions in crystal packing in addition to the presence of Csp 2 -F...F-Csp 2 contacts.
NASA Astrophysics Data System (ADS)
Kim, U. S.
1990-01-01
To date, chlorine has been used as useful additives in silicon oxidation. However, rapid scaling of device dimensions motivates the development of a new dielectric layer or modification of the silicon dioxide itself. More recently, chemically enhanced thermal oxidation by the use of fluorine containing species has been introduced to verify the potential of fluorine in the silicon oxidation process. In this study, gaseous nitrogen trifluoride (NF _3) was selected as the fluorine oxidizing source based on ease of use and was compared with the dichlorofluoroethane (C_2H _3Cl_2F) source. Two different kinds of boron marker samples were prepared and oxidized in O_2/NF_3 ambient for the comparison of surface vs bulk oxidation enhanced/retarded diffusion (OED/ORD). The phosphorus, arsenic and antimony diffusion in silicon during fluorine oxidation has been studied using the various covering layers such as SiO_2, Si_3 N_4, and SiO_2 + Si_3N_4 layers. The oxidation related phenomena, i.e. enhanced silicon and silicon nitride oxidation in fluorine ambient were studied and correlated with the point defect balance at the oxidizing interface. The results of this investigation were discussed with special emphasis on the effect of fluorine on enhanced oxidation and dopant diffusion.
NASA Astrophysics Data System (ADS)
Lee, H. A.; Lee, J.; Kwon, E.; Kim, D.; Yoon, H. O.
2015-12-01
In recent times, fluorine has been receiving increasing attention due to the possibility for chemical (HF) leakage accidents and its high toxicity to human and environment. In this respect, a novel approach for the determination of fluorine concentrations in water samples using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry was investigated in this study. The main disadvantage of WDXRF technique for fluorine analysis is low analytical sensitivity for light elements with atomic number (Z) less than 15. To overcome this problem, we employed the precipitation reaction which fluoride is reacted with cation such as Al3+ and/or Ca2+ prior to WDXRF analysis because of their high analytical sensitivity. The cation was added in fluoride solutions to form precipitate (AlF3 and/or CaF2) and then the solution was filtered through Whatman filter. After drying at 60 °C for 5 min, the filter was coated with X-ray film and directly analyzed using WDXRF spectrometry. Consequently, we analyzed the cation on filter and subsequently fluorine concentration was calculated inversely based on chemical form of precipitate. This method can improve the analytical sensitivity of WDXRF technique for fluorine analysis and be applicable to various elements that can make precipitate.
Xiao, Qi; Sherman, Samuel E; Wilner, Samantha E; Zhou, Xuhao; Dazen, Cody; Baumgart, Tobias; Reed, Ellen H; Hammer, Daniel A; Shinoda, Wataru; Klein, Michael L; Percec, Virgil
2017-08-22
A three-component system of Janus dendrimers (JDs) including hydrogenated, fluorinated, and hybrid hydrogenated-fluorinated JDs are reported to coassemble by film hydration at specific ratios into an unprecedented class of supramolecular Janus particles (JPs) denoted Janus dendrimersomes (JDSs). They consist of a dumbbell-shaped structure composed of an onion-like hydrogenated vesicle and an onion-like fluorinated vesicle tethered together. The synthesis of dye-tagged analogs of each JD component enabled characterization of JDS architectures with confocal fluorescence microscopy. Additionally, a simple injection method was used to prepare submicron JDSs, which were imaged with cryogenic transmission electron microscopy (cryo-TEM). As reported previously, different ratios of the same three-component system yielded a variety of structures including homogenous onion-like vesicles, core-shell structures, and completely self-sorted hydrogenated and fluorinated vesicles. Taken together with the JDSs reported herein, a self-sorting pathway is revealed as a function of the relative concentration of the hybrid JD, which may serve to stabilize the interface between hydrogenated and fluorinated bilayers. The fission-like pathway suggests the possibility of fusion and fission processes in biological systems that do not require the assistance of proteins but instead may result from alterations in the ratios of membrane composition.
NASA Technical Reports Server (NTRS)
Huff, Vearl N.; Kerrebrock, Jack
1954-01-01
The theoretical performance of a two-stage ballistic rocket mis having a centerbody and two parallel boosters was investigated for J oxygen and ammonia-fluorine propellants. Both power-plant and missi parameters were optimized to give minimum cost on-the basis of the analysis for a range of 5500 nautical miles. After optimum values were found, each parameter was varied independently to determine its effect on performance of the missile. The missile using the ammonia-fluorine propellant weighs about one half as much as a missile using JP4-oxygen. Based on an expected unit cost of fluorine in quantity production, the ammonia-fluorine missile has a substantially lower relative cost than a JP4-oxygen missile. Optimum chamber pressures for both propellant systems and for both the centerbody and boosters were between 450 and 600 pounds per square inch. High design altitudes for the exhaust nozzle are desirable for both the centerbody and boosters. For the centerbody, the design altitude should be between 45,000 and 60,000 feet, with the value for ammonia-fluorine lower than that for JP4-oxygen. For the boosters, the design altitude should be 20,000 to 30,000 feet, with the value for the ammonia-fluorine. missile higher.
Surface fluorination of zirconia: adhesive bond strength comparison to commercial primers.
Piascik, Jeffrey R; Swift, Edward J; Braswell, Krista; Stoner, Brian R
2012-06-01
This study evaluated contact angle and shear bond strength of three commercial zirconia primers and compared them to a recently developed fluorination pre-treatment. Earlier investigations reported that plasma fluorinated zirconia modifies the chemical bonding structure creating a more reactive surface. Yttria-stabilized zirconia (LAVA, 3M ESPE) plates were highly polished using 3μm diamond paste (R(a) ∼200nm) prior to pretreatments. After primer and fluorination treatment, contact angles were measured to quantify surface hydrophobicity before and after ethanol clean. Additionally, simple shear bond tests were performed to measure the adhesion strength to a composite resin. Plasma fluorination produced the lowest contact angle (7.8°) and the highest shear bond strength (37.3MPa) suggesting this pretreatment facilitates a more "chemically" active surface for adhesive bonding. It is hypothesized that plasma fluorination increase hydroxylation at the surface, making it more reactive, thus allowing for covalent bonding between zirconia surface and resin cement. A strong correlation was observed between contact angle and adhesion strength for all specimens; a relationship which may help understand the frequency and modes of failures, clinically. It is also believed that this surface treatment can increase long-term viability of zirconia restorations over other adhesive techniques. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Lu, Zhen; Liu, Wen; Li, Jingjing; Fang, Tao; Li, Wanning; Zhang, Jicheng; Feng, Feng; Li, Wenhua
2016-01-01
To investigate the fluorination influence on the photovoltaic performance of small molecular based organic solar cells (OSCs), six small molecules based on 2,1,3-benzothiadiazole (BT), and diketopyrrolopyrrole (DPP) as core and fluorinated phenyl (DFP) and triphenyl amine (TPA) as different terminal units (DFP-BT-DFP, DFP-BT-TPA, TPA-BT-TPA, DFP-DPP-DFP, DFP-DPP-TPA, and TPA-DPP-TPA) were synthesized. With one or two fluorinated phenyl as the end group(s), HOMO level of BT and DPP based small molecular donors were gradually decreased, inducing high open circuit voltage for fluorinated phenyl based OSCs. DFP-BT-TPA and DFP-DPP-TPA based blend films both displayed stronger nano-scale aggregation in comparison to TPA-BT-TPA and TPA-DPP-TPA, respectively, which would also lead to higher hole motilities in devices. Ultimately, improved power conversion efficiency (PCE) of 2.17% and 1.22% was acquired for DFP-BT-TPA and DFP-DPP-TPA based devices, respectively. These results demonstrated that the nano-scale aggregation size of small molecules in photovoltaic devices could be significantly enhanced by introducing a fluorine atom at the donor unit of small molecules, which will provide understanding about the relationship of chemical structure and nano-scale phase separation in OSCs. PMID:28335208
Nag, Sangram; Lehmann, Lutz; Heinrich, Tobias; Thiele, Andrea; Kettschau, Georg; Nakao, Ryuji; Gulyás, Balázs; Halldin, Christer
2011-10-27
The aim in this project was to synthesize and to study fluorine-18 labeled analogues of l-deprenyl which bind selectively to the enzyme monoamine oxidase B (MAO-B). Three fluorinated l-deprenyl analogues have been generated in multistep organic syntheses. The most promising fluorine-18 compound N-[(2S)-1-[(18)F]fluoro-3-phenylpropan-2-yl]-N-methylprop-2-yn-1-amine (4c) was synthesized by a one-step fluorine-18 nucleophilic substitution reaction. Autoradiography on human brain tissue sections demonstrated specific binding for compound 4c to brain regions known to have a high content of MAO-B. In addition, the corresponding nonradioactive fluorine-19 compound (13) inhibited recombinant human MAO-B with an IC(50) of 170.5 ± 29 nM but did not inhibit recombinant human MAO-A (IC(50) > 2000 nM), demonstrating its specificity. Biodistribution of 4c in mice showed high initial brain uptake leveling at 5.2 ± 0.04%ID/g after 2 min post injection. In conclusion, compound 4c is a specific inhibitor of MAO-B with high initial brain uptake in mice and is, therefore, a candidate for further investigation in PET.
Basuli, Falguni; Zhang, Xiang; Jagoda, Elaine M; Choyke, Peter L; Swenson, Rolf E
2018-06-30
Following our recently published fluorine-18 labeling method, "Radio-fluorination on the Sep-Pak", we have successfully synthesized 6-[ 18 F]fluoronicotinaldehyde by passing a solution (1:4 acetonitrile: t-butanol) of its quaternary ammonium salt precursor, 6-(N,N,N-trimethylamino)nicotinaldehyde trifluoromethanesulfonate (2), through a fluorine-18 containing anion exchange cartridge (PS-HCO 3 ). Over 80% radiochemical conversion was observed using 10 mg of precursor within 1 minute. The [ 18 F]fluoronicotinaldehyde ([ 18 F]5) was then conjugated with 1-(6-(aminooxy)hexyl)-1H-pyrrole-2,5-dione to prepare the fluorine-18 labeled maleimide functionalized prosthetic group, 6-[ 18 F]fluoronicotinaldehyde O-(6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexyl) oxime, 6-[ 18 F]FPyMHO ([ 18 F]6). The current Sep-Pak method not only improves the overall radiochemical yield (50 ± 9%, decay-corrected, n = 9) but also significantly reduces the synthesis time (from 60-90 minutes to 30 minutes) when compared with literature methods for the synthesis of similar prosthetic groups. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2012-05-01
This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivitymore » (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.« less
Liu, Juan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Hesong; Wu, Bangyuan; Deng, Yuanxin; Wang, Kangping
2013-05-02
Fluoride is an environmental and industrial pollutant that affects various organs in humans and animals. The cecal tonsil is an important component of the mucosal immune system and performs important and unique immune functions. In the present study, we investigated the effects of dietary high fluorine on the quantities of IgA+ B cells in the cecal tonsil by immunohistochemistry, and the immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM) contents in the cecal tonsil by ELISA. A total of 280 one-day-old avian broilers were divided into four groups and fed on a corn-soybean basal diet as control diet (fluorine 22.6 mg/kg) or the same diet supplemented with 400, 800 and 1,200 mg/kg fluorine (high fluorine groups I, II and III) in the form of sodium fluoride, respectively, throughout a 42-day experimental period. The results showed that the quantities of IgA+ B cells were lower (p < 0.05 or p < 0.01) and the IgA, IgG, and IgM contents were decreased (p < 0.05 or p < 0.01) in high fluorine groups II and III in comparison with those of control group. It was concluded that dietary fluorine, in the 800-1,200 mg/kg range, could reduce the numbers of the IgA+ B cells and immunoglobulin contents in the cecal tonsil, implying the local mucosal immune function was ultimately impacted in broilers.
Liu, Juan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Hesong; Wu, Bangyuan; Deng, Yuanxin; Wang, Kangping
2013-01-01
Fluoride is an environmental and industrial pollutant that affects various organs in humans and animals. The cecal tonsil is an important component of the mucosal immune system and performs important and unique immune functions. In the present study, we investigated the effects of dietary high fluorine on the quantities of IgA+ B cells in the cecal tonsil by immunohistochemistry, and the immunoglobulin A (IgA), immunoglobulin G (IgG) and immunoglobulin M (IgM) contents in the cecal tonsil by ELISA. A total of 280 one-day-old avian broilers were divided into four groups and fed on a corn-soybean basal diet as control diet (fluorine 22.6 mg/kg) or the same diet supplemented with 400, 800 and 1,200 mg/kg fluorine (high fluorine groups I, II and III) in the form of sodium fluoride, respectively, throughout a 42-day experimental period. The results showed that the quantities of IgA+ B cells were lower (p < 0.05 or p < 0.01) and the IgA, IgG, and IgM contents were decreased (p < 0.05 or p < 0.01) in high fluorine groups II and III in comparison with those of control group. It was concluded that dietary fluorine, in the 800–1,200 mg/kg range, could reduce the numbers of the IgA+ B cells and immunoglobulin contents in the cecal tonsil, implying the local mucosal immune function was ultimately impacted in broilers. PMID:23644827
[Assessment of Soil Fluorine Pollution in Jinhua Fluorite Ore Areas].
Ye, Qun-feng; Zhou, Xiao-ling
2015-07-01
The contents of. soil total fluorine (TF) and water-soluble fluorine (WF) were measured in fluorite ore areas located in Jinhua City. The single factor index, geoaccumulation index and health risk assessment were used to evaluate fluorine pollution in soil in four fluorite ore areas and one non-ore area, respectively. The results showed that the TF contents in soils were 28. 36-56 052. 39 mg.kg-1 with an arithmetic mean value of 8 325.90 mg.kg-1, a geometric mean of 1 555. 94 mg.kg-1, and a median of 812. 98 mg.kg-1. The variation coefficient of TF was 172. 07% . The soil WF contents ranged from 0. 83 to 74. 63 mg.kg-1 with an arithmetic mean value of 16. 94 mg.kg-1, a geometric mean of 10. 59 mg.kg-1, and a median of 10. 17 mg.kg-1. The variation coefficient of WF was 100. 10%. The soil TF and WF contents were far higher than the national average level of the local fluorine epidemic occurrence area. The fluoride pollution in soil was significantly affected by human factors. Soil fluorine pollution in Yangjia, Lengshuikeng and Huajie fluorite ore areas was the most serious, followed by Daren fluorite ore area, and in non-ore area there was almost no fluorine pollution. Oral ingestion of soils was the main exposure route. Sensitivity analysis of model parameters showed that children's weight exerted the largest influence over hazard quotient. Furthermore, a significant positive correlation was found among the three kinds of evaluation methods.
Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong
2016-09-21
The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen bonding of the slightly acidic water in the nanoscale channel.
Gomis, Melissa Ines; Wang, Zhanyun; Scheringer, Martin; Cousins, Ian T
2015-02-01
Long-chain perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) are persistent, bioaccumulative, and toxic contaminants that are globally present in the environment, wildlife and humans. Phase-out actions and use restrictions to reduce the environmental release of long-chain PFCAs, PFSAs and their precursors have been taken since 2000. In particular, long-chain poly- and perfluoroalkyl substances (PFASs) are being replaced with shorter-chain homologues or other fluorinated or non-fluorinated alternatives. A key question is: are these alternatives, particularly the structurally similar fluorinated alternatives, less hazardous to humans and the environment than the substances they replace? Several fluorinated alternatives including perfluoroether carboxylic acids (PFECAs) and perfluoroether sulfonic acids (PFESAs) have been recently identified. However, the scarcity of experimental data prevents hazard and risk assessments for these substances. In this study, we use state-of-the-art in silico tools to estimate key properties of these newly identified fluorinated alternatives. [i] COSMOtherm and SPARC are used to estimate physicochemical properties. The US EPA EPISuite software package is used to predict degradation half-lives in air, water and soil. [ii] In combination with estimated chemical properties, a fugacity-based multimedia mass-balance unit-world model - the OECD Overall Persistence (POV) and Long-Range Transport Potential (LRTP) Screening Tool - is used to assess the likely environmental fate of these alternatives. Even though the fluorinated alternatives contain some structural differences, their physicochemical properties are not significantly different from those of their predecessors. Furthermore, most of the alternatives are estimated to be similarly persistent and mobile in the environment as the long-chain PFASs. The models therefore predict that the fluorinated alternatives will become globally distributed in the environment similar to their predecessors. Although such in silico methods are coupled with uncertainties, this preliminary assessment provides enough cause for concern to warrant experimental work to better determine the properties of these fluorinated alternatives. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthetic Biology of Proteins: Tuning GFPs Folding and Stability with Fluoroproline
Steiner, Thomas; Hess, Petra; Bae, Jae Hyun; Wiltschi, Birgit; Moroder, Luis; Budisa, Nediljko
2008-01-01
Background Proline residues affect protein folding and stability via cis/trans isomerization of peptide bonds and by the Cγ-exo or -endo puckering of their pyrrolidine rings. Peptide bond conformation as well as puckering propensity can be manipulated by proper choice of ring substituents, e.g. Cγ-fluorination. Synthetic chemistry has routinely exploited ring-substituted proline analogs in order to change, modulate or control folding and stability of peptides. Methodology/Principal Findings In order to transmit this synthetic strategy to complex proteins, the ten proline residues of enhanced green fluorescent protein (EGFP) were globally replaced by (4R)- and (4S)-fluoroprolines (FPro). By this approach, we expected to affect the cis/trans peptidyl-proline bond isomerization and pyrrolidine ring puckering, which are responsible for the slow folding of this protein. Expression of both protein variants occurred at levels comparable to the parent protein, but the (4R)-FPro-EGFP resulted in irreversibly unfolded inclusion bodies, whereas the (4S)-FPro-EGFP led to a soluble fluorescent protein. Upon thermal denaturation, refolding of this variant occurs at significantly higher rates than the parent EGFP. Comparative inspection of the X-ray structures of EGFP and (4S)-FPro-EGFP allowed to correlate the significantly improved refolding with the Cγ-endo puckering of the pyrrolidine rings, which is favored by 4S-fluorination, and to lesser extents with the cis/trans isomerization of the prolines. Conclusions/Significance We discovered that the folding rates and stability of GFP are affected to a lesser extent by cis/trans isomerization of the proline bonds than by the puckering of pyrrolidine rings. In the Cγ-endo conformation the fluorine atoms are positioned in the structural context of the GFP such that a network of favorable local interactions is established. From these results the combined use of synthetic amino acids along with detailed structural knowledge and existing protein engineering methods can be envisioned as a promising strategy for the design of complex tailor-made proteins and even cellular structures of superior properties compared to the native forms. PMID:18301757
Joachim, Bastian; Stechern, André; Ludwig, Thomas; Konzett, Jürgen; Pawley, Alison; Ruzié-Hamilton, Lorraine; Clay, Patricia L; Burgess, Ray; Ballentine, Christopher J
2017-01-01
Halogens show a range from moderate (F) to highly (Cl, Br, I) volatile and incompatible behavior, which makes them excellent tracers for volatile transport processes in the Earth's mantle. Experimentally determined fluorine and chlorine partitioning data between mantle minerals and silicate melt enable us to estimate Mid Ocean Ridge Basalt (MORB) and Ocean Island Basalt (OIB) source region concentrations for these elements. This study investigates the effect of varying small amounts of water on the fluorine and chlorine partitioning behavior at 1280 °C and 0.3 GPa between olivine and silicate melt in the Fe-free CMAS+F-Cl-Br-I-H 2 O model system. Results show that, within the uncertainty of the analyses, water has no effect on the chlorine partitioning behavior for bulk water contents ranging from 0.03 (2) wt% H 2 O (D Cl ol/melt = 1.6 ± 0.9 × 10 -4 ) to 0.33 (6) wt% H 2 O (D Cl ol/melt = 2.2 ± 1.1 × 10 -4 ). Consequently, with the effect of pressure being negligible in the uppermost mantle (Joachim et al. Chem Geol 416:65-78, 2015), temperature is the only parameter that needs to be considered for the determination of chlorine partition coefficients between olivine and melt at least in the simplified iron-free CMAS+F-Cl-Br-I-H 2 O system. In contrast, the fluorine partition coefficient increases linearly in this range and may be described at 1280 °C and 0.3 GPa with ( R 2 = 0.99): [Formula: see text]. The observed fluorine partitioning behavior supports the theory suggested by Crépisson et al. (Earth Planet Sci Lett 390:287-295, 2014) that fluorine and water are incorporated as clumped OH/F defects in the olivine structure. Results of this study further suggest that fluorine concentration estimates in OIB source regions are at least 10% lower than previously expected (Joachim et al. Chem Geol 416:65-78, 2015), implying that consideration of the effect of water on the fluorine partitioning behavior between Earth's mantle minerals and silicate melt is vital for a correct estimation of fluorine abundances in OIB source regions. Estimates for MORB source fluorine concentrations as well as chlorine abundances in both mantle source regions are within uncertainty not affected by the presence of water.
2010-02-17
Dewetting Using Fluorinated Silsesquioxanes as Drop-In Modifiers (Preprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Scott T... Dewetting Using Fluorinated Silsesquioxanes as Drop-In Modifiers (Preprint) Scott T. Iacono, a,b Stephen M. Budy, a,c Dennis W. Smith, a and...nanometer-sized surface roughness due to POSS aggregation. 23 Likewise, similar dewetting behavior, 90 albeit modest, was observed utilizing partially
Lipophilic Super-Absorbent Swelling Gels as Cleaners for Use on Weapons Systems and Platforms
2011-08-18
polymer gel systems. Further research will address the post-cleaning gel removal method, the use of non- fluorinated compounds in gel synthesis, and...be proposed to address other issues including the method for removing the gels after swelling, the use of non- fluorinated compounds in gel...strength. Elimination of fluorinated compounds in the gel synthesis was the focus of this and subsequent phases of this research. TECHNICAL APPROACH
2008-01-09
organic polymer. For example, the low surface energy properties of fluorinated POSS compounds have been used to augment both fluorinated and non... fluorinated polymers.10-13 Many POSS monomers have been successfully characterized using MALDI techniques14-16 in conjunction with ion mobility mass...nucleophilic attack, are shown in blue. Negative contours, showing susceptibility to electrophilic attack, are shown in red. The positive contour of
Regioselectivity in intermolecular Pauson-Khand reactions of dissymmetric fluorinated alkynes.
Kizirian, Jean-Claude; Aiguabella, Nuria; Pesquer, Albert; Fustero, Santos; Bello, Paula; Verdaguer, Xavier; Riera, Antoni
2010-12-17
Stoichiometric and catalytic intermolecular Pauson-Khand reactions (PKRs) of dissymmetric fluorinated alkynes were performed, affording regioselectively α-fluorinated cyclopentenones. Ethyl 4,4,4-trifluorobutynoate was an excellent substrate; its reaction with norbornadiene gave the corresponding PKR adduct in good yield and complete regioselectivity. Conjugate addition of nitroalkanes or cyanide to this adduct is stereospecific and entails concomitant loss of a trifluoromethyl group. This reaction can be exploited to prepare cyclopentenones featuring quaternary centers.
1990-08-22
Six of the 3 perfluorinated ethers prepared have been previously synthesized by other methods: perfluoro -5,5-bis(ethoxy- f methyl) -3,7-dioxanonane...from partially fluorinated starting material [34]. Third, as with perfluoroalkanes and simple perfluoroethers , Clark’s experimental results indicated 3...a highly branched perfluoroether ) by direct fluorination 3 in solution. Second, since some of these perfluorinated compounds had been previously
NASA Technical Reports Server (NTRS)
Fusaro, R. L.
1974-01-01
Eight different graphite fluoride compounds with fluorine to carbon ratios varying from x = 0.25 to 1.1 were evaluated as burnished films in order to determine the effect of fluorine content on the solid lubricant properties of graphite fluoride. For comparison, similar experiments were conducted on graphite burnished films. It was found that even a small amount of fluorine in graphite fluoride (CF0.25)n improved the lubricating properties of graphite. However, such factors as burnishing atmosphere, burnishing technique, test atmosphere, and specimen temperature affected the results as much as varying the fluorine to carbon ratio of the compound. Best life was found for films that were machined burnished in moist air and tested in moist air.
Enhanced optical limiting effect in fluorine-functionalized graphene oxide
NASA Astrophysics Data System (ADS)
Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang
2017-09-01
Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.
Kovach, L.; Holcombe, C.E.
1980-08-22
The present invention relates to a composition particularly suitable for use as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850/sup 0/K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.
Kovach, Louis; Holcombe, Cressie E.
1982-01-01
The present invention relates to a composition particularly suitable for as structural components subject to high-temperature environments containing gaseous hydrogen and fluorine. The composition of the present invention consists essentially of lanthanum hexaboride-molybdenum diboride with dispersed silicon. The composition is formed by hot pressing a powder mixture of lanthanum hexaboride as the major constituent and molybdenum disilicide. This composition exhibits substantial resistance to thermal shock and corrosion in environments containing hydrogen and fluorine gases at material surface temperatures up to about 1850.degree. K. Upon exposure of the hot-pressed composition to high-temperature environments containing fluorine gases, a highly protective layer of lanthanum trifluoride containing dispersed molybdenum is formed on exposed surfaces of the composition.
Overview on the history of organofluorine chemistry from the viewpoint of material industry
Okazoe, Takashi
2009-01-01
Fluorine (from “le fluor”, meaning “to flow”) is a second row element of Group 17 in the periodic table. When bound to carbon it forms the strongest bond in organic chemistry to give organofluorine compounds. The scientific field treating them, organofluorine chemistry, started before elemental fluorine itself was isolated. Applying the fruits in academia, industrial organofluorine chemistry has developed over 80 years via dramatic changes during World War II. Nowadays, it provides various materials essential for our society. Recently, it utilizes elemental fluorine itself as a reagent for the introduction of fluorine atoms to organic molecules in leading-edge industries. This paper overviews the historical development of organofluorine chemistry especially from the viewpoint of material industry. PMID:19838009
[Fluorine removal efficiency of organic-calcium during coal combustion].
Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa
2006-08-01
Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.
DRY FLUORINE SEPARATION METHOD
Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.
1959-05-19
Preparation and separation of U/sup 233/ by irradiation of ThF/sub 4/ is described. During the neutron irradiation to produce Pa/sup 233/ a fluorinating agent such as HF, F/sub 2/, or HF + F/sub 2/ is passed through the ThF/sub 4/ powder to produce PaF/sub 5/. The PaF/sub 5/, being more volatile, is removed as a gas and allowed to decay radioactively to U/sup 233/ fluoride. A batch procedure in which ThO/sub 2/ or Th metal is irradiated and fluorinated is suggested. Some Pa and U fluoride volatilizes away. Then the remainder is fluorinated with F/sub 2/ to produce very volatile UF/sub 6/ which is recovered. (T.R.H.)
NASA Astrophysics Data System (ADS)
De, Rajnarayan; Haque, S. Maidul; Tripathi, S.; Prathap, C.; Rao, K. Divakar; Sahoo, N. K.
2016-05-01
A non-conventional magnetron sputtering technique was explored to deposit magnesium fluoride thin films using the concept of fluorine gas trapping without the introduction of additional fluorine gas flow inside the chamber. The effect of magnetron power from 50 W to 250 W has been explored on structural, optical and physical properties of the samples. Polycrystalline nature with tetragonal crystallinity of the films has been confirmed by GIXRD measurements along with thickness dependency. Monotonic increase of attenuation coefficient (k) with RF power has been explained in terms of target compound dissociation probability. In conclusion, with fluorine trapping method, the samples deposited at lower RF powers (<100 W) are found to be more suitable for optical applications.
Copolymers of fluorinated polydienes and sulfonated polystyrene
Mays, Jimmy W [Knoxville, TN; Gido, Samuel P [Hadley, MA; Huang, Tianzi [Knoxville, TN; Hong, Kunlun [Knoxville, TN
2009-11-17
Copolymers of fluorinated polydienes and sulfonated polystyrene and their use in fuel cell membranes, batteries, breathable chemical-biological protective materials, and templates for sol-gel polymerization.
Fluorine and the viscosity of jadeite-leucite and nepheline-kalsilite melts at atmospheric pressure
NASA Astrophysics Data System (ADS)
Robert, G.; Bruno, M.; Carty, O.; Smith, R. A.; Whittington, A. G.
2017-12-01
While fluorine has a lower abundance than H2O and CO2 in most magmatic and volcanic systems, F is as effective as water at reducing the viscosity of silica-rich melts. Previous studies have also shown that, just like water, the effect of F in reducing melt viscosity is strongest in the most highly polymerized melts. We measured the viscosity of fluorine-free and fluorine-bearing melts along the jadeite-leucite (Jd-Lct) and nepheline-kalsilite (Ne-Kls) joins of the NaAlSiO4-KAlSiO4-SiO2 system. All compositions studied are metaluminous to slightly peraluminous, and nominally fully polymerized (noting that non-bridging oxygen sites exist in metaluminous and peraluminous glasses, their proportion being a function of Al/Si ratio and cation charge). We test whether the effects of fluorine on viscosity have a dependence on Na/K or Al/Si ratios in these melts. In fluorine-free melts, the K-rich melts have the highest viscosity and T12 (temperature of the 1012 Pas isokom). The mixed-alkali effect results in a viscosity minimum at compositions with intermediate Na/K ratios. At 1200K, for the Na- end-member melts, the lowest Al/Si ratio melts (nepheline-kalsilite melts) have the highest viscosity. Available literature data and extrapolation of trends from our measurements suggest there is little difference in viscosity between the K- end-member melts at 1200K. At high temperatures, the jadeite-leucite melts generally have higher viscosities than the nepheline-kalsilite melts. Fluorine reduces the viscosity of all of the melts we studied, and, although it has been suggested that fluorine preferentially bonds with potassium over sodium, its effects on viscosity appears to be approximately independent of Na/K ratio in metaluminous melts. With increasing Al/Si ratio, more order is required to satisfy the aluminum avoidance principle, but this also does not seem to affect the magnitude of viscosity reduction due to the addition of fluorine, at least for melts with intermediate Na/K ratio. Adding 8 mol% F to melts with Na/(Na+K) ratio of 0.5 results in a T12 reduction of 186°C relative to F-free melts.
Exploration of charge states of balanol analogues acting as ATP-competitive inhibitors in kinases.
Hardianto, Ari; Yusuf, Muhammad; Liu, Fei; Ranganathan, Shoba
2017-12-28
(-)-Balanol is an ATP mimic that inhibits protein kinase C (PKC) isozymes and cAMP-dependent protein kinase (PKA) with limited selectivity. While PKA is a tumour promoter, PKC isozymes act as tumour promoters or suppressors, depending on the cancer type. In particular, PKCε is frequently implicated in cancer promotion, making it a potential target for anticancer drugs. To improve isozyme selectivity of balanol, exhaustive structural and activity relationship (SAR) studies have been performed in the last two decades, but with limited success. More recently, fluorination on balanol has shown improved selectivity for PKCε, although the fluorine effect is not yet clearly understood. Understanding the origin to this fluorine-based selectivity will be valuable for designing better balanol-based ATP mimicking inhibitors. Computational approaches such as molecular dynamics (MD) simulations can decipher the fluorine effect, provided that correct charges have been assigned to a ligand. Balanol analogues have multiple ionisable functional groups and the effect of fluorine substitutions on the exact charge state of each analogue bound to PKA and to PKCε needs to be thoroughly investigated in order to design highly selective inhibitors for therapeutic applications. We explored the charge states of novel fluorinated balanol analogues using MD simulations. For different potential charge states of these analogues, Molecular Mechanics Generalized Born Surface Area (MMGBSA) binding energy values were computed. This study suggests that balanol and the most potent fluorinated analogue (5S fluorine substitution on the azepane ring), have charges on the azepane ring (N1), and the phenolic (C6''OH) and the carboxylate (C15''O 2 H) groups on the benzophenone moiety, when bound to PKCε as well as PKA. To the best our knowledge, this is the first study showing that the phenolate group is charged in balanol and its analogues binding to the ATP site of PKCε. Correct charge assignments of ligands are important to obtain predicted binding energy values from MD simulations that reflect experimental values. Both fluorination and the local enzymatic environment of the ATP site can influence the exact charge states of balanol analogues. Overall, this study is highly valuable for further rational design of potent balanol analogues selective to PKCε.
Code of Federal Regulations, 2014 CFR
2014-07-01
... transformers. Fluorinated GHG refrigerant means, for purposes of this subpart, any substance consisting in part... breakers, other switchgear, gas-insulated lines, or power transformers containing a fluorinated GHG prior...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happe, J.A.; Morgan, R.J.; Walkup, C.M.
The chemical composition of commercial BF/sub 3/:amine complexes are variable and contain BF/sub 4//sup -/ and BF/sub 3/(OH)/sup -/ salts together with other unidentified highly reactive species. The BF/sub 3/:amine complexes, which are susceptible to hydrolysis, also partially convert to the BF/sub 4//sup -/ salt (i.e. BF/sub 4//sup -/NH/sub 3//sup +/C/sub 2/H/sub 5/) upon heating. This salt formation is accelerated in dimethyl sulfoxide solution and in the presence of the epoxides that are present in commercial prepregs. Commercial C fiber-epoxy prepregs are shown to contain either BF/sub 3/:NH/sub 2/C/sub 2/H/sub 5/ or BF/sub 3/:NHC/sub 5/H/sub 10/ species together with theirmore » BF/sub 4//sup -/ salts and a variety of boron-fluorine or carbon-fluorine prepreg species. Considerable variation in the relative quantities of BF/sub 3/:amine to its BF/sub 4//sup -/ salt was observed from prepreg lot to lot, which will cause variable viscosity-time-temperature prepreg cure profiles. It is concluded that the chemically stable and mobile BF/sub 4//sup -/ salt is the pre-dominant catalytic species, acting as a cationic catalyst for the prepreg cure reactions. During the early stages of cure the BF/sub 3/:amine catalyst converts to the BF/sub 4//sup -/ salt in the presence of epoxides, whereas the BF/sub 3/-prepreg species are susceptible to catalytic deactivation and immobilization.« less
Natural chlorine and fluorine in the atmosphere, water and precipitation
NASA Technical Reports Server (NTRS)
Friend, James P.
1990-01-01
The geochemical cycles of chlorine and fluorine are surveyed and summarized as framework for the understanding of the global natural abundances of these species in the atmosphere, water, and precipitation. In the cycles the fluxes into and out of the atmosphere can be balanced within the limits of our knowledge of the natural sources and sinks. Sea salt from the ocean surfaces represent the predominant portion of the source of chlorine. It is also an important source of atmospheric fluorine, but volcanoes are likely to be more important fluorine sources. Dry deposition of sea salt returns about 85 percent of the salt released there. Precipitation removes the remainder. Most of the sea salt materials are considered to be cyclic, moving through sea spray over the oceans and either directly back to the oceans or deposited dry and in precipitation on land, whence it runs off into rivers and streams and returns to the oceans. Most of the natural chlorine in the atmosphere is in the form of particulate chloride ion with lesser amounts as gaseous inorganic chloride and methyl chloride vapor. Fluorine is emitted from volcanoes primarily as HF. It is possible that HF may be released directly form the ocean surface but this has not been confirmed by observation. HCl and most likely HF gases are released into the atmosphere by sea salt aerosols. The mechanism for the release is likely to be the provision of protons from the so-called excess sulfate and HNO3. Sea salt aerosol contains fluorine as F(-), MgF(+), CaF(+), and NaF. The concentrations of the various species of chlorine and fluorine that characterize primarily natural, unpolluted atmospheres are summarized in tables and are discussed in relation to their fluxes through the geochemical cycle.
Fluorine Abundances in AGB Carbon Stars: New Results?
NASA Astrophysics Data System (ADS)
Abia, C.; de Laverny, P.; Recio-Blanco, A.; Domínguez, I.; Cristallo, S.; Straniero, O.
2009-09-01
A recent reanalysis of the fluorine abundance in three Galactic Asymptotic Giant Branch (AGB) carbon stars (TX Psc, AQ Sgr and R Scl) by Abia et al. (2009) results in estimates of fluorine abundances systematically lower by ~0.8 dex on average, with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The new F abundances are in better agreement with the predictions of full-network stellar models of low-mass (<3 Msolar) AGB stars.
Method for selectively removing fluorine and fluorine-containing contaminants from gaseous UF.sub.6
Jones, Robert L.; Otey, Milton G.; Perkins, Roy W.
1982-01-01
This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF.sub.6. The contaminants include fluorine and fluorides which are more reactive with CaCO.sub.3 than is UF.sub.6. The method comprises contacting the contaminant-carrying UF.sub.6 with particulate CaCO.sub.3 at a temperature effecting reaction of the contaminant and the CaCO.sub.3.
Trifluoromethyl ethers – synthesis and properties of an unusual substituent
Manteau, Baptiste; Vors, Jean-Pierre; Pazenok, Sergiy
2008-01-01
Summary After nitrogen, fluorine is probably the next most favorite hetero-atom for incorporation into small molecules in life science-oriented research. This review focuses on a particular fluorinated substituent, the trifluoromethoxy group, which is finding increased utility as a substituent in bioactives, but it is still perhaps the least well understood fluorine substituent in currency. The present review will give an overview of the synthesis, properties and reactivity of this important substituent. PMID:18941485
NASA Technical Reports Server (NTRS)
Liu, C. C.
1983-01-01
A computerized system was established and the electrochemical fluorination of trichloroethylene, polyacrylic acid and polyvinyl alcohol in anhydrous hydrogen fluoride was attempted. Both solid substrates as well as membranes were used. Some difficulties were found in handling and analyzing the solid substrates and membranes. Further studies are needed in this area. A microprocessor aided electrochemical fluorination system capable of obtaining highly reproducible experimental results was established.
New Approaches to the Labeling of Estrogens Useful for PET (Predoctral Training Program).
1998-06-01
coincident pair receives a photon simultaneously or * Appears in part in: Jonson, S.D.; Welch, M.J. Pet imaging of breast cancer with fluorine -18...hydrogen, oxygen, and nitrogen. Each of these elements has a short-lived positron-emitting isotope, except for hydrogen. Fluorine is used as a substitute...for hydrogen based on their similar sizes and the good stability of the carbon- fluorine bond. Therefore, carbon-11, oxygen-15, nitrogen-13, and
2007-08-01
of fluorinated amino acid derivatives under Electron Capture Atmospheric Pressure Chemical Ionization (EC APCI) conditions results in far better...Figure 6). Mass spectrometric analyses indicated that at least for the synthetic reference compound, the fluorinated derivative could be determined... fluorinated amino acid derivatives under EC APCI conditions (vide supra) results in far better detection limits, when compared to normal electrospray MS
An Evaluation of Polymer Coatings for the Promotion of Dropwise Condensation of Steam.
1984-03-01
thermosetting, modi- fied polyester insulating varnish . Although not expected to perfcrm as %ell as the fluorinated compounds, ease of appli- cation...xylylene which can he vapor deposited in very thin films. Unlike PTEE, parylene-N contains no fluorine and therefore would nct be expected to be as...perform. Knowing that water has a surface tensicz of approximately 71.9 dynes/cm and riferring tc Table I, it can be seen that the fluorinated polymers
Borri Voltattorni, Carla; Bertoldi, Mariarita; Bianconi, Silvia; Deng, Wei-ping; Wong, Kelli; Kim, InHo; Herbert, Brian; Kirk, Kenneth L
2002-07-05
We have determined the kinetic parameters for Dopa decarboxylase (DDC) of three ring-fluorinated analogs of 3,4-dihydroxyphenylalanine (Dopa). The rank order of catalytic efficiency of decarboxylation (k(cat)/K(m)) is Dopa>6-F-Dopa>2-F-Dopa>5-F-Dopa. This rank is consistent with previous in vivo and in vitro studies which indicate that, of the fluorinated analogs, 6-F-Dopa has pharmacokinetics that are most suited for positron emission tomographic (PET) evaluation of dopamine function. The effectiveness of PET as a diagnostic tool, the convenient half-life of (18)F (110 min) and the favorable pharmacokinetics of 6-[(18)F]FDOPA have combined to make this an extremely valuable reagent to study dopaminergic activity. The reactions of the related fluorinated DOPS analogs show that, while 6-F-threo-3,4-(dihydroxyphenyl)serine (DOPS) is decarboxylated at approximately the same rate as the non-fluorinated substrate, 2-F-threo-DOPS is not converted into the corresponding amine. In both cases a Pictet-Spengler condensation with the pyridoxal 5(')-phosphate (PLP) cofactor occurs to produce tetrahydroisoquinolines. Condensation of fluorinated catecholamines and catechol amino acids with endogenous aldehydes will be investigated as an approach to study possible mechanisms of L-Dopa-linked neurotoxicity. (c) 2002 Elsevier Science (USA).
Fluorine in psychedelic phenethylamines.
Trachsel, Daniel
2012-01-01
The so-called psychedelic phenethylamines represent a class of drugs with a large range of psychoactive properties in humans, ranging from naturally occurring mescaline to amphetamine analogues and homologues. The interest in many of these compounds, occasionally referred to as designer-drugs, is widely dispersed across popular culture and political and scientific communities. In recent decades, fluorine has become a powerful and important tool in medicinal chemistry. In addition, fluorine-containing compounds and medicines can be found in numerous commercially successful pharmaceuticals that have gained a market share of some 5-15%. One might anticipate this trend to increase in the future. As far as fluorinated phenethylamines are concerned, much less is known about their chemistry and pharmacology. This paper provides an overview regarding the biological properties of over 60 fluorinated phenethylamines and discusses both historical and recent chemistry-related developments. It was shown that the introduction of fluorine into the phenethylamine nucleus can impact greatly on psychoactivity of these compounds, ranging from marked loss to enhancement and prolongation of effects. For example, in contrast to the psychoactive escaline (70), it was observed that its fluoroescaline (76) counterpart was almost devoid of psychoactive effects. Difluoroescaline (77), on the other hand, retained, and trifluoroescaline (78) showed increased human potency of escaline (70). Difluoromescaline (72) and trifluoromescaline (73) increasingly surpassed human potency and duration of mescaline (22) effects. Copyright © 2012 John Wiley & Sons, Ltd.
Li, Yang; Zhang, Hua; Zhang, Zhiqi; Shao, Liming; He, Pinjing
2015-05-01
The rapid development of the fluorinated pesticide industry has produced a large amount of fluorine-containing hazardous waste, especially inorganic fluoride-containing waste (IFCW). A two-step process, including extraction and recovery, was developed to recover fluorine as synthetic cryolite from IFCW produced by the pesticide industry. The optimum conditions for extraction were found to be a temperature of 75°C, an initial pH (pHi) of 12, a 4-hr incubation time and a liquid-to-solid ratio of 40mL/g; these conditions resulted in a fluorine extraction ratio of 99.0%. The effects of pH and the F/Al molar ratio on fluorine recovery and the compositional, mineralogical and morphological characteristics of the cryolite products were investigated. Field-emission scanning electron microscopy of recovered precipitates showed changes in morphology with the F/Al molar ratio. Coupling Fourier transform and infrared spectroscopy, X-ray diffraction indicated that the formation of AlF6(3-) was restricted as increasing pH. Both the amount of fluorine recovered and the quality of the cryolite were optimized at initial pH=3 and a F/Al molar ratio 5.75. This study proposed a reliable and environmentally friendly method for the treatment of fluoride-containing wastes, which could be suitable for industrial applications. Copyright © 2015. Published by Elsevier B.V.
Huang, Chi-Hsien; Lin, Chih-Ting; Wang, Jer-Chyi; Chou, Chien; Ye, Yu-Ren; Cheng, Bing-Ming; Lai, Chao-Sung
2012-11-30
A plasma system with a complementary filter to shield samples from damage during tetrafluoromethane (CF(4)) plasma treatment was proposed in order to incorporate fluorine atoms into gadolinium oxide nanocrystals (Gd(2)O(3)-NCs) for flash memory applications. X-ray photoelectron spectroscopy confirmed that fluorine atoms were successfully introduced into the Gd(2)O(3)-NCs despite the use of a filter in the plasma-enhanced chemical vapour deposition system to shield against several potentially damaging species. The number of incorporated fluorine atoms can be controlled by varying the treatment time. The optimized memory window of the resulting flash memory devices was twice that of devices treated by a filterless system because more fluorine atoms were incorporated into the Gd(2)O(3)-NCs film with very little damage. This enlarged the bandgap energy from 5.48 to 6.83 eV, as observed by ultraviolet absorption measurements. This bandgap expansion can provide a large built-in electric field that allows more charges to be stored in the Gd(2)O(3)-NCs. The maximum improvement in the retention characteristic was >60%. Because plasma damage during treatment is minimal, maximum fluorination can be achieved. The concept of simply adding a filter to a plasma system to prevent plasma damage exhibits great promise for functionalization or modification of nanomaterials for advanced nanoelectronics while introducing minimal defects.
Code of Federal Regulations, 2013 CFR
2013-07-01
... substations, circuit breakers, other switchgear, gas-insulated lines, or power transformers. Fluorinated GHG... transformers containing a fluorinated GHG prior to sale or distribution, or offer for sale or distribution in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... substations, circuit breakers, other switchgear, gas-insulated lines, or power transformers. Fluorinated GHG... transformers containing a fluorinated GHG prior to sale or distribution, or offer for sale or distribution in...
Code of Federal Regulations, 2012 CFR
2012-07-01
... substations, circuit breakers, other switchgear, gas-insulated lines, or power transformers. Fluorinated GHG... transformers containing a fluorinated GHG prior to sale or distribution, or offer for sale or distribution in...
Effects of sequential treatment with fluorine and bromine on graphite fibers
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Stahl, Mark; Maciag, Carolyn; Slabe, Melissa
1987-01-01
Three pitch based graphite fibers with different degrees of graphitization and one polyacryonitrile (PAN) based carbon fiber from Amoco Corporation were treated with 1 atm, room temperature fluorine gas for 90 hrs. Fluorination resulted in higher electrical conductivity for all pitch fibers. Further bromination after ambient condition defluorination resulted in further increases in electrical defluorination conductivity for less graphitized, less structurally ordered pitch fibers (P-55) which contain about 3% fluorine by weight before bromination. This product can be stable in 200 C air, or 100% humidity at 60 C. Due to its low cost, this less graphitized fiber may be useful for industrial application, such as airfoil deicer materials. The same bromination process, however, resulted in conductivity decreases for fluorine rich, more graphitized, structurally oriented pitch fibers (P-100 and P-75). Such decreases in electrical conductivity were partially reversed by heating the fibers at 185 C in air. Differential scanning calorimetric (DSC) data indicated that the more graphitized fibers (P-100) contained BrF3, whereas the less graphitized fibers (P-55) did not.
Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak
2012-09-01
The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.
An anion substitution route to low loss colossal dielectric CaCu{sub 3}Ti{sub 4}O{sub 12}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Andrew E.; Calvarese, T.G.; Sleight, A.W.
2009-02-15
An anion substitution route was utilized for lowering the dielectric loss in CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by partial replacement of oxygen by fluorine. This substitution reduced the dielectric loss, and retained a high dielectric constant that was essentially temperature independent from 25 to 200 deg. C. In particular, CaCu{sub 3}Ti{sub 4}O{sub 11.7}F{sub 0.3} exhibited a giant dielectric constant over 6000 and low dielectric loss below 0.075 at 100 kHz within a temperature range of 25-200 deg. C. Fluorine analysis confirmed the presence of fluorine in all samples measured. - Grapical Abstract: An anion substitution route was utilized for loweringmore » the dielectric loss in CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by partial replacement of oxygen by fluorine. This substitution, confirmed by fluorine analysis, reduced tan {delta}, and retained a high dielectric constant that was essentially temperature independent from 25 to 200 deg. C at 100 kHz.« less
Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo
2013-01-01
Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm(2)/V·s and stable characteristics under the various gate bias and temperature stresses.
Enhanced spin-orbit coupling in dilute fluorinated graphene
NASA Astrophysics Data System (ADS)
Avsar, Ahmet; Lee, Jong Hak; Koon, Gavin Kok Wai; Özyilmaz, Barbaros
2015-12-01
The preservation and manipulation of a spin state mainly depends on the strength of the spin-orbit interaction. For pristine graphene, the intrinsic spin-orbit coupling (SOC) is only in the order of few μeV, which makes it almost impossible to be used as an active element in future electric field controlled spintronics devices. This stimulates the development of a systematic method for extrinsically enhancing the SOC of graphene. In this letter, we study the strength of SOC in weakly fluorinated graphene devices. We observe high non-local signals even without applying any external magnetic field. The magnitude of the signal increases with increasing fluorine adatom coverage. From the length dependence of the non-local transport measurements, we obtain SOC values of ˜5.1 meV and ˜9.1 meV for the devices with ˜0.005% and ˜0.06% fluorination, respectively. Such a large enhancement, together with the high charge mobility of fluorinated samples (μ ˜ 4300 cm2 V-1 s-1-2700 cm2 V-1 s-1), enables the detection of the spin Hall effect even at room temperature.
Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo
2013-01-01
Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm2/V·s and stable characteristics under the various gate bias and temperature stresses. PMID:23803977
NASA Astrophysics Data System (ADS)
Franco-Cañellas, Antoni; Wang, Qi; Broch, Katharina; Shen, Bin; Gerlach, Alexander; Bettinger, Holger F.; Duhm, Steffen; Schreiber, Frank
2018-04-01
We experimentally quantify the molecular bending of a partially fluorinated pentacene (PEN) compound, namely 2,3,9,10-tetrafluoropentacene (F4PEN), adsorbed on Cu(111). By means of the x-ray standing wave (XSW) technique, we directly measure the adsorption distance of three inequivalent carbon sites, the fluorine atoms as well as the total and backbone carbon average adsorption distances. The precise positioning of different sites within the carbon core allows us to resolve two adsorption behaviors, namely a PEN-like strong coupling between the backbone and the substrate, and a repulsive interaction involving the fluorinated short molecular edges, which are 0.91 ±0.09 Å above the central benzene ring. This finding is further supported by additional electronic and in-plane-structure measurements, thus showing that the selective fluorination of a PEN molecule has only a local conformational effect and it is not sufficient to modify its interface properties. Yet, in the multilayer regime, the electronic and growth properties of the film differ completely from those of PEN and its perfluorinated derivative.
Low dielectric fluorinated poly(phenylene ether ketone) film and coating
NASA Technical Reports Server (NTRS)
Cassidy, Patrick E. (Inventor); Tullos, Gordon L. (Inventor); St.clair, Anne K. (Inventor)
1990-01-01
The present invention relates to film and coating materials prepared from novel fluorinated poly(phenylene ether ketones). A fluorinated poly(phenylene ether ketone) is prepared by reacting a bisphenol with 1,1,1,3,3,3 hexafluoro-2,2-bis 4-(4-halobenzoyl) phenyl propane (wherein halo is fluoro or chloro), which is a novel monomer formed as the reaction product of halobenzene (wherein halo is fluoro or chloro) and 1,1,1,3,3,3 hexafluoro-2,2-bis (p-chloro formyl phenyl) propane. Especially beneficial results of this invention are that films and coating materials prepared from the novel fluorinated poly(phenylene ether ketone) are essentially optically transparent/colorless and have a lower dielectric constant than otherwise comparable, commercially available poly(phenylene ether ketones). Moreover, unlike the otherwise comparable commercially available materials, the novel fluorinated poly(phenylene ether ketones) of the present invention can be solution cast or sprayed to produce the films and coatings. Furthermore, the long term thermal stability of the polymers of the present invention is superior to that of the commercially available materials.
Presidential Green Chemistry Challenge: 2014 Designing Greener Chemicals Award
Presidential Green Chemistry Challenge 2014 award winner, The Solberg Company, replaced fluorinated surfactants in its firefighting foam concentrates with a blend of non-fluorinated surfactants and sugars.
Ellipilli, Satheesh; Ganesh, Krishna N
2015-09-18
Fluorous PNA analogues possessing fluorine as inherent part of aminopropylglycine (apg) backbone (γ-CF2-apg PNA) have been synthesized and evaluated for biophysical and cell penetrating properties. These form duplexes of higher thermal stability with cRNA than cDNA, although destabilized compared to duplexes of standard aeg-PNA. Cellular uptake of the fluorinated γ-CF2-apg PNAs in NIH 3T3 and HeLa cells was 2-3-fold higher compared to that of nonfluorinated apg PNA, with NIH 3T3 cells showing better permeability compared to HeLa cells. The backbone fluorinated PNAs, which are first in this class, when combined with other chemical modifications may have potential for future PNA-based antisense agents.
Fluorine lubricated bearing technology
NASA Technical Reports Server (NTRS)
Mallaire, F. R.
1973-01-01
An experimental program was conducted to evaluate and select materials for ball bearings intended for use in liquid fluorine and/or FLOX. The ability of three different ball-separator materials, each containing nickel, to form and transfer a nickel fluoride film to provide effective lubrication at the required areas of a ball bearing operating in liquid fluorine was evaluated. In addition, solid lubrication of a ball bearing operating in liquid fluorine by either a fused fluoride coating applied to all surfaces of the ball separator or by a fluoride impregnation of porous sintered material ball separators was evaluated. Less bearing wear occurred when tests were conducted in the less reactive FLOX. Bearings fabricated from any of the materials tested would have relatively short wear lives and would require frequent replacement in a reusable engine.
Cui, Xinwei; Chen, Jian; Wang, Tianfei; Chen, Weixing
2014-01-01
High performance rechargeable batteries are urgently demanded for future energy storage systems. Here, we adopted a lithium-carbon battery configuration. Instead of using carbon materials as the surface provider for lithium-ion adsorption and desorption, we realized induced fluorination of carbon nanotube array (CNTA) paper cathodes, with the source of fluoride ions from electrolytes, by an in-situ electrochemical induction process. The induced fluorination of CNTA papers activated the reversible fluorination/defluorination reactions and lithium-ion storage/release at the CNTA paper cathodes, resulting in a dual-storage mechanism. The rechargeable battery with this dual-storage mechanism demonstrated a maximum discharging capacity of 2174 mAh gcarbon−1 and a specific energy of 4113 Wh kgcarbon−1 with good cycling performance. PMID:24931036
Elastomeric fluorinated polyurethane coatings for nontoxic fouling control.
Brady, Robert F; Aronson, Carl L
2003-04-01
Nontoxic antifouling coatings have been investigated for many years as possible successors to toxic antifouling paints. Polymers containing fluorine or silicone have been tested and each has been shown to be partially effective for different reasons. This paper describes a new coating which combines the best features of fluorinated and silicone coatings and is non-toxic. Four fluorinated elastomers were prepared and tested for fouling resistance during a full fouling season. The surface energy and mechanical properties of each polymer were measured and correlated to fouling performance. One of the elastomers was shown to foul slowly, clean easily, be durable in the marine environment and organisms bonded to it only weakly. The surface energy, elastic modulus, and thickness of the elastomer may be varied as desired over wide ranges to meet differing performance requirements.
Synthesis and Characterization of Novel Fluorine-Containing Water-Based Antirust Coating
NASA Astrophysics Data System (ADS)
Wang, Huiru; Wang, Xin; Zhao, Xiongyan
2018-01-01
A fluorine-containing polyacrylate copolymer emulsion was synthesized by a seed emulsion polymerization method, in which styrene(St) and butyl acrylate (BA) were used as main monomers and dodecafluoroheptyl methacrylate(DFMA) as fluorine-containing monomer. The structure and properties were characterized by Fourier transform infrared spectrum (FT-IR), scanning electron microscopy (SEM), particle size analysis, differential scanning calorimetry (DSC). The FTIR results showed that DFMA was effectively involved in the emulsion copolymerization, and the formed emulsion particles had a narrow particle size distribution. From the results salt spray test presented, it seems when the content of DFMA was 5wt% anti-rust performance of emulsion is relatively better. DSC and TGA also showed that their film exhibited higher thermal stability than that of fluorine-free emulsion.
Spectroscopic studies of fluorination of bisdiethylaminotetrachloro-triphosphazene
NASA Astrophysics Data System (ADS)
Bamgboye, T. Tunde; Bamgboye, Omolara A.
Substitution of two of the chlorine atoms in cis-bisdiethylaminotetrachlorotriphosphazene with antimony trifluoride yields the corresponding 1,3-difluoride. With potassium fluorosulphite as fluorinating agent, the cis geminal difluoride can be obtained. Further fluorination of 1,3 difluoride and cis geminal difluoride with KSO 2F and antimony trifluoride respectively affords the cis isomer 1,3,5,5-tetrafluoride. Structures are proposed on the basis of 1H and 19F NMR spectra with i.r. spectroscopy assisted by gas—liquid chromatography.
1992-02-01
COMPOUNDS AND T•EIR OXIDIZING PROPERTIES: VOLUME 3. Prof. G.J. Schrobilgen DTI.DTIC_* Mc Mastf-• University f ELECTE Department of Chemistry JUN 16...STRUCTURAL CHARACTERIZATION OF NEW HIGH- C - F49620-87-C-0049 VALENT INORGANIC FLUORINE COMPOUNDS AND THEIR OXIDIZING PR- 5730 PROPERTIES TA- 007C S6...fluorine, oxidizers of Neon, Krypton. Argon, and Xenon have been synthesized and characterized. KrF+ and ),eF+ caticmns have been made with neutral
PLATINUM HEXAFLUORIDE AND METHOD OF FLUORINATING PLUTONIUM CONTAINING MIXTURES THERE-WITH
Malm, J.G.; Weinstock, B.; Claassen, H.H.
1959-07-01
The preparation of platinum hexafluoride and its use as a fluorinating agent in a process for separating plutonium from fission products is presented. According to the invention, platinum is reacted with fluorine gas at from 900 to 1100 deg C to form platinum hexafluoride. The platinum hexafluoride is then contacted with the plutonium containing mixture at room temperature to form plutonium hexafluoride which is more volatile than the fission products fluorides and therefore can be isolated by distillation.
Jones, R.L.; Otey, M.G.; Perkins, R.W.
1980-11-24
This invention is a method for effecting preferential removal and immobilization of certain gaseous contaminants from gaseous UF/sub 6/. The contaminants include fluorine and fluorides which are more reactive with CaCO/sub 3/ than is UF/sub 6/. The method comprises contacting the contaminant-carrying UF/sub 6/ with particulate CaCO/sub 3/ at a temperature effecting reaction of the contaminant and the CaCO/sub 3/.
Zhang, Maojie; Guo, Xia; Zhang, Shaoqing; Hou, Jianhui
2014-02-01
The synergistic effect of fluorination on molecular energy level modulation is realized by introducing fluorine atoms onto both the donor and the acceptor moieties in a D-A polymer, and as a result, the polymer solar cell device based on the trifluorinated polymer, PBT-3F, shows a high efficiency of 8.6%, under illumination of AM 1.5G, 100 mW cm(-) (2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An In Situ Directing Group Strategy for Chiral Anion Phase-Transfer Fluorination of Allylic Alcohols
2015-01-01
An enantioselective fluorination of allylic alcohols under chiral anion phase-transfer conditions is reported. The in situ generation of a directing group proved crucial for achieving effective enantiocontrol. In the presence of such a directing group, a range of acyclic substrates underwent fluorination to afford highly enantioenriched α-fluoro homoallylic alcohols. Mechanistic studies suggest that this transformation proceeds through a concerted enantiodetermining transition state involving both C–F bond formation and C–H bond cleavage. PMID:25203796
FLUORINATION OF OXIDIC NUCLEAR FUEL
Mecham, W.J.; Gabor, J.D.
1963-07-23
A process of volatilizing fissionable material away from fission products, present together in neutron-bombarded uranium oxide, by reaction with an oxygen-fluorine mixture at 350 to 500 deg C is described. (AEC)
Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.
Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy
2017-01-01
Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronov, V.; Feigin, L.A.; Budovskaya, L.D.
1994-12-31
Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.
PROCESS FOR TREATING VOLATILE METAL FLUORIDES
Rudge, A.J.; Lowe, A.J.
1957-10-01
This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.
High-power CW laser using hydrogen-fluorine reaction
NASA Technical Reports Server (NTRS)
Moynihan, P. I.
1975-01-01
Continuous-wave laser has been proposed based on reaction of hydrogen and fluorine. Hydrogen is produced by dissociation of hydrazine, which can be stored as liquid in light containers at room temperature.
Provides basic information and resources for the Fluorinated Gas Partnership Programs, which were launched as a joint effort by EPA and industry groups to reduce the amount of fluorinated gases emitted through a variety of industrial processes.
Friction Properties of Surface-Fluorinated Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.
2005-01-01
Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.
Ao, Zhimin; Jiang, Quanguo; Li, Shuang; Liu, Hao; Peeters, Francois M; Li, Sean; Wang, Guoxiu
2015-09-09
Fluorinated graphene is one of the most important derivatives of graphene and has been found to have great potential in optoelectronic and photonic nanodevices. However, the stability of F atoms on fluorinated graphene under different conditions, which is essential to maintain the desired properties of fluorinated graphene, is still unclear. In this work, we investigate the diffusion of F atoms on pristine graphene, graphene with defects, and at graphene/fluorographene interfaces by using density functional theory calculations. We find that an isolated F atom diffuses easily on graphene, but those F atoms can be localized by inducing vacancies or absorbates in graphene and by creating graphene/fluorographene interfaces, which would strengthen the binding energy of F atoms on graphene and increase the diffusion energy barrier of F atoms remarkably.
Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres
NASA Astrophysics Data System (ADS)
Yu, Changlin; Yu, Jimmy C.; Chan, Mui
2009-05-01
A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO 2 microspheres was developed. Formation of mesoporous TiO 2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO 2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO 2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.
Dettwiller, Luc
2006-04-17
Since 2001 the intrinsic birefringence of fluorine has been accessible to experiment. It is known that its intrinsic anisotropy is entirely due to spatial dispersion, and that the index surface of fluorine and crystals with the same symmetry has seven optical axes, four of them intersecting this surface at pairs of conical points. I point out the fact that there is no internal conical refraction, but only simple refraction (and without walkoff), with these conical points. I also explain why the rays are not a priori normal to the index surface in the case of fluorine because of its spatial dispersion; and I discuss two particular cases of spatial dispersion where the Poynting vector remains orthogonal to the index surface.
Erb, Jeremy; Paull, Daniel H.; Dudding, Travis; Belding, Lee
2012-01-01
We report in full detail our studies on the catalytic, asymmetric α-fluorination of acid chlorides, a practical method that produces an array of α-fluorocarboxylic acid derivatives in which improved yield and virtually complete enantioselectivity are controlled through electrophilic fluorination of a ketene enolate intermediate. We discovered, for the first time, that a third catalyst, a Lewis acidic lithium salt, could be introduced into a dually-activated system to amplify yields of aliphatic products, primarily through activation of the fluorinating agent. Through our mechanistic studies (based on kinetic data, isotopic labeling, spectroscopic measurements, and theoretical calculations) we were able to utilize our understanding of this “trifunctional” reaction to optimize the conditions and obtain new products in good yield and excellent enantioselectivity. PMID:21513338
Wang, Qiong; Duan, Linrui; Tao, Qiang; Peng, Wenhong; Chen, Jianhua; Tan, Hua; Yang, Renqiang; Zhu, Weiguo
2016-11-09
To simultaneously improve both open-circuit voltage (V oc ) and short-circuit current density (J sc ) for organic solar cells, a novel D(A-π-Ar) 3 type of photovoltaic small molecules of TPA(F x BT-T-3Cz) 3 was designed and synthesized, which contain central triphenylamine (TPA), terminal carbazole (Cz), armed fluorine-substituted benzothiadiazole (F x BT, where x = 1 or 2), and bridged thiophene (T) units. A narrowed ultraviolet-visible absorption and a decreasing highest occupied molecular orbital energy level were observed from TPA(F 1 BT-T-3Cz) 3 to TPA(F 2 BT-T-3Cz) 3 with increasing fluorine substitution. However, the TPA(F 2 BT-T-3Cz) 3 /PC 71 BM-based solar devices showed a rising V oc of 1.01 V and an enhanced J sc of 10.84 mA cm -2 as well as a comparable power conversion efficiency of 4.81% in comparison to the TPA(F 1 BT-T-3Cz) 3 /PC 71 BM-based devices. Furthermore, in comparison to the parent TPA(BT-T-3Cz) 3 molecule without fluorine substitution, the fluorine-substituted TPA(F x BT-T-3Cz) 3 molecules exhibited significantly incremental V oc and J sc values in their bulk heterojunction organic solar cells, owing to fluorine incorporation in the electron-deficient benzothiadiazole unit.
NASA Astrophysics Data System (ADS)
Tang, Fengzai; Lee, Kean B.; Guiney, Ivor; Frentrup, Martin; Barnard, Jonathan S.; Divitini, Giorgio; Zaidi, Zaffar H.; Martin, Tomas L.; Bagot, Paul A.; Moody, Michael P.; Humphreys, Colin J.; Houston, Peter A.; Oliver, Rachel A.; Wallis, David J.
2018-01-01
We investigate the impact of a fluorine plasma treatment used to obtain enhancement-mode operation on the structure and chemistry at the nanometer and atomic scales of an InAlN/GaN field effect transistor. The fluorine plasma treatment is successful in that enhancement mode operation is achieved with a +2.8 V threshold voltage. However, the InAlN barrier layers are observed to have been damaged by the fluorine treatment with their thickness being reduced by up to 50%. The treatment also led to oxygen incorporation within the InAlN barrier layers. Furthermore, even in the as-grown structure, Ga was unintentionally incorporated during the growth of the InAlN barrier. The impact of both the reduced barrier thickness and the incorporated Ga within the barrier on the transistor properties has been evaluated theoretically and compared to the experimentally determined two-dimensional electron gas density and threshold voltage of the transistor. For devices without fluorine treatment, the two-dimensional electron gas density is better predicted if the quaternary nature of the barrier is taken into account. For the fluorine treated device, not only the changes to the barrier layer thickness and composition, but also the fluorine doping needs to be considered to predict device performance. These studies reveal the factors influencing the performance of these specific transistor structures and highlight the strengths of the applied nanoscale characterisation techniques in revealing information relevant to device performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagan, Benjamin D.; Lichtscheidl, Alejandro G.; Erickson, Karla A.
Trimethyltin fluoride (Me₃SnF) is a mild and selective reagent for the installation of actinide fluoride bonds as demonstrated by the room temperature synthesis of a variety of organometallic and inorganic thorium(IV), uranium(IV), and uranium(V) fluoride complexes ((1,2,4-tBu₃C₅H₂)₂ThF₂, (C₅Me₅)₂U(F)(O-2,6-iPr₂C₆H₃), U(F)(O-2,6-tBu₂C₆H₃)₃, U(F)[N(SiMe₃)₂]₃ (C₅Me₅)₂UF₂(L) (L = O=PMe₃, O=PPh₃, O=PCy₃), and (C₅Me₅)₂U(F)(=N-2,6-iPr₂C₆H₃)) from their corresponding chloride, bromide, and iodide analogues. From these reactions, the new (C₅Me₅)₂UF₂(L) (L = O=PPh₃, O=PCy₃) uranium fluoride complexes were isolated and characterized by NMR spectroscopy and X-ray crystallography.
NASA Astrophysics Data System (ADS)
Melandri, Sonia; Velino, Biagio; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther
2000-04-01
The van der Waals complex between Ar and 1,2-difluoroethane has been investigated by free-jet absorption millimeter-wave spectroscopy in the frequency range 60-78 GHz. The analysis of the spectroscopic constants derived from the rotational spectrum allowed the determination of the dimer's structure. 1,2-Difluoroethane is in the gauche conformation and the Ar atom is in a position stabilized by the interaction with one fluorine and the two carbon atoms. The distance between Ar and the center of mass (CM) of the monomer is 3.968 Å, the angle between the Ar-CM line and the C-C bond is 65° and the dihedral angle Ar-CM-C-C is 99°. From centrifugal distortion effects the dissociation energy of the complex has been estimated to be 2.1 kJ/mol.
Kagan, Benjamin D.; Lichtscheidl, Alejandro G.; Erickson, Karla A.; ...
2017-11-07
Trimethyltin fluoride (Me₃SnF) is a mild and selective reagent for the installation of actinide fluoride bonds as demonstrated by the room temperature synthesis of a variety of organometallic and inorganic thorium(IV), uranium(IV), and uranium(V) fluoride complexes ((1,2,4-tBu₃C₅H₂)₂ThF₂, (C₅Me₅)₂U(F)(O-2,6-iPr₂C₆H₃), U(F)(O-2,6-tBu₂C₆H₃)₃, U(F)[N(SiMe₃)₂]₃ (C₅Me₅)₂UF₂(L) (L = O=PMe₃, O=PPh₃, O=PCy₃), and (C₅Me₅)₂U(F)(=N-2,6-iPr₂C₆H₃)) from their corresponding chloride, bromide, and iodide analogues. From these reactions, the new (C₅Me₅)₂UF₂(L) (L = O=PPh₃, O=PCy₃) uranium fluoride complexes were isolated and characterized by NMR spectroscopy and X-ray crystallography.
Martino, Robert; Gilard, Véronique; Desmoulin, Franck; Malet-Martino, Myriam
2006-01-01
The metabolism of fluorouracil and fluorocytosine, two 5-fluoropyrimidine drugs in clinical use, was investigated. (19)F nuclear magnetic resonance (NMR) spectroscopy was used as an analytical technique for the detection, identification and quantification of fluorinated metabolites of these drugs in intact human biofluids as well as fluorinated degradation compounds of fluorouracil in commercial vials. (19)F NMR provides a highly specific tool for the detection and absolute quantification, in a single run, of all the fluorinated species, including unexpected substances, present in biofluids of patients treated with fluorouracil or fluorocytosine. Besides the parent drug and the already known fluorinated metabolites, nine new metabolites were identified for the first time with (19)F NMR in human biofluids. Six of them can only be observed with this technique: fluoride ion, N-carboxy-alpha-fluoro-beta-alanine, alpha-fluoro-beta-alanine conjugate with deoxycholic acid, 2-fluoro-3-hydroxypropanoic acid, fluoroacetic acid, O(2)-beta-glucuronide of fluorocytosine. (19)F NMR studies of biological fluids of patients treated with anticancer fluorouracil or antifungal fluorocytosine have furthered the understanding of their catabolic pathways.
Xu, Fei; Yang, Shuhao; Jiang, Guangshen; Ye, Qian; Wei, Bingqing; Wang, Hongqiang
2017-11-01
Lithium-sulfur battery represents a promising class of energy storage technology owing to its high theoretical energy density and low cost. However, the insulating nature, shuttling of soluble polysulfides and volumetric expansion of sulfur electrodes seriously give rise to the rapid capacity fading and low utilization. In this work, these issues are significantly alleviated by both physically and chemically restricting sulfur species in fluorinated porous triazine-based frameworks (FCTF-S). One-step trimerization of perfluorinated aromatic nitrile monomers with elemental sulfur allows the simultaneous formation of fluorinated triazine-based frameworks, covalent attachment of sulfur and its homogeneous distribution within the pores. The incorporation of electronegative fluorine in frameworks provides a strong anchoring effect to suppress the dissolution and accelerate the conversion of polysulfides. Together with covalent chemical binding and physical nanopore-confinement effects, the FCTF-S demonstrates superior electrochemical performances, as compared to those of the sulfur-rich covalent triazine-based framework without fluorine (CTF-S) and porous carbon delivering only physical confinement. Our approach demonstrates the potential of regulating lithium-sulfur battery performances at a molecular scale promoted by the porous organic polymers with a flexible design.
Pucelik, Barbara; Gürol, Ilke; Ahsen, Vefa; Dumoulin, Fabienne; Dąbrowski, Janusz M
2016-11-29
A fluorinated phthalocyanine and its non-fluorinated analogue were selected to evaluate the potential enhancement of fluorination on photophysical, photochemical and redox properties as well as on biological activity in cellular and animal models. Due to the pharmacological relevance, the affinity of these phthalocyanines towards biological membranes (logP ow ) as well as their primary interaction with human serum albumin (HSA) or low-density lipoprotein (LDL) were determined. Water-dispersible drug formulation of phthalocyanines via Pluronic ® -based triblock copolymer micelles was prepared to avoid self-aggregation effects and to improve their delivery. The obtained results demonstrate that phthalocyanines incorporation into tunable-polymeric micelles significantly enhanced their cellular uptake and their photocytotoxicity. The improved biodistribution and photodynamic efficacy of the phthalocyanines-triblock copolymer conjugates was also confirmed in vivo in CT26 bearing BALB/c mice. PDT with both compounds led to tumor growth inhibition in all treated animals. Fluorinated phthalocyanine 2 turned out to be the most effective anticancer agent as the tumors of 20% of mice treated regressed completely and did not appear for over one year after treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Pathak, Arup Kumar; Bandyopadhyay, Tusar
2017-02-15
Despite the fact that fluorination makes a drug more lipophilic, the molecular level understanding of protein-fluorinated drug interactions is very poor. Due to their enhanced ability to penetrate the blood brain barrier, they are suitable for reactivation of organophosphorus inactivated acetylcholinesterase (AChE) in the central nervous system. We systematically studied the unbinding of fluorinated obidoxime (FOBI) and non-fluorinated obidoxime (OBI) from the active site gorge of the serine hydrolase AChE in mean field polarizable water by employing all atom molecular dynamics simulations. It is observed that the unbinding process is strongly influenced by cation-π, hydrogen bond (HB) and water bridge interactions. The FOBI drug interacts more strongly with the protein residues than OBI and this is also verified from quantum mechanical calculations. Distinct unbinding pathways for FOBI and OBI are observed as evident from the 1D and 2D potential of mean force of the unbinding profiles. The present study suggests that the FOBI drug is held more firmly in the gorge of AChE in comparison to OBI and may lead to higher reactivation efficiency of the inactivated enzyme.
Synthesis of fluorinated graphene oxide by using an easy one-pot deoxyfluorination reaction.
Aguilar-Bolados, Héctor; Contreras-Cid, Ahirton; Yazdani-Pedram, Mehrdad; Acosta-Villavicencio, Gabriela; Flores, Marcos; Fuentealba, Pablo; Neira-Carrillo, Andrónico; Verdejo, Raquel; López-Manchado, Miguel A
2018-08-15
The fluorination of two types of graphene oxides conducted by an easy and scalable deoxyfluorination reaction is reported. This reaction was carried out using diethylaminodifluorosulfinium tetrafluoroborate, a stable compound and an efficient reagent for replacing oxygenated functional groups of graphene oxide by fluoride. The graphene oxide produced by the Hummers' method (GOH) showed lower reactivity than that produced by the Brodie's method (GOB). X-ray photoelectron spectroscopy indicated that the highest fluorination degree achieved was 4.7 at.% when GOB was used, and the CF character corresponds to semi-ionic bonds. Additionally, a partial reduction of GO was concomitant with the functionalization reaction. The deoxyfluorination reaction changed the crystalline structure of GO, favoring the reconstruction of Csp 2 structure of the graphene lattice and reducing the number of stacked layers. The fluorination led to the modification of the electronic band structure of this material, increasing the band gap from 2.05 eV for GOB to 3.88 eV for fluorinated GOB, while for GOH the low flurionation led to a slight increase of the band gap, from 3.48 eV to 3.57 eV. Copyright © 2018 Elsevier Inc. All rights reserved.
The effect of fluorine and homeopathic medicines in rats fed cariogenic diet.
Almeida, N T; Dalmeida, V; Pustiglione, M
2004-07-01
Although some sectors of dentistry have benefited from technological advances, dental caries is still a major problem. Prevention and treatment of dental caries by fluorine is considered a major advance in public health. Nevertheless fluorosis, caused by ingestion of excessive amounts of fluorine during the period of teeth formation, is of great concern. In accordance with the homeopathic doctrine, minimum doses of fluorine and other substances could prevent and/or treat caries. In this experiment, we compared the preventive action of fluorine and evaluated the effect of homeopathic medicines on the teeth of rats fed a cariogenic diet. None of the groups included in this study developed caries. However, microscopy revealed the presence of precipitate and/or deposit in the groups treated with homeopathic medicines. This phenomenon might be due to deposit in the dental surface or precipitation of bacterial plaque or calcium salts. It was not possible to identify the composition of the deposit/precipitate due for technical reasons. In one of the groups treated with homeopathic medicines fur loss was observed in 40% of animals. These reactions might be caused due to the action of the homeopathic medicines.
Abraham, Anuji; Crull, George
2014-10-06
A simple and robust method for obtaining fluorine-carbon proximities was established using a (19)F-(13)C heteronuclear correlation (HETCOR) two-dimensional (2D) solid-state nuclear magnetic resonance (ssNMR) experiment under magic-angle spinning (MAS). The method was applied to study a crystalline active pharmaceutical ingredient (API), avagacestat, containing two types of fluorine atoms and its API-polymer composite drug product. These results provide insight into the molecular structure, aid with assigning the carbon resonances, and probe API-polymer proximities in amorphous spray dried dispersions (SDD). This method has an advantage over the commonly used (1)H-(13)C HETCOR because of the large chemical shift dispersion in the fluorine dimension. In the present study, fluorine-carbon distances up to 8 Å were probed, giving insight into the API structure, crystal packing, and assignments. Most importantly, the study demonstrates a method for probing an intimate molecular level contact between an amorphous API and a polymer in an SDD, giving insights into molecular association and understanding of the role of the polymer in API stability (such as recrystallization, degradation, etc.) in such novel composite drug products.
Mondal, Saptarsi; Biswas, Biswajit; Nandy, Tonima; Singh, Prashant Chandra
2017-09-20
The local structures between water-water, alcohol-water and alcohol-alcohol have been investigated for aqueous mixtures of ethanol (ETH) and monofluoroethanol (MFE) by the deconvolution of IR bands in the OH stretching region, molecular dynamics simulation and quantum chemical calculations. It has been found that the addition of a small amount of ETH into the aqueous medium increases the strength of the hydrogen bonds between water molecules. In an aqueous mixture of MFE, the substitution of a single fluorine induces a change in the orientation as well as the hydrogen bonding site of water molecules from the oxygen to the fluorine terminal of MFE. The switching of the hydrogen bonding site of water in the aqueous mixture of MFE results in comparatively strong hydrogen bonds between MFE and water molecules as well as less clustering of water molecules, unlike the case of the aqueous mixture of ETH. These findings about the modification of a hydrogen bond network by the hydrophobic fluorine group probably make fluorinated molecules useful for pharmaceutical as well as biological applications.
77 FR 48976 - Certain New Chemicals; Receipt and Status Information
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-15
... surface active agent. fluorinated alcohol, reaction products with phosphorus oxide (P205), amine salts. P.... fluorinated alcohol, reaction products with phosphorus oxide (P205), amine salts. P-12-0452...... 07/09/2012...
Davidson, R.; Fried, S.
1959-10-27
A method is described of preparing uraniurn hexafluoride without the use of fluorine gas by reacting uraniurn tetrafluoride with oxygen gas under rigorously anhydrous conditions at 600 to 1300 deg K within a pre-fluorinated nickel vessel.
Benzylic Fluorination of Aza-Heterocycles Induced by Single-Electron Transfer to Selectfluor.
Danahy, Kelley E; Cooper, Julian C; Van Humbeck, Jeffrey F
2018-04-23
A selective and mild method for the benzylic fluorination of aromatic azaheterocycles with Selectfluor is described. These reactions take place by a previously unreported mechanism, in which electron transfer from the heterocyclic substrate to the electrophilic fluorinating agent Selectfluor eventually yields a benzylic radical, thus leading to the desired C-F bond formation. This mechanism enables high intra- and intermolecular selectivity for aza-heterocycles over other benzylic components with similar C-H bond-dissociation energies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copper-Catalyzed, Directing Group-Assisted Fluorination of Arene and Heteroarene C-H Bonds
Truong, Thanh; Klimovica, Kristine; Daugulis, Olafs
2013-01-01
We have developed a method for direct, copper-catalyzed, auxiliary-assisted fluorination of β-sp2 C-H bonds of benzoic acid derivatives and γ-sp2 C-H bonds of α,α-disubstituted benzylamine derivatives. The reaction employs CuI catalyst, AgF fluoride source, and DMF, pyridine, or DMPU solvent at moderately elevated temperatures. Selective mono- or difluorination can be achieved by simply changing reaction conditions. The method shows excellent functional group tolerance and provides a straightforward way for the preparation of ortho-fluorinated benzoic acids. PMID:23758609
Bume, Desta Doro; Pitts, Cody Ross; Ghorbani, Fereshte; Harry, Stefan Andrew; Capilato, Joseph N.; Siegler, Maxime A.
2017-01-01
The ubiquitous ketone carbonyl group generally deactivates substrates toward radical-based fluorinations, especially sites closest to it. Herein, ketones are used instead to direct aliphatic fluorination using Selectfluor, catalytic benzil, and visible light. Selective β- and γ-fluorination are demonstrated on rigid mono-, di-, tri-, and tetracyclic (steroidal) substrates employing both cyclic and exocyclic aliphatic ketones as directing groups. PMID:29147517
Dubtsov, G G; Novikova, Zh V; Komleva, V A
2007-01-01
The research work was devoted to accumulation of strontium-90 (Sr-90) in bone tissue of animals (white rats) and its dependence on the diet, enriched with Fluorine (F). Totally each rat received 18,5 MBk of strontium-90. Insertion of rusks, fortified with sodium fluoride to the rats dietary intake, reduces accumulation of strontium-90 in bone tissue for 26% comparatively to control group of animals. Stimulation action of fluorine on hematopoietic function of irradiated animals were also determined.
Kuriki, Ryo; Ichibha, Tom; Hongo, Kenta; Lu, Daling; Maezono, Ryo; Kageyama, Hiroshi; Ishitani, Osamu; Oka, Kengo; Maeda, Kazuhiko
2018-05-30
Mixed anion compounds such as oxynitrides and oxychalcogenides are recognized as potential candidates of visible-light-driven photocatalysts since, as compared with oxygen 2p orbitals, p orbitals of less electronegative anion (e.g., N 3- , S 2- ) can form a valence band that has more negative potential. In this regard, oxyfluorides appear unsuitable because of the higher electronegativity of fluorine. Here we show an exceptional case, an anion-ordered pyrochlore oxyfluoride Pb 2 Ti 2 O 5.4 F 1.2 that has a small band gap (ca. 2.4 eV). With suitable modification of Pb 2 Ti 2 O 5.4 F 1.2 by promoters such as platinum nanoparticles and a binuclear ruthenium(II) complex, Pb 2 Ti 2 O 5.4 F 1.2 worked as a stable photocatalyst for visible-light-driven H 2 evolution and CO 2 reduction. Density functional theory calculations have revealed that the unprecedented visible-light-response of Pb 2 Ti 2 O 5.4 F 1.2 arises from strong interaction between Pb-6s and O-2p orbitals, which is enabled by a short Pb-O bond in the pyrochlore lattice due to the fluorine substitution.
Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers
Jens, Kobelke; Jörg, Bierlich; Katrin, Wondraczek; Claudia, Aichele; Zhiwen, Pan; Sonja, Unger; Kay, Schuster; Hartmut, Bartelt
2014-01-01
All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process. PMID:28788219
Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers.
Jens, Kobelke; Jörg, Bierlich; Katrin, Wondraczek; Claudia, Aichele; Zhiwen, Pan; Sonja, Unger; Kay, Schuster; Hartmut, Bartelt
2014-09-25
All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.
Fox, Stephen J; Gourdain, Stephanie; Coulthurst, Anton; Fox, Clare; Kuprov, Ilya; Essex, Jonathan W; Skylaris, Chris-Kriton; Linclau, Bruno
2015-01-19
A comprehensive conformational analysis of both 2,3-difluorobutane diastereomers is presented based on density functional theory calculations in vacuum and in solution, as well as NMR experiments in solution. While for 1,2-difluoroethane the fluorine gauche effect is clearly the dominant effect determining its conformation, it was found that for 2,3-difluorobutane there is a complex interplay of several effects, which are of similar magnitude but often of opposite sign. As a result, unexpected deviations in dihedral angles, relative conformational energies and populations are observed which cannot be rationalised only by chemical intuition. Furthermore, it was found that it is important to consider the free energies of the various conformers, as these lead to qualitatively different results both in vacuum and in solvent, when compared to calculations based only on the electronic energies. In contrast to expectations, it was found that vicinal syn-difluoride introduction in the butane and by extension, longer hydrocarbon chains, is not expected to lead to an effective stabilisation of the linear conformation. Our findings have implications for the use of the vicinal difluoride motif for conformational control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holmquist, H; Schellenberger, S; van der Veen, I; Peters, G M; Leonards, P E G; Cousins, I T
2016-05-01
Following the phase-out of long-chain per- and polyfluoroalkyl substances (PFASs), the textile industry had to find alternatives for side-chain fluorinated polymer based durable water repellent (DWR) chemistries that incorporated long perfluoroalkyl side chains. This phase-out and subsequent substitution with alternatives has resulted in a market where both fluorinated and non-fluorinated DWRs are available. These DWR alternatives can be divided into four broad groups that reflect their basic chemistry: side-chain fluorinated polymers, silicones, hydrocarbons and other chemistries (includes dendrimer and inorganic nanoparticle chemistries). In this critical review, the alternative DWRs are assessed with regards to their structural properties and connected performance, loss and degradation processes resulting in diffuse environmental emissions, and hazard profiles for selected emitted substances. Our review shows that there are large differences in performance between the alternative DWRs, most importantly the lack of oil repellence of non-fluorinated alternatives. It also shows that for all alternatives, impurities and/or degradation products of the DWR chemistries are diffusively emitted to the environment. Our hazard ranking suggests that hydrocarbon based DWR is the most environmentally benign, followed by silicone and side-chain fluorinated polymer-based DWR chemistries. Industrial commitments to reduce the levels of impurities in silicone based and side-chain fluorinated polymer based DWR formulations will lower the actual risks. There is a lack of information on the hazards associated with DWRs, in particular for the dendrimer and inorganic nanoparticle chemistries, and these data gaps must be filled. Until environmentally safe alternatives, which provide the required performance, are available our recommendation is to choose DWR chemistry on a case-by-case basis, always weighing the benefits connected to increased performance against the risks to the environment and human health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Carrillo-Carrión, Carolina; Gallego, Marta; Parak, Wolfgang J; Carril, Mónica
2018-05-08
Understanding the interaction of nanoparticles with proteins and how this interaction modifies the nanoparticles’ surface is crucial before their use for biomedical applications. Since fluorinated materials are emerging as potential imaging probes and delivery vehicles, their interaction with proteins of biological interest must be studied in order to be able to predict their performance in real scenarios. It is known that fluorinated planar surfaces may repel the unspecific adsorption of proteins but little is known regarding the same process on fluorinated nanoparticles due to the scarce examples in the literature. In this context, the aim of this work is to propose a simple and fast methodology to study fluorinated nanoparticle-protein interactions based on interfacial surface tension (IFT) measurements. This technique is particularly interesting for fluorinated nanoparticles due to their increased hydrophobicity. Our study is based on the determination of IFT variations due to the interaction of quantum dots of ca. 5 nm inorganic core/shell diameter coated with fluorinated ligands (QD_F) with several proteins at the oil/water interface. Based on the results, we conclude that the presence of QD_F do not disrupt protein spontaneous film formation at the oil/water interface. Even if at very low concentrations of proteins the film formation in the presence of QD_F shows a slower rate, the final interfacial tension reached is similar to that obtained in the absence of QD_F. The differential behaviour of the studied proteins (bovine serum albumin, fibrinogen and apotransferrin) has been discussed on the basis of the adsorption affinity of each protein towards DCM/water interface and their different sizes. Additionally, it has been clearly demonstrated that the proposed methodology can serve as a complementary technique to other reported direct and indirect methods for the evaluation of nanoparticle-protein interactions at low protein concentrations.