Science.gov

Sample records for fluorine-doped yba2cu3oy films

  1. Pseudogap studied by optical conductivity spectra of Zn-substituted YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Uykur, Ece; Masui, Takahiko; Tanaka, Kiyohisa; Miyasaka, Shigeki; Tajima, Setsuko

    2012-02-01

    The pseudogap and the superconducting gap cause a similar suppression of the low energy optical conductivity, but the behaviors of the spectral weight transfers are different, which enables us to distinguish these two gaps. In the c-axis spectra of YBa2Cu3Oy, however, it is difficult to discuss these spectral weight transfers because of the additional structures due to a transverse Josephson plasma mode [1]. To overcome this problem, we substituted Zn for Cu, which is known to suppress those supplementary structures [2]. In this study, we performed temperature dependent reflectivity measurements in Zn-substituted YBa2Cu3Oy system. We have revealed the continuous transfer of the low energy spectral weight to the higher energy region even below Tc, which suggests the coexistence of the pseudogap and the superconducting gap. [1]C. Bernhard et al. Phys. Rev. B, 61 (2000) 618. [2]R. Hauff et al., Phys. Rev. Lett., 77 (1996) 4620.

  2. Electronic ordering and disorder effects in the pseudogap state of YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Julien, Marc-Henri

    2014-03-01

    We report NMR measurements in the normal state of underdoped YBa2Cu3Oy. While unambiguous indication of charge-density-wave ordering is found in the pseudogap state, we interpret this as short range CDW order nucleated around native defects. We discuss the connections of this result to the initial evidence of CDW order in YBa2Cu3Oy from NMR in high magnetic fields, to the more recent X-ray scattering data in the normal state as well as to a wider body of experimental results which have been considered to characterize the pseudogap state. Work performed in collaboration with Tao Wu, Hadrien Mayaffre, Steffen Krämer, Mladen Horvatic & Claude Berthier (LNCMI), Ruixing Liang, Walter N. Hardy and Douglas A. Bonn (UBC).

  3. Fluctuation induced conductivity studies in YBa2Cu3Oy compound embedded by superconducting nano-particles Y-deficient YBa2Cu3Oy: effect of silver inclusion

    NASA Astrophysics Data System (ADS)

    Hannachi, E.; Slimani, Y.; Ben Salem, M. K.; Hamrita, A.; Al-Otaibi, A. L.; Almessiere, M. A.; Ben Salem, M.; Ben Azzouz, F.

    2016-09-01

    The effect of superconducting Y-deficient YBa2Cu3Oy nano-particles prepared by the planetary ball milling technique and silver inclusion on electrical fluctuation conductivity of polycrystalline YBa2Cu3Oy has been reported. Samples, synthesized by the conventional solid-state reaction technique, have been investigated using X-ray diffraction, scanning electron microscope and electrical resistivity. Scanning electron microscope analyses show that nano-particles of Y-deficient YBa2Cu3Oy are embedded in the superconducting matrix. The density of these nano-particles strongly depends on milling parameters. The fluctuation conductivity has been analyzed as a function of reduced temperature using the Aslamazov-Larkin model. Three different fluctuation regions namely critical, mean-field and short-wave are observed. The zero-temperature coherence length, the effective layer thickness of the two-dimensional system, critical magnetic fields and critical current density are estimated. Superconducting parameters are affected by Y-deficient YBa2Cu3Oy nano-particles. It has been found that attainment of an optimum concentration and well-dispersed of nano-sized inclusions by ball milling process improves the physical properties. On the other hand, the sample with Y-deficient YBa2Cu3Oy nano-particles and Ag exhibits better superconducting properties in comparison with free added one.

  4. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy

    PubMed Central

    Wu, Tao; Mayaffre, Hadrien; Krämer, Steffen; Horvatić, Mladen; Berthier, Claude; Hardy, W.N.; Liang, Ruixing; Bonn, D.A.; Julien, Marc-Henri

    2015-01-01

    The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order–parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent. PMID:25751448

  5. Critical current measurements in superconductor-ferromagnet-superconductor junctions of YBa2Cu3Oy-SrRuO3-YBa2Cu3Oy: No evidence for dominant proximity-induced triplet superconductivity in the ferromagnetic barrier

    NASA Astrophysics Data System (ADS)

    Koren, G.; Kirzhner, T.; Aronov, P.

    2012-01-01

    Transport measurements in ramp-type junctions of YBa2Cu3Oy-SrRuO3-YBa2Cu3Oy with Tc values of either 80-90 K or 60-70 K are reported. In both types of junctions but without a barrier (“shorts”), the supercurrent densities at 4.2 K reached 7.5 and 3.5 MA/cm2, respectively, indicating the high quality of the fabrication process. Plots of the critical current versus thickness of the ferromagnetic barrier at 4.2 K show exponential decays with decay lengths of 1.1 nm for the 90-K phase and 1.4 nm for the 60-K phase, which are much shorter than the relevant coherence lengths ξF˜5-6 nm or ξN˜16 nm of SrRuO3. We thus conclude that there is no dominant proximity induced triplet superconductivity in the ferromagnet in our junctions.

  6. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  7. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Belvin, C. A.; Liang, R.; Bonn, D. A.; Hardy, W. N.; Armitage, N. P.; Hsieh, D.

    2016-11-01

    The phase diagram of cuprate high-temperature superconductors features an enigmatic pseudogap region that is characterized by a partial suppression of low-energy electronic excitations. Polarized neutron diffraction, Nernst effect, terahertz polarimetry and ultrasound measurements on YBa2Cu3Oy suggest that the pseudogap onset below a temperature T* coincides with a bona fide thermodynamic phase transition that breaks time-reversal, four-fold rotation and mirror symmetries respectively. However, the full point group above and below T* has not been resolved and the fate of this transition as T* approaches the superconducting critical temperature Tc is poorly understood. Here we reveal the point group of YBa2Cu3Oy inside its pseudogap and neighbouring regions using high-sensitivity linear and second-harmonic optical anisotropy measurements. We show that spatial inversion and two-fold rotational symmetries are broken below T* while mirror symmetries perpendicular to the Cu-O plane are absent at all temperatures. This transition occurs over a wide doping range and persists inside the superconducting dome, with no detectable coupling to either charge ordering or superconductivity. These results suggest that the pseudogap region coincides with an odd-parity order that does not arise from a competing Fermi surface instability and exhibits a quantum phase transition inside the superconducting dome.

  8. Quasiparticle Scattering off Defects and Possible Bound States in Charge-Ordered YBa2 Cu3 Oy

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Hirata, M.; Wu, T.; Vinograd, I.; Mayaffre, H.; Krämer, S.; Horvatić, M.; Berthier, C.; Reyes, A. P.; Kuhns, P. L.; Liang, R.; Hardy, W. N.; Bonn, D. A.; Julien, M.-H.

    2017-01-01

    We report the NMR observation of a skewed distribution of 17O Knight shifts when a magnetic field quenches superconductivity and induces long-range charge-density-wave (CDW) order in YBa2Cu3Oy . This distribution is explained by an inhomogeneous pattern of the local density of states N (EF) arising from quasiparticle scattering off, yet unidentified, defects in the CDW state. We argue that the effect is most likely related to the formation of quasiparticle bound states, as is known to occur, under specific circumstances, in some metals and superconductors (but not in the CDW state, in general, except for very few cases in 1D materials). These observations should provide insight into the microscopic nature of the CDW, especially regarding the reconstructed band structure and the sensitivity to disorder.

  9. 63Cu-NMR study of oxygen disorder in ortho-II YBa2Cu3Oy

    NASA Astrophysics Data System (ADS)

    Wu, T.; Zhou, R.; Hirata, M.; Vinograd, I.; Mayaffre, H.; Liang, R.; Hardy, W. N.; Bonn, D. A.; Loew, T.; Porras, J.; Haug, D.; Lin, C. T.; Hinkov, V.; Keimer, B.; Julien, M.-H.

    2016-04-01

    We show that 63Cu-NMR spectra place strong constraints on both the nature and the concentration of oxygen defects in ortho-II YBa2Cu3Oy . Systematic deviation from ideal ortho-II order is revealed by the presence of inequivalent Cu sites in either full or empty chains. The results can be explained by two kinds of defects: oxygen clustering into additional chains, or fragments thereof, most likely present at all concentrations (6.4

  10. Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements

    NASA Astrophysics Data System (ADS)

    Leboeuf, David; Doiron-Leyraud, Nicolas; Vignolle, B.; Sutherland, Mike; Ramshaw, B. J.; Levallois, J.; Daou, R.; Laliberté, Francis; Cyr-Choinière, Olivier; Chang, Johan; Jo, Y. J.; Balicas, L.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Proust, Cyril; Taillefer, Louis

    2011-02-01

    The Hall coefficient RH of the cuprate superconductor YBa2Cu3Oy was measured in magnetic fields up to 60 T for a hole concentration p from 0.078 to 0.152 in the underdoped regime. In fields large enough to suppress superconductivity, RH(T) is seen to go from positive at high temperature to negative at low temperature, for p>0.08. This change of sign is attributed to the emergence of an electron pocket in the Fermi surface at low temperature. At p<0.08, the normal-state RH(T) remains positive at all temperatures, increasing monotonically as T→0. We attribute the change of behavior across p=0.08 to a Lifshitz transition, namely a change in Fermi-surface topology occurring at a critical concentration pL=0.08, where the electron pocket vanishes. The loss of the high-mobility electron pocket across pL coincides with a tenfold drop in the conductivity at low temperature, revealed in measurements of the electrical resistivity ρ at high fields, showing that the so-called metal-insulator crossover of cuprates is in fact driven by a Lifshitz transition. It also coincides with a jump in the in-plane anisotropy of ρ, showing that without its electron pocket, the Fermi surface must have strong twofold in-plane anisotropy. These findings are consistent with a Fermi-surface reconstruction caused by a unidirectional spin-density wave or stripe order.

  11. Synthesis of YBa2Cu3Oy superconductors via attrition-milled intermediate oxide precursor containing BaCuO2.5

    NASA Astrophysics Data System (ADS)

    Park, Haiwoong; Lee, Haigun

    2001-06-01

    YBa2Cu3Oy (Y123) phase was synthesized from the oxide precursor containing BaCuO2.5 in two distinct processes. in the first stage, a suitable amount of metallic Y, metallic Cu and barium nitrate (Ba(NO3)2) were mixed via attrition milling for 20 h. After 20 h of milling, the particle size of the powder was in the range of 0.05-0.2 μm. On subsequent heat treatment of the milled powder at 600°C for 5h with continuous argon flow, the intermediate precursor (IP) was synthesized. The IP contained BaCuO2.5, Y2O3 and CuO and the overall composition of the IP was Y:Ba:Cu:O=1:2:3:7.4. The oxygen content of the IP was higher than that of the corresponding orthorhombic Y123 superconductor. In the second stage, the synthesized IP was converted to the superconducting Y123 phase with heat treatment at 900-1020°C in air without any additional low temperature oxygenation process. A DTA experiment at 20°C/min in air and a series of rapid heat, soak, and quench experiments showed that the BaCuO2.5 constituent of the precursor decomposed at 838°C, which is higher than that of pure BaCuO2.5 (760°C). The results of the TGA experiments suggested that the heating rate had a strong influence on the decomposition temperature of the BaCuO2.5 of the IP. At a heating rate of>50°C/min, the BaCuO2.5 did not decompose completely during heating to 1020°C and form orthorhombic YBa2Cu3O7-x.

  12. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films.

    PubMed

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-05

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  13. Effect of solvent ratio on the optoelectronic properties of fluorine doped tin oxide thin films

    SciTech Connect

    Karthick, P.; Divya, V.; Sridharan, M.; Jeyadheepan, K.

    2015-06-24

    Fluorine doped tin oxide (FTO) thin films were deposited on to the well cleaned microscopic glass substrates using nebulized-spray pyrolysis (n-SP) technique by varying the water to ethanol solvent proportion. The deposited thin films were characterized by X-ray diffraction (XRD), UV-Vis-NIR spectroscopy, field emission scanning electron microscopy and Hall measurements to study the structural, optical, surface morphological and electrical properties of the films, respectively. Results of the analyzes show that the films are polycrystalline, having tetragonal structure with the preferred orientation along (110) plane. The grain size varies between 7 to 20 nm. The optimized films exhibit the optical transparency of 85 % at the wavelength of 580 nm. The optical bandgap lies in the range of 3.94 to 4 eV. The optimized films, deposited with 40 % of ethanol proportion are having the mean resistivity 4.72×10{sup −3} Ω-cm, carrier concentration 1.79×10{sup 20} cm{sup 3} and the mobility 7 cm{sup 2}/Vs.

  14. Fluorine-doped zinc oxide thin films: influence of precursor flow rate on violet luminescence

    NASA Astrophysics Data System (ADS)

    Muthukumar, Anusha; Dakshnamoorthy, Arivuoli

    2015-06-01

    Fluorine-doped zinc oxide (FZO) thin films were deposited by the aerosol-assisted chemical vapor deposition method with variable precursor flow rates (0.5-2.5 ml/min). X-ray diffraction patterns revealed the polycrystalline hexagonal wurtzite structure of the derived FZO nanocrystalline thin films. Extensive crystallinity analysis of the film deposited at 1 ml/min was done by grazing incidence X-ray diffraction. Field emission scanning electron microscope images apparent the gradual evolution from spherical grains and hexagonal platelet like surface morphology with increased flow rate. Optical transparency and photoluminescence (PL) are strongly influenced by flow rate. PL intensity and transparency increase with decreased flow rate. The optical bandgap was tuned significantly by increase in flow rate and especially tuned the PL emission from violet to UV. High intense violet PL observed at flow rate of 1 ml/min and radiative transition of electrons from zinc vacancies level to the conduction band were found. Crystallinity, growth rate and roughness increase with increased flow rate.

  15. Electron scattering mechanisms in fluorine-doped SnO{sub 2} thin films

    SciTech Connect

    Rey, G. Consonni, V.; Bellet, D.; Ternon, C.; Mescot, X.

    2013-11-14

    Polycrystalline fluorine-doped SnO{sub 2} (FTO) thin films have been grown by ultrasonic spray pyrolysis on glass substrate. By varying growth conditions, several FTO specimens have been deposited and the study of their structural, electrical, and optical properties has been carried out. By systematically investigating the mobility as a function of carrier density, grain size, and crystallite size, the contribution of each physical mechanism involved in the electron scattering has been derived. A thorough comparison of experimental data and calculations allows to disentangle these different mechanisms and to deduce their relative importance. In particular, the roles of extended structural defects such as grain or twin boundaries as revealed by electron microscopy or x-ray diffraction along with ionized impurities are discussed. As a consequence, based on the quantitative analysis presented here, an experimental methodology leading to the improvement of the electro-optical properties of FTO thin films is reported. FTO thin films assuming an electrical resistivity as low as 3.7 · 10{sup −4} Ω cm (square sheet resistance of 8 Ω/◻) while retaining good transmittance up to 86% (including substrate effect) in the visible range have been obtained.

  16. Enhanced violet photoemission of nanocrystalline fluorine doped zinc oxide (FZO) thin films

    NASA Astrophysics Data System (ADS)

    Anusha, Muthukumar; Arivuoli, D.; Manikandan, E.; Jayachandran, M.

    2015-09-01

    Highly stable fluorine doped nanocrystalline zinc oxide thin films were prepared on corning glass substrates by aerosol assisted chemical vapor deposition (AACVD) at variable deposition temperature of 360 °C, 380 °C and 420 °C. Especially, the optimum deposition temperature was investigated for high intense violet emission. The film crystallinity improved with the increasing deposition temperature and highly textured film was obtained at 420 °C. The films exhibited surface morphology variation from spherical to platelets due to deposition temperature effect, analyzed by field emission scanning electron microscope (FE-SEM). Higher growth rate observed at 420 °C which leads larger grains and lowest resistivity of ∼5.77 Ω cm among the deposited films which may be due to reduction in zinc vacancies and grain boundary area. Zinc vacancies are acts as electron killer centres. UV-visible spectra indicated higher transmittance (83-90%) in the visible region. Red shift of optical absorption edges associated with the increase in particle size consistent well with the XRD results. Reduced E2(high) intensity was observed in Raman spectra, for the film deposited at 380 °C which indicates decreased oxygen incorporation confirmed by PL spectra. Especially, enhanced violet emission observed at 3.06 eV for the films deposited at 380 °C due to electronic transition from the defect level of zinc vacancies to the conduction band, probably attributed to enhanced incorporation of 'F' into 'O' sites associated with increased Zn vacancies and also decreased oxygen incorporation consistent with the electrical and Raman analyses.

  17. Microstructures of YBa2Cu3Oy Layers Deposited on Conductive Layer-Buffered Metal Tapes

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru; Hashimoto, Masayuki; Horii, Shigeru; Doi, Toshiya

    REBa2Cu3Oy (REBCO; RE: rare-earth elements)-coated conductors (CCs) have high potential for use in superconducting devices. In particular, REBCO CCs are useful for superconducting devices working at relatively high temperatures near 77 K. The important issues in their applications are high performance, reliability and low cost. To date, sufficient performance for some applications has almost been achieved by considerable efforts. The establishment of the reliability of superconducting devices is under way at present. The issue of low cost must be resolved to realize the application of superconducting devices in the near future. Therefore, we have attempted several ways to reduce the cost of REBCO CCs. The coated conductors using a Nb-doped SrTiO3 buffer layer and Ni-plated Cu and stainless steel laminate metal tapes have recently been developed to eliminate the use of electric stabilization layers of Cu and Ag, which are expected to reduce the material cost. Good superconducting properties are obtained at 77 K. The critical current density (JC) at 77 K under a magnetic self-field is determined to be more than 2x106 A/cm2. The microstructures of the CCs are analyzed by transmission electron microscopy to obtain a much higher quality. By microscopic structure analysis, an overgrowth of the buffer layer is observed at a grain boundary of the metal substrate, which is one of the reasons for the high JC.

  18. Evolution des quasiparticules nodales du cuprate supraconducteur YBa2Cu3Oy en conductivite thermique

    NASA Astrophysics Data System (ADS)

    Rene de Cotret, Samuel

    Ce memoire presente des mesures de conductivite thermique sur les supraconducteurs YBCO et Tl-2201 afin de statuer sur la presence possible d'un point critique quantique (QCP) dans le diagramme de phase de cuprates. Ce point critique quantique serait a l'origine de la reconstruction de la surface de Fermi, d'un large cylindre de trous en de petites poches de trous et d'electrons. La conductivite thermique dans le regime T → 0 permet d'extraire une quantite purement electronique liee aux vitesses de Fermi et du gap, au noeud. Une discontinuite dans cette quantite pourrait signaler la traversee du dopage critique qui reconstruit la surface de Fermi. Plusieurs sondes experimentales distinguent une transition de phase ou un crossover a T* a temperature finie. D'autres sondes mettent en evidence une transition de phase sous l'effet d'un champ magnetique. La presence ou non de cet ordre, a temperature et champ magnetique nul questionne la communaute depuis plusieurs annees. Dans cette etude, nous detectons une variation brusque de kappa0/T a p = 0.18 dans YBCO et a p = 0.20 dans Tl-2201. Ces sauts sont interpretes comme un signe de la transition a temperature nulle et sont en faveur d'un QCP. Le manque de donnees d'un meme materiau a ces dopages ne permet pas de valider hors de tout doute l'existence d'un point critique quantique. Le modele theorique YRZ decrit aussi bien les donnees de conductivite thermique. Des pistes de travaux experimentaux a poursuivre sont proposees pour determiner la presence ou non du QCP de facon franche. Mots-cles : Supraconducteurs, cuprates, conductivite thermique, point critique quantique.

  19. Effect of Heat Treatment Under Nitrogen Atmosphere on Sprayed Fluorine Doped In2O3 Thin Films

    NASA Astrophysics Data System (ADS)

    Beji, Nasreddine; Ajili, Mejda; Turki, Najoua Kamoun

    2016-07-01

    Fluorine-doped indium oxide thin films (In2O3:F) were prepared at 500°C for different fluorine concentrations (0 at.%, 2 at.%, 6 at.% and 10 at.%) using the chemical spray pyrolysis technique. Structure and surface morphology of these films were characterized by x-ray diffraction (XRD) and atomic force microscopy (AFM). XRD analysis revealed that fluorine doped In2O3 thin films exhibit a centered cubic structure with the (400) preferential orientation. The change of the preferential reflection plane from (222) to (400) was found after doping. The doping optimum concentration of thin film crystal structure is obtained witha fluorine ratio equal to 2 at.%. The crystallinity improvement of In2O3:F (2 at.%) film is detected after annealing at 200°C, 300°C, and 400°C in nitrogen gas for 45 min. Transmission and reflection spectra measurements were performed over the wavelength range of 250-2500 nm. The band gap energy increase from 3.10 eV to 3.45 eV was detected after treatment at 400°C. In parallel, the electrical resistivity, deduced from Hall effect measurements, decreases from 428.90 × 10-4 Ω cm to 6.58 × 10-4 Ω cm.

  20. Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics

    NASA Astrophysics Data System (ADS)

    Nagakubo, A.; Ogi, H.; Ishida, H.; Hirao, M.; Yokoyama, T.; Nishihara, T.

    2015-07-01

    Vitreous silica (v-SiO2) shows anomalous temperature dependence of velocity, including positive temperature coefficient of velocity (TCV) and velocity minimum around 70 K. The former characteristic allows its application in acoustic-resonator devices as a temperature compensating material. In this paper, we study the temperature dependence of velocity of fluorine-doped v-SiO2 (v-SiO2-xFx) thin films using picosecond ultrasonic spectroscopy. To correct the temperature increase caused by irradiation with light pulses, we calculated the steady temperature increase in the measuring volume with a finite volume method, considering the temperature dependence of thermal conductivity, and find that temperature in the measurement region remains high even when the back surface is cryogenically cooled. Using the corrected temperature, we determine TCV of v-SiO2-xFx thin films for 0 < x < 0.264 , which increases as x increases and is smaller than reported bulk values by a factor of 0.5 - 0.7 . The velocity minimum is absent for the film with x = 0, but it is clearly observed at 70 K for the film with the highest fluorine concentration of x = 0.264. These temperature behaviors are attributed to the change in the Si-O-Si bond angle caused by the fluorine doping.

  1. Low Temperature Synthesis of Fluorine-Doped Tin Oxide Transparent Conducting Thin Film by Spray Pyrolysis Deposition.

    PubMed

    Ko, Eun-Byul; Choi, Jae-Seok; Jung, Hyunsung; Choi, Sung-Churl; Kim, Chang-Yeoul

    2016-02-01

    Transparent conducting oxide (TCO) is widely used for the application of flat panel display like liquid crystal displays and plasma display panel. It is also applied in the field of touch panel, solar cell electrode, low-emissivity glass, defrost window, and anti-static material. Fluorine-doped tin oxide (FTO) thin films were fabricated by spray pyrolysis of ethanol-added FTO precursor solutions. FTO thin film by spray pyrolysis is very much investigated and normally formed at high temperature, about 500 degrees C. However, these days, flexible electronics draw many attentions in the field of IT industry and the research for flexible transparent conducting thin film is also required. In the industrial field, indium-tin oxide (ITO) film on polymer substrate is widely used for touch panel and displays. In this study, we investigated the possibility of FTO thin film formation at relatively low temperature of 250 degrees C. We found out that the control of volume of input precursor and exhaust gases could make it possible to form FTO thin film with a relatively low electrical resistance, less than 100 Ohm/sq and high optical transmittance about 88%.

  2. Growth mechanism and optical properties of Ti thin films deposited onto fluorine-doped tin oxide glass substrate

    SciTech Connect

    Einollahzadeh-Samadi, Motahareh; Dariani, Reza S.

    2015-03-15

    In this work, a detailed study of the influence of the thickness on the morphological and optical properties of titanium (Ti) thin films deposited onto rough fluorine-doped tin oxide glass by d.c. magnetron sputtering is carried out. The films were characterized by several methods for composition, crystallinity, morphology, and optical properties. Regardless of the deposition time, all the studied Ti films of 400, 1500, 2000, and 2500 nm in thickness were single crystalline in the α-Ti phase and also very similar to each other with respect to composition. Using the atomic force microscopy (AFM) technique, the authors analyzed the roughness evolution of the Ti films characteristics as a function of the film thickness. By applying the dynamic scaling theory to the AFM images, a steady growth roughness exponent α = 0.72 ± 0.02 and a dynamic growth roughness exponent β = 0.22 ± 0.02 were determined. The value of α and β are consistent with nonlinear growth model incorporating random deposition with surface diffusion. Finally, measuring the reflection spectra of the samples by a spectrophotometer in the spectral range of 300–1100 nm allowed us to investigate the optical properties. The authors observed the increments of the reflection of Ti films with thickness, which by employing the effective medium approximation theory showed an increase in thickness followed by an increase in the volume fraction of metal.

  3. The effect of laser patterning parameters on fluorine-doped tin oxide films deposited on glass substrates

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Chiang, Donyau

    2011-08-01

    The purpose of this study is to pattern the fluorine-doped tin oxide thin film deposited on the soda-lime glass substrates for touch screen applications by ultraviolet laser. The patterned film structures provide the electrical isolation and prevent the electrical contact from each region for various touch screens. The surface morphology, edge quality, three-dimensional topography, and profile of isolated lines and electrode structures after laser patterning were measured by a confocal laser scanning microscope. Moreover, a four-point probe instrument was used to measure the sheet resistance before and after laser patterning on film surfaces and also to discuss the electrical property at different laser spot overlaps. After laser patterning, a high overlapping area of laser spot was used to pattern the electrode layer on film surfaces that could obtain an excellent machined quality of edge profile. All sheet resistance values of film surfaces near the isolated line edge were larger than the original ones. Moreover, the sheet resistance values increased with increasing laser spot overlapping area.

  4. Optimization of the deposition and annealing conditions of fluorine-doped indium oxide films for silicon solar cells

    SciTech Connect

    Untila, G. G. Kost, T. N.; Chebotareva, A. B.; Timofeyev, M. A.

    2013-03-15

    Fluorine-doped indium oxide (IFO) films are deposited onto (pp{sup +})Si and (n{sup +}nn{sup +})Si structures made of single-crystal silicon by ultrasonic spray pyrolysis. The effect of the IFO deposition time and annealing time in an argon atmosphere with methanol vapor on the IFO chemical composition, the photovoltage and fill factor of the Illumination-U{sub oc} curves of IFO/(pp{sup +})Si structures, and the sheet resistance of IFO/(n{sup +}nn{sup +})Si structures, correlating with the IFO/(n{sup +})Si contact resistance, is studied. The obtained features are explained by modification of the properties of the SiO{sub x} transition layer at the IFO/Si interface during deposition and annealing. Analysis of the results made it possible to optimize the fabrication conditions of solar cells based on IFO/(pp{sup +})Si heterostructures and to increase their efficiency from 17% to a record 17.8%.

  5. Structural, mechanical and hydrophobic properties of fluorine-doped diamond-like carbon films synthesized by plasma immersion ion implantation and deposition (PIII?D)

    NASA Astrophysics Data System (ADS)

    Yao, Zh. Q.; Yang, P.; Huang, N.; Sun, H.; Wang, J.

    2004-05-01

    Fluorine-doped diamond-like carbon (a-C:F) films with different fluorine content were fabricated on Si wafer by plasma immersion ion implantation and deposition (PIII-D). Film composition and structure were characterized by X-ray photoelectron spectroscopy (XPS) and Raman scattering spectroscopy. Surface morphology and roughness were analyzed by atomic force microscopy (AFM). Hardness and scratch resistance were measured by nano-indentation and nano-scratch, respectively. Water contact angles were measured by sessile drop method. With the increase of the CF 4 flux, fluorine content was gradually increased to the film. Raman spectra indicates that these films have a diamond-like structure. The addition of fluorine to diamond-like carbon films had a critical influence on the film properties. The film surface becomes more smoother due to the etching behavior of F +. Hardness was significantly reduced, while the scratch resistance results show that these films have a fairly good adhesion to the substrate. Evident improvements of the hydrophobicity have been made to these films, with contact angles of double-stilled water approaching that of polytetrafluoroethylene (PTFE). Our study suggests that broad application regions of the fluorine-doped amorphous carbon films with diamond-like structure, synthesized by PIII-D, can be extended by combining the non-wetting properties and mechanical properties which are far superior to those of PTFE.

  6. Surface Resistance of YBCO Thin Films under High DC Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Kitamura, K.; Noguchi, Y.; Sekiya, N.; Saito, A.; Hirano, S.; Okai, D.

    2006-06-01

    We have studied the magnetic dependence of the surface resistance (Rs) of YBa2Cu3Oy (YBCO) thin films by changing the direction of an applied magnetic field by mean of a micriostrip line resonator method (MLRM). We measured Rs(0), Rs(90) and Rs(45) to which the direction of the applied magnetic field was respectively normal, parallel and at 45° to the film surface. In the low temperature region, (below 40 K), the Rs(0) had low magnetic dependence; however, the Rs(90) and Rs(45) had high magnetic dependence, even below 10 K. We examined the magnetic field dependence of Rs (90) and Rs(0) using the London equation, and found that Rs(90) in the higher temperature region could be mostly explained by the theory.

  7. Effect of solvent volume on the physical properties of undoped and fluorine doped tin oxide films deposited using a low-cost spray technique

    NASA Astrophysics Data System (ADS)

    Muruganantham, G.; Ravichandran, K.; Saravanakumar, K.; Ravichandran, A. T.; Sakthivel, B.

    2011-12-01

    Undoped and fluorine doped tin oxide films were deposited from starting solutions having different values of solvent volume (10-50 ml) by employing a low cost and simplified spray technique using perfume atomizer. X-ray diffraction studies showed that there was a change in the preferential orientation from (2 1 1) plane to (1 1 0) plane as the volume of the solvent was increased. The sheet resistance ( Rsh) of undoped SnO 2 film was found to be minimum (13.58 KΩ/□) when the solvent volume was lesser (10 ml) and there was a sharp increase in Rsh for higher values of solvent volume. Interestingly, it was observed that while the Rsh increases sharply with the increase in solvent volume for undoped SnO 2 films, it decreases gradually in the case of fluorine doped SnO 2 films. The quantitative analysis of EDAX confirmed that the electrical resistivity of the sprayed tin oxide film was mainly governed by the number of oxygen vacancies and the interstitial incorporation of Sn atoms which in turn was governed by the impinging flux on the hot substrate. The films were found to have good optical characteristics suitable for opto-electronic devices.

  8. High-T sub c fluorine-doped YBa2Cu3O(y) films on ceramic substrates by screen printing

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1991-01-01

    Thick films of fluorine-doped YBa2Cu3O(y) were screen printed on highly polished alumina, magnesia spinel, strontium titanate, and yttria-stabilized zirconia (YSZ) substrates. They were annealed at 1000 C and soaked in oxygen at 450 C, followed by slow cooling to room temperature. The films were characterized by electrical resistivity measurements as a function of temperature and x-ray diffraction. The film on YSZ showed the best characteristics with a T sub c (onset) of 91 K, T sub c (R equals 0) of 88.2 K, and a transition width, delta T sub c (10-90 percent), of approximately 1.7 K. The film adhesion, probably controlled by interdiffusion of cations between the film and the substrate, was good in all cases except on strontium titanate where the film completely detached from the substrate.

  9. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    SciTech Connect

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-15

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared with {approx}4.76 and {approx}4.64 eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  10. Synthesis and characterization of one-dimensional nanostructured fluorine-doped tin dioxide thin films

    NASA Astrophysics Data System (ADS)

    Murakami, Kenji; Bandara, Ajith; Okuya, Masayuki; Shimomura, Masaru; Rajapakse, R. M. G.

    2016-09-01

    This paper describes preparation and characterization of the optically-transparent and electrically conducting thin films of fluoride-doped tin dioxide (FTO) one-dimensional nanostructures and features of the purpose-built, novel and advanced version of spray pyrolysis technique, known as Rotational, Pulsed and Atomized Spray Pyrolysis. This technique allows perfect and simple control of morphology of the nanostructures of FTO layer by adjusting the spray conditions. Effect of the different additives on crystal morphology and texture of the 1-dimensional (1-D) nanostructured FTO thin films is studied. Vertically aligned and well separated nanotubes are easily fabricated using propanone and ethanol as additives. We suggest that propanone additive plays a role to form vertically aligned nanotubes with (101) preferential orientation while (110) face is the predominant plane of well separated nanotubes with ethanol additive. The conductivity of the 1-D nanostructured thin films are also enhanced using the commercial FTO glasses as a substrate.

  11. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy.

    PubMed

    Wu, Tao; Mayaffre, Hadrien; Krämer, Steffen; Horvatić, Mladen; Berthier, Claude; Hardy, W N; Liang, Ruixing; Bonn, D A; Julien, Marc-Henri

    2011-09-07

    Electronic charges introduced in copper-oxide (CuO(2)) planes generate high-transition-temperature (T(c)) superconductivity but, under special circumstances, they can also order into filaments called stripes. Whether an underlying tendency towards charge order is present in all copper oxides and whether this has any relationship with superconductivity are, however, two highly controversial issues. To uncover underlying electronic order, magnetic fields strong enough to destabilize superconductivity can be used. Such experiments, including quantum oscillations in YBa(2)Cu(3)O(y) (an extremely clean copper oxide in which charge order has not until now been observed) have suggested that superconductivity competes with spin, rather than charge, order. Here we report nuclear magnetic resonance measurements showing that high magnetic fields actually induce charge order, without spin order, in the CuO(2) planes of YBa(2)Cu(3)O(y). The observed static, unidirectional, modulation of the charge density breaks translational symmetry, thus explaining quantum oscillation results, and we argue that it is most probably the same 4a-periodic modulation as in stripe-ordered copper oxides. That it develops only when superconductivity fades away and near the same 1/8 hole doping as in La(2-x)Ba(x)CuO(4) (ref. 1) suggests that charge order, although visibly pinned by CuO chains in YBa(2)Cu(3)O(y), is an intrinsic propensity of the superconducting planes of high-T(c) copper oxides.

  12. Physicochemical characterization of point defects in fluorine doped tin oxide films

    SciTech Connect

    El Akkad, Fikry; Joseph, Sudeep

    2012-07-15

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (F{sub O}) in presence of high concentration of oxygen vacancies (V{sub O}) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the V{sub O} concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the F{sub O} concentration and a decrease in both n and V{sub O} concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO{sub 2} matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine F{sub O} and tin vacancy V{sub Sn} defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a V{sub Sn} through the migration of Sn{sub Sn} host atom to the fluoride phase is approximately 0.45 eV.

  13. Solution-Processed Flexible Fluorine-doped Indium Zinc Oxide Thin-Film Transistors Fabricated on Plastic Film at Low Temperature

    PubMed Central

    Seo, Jin-Suk; Jeon, Jun-Hyuck; Hwang, Young Hwan; Park, Hyungjin; Ryu, Minki; Park, Sang-Hee Ko; Bae, Byeong-Soo

    2013-01-01

    Transparent flexible fluorine-doped indium zinc oxide (IZO:F) thin-film transistors (TFTs) were demonstrated using the spin-coating method of the metal fluoride precursor aqueous solution with annealing at 200°C for 2 hrs on polyethylene naphthalate films. The proposed thermal evolution mechanism of metal fluoride aqueous precursor solution examined by thermogravimetric analysis and Raman spectroscopy can easily explain oxide formation. The chemical composition analysed by XPS confirms that the fluorine was doped in the thin films annealed below 250°C. In the IZO:F thin films, a doped fluorine atom substitutes for an oxygen atom generating a free electron or occupies an oxygen vacancy site eliminating an electron trap site. These dual roles of the doped fluorine can enhance the mobility and improve the gate bias stability of the TFTs. Therefore, the transparent flexible IZO:F TFT shows a high mobility of up to 4.1 cm2/V·s and stable characteristics under the various gate bias and temperature stresses. PMID:23803977

  14. Highly improved photo-induced bias stability of sandwiched triple layer structure in sol-gel processed fluorine-doped indium zinc oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Kim, Dongha; Park, Hyungjin; Bae, Byeong-Soo

    2016-03-01

    In order to improve the reliability of TFT, an Al2O3 insulating layer is inserted between active fluorine doped indium zinc oxide (IZO:F) thin films to form a sandwiched triple layer. All the thin films were fabricated via low-cost sol-gel process. Due to its large energy bandgap and high bonding energy with oxygen atoms, the Al2O3 layer acts as a photo-induced positive charge blocking layer that effectively blocks the migration of both holes and V o2+ toward the interface between the gate insulator and the semiconductor. The inserted Al2O3 triple layer exhibits a noticeably low turn on voltage shift of -0.7 V under NBIS as well as the good TFT performance with a mobility of 10.9 cm2/V ṡ s. We anticipate that this approach can be used to solve the stability issues such as NBIS, which is caused by inescapable oxygen vacancies.

  15. Novel nanostructure zinc zirconate, zinc oxide or zirconium oxide pastes coated on fluorine doped tin oxide thin film as photoelectrochemical working electrodes for dye-sensitized solar cell.

    PubMed

    Hossein Habibi, Mohammad; Askari, Elham; Habibi, Mehdi; Zendehdel, Mahmoud

    2013-03-01

    Zinc zirconate (ZnZrO(3)) (ZZ), zinc oxide (ZnO) (ZO) and zirconium oxide (ZrO(2)) (ZRO) nano-particles were synthesized by simple sol-gel method. ZZ, ZO and ZRO nano-particles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). Nanoporous ZZ, ZO and ZRO thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)(3)](PF(6))(2), [Co(pby)(3)](PF(6))(3), LiClO(4), and 4-tert-butylpyridine (TBP). The properties of DSSC have been studied by measuring their short-circuit photocurrent density (Jsc), open-circuit voltage (VOC) and fill factor (ff). The application of ZnZrO(3) as working electrode produces a significant improvement in the fill factor (ff) of the dye-sensitized solar cells (ff=56%) compared to ZnO working electrode (ff=40%) under the same condition.

  16. Characteristics of Fluorine-doped tin oxide thin films grown by Streaming process for Electrodeless Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Khalilzadeh-Rezaie, Farnood; Cleary, Justin W.; Oladeji, Isaiah O.; Suu, Koukou; Schoenfeld, Winston V.; Peale, Robert E.; Awodugba, Ayodeji O.

    2015-04-01

    This work investigated the characteristics of SnO2: F films grown by Streaming Process for Electrodeless Electrochemical Deposition (SPEED). Stannic chloride (SnCl4) and ammonium fluoride (NH4 F) was dissolved in a mixture of deionized water and organic solvents. The preheated substrate temperature was varied between 450 and 530° C. High quality SnO2: F films were grown at all the substrate temperatures studied. The typical film thickness was 250 nm. XRD shows that the grown films are polycrystalline SnO2 with a tetragonal crystal structure. The average optical transmission of the films was around 93% throughout the wavelength of 400 to 1000 nm. The lowest electrical resistivity achieved was 6 x 10-4 Ω cm. The Hall measurements showed that the film is an n-type semiconductor, with the highest carrier mobility of 8.3 cm2/V.s, and concentration of 1 x 1021 cm-3. The direct band gap was determined to be 4 eV from the transmittance spectrum.

  17. Effects of deposition conditions on the phase formation of YBCO films prepared by spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Jin; Joo, Jinho; Park, Shin-Geun; Hong, Suck-Kwan; Lee, Sun-Wang; Lim, Sun-Weon; Hong, Gye-Won; Lee, Hee-Gyoun

    2006-10-01

    YBa2Cu3Oy superconducting films were deposited on LaAlO3(1 0 0) single crystal substrates by spray pyrolysis method. Two types of ultrasonic and concentric nebulizer were used in order to generate fine droplets of metal-inorganic precursor solution. c-Axis oriented films were obtained at deposition temperature of 750-850 °C and at working pressures of 100 Torr and 500 Torr. In case of ultrasonic nebulizer, the films showed rough surface morphology due to the presence of enormous droplets, whereas smooth and dense films were obtained for concentric nebulizer. The good c-axis oriented YBCO films were formed at the wide range of the oxygen partial pressure. Oxygen which is generated via the decomposition of nitrate precursors is considered to participate in the formation reaction of YBCO film. Microstructures of YBCO films varied depending on oxygen partial pressure and rod-like grains were appeared when the oxygen partial pressure was lower than 30 Torr. YBCO films were deposited epitaxially on LAO(1 0 0) substrate. Δϕ of in-plane and Δω of out-of-plane texture were measured as 3.3° and 1.0°, respectively. A transport Jc value of 0.50 MA/cm2 at 77 K and self-field was achieved for the YBCO film deposited on LaAlO3(1 0 0) single crystal substrate.

  18. Relationship between intrinsic surface resistance and critical current density of YBCO thin films with various thickness

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Nakayama, S.; Saito, A.; Ono, S.; Kai, H.; Mukaida, M.; Honma, T.; Ohshima, S.

    2010-11-01

    We investigated the relationship between the intrinsic surface resistance (Rsint) and critical current density (Jc) of YBa2Cu3Oy (YBCO) film thinner than the penetration depth (λL). The measured YBCO films were deposited on CeO2-buffered r-cut Al2O3 substrates by the pulsed laser deposition method. The thicknesses of these films were 300, 200, and 100 nm, respectively. The Rsint means the surface resistance of YBCO film removing the loss by the impedance of the substrates. The effective surface resistance (Rseff) including the impedance of the substrate and the Jc of each YBCO film were measured using the dielectric resonator method at 21.8 GHz and the inductive method. We calculated Rsint by using phenomenological expressions and the Rseff value. The Rsint values of each YBCO film were almost the same in the measured temperature region. As a result, we found that Rsint was in inverse proportion to the Jc of YBCO film thinner than λL.

  19. Flux pinning properties in YBCO films with growth-controlled nano-dots and heavy-ion irradiation defects

    NASA Astrophysics Data System (ADS)

    Sueyoshi, T.; Kotaki, T.; Uraguchi, Y.; Suenaga, M.; Makihara, T.; Fujiyoshi, T.; Ishikawa, N.

    2016-11-01

    In order to clarify the influence of size and spatial distribution of three-dimensional pinning centres (3D-PCs) on hybrid flux pinning, columnar defects (CDs) were installed by using 200 MeV Xe ions along the c-axis direction into quasi-multilayered films consisting of YBa2Cu3Oy layers and pseudo layers of BaSnO3. The positive effect of the BaSnO3 doping on the hybrid flux pinning stands out for the critical current density Jc around B || c in high magnetic field and/or inclined magnetic field off the c-axis, which is more remarkable for the multilayered film grown at higher temperature, possibly due to larger BaSnO3 nano-dots. In the case of the in-plane distributed BaSnO3 nano-dots, the Jc around B || ab is remarkably enhanced, whereas there is a detrimental effect on the Jc around B || c. These imply that the tuning of 3D-PCs is one of the keys to improve the Jc at all magnetic field orientations for the hybrid flux pinning.

  20. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films

    NASA Astrophysics Data System (ADS)

    Cordova, Isvar A.; Peng, Qing; Ferrall, Isa L.; Rieth, Adam J.; Hoertz, Paul G.; Glass, Jeffrey T.

    2015-04-01

    TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm-2 at 0 V vs. Ag/AgCl under 100 mW cm-2 AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent

  1. Fluorine doping into diamond-like carbon coatings inhibits protein adsorption and platelet activation.

    PubMed

    Hasebe, Terumitsu; Yohena, Satoshi; Kamijo, Aki; Okazaki, Yuko; Hotta, Atsushi; Takahashi, Koki; Suzuki, Tetsuya

    2007-12-15

    The first major event when a medical device comes in contact with blood is the adsorption of plasma proteins. Protein adsorption on the material surface leads to the activation of the blood coagulation cascade and the inflammatory process, which impair the lifetime of the material. Various efforts have been made to minimize protein adsorption and platelet adhesion. Recently, diamond-like carbon (DLC) has received much attention because of their antithrombogenicity. We recently reported that coating silicon substrates with fluorine-doped diamond-like carbon (F-DLC) drastically suppresses platelet adhesion and activation. Here, we evaluated the protein adsorption on the material surfaces and clarified the relationship between protein adsorption and platelet behaviors, using polycarbonate and DLC- or F-DLC-coated polycarbonate. The adsorption of albumin and fibrinogen were assessed using a colorimetric protein assay, and platelet adhesion and activation were examined using a differential interference contrast microscope. A higher ratio of albumin to fibrinogen adsorption was observed on F-DLC than on DLC and polycarbonate films, indicating that the F-DLC film should prevent thrombus formation. Platelet adhesion and activation on the F-DLC films were more strongly suppressed as the amount of fluorine doping was increased. These results show that the F-DLC coating may be useful for blood-contacting devices.

  2. Chemical vapor deposition of fluorine-doped zinc oxide

    DOEpatents

    Gordon, Roy G.; Kramer, Keith; Liang, Haifan

    2000-06-06

    Fims of fluorine-doped zinc oxide are deposited from vaporized precursor compounds comprising a chelate of a dialkylzinc, such as an amine chelate, an oxygen source, and a fluorine source. The coatings are highly electrically conductive, transparent to visible light, reflective to infrared radiation, absorbing to ultraviolet light, and free of carbon impurity.

  3. Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals.

    PubMed

    Wu, Shanshan; Yuan, Shuai; Shi, Liyi; Zhao, Yin; Fang, Jianhui

    2010-06-01

    Fluorine-doped tin dioxide (FTO) nanocrystals were prepared with a sol-gel process followed by a hydrothermal treatment using SnCl(4) and NH(4)F as SnO(2) and fluorine dopant, respectively. The nanostructure and composition were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), zeta potential analysis, electrochemical measurement technology and X-ray photoelectron spectroscopy (XPS) respectively. The diameter of the fluorine doped SnO(2) nanocrystal in rutile-type structure is about 10nm. Compared to the pure SnO(2) nanocrystals, the fluorine doped SnO(2) nanocrystals can be dispersed homogeneously in H(2)O, forming transparent sol with high stability. The powder of fluorine doped SnO(2) nanocrystals could be obtained by removing the solvent, and the electrical resistivity properties were measured by a four-point probe measurement. The results show that sheet resistances (Rs) of fluorine doped SnO(2) decrease with the increasing NH(4)F/Sn molar ratio in the range from 0 to 2. However, further increase of NH(4)F/Sn molar ratio from 2 to 5 leads to higher sheet resistance. The F/Sn molar ratio of fluorine doped SnO(2) measured by XPS is about 0.18 when NH(4)F/Sn molar ratio is equal to 2, and the sheet resistance of fluorine doped SnO(2) powder is 110Ω/□.

  4. Synthesis, characterization and photocatalytic activity of fluorine doped TiO2 nanoflakes synthesized using solid state reaction method.

    PubMed

    Umadevi, M; Parimaladevi, R; Sangari, M

    2014-01-01

    Fluorine doped TiO2 were synthesized by solid state reaction method. Optical and structural properties of fluorine doped TiO2 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffusion reflectance spectroscopy and scanning electron microscopic techniques. The prepared fluorine doped TiO2 was smaller in size with respect to pure TiO2 and it is tetragonal in crystalline structure. Nanoflakes like structure of pure and fluorine doped TiO2 was confirmed from SEM image. Fluorine doped TiO2 shows smaller band gap, high strain and dislocation density when compared to pure TiO2. It also has higher photocatalytic activity with respect to pure TiO2.

  5. Synthesis of fluorine-doped α-Fe2O3 nanorods toward enhanced lithium storage capability

    NASA Astrophysics Data System (ADS)

    Wang, Chundong; Zhang, Yi; Li, Yi; Liu, Jiabin; Wu, Qi-Hui; Jiang, Jianjun; Li, Yang Yang; Lu, Jian

    2017-02-01

    Nanostructured fluorine-doped α-Fe2O3 nanorods were synthesized based on a one-step low temperature hydrothermal method. The XPS results verified that fluorine has been successfully incorporated into the hematite lattice. The delivered lithium capacity was effectively improved owing to the fluorine doping comparing with the pristine α-Fe2O3. The increase in electrochemical capacity of fluorine-doped α-Fe2O3 was then studied from the pointviews of nanostructure, electronic properties, and magnetic characteristics.

  6. Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries.

    PubMed

    Geng, Hongbo; Zhou, Qun; Pan, Yue; Gu, Hongwei; Zheng, Junwei

    2014-04-07

    Herein we report the design and synthesis of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres (h-Fe3O4@C/F) through mild heating of polyvinylidene fluoride (PVDF)-coated hollow Fe3O4 spheres. The spheres exhibit enhanced cyclic and rate performances. The as-prepared h-Fe3O4@C/F shows significantly improved electrochemical performance, with high reversible capacities of over 930 mA h g(-1) at a rate of 0.1 C after 70 cycles, 800 mA h g(-1) at a rate of 0.5 C after 120 cycles and 620 mA h g(-1) at a rate of 1 C after 200 cycles. This improved lithium storage performance is mainly ascribed to the encapsulation of the spheres with fluorine-doped carbon, which not only improves the reaction kinetics and stability of the solid electrolyte interface film but also prevents aggregation and drastic volume change of the Fe3O4 particles. These spheres thus represent a promising anode material in lithium-ion battery applications.

  7. Slow magnetic fluctuations and superconductivity in fluorine-doped NdFeAsO

    NASA Astrophysics Data System (ADS)

    Lamura, G.; Shiroka, T.; Bonfà, P.; Sanna, S.; De Renzi, R.; Putti, M.; Zhigadlo, N. D.; Katrych, S.; Khasanov, R.; Karpinski, J.

    2015-01-01

    Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antiferromagnetic phase for the Ln = Nd case has been missing. We fill this gap by focusing on the intermediate doping regime of NdFeAsO1 -xFx by means of dc-magnetometry and muon-spin spectroscopy (μ SR ) measurements. The long-range order we detect at low fluorine doping is replaced by short-range magnetic interactions at x =0.08 , where also superconductivity appears. In this case, longitudinal-field μ SR experiments show clear evidence of slow magnetic fluctuations that disappear at low temperatures. This fluctuating component is ascribed to the glassy-like character of the magnetically ordered phase of NdFeAsO at intermediate fluorine doping.

  8. Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass

    NASA Astrophysics Data System (ADS)

    Koike, Akio; Sugimoto, Naoki

    2006-02-01

    Temperature dependences of optical path length (dS/dT; calculated using the equation, dS/dT = dn/dT + na, where a is coefficient of thermal expansion, n is refractive index and dn/dT is temperature coefficient of refractive index) in various oxide glasses were investigated. The dS/dT is generally difficult to adjust by change of glass composition because dn/dT and a are interrelated. However, low dS/dT materials are desired for optical applications such as athermal devices, and high dS/dT materials can be used for thermo-optic devices. Pure silica glass is well-known as a typical low dS/dT material but still not sufficient. Fluorine-doped silica glass showed a lower dS/dT than that of pure silica glass. By fluorine-doping in silica glass, refractive index and dn/dT decreased but a near room temperature stayed at the same level. As a result, the dS/dT decreased with increasing fluorine concentration. On the other hand, bismuthate glass showed the highest dS/dT in this study. Most glasses having high a such as tellurite glass showed negative dn/dT. However, bismuthate glasses showed positive dn/dT in spite of high a. As a result, bismuthate glasses showed quite high dS/dT. These results indicate that dS/dT of the glass can be controllable and that fluorine doped silica glass and bismuthate glass are appropriate candidate materials for optical applications.

  9. Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO.

    PubMed

    Walters, A C; Walker, H C; Springell, R; Krisch, M; Bosak, A; Hill, A H; Zvorişte-Walters, C E; Colineau, E; Griveau, J-C; Bouëxière, D; Eloirdi, R; Caciuffo, R; Klimczuk, T

    2015-08-19

    X-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of the latest experimental and theoretical studies on the role of phonons in the superconducting pnictide compounds.

  10. Absence of superconductivity in fluorine-doped neptunium pnictide NpFeAsO

    NASA Astrophysics Data System (ADS)

    Walters, A. C.; Walker, H. C.; Springell, R.; Krisch, M.; Bosak, A.; Hill, A. H.; Zvorişte-Walters, C. E.; Colineau, E.; Griveau, J.-C.; Bouëxière, D.; Eloirdi, R.; Caciuffo, R.; Klimczuk, T.

    2015-08-01

    X-ray diffraction, specific heat, magnetic susceptibility and inelastic x-ray scattering measurements on the transurarium oxypnictides NpFeAsO and NpFeAsO0.85F0.15 are presented. No superconductivity down to 2 K was observed upon fluorine doping, contrary to the structurally analogous rare-earth pnictides. No modification of the phonon density of states was observed upon doping with fluorine. We discuss our results in light of the latest experimental and theoretical studies on the role of phonons in the superconducting pnictide compounds.

  11. Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications

    SciTech Connect

    Anand, S. E-mail: darak.mayur@gmail.com Darak, Mayur Sudesh E-mail: darak.mayur@gmail.com Kumar, D. Sriram E-mail: darak.mayur@gmail.com

    2014-10-15

    In this paper, a fluorine-doped tin oxide based optically transparent E-shaped patch antenna is designed and its radiation performance is analyzed in the 705 – 804 GHz band. As optically transparent antennas can be mounted on optical display, they facilitate the reduction of overall system size. The proposed antenna design is simulated using electromagnetic solver - Ansys HFSS and its characteristics such as impedance bandwidth, directivity, radiation efficiency and gain are observed. Results show that the fluorine-doped tin oxide based optically transparent patch antenna overcomes the conventional patch antenna limitations and thus the same can be used for solar cell antenna used in satellite systems.

  12. Surface functionalization of fluorine-doped tin oxide samples through electrochemical grafting.

    PubMed

    Lamberti, F; Agnoli, S; Brigo, L; Granozzi, G; Giomo, M; Elvassore, N

    2013-12-26

    Transparent conductive oxides are emerging materials in several fields, such as photovoltaics, photoelectrochemistry, and optical biosensing. Their high chemical inertia, which ensured long-term stability on one side, makes challenging the surface modification of transparent conductive oxides; long-term robust modification, high yields, and selective surface modifications are essential prerequisite for any further developments. In this work, we aim at inducing chemical functionality on fluorine-doped tin oxide surfaces (one of the most inexpensive transparent conductive oxide) by means of electrochemical grafting of aryl diazonium cations. The grafted layers are fully characterized by photoemission spectroscopy, cyclic voltammetry, and atomic force microscopy showing linear correlation between surface coverage and degree of modification. The electrochemical barrier effect of modified surfaces was studied at different pH to characterize the chemical nature of the coating. We showed immuno recognition of biotin complex built onto grafted fluorine-doped tin oxides, which opens the perspective of integrating FTO samples with biological-based devices.

  13. Investigation on the magnetic and electrical properties of fluorine-doped magnetites

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Li, Ran; Chen, Qianwang

    2012-08-01

    A fluorine-doped magnetite was synthesized using ferroferric oxide (Fe3O4) powder and ammonium fluoride (NH4F) as starting materials by a hydrothermal method and by subsequently annealing in vacuum atmosphere at 1450 °C. The content of fluorine dopants was measured by x-ray electron spectroscopy. When an oxygen atom was replaced by a fluorine atom, it would introduce one excess electron to reduce an Fe3+ ion to an Fe2+ ion in a tetrahedral A site for charge compensation, leading to a large variation in magnetic and electrical properties. The appearance of Fe2+ ions in the tetrahedral A sites caused a decrease in the spin magnetic moment, resulting in an increase in the Landé g-factor between 110 and 200 K, and the magnetic susceptibility in the range 10-350 K. At the same time, the electrons of the Fe2+ ions in A sites may escape and turn into new carriers in the presence of an electrical bias field, resulting in a reduction in the resistance of the fluorine-doped magnetite from 30 to 292 K.

  14. Annealing effect of fluorine-doped SnO2/WO3 core-shell inverse opal nanoarchitecture for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Cho, Seo Yoon; Kang, Soon Hyung; Yun, Gun; Balamurugan, Maheswari; Ahn, Kwang-Soon

    2017-01-01

    Fluorine-doped SnO2 inverse opal (FTO IO) was developed on a polystyrene bead template with a size of 350 nm (± 20 nm) by using the sol-gel-assisted spin-coating method. The resulting FTO IO film exhibited a pore diameter of 270 nm (± 5 nm), and a WO3 layer was electrodeposited with a constant charge of 400 mC/cm2, followed by a high-temperature annealing process (400, 475, and 550 °C) to increase the crystallinity of the IO films. The annealing temperature affected the morphology and the overall resistance of the thin film, thus significantly affecting the photoelectrochemical performance. In particular, the FTO/WO3 IO film annealed at 475 °C exhibited a photocurrent density of 2.9 mA/cm2 at 1.23 V versus normal hydrogen electrode, showing more than a three times higher photocurrent density in comparison with the other samples (550 °C), which is attributed to the large surface area and low resistance for the charge transport. Therefore, the annealing temperature significantly affects the morphological and the photoelectrochemical features of the FTO/WO3 IO films.

  15. Electrochemical serotonin monitoring of poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate)-modified fluorine-doped tin oxide by predeposition of self-assembled 4-pyridylporphyrin.

    PubMed

    Song, Min-Jung; Kim, Sangsig; Ki Min, Nam; Jin, Joon-Hyung

    2014-02-15

    A 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin (TPyP)-modified self-assembled functional layer was prepared on a fluorine-doped tin oxide (FTO) substrate. We employed a bifunctional molecule, 3-iodopropionate (3IP), to covalently bind TPyP to the FTO substrate. The 3IP-monolayered FTO and the TPyP-3IP-bilayered FTO electrodes were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier transform-infrared spectroscopy. Compared to conventional electropolymerized poly(ethylenedioxythiophene):poly(sodium 4-styrenesulfonate) (PEDOT:PSS) film on bare FTO, the PEDOT:PSS film on the TPyP-3IP-bilayered FTO showed better sensitivity and selectivity in monitoring serotonin in the presence of high concentrations of interfering agents such as ascorbic acid, urea, D-(+)-glucose, epinephrine, and L-3,4-dihydroxyphenylalanine. Both PEDOT:PSS films on the bare FTO and the TPyP-3IP-bilayered FTO showed electrocatalytic effects in serotonin detection, and only the TPyP-3IP-based PEDOT:PSS film acted as a pH resistant buffer layer in the selective detection of serotonin.

  16. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    SciTech Connect

    Li, Yutao; Zhou, Weidong; Xin, Sen; Li, Shuai; Zhu, Jinlong; Lu, Xujie; Cui, Zhiming; Jia, Quanxi; Zhou, Jianshi; Zhao, Yusheng; Goodenough, John B.

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li+/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li2OHCl. As a result, an all-solid-state Li/LiFePO4 with F-dope Li2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  17. Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Li, Yutao; Zhou, Weidong; Xin, Sen; Li, Shuai; Zhu, Jinlong; Lü, Xujie; Cui, Zhiming; Jia, Quanxi; Zhou, Jianshi; Zhao, Yusheng; Goodenough, John B

    2016-08-16

    A fluorine-doped antiperovskite Li-ion conductor Li2 (OH)X (X=Cl, Br) is shown to be a promising candidate for a solid electrolyte in an all-solid-state Li-ion rechargeable battery. Substitution of F(-) for OH(-) transforms orthorhombic Li2 OHCl to a room-temperature cubic phase, which shows electrochemical stability to 9 V versus Li(+) /Li and two orders of magnitude higher Li-ion conductivity than that of orthorhombic Li2 OHCl. An all-solid-state Li/LiFePO4 with F-doped Li2 OHCl as the solid electrolyte showed good cyclability and a high coulombic efficiency over 40 charge/discharge cycles.

  18. Fluorine-doped antiperovskite electrolyte for all-solid-state Lithium-ion batteries

    DOE PAGES

    Li, Yutao; Zhou, Weidong; Xin, Sen; ...

    2016-06-30

    A fluorine-doped antiperovskite Li-ion conducto Li2(OH)X (X=Cl, Br) is shown to be a promising candidat for a solid electrolyte in an all-solid-state Li-ion rechargeabl battery. Substitution of F¯ for OH¯ transforms orthorhombi Li2OHCl to a room-temperature cubic phase, which show electrochemical stability to 9 V versus Li+/Li and two orders o magnitude higher Li-ion conductivity than that of orthorhombi Li2OHCl. As a result, an all-solid-state Li/LiFePO4 with F-dope Li2OHCl as the solid electrolyte showed good cyclability an a high coulombic efficiency over 40 charge/discharge cycles

  19. Effect of fluorine doped TiO2 on the property of perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, X. Q.; Wu, Y. P.; Huang, Y.; Zhou, Z. H.; Shen, S.

    2017-03-01

    Anatase TiO2 nanoparticles with different amounts of fluorine doping were synthesized by a hydrothermal method using hydrogen titanate nanotubes as a precursor and applied as mesoporous layer for preparing perovskite solar cell. The morphology and structures were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD), meanwhile, the properties and performances were tested by photoluminescence spectrum (PL) and current density and voltage (J-V) curve. It was found that doping fluorine into TiO2 made the photoelectric conversion efficiency (PCE) of perovskite solar cell (PSC) to be improved. The best PCE of PSC based on a F-doped TiO2 was 13.06% and increased by 51% compared to an un-doped TiO2. The study provided a direction for the exploration of high performance electron transport layer of perovskite solar cell.

  20. Reductive Electropolymerization of a Vinyl-containing Poly-pyridyl Complex on Glassy Carbon and Fluorine-doped Tin Oxide Electrodes

    PubMed Central

    Harrison, Daniel P.; Carpenter, Logan S.; Hyde, Jacob T.

    2015-01-01

    Controllable electrode surface modification is important in a number of fields, especially those with solar fuels applications. Electropolymerization is one surface modification technique that electrodeposits a polymeric film at the surface of an electrode by utilizing an applied potential to initiate the polymerization of substrates in the Helmholtz layer. This useful technique was first established by a Murray-Meyer collaboration at the University of North Carolina at Chapel Hill in the early 1980s and utilized to study numerous physical phenomena of films containing inorganic complexes as the monomeric substrate. Here, we highlight a procedure for coating electrodes with an inorganic complex by performing reductive electropolymerization of the vinyl-containing poly-pyridyl complex onto glassy carbon and fluorine doped tin oxide coated electrodes. Recommendations on electrochemical cell configurations and troubleshooting procedures are included. Although not explicitly described here, oxidative electropolymerization of pyrrole-containing compounds follows similar procedures to vinyl-based reductive electropolymerization but are far less sensitive to oxygen and water. PMID:25741745

  1. Optoelectrochemical biorecognition by optically transparent highly conductive graphene-modified fluorine-doped tin oxide substrates.

    PubMed

    Lamberti, F; Brigo, L; Favaro, M; Luni, C; Zoso, A; Cattelan, M; Agnoli, S; Brusatin, G; Granozzi, G; Giomo, M; Elvassore, N

    2014-12-24

    Both optical and electrochemical graphene-based sensors have gone through rapid development, reaching high sensitivity at low cost and with fast response time. However, the complex validating biochemical operations, needed for their consistent use, currently limits their effective application. We propose an integration strategy for optoelectrochemical detection that overcomes previous limitations of these sensors used separately. We develop an optoelectrochemical sensor for aptamer-mediated protein detection based on few-layer graphene immobilization on selectively modified fluorine-doped tin oxide (FTO) substrates. Our results show that the electrochemical properties of graphene-modified FTO samples are suitable for complex biological detection due to the stability and inertness of the engineered electrodic interface. In addition, few-layer immobilization of graphene sheets through electrostatic linkage with an electrochemically grafted FTO surface allows obtaining an optically accessible and highly conductive platform. As a proof of concept, we used insulin as the target molecule to reveal in solution. Because of its transparency and low sampling volume (a few microliters), our sensing unit can be easily integrated in lab-on-a-chip cell culture systems for effectively monitoring subnanomolar concentrations of proteins relevant for biomedical applications.

  2. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding.

    PubMed

    Dong, Liang; McKay, Hugh A; Fu, Libin; Ohta, Michiharu; Marcinkevicius, Andrius; Suzuki, Shigeru; Fermann, Martin E

    2009-05-25

    All glass leakage channel fibers have been demonstrated to be a potential practical solution for power scaling in fiber lasers beyond the nonlinear limits in conventional large mode area fibers. The all glass nature with absence of any air holes is especially useful for allowing the fibers to be used and fabricated much like conventional fibers. Previously, double clad active all glass leakage channel fibers used low index polymer as a pump guide with the drawbacks of being less reliable at high pump powers and not being able to change fiber outer diameter independent of pump guide dimension. In this work, we demonstrate, for the first time, ytterbium-doped double clad all glass leakage channel fibers with highly fluorine-doped silica as pump cladding. The new all glass leakage channel fibers have no polymer in the pump path and have independent control of fiber outer diameters and pump cladding dimension, and, therefore, enable designs with smaller pump guide for high pump absorption and, at the same time, with large fiber diameters to minimize micro and macro bending effects, a much desired features for large core fibers where intermodal coupling can be an issue due to a much increased mode density. An ytterbium-doped double clad PM fiber with core diameter of 80 microm is also reported, which can be coiled in 76 cm diameter coils.

  3. Impact of carbon-fluorine doped titanium dioxide in the performance of an electrochemical sensing of dopamine and rosebengal sensitized solar cells

    NASA Astrophysics Data System (ADS)

    C, Abinaya; Dinesh, Bose; Sangari, M.; Ramar, A.; Umadevi, M.; Mayandi, J.

    2015-01-01

    The role of Fluorine and Carbon as dopants in the TiO2 based electrochemical sensor and DSSC were presented in this work. A series of Carbon nano-cones and disc doped TiO2 (TC), Fluorine doped TiO2 (FT) and C & F co-doped TiO2 (CFT) powdered samples were prepared via solid state synthesis. The CFT film showed excellent electrochemical sensitivity to the oxidation of dopamine in aqueous solution and could be employed as a dopamine sensor. The proposed sensor exhibited good linear response in the range of 10-820 μM with a detection limit of 3.6 μM under optimum conditions. The photovoltaic performances of Rose Bengal sensitized solar cells were assessed through I-V measurements. The CFT based DSSC shows a short-circuit current density and a power conversion efficiency (η) of 0.908 mA/cm2 and 0.163% respectively, which is 35% and 38% greater than the performance of other PT based cells. The characterization studies such as UV-Visible spectroscopy, Photoluminescence, TEM and EPR spectroscopy were utilized for further investigation, which helps us to understand how fluorine and carbon play a part in dopamine sensing and solar energy conversion.

  4. Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability.

    PubMed

    Xu, Haiping; Shi, Liyi; Wang, Zhuyi; Liu, Jia; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2015-12-16

    Tin oxide (SnO2) is a kind of anode material with high theoretical capacity. However, the volume expansion and fast capability fading during cycling have prevented its practical application in lithium ion batteries. Herein, we report that the nanocomposite of fluorine-doped tin oxide (FTO) and reduced graphene oxide (RGO) is an ideal anode material with high capacity, high rate capability, and high stability. The FTO conductive nanocrystals were successfully anchored on RGO nanosheets from an FTO nanocrystals colloid and RGO suspension by hydrothermal treatment. As the anode material, the FTO/RGO composite showed high structural stability during the lithiation and delithiation processes. The conductive FTO nanocrystals favor the formation of stable and thin solid electrolyte interface films. Significantly, the FTO/RGO composite retains a discharge capacity as high as 1439 mAhg(-1) after 200 cycles at a current density of 100 mAg(-1). Moreover, its rate capacity displays 1148 mAhg(-1) at a current density of 1000 mAg(-1).

  5. Solid-state chemical synthesis of rod-like fluorine-doped β-Bi2O3 and their enhanced photocatalytic property under visible light

    NASA Astrophysics Data System (ADS)

    Liang, Zhiting; Cao, Yali; Li, Yizhao; Xie, Jing; Guo, Nana; Jia, Dianzeng

    2016-12-01

    The pure β-Bi2O3 and fluorine-doped β-Bi2O3 rod-like microstructures were successfully prepared by a facile solid-state chemical reaction process. The composition, structure and morphology of the samples were determined by XRD, EDS, SEM, TEM, HRTEM, XPS and PL. Photocatalytic activities of all samples were investigated via the degradation of methyl orange (MO) under the irradiation of visible light. The fluorine-doped β-Bi2O3 rods exhibited higher photocatalytic activities than the pure β-Bi2O3 rod-like structures and commercial sample. The 82% MO can be degraded by the fluorine-doped β-Bi2O3 rods after irradiation for 2 h under visible light, which is 2-3 times higher than that of counterparts. The enhanced properties of the fluorine-doped samples attribute to their higher separation efficiency of electron-hole pairs and strong oxidation potential of valance band holes. The results show that the as-prepared rod-like fluorine-doped β-Bi2O3 materials are potential candidates for photocatalysts irradiated by visible light.

  6. Deposition of nanostructured fluorine-doped hydroxyapatite-polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications.

    PubMed

    Bakhsheshi-Rad, H R; Hamzah, E; Kasiri-Asgarani, M; Jabbarzare, S; Iqbal, N; Abdul Kadir, M R

    2016-03-01

    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.

  7. Development of high-throughput fabrication process of HTS SQUID for 51-ch MCG system

    NASA Astrophysics Data System (ADS)

    Tsukamoto, A.; Saitoh, K.; Yokosawa, K.; Suzuki, D.; Seki, Y.; Kandori, A.; Tsukada, K.

    2005-10-01

    A high-throughput high-Tc SQUID fabrication process that can provide the appropriate number of SQUIDs for a 51-channel magnetocardiograph (MCG) has been developed. A new deposition system-based on a pulsed-laser-deposition technique to increase the process throughput in fabricating superconducting YBa2Cu3Oy thin films-was developed. In this system, nine superconducting thin films are successively deposited on bicrystal substrates in one deposition sequence. A mask aligner, which was customized for the bicrystal substrate, was also developed. This system enables mask alignment for the bicrystal grain boundary without the need for preprocessing to visualize it. In addition, the magnetometer pattern was designed to improve the yield for magnetometer fabrication. In this directly coupled magnetometer, four SQUIDs were connected with the same pickup coil. Accordingly, the yield of magnetometer could be enhanced by selecting the best SQUID among the four.

  8. Temperature dependence of power handling capability of HTS filter with double-strip resonator

    NASA Astrophysics Data System (ADS)

    Sekiya, N.; Fujihara, K.

    2016-11-01

    We have investigated the temperature dependence of power handling capability of a high temperature superconducting filter with a double-strip resonator (DSR). The DSR structure consists of two coupled strips and the center pins of the SMA connector as feed line. We designed a four-pole DSR filter with the center frequency of 5 GHz and band width of 50 MHz. The filter was fabricated using two YBa2Cu3Oy thin films on CeO2-buffered r-Al2O3 substrates. The measured frequency responses of the filters were in reasonable agreement with the simulated ones. The measured power handling capability of the DSR filter at 35 K was 3.2 times higher than that of the filter at 70 K.

  9. Fluorine doping: a feasible solution to enhancing the conductivity of high-resistance wide bandgap Mg0.51Zn0.49O active components

    PubMed Central

    Liu, Lishu; Mei, Zengxia; Hou, Yaonan; Liang, Huili; Azarov, Alexander; Venkatachalapathy, Vishnukanthan; Kuznetsov, Andrej; Du, Xiaolong

    2015-01-01

    N-type doping of high-resistance wide bandgap semiconductors, wurtzite high-Mg-content MgxZn1–xO for instance, has always been a fundamental application-motivated research issue. Herein, we report a solution to enhancing the conductivity of high-resistance Mg0.51Zn0.49O active components, which has been reliably achieved by fluorine doping via radio-frequency plasma assisted molecular beam epitaxial growth. Fluorine dopants were demonstrated to be effective donors in Mg0.51Zn0.49O single crystal film having a solar-blind 4.43 eV bandgap, with an average concentration of 1.0 × 1019 F/cm3.The dramatically increased carrier concentration (2.85 × 1017 cm−3 vs ~1014 cm−3) and decreased resistivity (129 Ω · cm vs ~106 Ω cm) indicate that the electrical properties of semi-insulating Mg0.51Zn0.49O film can be delicately regulated by F doping. Interestingly, two donor levels (17 meV and 74 meV) associated with F were revealed by temperature-dependent Hall measurements. A Schottky type metal-semiconductor-metal ultraviolet photodetector manifests a remarkably enhanced photocurrent, two orders of magnitude higher than that of the undoped counterpart. The responsivity is greatly enhanced from 0.34 mA/W to 52 mA/W under 10 V bias. The detectivity increases from 1.89 × 109 cm Hz1/2/W to 3.58 × 1010 cm Hz1/2/W under 10 V bias at room temperature.These results exhibit F doping serves as a promising pathway for improving the performance of high-Mg-content MgxZn1-xO-based devices. PMID:26489958

  10. Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine-doped tin oxide for water splitting.

    PubMed

    Yin, Zongyou; Wang, Zheng; Du, Yaping; Qi, Xiaoying; Huang, Yizhong; Xue, Can; Zhang, Hua

    2012-10-09

    Well-ordered tree-like functional heterostructures, composed of the environmentally friendly oxides ZnO, TiO(2) , and CuO, on a fluorine-doped tin oxide substrate are realized by a practical, cost-effective, solution-processable strategy. The heterostructures are demonstrated to be an efficient light-harvesting medium in a photo-electrochemical cell to split water for hydrogen-gas generation, and the developed strategy provides a highly promising, cheap, green way to fabricate multifunctional hierarchically branched structures for many potential applications.

  11. Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes

    SciTech Connect

    Kent, CA; Concepcion, JJ; Dares, CJ; Torelli, DA; Rieth, AJ; Miller, AS; Hoertz, PG; Meyer, TJ

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O-2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29 000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of similar to 5

  12. Fluorine-doped nanocrystalline SnO{sub 2} powders prepared via a single molecular precursor method as anode materials for Li-ion batteries

    SciTech Connect

    Ha, Hyung-Wook; Kim, Keon . E-mail: kkim@korea.ac.kr; Borniol, Mervyn de; Toupance, Thierry . E-mail: t.toupance@lcoo.u-bordeaux1.fr

    2006-03-15

    Fluorine-doped nanocrystalline tin dioxide materials (F:SnO{sub 2}) have been successfully prepared by the sol-gel process from a single molecular precursor followed by a thermal treatment at 450-650 deg. C. The resulting materials were characterized by FTIR spectroscopy, powder X-ray diffraction, nitrogen adsorption porosimetry (BET) and transmission electron microscopy (TEM). The mean particle size increased from 5 to 20 nm and the specific surface area decreased from 123 to 37 m{sup 2}/g as the temperature of heat treatment was risen from 450 to 650 deg. C. Fluorine-doped nanocrystalline SnO{sub 2} exhibited capacity of 560, 502, and 702 mA h/g with 48%, 50%, and 40% capacity retention after 25 cycles between 1.2 V and 50 mV at the rate of 25 mA/g, respectively. In comparison, commercial SnO{sub 2} showed an initial capacity of 388 mA h/g, with only 23% capacity retention after 25 cycles.

  13. Nitrogen plasma treatment of fluorine-doped tin oxide for enhancement of photo-carrier collection in amorphous Si solar cells

    NASA Astrophysics Data System (ADS)

    Baik, Seung Jae; Lim, Koeng Su

    2011-04-01

    Nitrogen plasma treatment was performed on fluorine-doped tin oxide (SnO2:F) front electrodes, and its impact on the performance of pin type amorphous Si (a-Si) solar cells was investigated. Nitrogen plasma treatment reverses the surface band bending of SnO2:F from accumulation to depletion, thus in turn reversing the band bending of the p type amorphous silicon carbide (p-a-SiC) window layer. The reversal of band bending leads to the collection of carriers generated in p-a-SiC, and quantum efficiency in the short wavelength regime is thereby enhanced. On the other hand, surface depletion of SnO2:F causes a reduction of the diode built-in voltage and increased series resistance, which could degrade the open circuit voltage (Voc) and fill factor (FF), the degradation of which is strongly affected by the deposition time of p-a-SiC.

  14. Photoelectrochemical characteristics of TiO2 nanorod arrays grown on fluorine doped tin oxide substrates by the facile seeding layer assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Sui, Mei-rong; Han, Cui-ping; Gu, Xiu-quan; Wang, Yong; Tang, Lu; Tang, Hui

    2016-05-01

    TiO2 nanorod arrays (NRAs) were prepared on fluorine doped tin oxide (FTO) substrates by a facile two-step hydrothermal method. The nanorods were selectively grown on the FTO regions which were covered with TiO2 seeding layer. It took 5 h to obtain the compact arrays with the nanorod length of ~2 μm and diameter of ~50 nm. The photoelectrochemical (PEC) properties of TiO2 NRAs are also investigated. It is demonstrated that the TiO2 NRAs indicate the good photoelectric conversion ability with an efficiency of 0.22% at a full-wavelength irradiation. A photocurrent density of 0.21 mA/cm2 is observed at 0.7 V versus the saturated calomel electrode (SCE). More evidences suggest that the charge transferring resistance is lowered at an irradiation, while the flat-band potential ( V fb) is shifted towards the positive side.

  15. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    SciTech Connect

    Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon; Han, Tae Hee; Jang, Hee Dong

    2015-04-15

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By using graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.

  16. STM/STS studies on vortex and electronic state in YBa 2Cu 3O y

    NASA Astrophysics Data System (ADS)

    Nishizaki, Terukazu; Shibata, Kenji; Maki, Makoto; Kobayashi, Norio

    2006-05-01

    Low temperature scanning tunneling microscopy (LT-STM) studies have been performed on the LT-cleaved and the chemically etched surface of YBa2Cu3Oy single crystals. We find that the vortex structure can be observed on the chemically etched surface of YBa2Cu3Oy as a function of temperature and magnetic field. At low magnetic fields, we observed a slightly distorted triangular lattice, which is attributed to the Bragg-glass phase. The triangular lattice transforms into a disordered structure in high magnetic fields above the order-disorder transition H∗(T). We observed that the disordered vortices form small clusters comprising 5- and 7-fold coordination pairs. These microscopically determined vortex structures are in good agreement with the vortex matter phase diagram derived from the macroscopic measurements, thus providing the evidence of the field-driven transition in the vortex solid phase of YBa2Cu3Oy.

  17. Miniaturization of BaHfO3 nanoparticles in YBa2Cu3O y -coated conductors using a two-step heating process in the TFA-MOD method

    NASA Astrophysics Data System (ADS)

    Horita, H.; Teranishi, R.; Yamada, Kazuhiro; Kaneko, K.; Sato, Y.; Otaguro, K.; Nishiyama, T.; Izumi, T.; Awaji, S.

    2017-02-01

    The critical current density (J c) of YBa2Cu3Oy (YBCO)-coated conductors in a magnetic field can be enhanced by the doping of flux-pinning centers in a metal organic deposition (MOD) process with trifluoroacetates (TFA). The size of these flux-pinning centers should be less than 10 nm to achieve commercial use due to the coherence length of YBCO at 77 K. In this paper, BaHfO3 (BHO) nanoparticles were introduced into YBCO films using the TFA-MOD method. Microstructures and the J c properties of the films prepared using a two-step heating process at crystallization were compared with film prepared using a conventional one-step heating process. The two-step heating process produced 15 nm average-sized BHO nanoparticles in the film compared to 19 nm nanoparticles in a film prepared using a one-step process. It was revealed that the size of nanoparticles in the films could be miniaturized by improving the heating processes in the MOD method, and the miniaturized nanoparticles could contribute to increased J c in magnetic fields. The mechanism of miniaturization is also discussed based on microstructure observations of quenched films.

  18. Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium-fluorine-doped titanium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lázaro-Navas, Sonia; Prashar, Sanjiv; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2015-02-01

    The synthesis of mesoporous aggregates of titanium oxide nanoparticles (F0) is described using a very cheap and simple synthetic protocol. This consists of the reaction of titanium tetraisopropoxide and a solution of HNO3 in water (pH 2.0) and subsequent filtration. In addition, fluorine-doped titanium oxides (F1, F2, F5 and F10) were synthesized using the same method, adding increasing amounts of NaF to the reaction mixture (avoiding the use of expensive reagents such as NH4F or trifluoroacetic acid). The resulting materials were calcined at different temperatures (500, 600 and 650 °C) giving particles sized between 10 and 20 nm. Furthermore, a hybrid F-doped TiO2 with supported palladium nanoparticles of ca. 20 nm (F5-500-Pd1) was synthesized by grafting an organometallic palladium(II) salt namely [Pd(cod)Cl2] (cod = 1,5-cyclooctadiene). Photocatalytic studies of the degradation of methylene blue (MB) were carried out under UV light using all the synthesized material (non-doped an F-doped TiO2), observing that the increase in the quantity of fluorine has a positive effect on the photocatalytic activity. F5-500 is apparently the material which has the most convenient structural properties (in terms of surface area and anatase/rutile ratio) and thus a higher photocatalytic activity. The hybrid material F-doped TiO2-Pd nanoparticles (F5-500-Pd1) has a lower band gap value than F5-500, and thus photocatalytic degradation of MB under LED visible light was achieved using F5-500-Pd1 as photocatalyst.

  19. A study on linear and non-linear optical constants of Rhodamine B thin film deposited on FTO glass

    NASA Astrophysics Data System (ADS)

    Yahia, I. S.; Jilani, Asim; Abutalib, M. M.; AlFaify, S.; Shkir, M.; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; El-Naggar, A. M.

    2016-06-01

    The aim of this research was to fabricate/deposit the good quality thin film of Rhodamine B dye on fluorine doped tin oxide glass substrate by the low cost spin coating technique and study their linear and nonlinear optical parameters. The thickness of the thin film was measured about 300 nm with alpha step system. The transmittance of the fabricated thin film was found to be above 75% corresponding to the fluorine doped tin oxide layer. The structural analysis was performed with X-rays diffraction spectroscopy. Atomic force microscope showed the topographic image of deposited thin film. Linear optical constant like absorption coefficient, band gap, and extinction index was calculated. The dielectric constant was calculated to know the optical response of Rhodamine B dye over fluorine doped tin oxide substrate. The nonlinear optical constant like linear optical susceptibility χ(1), nonlinear optical susceptibility χ(3), nonlinear refractive index (n2) were calculated by spectroscopic method. This method has advantage over the experimental method like Z-Scan for organic dye base semiconductors for future advance optoelectronics applications like dye synthesis solar cell.

  20. Quantification of low levels of fluorine content in thin films

    NASA Astrophysics Data System (ADS)

    Ferrer, F. J.; Gil-Rostra, J.; Terriza, A.; Rey, G.; Jiménez, C.; García-López, J.; Yubero, F.

    2012-03-01

    Fluorine quantification in thin film samples containing different amounts of fluorine atoms was accomplished by combining proton-Rutherford Backscattering Spectrometry (p-RBS) and proton induced gamma-ray emission (PIGE) using proton beams of 1550 and 2330 keV for p-RBS and PIGE measurements, respectively. The capabilities of the proposed quantification method are illustrated with examples of the analysis of a series of samples of fluorine-doped tin oxides, fluorinated silica, and fluorinated diamond-like carbon films. It is shown that this procedure allows the quantification of F contents as low as 1 at.% in thin films with thicknesses in the 100-400 nm range.

  1. Design of high-order HTS dual-band bandpass filters with receiver subsystem for future mobile communication systems

    NASA Astrophysics Data System (ADS)

    Sekiya, N.

    2016-08-01

    We have developed two high-order high-temperature superconducting (HTS) dual-band bandpass filters (BPFs) with a receiver subsystem for future mobile communication systems. They feature stub-loaded hair-pin resonators with two types of microstrip lines between them. One has a six-pole design, and the other has an eight-pole design. Both were designed to operate at 2.15 GHz with a 43-MHz (2%) bandwidth for the lower passband and at 3.50 GHz with a 70-MHz (2%) bandwidth for the upper one. They were fabricated using YBa2Cu3Oy thin film on a CeO2-bufferd r-Al2O3 substrate. The measured results for both filters agree well with the simulated ones. The HTS dual-band BPF receiver subsystem uses a pulse tube cryocooler and a wideband low noise amplifier (LNA). We measured the frequency response of the six-pole dual-band BPF with and without a wideband LNA with a gain of 10 dB. The measured return losses were close.

  2. Exponential dependence of the vortex pinning potential on current density in high- Tc superconductors

    NASA Astrophysics Data System (ADS)

    Yan, H.; Abdelhadi, M. M.; Jung, J. A.; Willemsen, B. A.; Kihlstrom, K. E.

    2005-08-01

    We investigated the dependence of the vortex pinning potential on current density Ueff(J) in Tl2Ba2CaCu2Oy , Tl2Ba2Ca2Cu3Oy , and YBa2Cu3Oy thin films and single crystals, measured by us and other research groups. In all these cases Ueff(J) was calculated from the magnetic relaxation data using Maley’s procedure [Phys. Rev. B 42, 2639 (1990)]. We explored the exponential dependence of Ueff(J) , first introduced by Thompson [Phys. Rev. B 44, 456 (1991).] to explain long-term nonlogarithmic magnetic relaxations in high-temperature superconductors (HTSC), as an alternative to power-law and logarithmic forms of Ueff(J) . The results revealed that for J larger than approximately 0.4Jc , the energy barrier can be expressed in the following form: Ueff(J)=aIco(1-T/T*)3/2exp(-bJ/Jco) , where the constant b is the same for all samples investigated. This result is independent of the anisotropy (the interplanar coupling). The experimental results were analyzed taking into account the spatial dependence of the pinning potential, proposed by Qin [J. Appl. Phys. 77, 2618 (1995)]. We suggested that the exponential form of Ueff(J) could represent vortex pinning and motion in the a-b planes due to a nanoscopic variation of the order parameter, in agreement with the growing experimental evidence for the presence of nanostructures, stripes (filaments) in HTSC.

  3. Fabrication and Microwave Properties of Asymmetric Dual-band High-Tc Superconducting Filter

    NASA Astrophysics Data System (ADS)

    Wang, Li-Min; Lin, Shyue-Han; Chang, Ying-Shyuan; Liu, Jer-Wei

    An asymmetric dual-band band-pass filter (DBPF) is proposed for the applications of IEEE 802.11b/g (2.4 GHz ∼ 2.48 GHz) on the multimode wireless local area networks (WLAN). The high temperature superconducing (HTS) filter was fabricated by pattering YBa2Cu3Oy (YBCO) films double-sided deposited on 20 × 20 mm2 LaAlO3 substrates with an RF sputtering technique and by putting them in copper housings. The simulation results show the asymmetric dual-band feature of two passbands at 2.45 and 2.48 GHz, each with a minimum in-band insertion loss of about 0.3 dB and bandwidths of 20 and 23 MHz, respectively. The realized HTS DBPF shows two passbands at 2.47 and 2.49 GHz with maximum insertion losses of 1.75 and 3.17 dB at 77 K, respectively. The measured results show a good HTS DBPF performance. Moreover, the temperature-dependent frequency responses can be well described by the modified two-fluid model based formulas, indicating that the frequency shift in HTS DBPFs is dominated by the temperature dependence of the magnetic penetration depth.

  4. Physical Mechanism Behind Enhanced Photoelectrochemical and Photocatalytic Properties of Superhydrophilic Assemblies of 3D-TiO2 Microspheres with Arrays of Oriented, Single-Crystalline TiO2 Nanowires as Building Blocks Deposited on Fluorine-Doped Tin Oxide.

    PubMed

    Sadhu, Subha; Gupta, Preeti; Poddar, Pankaj

    2017-03-29

    In comparison to the one-dimensional (1D) semiconductor nanostructures, the hierarchical, three-dimensional (3D) microstructures, composed of the arrays of 1D nanostructures as building blocks, show quite unique physicochemical properties due to efficient photon capture and enhanced surface to volume ratio, which aid in advancing the performance of various optoelectronic devices. In this contribution, we report the fabrication of surfactant-free, radially assembled, 3D titania (rutile-phase) microsphere arrays (3D-TMSAs) composed of bundles of single-crystalline titania nanowires (NWs) directly on fluorine-doped conducting oxide (FTO) substrates with tunable architecture. The effects of growth parameters on the morphology of the 3D-TMSAs have been studied thoroughly. The 3D-TMSAs grown on the FTO-substrate showed superior photon-harvesting owing to the increase in light-scattering. The photocatalytic and photon to electron conversion efficiency of dye-sensitized solar cells (DSSC), where the optimized 3D-TMSAs were used as an anode, showed around 44% increase in the photoconversion efficiency compared to that of Degussa P-25 as a result of the synergistic effect of higher surface area and enhanced photon scattering probability. The TMSA film showed superhydrophilicity without any prior UV irradiation. In addition, the presence of bundles of almost parallel NWs led to the formation of arrays of microcapacitors, which showed stable dielectric performance. The fabrication of single-crystalline, oriented, self-assembled TMSAs with bundles of titania nanowires as their building blocks deposited on transparent conducting oxide (TCO) substrates has vast potential in the area of photoelectrochemical research.

  5. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Mummoorthi, M.; Dharuman, V.

    2016-05-01

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  6. Boron-doped cobalt oxide thin films and its electrochemical properties

    NASA Astrophysics Data System (ADS)

    Kerli, S.

    2016-09-01

    The cobalt oxide and boron-doped cobalt oxide thin films were produced by spray deposition method. All films were obtained onto glass and fluorine-doped tin oxide (FTO) substrates at 400∘C and annealed at 550∘C. We present detailed analysis of the morphological and optical properties of films. XRD results show that boron doping disrupts the structure of the films. Morphologies of the films were investigated by using a scanning electron microscopy (SEM). Optical measurements indicate that the band gap energies of the films change with boron concentrations. The electrochemical supercapacitor performance test has been studied in aqueous 6 M KOH electrolyte and with scan rate of 5 mV/s. Measurements show that the largest capacitance is obtained for 3% boron-doped cobalt oxide film.

  7. Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Qiang, Y. H.; Zhao, Y. L.; Gu, X. Q.

    2014-02-01

    A solvothermal method was used to synthesize Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe4 (CZTSe) nanoparticles. CZTS/CZTSe bilayer films have been fabricated via a layer-by-layer blade coating process on the fluorine dope tin oxide (FTO) substrates. We converted conventional dye-sensitized solar cells (DSSCs) into double junction photoelectrochemical solar cells with the replacement of the Pt-coated counter electrode with the as-prepared films as composite photocathodes. Compared with conventional DSSCs, the cells show an increased short circuit current and power conversion efficiency.

  8. Design of a TiO2 nanosheet/nanoparticle gradient film photoanode and its improved performance for dye-sensitized solar cells.

    PubMed

    Wang, Wenguang; Zhang, Haiyan; Wang, Rong; Feng, Ming; Chen, Yiming

    2014-02-21

    A TiO2 film photoanode with gradient structure in nanosheet/nanoparticle concentration on the fluorine-doped tin oxide glass from substrate to surface was prepared by a screen printing method. The as-prepared dye-sensitized solar cell (DSSC) based on the gradient film electrode exhibited an enhanced photoelectric conversion efficiency of 6.48%, exceeding that of a pure nanoparticle-based DSSC with the same film thickness by a factor of 2.6. The enhanced photovoltaic performance of the gradient film-based DSSC was attributed to the superior light scattering ability of TiO2 nanosheets within the gradient structure, which was beneficial to light harvesting. Furthermore, the TiO2 nanosheets with exposed {001} facets facilitated the electron transport from dye molecules to the conduction band of TiO2 and further to the conductive glass. Meanwhile, the high specific surface area of TiO2 nanosheets helped the adsorption of dye molecules, and the TiO2 nanoparticle underlayer ensured good electronic contact between the TiO2 film and the fluorine-doped tin oxide glass substrate. The electrochemical impedance spectroscopy measurements further confirmed the electron transport differences between DSSCs based on nanosheet/nanoparticle gradient film electrodes and DSSCs based on nanosheet/nanoparticle homogeneous mixtures, pure TiO2 nanoparticles and pure TiO2 nanosheets with the same film thickness.

  9. Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films

    SciTech Connect

    Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung; Paul, Brian; Palo, Daniel R.

    2013-06-13

    Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C, with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.

  10. Electrochemical impedance analysis of spray deposited CZTS thin film: Effect of Se introduction

    NASA Astrophysics Data System (ADS)

    Patil, Swati J.; Lokhande, Vaibhav C.; Lee, Dong-Weon; Lokhande, Chandrakant D.

    2016-08-01

    The present work deals with electrochemical impedance analysis of spray deposited Cu2ZnSnS4 (CZTS) thin films grown on fluorine doped tin oxide (FTO) substrates and effect of post Se introduction. The CZTS thin films are characterized using X-ray diffraction (XRD), X-Ray photo spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and UV-Vis spectroscopy techniques. The electrochemical measurements are carried out using impedance analysis spectroscopy. The strong peak in XRD pattern along (112) plane confirms the Kestrite crystal structure of CZTS film. The FE-SEM analysis reveals that nanoflakes contain crack-free surface microstructure changes with post Se introucation. The optical study reveals that absorption increases with Se dipping time and observed lower band gap of 1.31 eV. Introduction of Se in CZTS film results an improvement in the grain size and surface morphology which leads to increased electrical conductivity of CZTS film.

  11. Effect of molarity on properties of spray pyrolysed SnO{sub 2}:F thin films

    SciTech Connect

    Deepu, D. R. Kartha, C. Sudha Vijayakumar, K. P.

    2014-01-28

    Fluorine doped tin oxide (FTO) thin films were prepared by using automated Chemical Spray Pyrolysis (CSP) machine and the effect of concentration of the precursors on the conductivity and transmittance of the films were studied. The resistivity (ρ) and mobility (μ) are in the range of 10{sup −3}–10{sup −4} Ω-cm and 8.2–13.5 cm{sup 2}V{sup −1}s{sup −1} respectively. The electron density lies between 3.4 × 10{sup 20} and 6.6×10{sup 20} cm{sup −3}. The film transmittance varies between 70 to 80% and the films shows very good reflectivity in the IR-NIR region. Prepared films can be used as transparent electrodes in photo voltaic and optoelectronic devices.

  12. Calorimetric determination of the magnetic phase diagram of underdoped ortho II YBa2Cu3O6.54 single crystals

    PubMed Central

    Marcenat, C.; Demuer, A.; Beauvois, K.; Michon, B.; Grockowiak, A.; Liang, R.; Hardy, W.; Bonn, D. A.; Klein, T.

    2015-01-01

    The recent discovery of a charge order in underdoped YBa2Cu3Oy raised the question of the interplay between superconductivity and this competing phase. Understanding the normal state of high-temperature superconductors is now an essential step towards the description of the pairing mechanism in those materials and determining the upper critical field is therefore of fundamental importance. We present here a calorimetric determination of the field–temperature phase diagram in underdoped YBa2Cu3Oy single crystals. We show that the specific heat saturates in high magnetic fields. This saturation is consistent with a normal state without any significant superconducting contribution and a total Sommerfeld coefficient γN∼6.5±1.5 mJ mol−1 K−2 putting strong constraints on the theoretical models for the Fermi surface reconstruction. PMID:26294047

  13. Hydrothermal synthesis and photoelectrochemical properties of In2S3 thin films with a wedgelike structure

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Zhang, Wei; Yang, Haibin; Fu, Wuyou; Li, Minghui; Zhao, Hui; Ma, Jinwen

    2012-09-01

    Indium sulfide (In2S3) thin films with a wedgelike structure were prepared on fluorine-doped tin oxide (FTO) substrate by a facile hydrothermal method. By properly monitoring the experimental conditions, including the reaction time, concentrations of tartaric acid, precursor concentration ratio and the reaction temperature, the In2S3 films with different morphologies and thickness could be obtained, and the growth mechanism of β-In2S3 films was also proposed in this work. Furthermore, UV-vis absorption study revealed that the absorption range broadened with the growth of the In2S3 crystals. In addition, a photocurrent of 0.48 mA cm-2 was obtained under 100 mW cm-2 UV-visible illuminations of the wedgelike In2S3 thin films.

  14. Film formation of CdSe quantum dot embedded phosphate glass on an FTO glass substrate

    NASA Astrophysics Data System (ADS)

    Han, Karam; Kim, Yoon Hwa; Im, Won Bin; Chung, Woon Jin

    2015-07-01

    A thick film with CdSe quantum dot (QD) embedded glass was formed on a fluorine-doped tin oxide (FTO) glass substrate. Phosphate glasses with different CdO and ZnSe concentrations were synthesized, and the heat treatment conditions were varied to determine the appropriate QD and film formation conditions. Phosphate glass with 1 mol. % CdO and 1.5 mol. % ZnSe showed controlled crystallization of CdSe QDs when they were heat treated at 550℃ for 1 hr. Absorption spectra and Raman spectroscopy identified the QD formation. Precursor glass was ground into powder and pasted onto FTO only and TiO2/FTO glass substrates via the screen printing method. Glass film embedded with QDs was successfully formed after sintering, thus demonstrating its potential for film applications. [Figure not available: see fulltext.

  15. Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition

    SciTech Connect

    Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui; Shin, Jongmoon; Wachsman, Eric D.; Takeuchi, Ichiro; Yao, Yangyi; Hsu, Wei-Lun; Dagenais, Mario

    2016-01-15

    We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offers a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.

  16. Pt crystalline ultrathin films as counter electrodes for bifacial dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng-En; Lin, Zheng-Kun; Lin, Yu-Chang; Lei, Bi-Chen; Chang, Chen-Shiung; Shih-Sen Chien, Forest

    2017-01-01

    This study is to develop the Pt crystalline ultrathin films as high-transparent, efficient, and low-Pt-loaded counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSCs). The 1-nm-thick Pt ultrathin films are sputtered on fluorine-doped tin oxide substrates and thermal annealed at 400 °C. After annealing, as-prepared amorphous-nanocrystal-mixed Pt films become high-crystalline films with better optical transmittance and electrocatalytic ability to I3 - reduction for bifacial DSCs. The rear-to-front ratios of short-circuit current density and power conversion efficiency of DSCs with crystalline ultrathin Pt CEs are as high as 81 and 83%, respectively.

  17. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells.

    PubMed

    Zhu, Guang; Cheng, Zujun; Lv, Tian; Pan, Likun; Zhao, Qingfei; Sun, Zhuo

    2010-07-01

    Quantum dot-sensitized solar cells based on Zn-doped TiO(2) (Zn-TiO(2)) film photoanode and polysulfide electrolyte were fabricated. Zn-TiO(2) nanoparticles were obtained via a hydrothermal method and screen printed on the fluorine-doped tin oxide glass to prepare the photoanode. The structure, morphology and impedance of the Zn-TiO(2)/CdS film and the photovoltaic performance of the Zn-TiO(2)/CdS cell were investigated. It was found that the photovoltaic efficiency was improved by 24% when the Zn-TiO(2) film was adopted as the photoanode of CdS QDSSCs instead of only the TiO(2) layer. The improvement was ascribed to the reduction of electron recombination and the enhancement of electron transport in the TiO(2) film by Zn doping.

  18. Role of annealing duration on the microstructure and electrochemical performance of β-V2O5 thin films

    NASA Astrophysics Data System (ADS)

    Jeyalakshmi, K.; Muralidharan, G.

    2014-03-01

    Vanadium pentoxide thin films have been prepared by sol-gel spin coating method. The eight-layered films coated on fluorine-doped tin oxide substrate and glass substrate were subjected to different durations of annealing under a constant annealing temperature of 300 °C from 30 to 120 min. The X-ray diffraction spectrum reveals crystallinity along (2 0 0) direction. The SEM images of these films show the variation in the surface morphology with increase in annealing duration. The supercapacitor behaviour has been studied using cyclic voltammetry technique and electrochemical impedance spectroscopy. The film annealed for 60 min exhibits a maximum specific capacitance of 346 F/g at a scan rate of 5 mV/s with a charge transfer resistance of 172 Ω.

  19. Photoelectrochemical properties of chemosynthesized CdS thin film

    NASA Astrophysics Data System (ADS)

    Pawar, S. B.; Pawar, S. A.; Bhosale, P. N.; Patil, P. S.

    2012-06-01

    Thin film of cadmium sulphide (CdS) consisting cabbage like morphology was chemically synthesized at room temperature from an aqueous alkaline bath onto soda lime glass and fluorine-doped tin oxide (FTO)-coated glass substrates. The synthesized cabbages of CdS were characterized using X-ray diffraction (XRD), UV-vis spectroscopy and scanning electron microscopy (SEM). The XRD pattern revealed the formation of CdS particles with a cubic crystal structure. SEM micrographs show that the cabbage like morphology is composed of nanopetals. Further, the photoelectochemical (PEC) performance was tested in Na2S-NaOH-S electrolyte which has maximum short circuit current of (Isc) 359μA/cm2.

  20. Growth and Post-Deposition Treatments of SrTiO3 Films for Dye-Sensitized Photoelectrosynthesis Cell Applications.

    PubMed

    Call, Robert W; Alibabaei, Leila; Dillon, Robert J; Knauf, Robin R; Nayak, Animesh; Dempsey, Jillian L; Papanikolas, John M; Lopez, Rene

    2016-05-18

    Sensitized SrTiO3 films were evaluated as potential photoanodes for dye-sensitized photoelectrosynthesis cells (DSPECs). The SrTiO3 films were grown via pulsed laser deposition (PLD) on a transparent conducting oxide (fluorine-doped tin oxide, FTO) substrate, annealed, and then loaded with zinc(II) 5,10,15-tris(mesityl)-20-[(dihydroxyphosphoryl)phenyl] porphyrin (MPZnP). When paired with a platinum wire counter electrode and an Ag/AgCl reference electrode these sensitized films exhibited photocurrent densities on the order of 350 nA/cm(2) under 0 V applied bias conditions versus a normal hydrogen electrode (NHE) and 75 mW/cm(2) illumination at a wavelength of 445 nm. The conditions of the post-deposition annealing step-namely, a high-temperature reducing atmosphere-proved to be the most important growth parameters for increasing photocurrent in these electrodes.

  1. Electron Transport Layer-Free Solar Cells Based on Perovskite-Fullerene Blend Films with Enhanced Performance and Stability.

    PubMed

    Pascual, Jorge; Kosta, Ivet; Tuyen Ngo, T; Chuvilin, Andrey; Cabanero, German; Grande, Hans J; Barea, Eva M; Mora-Seró, Iván; Delgado, Juan Luis; Tena-Zaera, Ramon

    2016-09-22

    The solution processing of pinhole-free methylammonium lead triiodide perovskite-C70 fullerene (MAPbI3 :C70 ) blend films on fluorine-doped tin oxide (FTO)-coated glass substrates is presented. Based on this approach, a simplified and robust protocol for the preparation of efficient electron-transport layer (ETL)-free perovskite solar cells is described. Power conversion efficiency (PCE) of 13.6 % under AM 1.5 G simulated sunlight is demonstrated for these devices. Comparative impedance spectroscopy and photostability analysis of the MAPbI3 :C70 and single MAPbI3 films compared with conventional compact TiO2 ETL-based devices are shown. The beneficial impact of using MAPbI3 :C70 blend films is emphasized.

  2. Growth mechanisms and origin of localized surface plasmon resonance coupled exciton effects in Cu2_xS thin films

    SciTech Connect

    Savariraj, Dennyson A.; Kim, Hee-Je; Viswanathan, Kodakkal K.; Vijayakumar, M.; Prabakar, Kandasamy

    2016-02-15

    Cu2-xS thin films prepared by template free single step wet chemical method on fluorine doped tin oxide substrate without any surfactant exhibts localized surface plasmon resonance (LSPR) coupled exciton effects. Cu2-xS thin films of unique surface morphology and free carrier density due to copper vacancy is controlled by the growth temperature and time. These selectively grown Cu2-xS thin films possess tunable band gap (2.6 - 1.4 eV) due to quantum size effect. Eventhough, all the samples show satellite peak in the X-ray photoelectron spectra due to Cu vacancies, only the samples with higher oxygen concentration show LSPR in the near infrared region.

  3. Facile solution deposition of Cu2ZnSnS4 (CZTS) nano-worm films on FTO substrates and its photoelectrochemical property

    NASA Astrophysics Data System (ADS)

    Huang, Yaohan; Li, Guangli; Fan, Qingfei; Zhang, Meili; Lan, Qi; Fan, Ximei; Zhou, Zuowan; Zhang, Chaoliang

    2016-02-01

    In this work, Cu2ZnSnS4 (CZTS) nanoworm films have been directly deposited on fluorine-doped tin oxide (FTO) conductive glass substrates by a solvothermal method using polyethylene glycol 400 (PEG-400) as the solvent and structure-directing agent. The as-obtained CZTS thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectrum (XPS), UV-vis spectra and photoelectrochemical measurement. The synthetic conditions, such as reaction temperature, reaction time, solvents, were investigated to know the formation of CZTS thin films. The results showed that PEG-400 plays a key role in the formation of the nanoworms by affecting the crystal growth process. The p-type CZTS nanoworm film with the band gap of 1.62 eV was synthesized at 180 °C for 22 h and the photovoltaic performance was studied by forming a photoelectrochemical cell.

  4. Structural, compositional and morphological studies of thermally evaporated MoO{sub 3} thin films

    SciTech Connect

    Senthilkumar, R. E-mail: gravicrc@gmail.com; Ravi, G. E-mail: gravicrc@gmail.com

    2014-04-24

    Molybdenum oxide (MoO{sub 3}) nanostructures were grown on different substrates such as glass, indium tin oxide coated glass and fluorine doped glass by thermal evaporation of MoO{sub 3} powder at elevated temperature (750°C) using tube furnace without any catalyst and then by subsequent O{sub 2}/Ar flow rate. The morphology, composition and crystal structure were examined by using SEM, EDAX, Laser Raman and XRD. The films are polycrystalline with well-defined diffraction peaks and it consist of MoO{sub 3} with α-orthorhombic structure. The synthesized MoO{sub 3} belongs to different morphologies, generally nanobelt and nanohunk structures. The EDAX spectra confirm the films are composed only of Mo and O atoms. The O/Mo ratio is nearly equal to 3 that shows the stoichiometry of MoO{sub 3}.

  5. Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films.

    PubMed

    Ramos, F Javier; López-Santos, Maria C; Guillén, Elena; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Gonzalez-Elipe, Agustin R; Ahmad, Shahzada

    2014-04-14

    ZnO thin films having a nanocolumnar microstructure are grown by plasma-enhanced chemical vapor deposition at 423 K on pre-treated fluorine-doped tin oxide (FTO) substrates. The films consist of c-axis-oriented wurtzite ZnO nanocolumns with well-defined microstructure and crystallinity. By sensitizing CH3NH3PbI3 on these photoanodes a power conversion of 4.8% is obtained for solid-state solar cells. Poly(triarylamine) is found to be less effective when used as the hole-transport material, compared to 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD), while the higher annealing temperature of the perovskite leads to a better infiltration in the nanocolumnar structure and an enhancement of the cell efficiency.

  6. Aqueous phase deposition of dense tin oxide films with nano-structured surfaces

    SciTech Connect

    Masuda, Yoshitake Ohji, Tatsuki; Kato, Kazumi

    2014-06-01

    Dense tin oxide films were successfully fabricated in an aqueous solution. The pH of the solutions was controlled to pH 1.3 by addition of HCl. Precise control of solution condition and crystal growth allowed us to obtain dense tin oxide films. Concave–convex surface of fluorine-doped tin oxide (FTO) substrates was entirely-covered with the continuous films. The films were about 65 nm in thickness and had nano-structured surfaces. Morphology of the films was strikingly different from our previous reported nano-sheet assembled structures. The films were not removed from the substrates by strong water flow or air blow to show strong adhesion strength. The aqueous solution process can be applied to surface coating of various materials such as nano/micro-structured surfaces, particles, fibers, polymers, metals or biomaterials. - Graphical abstract: Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. They had nano-structured surfaces. Concave-convex substrates were entirely-covered with the continuous films. - Highlights: • Dense tin oxide films of 65 nm were successfully fabricated in an aqueous solution. • They had nano-structured surfaces. • Concave–convex substrates were entirely-covered with the continuous films.

  7. Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.

    2006-09-01

    Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.

  8. Anomalous scaling and super-roughness in the growth of CdTe polycrystalline films

    NASA Astrophysics Data System (ADS)

    Mata, Angélica S.; Ferreira, Silvio C., Jr.; Ribeiro, Igor R. B.; Ferreira, Sukarno O.

    2008-09-01

    CdTe films grown on glass substrates covered by fluorine-doped tin oxide by hot-wall epitaxy were studied through the interface dynamical scaling theory. Direct measures of the dynamical exponent revealed an intrinsically anomalous scaling characterized by a global roughness exponent α , distinct from the local one (the Hurst exponent H ) previously reported by Ferreira [Appl. Phys. Lett.88, 244103 (2006)]. A variety of scaling behaviors was obtained with varying substrate temperature. In particular, a transition from an intrinsically anomalous scaling regime with H≠α<1 at low temperatures to a super-rough regime with H≠α>1 at high temperatures was observed. The temperature is a growth parameter that controls both the interface roughness and dynamical scaling exponents. Nonlocal effects are pointed out as the factors ruling the anomalous scaling behavior.

  9. Surface photovoltage characterization of sol-gel derived Bi 4Ti 3O 12 ferroelectric thin film on F-doped SnO 2 conducting glass

    NASA Astrophysics Data System (ADS)

    Wang, W. C.; Zheng, H. W.; Liu, X. Y.; Liu, X. S.; Gu, Y. Z.; Zhang, H. R.; Zhang, W. F.

    2010-03-01

    The surface photovoltage response was investigated in partly c-axis oriented Bi 4Ti 3O 12 thin film deposited on fluorine-doped tin oxide conductive glass substrate by a sol-gel technology. The maximum SPV of BiT film reaches 1.8 mV under the dc bias voltage (+1 V) and is three times larger than that under the zero bias. It is also found that the SPV response intensity increases with the increasing positive field, and the intensity of the SPV signal becomes weak with a reverse response when the negative field increases. It is suggested that the SPV is strongly related to the ferroelectric polarization.

  10. Films.

    ERIC Educational Resources Information Center

    Philadelphia Board of Education, PA. Div. of Instructional Materials.

    The Affective Curriculum Research Project produced five films and two records during a series of experimental summer programs. The films and records form part of a curriculum designed to teach to the concerns of students. The films were an effort to describe the Philadelphia Cooperative Schools Program, to explain its importance, and to…

  11. Structural, morphological and Raman studies of pulse electrosynthesised indium antimonide thin films

    SciTech Connect

    Singh, Joginder Chandel, Tarun; Rajaram, P.

    2015-08-28

    InSb films deposited on fluorine doped tin oxide (FTO) substrates by a pulse elctrodeposition technique. The deposition was carried out at an applied potential −1.3V versus Ag/AgCl electrode. Structural, morphological and optical studies were performed on the electrodeposited InSb. X-ray diffraction (XRD) studies show that the deposited InSb films are polycrystalline in nature having the zinc blend structure. The crystallite size (D), dislocation density (δ) and strain (ε) were calculated using XRD results. The EDAX analysis shows that chemical composition of In{sup 3+} and Sb{sup 3+} ions is close to the required stoichiometry. The surface morphology of the deposited films was examined using scanning electron microscopy (SEM). SEM studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. However, the crystallite size determined by the Scherrer method shows a size close to 30 nm. Surface morphology studies of the InSb films were also performed using atomic force microscopy (AFM). The average surface roughness as measured by AFM is around 40 nm. Hot probe studies show that all the electrodeposited thin films have n type conductivity and the thickness of the films is calculated using electrochemical formula.

  12. Investigation of annealing temperature effect on magnetron sputtered cadmium sulfide thin film properties

    NASA Astrophysics Data System (ADS)

    Akbarnejad, E.; Ghorannevis, Z.; Abbasi, F.; Ghoranneviss, M.

    2016-12-01

    Cadmium sulfide (CdS) thin films are deposited on the fluorine doped tin oxide coated glass substrate using the radio frequency magnetron sputtering setup. The effects of annealing in air on the structural, morphological, and optical properties of CdS thin film are studied. Optimal annealing temperature is investigated by annealing the CdS thin film at different annealing temperatures of 300, 400, and 500 °C. Thin films of CdS are characterized by X-ray diffractometer analysis, field emission scanning electron microscopy, atomic force microscopy, UV-Vis-NIR spectrophotometer and four point probe. The as-grown CdS films are found to be polycrystalline in nature with a mixture of cubic and hexagonal phases. By increasing the annealing temperature to 500 °C, CdS film showed cubic phase, indicating the phase transition of CdS. It is found from physical characterizations that the heat treatment in air increased the mean grain size, the transmission, and the surface roughness of the CdS thin film, which are desired to the application in solar cells as a window layer material.

  13. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells.

    PubMed

    Xia, Jiangbin; Masaki, Naruhiko; Jiang, Kejian; Yanagida, Shozo

    2006-12-21

    In dye-sensitized TiO2 solar cells, charge recombination processes at interfaces between fluorine-doped tin oxide (FTO), TiO2, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. From this point of view, a high work function material such as titanium deposited by sputtering on FTO has been investigated as an effective blocking layer for preventing electron leakage from FTO without influencing electron injection. X-ray photoelectron spectroscopy analysis indicates that different species of Ti (Ti4+, Ti3+, Ti2+, and a small amount of Ti0) exist on FTO. Electrochemical and photoelectrochemical measurements reveal that thin films of titanium species, expressed as TiOx, work as a compact blocking layer between FTO and TiO2 nanocrystaline film, improving Voc and the fill factor, finally giving a better conversion efficiency for dye-sensitized TiO2 solar cells with ionic liquid electrolytes.

  14. Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye

    NASA Astrophysics Data System (ADS)

    Ezema, C. G.; Nwanya, A. C.; Ezema, B. E.; Patil, B. H.; Bulakhe, R. N.; Ukoha, P. O.; Lokhande, C. D.; Maaza, Malik; Ezema, Fabian I.

    2016-04-01

    Nanocrystalline titanium dioxide (TiO2) thin films were deposited by successive ionic layer adsorption and reaction method onto fluorine doped tin oxide coated glass substrate at room temperature (300 K). Titanium trichloride and sodium hydroxide were used as cationic and anionic sources, respectively. The as-deposited and annealed films were characterized for structural, morphological, optical, electrical and wettability properties. The photoelectrochemical study of TiO2 sensitized with a laboratory synthesized organic dye (azo) was evaluated in the polyiodide electrolyte at 40 mW cm-2 light illumination intensity. The photovoltaic characteristics show a fill factor of 0.24 and solar conversion efficiency value of 0.032 % for a TiO2 thickness of 0.96 µm as compared to efficiency of 0.014 % for rose Bengal of the same thickness.

  15. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  16. Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3

    NASA Astrophysics Data System (ADS)

    Najafi-Ashtiani, Hamed; Bahari, Ali

    2016-08-01

    In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.

  17. Films

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhang, Yang; Shao, Yayun; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.; Ishiwara, Hiroshi

    2014-09-01

    In this paper, we investigated the microstructure and electrical properties of Bi2SiO5 (BSO) doped SrBi2Ta2O9 (SBT) films deposited by chemical solution deposition. X-ray diffraction observation indicated that the crystalline structures of all the BSO-doped SBT films are nearly the same as those of a pure SBT film. Through BSO doping, the 2Pr and 2Ec values of SBT films were changed from 15.3 μC/cm2 and 138 kV/cm of pure SBT to 1.45 μC/cm2 and 74 kV/cm of 10 wt.% BSO-doped SBT. The dielectric constant at 1 MHz for SBT varied from 199 of pure SBT to 96 of 10 wt.% BSO-doped SBT. The doped SBT films exhibited higher leakage current than that of non-doped SBT films. Nevertheless, all the doped SBT films still had small dielectric loss and low leakage current. Our present work will provide useful insights into the BSO doping effects to the SBT films, and it will be helpful for the material design in the future nonvolatile ferroelectric memories.

  18. Photoelectrochemical performance of birnessite films and photoelectrocatalytic activity toward oxidation of phenol.

    PubMed

    Zhang, Huiqin; Ding, Hongrui; Wang, Xin; Zeng, Cuiping; Lu, Anhuai; Li, Yan; Wang, Changqiu

    2017-02-01

    Birnessite films on fluorine-doped tin oxide (FTO) coated glass were prepared by cathodic reduction of aqueous KMnO4. The deposited birnessite films were characterized with X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy. The photoelectrochemical activity of birnessite films was investigated and a remarkable photocurrent in response to visible light was observed in the presence of phenol, resulting from localized manganese d-d transitions. Based on this result, the photoelectrocatalytic oxidation of phenol was investigated. Compared with phenol degradation by the electrochemical oxidation process or photocatalysis separately, a synergetic photoelectrocatalytic degradation effect was observed in the presence of the birnessite film coated FTO electrode. Photoelectrocatalytic degradation ratios were influenced by film thickness and initial phenol concentrations. Phenol degradation with the thinnest birnessite film and initial phenol concentration of 10mg/L showed the highest efficiency of 91.4% after 8hr. Meanwhile, the kinetics of phenol removal was fit well by the pseudofirst-order kinetic model.

  19. Enhanced Photocatalytic Performance Depending on Morphology of Bismuth Vanadate Thin Film Synthesized by Pulsed Laser Deposition.

    PubMed

    Jeong, Sang Yun; Choi, Kyoung Soon; Shin, Hye-Min; Kim, Taemin Ludvic; Song, Jaesun; Yoon, Sejun; Jang, Ho Won; Yoon, Myung-Han; Jeon, Cheolho; Lee, Jouhahn; Lee, Sanghan

    2017-01-11

    We have fabricated high quality bismuth vanadate (BiVO4) polycrystalline thin films as photoanodes by pulsed laser deposition (PLD) without a postannealing process. The structure of the grown films is the photocatalytically active phase of scheelite-monoclinic BiVO4 which was obtained by X-ray diffraction (XRD) analysis. The change of surface morphology for the BIVO4 thin films depending on growth temperature during synthesis has been observed by scanning electron microscopy (SEM), and its influence on water splitting performance was investigated. The current density of the BiVO4 film grown on a glass substrate covered with fluorine-doped tin oxide (FTO) at 230 °C was as high as 3.0 mA/cm(2) at 1.23 V versus the potential of the reversible hydrogen electrode (VRHE) under AM 1.5G illumination, which is the highest value so far in previously reported BiVO4 films grown by physical vapor deposition (PVD) methods. We expect that doping of transition metal or decoration of oxygen evolution catalyst (OEC) in our BiVO4 film might further enhance the performance.

  20. Reference of Temperature and Time during tempering process for non-stoichiometric FTO films.

    PubMed

    Yang, J K; Liang, B; Zhao, M J; Gao, Y; Zhang, F C; Zhao, H L

    2015-10-14

    In order to enhance the mechanical strength of Low-E glass, Fluorine-doped tin oxide (FTO) films have to be tempered at high temperatures together with glass substrates. The effects of tempering temperature (600 °C ~ 720 °C) and time (150 s ~  300 s) on the structural and electrical properties of FTO films were investigated. The results show all the films consist of non-stoichiometric, polycrystalline SnO2 without detectable amounts of fluoride. 700 °C and 260 s may be the critical tempering temperature and time, respectively. FTO films tempered at 700 °C for 260 s possesses the resistivity of 7.54 × 10(-4) Ω • cm, the average transmittance in 400 ~ 800 nm of ~80%, and the calculated emissivity of 0.38. Hall mobility of FTO films tempered in this proper condition is mainly limited by the ionized impurity scattering. The value of [O]/[Sn] at the film surface is much higher than the stoichiometric value of 2.0 of pure crystalline SnO2.

  1. Reference of Temperature and Time during tempering process for non-stoichiometric FTO films

    NASA Astrophysics Data System (ADS)

    Yang, J. K.; Liang, B.; Zhao, M. J.; Gao, Y.; Zhang, F. C.; Zhao, H. L.

    2015-10-01

    In order to enhance the mechanical strength of Low-E glass, Fluorine-doped tin oxide (FTO) films have to be tempered at high temperatures together with glass substrates. The effects of tempering temperature (600 °C ~ 720 °C) and time (150 s ~ 300 s) on the structural and electrical properties of FTO films were investigated. The results show all the films consist of non-stoichiometric, polycrystalline SnO2 without detectable amounts of fluoride. 700 °C and 260 s may be the critical tempering temperature and time, respectively. FTO films tempered at 700 °C for 260 s possesses the resistivity of 7.54 × 10-4 Ω•cm, the average transmittance in 400 ~ 800 nm of ~80%, and the calculated emissivity of 0.38. Hall mobility of FTO films tempered in this proper condition is mainly limited by the ionized impurity scattering. The value of [O]/[Sn] at the film surface is much higher than the stoichiometric value of 2.0 of pure crystalline SnO2.

  2. Optical constants and nonlinear calculations of fluorescein/FTO thin film optical system

    NASA Astrophysics Data System (ADS)

    Zahran, H. Y.; Iqbal, Javed; Yahia, I. S.

    2016-11-01

    The organic thin films of fluorescein dye were deposited on fluorine-doped tin oxide glass substrate by using low-cost spin coating technique. The surface of the deposited film was characterized by using AFM and X-ray diffraction spectroscopy, which shows that the film is uniform and amorphous. The spectrophotometric study was carried out at the wavelength range of 300-2500 nm. The spectral dependences of the linear refractive index and absorption index were found to decrease as the wavelength was increased. Tauc's plot study revealed that the film shows the direct transition and energy band gap values were found 1.75 eV and 3.55 eV for the thin film and the substrate, respectively. Optical constants were found nearly the same in the higher energy domain (1.0-4.5 eV). Spectroscopic method was employed to study the nonlinear optical susceptibility χ (3). The deposited thin film is a promising optical system for new generation of optoelectronics.

  3. Photoelectrochemical properties of spray deposited n-CdSe thin films

    SciTech Connect

    Yadav, A.A.; Barote, M.A.; Masumdar, E.U.

    2010-05-15

    Polycrystalline cadmium selenide (CdSe) thin films have been prepared by spraying a mixture of an equimolar aqueous solutions of cadmium chloride and selenourea on preheated fluorine doped tin oxide (FTO) coated glass substrates at different substrate temperatures. The cell configuration n-CdSe/1 M (NaOH + Na{sub 2}S + S)/C is used for studying the capacitance-voltage (C-V) characteristics in dark, current-voltage (I-V) characteristics in dark and under illumination, photovoltaic power output and spectral response characteristics of the as deposited films. Photoelectrochemical study shows that as deposited CdSe thin films exhibits n-type of conductivity. The spectral response characteristics of the films at room temperature show a prominent sharp peak at 725 nm. The measured values of efficiency ({eta}) and fill factor (FF) are found to be 0.50% and 0.44 respectively for film deposited at 300 C. Electrochemical impedance spectroscopy studies show that the CdSe film deposited at 300 C shows better performance in PEC cell. (author)

  4. Comparison of Electrochemical Luminescence Characteristics of Titanium Dioxide Films Prepared by Sputtering and Sol-Gel Combustion Methods

    NASA Astrophysics Data System (ADS)

    Park, Hee-Dae; Sung, Youl-Moon; Park, Min-Woo; Song, Jae-Eun

    2013-05-01

    Titanium dioxide (TiO2) films were deposited on fluorine-doped tin-oxide (FTO) glass by sputtering and sol-gel combustion (SGC) coating methods and investigated with respect to their electrochemical luminescence (ECL) performance. The sputtered TiO2 films were denser than the SGC-deposited films, while the SGC films were found to be superior in porosity to the sputtered films. The charge transfer resistance (R2) of the SGC (450 °C) TiO2-based cell was found to be lower than those of the sputtered TiO2-based cells. The SGC (450 °C) cell emitted a more intense ECL than the sputter (450 °C) cells. The threshold voltage at which the emission starts was 3.0 V for the SGC (450 °C) cell, which was lower than that (3.5 V) for the sputter (450 °C) cell. The efficiencies were 0.04 lm/W for the sputter (450 °C) cell (R2 = 22.3 Ω, porosity= 27.2%) and 0.085 lm/W for the SGC (450 °C) cell (R2 = 12.8 Ω, porosity= 65.8%). The SGC-deposited TiO2 films were found to be superior in ECL efficiency to the sputtered TiO2 films.

  5. Intrinsic Doping in Electrodeposited ZnS Thin Films for Application in Large-Area Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Madugu, Mohammad Lamido; Olusola, Olajide Ibukun-Olu; Echendu, Obi Kingsley; Kadem, Burak; Dharmadasa, Imyhamy Mudiy

    2016-06-01

    Zinc sulphide (ZnS) thin films with both n- and p-type electrical conductivity were grown on glass/fluorine-doped tin oxide-conducting substrates from acidic and aqueous solution containing ZnSO4 and (NH4)2S2O3 by simply changing the deposition potential in a two-electrode cell configuration. After deposition, the films were characterised using various analytical techniques. X-ray diffraction analysis reveals that the materials are amorphous even after heat treatment. Optical properties (transmittance, absorbance and optical bandgap) of the films were studied. The bandgaps of the films were found to be in the range (3.68-3.86) eV depending on the growth voltage. Photoelectrochemical cell measurements show both n- and p-type electrical conductivity for the films depending on the growth voltage. Scanning electron microscopy shows material clusters on the surface with no significant change after heat treatment at different temperatures. Atomic force microscopy shows that the surface roughness of these materials remain fairly constant reducing only from 18 nm to 17 nm after heat treatment. Thickness estimation of the films was also carried out using theoretical and experimental methods. Direct current conductivity measurements on both as-deposited and annealed films show that resistivity increased after heat treatment.

  6. Synthesis of cauliflower-like ZnO-TiO 2 composite porous film and photoelectrical properties

    NASA Astrophysics Data System (ADS)

    Jiang, Yinhua; Yan, Yun; Zhang, Wenli; Ni, Liang; Sun, Yueming; Yin, Hengbo

    2011-05-01

    A series of cauliflower-like TiO 2-ZnO composite porous films with various molar ratios of Zn/Ti were prepared by the screen printing technique on the fluorine-doped SnO 2 (FTO) conducting glasses. The composite films were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectrometry (EDS) and UV-vis transmittance spectrum. The results showed composite film electrode had a novel cauliflower-like morphology, which could effectively increase the dye absorption. The corresponding dye-sensitized solar cells (DSCs) were made by the composite film, and effects of ZnO incorporation on the photovoltaic performances of the DSCs were studied. With the Zn/Ti molar ratio not more than 3% in ZnO-TiO 2 composite film of about 5 μm-thickness, the photocurrent density ( Jsc) and the solar-to-electricity conversion efficiency ( η) were greatly improved compared with those of the DSC based on bare TiO 2 film of same thickness. This increases in efficiency and Jsc were attributed to high electron conductivity of ZnO, the improved dye adsorption and large light transmittance of composite film.

  7. Effects of densification of precursor pellets on microstructures and critical current properties of YBCO melt-textured bulks

    NASA Astrophysics Data System (ADS)

    Setoyama, Yui; Shimoyama, Jun-ichi; Motoki, Takanori; Kishio, Kohji; Awaji, Satoshi; Kon, Koichi; Ichikawa, Naoki; Inamori, Satoshi; Naito, Kyogo

    2016-12-01

    Effects of densification of precursor disks on the density of residual voids and critical current properties for YBCO melt-textured bulk superconductors were systematically investigated. Six YBCO bulks were prepared from precursor pellets with different initial particle sizes of YBa2Cu3Oy (Y123) powder and applied pressures for pelletization. It was revealed that use of finer Y123 powder and consolidation using cold-isostatic-pressing (CIP) with higher pressures result in reduction of residual voids at inner regions of bulks and enhance Jc especially under low fields below the second peak.

  8. Development of Elements of a High Tc Superconducting Cable

    DTIC Science & Technology

    1989-03-31

    0 0O DTIC N ELECTE MA 61989D N00014-88-C-000681 DEVELOPMENT OF ELEMENTS OF A HIGH T SUPERCONDUCTING CABLE C Dr. Kenneth W. Lay 518-387-6147 FAX 518... superconducting coating on a supporting fiber. The composite will also include a barrier layer between the fiber and the superconductor and a protective layer...is the development of textured polycrystalline YBa 2Cu3Oy (Y-123) with improved critical current carrying capacity. Phase II is the development of

  9. Chemical vapor deposition and atomic layer deposition of metal oxide and nitride thin films

    NASA Astrophysics Data System (ADS)

    Barton, Jeffrey Thomas

    copper layers to wet these surfaces was also investigated. Electrochromic materials are being developed for use in energy-conserving "smart windows" that can control light transmission by varying the voltage across the layer Electrochromic tungsten oxide was deposited from the reaction of tungsten pentacarbonyl alkylisonitriles with oxygen gas. Fluorine-doped tin oxide is a well known transparent conducting oxide (TCO), and zinc stannate has shown promise as a useful TCO with potentially high carrier mobility. A method for depositing fluorine-doped tin oxide from a single-source precursor, dimethyltin-bis-(1,1,1-trifluoro-2,4-hexanedionate), and oxygen gas is presented. Zinc stannate was also deposited by CVD, using zinc acetylacetonate and dibutyltin-bis-(acetylacetonate) and oxygen gas.

  10. Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications.

    PubMed

    Schünemann, Stefan; Chen, Kun; Brittman, Sarah; Garnett, Erik; Tüysüz, Harun

    2016-09-28

    Herein, a facile method for the preparation of organometal halide perovskite (OHP) thin films in photonic crystal morphology is presented. The OHP photonic crystal thin films with controllable porosity and thicknesses between 2 μm and 6 μm were prepared on glass, fluorine-doped tin oxide (FTO), and TiO2 substrates by using a colloidal crystal of polystyrene microspheres as a template to form an inverse opal structure. The composition of OHP could be straightforwardly tuned by varying the halide anions. The obtained OHP inverse opal films possess large ordered domains with a periodic change of the refractive index, which results in pronounced photonic stop bands in the visible light range. By changing the diameter of the polystyrene microspheres, the position of the photonic stop band can be tuned through the visible spectrum. This developed methodology can be used as blueprint for the synthesis of various OHP films that could eventually be used as more effective light harvesting materials for diverse applications.

  11. Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition.

    PubMed

    Ponja, Sapna D; Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan P; Carmalt, Claire J

    2015-12-30

    Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activity of these samples was tested against Escherichia coli and Staphylococcus aureus in the dark and under UV light (365 nm). All Ag-deposited films reduced the numbers of E. coli by 99.9% within 6 h and the numbers of S. aureus by 99.9% within only 2 h. FTO/Ag reduced bacterial numbers of E. coli to below the detection limit after 60 min and caused a 99.9% reduction of S. aureus within only 15 min of UV irradiation. Activ/Ag reduced the numbers of S. aureus by 66.6% after 60 min and TiO2/Ag killed 99.9% of S. aureus within 60 min of UV exposure. More remarkably, we observed a 99.9% reduction in the numbers of E. coli within 6 h and the numbers of S. aureus within 4 h in the dark using our novel TiO2/Ag system.

  12. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.

    2016-10-01

    Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.

  13. CdS/CdSe Co-sensitized Solar Cells Based on Hierarchically Structured SnO2/TiO2 Hybrid Films.

    PubMed

    Chen, Zeng; Wei, Chaochao; Li, Shengjun; Diao, Chunli; Li, Wei; Kong, Wenping; Zhang, Zhenlong; Zhang, Weifeng

    2016-12-01

    SnO2 nanosheet-structured films were prepared on a fluorine-doped tin oxide (FTO) substrate using ZnO nanosheet as template. The as-prepared SnO2 nanosheets contained plenty of nano-voids and were generally vertical to the substrate. TiO2 nanoparticles were homogeneously deposited into the intervals between the SnO2 nanosheets to prepare a hierarchically structured SnO2/TiO2 hybrid film. The hybrid films were co-sensitized with CdS and CdSe quantum dots. The sensitized solar cells assembled with the SnO2/TiO2 hybrid film showed much higher photoelectricity conversion efficiency than the cells assembled with pure TiO2 films. The lifetime of photoinduced electron was also investigated through electrochemical impedance spectroscopy, which showed that the SnO2/TiO2 hybrid film electrode is as long as the TiO2 film electrode.

  14. On the influence of DC electric fields on the aerosol assisted chemical vapor deposition growth of photoactive titanium dioxide thin films.

    PubMed

    Romero, Luz; Binions, Russell

    2013-11-05

    Titanium dioxide thin films were deposited on fluorine doped tin oxide glass substrate from the electric field assisted aerosol chemical vapor deposition (EACVD) reaction of titanium isopropoxide (TTIP, Ti(OC3H7)4) in toluene on glass substrates at a temperature of 450 °C. DC electric fields were generated by applying a potential difference between the electrodes of the transparent coated oxide coated glass substrates during the deposition. The deposited films were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and UV-vis spectroscopy. The photoactivity and hydrophilicity of the deposited films were also analyzed using a dye-ink test and water-contact angle measurements. The characterization work revealed that the incorporation of DC electric fields produced significant reproducible changes in the film microstructure, preferred crystallographic orientation, roughness, and film thickness. Photocatalytic activity was calculated from the half-time (t1/2) or time taken to degrade 50% of the initial resazurin dye concentration. A large improvement in photocatalytic activity was observed for films deposited using an electric field with a strong orientation in the (004) direction (t1/2 17 min) as compared to a film deposited with no electric field (t1/2 40 min).

  15. CdS/CdSe Co-sensitized Solar Cells Based on Hierarchically Structured SnO2/TiO2 Hybrid Films

    NASA Astrophysics Data System (ADS)

    Chen, Zeng; Wei, Chaochao; Li, Shengjun; Diao, Chunli; Li, Wei; Kong, Wenping; Zhang, Zhenlong; Zhang, Weifeng

    2016-06-01

    SnO2 nanosheet-structured films were prepared on a fluorine-doped tin oxide (FTO) substrate using ZnO nanosheet as template. The as-prepared SnO2 nanosheets contained plenty of nano-voids and were generally vertical to the substrate. TiO2 nanoparticles were homogeneously deposited into the intervals between the SnO2 nanosheets to prepare a hierarchically structured SnO2/TiO2 hybrid film. The hybrid films were co-sensitized with CdS and CdSe quantum dots. The sensitized solar cells assembled with the SnO2/TiO2 hybrid film showed much higher photoelectricity conversion efficiency than the cells assembled with pure TiO2 films. The lifetime of photoinduced electron was also investigated through electrochemical impedance spectroscopy, which showed that the SnO2/TiO2 hybrid film electrode is as long as the TiO2 film electrode.

  16. Enhanced electrochromic properties of TiO2 nanoporous film prepared based on an assistance of polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Xu, Shunjian; Luo, Xiaorui; Xiao, Zonghu; Luo, Yongping; Zhong, Wei; Ou, Hui; Li, Yinshuai

    2017-01-01

    Polyethylene glycol (PEG) was employed as pore-forming agent to prepare TiO2 nanoporous film based on spin-coating a TiO2 nanoparticle mixed paste on fluorine doped tin oxide (FTO) glass. The electrochromic and optical properties of the obtained TiO2 film were investigated by cyclic voltammetry (CV), chronoamperometry (CA) and UV–Vis spectrophotometer. The results show that the PEG in the mixed paste endows the TiO2 film with well-developed porous structure and improves the uniformity of the TiO2 film, which are helpful for the rapid intercalation and extraction of lithium ions within the TiO2 film and the strengthening of the diffuse reflection of visible light in the TiO2 film. As a result, the TiO2 film derived from the mixed paste with PEG displays higher electrochemical activity and more excellent electrochromic performances compared with the TiO2 film derived from the mixed paste without PEG. The switching times of coloration/bleaching are respectively 10.16/5.65 and 12.77/6.13 s for the TiO2 films with PEG and without PEG. The maximum value of the optical contrast of the TiO2 film with PEG is 21.2% while that of the optical contrast of the TiO2 film without PEG is 14.9%. Furthermore, the TiO2 film with PEG has better stability of the colored state than the TiO2 film without PEG.

  17. Luminescence and electrical properties of solution-processed ZnO thin films by adding fluorides and annealing atmosphere

    SciTech Connect

    Choi, Sungho; Park, Byung-Yoon; Jung, Ha-Kyun

    2011-06-15

    Highlights: {yields} Systematic study of the fluorides doped solution-processed ZnO thin films via the luminescence and electrical behaviors. {yields} Defect-related visible emission bands are affected by annealing ambient and fluoride addition. {yields} Adding lithium fluoride followed by annealing in oxygen ambient leads to a controlled defect density with proper TFT performance. -- Abstract: To develop an efficient channel layer for thin film transistors (TFTs), understanding the defect-related luminescence and electrical property is crucial for solution-processed ZnO thin films. Film growth with the fluorides addition, especially using LiF, followed by the oxygen ambient post-annealing leads to decreased defect-related emission as well as enhanced switching property. The saturation mobility and current on/off ratio are 0.31 cm{sup 2} V{sup -1} s{sup -1} and 1.04 x 10{sup 3}. Consequently, we can visualize an optimized process condition and characterization method for solution-processed TFT based on the fluorine-doped ZnO film channel layer by considering the overall emission behavior.

  18. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films

    NASA Astrophysics Data System (ADS)

    Ganesan, Karupanan Periyanan; Anandhan, Narayanasamy; Dharuman, Venkatraman; Sami, Ponnusamy; Pannerselvam, Ramaswamy; Marimuthu, Thandapani

    Cuprous oxide (Cu2O) thin films with different crystal orientations were electrochemically deposited in the presence of various molar concentrations of cetyl trimethyl ammonium bromide (CTAB) on fluorine doped tin oxide (FTO) glass substrate using standard three electrodes system. X-ray diffraction (XRD) studies reveal cubic structure of Cu2O with (1 1 1) plane orientation, after addition of CTAB in deposition solution, the orientation of crystal changes from (1 1 1) into (2 0 0) plane. Scanning electron microscope (SEM) images explored significant variation on morphology of Cu2O thin films deposited with addition of CTAB compared to without addition of CTAB. Photoluminescence (PL) spectra illustrate that the emission peak around at 650 nm is attributed to near band edge emission, and the film prepared at the 3 mM of CTAB exhibits much higher intensity than that of the all other films. UV-Visible spectra show optical absorption in the range of 480-610 nm and the highest transparency of Cu2O film prepared at the concentration of 3 mM CTAB. The optical band gap is increased in the range between 2.16 and 2.45 eV with increasing the CTAB concentrations.

  19. A complementary electrochromic device with highly improved performance based on brick-like hydrated tungsten trioxide film.

    PubMed

    Jiao, Zhihui; Wang, Jinmin; Ke, Lin; Sun, Xiao Wei; Demir, Hilmi Volkan

    2012-05-01

    Uniform and well adhesive nanostructured hydrated tungsten trioxide (3WO3 x H2O) films were grown on fluorine doped tin oxide (FTO) substrate via a facile and template-free crystal-seed-assisted hydrothermal method by addition of ammonium sulfate ((NH4)2SO4) and hydrogen peroxide (H2O2). X-ray diffraction (XRD) studies indicated that the films are of orthorhombic structure. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis showed that the film was composed of brick-like nanostructures with a preferred growing direction along (002). The influence of seed layer, (NH4)2SO4 and H2O2 on the products were also studied. The film showed good cyclic stability, comparable switching speed and coloration efficiency (30.1 cm2 C(-1)). A complementary electrochromic device based on the film and Prussian blue depicted highly improved color contrast, coloration/bleaching response (1.8 and 3.7 s respectively) and coloration efficiency (164.6 cm2 C(-1)).

  20. Deposition of F-doped ZnO transparent thin films using ZnF2-doped ZnO target under different sputtering substrate temperatures.

    PubMed

    Wang, Fang-Hsing; Yang, Cheng-Fu; Lee, Yen-Hsien

    2014-02-26

    Highly transparent and conducting fluorine-doped ZnO (FZO) thin films were deposited onto glass substrates by radio-frequency (RF) magnetron sputtering, using 1.5 wt% zinc fluoride (ZnF2)-doped ZnO as sputtering target. Structural, electrical, and optical properties of the FZO thin films were investigated as a function of substrate temperature ranging from room temperature (RT) to 300°C. The cross-sectional scanning electron microscopy (SEM) observation and X-ray diffraction analyses showed that the FZO thin films were of polycrystalline nature with a preferential growth along (002) plane perpendicular to the surface of the glass substrate. Secondary ion mass spectrometry (SIMS) analyses of the FZO thin films showed that there was incorporation of F atoms in the FZO thin films, even if the substrate temperature was 300°C. Finally, the effect of substrate temperature on the transmittance ratio, optical energy gap, Hall mobility, carrier concentration, and resistivity of the FZO thin films was also investigated.

  1. Layer-by-layer self-assembled mesoporous PEDOT-PSS and carbon black hybrid films for platinum free dye-sensitized-solar-cell counter electrodes.

    PubMed

    Kitamura, Koji; Shiratori, Seimei

    2011-05-13

    A thin film of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonic acid) (PEDOT-PSS), which is an alternative cathodic catalyst for Pt in dye-sensitized solar cells, was prepared using the layer-by-layer self-assembly method (LbL). The film is highly adhesive to the substrate and has a controllable thickness. Therefore, the PEDOT-PSS film prepared using LbL is expected have high performance and durability as a counter electrode. Moreover, when carbon black was added to the PEDOT-PSS solution, highly mesoporous PEDOT-PSS and carbon black hybrid films were obtained. These films showed high cathodic activity. In this study, we investigated the change in morphology in the obtained film with increasing carbon black content, and the influence of the porosity and thickness on the performance of the cells. In this study, a Pt-free counter electrode with performance similar to that of Pt-based counter electrodes was successfully fabricated. The achieved efficiency of 4.71% was only a factor of 8% lower than that of the cell using conventional thermally deposited Pt on fluorine-doped tin oxide glass counter electrodes.

  2. Improved Energy Conversion Efficiency of TiO2 Thin Films Modified with Ta2O5 in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Kao, Ming-Cheng; Chen, Hone-Zern; Young, San-Lin

    2013-01-01

    Tantalum-doped TiO2 thin films [(TiO2)1-x(Ta2O5)x, x=0-0.8%] were prepared on fluorine-doped tin oxide (FTO)-coated substrates by sol-gel technology for uses in dye-sensitized solar cells (DSSCs). The effects of Ta content on the growth and properties of the TiO2 thin films were investigated. The crystallization and microstructures of the thin films were examined by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller analyses. The performance of DSSCs based on Ta-doped TiO2 thin films was also studied. From the obtained results, the increases in Jsc and Voc may be due to the increased electron concentration of TiO2 thin film and the flat-band potential of the TiO2 shifted by tantalum doping, respectively. The optimum properties of DSSCs of Voc=0.68 V, Jsc=7.84 mA/cm2, FF=45.1%, and η=2.4% were obtained using the Ta-doped TiO2 thin film with x=0.5%.

  3. An efficient and transparent copper sulfide nanosheet film counter electrode for bifacial quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ke, Weijun; Fang, Guojia; Lei, Hongwei; Qin, Pingli; Tao, Hong; Zeng, Wei; Wang, Jing; Zhao, Xingzhong

    2014-02-01

    Copper sulfide (CuS) with nanosheet structure has been synthesized at a low temperature in situ on copper (Cu) film coated fluorine-doped tin oxide glass and bifacial quantum dot-sensitized solar cells (QDSSCs) were herein developed by using these CuS as counter electrodes (CEs). CuS is an environmental compatible and low toxic material. The obtained two-dimensional CuS nanosheet film presents high carrier mobility and exhibits highly catalytic performance for the polysulfide-based electrolyte. The QDSSC based on a CuS CE presents a power conversion efficiency (PCE) of 3.65% by optimizing the thickness of the Cu film under front illumination. The QDSSC based on a CuS CE prepared with a 200 nm thick Cu film shows a very close PCE under front and rear illuminations in which the values are as high as 2.70% and 2.40%, respectively. All the PCEs of the CuS CEs are much higher than that of the Pt CE (1.34%).

  4. Reversible Changes in Resistance of Perovskite Nickelate NdNiO3 Thin Films Induced by Fluorine Substitution.

    PubMed

    Onozuka, Tomoya; Chikamatsu, Akira; Katayama, Tsukasa; Hirose, Yasushi; Harayama, Isao; Sekiba, Daiichiro; Ikenaga, Eiji; Minohara, Makoto; Kumigashira, Hiroshi; Hasegawa, Tetsuya

    2017-03-08

    Perovskite nickel oxides are of fundamental as well as technological interest because they show large resistance modulation associated with phase transition as a function of the temperature and chemical composition. Here, the effects of fluorine doping in a perovskite nickelate NdNiO3 epitaxial thin films are investigated through a low-temperature reaction with polyvinylidene fluoride as the fluorine source. The fluorine content in the fluorinated NdNiO3-xFx films is controlled with precision by varying the reaction time. The fully fluorinated film (x ≈ 1) is highly insulating and has a bandgap of 2.1 eV, in contrast to NdNiO3, which exhibits metallic transport properties. Hard X-ray photoelectron and soft X-ray absorption spectroscopies reveal the suppression of the density of states at the Fermi level as well as the reduction of nickel ions (valence state changes from 3+ to 2+) after fluorination, suggesting that the strong Coulombic repulsion in the Ni 3d orbitals associated with the fluorine substitution drives the metal-to-insulator transition. In addition, the resistivity of the fluorinated films recovers to the original value for NdNiO3 after annealing in an oxygen atmosphere. By applying the reversible fluorination process to transition-metal oxides, the search for resistance-switching materials could be accelerated.

  5. Electrochemically synthesized CuInSe2 thin films from non-aqueous electrolyte for solar cell applications

    NASA Astrophysics Data System (ADS)

    Londhe, Priyanka U.; Rohom, Ashwini B.; Lakhe, Manorama G.; Bhand, Ganesh R.; Chaure, Nandu B.

    2016-12-01

    Highly polycrystalline CuInSe2 (CIS) thin films have been electrodeposited from non-aqueous ethylene glycol (EG) solvent on fluorine-doped tin-oxide-coated glass substrates at 130 °C. The co-deposition potential for Cu, In and Se was optimized by using cyclic voltammetry. CIS layers have been electrodeposited from -1.1 V to -1.5 V versus the Ag/AgCl reference electrode. The effect of selenization on structural, morphological, optical and compositional properties has been studied extensively. Highly crystalline CIS thin films are electrodeposited for all reported growth potentials without post-annealing treatment. The Raman spectra of stoichiometric CIS thin films showed a dominant A1 mode with features receptive to the crystalline quality of the layers. Noticeable changes in the surface morphology and composition of films deposited at different deposition potential were observed. All CIS layers were void free, compact, uniform, and well adherent to the substrates with particle size ˜1-3 μm. Both as-deposited and selenized samples were Cu-rich, however, the composition of selenium remained closer to the ideal value, 50%. A typical solar cell prepared at -1.3 V measured V OC = 0.316 V, J SC = 26 mA, FF = 49, and η = 4.2, under illuminated conditions at 100 mW cm-2.

  6. Conformal BaTiO3 Films with High Piezoelectric Coupling through an Optimized Hydrothermal Synthesis.

    PubMed

    Zhou, Zhi; Bowland, Christopher C; Patterson, Brendan A; Malakooti, Mohammad H; Sodano, Henry A

    2016-08-24

    Two-dimensional (2D) ferroelectric films have vast applications due to their dielectric, ferroelectric, and piezoelectric properties that meet the requirements of sensors, nonvolatile ferroelectric random access memory (NVFeRAM) devices, and micro-electromechanical systems (MEMS). However, the small surface area of these 2D ferroelectric films has limited their ability to achieve higher memory storage density in NVFeRAM devices and more sensitive sensors and transducer. Thus, conformally deposited ferroelectric films have been actively studied for these applications in order to create three-dimensional (3D) structures, which lead to a larger surface area. Most of the current methods developed for the conformal deposition of ferroelectric films, such as metal-organic chemical vapor deposition (MOCVD) and plasma-enhanced vapor deposition (PECVD), are limited by high temperatures and unstable and toxic organic precursors. In this paper, an innovative fabrication method for barium titanate (BaTiO3) textured films with 3D architectures is introduced to alleviate these issues. This fabrication method is based on converting conformally grown rutile TiO2 nanowire arrays into BaTiO3 textured films using a simple two-step hydrothermal process which allows for thickness-controlled growth of conformal films on patterned silicon wafers coated with fluorine-doped tin oxide (FTO). Moreover, the processing parameters have been optimized to achieve a high piezoelectric coupling coefficient of 100 pm/V. This high piezoelectric response along with high relative dielectric constant (εr = 1600) of the conformally grown textured BaTiO3 films demonstrates their potential application in sensors, NVFeRAM, and MEMS.

  7. Development and characterization of a novel ZnO nanorods-SnO2:F nanoflakes thin film for room-temperature ammonia and humidity sensing

    NASA Astrophysics Data System (ADS)

    Calaque, Precy Mae; Vergara, Christopher Jude; Ballesteros, Laureen Ida; Somintac, Armando

    2017-03-01

    A unique and novel thin film of fluorine-doped tin oxide (SnO2:F) nanoflakes on ZnO nanorods were fabricated using nebulized spray pyrolysis technique (NSPT) and hydrothermal growth method, respectively, for ammonia and humidity sensing applications. XRD studies confirm the growth of a hexagonal wurtzite ZnO and a tetragonal SnO2:F. SEM images of the film fabricated for preliminary studies evidently revealed ZnO nanorods and SnO2:F nanoflakes. The response of the fabricated ZnO-SnO2:F nanostructure thin film sensor on varying concentrations of water vapor and ammonia at room temperature were investigated. Results have shown that it had higher sensor response to ammonia than to water vapor. Moreover, it was observed to have a higher sensor response on ammonia and humidity compared to the fabricated sensor of SnO2:F thin film alone. The films could detect humidity and ammonia even at a low level of 9 ppm and 5 ppm, respectively, showing its potential use for various fields such as environmental monitoring and chemical industries.

  8. Effects of Zn amount on the properties of Zn-Zu2O composite films grown for PEC photoelectrodes by using electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Kim, Tae Gyoum; Lee, Hu Joong; Ryu, Hyukhyun; Lee, Won-Jae

    2015-10-01

    In this study, Zn-Cu2O composite films were grown on fluorine-doped tin-oxide (FTO) substrates by using the electrochemical deposition method. Various amounts of Zinc (Zn) were added to grow the Zn-Cu2O composite films. We analyzed the morphological, structural, optical energy band gap and photocurrent density properties of the Zn-Cu2O composite films by using various measurements such as field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), UV-visible spectrophotometry and potentiostat/galvanostat measurements, respectively. As a result, the highest photocurrent density value of -4.04 mA/cm2 was obtained for the 30-wt% sample, which had the lowest Cu2O (111)/ ZnO (101) XRD peak intensity ratio. The highest photocurrent density value from the 30-wt% sample was approximately 2.35 times higher than that from the non-composite Cu2O film (0-wt% sample). From this study, we found that adding Zn could improve the photocurrent values of Zn-Cu2O composite films.

  9. Synthesis and characterization of Cd{sub 0.7}Pb{sub 0.3}Se thin films for photoelectrochemical solar cell

    SciTech Connect

    Delekar, S.D.; Patil, M.K.; Jadhav, B.V.; Sanadi, K.R.; Hankare, P.P.

    2010-03-15

    Optimum composition Cd{sub 0.7}Pb{sub 0.3}Se thin films have been deposited using the chemical bath containing cadmium sulfate octahydrate, lead nitrate, tartaric acid, potassium hydroxide, ammonia, and sodium selenosulfate onto fluorine-doped tin oxide glass substrate. The various deposition parameters such as composition of reactive bath, pH of the solution, deposition temperature, deposition time, speed of rotation, etc. have been optimized for obtaining good quality film. X-ray diffraction studies revealed the polycrystalline nature of sample with the solid solution of lead (II) ions in CdSe host lattice, having a hexagonal phase structure. Scanning electron micrograph suggested that the grains were non-uniformly distributed over the substrate surface. Film composition was determined by atomic absorption spectroscopy as well as energy dispersive X-ray atomic spectroscopy. Optical absorption data showed the presence of direct transition with energy band gap 1.80 eV for the deposited thin films. The dark specific conductance of Cd{sub 0.7}Pb{sub 0.3}Se thin films was found to the order of 10{sup -6} ({omega} cm){sup -1} having n-type semiconducting nature. Photoelectrochemical characterization was carried out using sulfide/polysulfide electrolyte with 1.401% efficiency. (author)

  10. Layer-by-layer TiO(2)/WO(3) thin films as efficient photocatalytic self-cleaning surfaces.

    PubMed

    Patrocinio, Antonio Otavio T; Paula, Leonardo F; Paniago, Roberto M; Freitag, Janna; Bahnemann, Detlef W

    2014-10-08

    New TiO2/WO3 films were produced by the layer-by-layer (LbL) technique and successfully applied as self-cleaning photocatalytic surfaces. The films were deposited on fluorine doped tin oxide (FTO) glass substrates from the respective metal oxide nanoparticles obtained by the sol-gel method. Thirty alternative immersions in pH = 2 TiO2 and pH = 10 WO3 sols resulted in ca. 400 nm thick films that exhibited a W(VI)/Ti(IV) molar ratio of 0.5, as determined by X-ray photoelectron spectroscopy. Scanning electron microscopy, along with atomic force images, showed that the resulting layers are constituted by aggregates of very small nanoparticles (<20 nm) and exhibited nanoporous and homogeneous morphology. The electronic and optical properties of the films were investigated by UV-vis spectrophotometry and ultraviolet photoelectron spectroscopy. The films behave as nanoscale heterojunctions, and the presence of WO3 nanoparticles caused a decrease in the optical band gap of the bilayers compared to that of pure LbL TiO2 films. The TiO2/WO3 thin films exhibited high hydrophilicity, which is enhanced after exposition to UV light, and they can efficiently oxidize gaseous acetaldehyde under UV(A) irradiation. Photonic efficiencies of ξ = 1.5% were determined for films constituted by 30 TiO2/WO3 bilayers in the presence of 1 ppm of acetaldehyde, which are ∼2 times higher than those observed for pure LbL TiO2 films. Therefore, these films can act as efficient and cost-effective layers for self-cleaning, antifogging applications.

  11. Direct measurement of the upper critical field in cuprate superconductors

    PubMed Central

    Grissonnanche, G.; Cyr-Choinière, O.; Laliberté, F.; René de Cotret, S.; Juneau-Fecteau, A.; Dufour-Beauséjour, S.; Delage, M. -È.; LeBoeuf, D.; Chang, J.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Adachi, S.; Hussey, N. E.; Vignolle, B.; Proust, C.; Sutherland, M.; Krämer, S.; Park, J. -H.; Graf, D.; Doiron-Leyraud, N.; Taillefer, Louis

    2014-01-01

    In the quest to increase the critical temperature Tc of cuprate superconductors, it is essential to identify the factors that limit the strength of superconductivity. The upper critical field Hc2 is a fundamental measure of that strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. Here we show that the thermal conductivity can be used to directly detect Hc2 in the cuprates YBa2Cu3Oy, YBa2Cu4O8 and Tl2Ba2CuO6+δ, allowing us to map out Hc2 across the doping phase diagram. It exhibits two peaks, each located at a critical point where the Fermi surface of YBa2Cu3Oy is known to undergo a transformation. Below the higher critical point, the condensation energy, obtained directly from Hc2, suffers a sudden 20-fold collapse. This reveals that phase competition—associated with Fermi-surface reconstruction and charge-density-wave order—is a key limiting factor in the superconductivity of cuprates. PMID:24518054

  12. Dissipation mechanisms in polycrystalline YBCO prepared by sintering of ball-milled precursor powder

    NASA Astrophysics Data System (ADS)

    Hannachi, E.; Ben Salem, M. K.; Slimani, Y.; Hamrita, A.; Zouaoui, M.; Ben Azzouz, F.; Ben Salem, M.

    2013-12-01

    Magnetoresistivity (ρ(T,H)) measurements of polycrystalline YBa2Cu3Oy (Y-123) and YBa2Cu3Oy embedded with nanoparticles of Y-deficient Y-123, generated by the planetary ball milling, have been compared and analyzed by the Ambegaokar and Halperin phase slip model (AH) and thermally activated flux creep (TAFC). Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS), were carried out. SEM analyses show that nanoparticles of Y-deficient Y-123, generated by ball milling, are embedded in the superconducting matrix. The broadening of the resistive transition under magnetic field is found to possess two distinct regions, which suggests that dissipation phenomenon in milled and unmilled samples is caused by two mechanisms: the order parameter fluctuations and the vortex-dynamics separated by a crossover temperature T. The critical current Jc(0) at zero temperature in the grain boundaries decreases as a power law, H, which is an indication of the sensitivity of a single junction between the superconducting grains to the applied magnetic field. Jc(0) of the milled material is higher than the one of the unmilled and the activation energies of vortex flux motion U(H) behavior in the applied magnetic field is enhanced by the presence of the nanoparticles embedded in the matrix.

  13. Competition between charge and superconducting orders in underdoped YBCO

    NASA Astrophysics Data System (ADS)

    Julien, Marc-Henri

    2012-02-01

    We report nuclear magnetic resonance measurements (NMR) showing that high magnetic fields induce a static, unidirectional, modulation of the charge density in the CuO2 planes of underdoped YBa2Cu3Oy [T. Wu et al., Nature 477, 191 (2011)]. The appearance of the charge order coincides with the Fermi surface reconstruction inferred from quantum oscillation and other transport measurements. This charge order appears to be most probably the same 4a-periodic stripe modulation as in La-214 cuprates. That it develops only when superconductivity fades away (no charge order is observed under strong fields parallel to the planes) and near the same 1/8 hole doping as in La-214 suggests that charge order, although visibly pinned by CuO chains in YBa2Cu3Oy, is an intrinsic propensity of the superconducting planes of high-Tc copper oxides. Since field induced stripe order is also compatible with neutron scattering data in La-214 and with STM data in Bi-2212, charge order could be a generic competitor of high Tc superconductivity. [4pt] Work performed with T. Wu, H. Mayaffre, S. Kr"amer, M. Horvatic, C. Berthier (LNCMI Grenoble), W.N. Hardy, R. Liang, D.A. Bonn (University of British Columbia, Vancouver)

  14. Comparative study of ITO and FTO thin films grown by spray pyrolysis

    SciTech Connect

    Ait Aouaj, M.; Diaz, R.; Belayachi, A.; Rueda, F.; Abd-Lefdil, M.

    2009-07-01

    Tin doped indium oxide (ITO) and fluorine doped tin oxide (FTO) thin films have been prepared by one step spray pyrolysis. Both film types grown at 400 deg. C present a single phase, ITO has cubic structure and preferred orientation (4 0 0) while FTO exhibits a tetragonal structure. Scanning electron micrographs showed homogeneous surfaces with average grain size around 257 and 190 nm for ITO and FTO respectively. The optical properties have been studied in several ITO and FTO samples by transmittance and reflectance measurements. The transmittance in the visible zone is higher in ITO than in FTO layers with a comparable thickness, while the reflectance in the infrared zone is higher in FTO in comparison with ITO. The best electrical resistivity values, deduced from optical measurements, were 8 x 10{sup -4} and 6 x 10{sup -4} {Omega} cm for ITO (6% of Sn) and FTO (2.5% of F) respectively. The figure of merit reached a maximum value of 2.15 x 10{sup -3} {Omega}{sup -1} for ITO higher than 0.55 x 10{sup -3} {Omega}{sup -1} for FTO.

  15. Fabrication and photoelectrochemical characteristics of In2S3 nano-flower films on TiO2 nanorods arrays

    NASA Astrophysics Data System (ADS)

    Han, Minmin; Yu, Limin; Chen, Wenyuan; Wang, Wenzhen; Jia, Junhong

    2016-04-01

    The In2S3 nano-flower films on TiO2/FTO (Fluorine-doped tin oxide) substrates were synthesized via hydrothermal method and the photoelectrochemical performances of In2S3/TiO2 photoelectrodes were characterized. The roles of PSS (poly(sodium-p-styrenesul-fonate)) and PEG (polyethylene glycol) on the structure controlling of In2S3 films were also discussed. The results show that the In2S3 nano-flower films consisted of ultrathin nanoflakes with a thickness of 5 nm are successfully grew on the surface of TiO2 nanorod arrays. PEG could play a role as the morphology-directing agent by confining crystal growth in certain directions, while PSS could provide coordination sites with long chains and lead to the formation of spherical structure. The energy conversion efficiency of In2S3 nano-flower/TiO2 photoelectrodes enhances thrice compared with that of bare TiO2 photoelectrode. This research presents further insight for improving the efficiency of semiconductors by using the suitable electron transfer channels, which may be promising for rational construction of solar conversion and storage devices.

  16. 12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation

    NASA Astrophysics Data System (ADS)

    Schaffner, Judith; Motzko, Markus; Tueschen, Alexander; Swirschuk, Andreas; Schimper, Hermann-Josef; Klein, Andreas; Modes, Thomas; Zywitzki, Olaf; Jaegermann, Wolfram

    2011-09-01

    We report 12% efficient CdS/CdTe thin film solar cells prepared by low temperature close space sublimation (CSS). Both semiconductor films, CdS and CdTe, were deposited by high vacuum CSS in superstrate configuration on glass substrates with fluorine doped tin oxide (FTO) front contact. The CdTe deposition was carried out at a substrate temperature (Tsub) of ≤340 ∘C, which is much lower than that used in conventional processes (>500 ∘C). The CdTe films were treated with the usual CdCl2 activation process. Different optimal annealing times and temperatures were found for low-temperature cells (Tsub≤ 340 ∘C) compared to high-temperature cells (Tsub = 520 ∘C). The influence of the activation step on the morphology of high-temperature and low-temperature CdTe is determined by XRD, AFM, SEM top views, and SEM cross-sections. Grain growth, strong recrystallization, and a reduction of planar defects during the activation step are observed, especially for low-temperature CdTe. Further, the influence of CdS deposition parameters on the solar cell performance is investigated by using three different sets of parameters with different deposition rates and substrate temperatures for the CdS preparation. Efficiencies about 10.9% with a copper-free back contact and 12.0% with a copper-containing back contact were achieved using the low temperature CdTe process.

  17. Preparation and characterization of spray deposited n-type WO{sub 3} thin films for electrochromic devices

    SciTech Connect

    Sivakumar, R.; Moses Ezhil Raj, A.; Subramanian, B.; Jayachandran, M.; Trivedi, D.C.; Sanjeeviraja, C

    2004-08-03

    The n-type tungsten oxide (WO{sub 3}) polycrystalline thin films have been prepared at an optimized substrate temperature of 250 deg. C by spray pyrolysis technique. Precursor solution of ammonium tungstate ((NH{sub 4}){sub 2}WO{sub 4}) was sprayed onto the well cleaned, pre-heated fluorine doped tin oxide coated (FTO) and glass substrates with a spray rate of 15 ml/min. The structural, surface morphological and optical properties of the as-deposited WO{sub 3} thin films were studied. Mott-Schottky (M-S) studies of WO{sub 3}/FTO electrodes were conducted in Na{sub 2}SO{sub 4} solution to identify their nature and extract semiconductor parameters. The electrochromic properties of the as-deposited and lithiated WO{sub 3}/FTO thin films were analyzed by employing them as working electrodes in three electrode electrochemical cell using an electrolyte containing LiClO{sub 4} in propylene carbonate (PC) solution.

  18. Evolution of ZnO architecture on a nanoporous TiO2 film by a hydrothermal method and the photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Yinhua, Jiang; Xiaoli, Wu; Wenli, Zhang; Liang, Ni; Yueming, Sun

    2011-03-01

    The synthesis of ZnO architecture on a fluorine-doped SnO2 (FTO) conducting glass pre-coated with nanoporous TiO2 film has been achieved by a one-step hydrothermal method at a temperature of 70°C. The effect of the reaction time on the morphology of the ZnO architecture has been investigated, and a possible growth mechanism for the formation of the ZnO architecture is discussed in detail. The morphology and phase structures of the as-obtained composite films have been investigated by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The results show that the growth time greatly affects the morphology of the obtained ZnO architecture. The photoelectrochemical performances of as-prepared composite films are measured by assembling them into dye sensitized solar cells (DSSCs). The DSSC based on the as-prepared composite film (2 h) has obtained the best power conversion efficiency of 1.845%.

  19. Worm-like mesoporous TiO2 thin films templated using comb copolymer for dye-sensitized solar cells with polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hun; Park, Cheol Hun; Jung, Jung Pyo; Kim, Jong Hak

    2015-12-01

    A comb copolymer consisting of hydrophobic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate) (PBEM) and hydrophilic poly(oxyethylene methacrylate) (POEM) is synthesized via one-pot free radical polymerization. The PBEM-POEM comb copolymer is used as an agent to direct the structure toward one consisting of worm-like mesoporous TiO2 (WM-TiO2) films. The selective, preferential interaction between the titania precursor and the hydrophilic POEM chains is responsible for the formation of a well-organized worm-like mesostructure. The morphology of the WM-TiO2 films is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In particular, the effects of film thickness on the optical and electrochemical properties are systematically investigated. The introduction of the WM-TiO2 layer between the nanocrystalline TiO2 (NC-TiO2) layer and fluorine-doped tin oxide (FTO) glass results in increased transmittance of visible light due to an antireflective property, decreased interfacial resistance and suppressed charge recombination at the interfaces of NC-TiO2/FTO glass. As a result, the photovoltaic conversion efficiency of the dye-sensitized solar cell (DSSC) with a polymer electrolyte is improved from 5.3% to 6.6% at an optimum film thickness (310 nm). The obtained efficiency represents a higher efficiency for the N719-based DSSC with a solvent-free, polymer electrolyte.

  20. Charge defects and highly enhanced multiferroic properties in Mn and Cu co-doped BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Dong, Guohua; Tan, Guoqiang; Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-06-01

    Pure BiFeO3 (BFO) and Mn, Cu co-doped BiFeO3 (BFMCO) thin films were deposited on fluorine doped tin oxide (FTO) substrates by a chemical solution deposition method. Detailed investigations were made on the effects of Mn and Cu co-doping on the crystal structure, the defect chemistry, multiferroic properties of the BFO thin films. With the co-doping of Mn and Cu, a structural transition from the rhombohedral (R3c:H) to the biphasic structure (R3c:H + P1) is confirmed by XRD, Rietveld refinement and Raman analysis. X-ray photoelectron spectroscopy (XPS) analysis shows that the coexistence of Fe2+/Fe3+ and Mn2+/Mn3+ ions in the co-doping films are demonstrated. Meanwhile, the way of the co-doping at B-sits is conducive to suppress Fe valence state of volatility and to decrease oxygen vacancies and leakage current. It's worth noting that the co-doping can induce the superior ferroelectric properties (a huge remanent polarization, 2Pr ∼ 220 μC/cm2 and a relatively low coercive field, 2Ec ∼ 614 kV/cm). The introduction of Mn2+ and Cu2+ ions optimizes the magnetic properties of BFO thin films by the biphasic structure and the destruction of spin cycloid.

  1. Effects of TiO{sub 2} film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination

    SciTech Connect

    Zhang, Haiyan; Wang, Wenguang; Liu, Hui; Wang, Rong; Chen, Yiming; Wang, Zhiwei

    2014-01-01

    Graphical abstract: - Highlights: • DSSC based on TiO{sub 2} film with 8 printing layers showed the highest efficiency. • The photoelectric conversion efficiency of the DSSC increased from 5.52% to 6.49% by graphene combination. • A mechanism for the enhanced performance of the DSSC was proposed. - Abstract: Dye-sensitized solar cells based on TiO{sub 2} films with different printing layers (6-10) were fabricated by screen printing method. The prepared samples were characterized by scanning electron microscopy, X-ray diffraction and UV–vis absorption spectroscopy. The effects of thickness on the photoelectric conversion performance of the as-fabricated DSSCs were investigated. An optimum photoelectric conversion efficiency of 5.52% was obtained in a DSSC with 8 printing layers. Furthermore, after a moderate amount of graphene was combined with TiO{sub 2}, the photoelectric conversion efficiency of the DSSC based on graphene/TiO{sub 2} composite film rose from 5.52% to 6.49%, with an increase of η by 17.6%. The results indicated that graphene not only enhances the transport of electrons from the film to the fluorine doped tin oxide substrates and reduces the charge recombination rate, but also reduces the electrolyte–electrode interfacial resistance, clearly increasing the photoelectric conversion efficiency.

  2. Electron Filtering by an Intervening ZnS Thin Film in the Au Nanoparticle-loaded CdS Plasmonic Photocatalyst.

    PubMed

    Takayama, Kouichi; Fujiwara, Keigo; Kume, Takahiro; Naya, Shin-Ichi; Tada, Hiroaki

    2016-12-12

    In the gold nanoparticle (Au NP)-loaded CdS film on fluorine-doped tin oxide electrode (Au/CdS/FTO), the localized plasmonic resonance excitation-induced electron injection from Au NP to CdS has been proved by photoelectrochemical measurements. Formation of ZnS thin films between the Au NP and CdS film leads to a drastic increase of the photocurrent under visible-light irradiation ( > 610 nm) in a 0.1 M NaClO4 aqueous electrolyte solution due to the electron filtering effect. The photocurrent strongly depends on the thickness of the ZnS film, and the maximum value is obtained at the thickness of as thin as 2.1 nm. Further, the ZnS overlayer significantly stabilizes the photocurrent of the CdS/FTO electrode in a polysulfide/sulfide electrolyte solution even under the excitation of CdS ( > 430 nm). This work presents important information about the design for the new plasmonic photocatalysts consisting of plasmonic metal NP and chalcogenide semiconductors with high conduction band edge.

  3. Electron Filtering by an Intervening ZnS Thin Film in the Gold Nanoparticle-Loaded CdS Plasmonic Photocatalyst.

    PubMed

    Takayama, Kouichi; Fujiwara, Keigo; Kume, Takahiro; Naya, Shin-Ichi; Tada, Hiroaki

    2017-01-05

    In the gold nanoparticle (Au NP)-loaded CdS film on fluorine-doped tin oxide electrode (Au/CdS/FTO), the localized plasmonic resonance excitation-induced electron injection from Au NP to CdS has been proven by photoelectrochemical measurements. Formation of ZnS thin films between the Au NP and CdS film leads to a drastic increase of the photocurrent under visible-light irradiation (λ > 610 nm) in a 0.1 M NaClO4 aqueous electrolyte solution due to the electron filtering effect. The photocurrent strongly depends on the thickness of the ZnS film, and the maximum value is obtained at a thickness as thin as 2.1 nm. Furthermore, the ZnS overlayer significantly stabilizes the photocurrent of the CdS/FTO electrode in a polysulfide/sulfide electrolyte solution even under the excitation of CdS (λ > 430 nm). This work presents important information about the design for new plasmonic photocatalysts consisting of plasmonic metal NPs and chalcogenide semiconductors with high conduction band edge.

  4. Investigation of x-ray photoelectron spectroscopic (XPS), cyclic voltammetric analyses of WO3 films and their electrochromic response in FTO/WO3/electrolyte/FTO cells

    NASA Astrophysics Data System (ADS)

    Sivakumar, R.; Gopalakrishnan, R.; Jayachandran, M.; Sanjeeviraja, C.

    2006-06-01

    Electrochromic thin films of tungsten oxide (WO3) were prepared on transparent conducting oxide substrates, i.e., fluorine doped tin oxide coated (FTO or SnO2:F) glass and microscopic glass substrates by the electron beam evaporation technique using pure WO3 (99.99%) pellets at various substrate temperatures (i.e., Tsub = room temperature (RT, 30 °C), 100 °C and 200 °C). The films were prepared under vacuum of the order of 1 × 10-5 mbar. The room temperature prepared films were further post-heat-treated (Tanne) at 200 and 300 °C for about 1 h in the vacuum environment. The prepared films are in monoclinic phase. The chemical composition has been characterized by using the XPS technique. The W 4f and O 1s core levels of WO3 films have been studied on the samples. The obtained core level binding energies revealed the WO3 films contained six-valent tungsten (W6+). The electrochemical nature of the films was studied by a three-electrode electrochemical cell in the configuration of FTO/WO3/H2SO4/Pt, SCE, using the cyclic voltammetry (CV) technique. Electrochromic devices (ECDs) of the general type FTO/WO3/electrolyte/FTO were studied. The films produced at higher substrate temperature show smaller modulation of the visible spectrum, compared with the films produced at lower temperatures. The significant chemical bonding nature associated with the coloring/bleaching process which follows the H+ ion incorporation in the film is studied by FTIR analysis. The W-O-W framework peak was observed at 563 cm-1 and confirms the stability of the films in the electrochemical analysis. The results obtained from cyclic voltammetry technique and ECD cell characterization are used to emphasize the suitability for some applications of the solar control systems.

  5. Electrochemical growth and studies of CuInSe2 thin films

    NASA Astrophysics Data System (ADS)

    Prasher, Dixit; Chandel, Tarun; Rajaram, Poolla

    2014-04-01

    Thin films of CuInSe2 were grown on fluorine doped tin oxide (<10 Ω/□) coated glass using the electrodeposition technique. The electrodeposition was carried out potentiostatically using an aqueous bath consisting of solutions of CuCl2, InCl3 and SeO2 with ethylenediamine-dihydrochloride (EDC) added for complexation. CuInSe2 films were also deposited without using any complexing agent in the bath. To improve the crystallinity the CuInSe2 films were annealed in vaccum at 300 °C for one hour. The annealed films were analyzed by x-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of x-rays (EDAX), atomic force microscopy (AFM) and optical spectra. The results obtained in this work show that by adding a suitable complexing agent to the electrochemical bath, nanocrystalline CuInSe2, 20 nm to 30 nm in size, can be grown. The composition of the CuInSe2 films can be controlled by means of the bath composition and stoichiometric films can be obtained for a bath with ionic Cu:In:Se composition close to 1:4:2. AFM micrographs show that the particles are generally oval shaped for near stoichiometric compositions. However for extreme copper rich layers, the morphology is completely different, the particles in this case appearing in the form of nanoflakes. Each flake has a thickness in the nano range, but the surface extends to a length of several microns.

  6. CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (AZO) nanorod array thin film with hydrogen treatment possesses the functions of transparent conducting oxide thin film and 1-D nanostructured semiconductor simultaneously. To enhance the absorption in the visible light region, it is sensitized by cadmium sulfide (CdS) nanoparticles which efficiently increase the absorption around 460 nm. The CdS nanoparticles-sensitized AZO nanorod array thin film with hydrogen treatment exhibits significantly improved photoelectrochemical property. After further heat treatment, a maximum short current density of 5.03 mA cm−2 is obtained under illumination. They not only are much higher than those without CdS nanoparticles sensitization and those without Al-doping and/or hydrogen treatment, but also comparable and even slightly superior to some earlier works for the CdS-sensitized zinc oxide nanorod array thin films with indium tin oxide (ITO) or fluorine-doped tin oxide (FTO) as substrates. This demonstrated successfully that the AZO nanorod array thin film with hydrogen treatment is quite suitable as an ITO/FTO-free photoanode and has great potentials in solar water splitting after sensitization by quantum dots capable of visible light absorption. PMID:23098050

  7. High-Performance Platinum-Free Dye-Sensitized Solar Cells with Molybdenum Disulfide Films as Counter Electrodes.

    PubMed

    Hussain, Sajjad; Shaikh, Shoyebmohamad F; Vikraman, Dhanasekaran; Mane, Rajaram S; Joo, Oh-Shim; Naushad, Mu; Jung, Jongwan

    2015-12-21

    By using a radio-frequency sputtering method, we synthesized large-area, uniform, and transparent molybdenum disulfide film electrodes (1, 3, 5, and 7 min) on transparent and conducting fluorine-doped tin oxide (FTO), as ecofriendly, cost-effective counter electrodes (CE) for dye-sensitized solar cells (DSSCs). These CEs were used in place of the routinely used expensive platinum CEs for the catalytic reduction of a triiodide electrolyte. The structure and morphology of the MoS2 was analyzed by using Raman spectroscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements and the DSSC characteristics were investigated. An unbroken film of MoS2 was identified on the FTO crystallites from field-emission scanning electron microscopy. Cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curve measurements reveal the promise of MoS2 as a CE with a low charge-transfer resistance, high electrocatalytic activity, and fast reaction kinetics for the reduction of triiodide to iodide. Finally, an optimized transparent MoS2 CE, obtained after 5 min synthesis time, showed a high power-conversion efficiency of 6.0 %, which comparable to the performance obtained with a Pt CE (6.6 %) when used in TiO2 -based DSCCs, thus signifying the importance of sputtering time on DSSC performance.

  8. CdSe nanocrystal sensitized anatase TiO2 (001) tetragonal nanosheet-array films for photovoltaic application.

    PubMed

    Feng, Shuanglong; Yang, Junyou; Liu, Ming; Liu, Yong

    2013-02-01

    CdSe nanocrystal sensitized TiO2 nanosheet array heterostructure films were fabricated by a two-step method. Firstly, a single crystalline anatase TiO2 tetragonal nanosheet-array film on a transparent conductive fluorine-doped tin oxide (FTO) substrate was successfully prepared by hydrothermal method. Then, CdSe nanocrystalline sensitizers were deposited on the TiO2 nanosheet array by CBD method. The products were characterized with XRD, SEM, TEM and UV-vis absorption spectroscopy. The effect of the CdSe nanocrystal deposition time and the length of the TiO2 sheet on the photovoltaic performance of the resulting CdSe/TiO2 nanosheet array electrodes were also investigated. In comparison with the non-sensitized TiO2 nanosheet array, the photocurrent of CdSe sensitized TiO2 nanosheet has a great enhancement, which gives some insight to the fundamental mechanism of the performance improvement.

  9. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe2O3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from 57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV-visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  10. In situ synthesis of CdS/CdWO4/WO3 heterojunction films with enhanced photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Zhan, Faqi; Li, Jie; Li, Wenzhang; Yang, Yahui; Liu, Wenhua; Li, Yaomin

    2016-09-01

    CdS/CdWO4/WO3 heterojunction films on fluorine-doped tin oxide (FTO) substrates are for the first time prepared as an efficient photoanode for photoelectrochemical (PEC) hydrogen generation by an in situ conversion process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet visible spectrometry (UV-vis) and X-ray photoelectron spectroscopy (XPS). The CdS hollow spheres (∼80 nm) sensitized WO3 plate film with a CdWO4 buffer-layer exhibits increased visible light absorption and a significantly improved photoelectrochemical performance. The photocurrent density at 0 V (vs. Ag/AgCl) of the CdS/CdWO4/WO3 anode is ∼3 times higher than that of the CdWO4/WO3 anode, and ∼9 times higher than that of pure WO3 under illumination. The highest incident-photon-to-current-efficiency (IPCE) value increased from 16% to 63% when the ternary heterojunction was formed. This study demonstrates that the synthesis of ternary composite photocatalysts by the in situ conversion process may be a promising approach to achieve high photoelectric conversion efficiency.

  11. Dye sensitized solar cell applications of CdTiO3-TiO2 composite thin films deposited from single molecular complex

    NASA Astrophysics Data System (ADS)

    Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad

    2015-10-01

    A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.

  12. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    NASA Astrophysics Data System (ADS)

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-10-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions.

  13. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system.

    PubMed

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-10-19

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions.

  14. An artificial photosynthesis anode electrode composed of a nanoparticulate photocatalyst film in a visible light responsive GaN-ZnO solid solution system

    PubMed Central

    Imanaka, Yoshihiko; Anazawa, Toshihisa; Manabe, Toshio; Amada, Hideyuki; Ido, Sachio; Kumasaka, Fumiaki; Awaji, Naoki; Sánchez-Santolino, Gabriel; Ishikawa, Ryo; Ikuhara, Yuichi

    2016-01-01

    The artificial photosynthesis technology known as the Honda-Fujishima effect, which produces oxygen and hydrogen or organic energy from sunlight, water, and carbon dioxide, is an effective energy and environmental technology. The key component for the higher efficiency of this reaction system is the anode electrode, generally composed of a photocatalyst formed on a glass substrate from electrically conductive fluorine-doped tin oxide (FTO). To obtain a highly efficient electrode, a dense film composed of a nanoparticulate visible light responsive photocatalyst that usually has a complicated multi-element composition needs to be deposited and adhered onto the FTO. In this study, we discovered a method for controlling the electronic structure of a film by controlling the aerosol-type nanoparticle deposition (NPD) condition and thereby forming films of materials with a band gap smaller than that of the prepared raw material powder, and we succeeded in extracting a higher current from the anode electrode. As a result, we confirmed that a current approximately 100 times larger than those produced by conventional processes could be obtained using the same material. This effect can be expected not only from the materials discussed (GaN-ZnO) in this paper but also from any photocatalyst, particularly materials of solid solution compositions. PMID:27759108

  15. Alternative nano-structured thin-film materials used as durable thermal nanoimprint lithography templates.

    PubMed

    Bossard, M; Boussey, J; Le Drogoff, B; Chaker, M

    2016-02-19

    Nanoimprint templates made of diamond-like carbon (DLC) and amorphous silicon carbide (SiC) thin films and fluorine-doped associated materials, i.e. F-DLC and F-SiC were investigated in the context of thermal nanoimprint lithography (NIL) with respect to their release properties. Their performances in terms of durability and stability were evaluated and compared to those of conventional silicon or silica molds coated with antisticking molecules applied as a self-assembled monolayer. Plasma-enhanced chemical vapor deposition parameters were firstly tuned to optimize mechanical and structural properties of the DLC and SiC thin films. The impact of the amount of fluorine dopant on the deposited thin films properties was then analyzed. A comparative analysis of DLC, F-DLC as well as SiC and F-SiC molds was then carried out over multiple imprints, performed into poly (methyl methacrylate) (PMMA) thermo-plastic resist. The release properties of un-patterned films were evaluated by the measurement of demolding energies and surface energies, associated with a systematic analysis of the mold surface contamination. These analyses showed that the developed materials behave as intrinsically easy-demolding and contamination-free molds over series of up to 40 imprints. To our knowledge, it is the first time that such a large number of imprints has been considered within an exhaustive comparative study of materials for NIL. Finally, the developed materials went through standard e-beam lithography and plasma etching processes to obtain nanoscale-patterned templates. The replicas of those patterned molds, imprinted into PMMA, were shown to be of high fidelity and good stability after several imprints.

  16. Wet chemical synthesis of ZnO thin films and sensitization to light with N3 dye for solar cell application

    NASA Astrophysics Data System (ADS)

    Baviskar, P. K.; Tan, Weiwei; Zhang, Jingbo; Sankapal, B. R.

    2009-06-01

    Simple wet chemical synthesis of ZnO thin films has been carried out at room temperature (27 °C) from an aqueous alkaline bath followed by annealing in air at 100 °C on fluorine doped tin oxide coated glass substrates. The deposited film showed an optical band gap of 3.28 eV with a thickness of about 40 µm with a hexagonal crystal structure. A flower-like surface morphology consisting of petals was observed. These petals are made up of a fibrous network with interconnected nanoparticles leading to a high surface area. This obliged us to use this structure for dye-sensitized solar cells with lower fabrication process cost than conventional high temperature sintered methods which are commonly used for ZnO and TiO2. It would be advantageous to use a flexible plastic substrate instead of routine glass in future. ZnO showed a current conversion efficiency (η) of 0.34% with chemically adsorbed N3 dye at standard AM 1.5 condition with illumination of light intensity 100 mW cm-2.

  17. A comparative investigation on structure and multiferroic properties of bismuth ferrite thin films by multielement co-doping

    SciTech Connect

    Dong, Guohua; Tan, Guoqiang Luo, Yangyang; Liu, Wenlong; Xia, Ao; Ren, Huijun

    2014-12-15

    Highlights: • Multielement (Tb, Cr and Mn) co-doped BiFeO{sub 3} films were fabricated by CSD method. • Multielement co-doping induces a structural transition. • It is found effective to stabilize the valence of Fe ions at +3 by the strategy. • The co-doping at A/B-sites gives rise to the superior multiferroic properties. - Abstract: (Tb, Cr and Mn) multielement co-doped BiFeO{sub 3} (BTFCMO) thin films were prepared by the chemical solution deposition method on fluorine doped tin oxide (FTO) substrates. X-ray diffraction, Rietveld refinement and Raman analyses revealed that a phase transition from rhombohedral to triclinic structure occurs in the multielement co-doped BiFeO{sub 3} films. It is found that the doping is conducive to stabilizing the valence of Fe ions and reducing leakage current. In addition, the highly enhanced ferroelectric properties with a huge remanent polarization (2P{sub r}) of 239.6 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 615.6 kV/cm are ascribed to the well film texture, the structure transition and the reduced leakage current by the co-doping. Moreover, the structure transition is the dominant factor resulting in the significant enhancement observed in magnetization (M{sub s} ∼ 10.5 emu/cm{sup 3}), owing to the collapse of the space-modulated spin structure. In this contribution, these results demonstrate that the multielement co-doping is in favor of the enhanced multiferroic properties of the BFO films for possible multifunctional applications.

  18. Energy and charge transfers between (Bu{sub 4}N){sub 2}(Ru)(dcbpyH){sub 2}(NCS){sub 2} (N719) and ZnO thin films

    SciTech Connect

    Ni Manman; Cheng Qiang; Zhang, W. F.

    2010-03-15

    ZnO thin films and (Bu{sub 4}N){sub 2}(Ru)(dcbpyH){sub 2}(NCS){sub 2} (called N719) sensitized ZnO thin films are grown on fluorine-doped tin oxide (FTO) conducting glass substrates using laser molecular beam epitaxy. Ultraviolet-visible absorption, photoluminescence (PL), surface photovoltage spectroscopy, and Raman scattering are employed to probe into the transition process of photogenerated charges and the interaction between ZnO and N719. The experimental results indicate that there is a significant electronic interaction between N719 and ZnO through chemiadsorption. The interaction greatly enhances the photogenerated charge separation and thus the photovoltaic response of the ZnO film but remarkedly weakens its radiative recombination, i.e., PL, implying strong energy and charge transfer occurring between N719 and ZnO. In addition, a new PL peak observed at about 720 nm in N719 sensitized ZnO/FTO is attributed to the electron-hole recombination of N719.

  19. Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning.

    PubMed

    Längkvist, Martin; Coradeschi, Silvia; Loutfi, Amy; Rayappan, John Bosco Balaguru

    2013-01-25

    This paper investigates a rapid and accurate detection system for spoilage in meat. We use unsupervised feature learning techniques (stacked restricted Boltzmann machines and auto-encoders) that consider only the transient response from undoped zinc oxide, manganese-doped zinc oxide, and fluorine-doped zinc oxide in order to classify three categories: the type of thin film that is used, the type of gas, and the approximate ppm-level of the gas. These models mainly offer the advantage that features are learned from data instead of being hand-designed. We compare our results to a feature-based approach using samples with various ppm level of ethanol and trimethylamine (TMA) that are good markers for meat spoilage. The result is that deep networks give a better and faster classification than the feature-based approach, and we thus conclude that the fine-tuning of our deep models are more efficient for this kind of multi-label classification task.

  20. Enhanced photocatalytic properties of nanoclustered P-doped TiO2 films deposited by advanced atmospheric plasma jet.

    PubMed

    Seo, Hyung-Kee; Elliott, C Michael; Ansari, S G

    2012-09-01

    A facile preparation of P-doped TiO2 nanoclusters onto fluorine-doped tin oxide (FTO) glass by an advanced atmospheric plasma jet (AAP jet) is reported here. Titanium tetrachloride (TiCl4) and phosphorus trichloride (PCl3) were used as precursors. Radio frequencies were used to generate plasma at fix powder with Argon as carrier gas. Films were deposited at 500 degrees C for 10 minutes. For comparison, as-prepared, annealed and deposited at 500 degrees C samples were studied for chemical/physical properties by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Optical properties were studied by using UV-Vis spectroscopy which indicated a reduction in optical band with P-doping. The rhodamine B (Rh-B) degradation by P-doped TiO2 deposited at 500 degrees C showed enhanced degradation efficiency than that of annealed TiO2. The suggested deposition method appears to be suitable for the synthesis of photocatalyst with proper control over dopants.

  1. Large-area SnO{sub 2}: F thin films by offline APCVD

    SciTech Connect

    Wang, Yan; Wu, Yucheng; Qin, Yongqiang; Zhang, Zhihai; Shi, Chengwu; Zhang, Qingfeng; Li, Changhao; Xia, Xiaohong; Sun, Stanley; Chen, Leon

    2011-08-15

    Highlights: {yields} Large-area (1245 mm x 635 mm) FTO thin films were successfully deposited by offline APCVD process. {yields} The as-prepared FTO thin films with sheet resistance 8-11 {Omega}/{open_square} and direct transmittance more than 83% exhibited better than that of the online ones. {yields} The maximum quantum efficiency of the solar cells based on offline FTO substrate was 0.750 at wavelength 540 nm. {yields} The power of the solar modules using the offline FTO as glass substrates was 51.639 W, higher than that of the modules based on the online ones. -- Abstract: In this paper, we reported the successful preparation of fluorine-doped tin oxide (FTO) thin films on large-area glass substrates (1245 mm x 635 mm x 3 mm) by self-designed offline atmospheric pressure chemical vapor deposition (APCVD) process. The FTO thin films were achieved through a combinatorial chemistry approach using tin tetrachloride, water and oxygen as precursors and Freon (F-152, C2H4F2) as dopant. The deposited films were characterized for crystallinity, morphology (roughness) and sheet resistance to aid optimization of materials suitable for solar cells. We got the FTO thin films with sheet resistance 8-11 {Omega}/{open_square} and direct transmittance more than 83%. X-ray diffraction (XRD) characterization suggested that the as-prepared FTO films were composed of multicrystal, with the average crystal size 200-300 nm and good crystallinity. Further more, the field emission scanning electron microscope (FESEM) images showed that the films were produced with good surface morphology (haze). Selected samples were used for manufacturing tandem amorphous silicon (a-Si:H) thin film solar cells and modules by plasma enhanced chemical vapor deposition (PECVD). Compared with commercially available FTO thin films coated by online chemical vapor deposition, our FTO coatings show excellent performance resulting in a high quantum efficiency yield for a-Si:H solar cells and ideal open voltage

  2. Influence of growth conditions on the electrochemical synthesis of SnS thin films and their optical properties

    NASA Astrophysics Data System (ADS)

    Kafashan, Hosein; Jamali-Sheini, Farid; Ebrahimi-Kahrizsangi, Reza; Yousefi, Ramin

    2016-03-01

    Tin sulfide (SnS) thin films were prepared by electrodeposition onto fluorine-doped tin oxide (FTO) glass substrates using an aqueous solution containing SnCl2 and Na2S2O3 at various deposition potentials ( E) and bath concentrations. The pH value and temperature of the solution were kept constant. The deposited films were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), photoluminescence (PL), and ultraviolet-visible (UV-Vis) spectroscopy. The FESEM images demonstrated that changes in the deposition potential ( E) and solution concentration led to marked changes in the morphology of the deposited SnS films. Energy-dispersive X-ray analysis (EDXA) results showed that the Sn/S atomic ratio strongly depended on both the solution concentration and the deposition potential. To obtain an Sn/S atomic ratio approximately equal to 1, the optimal Sn2+/S2O 3 2- molar ratio and E parameter were 1/8 and -1.0 V, respectively. The XRD patterns showed that the synthesized SnS was obviously polycrystalline, with an orthorhombic structure. The effects of the variations of bath concentration and deposition potential on the band-gap energy ( E g) were studied using PL and UV-Vis experiments. The PL spectra of all the SnS films contained two peaks in the visible region and one peak in the infrared (IR) region. The UV-Vis spectra showed that the optical band-gap energy varies from 1.21 to 1.44 eV.

  3. Microstructure, electrical and magnetic properties of Ce-doped BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Quan, Zuci; Liu, Wei; Hu, Hao; Xu, Sheng; Sebo, Bobby; Fang, Guojia; Li, Meiya; Zhao, Xingzhong

    2008-10-01

    Bi1-xCexFeO3 (x =0, 0.05, 0.1, 0.15, and 0.20) (BCFO) thin films were deposited on Pt/TiN/Si3N4/Si and fluorine-doped SnO2 glass substrates by sol-gel technique, respectively. The effect of Ce doping on the microstructure, electrical and magnetic properties of BCFO films was studied. Compared to counterparts of BiFeO3 (BFO) film, the fitted Bi 4f7/2, Bi 4f5/2, Fe 2p3/2, Fe 2p1/2, and O 1s peaks for Bi0.8Ce0.2FeO3 film shift toward higher binding energy regions by amounts of 0.33, 0.29, 0.43, 0.58, and 0.49 eV, respectively. Raman redshifts of 2-4 cm-1 and shorter phonon lifetimes for the Bi0.8Ce0.2FeO3 film might be related to anharmonic interactions among Bi-O, Ce-O, (Bi, Ce)-O, and Fe-O bonds in the distorted oxygen octahedron. Compared to the pure counterparts, the dielectric and ferroelectric properties of the Bi0.8Ce0.2FeO3 film are improved due to the decreased oxygen vacancies by the stabilized oxygen octahedron. Current density values for the BFO and Bi0.8Ce0.2FeO3 film capacitors are 9.89×10-4 and 5.86×10-5 A/cm2 at 10 V, respectively. The current density-applied voltage characteristics indicate that the main conduction mechanism for the BCFO capacitors is the interface-controlled Schottky emission. Both the in-plane and out-of-plane magnetization-magnetic field hysteresis loops reveal that the saturation magnetization values of the BCFO films increase with increasing the Ce concentration. The enhanced magnetic properties for the BCFO films might be attributed to the presence of Fe2+ caused by oxygen vacancies, the suppressed spiral spin structure, and/or the increased canting angle induced by Ce doping.

  4. Dye sensitized solar cell applications of CdTiO{sub 3}–TiO{sub 2} composite thin films deposited from single molecular complex

    SciTech Connect

    Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad

    2015-10-15

    A heterobimetallic complex [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO{sub 3}–TiO{sub 2} composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO{sub 3}–TiO{sub 2} composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application. - Graphical abstarct: Microspherical designed CdTiO{sub 3}–TiO{sub 2} composite oxides photoanode film has been fabricated from single source precursor [Cd{sub 2}Ti{sub 4}(μ-O){sub 6}(TFA){sub 8}(THF){sub 6}]·1.5THF via aerosol assisted chemical vapor deposition technique for dye sensitized solar cell application. - Highlights: • Synthesis and characterization of a heterobimetallic Cd–Ti complex. • Fabrication of CdTiO{sub 3}–TiO{sub 2} thin film photoelectrode. • Application as dye sensitized photoanode for solar application.

  5. Synchronous Electrochromism of Lithium Ion Battery with Chemically Fabricated Transparent Thin Films

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroki; Hara, Hiroki; Enomoto, Mitsuhiro; Mochizuki, Chihiro; Honda, Tohru; Takano, Ichiro; Sato, Mitsunobu

    2013-04-01

    Electrochromism synchronous to the charge/discharge of a novel Li ion battery having Li3Fe2(PO4)3 and Li4Ti5O12 thin-film electrodes fabricated by a chemical process, the molecular precursor method, was discovered. A cathode of transparent Li3Fe2(PO4)3 thin film with a thickness of 80 nm was fabricated by heat treating a precursor ethanol solution including a Li(I) complex of nitrilotriacetic acid, an Fe(III) complex of ethylenediaminetetraacetic acid, and (dibutylammonium)2H2P2O7 ṡ 0.5H2O at 550°C for 10 min in air. An anode of transparent Li4Ti5O12 thin film with a thickness of 90 nm was fabricated by heat treating a precursor ethanol solution including a Li(I) complex of nitrilotriacetic acid, a Ti(IV) complex of the identical organic ligand, and hydrogen peroxide at 550°C for 30 min in air. The precursor films for both electrodes were fabricated with a spin-coating method. The thermal reactions of the novel precursors were examined in detail by means of thermogravimetry and differential thermal analysis in order to examine the components and heat-treatment temperature. The crystal structure and surface morphology of the thin-film electrodes fabricated on glass substrates pre-coated with a fluorine-doped tin oxide film were examined with X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The rechargeable function of the assembled sandwich-type battery using an electrolytic solution containing LiPF6 was measured by the repeated charge and discharge test at a constant current of 10 μA; a maximum voltage of 3.6 V was recorded. The color changes of the transparent thin-film battery between colorless before charging and a blue-gray color after charging occurred synchronously and repeatedly with the charge/discharge cycles. The intercalation of Li+ ions into the Li4Ti5O12 thin-film anode may be related to the drastic color change and the unprecedented visualization of the electrochemical reaction of a novel Li ion battery.

  6. Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Je; Kim, Su-Weon; Gopi, Chandu V. V. M.; Kim, Soo-Kyoung; Rao, S. Srinivasa; Jeong, Myeong-Soo

    2014-12-01

    Cobalt sulfide (CoS), nickel sulfide (NiS), and cobalt sulfide/nickel sulfide (CoS/NiS) were deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method and utilized as counter electrodes (CEs) for polysulfide redox reactions in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). The thickness of 750 nm and 695 nm are optimized for NiS and CoS electrodes to prepare the CoS/NiS CE. Compared to a platinum (Pt) electrode, the CoS, NiS, and composite CoS/NiS electrodes provide higher electrocatalytic activity and lower charge-transfer resistance. The combination of a QDSSC with composite CoS/NiS CE shows an improved power conversion efficiency of 3.40% under the illumination of one sun (100 mW cm-2), which is higher than the CoS (2.53%), NiS (2.61%), and Pt (1.47%) CEs. This enhancement is mainly attributed to the NiS nanoparticles deposited on CoS film, due to which the composite structure exhibits a lower charge transfer resistance (7.61 Ω) at the interface of the CE and the electrolyte, along with superior electrochemical catalytic ability. This is well supported by the cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel polarization measurements.

  7. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu(3+),Tb(3+) coated TiO2 film.

    PubMed

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Deng, Xiaolong; Ding, Meng; Zhang, Shouwei; Xu, Xijin; Li, Lin

    2016-08-10

    Eu(3+),Tb(3+) doped and undoped NiO films were deposited on TiO2 by a sol-gel spin-coating method as the photoanodes of dye sensitized solar cells (DSSCs). A comparative study with different structures including TiO2, TiO2/NiO and TiO2/NiO:Eu(3+),Tb(3+) as the photoanodes was carried out to illustrate the photovoltaic performance of solar cells. NiO could enhance the performance of DSSCs ascribed to acting as a barrier for the charge recombination from the fluorine doped tin oxide (FTO) to electrolyte and forming a p-n junction (NiO/TiO2). Moreover, Eu(3+), Tb(3+) co-doped NiO could accelerate the electron transfer at TiO2/dye/electrolyte interface, which further benefited the performance of solar cells. The solar cells assembled with the photoelectrodes consisting of NiO:Eu(3+),Tb(3+) and TiO2 exhibited short-circuit current density (JSC) of 17.4 mA cm(-2), open-circuit voltage (VOC) of 780 mV and conversion efficiency of 8.8%, which were higher than that with TiO2/NiO and pure TiO2. The mechanisms of the influence of NiO and NiO:Eu(3+),Tb(3+) on the photovoltaic performance of DSSCs were discussed.

  8. Low-cost solution processed nano millet like structure CoS2 film superior to pt as counter electrode for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rao, S. Srinivasa; Punnosse, Dinah; Kim, Soo-Kyoung; Kim, Hee-Je

    2015-05-01

    Cobalt Sulfide (CoS2) counter electrodes (CE) with uniform size distribution were obtained on fluorine-doped tin oxide (FTO) substrate as counter electrodes for polysulfide redox electrolyte in CdS/CdSe/ ZnS quantum dot-sensitized solar cells (QDSSCs) by chemical bath deposition (CBD) technique. In this study, we optimized the cobalt source, deposition temperature and time in the preparation of CoS2 thin film to achieve greater conversion efficiency with strong adhesion on FTO. Relative to the platinum (Pt) electrodes, the CoS2 electrode shows a higher catalytic activity, faster electron transport and lower chargetransfer resistance, which can play a role in rendering higher power conversion efficiency. As a result, QDSSCs with the optimized CoS2 CE achieved a higher short-circuit current density of 13.08 mA cm-2, open-circuit voltage of 0.47 V, fill factor of 0.34 and overall photovoltaic conversion efficiency of 2.17% obtained under one sun illumination (100 mW cm-2). Therefore, CoS2 CE can be used as a promising CE in QDSSCs with efficiency exceeding that of high-cost Pt-based cells (1.64%). [Figure not available: see fulltext.

  9. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu3+,Tb3+ coated TiO2 film

    PubMed Central

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Deng, Xiaolong; Ding, Meng; Zhang, Shouwei; Xu, Xijin; Li, Lin

    2016-01-01

    Eu3+,Tb3+ doped and undoped NiO films were deposited on TiO2 by a sol-gel spin-coating method as the photoanodes of dye sensitized solar cells (DSSCs). A comparative study with different structures including TiO2, TiO2/NiO and TiO2/NiO:Eu3+,Tb3+ as the photoanodes was carried out to illustrate the photovoltaic performance of solar cells. NiO could enhance the performance of DSSCs ascribed to acting as a barrier for the charge recombination from the fluorine doped tin oxide (FTO) to electrolyte and forming a p-n junction (NiO/TiO2). Moreover, Eu3+, Tb3+ co-doped NiO could accelerate the electron transfer at TiO2/dye/electrolyte interface, which further benefited the performance of solar cells. The solar cells assembled with the photoelectrodes consisting of NiO:Eu3+,Tb3+ and TiO2 exhibited short-circuit current density (JSC) of 17.4 mA cm−2, open-circuit voltage (VOC) of 780 mV and conversion efficiency of 8.8%, which were higher than that with TiO2/NiO and pure TiO2. The mechanisms of the influence of NiO and NiO:Eu3+,Tb3+ on the photovoltaic performance of DSSCs were discussed. PMID:27506930

  10. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO:Eu3+,Tb3+ coated TiO2 film

    NASA Astrophysics Data System (ADS)

    Yao, Nannan; Huang, Jinzhao; Fu, Ke; Deng, Xiaolong; Ding, Meng; Zhang, Shouwei; Xu, Xijin; Li, Lin

    2016-08-01

    Eu3+,Tb3+ doped and undoped NiO films were deposited on TiO2 by a sol-gel spin-coating method as the photoanodes of dye sensitized solar cells (DSSCs). A comparative study with different structures including TiO2, TiO2/NiO and TiO2/NiO:Eu3+,Tb3+ as the photoanodes was carried out to illustrate the photovoltaic performance of solar cells. NiO could enhance the performance of DSSCs ascribed to acting as a barrier for the charge recombination from the fluorine doped tin oxide (FTO) to electrolyte and forming a p-n junction (NiO/TiO2). Moreover, Eu3+, Tb3+ co-doped NiO could accelerate the electron transfer at TiO2/dye/electrolyte interface, which further benefited the performance of solar cells. The solar cells assembled with the photoelectrodes consisting of NiO:Eu3+,Tb3+ and TiO2 exhibited short-circuit current density (JSC) of 17.4 mA cm‑2, open-circuit voltage (VOC) of 780 mV and conversion efficiency of 8.8%, which were higher than that with TiO2/NiO and pure TiO2. The mechanisms of the influence of NiO and NiO:Eu3+,Tb3+ on the photovoltaic performance of DSSCs were discussed.

  11. The Copper Valence State and the Structure of Li, Ce, Eu, V-Doped Y-Ba-Cu-O System

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Qu, L. F.; Hou, K. Y.; Yang, D. L.; Chen, D. J.; Li, X. D.; Zhu, D. B.

    High-Tc superconductors with nominal composition of YBa2Cu3Oy and Y1-xLxBa2Cu3Oy (L=Li, Ce, Eu, V) were synthesis by the solid state reaction of appropriate amount of Y2O3, BaO or BaCO3, Cu2O, CuO, and LOx. The Cu3+/Cu2+ ratio was determined by Iodometric titration and oxygen content in the oxides calculated from the ratio. The crystal structure was determined by electron and powder X-ray diffraction analysis. It shows that that ratio of Cu3+/Cu2+ and the crystal structure could be changed as dopping appropriate amount of metal in the Y-Ba-Cu-O system.

  12. Fermi-surface reconstruction by stripe order in cuprate superconductors

    PubMed Central

    Laliberté, F.; Chang, J.; Doiron-Leyraud, N.; Hassinger, E.; Daou, R.; Rondeau, M.; Ramshaw, B.J.; Liang, R.; Bonn, D.A.; Hardy, W.N.; Pyon, S.; Takayama, T.; Takagi, H.; Sheikin, I.; Malone, L.; Proust, C.; Behnia, K.; Taillefer, Louis

    2011-01-01

    The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa2Cu3Oy (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La1.8−xEu0.2SrxCuO4 (Eu-LSCO) to show that the two materials exhibit the same process of Fermi-surface reconstruction as a function of temperature and doping. The fact that in Eu-LSCO this reconstruction coexists with spin and charge modulations that break translational symmetry shows that stripe order is the generic non-superconducting ground state of hole-doped cuprates. PMID:21847106

  13. Magnetic phase diagram of underdoped YBa 2 Cu 3 O y inferred from torque magnetization and thermal conductivity

    DOE PAGES

    Yu, Fan; Hirschberger, Max; Loew, Toshinao; ...

    2016-10-24

    We obtain the magnetic phase diagram in the underdoped cuprate YBa2Cu3Oy using torque magnetometry at temperatures 0.3–70 K and magnetic fields up to 45 T. At low fields, vortices (quantized flux tubes) form a vortex solid that is strongly pinned to the lattice. At large fields, melting of the solid to a vortex liquid produces nonzero dissipation. However, the vortex liquid persists to fields above 41 T. We have also mapped out the “transition” fields at which the charge-density–wave state (observed in X-ray diffraction experiments) becomes stable. Our results show that, in intense fields, superconductivity adjusts to coexist with themore » charge-density wave, but the Cooper pairs, which define the superconducting fluid, survive to fields well above 41 T.« less

  14. Development of molecular precursors for deposition of indium sulphide thin film electrodes for photoelectrochemical applications.

    PubMed

    Ehsan, Muhammad Ali; Peiris, T A Nirmal; Wijayantha, K G Upul; Olmstead, Marilyn M; Arifin, Zainudin; Mazhar, Muhammad; Lo, K M; McKee, Vickie

    2013-08-14

    Symmetrical and unsymmetrical dithiocarbamato pyridine solvated and non-solvated complexes of indium(III) with the general formula [In(S2CNRR')3]·n(py) [where py = pyridine; R,R' = Cy, n = 2 (1); R,R' = (i)Pr, n = 1.5 (2); NRR' = Pip, n = 0.5 (3) and R = Bz, R' = Me, n = 0 (4)] have been synthesized. The compositions, structures and properties of these complexes have been studied by means of microanalysis, IR and (1)H-NMR spectroscopy, X-ray single crystal and thermogravimetric (TG/DTG) analyses. The applicability of these complexes as single source precursors (SSPs) for the deposition of β-In2S3 thin films on fluorine-doped SnO2 (FTO) coated conducting glass substrates by aerosol-assisted chemical vapour deposition (AACVD) at temperatures of 300, 350 and 400 °C is studied. All films have been characterized by powder X-ray diffraction (PXRD) and energy dispersive X-ray analysis (EDX) for the detection of phase and stoichiometry of the deposit. Scanning electron microscopy (SEM) studies reveal that precursors (1)-(4), irrespective of different metal ligand design, generate comparable morphologies of β-In2S3 thin films at different temperatures. Direct band gap energies of 2.2 eV have been estimated from the UV-vis spectroscopy for the β-In2S3 films fabricated from precursors (1) and (4). The photoelectrochemical (PEC) properties of β-In2S3 were confirmed by recording the current-voltage plots under light and dark conditions. The plots showed anodic photocurrent densities of 1.25 and 0.65 mA cm(-2) at 0.23 V vs. Ag/AgCl for the β-In2S3 films made at 400 and 350 °C from the precursors (1) and (4), respectively. The photoelectrochemical performance indicates that the newly synthesised precursors are highly useful in fabricating β-In2S3 electrodes for solar energy harvesting and optoelectronic application.

  15. Catalytic and photoelectrochemical performances of Cu-Zn-Sn-Se thin films prepared using selenization of electrodeposited Cu-Zn-Sn metal precursors

    NASA Astrophysics Data System (ADS)

    Shao, Pin-Wen; Li, Chun-Ting; Ho, Kuo-Chuan; Cheng, Kong-Wei

    2015-07-01

    In this study, Cu2ZnSnSe4 (CZTSe) films are deposited onto the fluorine-doped-tin-oxide-coated glass substrate via the selenization of electrodeposited Cu-Zn-Sn metal precursors in an acidic solution with the applied potential of -0.9 V vs. an Ag/AgCl electrode. X-ray diffraction patterns reveal that the samples are the quaternary tetragonal CZTSe phase. The thicknesses and direct band gaps of the samples are in the ranges of 2.3 to 2.7 μm and 0.95 to 1.02 eV, respectively. All samples are p-type semiconductors with carrier density, mobility and flat-band potential in the ranges of 3.88 × 1017 to 1.37 × 1018 cm-3, 10.31 to 12.6 cm2 V-1 s-1 and -0.01 V to -0.08 V vs. Ag/AgCl reference electrode, respectively. The sample with [Cu]/[Zn + Sn] and [Zn]/[Sn] molar ratios of 0.87 and 0.66, respectively, has a maximum photo-enhanced current density of 0.41 mA cm-2 at an applied bias of -0.5 V vs. an Ag/AgCl electrode in 0.5 M H2SO4 solution under illumination. The best photo-conversion efficiency of dye-sensitized solar cells using CZTSe with [Cu]/[Zn + Sn] and [Zn]/[Sn] molar ratios of 0.87 and 0.66, respectively, as the counter electrode was 7.98%. The results show the high quality CZTSe films have potentials in applications of photoelectrochemical water splitting and dye-sensitized solar cells.

  16. Pristine and Al-doped hematite printed films as photoanodes of p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Congiu, Mirko; De Marco, Maria L.; Bonomo, Matteo; Nunes-Neto, Oswaldo; Dini, Danilo; Graeff, Carlos F. O.

    2017-01-01

    We hereby propose a non-expensive method for the deposition of pure and Al-doped hematite photoanodes in the configuration of thin films for the application of dye-sensitized solar cells (DSSC). The electrodes have been prepared from hematite nanoparticles that were obtained by thermal degradation of a chemical precursor. The particles have been used in the preparation of a paste, suitable for both screen printing and doctor blade deposition. The paste was then spread on fluorine-doped tin oxide (FTO) to obtain porous hematite electrodes. The electrodes have been sensitized using N3 and D5 dyes and were characterized through current/voltage curves under simulated sun light (1 sun, AM 1.5) with a Pt counter electrode. Al-doping of hematite showed interesting changes in the physical and electrochemical characteristics of sensitized photoanodes since we could notice the growth of AlFe2O4 (hercynite) as a secondary crystal phase into the oxides obtained by firing the mixtures of two chemical precursors at different molar ratios. Pure and Al-doped hematite electrodes have been used in a complete n-type DSSCs. The kinetics of charge transfer through the interface dye/electrolyte was studied and compared to that of a typical p-type DSSC based on NiO photocathodes sensitized with erythrosine B. The results suggest a potential application of both Fe2O3 and Fe2O3/AlFe2O4 as photoanodes of a tandem DSSC.

  17. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Maugeri, P.; Cacciato, G.; Zimbone, M.; Grimaldi, M. G.

    2016-09-01

    In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures. Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5-1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the

  18. Fluorine doping effects on the magnetic and electric properties of BiFeO3

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Jiang, Z. Z.; Gao, K. G.; Cheng, G. F.; Ge, J. J.; Lv, X. M.; Wu, X. S.

    2012-05-01

    Electron-doping introduced fluorine (F) replacement of the oxygen in BiFeO3 (BFO) can be compensated by the valence change of iron from Fe3+ to Fe2+. We successfully incorporate F in BFO by sol-gel method. F-doping is found to significantly enhance the ferromagnetism up to nearly two order for x = 0.25 compared with x = 0. This study provides direct evidence that the multiferroic characteristics of BiFeO3 are sensitive to the anion doping, such as F, providing a convenient alternative to manipulate the magnetization and electric polarization in multiferroic oxides.

  19. Effect of wet etching process on the morphology and transmittance of fluorine doped tin oxide (FTO)

    NASA Astrophysics Data System (ADS)

    Triana, S. L.; Kusumandari; Suryana, R.

    2016-11-01

    Wet etching process was performed on the surface of FTO. The FTO coated glasses subtrates with size of 2×2 cm covered by screen were patterned using zinc powder and concentrated hydrochloric acid (1 M). The substrates were then cleaned in ultrasonic baths of special detergent(helmanex) diluted in deionized water and isopropanol in sequence. The screens with various of hole size denotes by T32, T49 and T55 were used in order to create a pattern of surface textured. The atomic force microscopy (AFM) image revealed that wet etching process changes the morphology of FTO. It indicates that texturization occured. Moreover, from the UV-Vis Spectrophotometer measurement, the transmittance of FTO increase after wet etching process. The time of etching and pattern of screen were affect to the morphology and the transmittance of FTO.

  20. Film Reviews.

    ERIC Educational Resources Information Center

    Lance, Larry M.; Atwater, Lynn

    1987-01-01

    Reviews four Human Sexuality films and videos. These are: "Personal Decisions" (Planned Parenthood Federation of America, 1985); "The Touch Film" (Sterling Production, 1986); "Rethinking Rape" (Film Distribution Center, 1985); "Not A Love Story" (National Film Board of Canada, 1981). (AEM)

  1. Platinum nanoparticles incorporated in silsesquioxane for use in LbL films for the simultaneous detection of dopamine and ascorbic acid

    NASA Astrophysics Data System (ADS)

    dos Santos, Vagner; de Jesus, Cliciane Guadalupe; dos Santos, Monalisa; Canestraro, Carla Daniele; Zucolotto, Valtencir; Fujiwara, Sérgio Toshio; Garcia, Jarem Raul; Pessoa, Christiana Andrade; Wohnrath, Karen

    2012-09-01

    We describe the preparation of platinum nanoparticles (PtNPs) using the 3- n-propylpyridinium silsesquioxane chloride (SiPy+Cl-) as a nanoreactor and stabilizer. The formation of PtNPs was monitored by UV-Vis spectroscopy by measuring the decrease in the intensity of the band at 375 nm, which is attributed to the electronic absorption of PtCl6 2- ions. TEM images of Pt-SiPy+Cl- nanohybrid indicated an average size of 3-40 nm for PtNPs. The Pt-SiPy+Cl- was used as a polycation in the preparation of layer-by-layer films (LbL) on a glass substrate coated with fluorine-doped tin oxide (FTO) alternating with the polyanion poly(vinyl sulfonic acid) (PVS). The films were electrochemically tested in sulfuric acid to confirm the deposition of Pt-SiPy+Cl- onto the LbL films, observing the adsorption and desorption of hydrogen ( E pa = 0.1 V) and by the redox process of formation for PtO with E pa = 1.3 V and E pc = 0.65 V. FTIR and Raman spectra confirmed the presence of the PVS and Pt-SiPy+Cl- in the LbL films. A linear increase in the absorbance in the UV-Vis spectra of the Pt-SiPy+Cl- at 258 nm (π → π* transition of the pyridine groups) with a number of Pt-SiPy+Cl-/PVS or PVS/SiPy+Cl- bilayers ( R = 0.992) was observed. These LbL films were tested for the determination of dopamine (DA) in the presence of ascorbic acid (AA) with a detection limit (DL) on the order of 2.6 × 10-6 mol L-1 and a quantification limit (QL) of 8.6 × 10-6 mol L-1. The films exhibited a good repeatability and reproducibility, providing a potential difference of 550 mV for the oxidation of DA with AA interferent.

  2. Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method

    SciTech Connect

    Phuan, Yi Wen; Chong, Meng Nan; Zhu, Tao; Yong, Siek-Ting; Chan, Eng Seng

    2015-09-15

    Highlights: • Nanostructured hematite thin films were synthesized via electrodeposition method. • Effects of annealing on size, grain boundary and PEC properties were examined. • Photocurrents generation was enhanced when the thin films were annealed at 600 °C. • The highest photocurrent density of 1.6 mA/cm{sup 2} at 0.6 V vs Ag/AgCl was achieved. - Abstract: Hematite (α-Fe{sub 2}O{sub 3}) is a promising photoanode material for hydrogen production from photoelectrochemical (PEC) water splitting due to its wide abundance, narrow band-gap energy, efficient light absorption and high chemical stability under aqueous environment. The key challenge to the wider utilisation of nanostructured hematite-based photoanode in PEC water splitting, however, is limited by its low photo-assisted water oxidation caused by large overpotential in the nominal range of 0.5–0.6 V. The main aim of this study was to enhance the performance of hematite for photo-assisted water oxidation by optimising the annealing temperature used during the synthesis of nanostructured hematite thin films on fluorine-doped tin oxide (FTO)-based photoanodes prepared via the cathodic electrodeposition method. The resultant nanostructured hematite thin films were characterised using field emission-scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV-visible spectroscopy and Fourier transform infrared spectroscopy (FTIR) for their elemental composition, average nanocrystallites size and morphology; phase and crystallinity; UV-absorptivity and band gap energy; and the functional groups, respectively. Results showed that the nanostructured hematite thin films possess good ordered nanocrystallites array and high crystallinity after annealing treatment at 400–600 °C. FE-SEM images illustrated an increase in the average hematite nanocrystallites size from 65 nm to 95 nm when the annealing temperature was varied from 400 °C to 600

  3. Film Boxes.

    ERIC Educational Resources Information Center

    Osterer, Irv

    2002-01-01

    Presents an art lesson in which students created three-dimensional designs for 35mm film packages to improve graphic arts learning. Describes how the students examined and created film boxes using QuarkXPress software. (CMK)

  4. Film Reviews

    ERIC Educational Resources Information Center

    Dowling, John, Ed.

    1976-01-01

    Reviews five instructional films on: P-N junctions; crystal diodes; nuclear fusion research; Schlieren photography; and the energy crisis; including discussions of solar, nuclear, and fossil fuel energy. Also lists numerous other available films. (MLH)

  5. On Film

    ERIC Educational Resources Information Center

    Watts, Marty

    2006-01-01

    In this article, the author discusses the role of window films in enhancing indoor air quality in schools. Historically, window film has been used to reduce temperatures in buildings prone to overheating. Too much solar energy entering through windows makes occupants uncomfortable and air conditioning more costly. Film has been a simple solution…

  6. Nanocomposite films

    DOEpatents

    Mitlin, David; , Ophus, Colin; Evoy, Stephane; Radmilovic, Velimir; Mohammadi, Reza; Westra, Ken; Nelson-Fitzpatrick, Nathaniel; Lee, Zonghoon

    2010-07-20

    A thin-film composition of nanocrystal molybdenum in an amorphous metallic matrix may be formed by co-sputtering Mo with aluminum or nickel. NEMS cantilevers may be formed from the film. The films exhibit high nanoindentation hardness and a reduction in roughness and intrinsic stress, while maintaining resistivity in the metallic range.

  7. Reconstruction de la surface de Fermi dans l'etat normal d'un supraconducteur a haute Tc: Une etude du transport electrique en champ magnetique intense

    NASA Astrophysics Data System (ADS)

    Le Boeuf, David

    Des mesures de resistance longitudinale et de resistance de Hall en champ magnetique intense transverse (perpendiculaire aux plans CuO2) ont ete effectuees au sein de monocristaux de YBa2Cu3Oy (YBCO) demacles, ordonnes et de grande purete, afin d'etudier l'etat fondamental des supraconducteurs a haute Tc dans le regime sous-dope. Cette etude a ete realisee en fonction du dopage et de l'orientation du courant d'excitation J par rapport a l'axe orthorhombique b de la structure cristalline. Les mesures en champ magnetique intense revelent par suppression de la supraconductivite des oscillations magnetiques des resistances longitudinale et de Hall dans YBa2Cu 3O6.51 et YBa2Cu4O8. La conformite du comportement de ces oscillations quantiques au formalisme de Lifshitz-Kosevich, apporte la preuve de l'existence d'une surface de Fermi fermee a caractere quasi-2D, abritant des quasiparticules coherentes respectant la statistique de Fermi-Dirac, dans la phase pseudogap d'YBCO. La faible frequence des oscillations quantiques, combinee avec l'etude de la partie monotone de la resistance de Hall en fonction de la temperature indique que la surface de Fermi d'YBCO sous-dope comprend une petite poche de Fermi occupee par des porteurs de charge negative. Cette particularite de la surface de Fermi dans le regime sous-dope incompatible avec les calculs de structure de bande est en fort contraste avec la structure electronique presente dans le regime surdope. Cette observation implique ainsi l'existence d'un point critique quantique dans le diagramme de phase d'YBCO, au voisinage duquel la surface de Fermi doit subir une reconstruction induite par l'etablissement d'une brisure de la symetrie de translation du reseau cristallin sous-jacent. Enfin, l'etude en fonction du dopage de la resistance de Hall et de la resistance longitudinale en champ magnetique intense suggere qu'un ordre du type onde de densite (DW) est responsable de la reconstruction de la surface de Fermi. L'analogie de

  8. Film ispalators

    SciTech Connect

    Startsev, Aleksandr V; Stoilov, Yurii Yu

    2002-05-31

    New physical objects, ispalators based on free soap films, exhibit persistent flows of the soap solution in open and closed volumes in air with additions of gases of the C{sub 8}F{sub 18} type (p = 20 Torr) at temperature drops on the films of the order of tenths and hundredths of kelvin. The flows move continuously at a velocity of 5 - 20 cm s{sup -1}. It is found that the parts of an inclined ispalator film show anomalous behaviour upon heating: their weight increases and they move downward over the film, whereas the unheated parts of the film move upward. Continuous radial vortex flows accompanied by the formation and washing of the regions of a thin black film are observed on circular films in closed volumes upon their uniform external cooling by evaporating water for 5 - 10 hours. The rapid flows make film ispalators the efficient heat carriers, which operate at small temperature drops (tenths and hundredths of kelvin) and surpass copper in the amount of thermal energy being transferred. The outlook for the further study and applications of film ispalators for detecting thermal fields and laser radiation is discussed. (laser applications and other topics in quantum electronics)

  9. Electrochemical formation of transparent nanostructured TiO2 film as an effective bifunctional layer for dye-sensitized solar cells.

    PubMed

    Wu, Mao-Sung; Tsai, Chen-Hsiu; Wei, Tzu-Chien

    2011-03-14

    A bifunctional TiO(2) layer having an inner compact layer and an outer anchoring layer coated on fluorine-doped tin oxide (FTO) glass could reduce the charge recombination and interfacial contact resistance between FTO and the main TiO(2) layer; photoelectron conversion efficiency of cell was increased from 7.31 to 8.04% by incorporating the bifunctional layer.

  10. Formation of core@multi-shell CdSe@CdZnS-ZnS quantum dot heterostructure films by pulse electrophoresis deposition

    NASA Astrophysics Data System (ADS)

    Raj, Sudarsan; Yun, Jin Hyeon; Adilbish, Ganpurev; Ch, Rama Krishna; Lee, In Hwan; Lee, Min Sang; Yu, Yeon-Tae

    2015-07-01

    CdSe@CdZnS-ZnS core@multi-shell quantum dot (QD) heterostructures were deposited on fluorine doped tinoxide (FTO) glass substrate by pulse electrophoresis deposition (EPD). Field emissions scanning electron microscopy (FESEM) images reveal that the number of QDs deposited on the substrate increased with prolonged deposition time. Ethanol is the better solution medium as compared to 2-propanol for pulse electrophoresis deposition. For longer deposition time the intensity of photo luminescence (PL) peak increased.

  11. About Films.

    ERIC Educational Resources Information Center

    Christman, Robert; Krockover, Gerald H.

    1984-01-01

    Lists and briefly describes 46 college-level films. Films are arranged in the following categories: volcanism and earthquakes; plate tectonics; energy, water, and environmental concerns; petroleum and coal; astronomy; space exploration, space shuttle; paleontology; geomorphology; and mineralogy, petrology, and economic geology. (BC)

  12. Film Language.

    ERIC Educational Resources Information Center

    Hudlin, Edward W.

    1979-01-01

    The author briefly surveys some of the claims made about the presumed nature of film as language and some of the problems that arise. He considers the views of two influential schools of film criticism: the Russian formalists (Pudovkin and Eisenstein) and the British semiologist (Peter Wollen). (Author/SJL)

  13. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  14. Film Makers On Film Making.

    ERIC Educational Resources Information Center

    Geduld, Harry M., Ed.

    This collection includes essays by and interviews with more than 30 film-makers, both classic and contemporary, on the subjects of their major interests and procedures in making films. The directors are: Louis Lumiere, Cecil Hepworth, Edwin S. Porter, Mack Sennett, David W. Griffith, Robert Flaherty, Charles Chaplin, Eric von Stroheim, Dziga…

  15. A bi-overlayer type plasmonic photocatalyst consisting of mesoporous Au/TiO2 and CuO/SnO2 films separately coated on FTO.

    PubMed

    Naya, Shin-ichi; Kume, Takahiro; Okumura, Nozomi; Tada, Hiroaki

    2015-07-21

    The principal purpose of this study is to present a new design for preparing highly active immobilized gold nanoparticle-based plasmonic photocatalysts. Gold nanoparticles were loaded on rutile TiO2 particles with a mean size of 80 nm (Au/TiO2) by the deposition precipitation method. The surface of SnO2 particles with a mean size of 100 nm was modified by copper(ii) oxide clusters (CuO/SnO2) with the loading amount (Γ/Cu ions nm(-2)) precisely controlled by the chemisorption-calcination cycle technique. Two mesoporous overlayers of Au/TiO2 and CuO/SnO2 were coated side by side on glass substrates with a fluorine-doped tin oxide film (FTO) using the doctor blade method (Au/mp-TiO2|FTO|CuO/mp-SnO2). As test reactions for assessing the visible-light activity, we carried out gas-phase decomposition of acetaldehyde and liquid-phase oxidation of alcohol. In each reaction, this bi-overlayer type catalyst shows a high level of visible-light activity much exceeding those of Au/TiO2 particles and a Au/mp-TiO2|FTO mono-overlayer type catalyst [J. Phys. Chem. C, 2014, 118, 26887]. To confirm the origin of the striking visible-light activity, we studied the electrocatalytic activity of CuO/mp-SnO2|FTO electrodes for the oxygen reduction reaction (ORR). Both the visible-light activity of Au/mp-TiO2|FTO|CuO/mp-SnO2 and the electrocatalytic activity of CuO/mp-SnO2|FTO for ORR strongly depend on the Γ value. A good positive correlation has been found between the visible-light activities and the electrocatalytic activity for ORR. The striking activity of the present bi-overlayer type catalyst can be attributed to the efficient and long-range charge separation by the vectorial electron transport (Au(oxidation sites) → TiO2→ FTO, SnO2→ CuO(reduction sites)) and the excellent electrocatalytic activity of the CuO clusters.

  16. Fabrication and enhanced visible light photocatalytic activity of fluorine doped TiO2 by loaded with Ag.

    PubMed

    Lin, Xiaoxia; Rong, Fei; Ji, Xiang; Fu, Degang; Yuan, Chunwei

    2011-11-01

    F-doped TiO2 loaded with Ag (Ag/F-TiO2) was prepared by sol-gel process combined with photoreduction method. The physical and chemical properties of the prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). XPS analysis indicated Ag species existed as Ag0 in the structure of Ag/F-TiO2 samples. UV-Vis diffuse reflectance spectra showed that the light absorption of Ag/F-TiO2 in the visible region had a significant enhancement compared with the F-doped TiO2 (F-TiO2). PL analysis indicated that the electron-hole recombination rate had been effectively inhibited when Ag loaded on the surface of F-TiO2. The photocatalytic activities of the samples were evaluated for the degradation of X-3B (Reactive Brilliant Red dye, C.I. reactive red 2) under visible light (lambda > 420 nm) irradiation. Compared with F-TiO2, the sample of 0.50 Ag/F-TiO2 showed the highest photocatalytic activity. The interaction between F species and metallic Ag was responsible for improving the visible light photocatalytic activity.

  17. I. Synthesis of group 13 fluoroalkoxide complexes and the chemical vapor deposition of indium oxide films. II. Synthesis of gallium hydrido-thiolate complexes

    NASA Astrophysics Data System (ADS)

    Miinea, Liliana Angela

    A synthetic route to indium fluoroalkoxide complexes was developed and fluorine-doped indium oxide films were prepared from one of the new complexes by chemical vapor deposition. The reaction of indium amide complexes with fluorinated alcohols was found to be a convenient synthetic route to indium fluoroalkoxide complexes. In[N-t-Bu(SiMe3)]3 reacted with (CF3)Me2COH to give the dimer [In{mu-OCMe 2(CF3)}{OCMe2(CF3)}2] 2. In contrast, reactions involving the more acidic alcohols (CF 3)2MeCOH and (CF3)2CHOH yielded products containing t-BuNH2, which was derived from the amide ligands of the starting material. Reactions of (CF3) 2MeCOH and (CF3)2CHOH with In(tmp)3 (tmp = the anion derived from 2,2,6,6-tetramethylpiperidine) and In(NEt 2)3 gave In[OCH(CF3)2]3(Htmp), [H2tmp][In{OCR(CF3)2}4] (R = H or Me), and mer-In[OCMe(CF3)2]3(py) 3. Polycrystalline indium oxide films were deposited at 400-550°C in a low-pressure chemical vapor deposition process from In[OCMe(CF3 )2]3(H2N-t-Bu) and O2 precursors. The films deposited at ≤500°C contained 2-3 atom % fluorine while the film deposited at 550°C had no detectable fluorine incorporation. Films deposited on quartz (˜3600-A thickness) showed >85% transmittance in the 400-800 nm region, and resistivities of 2.56 x 10 -1-2.02 x 10-2 O cm were measured for the as-deposited films. The observed transmittance is in the range reported previously for doped and undoped In2O3, while the resistivity values are higher than those reported for tin, fluorine or sulfur-doped indium oxide. The work on the synthesis of indium fluoroalkoxide complexes prompted an examination of the synthesis of related aluminum and gallium fluoroalkoxide complexes. Aluminum and gallium fluoroalkoxide complexes of formula M(ORf) 3(HNMe2) [M = Al, Rf = CH(CF3)2, CMe 2(CF3) or CMe(CF3)2; M = Ga, Rf = CMe 2(CF3) or CMe(CF3)2] were prepared by reacting the corresponding metal dimethylamide complexes with fluorinated alcohols. An attempt was made to prepare

  18. Piezoelectric Film.

    ERIC Educational Resources Information Center

    Garrison, Steve

    1992-01-01

    Presents activities that utilize piezoelectric film to familiarize students with fundamental principles of electricity. Describes classroom projects involving chemical sensors, microbalances, microphones, switches, infrared sensors, and power generation. (MDH)

  19. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  20. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  1. Film Reviews

    ERIC Educational Resources Information Center

    Ladd, George T.

    1974-01-01

    Briefly describes films about the following topics: water cycles, the energy crisis, the eruption of Mt. Aetna, the hot springs of Yellowstone National Park, and methods of using pine cones to determine the ages of ancient civilizations. (MLH)

  2. The amplitudes and the structure of the charge density wave in YBCO.

    PubMed

    Kharkov, Y A; Sushkov, O P

    2016-10-10

    We find unknown s- and d-wave amplitudes of the recently discovered charge density wave (CDW) in underdoped cuprates. To do so we perform a combined analysis of experimental data for ortho-II YBa2Cu3Oy. The analysis includes data on nuclear magnetic resonance, resonant inelastic X-ray scattering, and hard X-ray diffraction. The amplitude of doping modulation found in our analysis is 3.5 · 10(-3) in a low magnetic field and T = 60 K, the amplitude is 6.5 · 10(-3) in a magnetic field of 30T and T = 1.3 K. The values are in units of elementary charge per unit cell of a CuO2 plane. We show that the data rule out a checkerboard pattern, and we also show that the data might rule out mechanisms of the CDW which do not include phonons.

  3. Investigation of Precursor Superconducting State in YBa2Cu3O7-δ through In-Plane Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kegan; Kamiya, Keisuke; Nakajima, Masamichi; Miyasaka, Shigeki; Tajima, Setsuko

    2017-02-01

    A precursor of superconductivity has been searched in the in-plane optical spectra of underdoped YBa2Cu3Oy, in which the previous c-axis optical spectra showed the presence of superconducting carriers at a temperature far above Tc [Uykur et al., Phys. Rev. Lett. 112, 127003 (2014)][Dubroka et al., Phys. Rev. Lett. 106, 047006 (2011)]. By carefully subtracting the normal component from the imaginary part of conductivity σ2(ω), we found a clear in-plane response of superconducting condensate at the temperature consistent with the c-axis optical data. This confirms that the precursory superconductivity developing with decreasing doping level is an intrinsic phenomenon in the cuprates.

  4. Design and construction of a high temperature superconducting power cable cryostat for use in railway system applications

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Muralidhar, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Akasaka, T.; Kobayashi, Y.

    2013-10-01

    The primary objective of the current effort was to design and test a cryostat using a prototype five-meter long high temperature Bi2Sr2Ca2Cu3Oy (Bi-2223) superconducting dc power cable for railway systems. To satisfy the safety regulations of the Govt of Japan a mill sheet covered by super-insulation was used inside the walls of the cryostat. The thicknesses of various walls in the cryostat were obtained from a numerical analysis. A non-destructive inspection was utilized to find leaks under vacuum or pressure. The cryostat target temperature range was around 50 K, which is well below liquid nitrogen temperature, the operating temperature of the superconducting cable. The qualification testing was carried out from 77 down to 66 K. When using only the inner sheet wire, the maximum current at 77.3 K was 10 kA. The critical current (Ic) value increased with decreasing temperature and reached 11.79 kA at 73.7 K. This is the largest dc current reported in a Bi2Sr2Ca2Cu3Oy or YBa2Cu3Oy (Y-123) superconducting prototype cable so far. These results verify that the developed DC superconducting cable is reliable and fulfils all the requirements necessary for successful use in various power applications including railway systems. The key issues for the design of a reliable cryogenic system for superconducting power cables for railway systems are discussed.

  5. Flux pinning by Al-based nanoparticles embedded in YBCO: A transmission electron microscopic study

    NASA Astrophysics Data System (ADS)

    Ben Azzouz, F.; Zouaoui, M.; Mellekh, A.; Annabi, M.; Van Tendeloo, G.; Ben Salem, M.

    2007-05-01

    A series of YBa2Cu3Oy (YBCO) samples with small amounts (0-0.6 wt.%) of nanosized alumina particles (50 nm) are synthesized in air by solid state reaction. The microstructure has been characterized by transmission electron microscopy (TEM) and the critical current density Jc has been measured by the standard four-probe method in the applied magnetic field at 77 K. TEM and energy dispersive X-ray spectroscopy (EDS) analysis have shown that alumina reacts with the YBCO matrix to form nanometric aluminium-rich inhomogeneities intergrown within the YBCO superconducting matrix. These inhomogeneities reduce the onset transition temperature Tconset and the zero resistance temperature Tc. In spite of the monotonic decrease of the superconducting temperature Tc with increasing alumina addition, the Jc(H) behaviour is remarkably improved. The characteristic behaviour of Jc can be explained in terms of the counterbalance of two effects simultaneously caused by the nanometric alumina addition in the system. One effect is the formation of the Al-rich nanometric inhomogeneities relevant for the flux pinning, and the other effect is the reduction of matrix superconducting volume, which is reflected by a decrease of the critical current density Jc at zero applied magnetic field.

  6. The amplitudes and the structure of the charge density wave in YBCO

    NASA Astrophysics Data System (ADS)

    Kharkov, Y. A.; Sushkov, O. P.

    2016-10-01

    We find unknown s- and d-wave amplitudes of the recently discovered charge density wave (CDW) in underdoped cuprates. To do so we perform a combined analysis of experimental data for ortho-II YBa2Cu3Oy. The analysis includes data on nuclear magnetic resonance, resonant inelastic X-ray scattering, and hard X-ray diffraction. The amplitude of doping modulation found in our analysis is 3.5 · 10‑3 in a low magnetic field and T = 60 K, the amplitude is 6.5 · 10‑3 in a magnetic field of 30T and T = 1.3 K. The values are in units of elementary charge per unit cell of a CuO2 plane. We show that the data rule out a checkerboard pattern, and we also show that the data might rule out mechanisms of the CDW which do not include phonons.

  7. Excess conductivity analysis in YBa2Cu3O7-d added with SiO2 nanoparticles and nanowires: Comparative study

    NASA Astrophysics Data System (ADS)

    Al-Otaibi, A. L.; Almessiere, M. A.; Salem, M. Ben; Azzouz, F. Ben

    2016-07-01

    The effect of nanosized silicon oxide nanoparticles (denoted NP-SiO2) and nanowires (denoted NW-SiO2) additions during the final processing stage on electrical fluctuation conductivity of polycrystalline YBa2Cu3Oy (Y-123 for brevity) in the mean field region has been reported. Series of samples were synthesized in air using a standard solid-state reaction technique by adding nanosized entities up to 0.5 wt.%. Phases, microstructure and superconductivity properties have been systematically investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrical measurements. TEM investigations show the presence of inhomogeneities embedded in the superconducting matrix along with the presence of columnar defects in the case of SiO2 nanoparticles added samples, however nanowires tend to agglomerate by entangling with each other in the intergrain regions. The fluctuation conductivity was analyzed as a function of reduced temperature using the Aslamazov-Larkin model. Using the Lawrence-Doniach equations, the Ginzburg-Landau (GL) number (NG) and equations, the coherence length, the effective layer thickness, the lower critical field Bc1(0), the upper critical field Bc2(0) and the critical current density Jc(0) were estimated. It was found that the addition of an optimum concentration of SiO2 nanomaterials, that depends on the shape, effectively controlled the microstructure, the grains coupling and hence improved the physical properties of Y-123 compound.

  8. The amplitudes and the structure of the charge density wave in YBCO

    PubMed Central

    Kharkov, Y. A.; Sushkov, O. P.

    2016-01-01

    We find unknown s- and d-wave amplitudes of the recently discovered charge density wave (CDW) in underdoped cuprates. To do so we perform a combined analysis of experimental data for ortho-II YBa2Cu3Oy. The analysis includes data on nuclear magnetic resonance, resonant inelastic X-ray scattering, and hard X-ray diffraction. The amplitude of doping modulation found in our analysis is 3.5 · 10−3 in a low magnetic field and T = 60 K, the amplitude is 6.5 · 10−3 in a magnetic field of 30T and T = 1.3 K. The values are in units of elementary charge per unit cell of a CuO2 plane. We show that the data rule out a checkerboard pattern, and we also show that the data might rule out mechanisms of the CDW which do not include phonons. PMID:27721385

  9. Change of carrier density at the pseudogap critical point of a cuprate superconductor.

    PubMed

    Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril

    2016-03-10

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

  10. Optimization of transparent and reflecting electrodes for amorphous silicon solar cells. Final technical report

    SciTech Connect

    Gordon, R.G.; Kramer, K.; Liang, H.; Liu, X.; Pang, D.; Teff, D.

    1998-09-01

    Transparent conducting fluorine doped zinc oxide was deposited as thin films on soda lime glass substrates by atmospheric pressure chemical vapor deposition (CVD) at substrate temperatures of 460 to 500 degrees C. The precursors diethylzinc, tetramethylethylenediamine and benzoyl fluoride were dissolved in xylene. This solution was nebulized ultrasonically and then flash vaporized by a carrier gas of nitrogen preheated to 150 degrees C. Ethanol was vaporized separately, and these vapors were then mixed to form a homogeneous vapor mixture. Good reproducibility was achieved using this new CVD method. Uniform thicknesses were obtained by moving the heated glass substrates through the deposition zone. The best electrically and optical properties were obtained when the precursor solution was aged for more than a week before use. The films were polycrystalline and highly oriented with the c-axis perpendicular to the substrate. More than 90% of the incorporated fluorine atoms were electrically active as n-type dopants. The electrical resistivity of the films was as low as 5 x 10/sup -4/ Omega cm. The mobility was about 45 cm ²/Vs. The electron concentration was up to 3 x 10 %sup20;/cm³. The optical absorption of the films was about 3-4% at a sheet resistance of 7 ohms/square. The diffuse transmittance was about 10% at a wavelength of 650 nm. Amorphous ilicon solar cells were deposited using the textured fluorine doped zinc oxide films as a front electrode. The short circuit current was increased over similar cells made with fluorine doped tin oxide, but the open circuit voltages and fill factors were reduced. The voltage was restored by overcoating the fluorine-doped zinc oxide with a thin layer of fluorine-doped tin oxide.

  11. Science Fiction on Film.

    ERIC Educational Resources Information Center

    Burmester, David

    1985-01-01

    Reviews science fiction films used in a science fiction class. Discusses feature films, short science fiction films, short story adaptations, original science fiction pieces and factual science films that enrich literature. (EL)

  12. Film Credits

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2006-01-01

    With the advent of easy-to-use digital technology, schools are responding to the interests of their media-savvy students by offering more courses in filmmaking. In this article, the author features different films produced by students. Among other things, she discusses the students' growing interest in filmmaking.

  13. Thin film nano solar cells--from device optimization to upscaling.

    PubMed

    Toivola, Minna; Peltola, Time; Miettunen, Kati; Halme, Janne; Lund, Peter

    2010-02-01

    Stainless steel based dye solar cells have been upscaled from small, laboratory size test cells of 0.32 cm2 active area to 6 cm x 6 cm "mini-modules" with active areas ca. 15 cm2. Stainless steel works as the photoelectrode substrate whilst the counter electrode is prepared on indium-doped tin oxide coated polyethyleneterephtalate or polyethylenenaphtalate plastic foil (fluorine-doped tin oxide coated glass as a reference). Additional current collector structures were deposited on the counter electrode substrate with inkjet-printing of silver nanoparticle ink in order to reduce the lateral resistance of the plastic foil. Flexible substrates enable roll-to-roll type industrial manufacturing of the cells and the steel's superior conductivity compared to the typical substrate materials such as glass and plastic makes it possible to prepare even substantially larger modules. The best efficiencies obtained this far with the "mini-module" using a stainless steel photoelectrode are 2.5% with a platinum-sputtered indium-doped tin oxide coated polyethyleneterephtalate counter electrode and 3.4% with a thermally platinized fluorine-doped tin oxide coated glass counter electrode. These efficiencies are on the same level than those measured with small cells prepared with similar methods and materials (3.4%-4.7%, depending on configuration, which are amongst the highest reported for this kind of a dye solar cell). Replacing expensive conducting glass with steel and plastic foils as the substrate materials leads also to economical savings in the cell production.

  14. Black Films and Film-Makers.

    ERIC Educational Resources Information Center

    Patterson, Lindsay, Ed.

    The development of black films and the attitudes of the film industry toward black films and black actors are some of the topics examined in this anthology of essays. Section 1, "Nigger to Supernigger," contains such articles as "The Death of Rastus: Negroes in American Films" by Thomas R. Cripps and "Folk Values in a New Medium" by Alain Locke…

  15. Film and History.

    ERIC Educational Resources Information Center

    Schaber, Robin L.

    2002-01-01

    Provides an annotated bibliography of Web sites that focus on using film to teach history. Includes Web sites in five areas: (1) film and education; (2) history of cinema; (3) film and history resources; (4) film and women; and (5) film organizations. (CMK)

  16. War. Peace. Film Guide.

    ERIC Educational Resources Information Center

    Dougall, Lucy

    The revised and expanded film guide designed for educators includes annotations of over 200 films, plus a large number of program resources for intelligent film use. Selected from over five hundred films previewed from 1969, up-to-date films were chosen that would help interpret the causes of war, increase awareness of the dehumanizing effects of…

  17. Filming The Man Hunters

    ERIC Educational Resources Information Center

    Hockings, Paul

    1976-01-01

    "The Man Hunters" is a film about paleoanthropology. This article is a personal account of how the film was put together using anthropological knowledge and numerous anthropologists and how the film was received by the American public. (Author)

  18. Ferroelectric ultrathin perovskite films

    DOEpatents

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  19. Film Presentation Techniques.

    ERIC Educational Resources Information Center

    Monod, Pierre

    1976-01-01

    This article discusses three types of films and their use in the second language classroom. The description film is objective and static, and elicits adjectives and adverbs. This kind of film should be presented three times, each time followed by a different set of learning exercises. The culture film - characterized by descriptions, scenes from…

  20. Films on Oceanography.

    ERIC Educational Resources Information Center

    Cuzon du Rest, R. P.

    This film list compiled by the U.S. Naval Oceanographic Office is separated into six categories: general oceanography, biology, chemistry, engineering, geology, and physics. An index of films is followed by addresses of Naval Districts and lists of distribution centers. Each film listed is described as to content, running time, type of film,…

  1. Thin film interference of colloidal thin films.

    PubMed

    Cong, Hailin; Cao, Weixiao

    2004-09-14

    A stairlike colloidal crystal thin film composed of poly(styrene-methyl methacrylate-acrylic acid) (P(St-MMA-AA)) monodispersed colloids was fabricated on an inclined silicon substrate. Different bright colors were observed on the various parts of the film with different layers as white light irradiated perpendicularly on it. The relationship between the colors and layers of the film was investigated and discussed according to the principle of thin film interference. On the basis of the phenomenon of thin film interference, a one-layer colloidal film having uniform color was researched and it would display diverse colors before and after swollen by styrene (St). A circular stairlike colloidal film was achieved to mimic the colors of the peacock tail feather.

  2. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  3. Durable solar mirror films

    DOEpatents

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  4. The Educational Film Industry

    ERIC Educational Resources Information Center

    Tortora, Vincent R.; Schillaci, Peter

    1975-01-01

    Increased dialog is needed among educational film producers, distributors, and consumers in order to be sure that what is being produced meets educators' needs and also to help solve the financial problems of the film industry. (LS)

  5. Understanding Electrical Conduction States in WO3 Thin Films Applied for Resistive Random-Access Memory

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kieu Hanh; Pham, Kim Ngoc; Dao, Thi Bang Tam; Tran, Dai Lam; Phan, Bach Thang

    2016-05-01

    The electrical conduction and associated resistance switching mechanism of top electrode/WO3/bottom electrode devices [top electrode (TE): Ag, Ti; bottom electrode (BE): Pt, fluorine-doped tin oxide] have been investigated. The direction of switching and switching ability depended on both the top and bottom electrode material. Multiple electrical conduction mechanisms control the leakage current of such switching devices, including trap-controlled space-charge, ballistic, Ohmic, and Fowler-Nordheim tunneling effects. The transition between electrical conduction states is also linked to the switching (SET-RESET) process. This is the first report of ballistic conduction in research into resistive random-access memory. The associated resistive switching mechanisms are also discussed.

  6. Optimization of transparent and reflecting electrodes for amorphous-silicon solar cells. Final subcontract report, 1 May 1991--30 April 1994

    SciTech Connect

    Gordon, R.G.; Hu, J.; Lacks, D.; Musher, J.; Thornton, J.; Liang, H.

    1994-07-01

    Fluorine-doped zinc oxide was shown to have the lowest absorption loss of any of the known transparent conductors. An apparatus was constructed to deposit textured, transparent, conductive, fluorine-doped zinc oxide layers with uniform thickness over a 10 cm by 10 cm area, using inexpensive, high-productivity atmospheric pressure chemical vapor deposition. Amorphous silicon solar cells grown on these textured films show very high peak quantum efficiencies (over 90%). However, a significant contact resistance develops at the interface between the amorphous silicon and the zinc oxide. Transparent, conductive gallium-doped zinc oxide films were grown by APCVD at a low enough temperature (260{degree}C) to be deposited on amorphous silicon as a final conductive back contact to solar cells. A quantum-mechanical theory of bonding was developed and applied to some metal oxides; it forms a basis for understanding TCO structures and the stability of their interfaces with silicon.

  7. Microstructure of Thin Films

    DTIC Science & Technology

    1990-02-07

    optical properties ." (Final text in preparation). John Lehan, "Microstructural analysis of thin films by Rutherford Backscattering...correlation of optical properties and micro- Ion assisted deposition (IAD) is known to produce structure of IAD thin films with ion beam parameters thin films ...1.5-eV interband absorption. P (eV) R (%) P (, -V) R %) Optical properties of metal thin films in the spectral 0 98.3 0 88.8 range of

  8. Film as Film; Understanding and Judging Movies.

    ERIC Educational Resources Information Center

    Perkins, V. F.

    The criteria for judging movies which are presented here are based on the belief that film criticism becomes rational, if not "objective", when it displays and inspects the nature of its evidence and the bases of its arguments. The author dissents from the view of early film theorists that montage is the essence of cinema, and that cinema is to be…

  9. Getting into Film.

    ERIC Educational Resources Information Center

    London, Mel

    This book describes the various aspects of the film industry and the many jobs related to filmmaking, stressing that no "formula" exists for finding a successful career in the film industry. Chapters provide information on production, writing for film, cinematography, editing, music, sound, animation and graphics, acting and modeling, the "unsung…

  10. Australian Film Studies.

    ERIC Educational Resources Information Center

    Breen, Myles P.

    Although Australia had a vigorous film industry in the silent film era, it was stifled in the 1930s when United States and British interests bought up the Australian distribution channels and closed down the indigenous industry. However, the industry and film study have undergone a renaissance since the advent of the Labor government in 1972,…

  11. The Language of Film.

    ERIC Educational Resources Information Center

    Whitaker, Rod

    This book, designed for the film maker, critic, and serious filmgoer, explores elements of filmic expression from the creative and perceptual points of view. Chapters (1) trace the linguistic and mechanical development of film, (2) discuss the contributions of image and sound to film content, (3) suggest the contributions of editing and montage,…

  12. Playing With Film.

    ERIC Educational Resources Information Center

    Gaffney, Maureen, Ed.

    1980-01-01

    Designed for media specialists and educators, this issue includes five articles on innovative museum film programs. The first article describes a successful film program conducted at the Staten Island Children's Museum. The second article describes inventive children's programs at the Delaware Museum of Art. The programs use films and activities…

  13. 99 Films on Drugs.

    ERIC Educational Resources Information Center

    Weber, David O., Ed.

    This catalog describes and evaluates 16-millimeter films about various aspects of drug use. Among the subjects covered by the 99 films are the composition and effects of different drugs, reasons why people use drugs, life in the drug culture, the problem of law enforcement, and various means of dealing with drug users. Each film is synopsized. Two…

  14. Focus on Shakespearean Films.

    ERIC Educational Resources Information Center

    Eckert, Charles W., Ed.

    This is an anthology of reviews and critical pieces of the significant and available Shakespearean films made between 1935 and 1966. Included are three general essays on Shakespearean film by Ian Johnson, Henri Lemaitre, and Geoffrey Reeves. The specific films and their reviewers are: A Midsummer's Night Dream (1935) Allardyce Nicoll and Richard…

  15. Health Careers Film Guide.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHEW), Bethesda, MD. Bureau of Health Manpower Education.

    This document, which represents a survey of the entire health career film field, was designed to provide information for people interested in a health career. The guide indicates that a major criteria for film selection was recency; however, some older films that give a fairly accurate image of a profession were included, with some emphasis given…

  16. Thick Film Interference.

    ERIC Educational Resources Information Center

    Trefil, James

    1983-01-01

    Discusses why interference effects cannot be seen with a thick film, starting with a review of the origin of interference patterns in thin films. Considers properties of materials in films, properties of the light source, and the nature of light. (JN)

  17. Marine Science Film Catalogue.

    ERIC Educational Resources Information Center

    Chapman, Frank L.

    Forty-eight motion picture films and filmstrips in the field of marine science are catalogued in this booklet. Following the alphabetical index, one page is devoted to each film indicating its type, producer, recommended grade level, running time, and presence of color and/or sound. A summary of film content, possible uses, and outstanding…

  18. Film Program Notes from the Current Holdings of the Anthology Film Archives; Outlines of 41 Films.

    ERIC Educational Resources Information Center

    Anthology Film Archives, New York, NY.

    This collection of film program notes includes mixed commentary on some of the films held in the Anthology Film Archives (a film and book library in New York City). Some of the films are described by synopsis of the episodes and others by translation into English of the foreign language subtitles. However, each film noted is identified by full…

  19. Electrically Conductive Polyimide Films

    NASA Technical Reports Server (NTRS)

    St. Clair, Anne K.; Ezzel, Stephen A.; Taylor, Larry T.; Boston, Harold G.

    1993-01-01

    Semiconducting surfaces of SnO2 formed by curing polyamic acids containing tin complexes. Polyimide films made semiconductive via incorporation of semiconductive surface layers of SnO2. If SnO2-surfaced polyimide film used as free-standing film, then semiconductive layer protected by top coat of polyimide, deposited as film from solution directly onto SnO2. Resultant films flexible and resistant to both weather and high temperature. Used on aircraft to provide resistance to lightning strikes, and in microelectronics and flexible circuitry.

  20. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  1. Chronicles of foam films.

    PubMed

    Gochev, G; Platikanov, D; Miller, R

    2016-07-01

    The history of the scientific research on foam films, traditionally known as soap films, dates back to as early as the late 17th century when Boyle and Hooke paid special attention to the colours of soap bubbles. Their inspiration was transferred to Newton, who began systematic study of the science of foam films. Over the next centuries, a number of scientists dealt with the open questions of the drainage, stability and thickness of foam films. The significant contributions of Plateau and Gibbs in the middle/late 19th century are particularly recognized. After the "colours" method of Newton, Reinold and Rücker as well as Johhonnot developed optical methods for measuring the thickness of the thinner "non-colour" films (first order black) that are still in use today. At the beginning of the 20th century, various aspects of the foam film science were elucidated by the works of Dewar and Perrin and later by Mysels. Undoubtedly, the introduction of the disjoining pressure by Derjaguin and the manifestation of the DLVO theory in describing the film stability are considered as milestones in the theoretical development of foam films. The study of foam films gained momentum with the introduction of the microscopic foam film methodology by Scheludko and Exerowa, which is widely used today. This historical perspective serves as a guide through the chronological development of knowledge on foam films achieved over several centuries.

  2. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  3. "Silent" Films Revisited: Captioned Films for the Deaf.

    ERIC Educational Resources Information Center

    Kovalik, Gail L.

    1992-01-01

    Provides a history of the Captioned Films/Videos for the Deaf program and describes the kinds of films and videos available, including feature films and educational materials. Silent films are discussed; captioning processes are described; implications for librarians are discussed; and regional depository libraries for captioned films for the deaf…

  4. Observation of two distinct pairs fluctuation lifetimes and supercurrents in the pseudogap regime of cuprate junctions

    NASA Astrophysics Data System (ADS)

    Koren, Gad; Lee, Patrick A.

    2016-11-01

    Pairs fluctuation supercurrents and inverse lifetimes in the pseudogap regime are reported. These were measured on epitaxial c-axis junctions of the cuprates, with a PrBa2Cu3O7-δ barrier sandwiched in between two YBa2Cu3O7-δ or doped YBa2Cu3Oy electrodes, with or without magnetic fields parallel to the a-b planes. All junctions had a Tc(high) ≈85 -90 K and a Tc(low) ≈50 -55 K electrodes, allowing us to study pairs fluctuation supercurrents and inverse lifetimes in between these two temperatures. In junctions with a pseudogap electrode under zero field, an excess current due to pair fluctuations was observed which persisted at temperatures above Tc(low) , in the pseudogap regime, and up to about Tc(high) . No such excess current was observed in junctions without an electrode with a pseudogap. The measured conductance spectra at temperatures above Tc(low) were fitted using a modified fluctuations model by Scalapino [Phys. Rev. Lett. 24, 1052 (1970), 10.1103/PhysRevLett.24.1052] of a junction with a serial resistance. We found that in the pseudogap regime, the conductance vs voltage consists of a narrow peak sitting on top of a very broad peak. This yielded two distinct pairs fluctuation lifetimes in the pseudogap electrode which differ by an order of magnitude up to about Tc(high) . Under in-plane fields, these two lifetime values remain separated in two distinct groups, which varied with increasing field moderately. We also found that detection of Amperian pairing [Phys. Rev. X 4, 031017 (2014), 10.1103/PhysRevX.4.031017] in our cuprate junctions is not feasible, due to Josephson vortices penetration into the superconducting electrodes which drove the necessary field above the depairing field.

  5. Coating of plasma polymerized film

    NASA Technical Reports Server (NTRS)

    Morita, S.; Ishibashi, S.

    1980-01-01

    Plasma polymerized thin film coating and the use of other coatings is suggested for passivation film, thin film used for conducting light, and solid body lubrication film of dielectrics of ultra insulators for electrical conduction, electron accessories, etc. The special features of flow discharge development and the polymerized film growth mechanism are discussed.

  6. Film Music. Factfile No. 8.

    ERIC Educational Resources Information Center

    Elsas, Diana, Ed.; And Others

    Organizations listed here with descriptive information include film music clubs and music guilds and associations. These are followed by a representative list of schools offering film music and/or film sound courses. Sources are listed for soundtrack recordings, sound effects/production music, films on film music, and oral history programs. The…

  7. Documentary Elements in Early Films.

    ERIC Educational Resources Information Center

    Sanderson, Richard A.

    Focusing on documentary elements, this study examines the film content and film techniques of 681 motion pictures produced in the United States prior to 1904. Analysis of films by type, subject matter, and trends in subject matter shows that one-third of the early films are documentary in type and three-fourths of the films use subject matter of a…

  8. The effect of exceptionally high fluorine doping on the anisotropy of single crystalline SmFeAsO1-xFx

    NASA Astrophysics Data System (ADS)

    Fujioka, Masaya; Denholme, Saleem J.; Tanaka, Masashi; Takeya, Hiroyuki; Yamaguchi, Takahide; Takano, Yoshihiko

    2014-09-01

    We prepared single crystalline SmFeAsO1-xFx with an exceptionally high fluorine concentration by using a CsCl flux method. Comparing to conventional flux methods, this method can introduce about double the amount of fluorine into the oxygen site. The obtained single crystal shows the highest superconducting transition temperature (Tc = 57.5 K) in single crystalline iron pnictides. In addition, the residual resistivity ratio is almost three times as large as that of previously reported single crystals. This suggests that our single crystals are suitable for investigation of the intrinsic superconducting properties, since they have few defects and impurities. Using both the Werthamer-Helfand-Hohenberg model and the effective mass model, we demonstrated that a higher fluorine concentration suppresses the anisotropic superconductivity of SmFeAsO1-xFx.

  9. In situ control of phenol adsorption on conductive Pd-fluorine-doped tin dioxide-supported and Pd-alumina-supported catalysts in electrocatalytic hydrogenation.

    PubMed

    Tountian, Dihourahouni; Brisach-Wittmeyer, Anne; Nkeng, Paul; Poillerat, Gérard; Ménard, Hugues

    2009-09-15

    In the context of the electrocatalytic hydrogenation (ECH) process of unsaturated organic molecules, we have shown using infrared spectroscopy and water contact angle measurements that catalysts powders made of palladium on conductive tin dioxide (10% Pd/SnO2:F) and on alumina (10% Pd/Al2O3) are functionalized with organic chains when they were dipped in supporting electrolyte aqueous solutions containing different carboxylic acids. The carboxylic acids are bound to the supports (SnO2:F and Al2O3) through either the carboxyl or carboxylate groups. The measurement of contact angles confirmed that the support surface is functionalized by the carboxylic acids but also indicated the hydrophobic or hydrophilic character of the resultant surface. With these functionalized catalysts, the effectiveness of electrocatalytic hydrogenation of phenol could be modulated by controlling the adsorption of phenol. The adsorption depends mainly on the functionalization agent (carboxylic acid) and to a lesser extent on the identity of the support material (SnO2:F or Al2O3). Because adsorption is the step that induces the selectivity of the ECH process, controlling this phenomenon by functionalizing the catalyst support in situ is promising for obtaining molecules of choice.

  10. Renaissance of the Film.

    ERIC Educational Resources Information Center

    Bellone, Julius, Ed.

    The post-World War II period was one of the liveliest in the history of the cinema. This is a collection of 33 critical articles on some of the best films of the perd. Most of the essays explicate the themes and symbols of the films. The essays deal with these films: "The Apu Trilogy,""L'Avventura,""Balthazar,""Blow-Up,""Bonnie and Clyde," Citizen…

  11. Clinical careers film.

    PubMed

    2015-09-01

    Those interested in developing clinical academic careers might be interested in a short animated film by Health Education England (HEE) and the National Institute for Health Research. The three-minute film, a frame from which is shown below, describes the sort of opportunities that are on offer to all professionals as part of the HEE's clinical academic careers framework. You can view the film on YouTube at tinyurl.com/pelb95c.

  12. Daylight Redirecting Window Film

    DTIC Science & Technology

    2013-12-01

    EW-201014) Daylight Redirecting Window Film December 2013 This document has been cleared for public release; Distribution...DEC 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Daylight Redirecting Window Film 5a. CONTRACT NUMBER...CCE cost of conserved energy DoD Department of Defense DRF daylight redirecting film EPA U.S. Environmental Protection Agency ESTCP

  13. Thermally processed keratin films

    NASA Astrophysics Data System (ADS)

    Barone, Justin; Schmidt, Walter

    2004-03-01

    Keratin obtained from poultry feathers is blended with -OH containing second phases. Films are prepared by pressing the blended keratin at temperatures concurrent with typical polymer processing temperatures. The films are completely cohesive as opposed to partially cohesive if pressed under the same conditions without blending. The films are "tough" and the mechanical properties show similarities to the properties of commercially available commodity thermoplastics. The keratin films are produced in a few minutes without reducing or oxidizing agents. The mobility of the keratin chains during blending is shown to relate to the serine (S), threonine (T), and tyrosine (Y) contents in the amino acid sequence relative to cystine (C).

  14. Protective overcoating of films

    NASA Technical Reports Server (NTRS)

    Maas, K. A.

    1972-01-01

    Kodak Film Type SO-212 was emulsion overcoated with gelatin and lacquer to evaluate the feasibility of application of the coatings, any image degradation, and the relative protection offered against abrasion. Evaluated were: Eastman motion picture film lacquer Type 485, water solutions of Eastman purified Calfskin gelatin, and experimental Eastman gelatin stripping film of 4 and 6 microns. Conclusions reached were: (1) All coatings can be applied with relative ease with the only limitation being that of equipment. (2) None of the coatings degrade the processed image. (3) All of the coatings provide protection to the emulsion. These conclusions apply to any film which may be considered for overcoating.

  15. Film tension of liquid nano-film from molecular modeling

    NASA Astrophysics Data System (ADS)

    Peng, Tiefeng; Yang, Siyuan; Xiang, Fan; Liang, Yunpei; Li, Qibin; Gao, Xuechao; Liu, Sanjun

    2017-02-01

    Due to its geometry simplicity, the forces of thin liquid film are widely investigated and equivalently employed to explore the phys-chemical properties and mechanical stability of many other surfaces or colloid ensembles. The surface tension of bulk liquid (σ∞) and film tension (γ) are the most important parameters. Considering the insufficiency of detailed interpretation of film tension under micro-scale circumstances, a method for film tension was proposed based on numerical modeling. Assuming surface tension at different slab thicknesses being identical to the surface tension of film, the surface tension and disjoining pressure were subsequently used to evaluate the film tension based on the derivation of film thermodynamics, and a decreasing tendency was discovered for low temperature regions. The influence of saline concentration on nano-films was also investigated, and the comparison of film tensions suggested that higher concentration yielded larger film tension, with stronger decreasing intensity as a function of film thickness. Meanwhile, at thick film range (15-20 nm), film tension of higher concentration film continued to decrease as thickness increase, however it arrived to constant value for that of lower concentration. Finally, it was found that the film tension was almost independent on the film curvature, but varied with the thickness. The approach is applicable to symmetric emulsion films containing surfactants and bi-layer lipid films.

  16. The Possibility of Film Criticism.

    ERIC Educational Resources Information Center

    Poague, Leland; Cadbury, William

    1989-01-01

    Examines the role of critical language in film criticism. Compares and contrasts Monroe Beardsley's philosophy on film aesthetics with the New Criticism. Outlines some of the contributions Beardsley has made to the study of film criticism. (KM)

  17. Optical thin film devices

    NASA Astrophysics Data System (ADS)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  18. Microfilm--Which Film Type, Which Application?

    ERIC Educational Resources Information Center

    Dodson, Suzanne Cates

    1985-01-01

    Report on characteristics of different kinds of microfilm available indicates proper film for specific needs. Silver halide and nonsilver films, diazo film, vesicular film, reaction of films to light, effect of heat and humidity on films, film susceptibility to scratching, and potential longevity of film types are covered. (35 references) (EJS)

  19. Water depth penetration film test

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.; Perry, L.; Sauer, G. E.; Lamar, N. T.

    1974-01-01

    As part of the National Aeronautics and Space Administration Earth Resources Program, a comparative and controlled evaluation of nine film-filter combinations was completed to establish the relative effectiveness in recording water subsurface detail if exposed from an aerial platform over a typical water body. The films tested, with one exception, were those which prior was suggested had potential. These included an experimental 2-layer positive color film, a 2-layer (minus blue layer) film, a normal 3-layer color film, a panchromatic black-and-white film, and a black-and-white infrared film. Selective filtration was used with all films.

  20. Thin-film forces in pseudoemulsion films

    SciTech Connect

    Bergeron, V.; Radke, C.J. |

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  1. Creative Film-Making.

    ERIC Educational Resources Information Center

    Smallman, Kirk

    The fundamentals of motion picture photography are introduced with a physiological explanation for the illusion of motion in a film. Film stock formats and emulsions, camera features, and lights are listed and described. Various techniques of exposure control are illustrated in terms of their effects. Photographing action with a stationary or a…

  2. Abstract Film and Beyond.

    ERIC Educational Resources Information Center

    Le Grice, Malcolm

    A theoretical and historical account of the main preoccupations of makers of abstract films is presented in this book. The book's scope includes discussion of nonrepresentational forms as well as examination of experiments in the manipulation of time in films. The ten chapters discuss the following topics: art and cinematography, the first…

  3. Film Canister Science

    ERIC Educational Resources Information Center

    Ferstl, Andrew; Schneider, Jamie L.

    2007-01-01

    Opaque film canisters are readily available, cheap, and useful for scientific inquiry in the classroom. They can also be surprisingly versatile and useful as a tool for stimulating scientific inquiry. In this article, the authors describe inquiry activities using film canisters for preservice teachers, including a "black box" activity and several…

  4. Films for Childhood Educators.

    ERIC Educational Resources Information Center

    Winick, Mariann Pezzella

    This is a review of films in six thematic groupings: (1) The Open Classroom on Film, (2) The Developing Child, (3) Readiness and the Natural Abilities of Children, (4) Schools as Mirrors, (5) Families: Weavers of Civilization, (6) Children: The Legacy. Each review describes strengths and weaknesses, and gives guidance for follow-up usage. All…

  5. Authors on Film.

    ERIC Educational Resources Information Center

    Geduld, Harry M., Ed.

    Different authors' attitudes toward film are revealed through five different sections of this book: (1) articles, essays, and reviews pertaining to the silent cinema and the transition to sound; (2) general statements on the film medium or filmmakers and their messages; (3) essays dealing with the problems, involvements, and reflections of the…

  6. Construction of Meaning: Film.

    ERIC Educational Resources Information Center

    Pryluck, Calvin

    1995-01-01

    Notes that film has no clear set of rules, unlike all languages, which are deductive systems interpreted according to clear sets of rules. Suggests that film is an inductive system whose interpretation is based on a general understanding of events depicted as modified by production variables such as lighting, camera angles, and the context of…

  7. Protolytic carbon film technology

    SciTech Connect

    Renschler, C.L.; White, C.A.

    1996-04-01

    This paper presents a technique for the deposition of polyacrylonitrile (PAN) on virtually any surface allowing carbon film formation with only the caveat that the substrate must withstand carbonization temperatures of at least 600 degrees centigrade. The influence of processing conditions upon the structure and properties of the carbonized film is discussed. Electrical conductivity, microstructure, and morphology control are also described.

  8. FAA Film Catalog.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    Some 75 films from the U.S. Department of Transportation's Federal Aviation Administration are listed in this catalog. Topics dealt with include aerodynamics, airports, aviation history and careers, flying clubs, navigation and weather. Most of the films are 16mm sound and color productions. Filmstrips requiring a 35mm projector and phonograph or…

  9. Stabilized chromium oxide film

    DOEpatents

    Nyaiesh, A.R.; Garwin, E.L.

    1986-08-04

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  10. Stabilized chromium oxide film

    DOEpatents

    Garwin, Edward L.; Nyaiesh, Ali R.

    1988-01-01

    Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

  11. Dental Training Films.

    ERIC Educational Resources Information Center

    Veterans Administration Medical Center, Washington, DC.

    This dental training films catalog is organized into two sections. Section I is a category listing of the films by number and title, indexed according to generalized headings; categories are as follow: anatomy, articulator systems, complete dentures, dental assisting, dental laboratory technology, dental materials, dental office emergencies,…

  12. Radiographic film package

    SciTech Connect

    Muylle, W. E.

    1985-08-27

    A radiographic film package for non-destructive testing, comprising a radiographic film sheet, an intensifying screen with a layer of lead bonded to a paper foil, and a vacuum heat-sealed wrapper with a layer of aluminum and a heat-sealed easy-peelable thermoplastic layer.

  13. On Teaching Ethnographic Film

    ERIC Educational Resources Information Center

    Clarfield, Geoffrey

    2013-01-01

    The author of this article, a developmental anthropologist, illustrates how the instructor can use ethnographic films to enhance the study of anthropology and override notions about the scope and efficacy of Western intervention in the Third World, provided the instructor places such films in their proper historical and cultural context. He…

  14. Film and the Humanities.

    ERIC Educational Resources Information Center

    O'Connor, John E., Ed.

    This report on a conference, which brought together representatives of various humanistic disciplines to explore the cross-disciplinary appeal of film study as well as the use of film in stimulating scholarship and teaching, includes a narrative summary of the day's conversations and issues raised, as well as of reprints of articles that suggest…

  15. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  16. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  17. Mechanics of Thin Films

    DTIC Science & Technology

    1992-02-06

    S. Hwang, Thermal conductivity of thin films: measurement and microstructural effects, in Thin- film heat transfer, properties and processing, ed...thermal, electrical, optical and magnetic properties . As typical examples we mention microelectronics, optical coatings and multilayers for use in optical...interplay between mechanical properties (elastic moduli), thermal properties (thermal conductivity, thermal expansion coefficient), and optical

  18. Filming for Television.

    ERIC Educational Resources Information Center

    Englander, A. Arthur; Petzold, Paul

    Film makers, professional or amateur, will find in this volume an extensive discussion of the adaptation of film technique to television work, of the art of the camera operator, and of the productive relationships between people, organization, and hardware. Chapters include "The Beginnings," an overview of the interrelationship between roles in…

  19. Film Study Hang Ups.

    ERIC Educational Resources Information Center

    Grenier, Charles F.

    1969-01-01

    The interest and delight which students find in film should be preserved from a teacher's excessive zeal to analyze and explain. As the beauty of poetry is frequently diminished through exhaustive analyses of similes, rhyme schemes, and other technical devices, the value of film to high school students can be weakened through too great an emphasis…

  20. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  1. The National Film Registry: Acquiring Our Film Heritage.

    ERIC Educational Resources Information Center

    Ziegler, Roy A.

    The National Film Registry, which is primarily a designated list of films to be preserved by the Library of Congress, is also a valuable tool for selecting "films that are culturally, historically, and aesthetically significant." Following a brief discussion of the history and selection process of the National Film Registry, Southeast…

  2. Film Theory and Hugo Munsterberg's "The Film": A Psychological Study.

    ERIC Educational Resources Information Center

    Wicclair, Mark R.

    1978-01-01

    Hugo Munsterberg's "The Film: A Psychological Study" is one of the earliest essays in the area of film theory. Unfortunately, it has remained relatively unknown since its publication in 1916. The author discusses two concepts raised by Munsterberg: the contrast between films in the theatrical mode and films in the cinematic mode.…

  3. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  4. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  5. Feature Films in Your Library

    ERIC Educational Resources Information Center

    Spehr, Paul

    1970-01-01

    Trained film librarians, given a well planned and carefully developed program can answer the needs of the new film students. Includes lists of motion picture distributors, cinema periodicals, significant feature films, and classic American feature-length films. (Author/JB)

  6. Film Images of Private Schools.

    ERIC Educational Resources Information Center

    Resnick, David

    2000-01-01

    Examines public debate over private education in the context of the Hollywood dramatic feature film. Analyses four recent films that all portray private schools negatively. Film representation of public schools is more optimistic. Asserts that the films ignore or misrepresent three strengths of private education: effective leadership, small school…

  7. Reference for radiographic film interpreters

    NASA Technical Reports Server (NTRS)

    Austin, D. L.

    1970-01-01

    Reference of X-ray film images provides examples of weld defects, film quality, stainless steel welded tubing, and acceptable weld conditions. A summary sheet details the discrepancies shown on the film strip. This reference aids in interpreting and evaluating radiographic film of weldments.

  8. Film: The Reality of Being.

    ERIC Educational Resources Information Center

    Sheratsky, Rodney E.

    The visual media, particularly film, has challenged today's educators by competing for students' time and interests and by providing a relevancy that books designed for school use do not have. Using film study to combat the supposed immorality of theatrical films and employing instructional film to transmit information has provided a negative…

  9. The Art of the Film.

    ERIC Educational Resources Information Center

    Lindgren, Ernest

    The author prefaces his consideration of films as an art form with a discussion of the mechanics of filmmaking. He describes the division of talent on a movie set, details the history of the tools of filmmakers, and explains the production and reproduction of a film. The influence of film techniques on plot development in a fiction film is…

  10. Children's Film Programming: A Handbook.

    ERIC Educational Resources Information Center

    Gallery Association of New York State, Inc.

    Directed at the staffs of art institutions, community centers, libraries, historical societies, and schools, this practical guide is intended to help in the selection and use of films for children. "Film," in this handbook refers to 16mm films presented in public screenings--not videotape versions of films, and not material originally…

  11. Diagnosing Disputes in Film Criticism.

    ERIC Educational Resources Information Center

    Schultz, Robert A.

    1979-01-01

    By classifying and analyzing actual disputes in film criticism, the author considers the following questions: Are there connections between film theory and film criticism? If so, which are healthy and which are diseased? If not, what alternative healthy function might film theory have? (Author/SJL)

  12. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  13. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  14. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  15. Negative birefringent polyimide films

    NASA Technical Reports Server (NTRS)

    Harris, Frank W. (Inventor); Cheng, Stephen Z. D. (Inventor)

    1994-01-01

    A negative birefringent film, useful in liquid crystal displays, and a method for controlling the negative birefringence of a polyimide film is disclosed which allows the matching of an application to a targeted amount of birefringence by controlling the degree of in-plane orientation of the polyimide by the selection of functional groups within both the diamine and dianhydride segments of the polyimide which affect the polyimide backbone chain rigidity, linearity, and symmetry. The higher the rigidity, linearity and symmetry of the polyimide backbone, the larger the value of the negative birefringence of the polyimide film.

  16. Ultrahard carbon nanocomposite films

    SciTech Connect

    SIEGAL,MICHAEL P.; TALLANT,DAVID R.; PROVENCIO,PAULA P.; OVERMYER,DONALD L.; SIMPSON,REGINA L.; MARTINEZ-MIRANDA,L.J.

    2000-01-27

    Modest thermal annealing to 600 C of diamondlike amorphous-carbon (a-C) films grown at room temperature results in the formation of carbon nanocomposites with hardness similar to diamond. These nanocomposite films consist of nanometer-sized regions of high density a-C embedded in an a-C matrix with a reduced density of 5--10%. The authors report on the evolution of density and bonding topologies as a function of annealing temperature. Despite a decrease in density, film hardness actually increases {approximately} 15% due to the development of the nanocomposite structure.

  17. Ion beam deposited protective films

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1981-01-01

    Single or dual ion beam sources were used to deposit thin films for different applications. Metal and metal oxide films were evaluated as protective coatings for the materials. Film adherence was measured and the most promising films were then tested under environments similar to operating conditions. It was shown that some materials do protect die material (H-13 steel) and do reduce thermal fatigue. Diamondlike films have many useful applications. A series of experiments were conducted to define and optimize new approaches to the manufacture of such films. A dual beam system using argon and methane gases was developed to generate these films.

  18. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  19. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  20. TAMPERPROOF FILM BADGE

    DOEpatents

    Kocher, L.F.

    1958-10-01

    A persornel dosimeter film badge made of plastic, with provision for a picture of the wearer and an internal slide containing photographic film that is sensitive to various radiations, is described. Four windows made of differing material selectively attenuate alpha, beta, gamma rays, and neutrons so as to distinguish the particular type of radiation the wearer was subjected to. In addition, a lead shield has the identification number of the wearer perforated thereon so as to identify the film after processing. An internal magnetically actuated latch securely locks the slide within the body, and may be withdrawn only upon the external application of two strong magnetic forces in order to insure that the wearer or other curious persons will not accidentally expose the film to visual light.

  1. Sprites on Film

    NASA Video Gallery

    Filmed at 10,000 frames per second by Japan's NHK television, movies like this of electromagnetic bursts called "sprites" will help scientists better understand how weather high in the atmosphere r...

  2. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  3. Nanostructured thermoplastic polyimide films

    DOEpatents

    Aglan, Heshmat

    2015-05-19

    Structured films containing multi-walled carbon nanotubes ("MWCNTs") have enhanced mechanical performance in terms of strength, fracture resistance, and creep recovery of polyimide ("PI") films. Preferably, the loadings of MWCNTs can be in the range of 0.1 wt % to 0.5 wt %. The strength of the new PI films dried at 60.degree. C. increased by 55% and 72% for 0.1 wt % MWCNT and 0.5 wt % MWCNT loadings, respectively, while the fracture resistance increased by 23% for the 0.1 wt % MWCNTs and then decreases at a loading of 0.5 wt % MWCNTs. The films can be advantageously be created by managing a corresponding shift in the annealing temperature at which the maximum strength occurs as the MWCNT loadings increase.

  4. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  5. Oxide Films RF Applications

    DTIC Science & Technology

    2006-06-01

    different stabilities and properties . Certain applications, such as integrated dielectrics or photoelectrochemical cells, require thin films of TiO2 that...interesting dielectric properties . Another is that the (001) plane of anatase TiO2 is one of the two main layers stacked along the (100) direction in...Public Release 13. SUPPLEMENTARY NOTES .bDib ibuUl I U 1 iited 14. ABSTRACT TiO2 films were grown using a reactive molecular beam epitaxy system

  6. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  7. Magnetoresistance of Au films

    DOE PAGES

    Zhang, D. L.; Song, X. H.; Zhang, X.; ...

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  8. Dielectric Composite Thin Films

    DTIC Science & Technology

    1989-11-01

    more compressive under deposition conditions, such as high temperature, low pressure or energetic ion bombardment, that produce a more densely packed...film porosity and silica content. Thus, films formed at high temperatures and low pressures , as well as under ion bombardment during deposition, have...and their mixtures were deposited on 100-300 *C substrates and under reactive gas III. RESULTS pressures of 1-10x 10- Torr 02. 02 was UHP grade with A

  9. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  10. Multiresonant layered plasmonic films

    SciTech Connect

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Alvine, Kyle J.

    2017-01-01

    Multi-resonant nanoplasmonic films have numerous applications in areas such as nonlinear optics, sensing, and tamper indication. While techniques such as focused ion beam milling and electron beam lithography can produce high-quality multi-resonant films, these techniques are expensive, serial processes that are difficult to scale at the manufacturing level. Here, we present the fabrication of multi-resonant nanoplasmonic films using a layered stacking technique. Periodically-spaced gold nanocup substrates were fabricated using self-assembled polystyrene nanospheres followed by oxygen plasma etching and metal deposition via magnetron sputter coating. By adjusting etch parameters and initial nanosphere size, it was possible to achieve an optical response ranging from the visible to the near-infrared. Singly resonant, flexible films were first made by performing peel-off using an adhesive-coated polyolefin film. Through stacking layers of the nanofilm, we demonstrate fabrication of multi-resonant films at a fraction of the cost and effort as compared to top-down lithographic techniques.

  11. Capacitor film surface assessment studies

    NASA Astrophysics Data System (ADS)

    Galperin, I.; White, W.

    1985-02-01

    In the present investigation of the optical surface of the three widely used, biaxially oriented capacitor films, polypropylene, polyvinylidene fluoride, and polyester, with attention to film surface defects and thickness variation, the defects and their rate of occurrence proved traceable in terms of polymer structure, chemical grouping, and fabrication processing. Film thickness variation was small, yet differed for each film type. Film breakdown voltages have been determined, and alternative causes for the voltage values obtained are proposed. A reciprocal relation is noted between the film breakdown voltage and the dielectric constant.

  12. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  13. Dewetting of Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.

    2001-03-01

    DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.

  14. Virus-PEDOT Biocomposite Films

    PubMed Central

    Donavan, Keith C.; Arter, Jessica A.

    2012-01-01

    Virus-poly(3,4-ethylenedioxythiophene) (virus-PEDOT) biocomposite films are prepared by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) in aqueous electrolytes containing 12 mM LiClO4 and the bacteriophage M13. The concentration of virus in these solutions, [virus]soln, is varied from 3 nM to 15 nM. A quartz crystal microbalance is used to directly measure the total mass of the biocomposite film during its electrodeposition. In combination with a measurement of the electrodeposition charge, the mass of the virus incorporated into the film is calculated. These data show that concentration of the M13 within the electropolymerized film, [virus]film, increases linearly with [virus]soln. The incorporation of virus particles into the PEDOT film from solution is efficient, resulting in a concentration ratio: [virus]film:[virus]soln ≈450. Virus incorporation into the PEDOT causes roughening of the film topography that is observed using scanning electron microscopy and atomic force microscopy (AFM). The electrical conductivity of the virus-PEDOT film, measured perpendicular to the plane of the film using conductive tip AFM, decreases linearly with virus loading, from 270 μS/cm for pure PE-DOT films to 50 μS/cm for films containing 100 μM virus. The presence on the virus surface of displayed affinity peptides did not significantly influence the efficiency of incorporation into virus-PEDOT biocomposite films. PMID:22856875

  15. Filming eugenics: teaching the history of eugenics through film.

    PubMed

    Ooten, Melissa; Trembanis, Sarah

    2007-01-01

    In teaching eugenics to undergraduate students and general public audiences, film should he considered as a provocative and fruitful medium that can generate important discussions about the intersections among eugenics, gender, class, race, and sexuality. This paper considers the use of two films, A Bill of Divorcement and The Lynchburg Story, as pedagogical tools for the history of eugenics. The authors provide background information on the films and suggestions for using the films to foster an active engagement with the historical eugenics movement.

  16. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  17. Holographic thin film analyzer

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Norden, B. N. (Inventor)

    1973-01-01

    A system for the analysis and measurement of thin films in which the light output of a laser is split into two beams is discribed. The first beam is focused to illuminate the entire area of a photographic plate and the second beam is colummated and directed through a relatively small portion of the photographic plate onto the sample with the film to be observed. The surface of the sample is positioned at a slight angle with respect to a plane normal to the second beam and the light reflected from the sample arrives back at the photographic plate in a region other than through which the second beam originally passes. By making two successive exposures during the deposition of material on the surface of the sample, holograms are recorded on the photographic plate. The plate is then developed and interference lines of the hologram provide a measurement of the film or material deposited between exposure.

  18. Thin θ -film optics

    NASA Astrophysics Data System (ADS)

    Huerta, Luis

    2016-12-01

    A Chern-Simons theory in 3D is accomplished by the so-called θ term in the action (θ /2 )∫F ∧F , which contributes only to observable effects on the boundaries of such a system. When electromagnetic radiation interacts with the system, the wave is reflected and its polarization is rotated at the interface, even when both the θ system and the environment are pure vacuum. These topics have been studied extensively. Here, we investigate the optical properties of a thin θ film, where multiple internal reflections could interfere coherently. The cases of pure vacuum and a material with magnetoelectric properties are analyzed. It is found that the film reflectance is enhanced compared to ordinary non-θ systems and the interplay between magnetoelectric properties and the θ parameter yield film opacity and polarization properties which could be interesting in the case of topological insulators, among other topological systems.

  19. Photographic film image enhancement

    NASA Technical Reports Server (NTRS)

    Horner, J. L.

    1975-01-01

    A series of experiments were undertaken to assess the feasibility of defogging color film by the techniques of optical spatial filtering. A coherent optical processor was built using red, blue, and green laser light input and specially designed Fourier transformation lenses. An array of spatial filters was fabricated on black and white emulsion slides using the coherent optical processor. The technique was first applied to laboratory white light fogged film, and the results were successful. However, when the same technique was applied to some original Apollo X radiation fogged color negatives, the results showed no similar restoration. Examples of each experiment are presented and possible reasons for the lack of restoration in the Apollo films are discussed.

  20. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  1. The Nuclear Debate in Film

    ERIC Educational Resources Information Center

    Dowling, John

    1977-01-01

    Provides a nuclear film bibliography grouped into the areas of: building and using the bomb; living with the bomb; and living with nuclear power. These films are for mature high school students and older. (MLH)

  2. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  3. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  4. Current Film Periodicals in English. Revised Edition.

    ERIC Educational Resources Information Center

    Reilly, Adam, Comp.

    This bibliography of about 200 periodicals dealing with film covers several types of magazine: scholarly journals on film aesthetics, like "The Film Journal"; news notes for movie fans, like "Film Nut News"; magazines which cover films as well as the other arts, like "Cue" and "After Dark"; film education periodicals, like "Media and Methods";…

  5. Biomimetic thin film deposition

    NASA Astrophysics Data System (ADS)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.

    1991-04-01

    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  6. Superconducting Electronic Film Structures

    DTIC Science & Technology

    1991-02-14

    superconductors, yttrium , barium, copper, oxides, high, critical, temperature, thin films, tunneling, barriers, thallium, sputtering. 19. ABSTRACT (Continue on...50*C lower than that required for YBCO. In common with YBCO, the best films grew epitaxially with a c-axis orientation on SrTiO3 , LaAIO 3, and NdGaO 3...for c-axis growth were (001) faces of LaAIO 3, NdGaO 3 , SrTiO3 , MgO. yttria-stabilized ZrO2 (YSZ), 11 and (1102) sapphire. Low substrate

  7. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  8. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  9. Thin Film Phosphor Development

    DTIC Science & Technology

    1989-01-01

    followed in Fig. 1. Two different garnet phases are observed in the fired films. The "low temperature " phase observed in the film treated at 9(X)°C has a... garnets ,1 121 thle experimentall~v-ob,•crved lattice constar.als correspond to the followving lmh composition for the low and high temperature phases...deposited, which is probably an yttrium rich garnet (see Figure 1). At I100)°C we start to see the appearance of both phases. As the firing temperature

  10. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  11. VACUUM DEPOSITION OF THIN FILMS,

    DTIC Science & Technology

    The book deals with methods of obtaining and processing thin films , methods of measuring the deposition rate and thickness of thin-film layers, and...the main fields of application of thin films . Vacuum requirements and the requirements for the composition of the residual medium in thermal...evaporation and cathode sputtering are given, and modern methods of producing and measuring vacuums and the equipment used in obtaining thin films are described. (Author)

  12. Center for Thin Film Studies

    DTIC Science & Technology

    1991-01-22

    techniques for reducing roughness were developed and tested . Substrate Preparation We deposited Si films by sputtering on a variety of substrates, and...deposition," Mod. Phys. Lett. B 3, 1039 (1989). 41 42 Nd: YAG LASER ABLATION OF BaTiO 3 THIN FILMS *URSULA J. GIBSON, **J.A. RUFFNER,***J.J. MCNALLY...thin films of barium titanate onto a variety of substrates, using picosecond and nanosecond pulsed Nd: YAG lasers. The films were deposited from a hot

  13. Teaching Argumentative Writing through Film.

    ERIC Educational Resources Information Center

    Fluitt-Dupuy, Jan

    2001-01-01

    Discusses how watching and discussing feature films and writing reviews of these films in the English-as-a-Second/Foreign-Language classroom can be instrumental in teaching the principles of good argumentative writing within the confines of the simple movie review. Six steps for teaching a film review unit are provided. (Author/VWL)

  14. Longevity Of Dry Film Lubricants

    NASA Technical Reports Server (NTRS)

    Kannel, J. W.; Stockwell, R. D.

    1993-01-01

    Report describes evaluation of dry film lubricants candidate for use in rotary joints of proposed Space Station. Study included experiments and theoretical analyses focused on longevity of sputtered molybdenum disulfide films and ion-plated lead films under conditions partially simulating rolling contact.

  15. Coated Aluminized Film Resists Corrosion

    NASA Technical Reports Server (NTRS)

    Rockoff, H. J.

    1982-01-01

    Commercially available corrosion-protection coating allows less costly metals - aluminum in particular used in heat-reflecting films for thermal barriers. Previously, such films had to incorporate gold as reflective layer to withstand humidity, moisture, and salt spray without corroding. This protective coating prevents corrosion of metalized films during evironmental exposure yet remains flexible, thermally stable and clear.

  16. Radical Pedagogy, Prison, and Film

    ERIC Educational Resources Information Center

    O'Neill, Dierdre

    2015-01-01

    This article explores the work of The Inside Film project. Inside Film works with a specific group of people (prisoners and ex-prisoners) in a particular set of circumstances (in prison or on parole) exploring how film making can be used within prison education or with people who have been to prison as a means of fostering a critical engagement…

  17. Analysis of Film as Communication.

    ERIC Educational Resources Information Center

    Stupp, Vicki O'Donnell

    Films function as a persuasive process in that they bring about a reinforcement or change in attitude, belief, or behavior by producing a cognitive restructuring of the audience's frame of reference. Organized research into the effects of films falls into two categories: macro-media studies exploring the way films reflect the psychological…

  18. Polyheterocycle Langmuir-Blodgett Films

    DTIC Science & Technology

    1989-05-29

    3-alkyl thiophene) and Stearic acid LB films. Thc oricntation of single- and Multi-laycr films on platinum substrates have bccn studicd by Ncar Edgc...not surface active. The LB films were obtained by spreading a mixture of the poly(3-alkvl thiophenes) and stearic acid (C,71-5 COOH ) onto the water

  19. Making Diamondlike Films More Transparent

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Kussmaul, Michael T.; Sovey, James S.; Banks, Bruce A.

    1994-01-01

    Diamondlike carbon films highly transparent to visible light made by dual-ion-beam deposition process. Hard, resistant to scratching, and hermetic. Used as protective coatings on eyeglasses, magnetic recording heads, computer hard disks, and windows in bar-code scanners. Amorphous diamondlike carbon films preferable to polycrystalline diamond films in these and other applications. Smooth and adherent and deposited at room temperature.

  20. Methods for producing complex films, and films produced thereby

    DOEpatents

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  1. A Film Canister Colorimeter.

    ERIC Educational Resources Information Center

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-01-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The student-constructed colorimeter was used to show the Beer-Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for an LED. Makes comparisons between this instrument…

  2. Rating Films on TV.

    ERIC Educational Resources Information Center

    Herman, Ginette; Leyens, Jacques-Philippe

    1977-01-01

    An analysis of the film viewing habits of Belgian television viewers reveals that movies with advisories regarding sex and violence are watched more than the movies without them. However, movies with qualifications tend to be judged less interesting than movies without qualifications. (JMF)

  3. Surrealism and Film.

    ERIC Educational Resources Information Center

    Matthews, J. H.

    This book is a critical, genre study of surrealist films including a general discussion of the backgrounds, influences, and overall traits of surrealism as a mode of artistic response to an absurdist world. Citing the impetus of Jacques Vache and Andre Breton as the originators of surrealism, the work expands upon the themes of fractured realism…

  4. Paradoxes in Film Ratings

    ERIC Educational Resources Information Center

    Moore, Thomas L.

    2006-01-01

    The author selected a simple random sample of 100 movies from the "Movie and Video Guide" (1996), by Leonard Maltin. The author's intent was to obtain some basic information on the population of roughly 19,000 movies through a small sample. The "Movie and Video Guide" by Leonard Maltin is an annual ratings guide to movies. While not all films ever…

  5. Film as Composition.

    ERIC Educational Resources Information Center

    Costanzo, William

    1986-01-01

    Describes the development of a freshman English program based on the analogy of film as composition and discusses implications of this program for other teachers of writing at a time when television and movies are giving unprecedented competition to the printed page for students' attention. (HTH)

  6. Films in Depth.

    ERIC Educational Resources Information Center

    Schrievogel, Paul A.; Prete, Anthony T.

    Bound in a slipcover rather than in signatures, this "book" is made up of thirteen separately bound booklets. The first booklet is an introduction to the use of film in the classroom both in teaching the filmic art and in increasing the visual literacy of students on the high school and early college levels. The twelve other booklets each treat a…

  7. Protein thin film machines.

    PubMed

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  8. Films on Deafness.

    ERIC Educational Resources Information Center

    Parlato, Salvatore J., Jr., Comp.

    This filmography on deafness, which contains summaries of 192 16mm films arranged in alphabetical order by title, covers a wide variety of topics as evidenced by the categorical title index: communication, the nature of deafness, detection and measurement of deafness, education and training, multi-handicaps, and noise pollution. Running time, date…

  9. Intercultural Training with Films

    ERIC Educational Resources Information Center

    Roell, Christine

    2010-01-01

    Films are a great medium to use not only to practice English, but also to facilitate intercultural learning. Today English is a global language spoken by people from many countries and cultural backgrounds. Since culture greatly impacts communication, it is helpful for teachers to introduce lessons and activities that reveal how different…

  10. Balloon film strain measurement

    NASA Astrophysics Data System (ADS)

    Rand, James L.

    In order to understand the state of stress in scientific balloons, a need exists for the measurement of film deformation in flight. The results of a flight test program are reported where material strain was measured for the first time during the inflation, launch, ascent and float of a typical natural shape, zero pressure scientific balloon.

  11. Introduction to Film.

    ERIC Educational Resources Information Center

    Burns, Gary

    There are numerous ways to structure the introduction to film course so as to meet the needs of the different types of students who typically enroll. Assuming there is no production component in the course, the teacher is left with two major approaches to choose from--historical and aesthetic. The units in the course will typically be built around…

  12. Diamond films: Historical perspective

    SciTech Connect

    Messier, R.

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  13. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  14. Film: The Creative Eye.

    ERIC Educational Resources Information Center

    Sohn, David A.

    Short films are often experimental in nature. They can place aspects of the environment which are usually unnoticed in such a way as to sharpen our observations of the world, and "create a new awareness, a fuller sense of life and being." Based on the premise that visual literacy is becoming increasingly important, this book describes several…

  15. Film, Radio, and Television.

    ERIC Educational Resources Information Center

    Hardesty, Carolyn, Ed.

    1990-01-01

    This journal issue covers the history of film, radio, and television in Iowa. The first article, "When Pictures and Sound Came to Iowa," summarizes the origin of movies and radio and their early beginnings in Iowa. Using old photographs and measurement charts, the viewing, reading, and listening habits of young people in 1950 and 1958…

  16. Films: 1971/72 Catalog of Films, Film Loops and Filmstrips for Schools, Colleges and Libraries.

    ERIC Educational Resources Information Center

    Learning Corp. of America, New York, NY.

    The films in this catalog are available for sale or rent from Learning Corporation of America. For elementary grades, films are available for use in the language arts and social studies classes. For junior and senior high, college, and adult courses, films are listed for instruction in art, music, and dance; environmental studies; United States…

  17. Colorless, Transparent, Aromatic Polyimide Films

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Ezzell, K. S.; Ely, R. M.

    1986-01-01

    New process yields aromatic condensation polyimide films essentially colorless. Films between 90- and 100-percent transparent at visible wavelength of 500 nm. Optically transparent polyimide films made from variety of aromatic condensation polyimides. Range from very pale in color to colorless, compared to bright yellow color of conventional/ commercial aromatic polyimide film. Increased transparency achieved at no sacrifice in thermal stability, flexibility, toughness, or mechanical properties. These features extremely attractive as films or coating materials for aerospace applications or for any other applications where high optical transparency or thermal stability is required.

  18. Orientation filtering for crystalline films

    DOEpatents

    Smith, Henry I.; Atwater, Harry A.; Thompson, Carl V.; Geis, Michael W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations.

  19. Orientation filtering for crystalline films

    DOEpatents

    Smith, H.I.; Atwater, H.A.; Thompson, C.V.; Geis, M.W.

    1986-12-30

    A substrate is coated with a film to be recrystallized. A pattern of crystallization barriers is created in the film, for example, by etching voids in the film. An encapsulation layer is generally applied to protect the film, fill the voids and otherwise enhance a recrystallization process. Recrystallization is carried out such that certain orientations pass preferentially through the barrier, generally as a result of growth-velocity anisotropy. The result is a film of a specific predetermined crystallographic orientation, a range of orientations or a set of discrete orientations. 7 figs.

  20. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  1. Process to form mesostructured films

    DOEpatents

    Brinker, C. Jeffrey; Anderson, Mark T.; Ganguli, Rahul; Lu, Yunfeng

    1999-01-01

    This invention comprises a method to form a family of supported films film with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts.

  2. Method for making carbon films

    DOEpatents

    Tan, M.X.

    1999-07-29

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

  3. Method for making carbon films

    DOEpatents

    Tan, Ming X.

    1999-01-01

    A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

  4. Professor Camillo Negro's Neuropathological Films.

    PubMed

    Chiò, Adriano; Gianetto, Claudia; Dagna, Stella

    2016-01-01

    Camillo Negro, Professor in Neurology at the University of Torino, was a pioneer of scientific film. From 1906 to 1908, with the help of his assistant Giuseppe Roasenda and in collaboration with Roberto Omegna, one of the most experienced cinematographers in Italy, he filmed some of his patients for scientific and educational purposes. During the war years, he continued his scientific film project at the Military Hospital in Torino, filming shell-shocked soldiers. In autumn 2011, the Museo Nazionale del Cinema, in partnership with the Faculty of Neurosciences of the University of Torino, presented a new critical edition of the neuropathological films directed by Negro. The Museum's collection also includes 16 mm footage probably filmed in 1930 by Doctor Fedele Negro, Camillo's son. One of these films is devoted to celebrating the effects of the so-called "Bulgarian cure" on Parkinson's disease.

  5. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  6. Lonsdaleite Films with Nanometer Thickness.

    PubMed

    Kvashnin, Alexander G; Sorokin, Pavel B

    2014-02-06

    We investigate the properties of potentially the stiffest quasi-2-D films with lonsdaleite structure. Using a combination of ab initio and empirical potential approaches, we analyze the elastic properties of lonsdaleite films in both elastic and inelastic regimes and compare them with graphene and diamond films. We review possible fabrication methods of lonsdaleite films using the pure nanoscale "bottom-up" paradigm: by connecting carbon layers in multilayered graphene. We propose the realization of this method in two ways: by applying direct pressure and by using the recently proposed chemically induced phase transition. For both cases, we construct the phase diagrams depending on temperature, pressure, and film thickness. Finally, we consider the electronic properties of lonsdaleite films and establish the nonlinear dependence of the band gap on the films' thicknesses and their lower effective masses in comparison with bulk crystal.

  7. Combustion effects on film cooling

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Ewen, R. L.

    1977-01-01

    The effects of: (1) a reactive environment on film cooling effectiveness, and (2) film cooling on rocket engine performance were determined experimentally in a rocket thrust chamber assembly operating with hydrogen and oxygen propellants at 300 psi chamber pressure. Tests were conducted using hydrogen, helium, and nitrogen film coolants in an instrumented, thin walled, steel thrust chamber. The film cooling, performance loss, and heat transfer coefficient data were correlated with the ALRC entrainment film cooling model which relates film coolant effectiveness and mixture ratio at the wall to the amount of mainstream gases entrained with the film coolant in a mixing layer. In addition, a comprehensive thermal analysis computer program, HOCOOL, was prepared from previously existing ALRC computer programs and analytical techniques.

  8. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  9. Rupture of vertical soap films

    NASA Astrophysics Data System (ADS)

    Rio, Emmanuelle

    2014-11-01

    Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.

  10. Molecular films associated with LDEF

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.; Warner, K. J.

    1992-01-01

    The molecular films deposited on the surface of the Long Duration Exposure Facility (LDEF) originated from the paints and room-temperature-vulcanized (RTV) silicone materials intentionally used on the satellite and not from residual contaminants. The high silicone content of most of the films and the uniformity of the films indicates a homogenization process in the molecular deposition and suggests a chemically most favored composition for the final film. The deposition on interior surfaces and vents indicated multiple bounce trajectories or repeated deposition-reemission cycles. Exterior surface deposits indicated a significant return flux. Ultraviolet light exposure was required to fix the deposited film as is indicated by the distribution of the films on interior surfaces and the thickness of films at the vent locations. Thermal conditions at the time of exposure to ultraviolet light seems to be an important factor in the thickness of the deposit. Sunrise facing (ram direction) surfaces always had the thicker film. These were the coldest surfaces at the time of their exposure to ultraviolet light. The films have a layered structure suggesting cyclic deposition. As many as 34 distinct layers were seen in the films. The cyclic nature of the deposition and the chemical uniformity of the film one layer to the next suggest an early deposition of the films though there is evidence for the deposition of molecular films throughout the nearly six year exposure of the satellite. A final 'spray' of an organic material associated with water soluble salts occurred very late in the mission. This may have been the result of one of the shuttle dump activities.

  11. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  12. Magnetoresistance of Au films

    SciTech Connect

    Zhang, D. L. Song, X. H.; Zhang, X.; Zhang, X.-G.

    2014-12-14

    Classical magnetoresistance (MR) in nonmagnetic metals are conventionally understood in terms of the Kohler rule, with violation usually viewed as anomalous electron transport, in particular, as evidence of non-Fermi liquid behavior. Measurement of the MR of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms. Consequently, the Kohler rule should not be used to distinguish normal and anomalous electron transport in solids.

  13. Falling film evaporator

    DOEpatents

    Bruns, Lester E.

    1976-01-01

    A falling film evaporator including a vertically oriented pipe heated exteriorly by a steam jacket and interiorly by a finned steam tube, all heating surfaces of the pipe and steam tube being formed of a material wet by water such as stainless steel, and packing within the pipe consisting of Raschig rings formed of a material that is not wet by water such as polyvinylidene fluoride.

  14. Thin film composite electrolyte

    DOEpatents

    Schucker, Robert C.

    2007-08-14

    The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

  15. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  16. Waterborne Polymeric Films.

    DTIC Science & Technology

    1981-02-01

    Parameters of Test Fluids I " 3. Energies of Vaporization and Molar Volumes of Some Acrylic Monomers 29 4. Physical Properties of Synthetic Polymers 31 S...Physical Properties of Synthetic Acrylic Aqueous Dispersions 33 6. Anionic Acrylic Clear-film Formulations 35 7 Fluid Resistance of Anionic Acrylic...41 11. Energeis of Vaporization and Molar Volumes of Some Polyurethanes 45 12. Solution Properties of Synthetic Polyurethanes 47 13. Aqueous

  17. Spring magnet films.

    SciTech Connect

    Bader, S. D.; Fullerton, E. E.; Gornakov, V. S.; Inomata, A.; Jiang, J. S.; Nikitenko, V. I.; Shapiro, A. J.; Shull, R. D.; Sowers, C. H.

    1999-03-29

    The properties of exchange-spring-coupled bilayer and superlattice films are highlighted for Sm-Co hard magnet and Fe or Co soft magnet layers. The hexagonal Sm-Co is grown via magnetron sputtering in a- and b-axis epitaxial orientations. In both cases the c-axis, in the film plane, is the easy axis of magnetization. Trends in coercivity with film thickness are established and related to the respective microstructure of the two orientations. The magnetization reversal process for the bilayers is examined by magnetometry and magneto-optical imaging, as well as by simulations that utilize a one-dimensional model to provide the spin configuration for each atomic layer. The Fe magnetization is pinned to that of the Sm-Co at the interface, and reversal proceeds via a progressive twisting of the Fe magnetization. The Fe demagnetization curves are reversible as expected for a spring magnet. Comparison of experiment and simulations indicates that the spring magnet behavior can be understood from the intrinsic properties of the hard and soft layers. Estimated are made of the ultimate gain in performance that can potentially be realized in this system.

  18. Mesoporous TiO2 Nanowire Film for Dye-Sensitized Solar Cell.

    PubMed

    Xiao, Li; Xu, Jia; Liu, Xiu; Zhang, Yongzhe; Zhang, Bing; Yao, Jianxi; Dai, Songyuan; Tan, Zhanao; Pan, Xu

    2016-06-01

    In this work, TiO2 nanowire arrays were grown on fluorine-doped tin oxide (FTO) glass substrate, and then were converted into mesoporous nanowires (MNWs). The TiO2 MNWs are about 5 μm in length and 30-200 nm in diameter, with mesopores size of 5-30 nm randomly distributed on the NW surface. X-ray diffraction pattern reports show that the NWs are single crystallized rutile TiO2 and oriented grown along [001]. Through further characterization of FT-IR and TG-DSC, we proposed a reasonable explanation for pore existence. After dye-sensitized solar cells (DSSCs) assembly, the photoelectric conversion efficiency (PCE) of MNWs based DSSC achieved 3.2%. It means tenfold enhancement of photoelectric property compare with the as-grown NWs. Furthermore, dye absorb capacity of MNWs can reach up to 4.11 x 10(-8) mol/cm2. However, such MNWs can not only provide quick and efficient electron transmission channel, but also owns big specific surface area to absorb abundant dyes, thus conducive to fabricate solar cell with a high PCE.

  19. Effect of Repetitive Film Showings on Learning.

    ERIC Educational Resources Information Center

    Mc Tavish, C. L.

    In a study made in 1949 to determine the increment in learning that could be attributed to repetition, four general science films were shown to each of four groups of college students in such a way that each group saw one of the films once, a second film twice, a third film three times, and a fourth film four times. The experimental population…

  20. Short Films for Physics Teaching, A Catalog.

    ERIC Educational Resources Information Center

    Bluestone, Barbara Z.; Roth, Richard F.

    This annotated film catalog is a product of the Conference on Single Concept Films in College Physics Teaching sponsored by the Commission on College Physics. Both 8mm and 16mm single concept films are listed for physics and related disciplines. The catalog includes commercial, noncommercial, and foreign films. However, the film coverage was…

  1. Films on the arms race

    SciTech Connect

    Dowling, J.

    1983-01-01

    Films convey the historical perspectives, the biographical stories, the insights of the participants, and the horror of nuclear war - far better than can any physicist. While films are not very efficient for covering details, derivation, or numbers, they can not be beaten in showing what really happens in a nuclear explosion, in getting across general concepts, in illustrating the parameters of a problem, and the problem itself. Most importantly, films and TV can reach the people who must be informed about these issues if we are to resolve the problems. The author points out how films can contribute to an understanding of the issues of the arms race and nuclear war, with references to specific films. An annotated bibliography of 37 films is then presented.

  2. Elasticity of Flowing Soap films

    NASA Astrophysics Data System (ADS)

    Kim, Ildoo; Mandre, Shreyas

    2016-11-01

    The robustness of soap films and bubbles manifests their mechanical stability. The single most important factor underlying the mechanical stability of soap films is its elasticity. Non-destructive measurement of the elasticity in these films has been cumbersome, because of its flowing nature. Here we provide a convenient, reproducible, and non-destructive method for measuring the elasticity by generating and inspecting Marangoni waves. Our method is based on generating an oblique shock by inserting a thin cylindrical obstacle in the flowing film, and converting the measured the shock angle to elasticity. Using this method, we find a constant value for the elasticity of 22 dyne/cm in the commonly used range of film widths, thicknesses or flow rates, implying that the surface of the film is chemically saturated with soap molecules.

  3. Fracture characteristics of balloon films

    NASA Technical Reports Server (NTRS)

    Portanova, Marc A.

    1989-01-01

    An attempt was made to determine the failure modes of high altitude scientific balloons through an investigation of the fracture characteristics of the thin polyethylene films. Two films were the subject of the evaluation, Winzen Int.'s Stratafilm SF-85 and Raven Industries' Astro-E. Research began with an investigation of the film's cold brittleness point and it's effect on the ultimate strength and elasticity of the polyethylene film. A series of preliminary investigations were conducted to develop an understanding of the material characteristics. The primary focus of this investigation was on the notch sensitivity of the films. Simple stress strain tests were also conducted to enable analysis employing fracture toughness parameters. Studies were conducted on both film types at 23 C (room temperature), -60 C, -90 C, and -120 C.

  4. Characterization of Nanostructured Polymer Films

    DTIC Science & Technology

    2014-12-23

    of the film for complete polymer chain relaxation, including relaxation of surface features . The presence of intact surface globules at a substrate...AFRL-OSR-VA-TR-2015-0059 Characterization of Nanostructured Polymer Films RODNEY PRIESTLEY TRUSTEES OF PRINCETON UNIVERSITY Final Report 12/23/2014...Report 3. DATES COVERED (From - To) 06/01/2012-08/31/2014 4. TITLE AND SUBTITLE Characterization of Nanostructured Polymer Films 5a. CONTRACT

  5. Diamond films for laser hardening

    NASA Technical Reports Server (NTRS)

    Albin, S.; Watkins, L.; Ravi, K.; Yokota, S.

    1989-01-01

    Laser-damage experiments were performed on free-standing polycrystalline diamond films prepared by plasma-enhanced CVD. The high laser-induced stress resistance found for this material makes it useful for thin-film coatings for laser optics. Results for diamond-coated silicon substrates demonstrate the enhanced damage threshold imparted by diamond thin-film coatings to materials susceptible to laser damage.

  6. Frequency mixer having ferromagnetic film

    DOEpatents

    Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.

    2016-03-29

    A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.

  7. Communicating Science: Lessons from Film.

    PubMed

    Berlin, Heather A

    2016-04-01

    Films engage us visually, aurally, viscerally, and emotionally. Incorporating science themes into films has the potential to open up new audiences to scientific ideas, pique their interests, and inspire them to engage in a broader discussion of the science itself. Here, I discuss several narrative techniques and strategies employed in film to effectively engage the audience around science themes, which may be useful tools for scientists looking to become better communicators.

  8. Drying of thin colloidal films

    NASA Astrophysics Data System (ADS)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  9. Slow rupture of polymer films

    NASA Astrophysics Data System (ADS)

    Kliakhandler, Igor

    2004-11-01

    Bursting of soap film is a fast and fascinating process. It turns out that certain polymer films rupture in a somewhat similar fashion, but much slower. The slowness of the process allows one to study the rupture of polymer films with details. The rupture process in Hele-Shaw-like fashion shows remarkable properties, and is a very simple system. It turns out that propagation speed of the rupture is a function of the film thickness, and rheologic properties of the polymer. Experimental results will be compared with theory, together with demonstration of the experiment.

  10. Evaluation of the Blood Film.

    PubMed

    Campbell, Terry W

    2015-09-01

    Evaluation of hemic cell morphology in stained blood film may be the most important part of the hematologic evaluation of exotic animals. The blood film provides important information regarding red blood cell abnormalities, such as changes in cell shape and color, presence of inclusions, and, in the case of lower vertebrates, changes in the position of the cell nucleus. Stained blood film also provides information about changes in leukocyte numbers and morphology, and shows important hemic features of mammalian platelets and the thrombocytes of lower vertebrates. The blood film is needed in the detection and identification of blood parasites.

  11. Oxide Films for RF Applications

    DTIC Science & Technology

    2008-07-01

    structured thin film superlattices of (AEO)m( TiO2 )n - type with varying m and n numbers in order to generate a homologous series of materials having...mechanisms in MBE oxide films The proposed goal was to identify, isolate, and reduce sources of loss in thin film dielectrics. It is important to note...that the loss in bulk single crystals is often orders of magnitude below that of their thin film counterparts. It is believed that defects in thin

  12. Process to form mesostructured films

    DOEpatents

    Brinker, C.J.; Anderson, M.T.; Ganguli, R.; Lu, Y.F.

    1999-01-12

    This invention comprises a method to form a family of supported films with pore size in the approximate range 0.8-20 nm exhibiting highly ordered microstructures and porosity derived from an ordered micellar or liquid-crystalline organic-inorganic precursor structure that forms during film deposition. Optically transparent, 100-500-nm thick films exhibiting a unique range of microstructures and uni-modal pore sizes are formed in seconds in a continuous coating operation. Applications of these films include sensors, membranes, low dielectric constant interlayers, anti-reflective coatings, and optical hosts. 12 figs.

  13. "Kuleshov on Film": A Spectator-Centered Film Theory.

    ERIC Educational Resources Information Center

    Curran, Trisha

    This paper describes some of the theories of cinematography of Soviet film theorist and filmmaker Lev Kuleshov. It points out that for him, film was communication portraying people's activities emanating from the environment. It explains that he was especially interested in audience response, particularly that of the proletariat, and that he felt…

  14. Electrically conductive palladium-containing polyimide films

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Furtsch, T. A.; Taylor, L. T.

    1981-01-01

    Palladium addition makes light, flexible film with low resistivity to relieve space charging. Polyimide film is prepared in four steps: preparation of polyamic acid in polar solvent; addition of soluable palladium complex salt; fabrication of film of "palladium polyamic acid" solution; and thermal imidization of film to palladium-containing polyimide by 300 C heating. Lowered resistivities were achieved without loss in film flexibility or increase in film weight.

  15. Radiation grafting on natural films

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Khan, R.; Senna, M.; Sharmin, N.; Salmieri, S.; Safrany, A.

    2014-01-01

    Different methods of polymer grafting using gamma irradiation are reported in the present study for the preparation of newly functionalized biodegradable films, and some important properties related to their mechanical and barrier properties are described. Biodegradable films composed of zein and poly(vinyl alcohol) (PVA) were gamma-irradiated in presence of different ratios of acrylic acid (AAc) monomer for compatibilization purpose. Resulting grafted films (zein/PVA-g-AAc) had their puncture strength (PS=37-40 N mm-1) and puncture deformation (PD=6.5-9.8 mm) improved for 30% and 50% PVA in blend, with 5% AAc under 20 kGy. Methylcellulose (MC)-based films were irradiated in the presence of 2-hydroxyethyl methacrylate (HEMA) or silane, in order to determine the effect of monomer grafting on the mechanical properties of films. It was found that grafted films (MC-g-HEMA and MC-g-silane) using 35% monomer performed higher mechanical properties with PS values of 282-296 N mm-1 and PD of 5.0-5.5 mm under 10 kGy. Compatibilized polycaprolactone (PCL)/chitosan composites were developed via grafting silane in chitosan films. Resulting trilayer grafted composite film (PCL/chitosan-g-silane/PCL) presented superior tensile strength (TS=22 MPa) via possible improvement of interfacial adhesion (PCL/chitosan) when using 25% silane under 10 kGy. Finally, MC-based films containing crystalline nanocellulose (CNC) as a filling agent were prepared and irradiated in presence of trimethylolpropane trimethacrylate (TMPTMA) as a grafted plasticizer. Grafted films (MC-g-TMPTMA) presented superior mechanical properties with a TS of 47.9 MPa and a tensile modulus (TM) of 1792 MPa, possibly due to high yield formation of radicals to promote TMPTMA grafting during irradiation. The addition of CNC led to an additional improvement of the barrier properties, with a significant 25% reduction of water vapor permeability (WVP) of grafted films.

  16. Protective Film Moves Aside

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Relatively warmer daytime temperatures on Mars have allowed the biobarrier -- a shiny, protective film -- to peel away a little more from the robotic arm of NASA's Phoenix Mars Lander.

    This image shows the spacecraft's robotic arm in its stowed configuration, with the biobarrier unpeeled on landing day, or Sol (Martian day) 0, and the lander's first full day on Mars, Sol 1.

    The 'elbow' of the arm can be seen at the top center of the picture, and the biobarrier is the shiny film seen to the left of the arm.

    The biobarrier is an extra precaution to protect Mars from contamination with any bacteria from Earth. While the whole spacecraft was decontaminated through cleaning, filters and heat, the robotic arm was given additional protection because it is the only spacecraft part that will directly touch the ice below the surface of Mars.

    Before the arm was heated, it was sealed in the biobarrier, which is made of a trademarked film called Tedlar that holds up to baking like a turkey-basting bag. This ensures that any new bacterial spores that might have appeared during the final steps before launch and during the journey to Mars will not contact the robotic arm.

    After Phoenix landed, springs were used to pop back the barrier, giving it room to deploy.

    These images were taken on May 25, 2008 and May 26, 2008 by the spacecraft's Surface Stereo Imager.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Plasma deposition of organic thin films: Control of film chemistry

    SciTech Connect

    Ratner, B.D.

    1993-12-31

    Plasma deposition of thin, polymeric films represent a versatile surface modification technology. Although these thin films are exploited for many applications, complaints heard about plasma deposited films are that their structures are uncharacterizable, that organic functionality is lost in their production and that reproducibility is difficult. Recently, new methods for film production, reactor control and surface characterization have led to well characterized plasma deposited thin polymeric films (PDTPF) with defined structure and organic functionality. Such PDTPF often closely resemble conventionally prepared homopolymers. Methods that can be used to control the chemistry of PDTPF are the minimization of the plasma power, pulsing the RF field to reduce the {open_quotes}plasma on{close_quotes} time, use of a Faraday cage to reduce electron bombardment, positioning the sample downfield from the glow zone, the use of monomers containing polymerizable double bonds and the use of a cold substrate to condense vapor simultaneously with plasma deposition.

  18. Antireflective polyimide based films

    NASA Astrophysics Data System (ADS)

    Cao, Yuanmei

    The goal of this work was to prepare antireflective and anti-abrasion films using polyimide and organically modified silica nanoparticle thin films. A series of thin film were prepared from colorless and soluble polyimide with organically modified silica colloids via a solution casting method. The polyimide was selected for its optical properties. Three type of organically modified silica nanoparticles were prepared by grafting polysiloxane, polyfluoroester and fluoroalkyl groups onto silica nanoparticles. The molecular weight of the polysiloxane, polyfluoroester and the amount of fluorinated alkyl groups were varied. The organically modified silica colloids were characterized by TEM, DLS, FTIR, 1H NMR, solid state 13C NMR and solid state 29Si NMR. The coatings were characterized by UV-Vis transmittance spectra and SEM. The effect of modified silica loading, the molecular weight of polymer and type of solvent on AR properties were studied. An enhancement in antireflective activity was observed for 1 wt% LPDMS modified (low molecular weight) silica coatings, 3 wt% fluorosilica-10 and 3% L-MPS-PF-SILICA nanoparticles (low molecular weight polyfluoroester modified silica) in dimethylacetamide (DMAc). In comparison with cyclopentanone (CPT), DMAc favors migration of silica particles towards coating-air interface giving higher transmittance. The migration of particles to the surface and consequent increased surface roughness were observed by SEM. The present study suggested a roll to roll solution casting method to create antireflective coatings. This approach had potential to be used for a one-step large-scale manufacturing of antireflective coating. Four acrylated bismaleimide were made via two-step process. The first step involved the solution imidization to form hydroxylated bismaleimide. In the second step, hydroxylated bismaleimide was reacted with acryloyl chloride to form acrylated bismaleimide. The acrylated bismaleimide were characterized by FTIR, 1H NMR, 13C

  19. Carbonaceous film coating

    DOEpatents

    Maya, Leon

    1989-01-01

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris[1,3,2]diazaborine[1,2-a:1'2'-c:1"2"-e]borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  20. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  1. Cardiovascular Cine Film Quality

    NASA Astrophysics Data System (ADS)

    Scheid, Carl C.

    1983-12-01

    The detection of a cardiovascular stenosis involves the complex interaction of technique selection, system performance and anatomy. Technique selection for instance involves choosing the correct focal spot, pulse width, KVp, and frame rate for a given patient and projection angle. In order to provide guidance in this selection process, these variables were investigated in terms of their impact on image quality. Conclusions which were confirmed clinically are summarized in terms of recommended techniques for a range of patient sizes. The confirmation includes clinical films which demonstrates the effects of parameter changes.

  2. Carbonaceous film coating

    DOEpatents

    Maya, L.

    1988-04-27

    A method of making a carbonaceous film comprising heating tris(1,3,2-benzodiazaborolo)borazine or dodecahydro tris(1,3,2)diazaborine(1,2-a:1'2'-c:1''2''-e)borazine in an inert atmosphere in the presence of a substrate to a temperature at which the borazine compound decomposes, and the decomposition products deposit onto the substrate to form a thin, tenacious, highly reflective conductive coating having a narrow band gap which is susceptible of modification and a relatively low coefficient of friction.

  3. Turbine airfoil film cooling

    NASA Technical Reports Server (NTRS)

    Hylton, Larry D.

    1986-01-01

    Emphasis is placed on developing more accurate analytical models for predicting turbine airfoil external heat transfer rates. Performance goals of new engines require highly refined, accurate design tools to meet durability requirements. In order to obtain improvements in analytical capabilities, programs are required which focus on enhancing analytical techniques through verification of new models by comparison with relevant experimental data. The objectives of the current program are to develop an analytical approach, based on boundary layer theory, for predicting the effects of airfoil film cooling on downstream heat transfer rates and to verify the resulting analytical method by comparison of predictions with hot cascade data obtained under this program.

  4. High Performance YBCO Films

    DTIC Science & Technology

    1992-07-01

    growing high quality MgO films on SrF2 substrates is the oxygen partial pressure during the growth. The x-ray data presented in Fig. 13 indicates a...fluo-ide and quartz substrates. The best result with two buffer layers (MgO and YSZ) on SrF2 was an onset temperature (Tc) of 82K and a transition...With a YSZ buffer an onset temperature of 85K and a transition width of 5K was achieved. Recent success was demonstrated by Neocera ( under a NASA

  5. A Film Canister Colorimeter

    NASA Astrophysics Data System (ADS)

    Gordon, James; James, Alan; Harman, Stephanie; Weiss, Kristen

    2002-08-01

    A low-cost, low-tech colorimeter was constructed from a film canister. The light source and filter monochromator was an interchangeable LED. The detector for this system was a voltage-divider circuit composed of a photoresistor in series with a fixed resistor. The student-constructed colorimeter was used to show the Beer–Lambert relationship between absorbance and concentration and to calculate the value of the molar absorptivity for permanganate at the wavelength emission maximum for the LED. Comparisons were made between this instrument and three commercial spectrometers and colorimeters.

  6. Predicting film genres with implicit ideals.

    PubMed

    Olney, Andrew McGregor

    2012-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  7. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  8. Fire resistant films for aircraft applications

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  9. ADVANCED THIN-FILM SOLAR CELLS.

    DTIC Science & Technology

    SEMICONDUCTING FILMS), (* SOLAR CELLS , MANUFACTURING, GALLIUM ALLOYS, ARSENIC ALLOYS, PLATINUM, OXIDES, TRANSPORT PROPERTIES, MOLYBDENUM, METAL FILMS, COPPER, HYDROGEN, GERMANIUM ALLOYS, TIN ALLOYS, ZINC, CRYSTAL GROWTH.

  10. Liquid film demonstration experiment Skylab SL-4

    NASA Technical Reports Server (NTRS)

    Darbro, W.

    1975-01-01

    The liquid film demonstration experiment performed on Skylab 4 by Astronaut Gerald Carr, which involved the construction of water and soap films by boundary expansion and inertia, is discussed. Results include a 1-ml globule of water expanded into a 7-cm-diameter film as well as complex film structures produced by inertia whose lifetimes are longer in the low-g environment. Also discussed are 1-g acceleration experiments in which the unprovoked rupture of films was photographed and film lifetimes of stationary and rotated soap films were compared. Finally, there is a mathematical discussion regarding minimal surfaces, an isoperimetric problem, and liquid films.

  11. Predicting Film Genres with Implicit Ideals

    PubMed Central

    Olney, Andrew McGregor

    2013-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories. PMID:23423823

  12. Electrical initiation of an energetic nanolaminate film

    DOEpatents

    Tringe, Joseph W.; Gash, Alexander E.; Barbee, Jr., Troy W.

    2010-03-30

    A heating apparatus comprising an energetic nanolaminate film that produces heat when initiated, a power source that provides an electric current, and a control that initiates the energetic nanolaminate film by directing the electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature. Also a method of heating comprising providing an energetic nanolaminate film that produces heat when initiated, and initiating the energetic nanolaminate film by directing an electric current to the energetic nanolaminate film and joule heating the energetic nanolaminate film to an initiation temperature.

  13. Cinemabilia; Catalogue of Film Literature.

    ERIC Educational Resources Information Center

    Cinemabilia, New York, NY.

    The catalog lists and briefly annotates more than 3,500 current, second-hand, and out-of-print books about film that are available from Cinemabilia, New York City. The catalog is divided into 37 categories. The section on special genre lists works on horror, science fiction, Westerns, and Tarzan films, ranging from "Drums of Fu-Manchu" to "Movie…

  14. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  15. Teaching the Holocaust through Film.

    ERIC Educational Resources Information Center

    Michalczyk, John J.

    The use of Holocaust-related films and Holocaust survivors as classroom resources is analyzed. The perspective and function of four film genres are outlined as follows. Newsreels, made by the Nazis to chronicle their "progress," provide powerful raw footage of the concentration camp experience. Documentaries, generally made by Allied…

  16. Improved Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  17. Latino Film and Video Images.

    ERIC Educational Resources Information Center

    Vazquez, Blanca, Ed.

    1990-01-01

    This theme issue of the "Centro Bulletin" examines media stereotypes of Latinos and presents examples of alternatives. "From Assimilation to Annihilation: Puerto Rican Images in U.S. Films" (R. Perez) traces the representation of Puerto Ricans from the early days of television to the films of the 1970s. "The Latino 'Boom'…

  18. Methods of Producing Thin Films,

    DTIC Science & Technology

    The report describes various methods of producing thin films , especially for microelectronics. In addition to the classical methods of forming thin ... films by vacuum vapor deposition, it also describes processes of diode sputtering and modern methods of cathode sputtering by means of a third

  19. Films for Sociology, First Edition.

    ERIC Educational Resources Information Center

    LeBeau, Bryan, Comp.

    This catalog contains a listing of over 1,000 16mm films of interest to students, teachers, and researchers in sociology. Whenever possible, content reflects current trends toward increased interdisciplinary investigation. In the main body of the catalog, the films are listed alphabetically by title. For each entry, information is given on…

  20. Liquid-film electron stripper

    DOEpatents

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  1. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  2. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  3. Films in the ESL Classroom.

    ERIC Educational Resources Information Center

    Gex, Judith Coppock

    The most important consideration with regard to classroom use of films in an English as a second language (ESL) class is that it should be previewed by the teacher and selected according to criteria such as those suggested here. In example, short silent films that are uncluttered in appearance are good vehicles for teaching vocabulary. Some…

  4. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  5. Symbolism in the Feature Film.

    ERIC Educational Resources Information Center

    Bakony, Edward

    A study of symbolism in feature films reveals how the symbolism employed by film makers can serve as a bridge between feeling and thought, and between aesthetics and cognition. What individuals read from and learn through a symbol varies with what they bring to it. The filmmaker's symbolims must be universal and not private. However, symbolism in…

  6. Uses for Free Film Cans

    ERIC Educational Resources Information Center

    Batoff, Mitchell E.; Harmen, Jerry

    1973-01-01

    Describes multiple uses of empty film cans for equipping an elementary school science classroom. Instructional units in which film cans may be useful include buoyancy, mobiles, growing seeds, peas and particles, rocks and minerals, structures, field studies, sound, balancing, electricity, pedulums, chemical change, and optics, light, color. (PS)

  7. Magnetochromatic thin-film microplates.

    PubMed

    He, Le; Janner, Michael; Lu, Qipeng; Wang, Mingsheng; Ma, Hua; Yin, Yadong

    2015-01-07

    A new type of magnetochromatic material is developed based on thin-film interference of microplates self-assembled from super-paramagnetic nanocrystals. Dynamic optical tuning can be achieved through orientational manipulation of free-standing super-paramagnetic thin-film microplates using external magnetic fields.

  8. Thin Film Inorganic Electrochemical Systems.

    DTIC Science & Technology

    1995-07-01

    determined that thin film cathodes of LiCoO2 can be readily performed by either spray pyrolysis or spin coating . These cathodes are electrochemically...active. We have also determined that thin film anodes of Li4Ti5O12 can be prepared by spray pyrolysis or spin coating . These anodes are also

  9. Feminist Film Theory and Criticism.

    ERIC Educational Resources Information Center

    Mayne, Judith

    1985-01-01

    Discusses Laura Mulvey's 1975 essay, "Visual Pleasure and Narrative Cinema," and the ideas about feminist film theory and psychoanalysis as a critical tool which it raises. Suggests contradiction is the central issue in feminist film theory. Explores definitions of women's cinema. (SA)

  10. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  11. Films and the English Class.

    ERIC Educational Resources Information Center

    Donelson, Kenneth, Ed.

    1971-01-01

    The importance of film in the English classroom and its vitality in the English curriculum are discussed. Articles that comprise this issue of the bulletin are: The Trouble with Film Teaching by James E. Cutts; "You Ain't Heard Nothin' Yet" or Send Your Students to the Flicks Tonight by Bob Haskett; It's the Reel Thing: The Verite of Cinema Is…

  12. The Public Library Film Redefined.

    ERIC Educational Resources Information Center

    Peltier, Euclid

    1978-01-01

    An historical discussion of three types of film--teaching, information, and entertainment--is presented. The numbers of films in each category, especially the last, which includes the animated, unnarrated, iconographic, underground, and avant-garde, has grown substantially. Libraries have quickly accepted all except the revolutionary philosophies…

  13. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  14. Soap film gas flowmeter

    SciTech Connect

    Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.

    1987-09-08

    A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measured using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.

  15. Thermopower of thin iron films

    NASA Astrophysics Data System (ADS)

    Schepis, Randy; Schröder, Klaus

    1992-02-01

    Thin iron films were prepared by evaporation in a high vacuum system (pressure in the 10 -5 MPa range). The thermopower was measured in situ near room temperature as a function of film thickness. Iron films with rather high resistivity values showed a strong thickness effect of the Seeback coefficient, S, with the difference between S (bulk) and S (film) reaching values of up to (19±3) μV/K for a sample 5 nm thick. The difference between S (bulk) and S (film) decreased with increasing d values. However, a sample with a resistance value of 50 μΩ cm at d = 5 n had an S value which differed by less than 3 μV/K from S (bulk).

  16. A new radiochromic dosimeter film

    NASA Astrophysics Data System (ADS)

    Sidney, L. N.; Lynch, D. C.; Willet, P. S.

    By employing acid-sensitive leuco dyes in a chlorine-containing polymer matrix, a new radiochromic dosimeter film has been developed for gamma, electron beam, and ultraviolet radiation. These dosimeter films undergo a color change from colorless to royal blue, red fuchsia, or black, depending on dye selection, and have been characterized using a visible spectrophotometer over an absorbed dose range of 1 to 100 kGy. The primary features of the film are improved color stability before and after irradiation, whether stored in the dark or under artificial lights, and improved moisture resistance. The effects of absorbed dose, dose rate, and storage conditions on dosimeter performance are discussed. The dosimeter material may be produced as a free film or coated onto a transparent substrate and optionally backed with adhesive. Potential applications for these materials include gamma sterilization indicator films for food and medical products, electron beam dosimeters, and in-line radiation monitors for electron beam and ultraviolet processing.

  17. Anode film formation and control

    DOEpatents

    Koski, O.; Marschman, S.C.

    1990-05-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

  18. Anode film formation and control

    DOEpatents

    Koski, Oscar; Marschman, Steven C.

    1990-01-01

    A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film function to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al.sub.2 O.sub.3 concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film.

  19. Film Fabrication Technologies at NREL

    NASA Technical Reports Server (NTRS)

    Mcconnell, Robert D.

    1993-01-01

    The National Renewable Energy Laboratory (NREL) has extensive capabilities for fabricating a variety of high-technology films. Much of the in-house work in NREL's large photovoltaics (PV) program involves the fabrication of multiple thin-film semiconducting layers constituting a thin-film PV device. NREL's smaller program in superconductivity focuses on the fabrication of superconducting films on long, flexible tape substrates. This paper focuses on four of NREL's in-house research groups and their film fabrication techniques, developed for a variety of elements, alloys, and compounds to be deposited on a variety of substrates. As is the case for many national laboratories, NREL's technology transfer efforts are focusing on Cooperative Research and Development Agreements (CRADA's) between NREL researchers and private industry researchers.

  20. Contributions of Film Introductions and Film Summaries to Learning from Instructional Films.

    ERIC Educational Resources Information Center

    Lathrop, C. W., Jr.; Norford, C. A.

    An exploratory study of the contribution to learning of typical introductory and summarizing sequences in instructional films underlined the need for further experimental work to determine what kinds of introductory and concluding sequences are most useful in promoting learning from films. The first part of the study was concerned with film…

  1. Film thickness for different regimes of fluid-film lubrication

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1980-01-01

    Film thickness equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic lubrication of low-elastic-modulus materials (soft EHL), or isoviscous-elastic; and elastohydrodynamic lubrication of high-elastic-modulus materials (hard EHL), or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The results are presented as a map of the lubrication regimes, with film thickness contours on a log-log grid of the viscosity and elasticity for three values of the ellipticity parameter.

  2. Effects on film structure on mechanical and adhesion properties of latex films

    SciTech Connect

    Charmeau, J.Y.; Holl, Y.; Kientz, E.

    1995-12-31

    In order to investigate the effect of the particular structure of latex films on mechanical (stress-strain behavior) and adhesion (measured by peeling) properties, this work compares these characteristics for latex films and corresponding {open_quotes}solution films{close_quotes}. Solution films were obtained by dissolving the latex film in an appropriate solvent and forming a new film by evaporating the solvent. Four different systems were studied. It was shown that latex films have Young`s moduli systematically much higher than the corresponding solution films. This is due to the fact that the hydrophilic shells of the latex particles form a continuous phase in the latex film which increases the modulus thanks to polar interactions. However, adhesion energy for latex films is always smaller than for solution films. This is interpreted in terms of structure of the film-support interface and dissipative processes within the bulk of the films.

  3. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  4. Thin film hydrogen sensor

    DOEpatents

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  5. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  6. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  7. Antimicrobial edible films and coatings.

    PubMed

    Cagri, Arzu; Ustunol, Zeynep; Ryser, Elliot T

    2004-04-01

    Increasing consumer demand for microbiologically safer foods, greater convenience, smaller packages, and longer product shelf life is forcing the industry to develop new food-processing, cooking, handling, and packaging strategies. Nonfluid ready-to-eat foods are frequently exposed to postprocess surface contamination, leading to a reduction in shelf life. The food industry has at its disposal a wide range of nonedible polypropylene- and polyethylene-based packaging materials and various biodegradable protein- and polysaccharide-based edible films that can potentially serve as packaging materials. Research on the use of edible films as packaging materials continues because of the potential for these films to enhance food quality, food safety, and product shelf life. Besides acting as a barrier against mass diffusion (moisture, gases, and volatiles), edible films can serve as carriers for a wide range of food additives, including flavoring agents, antioxidants, vitamins, and colorants. When antimicrobial agents such as benzoic acid, sorbic acid, propionic acid, lactic acid, nisin, and lysozyme have been incorporated into edible films, such films retarded surface growth of bacteria, yeasts, and molds on a wide range of products, including meats and cheeses. Various antimicrobial edible films have been developed to minimize growth of spoilage and pathogenic microorganisms, including Listeria monocytogenes, which may contaminate the surface of cooked ready-to-eat foods after processing. Here, we review the various types of protein-based (wheat gluten, collagen, corn zein, soy, casein, and whey protein), polysaccharide-based (cellulose, chitosan, alginate, starch, pectin, and dextrin), and lipid-based (waxes, acylglycerols, and fatty acids) edible films and a wide range of antimicrobial agents that have been or could potentially be incorporated into such films during manufacture to enhance the safety and shelf life of ready-to-eat foods.

  8. Language, Culture, and the Feature Film.

    ERIC Educational Resources Information Center

    Straub, Hans

    2002-01-01

    Suggests that one way to provide cultural contexts for language learning is by using feature films for instructional purposes. Highlights the benefits of feature films, discusses the selection of films, and describes a process for using feature films in the language classroom. (Author/VWL)

  9. FILM WORKSHOP SUCCESSFUL WITH TSU STUDENTS.

    ERIC Educational Resources Information Center

    BAHRENBERG, JIM

    AN UPWARD BOUND FILM WORKSHOP AT TEXAS SOUTHERN UNIVERSITY EXPOSED STUDENTS TO FILMS AS A CREATIVE ART FORM, A MEANS OF COMMUNICATION, AND A BASIS FOR DISCUSSING VALUES. IN ADDITION TO VIEWING SEVERAL SHORT, PROFESSIONALLY-DEVELOPED FILMS, STUDENTS WROTE AND PRODUCED TWO OF THEIR OWN. ONE STUDENT-PRODUCED FILM--A LIGHT SHOW--ILLUMINATED THE UNITY…

  10. EFFECT OF REPETITIVE FILM SHOWINGS ON LEARNING.

    ERIC Educational Resources Information Center

    MCTAVISH, C.L.; AND OTHERS

    A DETERMINATION OF THE INCREMENT IN LEARNING ATTRIBUTABLE SOLELY TO ONE, TWO, AND THREE REPETITIONS OF A FILM OVER AND ABOVE A SINGLE SHOWING WAS INVESTIGATED. THE SUBJECTS WERE 319 COLLEGE FRESHMEN WHO WERE DIVIDED INTO FOUR GROUPS AND WHO WERE SHOWN FOUR GENERAL SCIENCE FILMS. EACH GROUP SAW ONE OF THE FILMS ONCE, A SECOND FILM TWICE, A THIRD…

  11. Geoflicks Reviewed--Films about Hawaiian Volcanoes.

    ERIC Educational Resources Information Center

    Bykerk-Kauffman, Ann

    1994-01-01

    Reviews 11 films on volcanic eruptions in the United States. Films are given a one- to five-star rating and the film's year, length, source and price are listed. Top films include "Inside Hawaiian Volcanoes" and "Kilauea: Close up of an Active Volcano." (AIM)

  12. Historical Films in the Latin Classroom.

    ERIC Educational Resources Information Center

    Buller, Jeffrey L.

    Guidelines and lesson plans are presented for teachers of Latin using historical films as instructional and support materials. A discussion of the use of historical films addresses these issues in classroom practice: the legality of using films in the classroom (copyrights); techniques for using historical films as sources of cultural information;…

  13. "Space slitter" for film or tape

    NASA Technical Reports Server (NTRS)

    Johnson, W. H.

    1978-01-01

    Device cuts film or tape into strips by guiding film in channel under cutting blades. Device is operated by lifting pressure bar to insert blades into film. Film is then pulled through blades. Cutter has potential uses in advertising, commercial art, and publishing fields.

  14. 19 CFR 12.41 - Prohibited films.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Prohibited films. 12.41 Section 12.41 Customs... SPECIAL CLASSES OF MERCHANDISE Immoral Articles § 12.41 Prohibited films. (a) Importers of films, shall certify on Customs Form 3291 that the imported films contain no obscene or immoral matter, nor any...

  15. 19 CFR 12.41 - Prohibited films.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Prohibited films. 12.41 Section 12.41 Customs... SPECIAL CLASSES OF MERCHANDISE Immoral Articles § 12.41 Prohibited films. (a) Importers of films, shall certify on Customs Form 3291 that the imported films contain no obscene or immoral matter, nor any...

  16. 19 CFR 12.41 - Prohibited films.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Prohibited films. 12.41 Section 12.41 Customs... SPECIAL CLASSES OF MERCHANDISE Immoral Articles § 12.41 Prohibited films. (a) Importers of films, shall certify on Customs Form 3291 that the imported films contain no obscene or immoral matter, nor any...

  17. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  18. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  19. 19 CFR 12.41 - Prohibited films.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Prohibited films. 12.41 Section 12.41 Customs... SPECIAL CLASSES OF MERCHANDISE Immoral Articles § 12.41 Prohibited films. (a) Importers of films, shall certify on Customs Form 3291 that the imported films contain no obscene or immoral matter, nor any...

  20. 19 CFR 12.41 - Prohibited films.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Prohibited films. 12.41 Section 12.41 Customs... SPECIAL CLASSES OF MERCHANDISE Immoral Articles § 12.41 Prohibited films. (a) Importers of films, shall certify on Customs Form 3291 that the imported films contain no obscene or immoral matter, nor any...

  1. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  2. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  3. 16 CFR 501.1 - Camera film.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Camera film. 501.1 Section 501.1 Commercial... 500 § 501.1 Camera film. Camera film packaged and labeled for retail sale is exempt from the net... should be expressed, provided: (a) The net quantity of contents on packages of movie film and bulk...

  4. Using Popular Children's Films in Science

    ERIC Educational Resources Information Center

    Wadsworth, Elle; Croker, Stev; Harrison, Tim

    2012-01-01

    Watching films is a common activity for children outside of school, and incorporating popular films that contain scientific references has the potential to spark interest in the classroom. Clips rather than entire films can be used, as the children will maintain focus on the lesson objectives while being excited by the appeal of the film. The use…

  5. Subjective Sexual Arousal to Films of Masturbation

    ERIC Educational Resources Information Center

    Mosher, Donald L.; Abramson, Paul R.

    1977-01-01

    A film of a male or female masturbating was viewed by 96 males and 102 females. Males reported the highest level of sexual arousal to the female film and the lowest level of arousal to the male film. Females were sexually aroused by both films. (Author)

  6. A 3M high temperature dielectric film

    NASA Technical Reports Server (NTRS)

    Hampl, Edward, Jr.

    1994-01-01

    The performance characteristics of a dielectric film are summarized. Additionally, the film's environmental and chemical properties are listed: low shrinkage to 300 C; moisture insensitive; low outgassing under vacuum; excellent surface qualities--easy metallization of film; flame retardant; and low smoke generation. A series of graphs that display the performance characteristics of the film are also presented.

  7. Focus on Young Film Makers: Student Film Making--Types and Techniques.

    ERIC Educational Resources Information Center

    Putsch, Henry E.

    1968-01-01

    Brief descriptions of 10 styles of student film making include references to specific films employing the techniques. The styles of film making listed are animation, pixillation animation, collage, draw-on, documentary, bio-documentary, story line, impressionistic, commercials, and the school film. Directions for submitting films to the Young Film…

  8. American Film Genres: Approaches to a Critical Theory of Popular Film.

    ERIC Educational Resources Information Center

    Kaminsky, Stuart M.

    This book is divided into twelve sections and contains photographs from many of the films discussed. The introduction defines film genre and describes the general theories behind this book; "The Individual Film" analyzes the film "Little Caesar" as it relates to the genre of gangster films; "Comparative Forms"…

  9. Surface wrinkling on polydopamine film

    NASA Astrophysics Data System (ADS)

    Meng, Jieyun; Xie, Jixun; Han, Xue; Lu, Conghua

    2016-05-01

    In this paper, we report a non-lithographic strategy to realize surface patterns on polydopamine films. It is based on surface wrinkling, which is induced on polydopamine (PDA) films that are grown on uniaxially pre-strained polydimethylsiloxane (PDMS) substrates through self-polymerization of dopamine, followed by the pre-strain release. We investigate the influences of the experimental conditions including polymerization time, prestrain and the dopamine solution concentration on the wrinkling patterns. Furthermore, we take advantage of the reducibility of PDA to fabricate silver nanoparticle-deposited PDA films with surface-wrinkled patterns, which may have potential applications in the related fields.

  10. Ultrathin Polymer Films for Microlithography

    DTIC Science & Technology

    1988-07-13

    exposure the PINAA was developed in a solution made of 3:7 cellosolve : methanol for 13 seconds. Cellosolve was chosen because it is strong enough to...can achieve on thicker resist (> 100 nm) for the same exposure conditions. Recently, we have exposed 14.3 nrm L-B PMMA films on a high resolution...Polymer Films LB PMMA Spin-Cast PNMA Spin-Cast Novolac (10 wafers) (5 wafers) (5 wafers) Film Thickness 14.3 nrm 14 nrm 22 nm Pinhole Density < 10/cm 2

  11. Surface nanostructures in manganite films.

    PubMed

    Gambardella, A; Graziosi, P; Bergenti, I; Prezioso, M; Pullini, D; Milita, S; Biscarini, F; Dediu, V A

    2014-06-19

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications.

  12. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  13. Tailoring nanocrystalline diamond film properties

    DOEpatents

    Gruen, Dieter M.; McCauley, Thomas G.; Zhou, Dan; Krauss, Alan R.

    2003-07-15

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  14. Photovoltaic properties of polymer films

    NASA Astrophysics Data System (ADS)

    Reucroft, P. J.; Ullal, H.

    1980-03-01

    The effect of metal electrode and film thickness on the photovoltaic energy conversion efficiency in (1:1) mole ratio films of poly (N-vinylcarbazole) (PVK) and 2,4,7-trinitrofluorenone (TNF) has been investigated. Low work function metals increase the Schottky barrier height which leads to increases in the photovoltaic energy conversion efficiency. A ten-fold decrease in film thickness produces a thousand-fold increase in photovoltaic energy conversion efficiency. A theoretical model which assumes that the photovoltaic current is limited by Child's law predicts photovoltaic efficiencies which are in good agreement with the measured efficiencies.

  15. Surface Nanostructures in Manganite Films

    PubMed Central

    Gambardella, A.; Graziosi, P.; Bergenti, I.; Prezioso, M.; Pullini, D.; Milita, S.; Biscarini, F.; Dediu, V. A.

    2014-01-01

    Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications. PMID:24941969

  16. Liquid-film electron stripper

    DOEpatents

    Leemann, B.T.; Yourd, R.B.

    1982-03-09

    A thin freestanding oil film is produced in vacuum by directing an oil stream radially inward to the hollow-ground sharp outer edge of a rotating disc. The sides of the edge are roughened somewhat to aid in dispersing oil from the disc. Oil is removed from the surface of disc to prevent formation of oil droplets which might spin off the disc and disrupt the oil film. An ion beam is directed through the thin oil film so that electrons are stripped from the ions to increase their charge.

  17. Liquid-film electron stripper

    DOEpatents

    Leemann, Beat T.; Yourd, Roland B.

    1984-01-01

    A thin freestanding oil film is produced in vacuum by directing an oil stream radially inward to the hollow-ground sharp outer edge of a rotating disc. The sides of the edge are roughened somewhat to aid in dispersing oil from the disc. Oil is removed from the surface of disc to prevent formation of oil droplets which might spin off the disc and disrupt the oil film. An ion beam is directed through the thin oil film so that electrons are stripped from the ions to increase their charge.

  18. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  19. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  20. Importance of combining convection with film cooling

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.

    1971-01-01

    The interaction of film and convection cooling and its effect on wall cooling efficiency is investigated analytically for two cooling schemes for advanced gas turbine applications. The two schemes are full coverage- and counterflow-film cooling. In full coverage film cooling, the cooling air issues from a large number of small discrete holes in the surface. Counterflow film cooling is a film-convection scheme with film injection from a slot geometry. The results indicate that it is beneficial to utilize as much of the cooling air heat sink as possible for convection cooling prior to ejecting it as a film.