Science.gov

Sample records for fluorite structure first-principles

  1. Investigating the Electronic Structure of Fluorite Oxides: Comparsion of EELS and First Principles Calculations

    SciTech Connect

    Aguiar, J; Asta, M; Gronbech-Jensen, N; Perlov, A; Milman, V; Gao, S; Pickard, C; Browning, N

    2009-06-05

    Energy loss spectra from a variety of cubic oxides are compared with ab-initio calculations based on the density functional plane wave method (CASTEP). In order to obtain agreement between experimental and theoretical spectra, unique material specific considerations were taken into account. The spectra were calculated using various approximations to describe core-hole effects and electronic correlations. All the calculations are based on the local spin density approximation to show qualitative agreement with the sensitive oxygen K-edge spectra in ceria, zirconia, and urania. Comparison of experimental and theoretical results let us characterize the main electronic interactions responsible for both the electronic structure and the resulting EEL spectra of the compounds in question.

  2. Investigating the electronic structure of fluorite-structured oxide compounds: comparison of experimental EELS with first principles calculations

    SciTech Connect

    Aguiar, Jeff; Ramasse, Q. M.; Asta, Mark D.; Browning, Nigel D.

    2012-06-27

    Energy loss spectra from fluorite-structured ZrO2, CeO2, and UO2 compounds are compared with theoretical calculations based on density functional theory (DFT) and its extensions, including the use of Hubbard-U corrections (DFT + U) and hybrid functionals. Electron energy loss spectra (EELS) were obtained from each oxide using a scanning transmission electron microscope (STEM). The same spectra were computed within the framework of the full-potential linear augmented plane-wave (FLAPW) method. The theoretical and experimental EEL spectra are compared quantitatively using non-linear least squares peak fitting and a cross-correlation approach, with the best level of agreement between experiment and theory being obtained using the DFT + U and hybrid computational approaches.

  3. Investigating the electronic structure of fluorite-structured oxide compounds: comparison of experimental EELS with first principles calculations.

    PubMed

    Aguiar, J A; Ramasse, Q M; Asta, M; Browning, N D

    2012-07-25

    Energy loss spectra from fluorite-structured ZrO(2), CeO(2), and UO(2) compounds are compared with theoretical calculations based on density functional theory (DFT) and its extensions, including the use of Hubbard-U corrections (DFT + U) and hybrid functionals. Electron energy loss spectra (EELS) were obtained from each oxide using a scanning transmission electron microscope (STEM). The same spectra were computed within the framework of the full-potential linear augmented plane-wave (FLAPW) method. The theoretical and experimental EEL spectra are compared quantitatively using non-linear least squares peak fitting and a cross-correlation approach, with the best level of agreement between experiment and theory being obtained using the DFT + U and hybrid computational approaches.

  4. First-principles calculations of Mg2X (X = Si, Ge, Sn) semiconductors with the calcium fluorite structure

    NASA Astrophysics Data System (ADS)

    Sandong, Guo

    2015-05-01

    The electronic structures of Mg2X (X = Si, Ge, Sn) have been calculated by using generalized gradient approximation, various screened hybrid functionals, as well as Tran and Blaha's modified Becke and Johnson exchange potential. It was found that the Tran and Blaha's modified Becke and Johnson exchange potential provides a more realistic description of the electronic structures and the optical properties of Mg2X (X = Si, Ge, Sn) than else exchange-correlation potential, and the theoretical gaps and dielectric functions of Mg2X (X = Si, Ge, Sn) are quite compatible with the experimental data. The elastic properties of Mg2X (X = Si, Ge, Sn) have also been studied in detail with the generalized gradient approximation, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, sound velocities, and Debye temperature. The phonon dispersions of Mg2X (X = Si, Ge, Sn) have been calculated within the generalized gradient approximation, suggesting no structural instability, and the measurable phonon heat capacity as a function of the temperature has been also calculated. Project supported by the Fundamental Research Funds for the Central Universities (No. 2013QNA32) and the National Natural Science Foundation of China (No. 11404391).

  5. Platinum nitride with fluorite structure

    SciTech Connect

    Yu, Rong; Zhang, Xiao-Feng

    2005-01-31

    The mechanical stability of platinum nitride has been studied using first-principles calculations. By calculating the single-crystal elastic constants, we show that platinum nitride can be stabilized in the fluorite structure, in which the nitrogen atoms occupy all the tetrahedral interstitial sites of the metal lattice. The stability is attributed to the pseudogap effect from analysis of the electronic structure.

  6. First Principles Study of Carbyne Structural Stability

    NASA Astrophysics Data System (ADS)

    Kwon, Kevin; Holmes, Colin; Kim, Ki Chul; Jang, Seung Soon

    Carbyne is composed of linear sp-hybridized carbon bonds and yields promising results to surpass graphene's mechanical and electrical properties. Carbyne has two semi-stable conformations: Polyyne (alternating triple and single bonds) and Polycumulene (repeating double bonds). This study investigated the stability of these forms at infinite chain lengths by using periodic boundary conditions. Geometric optimization was performed via DFT calculations using DMoL3 and PBE GGA functional group. Each configuration's chain was stretched or compressed until the most stable form - lowest energy - was obtained. After comparing the energies, the most stable form alternated between Polyyne and Polycumulene as the number of carbon atoms within each boundary increased. Polyyne was the most stable form for odd number of carbons and Polycumulene was the most stable for even number of carbons. Finally, K-point sampling was increased in the direction of the chain axis to obtain a more accurate depiction of structural stability. As the number of k-points increased, the Polycumulene structure became more stable compared to Polyyne. School of Materials Science and Engineering, Georgia Institute of Technology.

  7. Giant Mechanocaloric Effects in Fluorite-Structured Superionic Materials

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Errandonea, Daniel

    2016-05-01

    Mechanocaloric materials experience a change in temperature when a mechanical stress is adiabatically applied on them. Thus far, only ferroelectrics and superelastic metallic alloys have been considered as potential mechanocaloric compounds to be exploited in solid-state cooling applications. Here we show that giant mechanocaloric effects occur in hitherto overlooked fast ion conductors (FIC), a class of multicomponent materials in which above a critical temperature, Ts, a constituent ionic species undergoes a sudden increase in mobility. Using first-principles and molecular dynamics simulations, we found that the superionic transition in fluorite-structured FIC, which is characterised by a large entropy increase of the order of 100 J/K*Kg, can be externally tuned with hydrostatic, biaxial or uniaxial stresses. In particular, Ts can be reduced several hundreds of degrees through the application of moderate tensile stresses due to the concomitant drop in the formation energy of Frenkel pair defects. We predict that the adiabatic temperature change in CaF2 and PbF2, two archetypal fluorite-structured FIC, close to their critical points are of the order of 100 and 10 K, respectively. This work advocates that FIC constitute a new family of mechanocaloric materials showing great promise for prospective solid-state refrigeration applications.

  8. Giant Mechanocaloric Effects in Fluorite-Structured Superionic Materials.

    PubMed

    Cazorla, Claudio; Errandonea, Daniel

    2016-05-11

    Mechanocaloric materials experience a change in temperature when a mechanical stress is applied on them adiabatically. Thus, far, only ferroelectrics and superelastic metallic alloys have been considered as potential mechanocaloric compounds to be exploited in solid-state cooling applications. Here we show that giant mechanocaloric effects occur in hitherto overlooked fast ion conductors (FIC), a class of multicomponent materials in which above a critical temperature, Ts, a constituent ionic species undergoes a sudden increase in mobility. Using first-principles and molecular dynamics simulations, we found that the superionic transition in fluorite-structured FIC, which is characterized by a large entropy increase of the order of 10(2) JK(-1) kg(-1), can be externally tuned with hydrostatic, biaxial, or uniaxial stresses. In particular, Ts can be reduced several hundreds of degrees through the application of moderate tensile stresses due to the concomitant drop in the formation energy of Frenkel pair defects. We predict that the adiabatic temperature change in CaF2 and PbF2, two archetypal fluorite-structured FIC, close to their critical points are of the order of 10(2) and 10(1) K, respectively. This work advocates that FIC constitute a new family of mechanocaloric materials showing great promise for prospective solid-state refrigeration applications.

  9. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    DOE PAGES

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; ...

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve asmore » guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.« less

  10. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-01-21

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. Furthermore, these results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  11. Chemical expansion affected oxygen vacancy stability in different oxide structures from first principles calculations

    SciTech Connect

    Aidhy, Dilpuneet S.; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2015-03-01

    We study the chemical expansion for neutral and charged oxygen vacancies in fluorite, rocksalt, perovskite and pyrochlores materials using first principles calculations. We show that the neutral oxygen vacancy leads to lattice expansion whereas the charged vacancy leads to lattice contraction. In addition, we show that there is a window of strain within which an oxygen vacancy is stable; beyond that range, the vacancy can become unstable. Using CeO2|ZrO2 interface structure as an example, we show that the concentration of oxygen vacancies can be manipulated via strain, and the vacancies can be preferentially stabilized. These results could serve as guiding principles in predicting oxygen vacancy stability in strained systems and in the design of vacancy stabilized materials.

  12. Two Dimensional Ice from First Principles: Structures and Phase Transitions.

    PubMed

    Chen, Ji; Schusteritsch, Georg; Pickard, Chris J; Salzmann, Christoph G; Michaelides, Angelos

    2016-01-15

    Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here, we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression, the pentagonal structure becomes the most stable and persists up to ∼2  GPa, at which point the square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and the width.

  13. First Principles Structure Calculations Using the General Potential Lapw Method

    NASA Astrophysics Data System (ADS)

    Wei, Su-Huai

    We have developed a completely general first principles self-consistent full-potential linearized-augmented-plane -wave (LAPW) method program within the density functional formalism to calculate electronic band structure, total energy, pressure and other quantities. No symmetry assumptions are used for the crystal structure. Shape unrestricted charge densities and potentials are calculated inside muffin -tin (MT) spheres as well as in the interstitial regions. All contributions to the Hamiltonian matrix elements are completely taken into account. The core states are treated fully relativistically using the spherical part of the potential only. Scalar relativistic effects are included for the band-states, and spin-orbit coupling is included using a second variation procedure. Both core states and valence states are treated self-consistently, the frozen core approximation is not required. The fast Fourier transformation method is used wherever it is applicable, and this greatly improves the efficiency. This state-of-the-art program has been tested extensively to check the accuracy and convergence properties by comparing calculated electronic band structures, ground state properties, equations of state and cohesive energies for bulk W and GaAs with other theoretical calculations and experimental results. It has been successfully applied to calculate and predict structural and metal-insulator phase transitions for close-packed crystal BaSe and BaTe and the geometric structure of the d-band metal W(001) surface. The results are in generally good agreement with experiment.

  14. Coarse graining approach to First principles modeling of structural materials

    SciTech Connect

    Odbadrakh, Khorgolkhuu; Nicholson, Don M; Rusanu, Aurelian; Samolyuk, German D; Wang, Yang; Stoller, Roger E; Zhang, X.-G.; Stocks, George Malcolm

    2013-01-01

    Classical Molecular Dynamic (MD) simulations characterizing extended defects typically require millions of atoms. First principles calculations employed to understand these defect systems at an electronic level cannot, and should not deal with such large numbers of atoms. We present an e cient coarse graining (CG) approach to calculate local electronic properties of large MD-generated structures from the rst principles. We used the Locally Self-consistent Multiple Scattering (LSMS) method for two types of iron defect structures 1) screw-dislocation dipoles and 2) radiation cascades. The multiple scattering equations are solved at fewer sites using the CG. The atomic positions were determined by MD with an embedded atom force eld. The local moments in the neighborhood of the defect cores are calculated with rst-principles based on full local structure information, while atoms in the rest of the system are modeled by representative atoms with approximated properties. This CG approach reduces computational costs signi cantly and makes large-scale structures amenable to rst principles study. Work is sponsored by the USDoE, O ce of Basic Energy Sciences, Center for Defect Physics, an Energy Frontier Research Center. This research used resources of the Oak Ridge Leadership Computing Facility at the ORNL, which is supported by the O ce of Science of the USDoE under Contract No. DE-AC05-00OR22725.

  15. First-principles structural design of superhard materials.

    PubMed

    Zhang, Xinxin; Wang, Yanchao; Lv, Jian; Zhu, Chunye; Li, Qian; Zhang, Miao; Li, Quan; Ma, Yanming

    2013-03-21

    We reported a developed methodology to design superhard materials for given chemical systems under external conditions (here, pressure). The new approach is based on the CALYPSO algorithm and requires only the chemical compositions to predict the hardness vs. energy map, from which the energetically preferable superhard structures are readily accessible. In contrast to the traditional ground state structure prediction method where the total energy was solely used as the fitness function, here we adopted hardness as the fitness function in combination with the first-principles calculation to construct the hardness vs. energy map by seeking a proper balance between hardness and energy for a better mechanical description of given chemical systems. To allow a universal calculation on the hardness for the predicted structure, we have improved the earlier hardness model based on bond strength by applying the Laplacian matrix to account for the highly anisotropic and molecular systems. We benchmarked our approach in typical superhard systems, such as elemental carbon, binary B-N, and ternary B-C-N compounds. Nearly all the experimentally known and most of the earlier theoretical superhard structures have been successfully reproduced. The results suggested that our approach is reliable and can be widely applied into design of new superhard materials.

  16. Electronic and structural reconstruction in titanate heterostructures from first principles

    NASA Astrophysics Data System (ADS)

    Mulder, Andrew T.; Fennie, Craig J.

    2014-03-01

    Recent advances in transition metal oxide heterostructures have opened new routes to create materials with novel functionalities and properties. One direction has been to combine a Mott insulating perovskite with an electronic d1 configuration, such as LaTiO3, with a band insulating d0 perovskite, such as SrTiO3. An exciting recent development is the demonstration of interfacial conductivity in GdTiO3/SrTiO3 heterostructures that display a complex structural motif of octahedral rotations and ferromagnetic properties similar to bulk GdTiO3. In this talk we present our first principles investigation of the interplay of structural, electronic, magnetic, and orbital degrees of freedom for a wide range of d1/d0 titanate heterostructures. We find evidence for both rotation driven ferroelectricity and a symmetry breaking electronic reconstruction with a concomitant structural distortion at the interface. We argue that these materials represent an ideal platform to realize novel functionalities such as the electric field control of electronic and magnetic properties.

  17. First-principle simulations of electronic structure in semicrystalline polyethylene

    NASA Astrophysics Data System (ADS)

    Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.

    2017-05-01

    In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.

  18. First-principles study of pressure-induced structural phase transitions in MnF2.

    PubMed

    López-Moreno, S; Romero, A H; Mejía-López, J; Muñoz, A

    2016-12-07

    In this work we report a complete structural and magnetic characterization of crystalline MnF2 under pressure obtained using first principle calculations. Density functional theory was used as the theoretical framework, within the generalized gradient approximation plus the Hubbard formalism (GGA+U) necessary to describe the strong correlations present in this material. The vibrational, the magnetic exchange couplings and the structural characterization of MnF2 in the rutile ground state structure and potential high pressure phases are reported. The quasiharmonic approximation has been used to obtain the free energy, which at the same time is used to evaluate the different structural transitions at 300 K. Based on previous theoretical and experimental studies on AF2 compounds, ten different structural candidates were considered for the high pressure regime, which led us to propose a path for the MnF2 structural transitions under pressure. As experimental pressure settings can lead to non-hydrostatic conditions, we consider hydrostatic and non-hydrostatic strains in our calculations. According to our results we found the following sequence for the pressure-driven structural phase transition in MnF2: rutile (P42/mnm) → α-PbO2-type (Pbcn) → dist. HP PdF2-type (Pbca) → dist. fluorite (I4/mmm) → cotunnite (Pnma). This structural path is correlated with other phase transitions reported on other metal rutile fluorides. In particular, we found that our proposed structural phase transition sequence offers an explanation of the different paths observed in the literature by taking into account the role of the hydrostatic conditions. In order to get a deep understanding of the modifications of MnF2 under pressure, we have analyzed the pressure evolution of the structural, vibrational, electronic, and magnetic properties for rutile and for each of the high pressure phases.

  19. Structure of Ce(1-x)Sn(x)O(2) and its relation to oxygen storage property from first-principles analysis.

    PubMed

    Gupta, Asha; Kumar, Anil; Hegde, M S; Waghmare, U V

    2010-05-21

    CeO(2)-SnO(2) solid solution has been reported to possess high oxygen storage/release property which possibly originates from local structural distortion. We have performed first-principles based density functional calculations of Ce(1-x)Sn(x)O(2) structure (x=0, 0.25, 0.5, 1) to understand its structural stability in fluorite in comparison to rutile structure of the other end-member SnO(2), and studied the local structural distortion induced by the dopant Sn ion. Analysis of relative energies of fluorite and rutile phases of CeO(2), SnO(2), and Ce(1-x)Sn(x)O(2) indicates that fluorite structure is the most stable for Ce(1-x)Sn(x)O(2) solid solution. An analysis of local structural distortions reflected in phonon dispersion show that SnO(2) in fluorite structure is highly unstable while CeO(2) in rutile structure is only weakly unstable. Thus, Sn in Ce(1-x)Sn(x)O(2)-fluorite structure is associated with high local structural distortion whereas Ce in Ce(1-x)Sn(x)O(2)-rutile structure, if formed, will show only marginal local distortion. Determination of M-O (M=Ce or Sn) bond lengths and analysis of Born effective charges for the optimized structure of Ce(1-x)Sn(x)O(2) show that local coordination of these cations changes from ideal eightfold coordination expected of fluorite lattice to 4+4 coordination, leading to generation of long and short Ce-O and Sn-O bonds in the doped structure. Bond valence analyses for all ions show the presence of oxygen with bond valence approximately 1.84. These weakly bonded oxygen ions are relevant for enhanced oxygen storage/release properties observed in Ce(1-x)Sn(x)O(2) solid solution.

  20. Structural and electronic properties of perylene from first principles calculations.

    PubMed

    Fedorov, I A; Zhuravlev, Y N; Berveno, V P

    2013-03-07

    The electronic structure of crystalline perylene has been investigated within the framework of density functional theory including van der Waals interactions. The computations of the lattice parameters and cohesive energy have good agreement with experimental values. We have also calculated the binding distance and energy of perylene dimers, using different schemes, which include van der Waals interactions.

  1. Predicted novel hydrogen hydrate structures under pressure from first principles

    NASA Astrophysics Data System (ADS)

    Qian, Guangrui; Lyakhov, Andriy; Zhu, Qiang; Oganov, Artem; Dong, Xiao

    2014-03-01

    Gas hydrates are systems of prime importance. In particular, hydrogen hydrates are potential materials of icy satellites and comets, and may be used for hydrogen storage. We explore the H2O-H2 system at pressures in the range 0 ~ 100 GPa with ab initio variable-composition evolutionary simulations. According to our calculation and previous experiments, the H2O-H2 system undergoes a series of transformations with pressure, and adopts the known open-network clathrate structures (sII, C0), dense ``filled ice'' structures (C1, C2) and two novel hydrogen hydrate phases. One of these structures is based on the hexagonal ice framework and has the same H2O:H2 ratio (2:1) as the C0 phase at low pressures and similar enthalpy (we name this phase Ih-C0). The other newly predicted hydrate phase has a 1:2 H2O:H2 ratio and structure based on cubic ice. This phase (which we name C3) is predicted to be thermodynamically stable above 38 GPa when including van der Waals interactions and zero-point vibrational energy. This is the hydrogen-richest hydrate and this phase has the highest gravimetric densities (18 wt.%) of extractable hydrogen among all known materials. We thank the DARPA (Grants No. W31P4Q1310005 and No. W31P4Q1210008), National Science Founda- tion (EAR-1114313, DMR-1231586), AFOSR (FA9550- 13-C-0037), DOE (DE-AC02-98CH10886), CRDF Global (UKE2-7034-KV-11) for financial support. We thank Purdue University Teragrid for providing computational resources and technical support for this work (Charge No.: TG-DMR110058).

  2. Crystal Structure Prediction for Cyclotrimethylene Trinitramine (RDX) from First Principles

    DTIC Science & Technology

    2009-04-01

    of molecular parameters from corresponding values in an ideal RDX crystal; experimental and predicted orienta- tional parameters of symmetry equivalent...small molecules. Thus, this DFT+D method includes a significant degree of empiricism , in contrast to our SAPT(DFT)-based approach which is completely...in the tables denote only the starting configu- rations . In order to identify duplicate crystal structures pro- duced during the WMIN lattice energy

  3. Two-dimensional boron nitride structures functionalization: first principles studies.

    PubMed

    Ponce-Pérez, R; Cocoletzi, Gregorio H; Takeuchi, Noboru

    2016-09-01

    Density functional theory calculations have been performed to investigate two-dimensional hexagonal boron nitride (2D hBN) structures functionalization with organic molecules. 2x2, 4x4 and 6x6 periodic 2D hBN layers have been considered to interact with acetylene. To deal with the exchange-correlation energy the generalized gradient approximation (GGA) is invoked. The electron-ion interaction is treated with the pseudopotential method. The GGA with the Perdew-Burke-Ernzerhoff (PBE) functionals together with van der Waals interactions are considered to deal with the composed systems. To investigate the functionalization two main configurations have been explored; in one case the molecule interacts with the boron atom and in the other with the nitrogen atom. Results of the adsorption energies indicate chemisorption in both cases. The total density of states (DOS) displays an energy gap in both cases. The projected DOS indicate that the B-p and N-p orbitals are those that make the most important contribution in the valence band and the H-s and C-p orbitals provide an important contribution in the conduction band to the DOS. Provided that the interactions of the acetylene with the 2D layer modify the structural and electronic properties of the hBN the possibility of structural functionalization using organic molecules may be concluded.

  4. Electronic Structure and Transport in Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations

  5. Structure of Ni78 from First-Principles Computations

    DOE PAGES

    Hagen, Gaute; Univ. of Tennessee, Knoxville, TN; Jansen, Gustav R.; ...

    2016-10-17

    Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic 78Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. In this study, we predict the Jπ = 2more » $$+\\atop{1}$$ state in 78Ni from a correlation with the Jπ = 2$$+\\atop{1}$$ state in 48Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that 78Ni is doubly magic, and the predicted low-lying states of 79,80Ni open the way for shell-model studies of many more rare isotopes.« less

  6. First principles based multiparadigm modeling of electronic structures and dynamics

    NASA Astrophysics Data System (ADS)

    Xiao, Hai

    Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance. An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV). The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in

  7. Structural and electronic phase transitions of ThS2 from first-principles calculations

    DOE PAGES

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; ...

    2016-10-07

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS2, which may play an important role in the next generation nuclear energy fuel technology.

  8. Radiation Resistance of Fluorite-Structured Nuclear Oxides

    SciTech Connect

    Garrido, Frederico; Moll, Sandra; Thome, Lionel; Vincent, Laetitia; Nowicki, Lech; Sattonnay, Gaeel

    2009-03-10

    Fluorite-structure oxides are radiation-resistant materials making them ideal candidates for uses as nuclear fuels or as inert matrices for actinide transmutation. The radiation tolerance of urania and cubic zirconia single crystals was investigated by external ion irradiation in predominating domains of electronic and nuclear stopping of bombarding particles. Damage kinetics show that the behavior of the two investigated fluorite-type oxides is almost the same: (i) at low-energy a two-stage disordering process is exhibited--first a ballistic step due to the formation of radiation-induced defects and second a crystal fragmentation induced by the formation of gas bubbles at large concentration-; (ii) at high energy a one-stage damage kinetics associated with the formation of ion tracks whose overlapping at high fluence results in the formation of nanometer-sized domains with a small disorientation.

  9. Interconversion of perovskite and fluorite structures in Ce-Sc-O system.

    PubMed

    Shukla, Rakesh; Arya, Ashok; Tyagi, Avesh K

    2010-02-01

    CeScO(3) was synthesized by a two-step synthesis route involving a combustion method followed by vacuum heating at 1100 degrees C in the presence of Zr sponge which acts as an oxygen getter. The compound was characterized by various techniques such as X-ray diffraction (XRD), high temperature XRD, thermogravimetry, diffuse reflectance (DR)-UV visible spectrophotometry, and Raman spectroscopy. Fluorite-type (F-type) solid solution with composition Ce(0.5)Sc(0.5)O(1.75) was observed as an intermediate during the synthesis of CeScO(3). Only by mere redox reaction was a reversible transformation between fluorite-type structure and perovskites structure observed. CeScO(3) was found as semiconducting oxide with band gap of 3.2 eV arising mainly between O p states in the valence band and Sc d and Ce d states in the conduction band with small contributions coming from Ce f and Sc p states. First-principles potential plane-wave-based calculations were performed for the band gap and its origin in CeScO(3). Photoluminescence measurement showed that CeScO(3) is a potential host material giving broad blue emission. This was further confirmed by demonstrating CeScO(3) doped with 2 mol % Tb(3+) compound as an efficient green light emitter.

  10. Crystal Structure Prediction from First Principles: The Crystal Structures of Glycine

    PubMed Central

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-01-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the Genetic Algorithms search implemented in Modified Genetic Algorithm for Crystals coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable. PMID:25843964

  11. Crystal structure prediction from first principles: The crystal structures of glycine

    NASA Astrophysics Data System (ADS)

    Lund, Albert M.; Pagola, Gabriel I.; Orendt, Anita M.; Ferraro, Marta B.; Facelli, Julio C.

    2015-04-01

    Here we present the results of our unbiased searches of glycine polymorphs obtained using the genetic algorithms search implemented in MGAC, modified genetic algorithm for crystals, coupled with the local optimization and energy evaluation provided by Quantum Espresso. We demonstrate that it is possible to predict the crystal structures of a biomedical molecule using solely first principles calculations. We were able to find all the ambient pressure stable glycine polymorphs, which are found in the same energetic ordering as observed experimentally and the agreement between the experimental and predicted structures is of such accuracy that the two are visually almost indistinguishable.

  12. First principles study of structural, electronic and magnetic properties of magnesium

    NASA Astrophysics Data System (ADS)

    Abdel Rahim, G. P.; Rodríguez M, J. A.; Moreno-Armenta, M. G.

    2016-02-01

    We investigated the structural, electronic, and magnetic properties of Mg, in the CS (simple cubic), NiAs (Nickel arsenide), FCC (rock-salt), R (Rhombohedral), Diamond and WZ (wurtzite) phases. Calculations were performed using the first-principles pseudo-potential method within the framework of spin-density functional theory (DFT).

  13. Conformational structures of a decapeptide validated by first principles calculations and cold ion spectroscopy.

    PubMed

    Roy, Tapta Kanchan; Kopysov, Vladimir; Nagornova, Natalia S; Rizzo, Thomas R; Boyarkin, Oleg V; Gerber, R Benny

    2015-05-18

    Calculated structures of the two most stable conformers of a protonated decapeptide gramicidin S in the gas phase have been validated by comparing the vibrational spectra, calculated from first- principles and measured in a wide spectral range using infrared (IR)-UV double resonance cold ion spectroscopy. All the 522 vibrational modes of each conformer were calculated quantum mechanically and compared with the experiment without any recourse to an empirical scaling. The study demonstrates that first-principles calculations, when accounting for vibrational anharmonicity, can reproduce high-resolution experimental spectra well enough for validating structures of molecules as large as of 200 atoms. The validated accurate structures of the peptide may serve as templates for in silico drug design and absolute calibration of ion mobility measurements.

  14. A genetic algorithm for first principles global structure optimization of supported nano structures

    SciTech Connect

    Vilhelmsen, Lasse B.; Hammer, Bjørk

    2014-07-28

    We present a newly developed publicly available genetic algorithm (GA) for global structure optimisation within atomic scale modeling. The GA is focused on optimizations using first principles calculations, but it works equally well with empirical potentials. The implementation is described and benchmarked through a detailed statistical analysis employing averages across many independent runs of the GA. This analysis focuses on the practical use of GA’s with a description of optimal parameters to use. New results for the adsorption of M{sub 8} clusters (M = Ru, Rh, Pd, Ag, Pt, Au) on the stoichiometric rutile TiO{sub 2}(110) surface are presented showing the power of automated structure prediction and highlighting the diversity of metal cluster geometries at the atomic scale.

  15. First principles study of structural, electronic and mechanical properties of alkali nitride-KN

    SciTech Connect

    Murugan, A.; Rajeswarapalanichamy, R. Santhosh, M.; Iyakutti, K.

    2015-06-24

    The structural, electronic and elastic properties of alkali- metal nitride (KN) is investigated by the first principles calculations based on density functional theory as implemented in Vienna ab-initio simulation package. At ambient pressure KN is stable in the ferromagnetic state with NaCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that the KN is half metallic ferromagnet at normal pressure. A pressure-induced structural phase transition from NaCl to ZB phase is observed in KN. Half metallicity and ferromagnetism is maintained at all pressures.

  16. First-principles calculation of the structural stability of 6d transition metals

    SciTech Connect

    Oestlin, A.; Vitos, L.

    2011-09-15

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  17. First principle study of band structure of SrMO3 perovskites

    NASA Astrophysics Data System (ADS)

    Daga, Avinash; Sharma, Smita

    2016-05-01

    First principle study of band structure calculations in the local density approximations (LDA) as well as in the generalized gradient approximations (GGA) have been used to determine the electronic structure of SrMO3 where M stands for Ti, Zr and Mo. Occurrence of band gap proves SrTiO3 and SrZrO3 to be insulating. A small band gap is observed in SrMoO3 perovskite signifies it to be metallic. Band structures are found to compare well with the available data in the literature showing the relevance of this approach. ABINIT computer code has been used to carry out all the calculations.

  18. Structural and vibrational stability of M and Z phases of silicon and germanium from first principles

    NASA Astrophysics Data System (ADS)

    Bautista-Hernández, A.; Rangel, T.; Romero, A. H.; Rignanese, G.-M.; Salazar-Villanueva, M.; Chigo-Anota, E.

    2013-05-01

    First-principles calculations were performed to investigate the structural feasibility of M and Z phases (novel monoclinic and orthorhombic structures recently reported for carbon) for silicon and germanium. The lattice parameters, bulk modulus, vibrational properties, and elastic constants are calculated using the local density approximation to describe the exchange-correlation energy, while the optical properties are calculated by using Many-Body Perturbation Theory in the G0W0 approximation. Our results indicate that silicon and germanium with the proposed crystal symmetries are elastically and vibrationally stable and are small band-gap semiconductors. We discuss the possible synthesis of such materials.

  19. Study of mercury thiogallate in defect stannite structure: A first-principle approach

    SciTech Connect

    Nayak, Vikas; Verma, U. P.

    2016-05-06

    Quantum mechanical based first principle calculations have been employed to obtain the unit cell lattice parameters of mercury thiogallate (HgGa{sub 2}S{sub 4}) in defect stannite structure for the first time. For this, we treated HgGa{sub 2}S{sub 4} in two different types of site symmetries in the same space group. In both the cases obtained unit cell parameters are same, which shows the accuracy of present approach. The electronic band structures show the semiconducting behavior in both the cases. The density of states plot are also studied and discussed.

  20. First-Principles Electronic Structure Calculations of Zinc-Blende Chromium Monopnictides

    NASA Astrophysics Data System (ADS)

    Shirai, M.; Taguchi, H.; Akinaga, H.

    2003-03-01

    Electronic band-structure of zinc-blende (zb) chromium monopnictides, CrP, CrAs, and CrSb, is studied comparatively by using first-principles density-functional calculations. Effect of spin-orbit interaction on the spin-polarization near the Fermi-level is also investigated. It is found that zb-CrAs and CrSb are predicted to be the ferromagnets exhibiting highly spin-polarized electronic band-structure, even if the effect of the spin-orbit interaction is taken into account.

  1. First-principles calculations on the structural evolution of solid fullerene-like CP x

    NASA Astrophysics Data System (ADS)

    Gueorguiev, G. K.; Furlan, A.; Högberg, H.; Stafström, S.; Hultman, L.

    2006-08-01

    The formation and structural evolution of fullerene-like (FL) carbon phosphide (CP x) during synthetic growth were studied by first-principles calculations. Geometry optimizations and comparison between the cohesive energies suggest stability for solid FL-CP x compounds. In comparison with fullerene-like carbon nitride, higher curvature of the graphene sheets and higher density of cross-linkages between them is predicted and explained by the different electronic properties of P and N. Cage-like and onion-like structures, both containing tetragons, are found to be typical for fullerene-like CP x. Segregation of P is predicted at fractions exceeding ˜20 at.%.

  2. A comparative first-principles study of structural and electronic properties among memantine, amantadine and rimantadine

    NASA Astrophysics Data System (ADS)

    Middleton, Kirsten; Zhang, G. P.; Nichols, Michael R.; George, Thomas F.

    2012-05-01

    Memantine, amantadine and rimantadine are structurally derived from the same diamondoid, adamantane. These derivatives demonstrate therapeutic efficacy in human diseases: memantine for Alzheimer's disease and amantadine and rimantadine for influenza. In order to better understand some of the properties that distinguish these three compounds, we conduct first-principles calculations on their structure and electronic properties. Our results indicate that protonation has a significant effect on the dipole moment, where the dipole moment in protonated memantine is over eight times larger than in the deprotonated form.

  3. The structural and electronic properties of amorphous HgCdTe from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Huxian; Chen, Xiaoshuang; Lu, Jianping; Shu, Haibo; Lu, Wei

    2014-01-01

    Amorphous mercury cadmium telluride (a-MCT) model structures, with x being 0.125 and 0.25, are obtained from first-principles calculations. We generate initial structures by computation alchemy method. It is found that most atoms in the network of amorphous structures tend to be fourfold and form tetrahedral structures, implying that the chemical ordered continuous random network with some coordination defects is the ideal structure for a-MCT. The electronic structure is also concerned. The gap is found to be 0.30 and 0.26 eV for a-Hg0.875Cd0.125Te and a-Hg0.75Cd0.25Te model structures, independent of the composition. By comparing with the properties of crystalline MCT with the same composition, we observe a blue-shift of energy band gap. The localization of tail states and its atomic origin are also discussed.

  4. Efficient first-principles simulation of noncontact atomic force microscopy for structural analysis.

    PubMed

    Chan, T-L; Wang, C Z; Ho, K M; Chelikowsky, James R

    2009-05-01

    We propose an efficient scheme to simulate noncontact atomic force microscopy images by using first-principles self-consistent potential from the sample as input without explicit modeling of the atomic force microscopy tip. Our method is applied to various types of semiconductor surfaces including Si(111)-(7x7), TiO2(110)-(1x1), Ag/Si(111)-(sqrt[3]xsqrt[3])R30 degrees, and Ge/Si(105)-(1x2) surfaces. We obtain good agreement with experimental results and previous theoretical studies, and our method can aid in identifying different structural models for surface reconstruction.

  5. Structure of YSi2 nanowires from scanning tunneling spectroscopy and first principles

    PubMed Central

    Iancu, V.; Kent, P. R. C.; Zeng, C. G.; Weitering, H. H.

    2009-01-01

    Exceptionally long and uniform YSi2 nanowires are formed via self-assembly on Si(001). The in-plane width of the thinnest wires is known to be quantized in odd multiples of the silicon lattice constant. Here, we identify a class of nanowires that violates the “odd multiple” rule. The structure of the thinnest wire in this category is determined by comparing scanning tunneling spectroscopy measurements with the calculated surface density of states of candidate models by means of the Pendry R-factor analysis. The relative stability of the odd and even wire systems is analyzed via first-principles calculations. PMID:19859579

  6. Circuit elements at optical frequencies from first principles: A synthesis of electronic structure and circuit theories

    NASA Astrophysics Data System (ADS)

    Ramprasad, R.; Tang, C.

    2006-08-01

    A first principles electronic structure based method is presented to determine the equivalent circuit representations of nanostructured physical systems at optical frequencies, via a mapping of the effective permittivity calculated for a lattice of physical nano-elements using density functional theory to that calculated for a lattice of impedances using circuit theory. Specifically, it is shown that silicon nanowires and carbon nanotubes can be represented as series combinations of inductance, capacitance and resistance. It is anticipated that the generality of this approach will allow for an alternate description of physical systems at optical frequencies, and in the realization of novel opto- and nanoelectronic devices, including negative refractive index materials.

  7. First-principles prediction of a ground state crystal structure of magnesium borohydride.

    PubMed

    Ozolins, V; Majzoub, E H; Wolverton, C

    2008-04-04

    Mg(BH(4))(2) contains a large amount of hydrogen by weight and by volume, but its promise as a candidate for hydrogen storage is dependent on the currently unknown thermodynamics of H2 release. Using first-principles density-functional theory calculations and a newly developed prototype electrostatic ground state search strategy, we predict a new T=0 K ground state of Mg(BH(4))(2) with I4[over ]m2 symmetry, which is 5 kJ/mol lower in energy than the recently proposed P6(1) structure. The calculated thermodynamics of H(2) release are within the range required for reversible storage.

  8. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Lv, Chao-Jia; Zhuang, Chun-Qiang; Yi, Li; Liu, Hong; Du, Jian-Guo

    2015-12-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si-O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507-511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177-212]. The most striking changes are of inter-tetrahedral O-O distances and Si-O-Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si-O-Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dνi/dP) of the 12 Raman frequencies are obtained at 0 GPa-5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. Project supported by the Key Laboratory of Earthquake Prediction, Institute of Earthquake Science, China Earthquake Administration (CEA) (Grant No. 2012IES010201) and the National Natural Science Foundation of China (Grant Nos. 41174071 and 41373060).

  9. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    DOE PAGES

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; ...

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that themore » magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.« less

  10. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    SciTech Connect

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Ho, Kai -Ming

    2015-06-23

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co5Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co11Zr2” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co5Zr phase and larger than that of the low-temperature Co5.25Zr phase. As a result, our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.

  11. Structures and magnetic properties of Co-Zr-B magnets studied by first-principles calculations

    SciTech Connect

    Zhao, Xin; Ke, Liqin; Nguyen, Manh Cuong; Wang, Cai-Zhuang Ho, Kai-Ming

    2015-06-28

    The structures and magnetic properties of Co-Zr-B alloys near the composition of Co{sub 5}Zr with B at. % ≤6% were studied using adaptive genetic algorithm and first-principles calculations. The energy and magnetic moment contour maps as a function of chemical composition were constructed for the Co-Zr-B magnet alloys through extensive structure searches and calculations. We found that Co-Zr-B system exhibits the same structure motif as the “Co{sub 11}Zr{sub 2}” polymorphs, and such motif plays a key role in achieving strong magnetic anisotropy. Boron atoms were found to be able to substitute cobalt atoms or occupy the “interruption” sites. First-principles calculations showed that the magnetocrystalline anisotropy energies of the boron-doped alloys are close to that of the high-temperature rhombohedral Co{sub 5}Zr phase and larger than that of the low-temperature Co{sub 5.25}Zr phase. Our calculations provide useful guidelines for further experimental optimization of the magnetic performances of these alloys.

  12. Structural, electronic and mechanical properties of CrN: A first principles study

    NASA Astrophysics Data System (ADS)

    Ming, Zhu; Wang, Ke-Hong

    2015-02-01

    The structural stability, electronic, and mechanical properties of chromium nitride (CrN) have been investigated by first-principles calculations within the generalized gradient approximation (GGA). Six different crystal structures of CrN are considered, namely NaCl, CsCl, zinc blende, WC, wurtzite and NiAs. Among the considered structures, NiAs-type structure is energetically more stable than others. The electronic band structure and density of states calculations reveal that these materials exhibit metallic nature. The calculated elastic constants indicate these compounds are mechanically stable in all the considered sturctures. In addition, the related mechanical properties such as bulk modulus, Young's modulus, shear modulus and the Poisson's ratio are also computed.

  13. A novel anion interstitial defect structure in zinc-blende materials: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Chen, Guangde; Ye, Honggang; Duan, Xiangyang; Zhu, Youzhang; Wu, Yelong

    2016-05-01

    The low-formation energy structure of anion interstitial defect in zinc-blende materials is usually identified as the tetrahedron central structure where the anion interstitial atom is surrounded by four countercation atoms. A line-type anion interstitial defect structure AD_il , however, is found to be lower in energy than the tetrahedron central anion interstitial defect structure by first-principles calculations. By analyzing the structural and electronical characters of this line-type defect in relative compounds of zinc-blende materials, we attribute this to the electronegativity shift trends and the bond forming, which lead to the hybridization types varying from sp 3 to sp-like and ending at sp.

  14. First-principles study of structural and vibrational properties of crystalline silver azide under high pressure

    NASA Astrophysics Data System (ADS)

    Zhu, Weihua; Xiao, Heming

    2007-12-01

    A detailed first-principles study of the structural and vibrational properties of crystalline silver azide under hydrostatic pressure of 0-500 GPa has been performed with density functional theory in the generalized gradient approximation. The crystal structure is relaxed to allow ionic configurations, cell shape, and volume to change without any symmetry constraints. It is found that the silver azide crystal remains orthorhombic structure with Ibam space group for pressures up to 7 GPa, where there is a transition to an I4 /mcm tetragonal symmetry. The lattice parameter and electronic structure are investigated as functions of pressure. The calculated vibrational frequencies at ambient pressure are in agreement with available experimental data. We also discuss the pressure-induced frequency shifts for the internal and lattice modes of silver azide crystal upon compression.

  15. Structural, electronic and mechanical properties of rare earth nitride-ErN: A first principles study

    SciTech Connect

    Murugan, A.; Rajeswarapalanichamy, R. Santhosh, M.; Priyanga, G. Sudha; Kanagaprabha, S.; Iyakutti, K.

    2015-06-24

    The structural, electronic and mechanical properties of rare earth nitride ErN is investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure ErN is stable in the ferromagnetic state with NaCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that ErN is half metallic at normal pressure. A pressure-induced structural phase transition from NaCl (B1) to CsCl (B2) phase is observed in ErN. Ferromagnetic to non magnetic phase transition is predicted in ErN at high pressure.

  16. First-principles studies on the structural stability of α-AlH3 under pressure

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Lin; Zhao, Hui

    2012-12-01

    Pressure-induced structure transitions and electronic structures in α-AlH3 are investigated using the first-principles plane wave pseudopotential method within the generalized gradient approximation. Our results show that the application of pressure makes the volume contractions 7.5% and 7.7% at the structural transition points from the R\\bar{3}c to Pnma and Pnma to Pm\\bar{3}n phases, respectively. Based on the electronic structure analysis, the Pnma phase reflects the transformation tendency from ionic to covalent Al-H bond while ionic Al-H bonding is strengthened in the Pm\\bar{3}n phase with increasing pressure. The Pnma phase exhibits an uncommon tendency from semiconductor-to-insulator transition since the band gap is widened with increasing pressure.

  17. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    PubMed

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  18. Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations

    NASA Astrophysics Data System (ADS)

    Singh, Birender; Kumar, Pradeep

    2017-05-01

    In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.

  19. First principle study of band structure of SrMO{sub 3} perovskites

    SciTech Connect

    Daga, Avinash; Sharma, Smita

    2016-05-06

    First principle study of band structure calculations in the local density approximations (LDA) as well as in the generalized gradient approximations (GGA) have been used to determine the electronic structure of SrMO{sub 3} where M stands for Ti, Zr and Mo. Occurrence of band gap proves SrTiO{sub 3} and SrZrO{sub 3} to be insulating. A small band gap is observed in SrMoO{sub 3} perovskite signifies it to be metallic. Band structures are found to compare well with the available data in the literature showing the relevance of this approach. ABINIT computer code has been used to carry out all the calculations.

  20. Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Uğur; Özden, Ayberk; Perkgöz, Nihan K.; Ay, Feridun; Sevik, Cem

    2016-08-01

    MXenes, carbides, nitrides and carbonitrides of early transition metals are the new members of two dimensional materials family given with a formula of {{{M}}}n+1 X n . Recent advances in chemical exfoliation and CVD growth of these crystals together with their promising performance in electrochemical energy storage systems have triggered the interest in these two dimensional structures. In this work, we employ first principles calculations for n = 1 structures of Sc, Ti, Zr, Mo and Hf pristine MXenes and their fully surface terminated forms with F and O. We systematically investigated the dynamical and mechanical stability of both pristine and fully terminated MXene structures to determine the possible MXene candidates for experimental realization. In conjunction with an extensive stability analysis, we report Raman and infrared active mode frequencies for the first time, providing indispensable information for the experimental elaboration of MXene field. After determining dynamically stable MXenes, we provide their phonon dispersion relations, electronic and mechanical properties.

  1. First Principles Study of Electronic Structure of BF3-NH3 Complex and Associated Properties

    NASA Astrophysics Data System (ADS)

    Dubey, Archana; Mahanti, Mahendra K.; Pink, Roger

    2005-03-01

    BF3 is a planar molecule with three-fold symmetry which is widely used to promote various organic reactions such as Friedel-Crafts acylations and alkylations. To obtain a thorough understanding of the mechanisms for this role of BF3, we are studying from first-principles the electronic structures of BF3 and its complexes with NH3. The procedure used is the first principles Hartree-Fock-Roothaan procedure combined with many body perturbation theory. The results for BF3-NH3 system will be reported, such as the binding energy and equilibrium geometry of the complex, the nature of the B-N bond and the changes in the B-F and N-H bond strengths on complex formation. The Nuclear Quadrupole Interactions of the ^19F* (spin 5/2), ^14N, ^11B, and ^2H will be presented and compared with available experimental data. (*) Present Address: Dept. of Physics, Uppsala University, Sweden (**) Also: Dept of Physics, University of Central Florida, Orlando, Florida

  2. First-principles study of Co3(Al,W) alloys using special quasirandom structures

    SciTech Connect

    Jiang, Chao

    2008-01-01

    We have developed 32-atom special quasi-random structures (SQSs) to model the substitutionally random pseudo-binary A3(B0.5C0.5) alloys in L12, D019, and D03 crystal structures, respectively. First-principles SQS calculations are performed to examine the phase stability of the recently identified L12-Co3Al0.5W0.5 compound in the Co-Al-W ternary system. By computing total energy as a function of applied strain, the single-crystal elastic constants of L12-Co3Al0.5W0.5 are also predicted and our results show excellent agreement with recent experimental measurements.

  3. Effect of ionic substitutions on the structure and dielectric properties of hafnia: A first principles study

    NASA Astrophysics Data System (ADS)

    Cockayne, Eric

    2008-04-01

    First principles calculations were used to study the effects of Si, Ti, Zr, and Ta (+N) substitutional impurities on the structure and dielectric properties of crystalline HfO2. The dielectric constant of monoclinic HfO2 can be enhanced by substituting more polarizable ions for Hf, but the band gap is decreased. Enhancing the permittivity without decreasing the band gap requires forming the tetragonal or cubic phase of HfO2. Among the ions studied, Si alone is found to stabilize a nonmonoclinic phase of HfO2 relative to the monoclinic phase, but only at an atomic concentration above about 20%. Various experiments have reported the formation of nonmonoclinic phases of HfO2 with increased permittivity when other ions are substituted for Hf. It is concluded that these structures are, in general, either metastable or are stabilized by extrinsic factors or by a layered arrangement of the substitutional cations.

  4. Electronic structure of cubic ScF3 from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bocharov, D.; Žguns, P.; Piskunov, S.; Kuzmin, A.; Purans, J.

    2016-07-01

    The ground state properties of cubic scandium trifluoride (ScF3) perovskite were studied using first-principles calculations. The electronic structure of ScF3 was determined by linear combination of atomic orbital (LCAO) and plane wave projector augmented-wave (PAW) methods using modified hybrid exchange-correlation functionals within the density functional theory (DFT). The comprehensive comparison of the results obtained by two methods is presented. Both methods allowed us to reproduce the lattice constant found experimentally in ScF3 at low temperatures and to predict its electronic structure in good agreement with known experimental valence-band photoelectron and F 1s x-ray absorption spectra.

  5. Exotic Multigap Structure in UPt3 Unveiled by a First-Principles Analysis

    NASA Astrophysics Data System (ADS)

    Nomoto, Takuya; Ikeda, Hiroaki

    2016-11-01

    A heavy-fermion superconductor UPt3 is a unique spin-triplet superconductor with multiple superconducting phases. Here, we provide the first report on a first-principles analysis of the microscopic superconducting gap structure. We find that the promising gap structure is an unprecedented E2 u state, which is completely different from the previous phenomenological E2 u models. Our obtained E2 u state has in-plane twofold vertical line nodes on small Fermi surfaces and point nodes with linear dispersion on a large Fermi surface. These peculiar features cannot be explained in the conventional spin 1 /2 representation, but is described by the group-theoretical representation of the Cooper pairs in the total angular momentum j =5 /2 space. Our findings shed new light on the long-standing problems in the superconductivity of UPt3 .

  6. Novel phases of lithium-aluminum binaries from first-principles structural search

    SciTech Connect

    Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Botti, Silvana; Marques, Miguel A. L.; Valencia-Jaime, Irais; Amsler, Maximilian; Goedecker, Stefan; Romero, Aldo H.

    2015-01-14

    Intermetallic Li–Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li–Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li{sub 3}Al{sub 2}, Li{sub 9}Al{sub 4}, LiAl{sub 3}, and Li{sub 2}Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li–Al stable compounds as a function of their stoichiometry.

  7. Electronic structures and optical spectra of BaO from first principles

    SciTech Connect

    Wu, Chang-Wei; Pan, Bo; Wang, Neng-Ping

    2015-08-21

    We present the results of first-principles study for the electronic structure and optical absorption spectrum of the alkaline-earth metal oxide BaO. The quasiparticle band structure is evaluated within the Hedin's GW approximation [Phys. Rev. 139, A796 (1965)]. Thereafter, the electron-hole interaction is taken into consideration and the Bethe-Salpeter equation for the electron-hole two-particle Green function is solved. The calculated quasiparticle band gap of BaO is 4.1 eV, which is in good agreement with the experimental result. The calculated optical absorption spectrum of BaO is also in agreement with the experimental data. In particular, the calculated excitation energy for the lowest exciton peak in the optical absorption spectrum of BaO reproduces very well the corresponding experimental result.

  8. Electronic structures and optical spectra of BaO from first principles

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Wei; Pan, Bo; Wang, Neng-Ping

    2015-08-01

    We present the results of first-principles study for the electronic structure and optical absorption spectrum of the alkaline-earth metal oxide BaO. The quasiparticle band structure is evaluated within the Hedin's GW approximation [Phys. Rev. 139, A796 (1965)]. Thereafter, the electron-hole interaction is taken into consideration and the Bethe-Salpeter equation for the electron-hole two-particle Green function is solved. The calculated quasiparticle band gap of BaO is 4.1 eV, which is in good agreement with the experimental result. The calculated optical absorption spectrum of BaO is also in agreement with the experimental data. In particular, the calculated excitation energy for the lowest exciton peak in the optical absorption spectrum of BaO reproduces very well the corresponding experimental result.

  9. Novel phases of lithium-aluminum binaries from first-principles structural search

    NASA Astrophysics Data System (ADS)

    Sarmiento-Pérez, Rafael; Cerqueira, Tiago F. T.; Valencia-Jaime, Irais; Amsler, Maximilian; Goedecker, Stefan; Romero, Aldo H.; Botti, Silvana; Marques, Miguel A. L.

    2015-01-01

    Intermetallic Li-Al compounds are on the one hand key materials for light-weight engineering, and on the other hand, they have been proposed for high-capacity electrodes for Li batteries. We determine from first-principles the phase diagram of Li-Al binary crystals using the minima hopping structural prediction method. Beside reproducing the experimentally reported phases (LiAl, Li3Al2, Li9Al4, LiAl3, and Li2Al), we unveil a structural variety larger than expected by discovering six unreported binary phases likely to be thermodynamically stable. Finally, we discuss the behavior of the elastic constants and of the electric potential profile of all Li-Al stable compounds as a function of their stoichiometry.

  10. Temperature effect on lattice and electronic structures of WTe2 from first-principles study

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Liu, Huimei; Zhou, Jian; Wan, Xiangang

    2017-01-01

    Tungsten ditelluride (WTe2) exhibits extremely large and unsaturated magnetoresistance (MR). Due to the large spatial extensions of Te-5p and W-5d orbitals, the electronic properties of WTe2 are sensitive to the lattice structures, which can probably affect the strongly temperature dependent MR found in the experiment. Based on first-principle calculations, we investigate the temperature effect on the lattice and electronic structures of WTe2. Our numerical results show that the thermal expansion coefficients of WTe2 are highly anisotropic and considerably large. However, the temperature (less than 300 K) has an ignorable effect on the Fermi surface of WTe2. Our theoretical results clarify that the thermal expansion is not the main reason for the temperature-induced rapid decrease of magnetoresistance.

  11. First-principle study of energy band structure of armchair graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ma, Fei; Guo, Zhankui; Xu, Kewei; Chu, Paul K.

    2012-07-01

    First-principle calculation is carried out to study the energy band structure of armchair graphene nanoribbons (AGNRs). Hydrogen passivation is found to be crucial to convert the indirect band gaps into direct ones as a result of enhanced interactions between electrons and nuclei at the edge boundaries, as evidenced from the shortened bond length as well as the increased differential charge density. Ribbon width usually leads to the oscillatory variation of band gaps due to quantum confinement no matter hydrogen passivated or not. Mechanical strain may change the crystal symmetry, reduce the overlapping integral of C-C atoms, and hence modify the band gap further, which depends on the specific ribbon width sensitively. In practical applications, those effects will be hybridized to determine the energy band structure and subsequently the electronic properties of graphene. The results can provide insights into the design of carbon-based devices.

  12. Ground-State Crystal Structure of Strontium Peroxide Predicted from First Principles.

    PubMed

    Wang, Yanchao; Wang, Sheng; Zhang, Yunwei; Lv, Jian; Chen, Yue; Zheng, Weitao; Ma, Yanming

    2017-07-03

    It has been widely believed that SrO2, a typical alkaline earth metal peroxide, should adopt the tetrahedral CaC2-type structure (space group I4/mmm) at ambient pressure. Here we report a monoclinic structure (space group C2c), as predicted from first-principles swarm structure searching simulations, is energetically more favorable than the CaC2-type structure at ambient pressure and low temperature, while the I4/mmm structure is only stable at high pressure (>20 GPa) or elevated temperature conditions. A key difference between these structures is the distinct orientation of peroxide ions. Especially, frozen-phonon calculations indicate that the C2c structure can be derived by a softening mode phonon from I4/mmm structure. Furthermore, a high-pressure phase of SrO2 with P21/c symmetries containing two layers of peroxide ions with different orientations is uncovered at pressures higher than 36 GPa. Our electronic band calculations indicate that all the stable structures of SrO2 are wide band gap semiconductors. Our results represent a step forward toward a more complete understanding of the structures and properties of alkaline earth metal peroxides.

  13. The structural, electronic and phonon behavior of CsPbI3: A first principles study

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Khare, Preeti; Parey, Vanshree; Shukla, Aarti; Gaur, N. K.

    2016-05-01

    Metal halide perovskites are optoelectronic materials that have attracted enormous attention as solar cells with power conversion efficiencies reaching 20%. The benefit of using hybrid compounds resides in their ability to combine the advantage of these two classes of compounds: the high mobility of inorganic materials and the ease of processing of organic materials. In spite of the growing attention of this new material, very little is known about the electronic and phonon properties of the inorganic part of this compounds. A theoretical study of structural, electronic and phonon properties of metal-halide cubic perovskite, CsPbI3 is presented, using first-principles calculations with planewave pseudopotential method as personified in PWSCF code. In this approach local density approximation (LDA) is used for exchange-correlation potential.

  14. First principles DFT investigation of yttrium-doped graphene: Electronic structure and hydrogen storage

    SciTech Connect

    Desnavi, Sameerah; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2014-04-24

    The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 μ{sub B}. Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability.

  15. Structural stability and electronic properties of InSb nanowires: A first-principles study

    SciTech Connect

    Zhang, Yong; Tang, Li-Ming Ning, Feng; Chen, Ke-Qiu; Wang, Dan

    2015-03-28

    Using first-principles calculations, we investigate the structural stability and electronic properties of InSb nanowires (NWs). The results show that, in contrast to the bulk InSb phase, wurtzite (WZ) NWs are more stable than zinc-blende (ZB) NWs when the NW diameter is smaller than 10 nm. Nonpassivated ZB and WZ NWs are found to be metallic and semiconducting, respectively. After passivation, both ZB and WZ NWs exhibit direct-gap semiconductor character, and the band gap magnitude of the NWs strongly depends on the suppression of surface states by the charge-compensation ability of foreign atoms to surface atoms. Moreover, the carrier mobility of the NW can be strengthened by halogen passivation.

  16. First-principles study of structural and thermodynamic properties of osmium

    NASA Astrophysics Data System (ADS)

    Liu, Ke; He, Duan-Wei; Zhou, Xiao-Lin; Chen, Hai-Hua

    2011-08-01

    We employ the first-principles plane wave pseudopotential density functional theory method to calculate the equilibrium lattice parameters of osmium and the thermodynamic properties of hcp structure osmium. The obtained lattice parameters are in good agreement with the experimental data investigated up to 58.2 GPa using radial X-ray diffraction (RXRD) together with lattice strain theory in a diamond-anvil cell and the available theoretical data of others. Through the quasi-harmonic Debye model, the dependencies of the normalized lattice parameters a/ a0 and c/ c0 on pressure P, the normalized primitive volume V/V0 on pressure P, the Debye temperature ΘD and the heat capacity CV on pressure P and temperature T, as well as the variation of the thermal expansion α with temperature and pressure are obtained successfully.

  17. Strain effect on electronic structures of graphene nanoribbons: A first-principles study.

    PubMed

    Sun, Lian; Li, Qunxiang; Ren, Hao; Su, Haibin; Shi, Q W; Yang, Jinlong

    2008-08-21

    We report a first-principles study on the electronic structures of deformed graphene nanoribbons (GNRs). Our theoretical results show that the electronic properties of zigzag GNRs are not sensitive to uniaxial strain, while the energy gap modification of armchair GNRs (AGNRs) as a function of uniaxial strain displays a nonmonotonic relationship with a zigzag pattern. The subband spacings and spatial distributions of the AGNRs can be tuned by applying an external strain. Scanning tunneling microscopy dI/dV maps can be used to characterize the nature of the strain states, compressive or tensile, of AGNRs. In addition, we find that the nearest neighbor hopping integrals between pi-orbitals of carbon atoms are responsible for energy gap modification under uniaxial strain based on our tight binding approximation simulations.

  18. Prediction of rock salt structure of (InN)32 nanoparticles from first principles calculations.

    PubMed

    Kaur, Prabhsharan; Sekhon, S S; Kumar, Vijay

    2013-03-21

    From first principles calculations, we show that (InN)32 nanoparticles favor rock salt structure compared with wurtzite structure in bulk. A phase transition from wurtzite to rock salt structure is known to occur in bulk InN at 12.1 GPa and higher values of pressure for AlN and GaN. However, at the nanoscale we show that this structural transition takes place in (InN)32 without applying pressure. The charge asymmetry value "g" and cation/anion size ratio in InN describe very well this behavior. Similar studies on nanoparticles of AlN and GaN as well as a few other binary compounds such as MgS, AgI, ZnO, and CdSe, however, do not show such a transition. Our results suggest (InN)32 to be a unique candidate as further calculations on a few larger size (InN)n nanoparticles show that a filled cage (two shells) (InN)12@(InN)48 structure of (InN)60 has higher binding energy compared with a rock salt structure of (InN)64 leading to the conclusion that other 3D structures are likely to become favorable over rock salt structure for larger sizes.

  19. Structures, phase transitions, and magnetic properties of C o3Si from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Yu, Shu; Wu, Shunqing; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-07-01

    C o3Si was recently reported to exhibit remarkable magnetic properties in the nanoparticle form [B. Balasubramanian et al., Appl. Phys. Lett. 108, 152406 (2016)], 10.1063/1.4945987, yet better understanding of this material should be promoted. Here we report a study on the crystal structures of C o3Si using an adaptive genetic algorithm and discuss its electronic and magnetic properties from first-principles calculations. Several competing phases of C o3Si have been revealed from our calculations. We show that the hexagonal C o3Si structure reported in experiments has lower energy in the nonmagnetic state than in the ferromagnetic state at zero temperature. The ferromagnetic state of the hexagonal structure is dynamically unstable with imaginary phonon modes and transforms into a new orthorhombic structure, which is confirmed by our structure searches to have the lowest energy for both C o3Si and C o3Ge . Magnetic properties of the experimental hexagonal structure and the lowest-energy structures obtained from our structure searches are investigated in detail.

  20. Structural, electronic, and elastic properties of K-As compounds: a first principles study.

    PubMed

    Ozisik, Havva Bogaz; Colakoglu, Kemal; Deligoz, Engin; Ozisik, Haci

    2012-07-01

    First-principle calculations are performed to investigate the structural, elastic and electronic properties of K-As compounds (KAs in NaP, LiAs and AuCu-type structures, KAs(2) in MgCu(2)-type structure, K(3)As in Na(3)As, Cu(3)P and Li(3)Bi-type structures, and K(5)As(4) in A(5)B(4)-type structure). The lattice parameters, cohesive energy, formation energy, bulk modulus, and the first derivative of bulk modulus (to fit to the Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained, and the phase transition pressure is also predicted. The repeated calculations on the electronic band structures and the related partial density of states are also given. The calculated second-order elastic constants based on the stress-strain method and the other related quantities such as Young's modulus, shear modulus, Poisson's ratio, sound velocities, Debye temperature, and shear anisotropy factors for considered structures are presented, and trends are discussed.

  1. Systematic investigation of the structure of the Si(553)-Au surface from first principles

    NASA Astrophysics Data System (ADS)

    Riikonen, Sampsa; Sánchez-Portal, Daniel

    2008-04-01

    We present here a comprehensive search for the structure of the Si(553)-Au reconstruction. More than 200 different trial structures have been studied using first-principles density-functional calculations with the SIESTA code. An iterative procedure, with a step-by-step increase in the accuracy and computational cost of the calculations, was used to allow for the study of this large number of configurations. We have considered reconstructions restricted to the topmost bilayer and studied two types: (i) “flat” surface-bilayer models, where atoms at the topmost bilayer present different coordinations and registries with the underlying bulk, and (ii) nine different models based on the substitution of a silicon atom by a gold atom in different positions of a π -bonded chain reconstruction of the Si(553) surface. We have developed a compact notation that allows us to label and identify all these structures. This is very useful for the automatic generation of trial geometries and for counting the number of inequivalent structures, i.e., structures that have different bonding topologies. The most stable models are those that exhibit a honeycomb-chain structure at the step edge. One of our models (model “f2”) reproduces the main features of the room temperature photoemission and scanning-tunneling microscopy data. Thus, we conclude that this model is a good candidate for the high temperature structure of the Si(553)-Au surface.

  2. Pressure dependence of the electronic structure in kaolinite: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fang, Zhi-Jie; Zhai, Xiao-Shuai; Li, Zheng-Lin; Pan, Rong-Jun; Mo, Man

    2017-04-01

    Using the first-principle methods, the pressure dependence of the electronic structure and band structure of kaolinite were studied within the local-density approximation. The calculated results show that pressure would chiefly alter the band structure of kaolinite, while pressure can have its main effect on the band gap of kaolinite. At p = 0.6 GPa, band structure of kaolinite first converts an indirect gap into a direct gap, and then recovers an indirect gap structure at p = 66.2 GPa because CBM shift in the band structure is under high-pressure. The bond Si-O is more stable than bond Al-O under pressure, in addition, pressure has a significant effect on the inner hydroxyl bond of kaolinite and leads to a large variation of H-O(inner) bond lengths. The calculated results will not only help to understand the electronic structure of kaolinite under pressure, but also provide theoretical guidance for deal with the safe problems of soft-rock tunnel engineering.

  3. First-Principles Study on the Structural and Magnetic Properties of Iron Hydride

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Matsuura, Yasuyuki; Shishidou, Tatsuya; Oguchi, Tamio

    2012-06-01

    The magnetic and structural properties of iron hydride FeH with the double hexagonal close-packed (dhcp) and hexagonal close-packed (hcp) structures are investigated by first-principles density-functional theory calculations with a spin-polarized form of generalized gradient approximation. All the calculations are performed using all-electron full-potential linearized augmented plane wave method. Both dhcp and hcp FeH are ferromagnetic at ambient pressure. The ferromagnetic ordering of the dhcp structure collapses at a pressure of 48 GPa, while that of the hcp structure vanishes gradually from 48 GPa. The modification in the density of states (DOS) due to the applied pressure causes the collapse of the magnetization. The difference in magnetic moment reduction between dhcp and hcp FeH is attributed to their DOS around the Fermi level. The calculated magnetocrystalline anisotropy energies between in-plane and out-of-plane spin orientations are found to be 124 μeV/Fe for the dhcp structure, and 100 μeV/Fe for the hcp structure. The easy axis is in-plane direction for both structures.

  4. Thermodynamic ground state of MgB{sub 6} predicted from first principles structure search methods

    SciTech Connect

    Wang, Hui; LeBlanc, K. A.; Gao, Bo; Yao, Yansun

    2014-01-28

    Crystalline structures of magnesium hexaboride, MgB{sub 6}, were investigated using unbiased structure searching methods combined with first principles density functional calculations. An orthorhombic Cmcm structure was predicted as the thermodynamic ground state of MgB{sub 6}. The energy of the Cmcm structure is significantly lower than the theoretical MgB{sub 6} models previously considered based on a primitive cubic arrangement of boron octahedra. The Cmcm structure is stable against the decomposition to elemental magnesium and boron solids at atmospheric pressure and high pressures up to 18.3 GPa. A unique feature of the predicted Cmcm structure is that the boron atoms are clustered into two forms: localized B{sub 6} octahedra and extended B{sub ∞} ribbons. Within the boron ribbons, the electrons are delocalized and this leads to a metallic ground state with vanished electric dipoles. The present prediction is in contrast to the previous proposal that the crystalline MgB{sub 6} maintains a semiconducting state with permanent dipole moments. MgB{sub 6} is estimated to have much weaker electron-phonon coupling compared with that of MgB{sub 2}, and therefore it is not expected to be able to sustain superconductivity at high temperatures.

  5. Structural, elastic, and lattice dynamic stability of yttrium selenide (YSe) under pressure: A first principle study

    SciTech Connect

    Sahoo, B. D. Joshi, K. D.; Gupta, Satish C.

    2014-11-21

    Structural, elastic, and lattice dynamical stability of YSe has been investigated as a function of pressure through first principles electronic band structure calculations. The comparison of enthalpies of rocksalt type (B1) and CsCl type cubic (B2) structures determined as a function of pressure suggests that the B1 phase will transform to B2 structure at ∼32 (30 GPa at 300 K obtained from comparison of Gibbs free energy at 300 K). The transition is identified to be of first order in nature with a volume discontinuity of ∼6.2% at the transition pressure. Furthermore, the theoretically determined equation of state has been utilized to derive various physical quantities, such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus. The single crystal elastic constants have been predicted at various pressures for both the B1 and B2 structures using the energy strain method. The activation barrier between B1 and B2 phases calculated at transition point is ∼19.7mRy/formula unit. Our lattice dynamic calculations show that both the B1 as well as B2 structures are lattice dynamically stable not only at ambient pressure but also at transition pressure. The B1 phase becomes lattice dynamically unstable at ∼112 GPa, i.e., much beyond the transition pressure. The effect of temperature on volume and bulk modulus of the YSe in B1 phase has also been examined.

  6. Structural, electronic and magnetic properties of Fe2-based full Heusler alloys: A first principle study

    NASA Astrophysics Data System (ADS)

    Dahmane, F.; Mogulkoc, Y.; Doumi, B.; Tadjer, A.; Khenata, R.; Bin Omran, S.; Rai, D. P.; Murtaza, G.; Varshney, Dinesh

    2016-06-01

    Using the first-principles density functional calculations, the structural, electronic and magnetic properties of the Fe2XAl (X=Cr, Mn, Ni) compounds in both the Hg2CuTi and Cu2MnAl-type structures were studied by the full-potential linearized augmented plane waves (FP-LAPW) method. The exchange and correlation potential is treated by the generalized-gradient approximation (GGA) where the results show that the Cu2MnAl-type structure is energetically more stable than the Hg2CuTi-type structure for the Fe2CrAl and Fe2MnAl compounds at the equilibrium volume. The full Heusler compounds Fe2XAl (X=Cr, Mn) are half-metallic in the Cu2MnAl-type structure. Fe2NiAl has a metallic character in both CuHg2Ti and AlCu2Mn-type structures. The total magnetic moments of the Fe2CrAl and Fe2MnAl compounds are 1.0 and 2.0 μB, respectively, which are in agreement with the Slater-Pauling rule Mtot=Ztot- 24.

  7. Study of magnetism in nano structures of graphene and functionalized graphene: a first principle study

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Sharma, M.; Sharma, J. D.; Ahluwalia, P. K.

    2015-02-01

    A first principle calculation has been performed to explore the magnetism in nano structures of graphene due to vacancies in carbon lattice and functionalized (hydrogenated) graphene due to vacancies in hydrogen lattice. Nano structures containing 50C atoms (5 × 5 × 1 super cell) have been considered. Using the method of numeric localized atomic orbitals, pseudo potentials and density functional theory, spin polarised electron density of states have been calculated and C-C bond lengths, C-C-C and H-C-C bond angles, formation energy and magnetic moment have been obtained. It has been found that due to defects (vacancies) in carbon lattice of pristine graphene, nano structure develops magnetic moment, which varies with the size of defect. A nano structure with four contiguous vacancies is found to have a magnetic moment of 2.0 µB. The nano structures of hydrogenated graphene also develop magnetic moment due to vacancies in hydrogen lattice , which varies with number and position of vacancies. A nano structure with half hydrogenated graphene obtained by removing all the hydrogen atoms from one side of graphane, (alternate vacancies in hydrogen lattice 50C25H atoms, graphone) is found to develop a large magnetic moment of 25.0 µB.

  8. First-Principles Studies of Structure-Property Relationships: Enabling Design of Functional Materials

    NASA Astrophysics Data System (ADS)

    Zhou, Qunfei

    First-principles calculations based on quantum mechanics have been proved to be powerful for accurately regenerating experimental results, uncovering underlying myths of experimental phenomena, and accelerating the design of innovative materials. This work has been motivated by the demand to design next-generation thermionic emitting cathodes and techniques to allow for synthesis of photo-responsive polymers on complex surfaces with controlled thickness and patterns. For Os-coated tungsten thermionic dispenser cathodes, we used first-principles methods to explore the bulk and surface properties of W-Os alloys in order to explain the previously observed experimental phenomena that thermionic emission varies significantly with W-Os alloy composition. Meanwhile, we have developed a new quantum mechanical approach to quantitatively predict the thermionic emission current density from materials perspective without any semi-empirical approximations or complicated analytical models, which leads to better understanding of thermionic emission mechanism. The methods from this work could be used to accelerate the design of next-generation thermionic cathodes. For photoresponsive materials, we designed a novel type of azobenzene-containing monomer for light-mediated ring-opening metathesis polymerization (ROMP) toward the fabrication of patterned, photo-responsive polymers by controlling ring strain energy (RSE) of the monomer that drives ROMP. This allows for unprecedented remote, noninvasive, instantaneous spatial and temporal control of photo-responsive polymer deposition on complex surfaces.This work on the above two different materials systems showed the power of quantum mechanical calculations on predicting, understanding and discovering the structures and properties of both known and unknown materials in a fast, efficient and reliable way.

  9. An Insight into Sodiation of Antimony from First-Principles Crystal Structure Prediction

    NASA Astrophysics Data System (ADS)

    Caputo, Riccarda

    2016-02-01

    Elemental antimony has recently become an attractive anode material for potential application in rechargeable sodium-ion batteries. I present a first-principles study of the structure-composition dependence of the Na-Sb system for both sodiation and desodiation processes. The enthalpy of reaction of x moles of sodium with the hexagonal structure of antimony reveals several stable crystal structures for 0 < x ≤ 3, with variable composition states for 1.25 < x < 2.75. The direct and reverse reactions pass through similar states in terms of enthalpy of formation and symmetry representation of the corresponding optimized structures, in particular for x = 1 and x = 3, confirming the two known phases, namely NaSb and Na3Sb. The calculations suggest that the optimal composition range for reversible sodiation of antimony is 1 < x ≤ 3, thus avoiding the global minimum at x = 1. This can help to rationalize the structure-composition dependence of the electrochemical performance of antimony in Na-ion batteries.

  10. Structural stabilities, elastic and electronic properties of chromium tetraboride from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xu, C.; Li, Q.; Liu, C. M.; Duan, M. Y.; Wang, H. K.

    2016-05-01

    First-principles calculations are employed to investigate the structural and elastic properties, formation enthalpies and chemical bonding features as well as hardness values of chromium tetraboride (CrB4) with different structures. The lattice parameters, Poisson’s ratio and B/G ratio are also derived. Our calculations indicate that the orthorhombic structure with Pnnm symmetry is the most energetically stable one for CrB4. Except for WB4P63/mmc structure with imaginary frequencies, another six new structures are investigated through the full phonon dispersion calculations. Their mechanical and thermodynamic stabilities are also studied by calculating the elastic constants and formation enthalpies. Our calculations show that the thermodynamic stabilities of all these CrB4 phases can be enhanced under high pressure. The large shear moduli, Young’s moduli and hardness values indicate that these CrB4 phases are potential hard materials. Analyses of the densities of states (DOSs) and electron localization functions (ELFs) provide further understandings of the chemical and physical properties of these CrB4 phases. It is observed that the large occupations and high strengths of the B-B covalent bonds are important for the stabilities, incompressibility and hardnesses of these CrB4 phases.

  11. Crystal Structures, Stabilities, Electronic Properties, and Hardness of MoB2: First-Principles Calculations.

    PubMed

    Ding, Li-Ping; Shao, Peng; Zhang, Fang-Hui; Lu, Cheng; Ding, Lei; Ning, Shu Ya; Huang, Xiao Fen

    2016-07-18

    On the basis of the first-principles techniques, we perform the structure prediction for MoB2. Accordingly, a new ground-state crystal structure WB2 (P63/mmc, 2 fu/cell) is uncovered. The experimental synthesized rhombohedral R3̅m and hexagonal AlB2, as well as theoretical predicted RuB2 structures, are no longer the most favorite structures. By analyzing the elastic constants, formation enthalpies, and phonon dispersion, we find that the WB2 phase is thermodynamically and mechanically stable. The high bulk modulus B, shear modulus G, low Poisson's ratio ν, and small B/G ratio are benefit to its low compressibility. When the pressure is 10 GPa, a phase transition is observed between the WB2-MoB2 and the rhombohedral R3̅m MoB2 phases. By analyzing the density of states and electron density, we find that the strong covalent is formed in MoB2 compounds, which contributes a great deal to its low compressibility. Furthermore, the low compressibility is also correlated with the local buckled structure.

  12. First principles investigations of electronic structure and transport properties of graphitic structures and single molecular junctions

    NASA Astrophysics Data System (ADS)

    Owens, Jonathan R.

    In this work, we first present two powerful methods for understanding the electronic, structural, conducting, and energetic properties of nano-materials: density functional theory (DFT) and quantum transport. The basics of the theory and background of both methods are discussed thoroughly. After establishing a firm foundation, we turn our attention to using these tools to solve practical problems, often in collaboration with experimental colleagues. The first two projects pertain to nitrogen doping in graphene nanoribbons (GNRs). We study nitrogen doping in two different schema: concentration-based (N_x-doped) and structural based (N_2. {AA}-doped). Concentration based doping is explored in the context of experimental measurements of IV curves on GNRs with differing dopant concentrations. These results show a shift towards semi-conducting behavior with an increase in dopant concentration. We combine first principles calculations (DFT) and transport calculations in the Landauer formalism to compute the density-of-states (DOS) and transport curves for various dopant concentrations (0.46%, 1.39%, 1.89%, and 2.31%), which corroborate the experimental observations. The N_2. {AA}-doped GNR study was inspired by experimental observation of an atomically precise nitrogen doping scheme in bulk graphene. Experimental STM images, combined with simulated STM images, revealed that the majority (80%) of doping sites consist of nitrogen atoms on neighboring sites of the same sublattice (A) in graphene, hence N_2. {AA} doping. We examine this doping scheme applied to zigzag and armchair GNRs under different orientations of the dopants. We present spin-resolved charge densities, energetics, transport, DOS, and simulated STM images for all four systems studied. Our results show the possibility of spin-filtered devices and the STM images provide an aid in helping experimentalist identify the dopant patterns, if these GNRs are fabricated. We next venture to explain different observed

  13. Structural stability and electronic properties of β-tetragonal boron: A first-principles study

    SciTech Connect

    Hayami, Wataru

    2015-01-15

    It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too great to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.

  14. Structural, electronic, optical and bonding properties of strontianite, SrCO3: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Hu, Zuowei; Li, Yun; Zhang, Chuanyu; Ao, Bingyun

    2016-11-01

    The first-principles calculations are performed within the density functional theory to investigate the crystal structure, energy band structure, density of states, optical properties, and bonding properties of strontianite. The optimized structure parameters and bonding results with the generalized gradient approximation (GGA) functional and the localized density approximation (LDA) functional are in good agreement with the earlier experimental data. The band structure, density of states and chemical bonding of strontianite have been calculated and analyzed. The indirect band gap of strontianite is estimated to be ~4.45 eV (GGA) or ~4.24 eV (LDA). The absorption, reflectivity, refractive index and extinction coefficient have been calculated using the imaginary part of the dielectric function. The calculated results of the optical properties show that strontianite has an optical anisotropy along [100] (or [010]) and [010] polarization directions of incoming light. Furthermore, the calculated results of the density of states and Mulliken population indicate that the interactions among atoms are both ionic and covalent bonding in strontianite.

  15. A first principles study of adhesion and electronic structure at Fe (110)/graphite (0001) interface

    NASA Astrophysics Data System (ADS)

    Liu, Yangzhen; Xing, Jiandong; Li, Yefei; Sun, Liang; Wang, Yong

    2017-05-01

    Using first-principles calculations, we discuss the bulk properties of bcc Fe and graphite and that of the surface, the work of adhesion, and the electronic structure of Fe (110)/graphite (0001) interface. In this study, the experimental results of the bulk properties of bcc Fe and graphite reveal that our adopted parameters are reliable. Moreover, the results of surface energy demonstrate that nine atomic layers of graphite (0001) and five atomic layers of Fe (110) exhibit bulk-like interiors. The lattice mismatch of Fe (110)/graphite (0001) interface is about 6%. The results also exhibit that the Fe atom residing on top of the second layer of graphite slab (HCP structure) is the preferred stacking sequence. The work of adhesion (Wad) of the optimized Fe/graphite interface of HCP structure is 1.36 J/m2. Electronic structures indicate that the bonding characteristics are a mixture of covalent and ionic bonds in the HCP interface. Moreover, the magnetic moment of atoms at the interface was studied using the spin polarized density of states.

  16. Structural properties of liquid Ge2Se3: A first-principles study

    NASA Astrophysics Data System (ADS)

    Le Roux, Sébastien; Zeidler, Anita; Salmon, Philip S.; Boero, Mauro; Micoulaut, Matthieu; Massobrio, Carlo

    2011-10-01

    The structural properties of liquid Ge2Se3were investigated by first-principles molecular dynamics using the Becke-Lee-Yang-Parr scheme for the treatment of the exchange-correlation functional in density functional theory. Our data for the total neutron structure factor and the total pair-distribution function are in excellent agreement with the experimental results. The structure is made predominantly (˜61%) from units comprising fourfold coordinated Ge atoms in the form of Ge-GeSe3 or Ge-Se4 motifs, but there is also a large variety of motifs in which Ge and Se are not fourfold and twofold coordinated, respectively. The miscoordinated atoms and homopolar bonds lead to a highly perturbed tetrahedral network, as reflected by diffusion coefficients that are larger than in the case of liquid GeSe2. The network does, nevertheless, exhibit intermediate range order which is associated with the Ge-Ge correlations and which manifests itself by a first sharp diffraction peak in the total neutron structure factor. The evolution of the properties of GexSe1-x liquids (0 ≤x≤ 1) with composition is discussed.

  17. Comparative first-principles study of structural and optical properties of alkali metal azides.

    PubMed

    Zhu, Weihua; Xiao, Jijun; Xiao, Heming

    2006-05-25

    A comparative first-principles study of the structural and optical properties of the alkali metal azides has been performed with density functional theory within the generalized gradient approximation. The crystal structures of the alkali azides compare well with experimental data. Their ionic character is manifested by the closeness of their internitrogen distances to the calculated N-N bond length for the free azide ion. An analysis of electronic structure, charge transfer, and bond order shows that the alkali azides are all wide-gap insulators and ionic compounds. The energy band and density of states for lithium azide and alpha-sodium azide are very similar, while these for potassium azide, alpha-rubidium azide, and alpha-cesium azide are alike, but some modifications are observed with the increment of alkali metals' electropositivity. These changes are closely related to the differences of the crystal structures. The general shapes of the real and imaginary parts of the dielectric function, adsorption coefficient, and electron energy-loss spectra are quite similar. The peaks originate from the electron transitions from the alkali metal s and p states to the conduction band. Our calculated optical properties for the alkali azides are found to be in good agreement with available experimental data. The absorption spectra of the alkali azides show a number of absorption peaks, which are believed to be associated with different exciton states, in the fundamental absorption region. In general, the electron energy-loss spectra have two plasma frequencies.

  18. First-principles exploration of multiferroic oxides with double-perovskite structure

    NASA Astrophysics Data System (ADS)

    Oguchi, Tamio; Shishidou, Tatsuya; Uratani, Yoshitaka

    2006-03-01

    Multiferroics have attracted much attention recently because of their novel properties. There are a few known as ferromagnetic and ferroelectric materials, particularly with perovskite-type crystal structure. Ferroelectrics should be insulating and likely ionic. Furthermore, it is widely recognized that covalent bonds between the cation and anion orbitals are crucial to realize atomic displacements to a noncentrosymmetric structure. As for magnetism, most of magnetic perovskite oxides usually have an antiferromagnetic order (mostly frustrating) due to a superexchange coupling. According to the Kanamori-Goodenough rule for the superexchange coupling, certain combinations of the transition-metals ions (d^3-d^5 and d^3-d^8 configurations) may possibly give a ferromagnetic coupling by the 180^o superexchange mechanism. In this study, we explore possible co-existence of spontaneous electric polarization and ferromagnetic ordering from first principles, by focusing bismuth double-perovskite oxides Bi2BB'O6 (B, B' = 3d ions) as target materials. Ferromagnetic and ferrimagnetic solutions are obtained for cubic Bi2MnNiO6, Bi2CrFeO6 and Bi2CrCuO6 with nearly gapped electronic structure. Quite recently, Bi2MnNiO6 has been successfully synthesized by a high-pressure technique and revealed multiferroic properties. Possible multiferroic properties of Bi2MnNiO6 with the observed monoclinic structure are investigated in detail.

  19. First principles calculations of structural, electronic and optical properties of InN compound

    NASA Astrophysics Data System (ADS)

    Graine, R.; Chemam, R.; Gasmi, F. Z.; Nouri, R.; Meradji, H.; Khenata, R.

    2015-11-01

    We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride (InN) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke-Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.

  20. First-principles study of nanotubes within the tetragonal, hexagonal and dodecagonal cycle structures

    NASA Astrophysics Data System (ADS)

    BabaeiPour, M.; Safari, E. Keshavarz; Shokri, A. A.

    2017-02-01

    A systematic study has been done on the structural and electronic properties of carbon, boron nitride and aluminum nitride nanotubes with structure consisting of periodically distributed tetragonal (T ≡A2X2), hexagonal (H ≡A3X3) and dodecagonal (D ≡A6X6) (AX=C2, BN, AlN) cycles. The method has been performed using first-principles calculations based on density functional theory (DFT). The optimized lattice parameters, density of state (DOS) curves and band structure of THD-NTs are obtained for (3, 0) and (0, 2) types. Our calculation results indicate that carbon nanotubes of these types (THD-CNTs) behave as a metallic, but the boron nitride nanotubes (THD-BNNTs) (with a band gap of around 4 eV) as well as aluminum nitride nanotubes (THD-AlNNTs) (with a band gap of around 2.6 eV) behave as an semiconductor. The inequality in number of atoms in different directions is affected on structures and diameters of nanotubes and their walls curvature.

  1. First-principles study of structural, elastic, and thermodynamic properties of ZrHf alloy

    NASA Astrophysics Data System (ADS)

    Wei, Zhao; Zhai, Dong; Shao, Xiao-Hong; Lu, Yong; Zhang, Ping

    2015-04-01

    Structural parameters, elastic constants, and thermodynamic properties of ordered and disordered solid solutions of ZrHf alloys are investigated through first-principles calculations based on density-functional theory (DFT). The special quasi-random structure (SQS) method is used to model the disordered phase as a single unit cell, and two lamella structures are generated to model the ordered alloys. Small strains are applied to the unit cells to measure the elastic behavior and mechanical stability of ZrHf alloys and to obtain the independent elastic constants by the stress-strain relationship. Phonon dispersions and phonon density of states are presented to verify the thermodynamic stability of the considered phases. Our results show that both the ordered and disordered phases of ZrHf alloys are structurally stable. Based on the obtained phonon frequencies, thermodynamic properties, including Gibbs free energy, entropy, and heat capacity, are predicted within the quasi-harmonic approximation. It is verified that there are no obvious differences in energy between ordered and disordered phases over a wide temperature range. Project supported by the National Natural Science Foundation of China (Grant No. 51102009) and the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

  2. First-principles material modeling of solid-state electrolytes with the spinel structure.

    PubMed

    Mees, Maarten J; Pourtois, Geoffrey; Rosciano, Fabio; Put, Brecht; Vereecken, Philippe M; Stesmans, André

    2014-03-21

    Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2…0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0…1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.

  3. Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles.

    PubMed

    Feliciano, Gustavo T; da Silva, Antonio J R; Reguera, Gemma; Artacho, Emilio

    2012-08-02

    The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved α-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pilin was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's α-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.

  4. Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Camacho-Mojica, Dulce C.; López-Urías, Florentino

    2016-04-01

    BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation effect due to a lattice mismatch. It was found that zigzag heterojunctions are more energetically favored than armchair heterojunctions. Furthermore, the formation energy presents a maximum at the point where the heterojunction becomes a planar structure. Electronic charge density results yielded a more ionic behavior in Alsbnd N bonds than the Bsbnd As bonds in accordance with monolayer results. It was observed that the conduction band minimum for both heterojunctions exhibit confined states located mainly at the entire AlN strips whereas the valence band maximum exhibits confined states located mainly at BAs strips. We expect that the present investigation will motivate more experimental and theoretical studies on new layered materials made of III-V semiconductors.

  5. First-principles calculation on dilute magnetic alloys in zinc blend crystal structure

    NASA Astrophysics Data System (ADS)

    Ullah, Hamid; Inayat, Kalsoom; Khan, S. A.; Mohammad, S.; Ali, A.; Alahmed, Z. A.; Reshak, A. H.

    2015-07-01

    Ab-initio calculations are performed to investigate the structural, electronic and magnetic properties of spin-polarized diluted magnetic alloys in zinc blende structure. The first-principles study is carried out on Mn doped III-V semiconductors. The calculated band structures, electronic properties and magnetic properties of Ga1-xMnxX (X=P, As) compounds reveal that Ga0.75Mn0.25P is half metallic turned to be metallic with increasing x to 0.5 and 0.75, whereas substitute P by As cause to maintain the half-metallicity nature in both of Ga0.75Mn0.25As and Ga0.5Mn0.5As and tune Ga0.25Mn0.75As to be metallic. Calculated total magnetic moments and the robustness of half-metallicity of Ga0.75Mn0.25P, Ga0.75Mn0.25As and Ga0.5Mn0.5As with respect to the variation in lattice parameters are also discussed. The predicted theoretical evidence shows that some Mn-doped III-V semiconductors can be effectively used in spintronic devices.

  6. Prediction of new high pressure structural sequence in thorium carbide: A first principles study

    SciTech Connect

    Sahoo, B. D. Joshi, K. D.; Gupta, Satish C.

    2015-05-14

    In the present work, we report the detailed electronic band structure calculations on thorium monocarbide. The comparison of enthalpies, derived for various phases using evolutionary structure search method in conjunction with first principles total energy calculations at several hydrostatic compressions, yielded a high pressure structural sequence of NaCl type (B1) → Pnma → Cmcm → CsCl type (B2) at hydrostatic pressures of ∼19 GPa, 36 GPa, and 200 GPa, respectively. However, the two high pressure experimental studies by Gerward et al. [J. Appl. Crystallogr. 19, 308 (1986); J. Less-Common Met. 161, L11 (1990)] one up to 36 GPa and other up to 50 GPa, on substoichiometric thorium carbide samples with carbon deficiency of ∼20%, do not report any structural transition. The discrepancy between theory and experiment could be due to the non-stoichiometry of thorium carbide samples used in the experiment. Further, in order to substantiate the results of our static lattice calculations, we have determined the phonon dispersion relations for these structures from lattice dynamic calculations. The theoretically calculated phonon spectrum reveal that the B1 phase fails dynamically at ∼33.8 GPa whereas the Pnma phase appears as dynamically stable structure around the B1 to Pnma transition pressure. Similarly, the Cmcm structure also displays dynamic stability in the regime of its structural stability. The B2 phase becomes dynamically stable much below the Cmcm to B2 transition pressure. Additionally, we have derived various thermophysical properties such as zero pressure equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, thermal expansion coefficient and Gruneisen parameter at 300 K and compared these with available experimental data. Further, the behavior of zero pressure bulk modulus, heat capacity and Helmholtz free energy has been examined as a function temperature and compared with the experimental data of Danan [J

  7. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    NASA Astrophysics Data System (ADS)

    Al-Qaisi, Samah; Abu-Jafar, M. S.; Gopir, G. K.; Ahmed, R.; Bin Omran, S.; Jaradat, Raed; Dahliah, Diana; Khenata, R.

    First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B‧ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44) and mechanical properties (Young's modulus Y, Shear modulus S, Poisson's ratio σ, Anisotropic ratio A and compressibility β), were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh's rule (B/SH) and Cauchy pressure (C12-C44) approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities.

  8. First principles modeling of the structure and reactivity of water at the metal/water interface

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher David

    Despite its apparent simplicity, the interface between high purity water and a metal electrode is considerably complex. The following work presents the development and application of a model that captures much of this using a first-principles approach that models the electrode as a semi-infinite metallic surface, and the solution phase as a condensed phase ensemble of structures derived from ab initio molecular dynamics. By modeling one such ensemble of water over two model electrode surfaces, Cu and Ni(111), the electrochemical activation of water was described, leading to the elucidation of the structure and thermodynamics of not only interfacial water, but also hydroxyl, oxygen and hydrogen. Formation of an oxygen-covered surface was demonstrated to be synchronous with early stages of metal dissolution. Surface Pourbaix diagrams were then derived for temperatures 300 and 600 K. Using molecular dynamics, a number of water ensembles over the Cu(111) surface were generated to describe the time and ensemble averaged potential of zero charge for Cu(111)/H2O. Both randomization of the zero Kelvin arrangement of water and the dissociation of a water molecule into surface hydroxgen and oxygen species were observed, raising the potential of zero charge from -3.0 V NHE in the symmetric ice-Ih type configuration to +0.5 V NHE in randomized water. Further time steps would be required to fully equilibrate the liquid. The approximate methodology used to calculate electrode potentials at interfaces is tested against higher fidelity methods, and the ability to model interfacial water using a small number of static ensembles via a consideration of mono- and bi-layer models for water over Cu(111) and Ni(111) is examined. The model used to generate electrode potentials is sufficient, as dependent on model choices, such as water ensemble states and simulation dimensions. Certain orientations for water are favorable over the (111) surfaces studied and can be modeled as ice

  9. CONDENSED MATTER: ELECTRONICSTRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICALPROPERTIES: First-Principles Study of Structural Stabilities, Electronic and Optical Properties of SrF2 under High Pressure

    NASA Astrophysics Data System (ADS)

    Hao, Ai-Min; Yang, Xiao-Cui; Li, Jie; Xin, Wei; Zhang, Su-Hong; Zhang, Xin-Yu; Liu, Ri-Ping

    2009-07-01

    An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In-type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbCl2-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5.77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.

  10. First-Principles Study of Structural, Magnetic, Electronic and Elastic Properties of PuC2

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Tang, Bin; Gao, Tao; Ao, Bing-Yun

    2016-10-01

    We perform first-principles calculations of crystal structure, magnetism, electronic structure, chemical bonding and elastic properties for PuC2 using the standard local spin-density approximation (LSDA)+U scheme. The use of the Hubbard term to describe the 5f electrons of plutonium is discussed according to the lattice parameters, magnetism and densities of states. Our calculated lattice constants and magnetism are in good agreement with the experimental data or other theoretical calculations. It is shown that the total densities of states at the Fermi energy level mainly come from the contribution of narrow f band. The Pu-C bonds of PuC2 have a mixture of covalent character and ionic character, while covalent character is stronger than ionic character. The C1-C2 bonding has strong covalent character because of sp2 hybridization between C atoms. Lastly, the elastic properties of PuC2 are studied. We hope that our results can provide a useful reference for further theoretical and experimental research on PuC2. Supported by the National Natural Science Foundation of China under Grant Nos. 21371160, 21401173, and the Science Challenge Program of China

  11. A first-principle study of Os-based compounds: Electronic structure and vibrational properties

    NASA Astrophysics Data System (ADS)

    Arıkan, N.; Örnek, O.; Charifi, Z.; Baaziz, H.; Uğur, Ş.; Uğur, G.

    2016-09-01

    The electronic structure, elastic, and phonon properties of OsM (M=Hf, Ti, Y and Zr) compounds are studied using first-principles calculations. Elastic constants of OsY and specific heat capacity of OsM (M=Hf, Ti, Y, and Zr) are reported for the first time. The predicted equilibrium lattice constants are in excellent agreement with experiment. The calculated values of bulk moduli are considerably high but are much smaller than that of Osmium, which is around 400 GPa. The phase stability of the OsM (M=Hf, Ti, Y and Zr) compounds were studied by DOS calculations and the results suggest that OsY is unstable in the B2 phase. The brittleness and ductility properties of OsM (M=Hf, Ti, Y and Zr) are determined. OsM (M=Hf, Ti, Y and Zr) compounds are predicted to be ductile materials. The electronic structure and phonon frequency curves of OsM (M=Hf, Ti, Y and Zr) compounds are obtained. The position of Fermi level of these systems was calculated and discussed in terms of the pseudo gaps. The finite and small DOS at the Fermi level 0.335, 0.375, 1.063, and 0.383 electrons/eV for OsHf, OsTi, OsY, and OsZr, respectively, suggest that OsM (M=Hf, Ti, Y and Zr) compounds are weak metals.

  12. First-principles study of stability, electronic structure and magnetic properties of Be2C nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Jianmin; Xu, Chunyan; Zheng, Huiling; Du, Xiaobo; Yan, Yu

    2017-02-01

    First-principles calculations are carried out to investigate the stability, electronic structure and magnetic properties of Be2C nanoribbons (Be2C-NRs) with their ribbon axis along the a and b axes. It is found that except for b-Be2C-NR with the C site terminated edge, a-Be2C-NRs and other b-Be2C-NRs possess good structural stabilities at room temperature. In addition, H passivation enables b-Be2C-NR with C site terminated edge to stabilize at room temperature by saturating the dangling bonds at edges. Furthermore, stable a-Be2C-NRs and b-Be2C-NRs are all nonmagnetic semiconductors and their band gaps are significantly dependent on the edge configuration and the ribbon width. In contrast, H passivated b-Be2C-NR with C site terminated edge is half-metallic with a magnetic ground state, irrespective of the ribbon width. In particular, H passivated b-Be2C-NR with C site terminated edge has a strong intra-edge ferromagnetic coupling interaction in the ground state, and an inter-edge ferromagnetic interaction is found in small-width H passivated nanoribbon. The calculated density of states and the spin density distribution show that the p-p hybridization interaction involving polarized electrons is responsible for intra-edge and inter-edge ferromagnetic coupling.

  13. Electronic Structures of S-Doped Capped C-SWNT from First Principles Study.

    PubMed

    Wang, L; Zhang, Yz; Zhang, Yf; Chen, Xs; Lu, W

    2010-04-14

    The semiconducting single-walled carbon nanotube (C-SWNT) has been synthesized by S-doping, and they have extensive potential application in electronic devices. We investigated the electronic structures of S-doped capped (5, 5) C-SWNT with different doping position using first principles calculations. It is found that the electronic structures influence strongly on the workfunction without and with external electric field. It is considered that the extended wave functions at the sidewall of the tube favor for the emission properties. With the S-doping into the C-SWNT, the HOMO and LUMO charges distribution is mainly more localized at the sidewall of the tube and the presence of the unsaturated dangling bond, which are believed to enhance workfunction. When external electric field is applied, the coupled states with mixture of localized and extended states are presented at the cap, which provide the lower workfunction. In addition, the wave functions close to the cap have flowed to the cap as coupled states and to the sidewall of the tube mainly as extended states, which results in the larger workfunction. It is concluded that the S-doped C-SWNT is not incentive to be applied in field emitter fabrication. The results are also helpful to understand and interpret the application in other electronic devices.

  14. High-pressure structure and elastic properties of tantalum single crystal: First principles investigation

    NASA Astrophysics Data System (ADS)

    Gu, Jian-Bing; Wang, Chen-Ju; Zhang, Wang-Xi; Sun, Bin; Liu, Guo-Qun; Liu, Dan-Dan; Yang, Xiang-Dong

    2016-12-01

    Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the high-pressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellently consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and poly-crystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data. Project supported by the Basic and Frontier Technical Research Project of Henan Province, China (Grant No. 152300410228), the University Innovation Team Project in Henan Province, China (Grant No. 15IRTSTHN004), and the Key Scientific Research Project of Higher Education of Henan Province, China (Grant No. 17A140014).

  15. First-principles study of electronic structures and phase transitions of lithiated molybdenum disulphide

    NASA Astrophysics Data System (ADS)

    Li, Jun; Chen, Xiaobo

    2012-02-01

    By first-principles calculations, electronic structures of MoS2, intercalation-induced 2H to 1T phase transition and reversibility are investigated. It is revealed that change of interlayer stacking from 2H to 3R imposes negligible influence on the band structure and stability of MoS2. In contrast, the change of intralayer stacking from 2H to 1T changes the character of p-d repulsion, resulting in a semiconductor-to-metal transition. We demonstrate that the Kohn-Sham band energy, rather than the coulomb repulsion energy, plays dominant roles in both the phase stabilization and transition during Li intercalation. It is found that the evolution of 1T phase is crucially determined by chemical hardness, which underlies the cycle irreversibility. Due to the charge-density-wave (CDW) phase, Li extraction is impeded by the enhancement of Li-host binding. It is indicated that the cycle reversibility can be improved by electron-donor doping in MoS2, because the resultant pre-reduction of Mo and S eliminates the electron transfer from Li to host.

  16. Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling

    NASA Astrophysics Data System (ADS)

    Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.

    2017-08-01

    Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.

  17. Electronic structure and magnetism of Mn 2CuAl: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, S. T.; Ren, Z.; Zhang, X. H.; Cao, C. M.

    2009-07-01

    The electronic structure and magnetism of a new Mn-based Heusler alloys Mn 2CuAl has been studied by first-principles calculations. The calculations suggest that Mn 2CuAl crystallizes in the Hg 2CuTi type of structure, in which the Cu atoms have Al as nearest neighbors. As a consequence, the Mn atoms occupy two nearest neighbor sublattices A and B. Like the well known Heusler alloy Cu 2MnAl, the magnetic moment of Mn 2CuAl also comes from the two Mn atoms in the lattice, while the Cu atom is almost nonmagnetic. At equilibrium lattice constant, Mn 2CuAl is a ferrimagnet with moment of 0.22μ B. The partial spin moments of Mn (A) and Mn (B) are -3.52μ B and 3.74μ B, respectively. The small total moment comes from the antiparallel configurations of the Mn partial moments. With a small contraction of the lattice, the total moment becomes near zero and a half-metallic antiferromagnetic state is observed.

  18. Structural and magnetic properties of N doped Fe_mCon superlattices: First principles calculations.

    NASA Astrophysics Data System (ADS)

    Kim, Miyoung; Freeman, A. J.

    2001-03-01

    Magnetic alloys and multilayers have been widely investigated because of their potential for magnetic device applications. In this, materials exhibiting high magnetization as well as good soft magnetic properties are desirable. We investigated the magnetic and structural properties of Fe_mCon superlattices with various compositions via first principles local density full potential linearized augmented plane wave (FLAPW) method^(1) calculations. For the 25% Co composition which showed the maximum magnetic moments, we inserted N atoms to make (Fe_3Co)_4N_2, in order to examine the possible magnetic enhancement by N, which has drawn much attention since the first report (in 1972) of a giant magnetic moment for the quasi-stable α-Fe_16N_2. The structural optimization was fully accomplished by total energy and atomic force calculations. Despite the lattice expansion due to the N insertion, the magnetic moment of (Fe_3Co)_4N2 was found to be reduced from the value of the Fe_3Co superlattice by the strong hybridization of N with Fe and Co. (1) E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B 24, 864 (1981).

  19. Unusual structural and electronic properties of porous silicene and germanene: insights from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Wang, Yanli

    2015-01-01

    Using first-principles calculations, we investigate the geometric structures and electronic properties of porous silicene and germanene nanosheets, which are the Si and Ge analogues of α-graphyne (referred to as silicyne and germanyne). It is found that the elemental silicyne and germanyne sheets are energetically unfavourable. However, after the C-substitution, the hybrid graphyne-like sheets (c-silicyne/c-germanyne) possess robust energetic and dynamical stabilities. Different from silicene and germanene, c-silicyne is a flat sheet, and c-germanyne is buckled with a distinct half-hilled conformation. Such asymmetric buckling structure causes the semiconducting behaviour into c-germanyne. While in c-silicyne, the semimetallic Dirac-like property is kept at the nonmagnetic state, but a spontaneous antiferromagnetism produces the massive Dirac fermions and opens a sizeable gap between Dirac cones. A tensile strain can further enhance the antiferromagnetism, which also linearly modulates the gap value without altering the direct-bandgap feature. Through strain engineering, c-silicyne can form a type-II band alignment with the MoS 2 sheet. The combined c-silicyne/MoS 2 nanostructure has a high power conversion efficiency beyond 20% for photovoltaic solar cells, enabling a fascinating utilization in the fields of solar energy and nano-devices.

  20. Low Dimensional String-like Relaxation Underpins Superionic Conduction in Fluorites and Related Structures.

    PubMed

    Annamareddy, Ajay; Eapen, Jacob

    2017-03-27

    Among the superionic conductors that show a Faraday transition - the continuous increase in the ionic conductivity over a range of temperatures - the fluorite structures have enjoyed incisive examinations over the past four decades; yet the fundamental nature of superionicity has remained largely inconclusive. Departing from the traditional quasi-static defect framework, we provide weighty evidence for string-like dynamical structures that govern the fast ion conduction process in fluorites. We show that lower temperatures encourage the growth of longer but slowly relaxing strings and vice-versa - a direct manifestation of heterogeneous dynamics. Remarkably, the ionic conductivity is inversely correlated to the lifetime of the ions that participate in the strings and not explicitly to the ion population. Our analysis methodology, which resolves a long-standing disagreement on defect structures and the mechanism of ionic transport in fcc fluorite structures, is well-positioned to describe the dynamics of low dimensional conduction in a larger class of superionic conductors.

  1. First-principles calculation of W/WC interface: Atomic structure, stability and electronic properties

    NASA Astrophysics Data System (ADS)

    Jin, Na; Yang, Yanqing; Luo, Xian; Liu, Shuai; Xiao, Zhiyuan; Guo, Pengfei; Huang, Bin

    2015-01-01

    The structural, adhesive, and electronic properties of α-W(1 1 0)/α-WC(0 0 0 1) interfaces are studied by first-principles calculation based on density functional theory (DFT). Six different W/WC interface geometries are considered in this study, including two terminations of WC(0 0 0 1) surface, and each of them involves three different stacking sequences. It is demonstrated that whatever stacking sequence is, the interfacial separations of C-terminated interfaces decrease after optimization, and the lateral movement of the interfacial W atoms will bring three nearest neighbor C atoms around it. Therefore, the C-terminated interfaces are stable geometries, and yield larger adhesion energy, Wad. Using several analytic techniques including charge density distribution and its difference, and density of states, we characterized the electronic properties and determined the interfacial bonding of W-terminated hollow-site interface to be of metallic nature while the interfacial bonding of C-terminated hollow-site interface to be of a mixed covalent-ionic nature.

  2. Structural and electronic properties of semiconductor nanostructures from first principles calculations

    NASA Astrophysics Data System (ADS)

    Galli, Giulia

    2003-03-01

    While in the last decade robust experimental results have been obtained for II-VI nanocrystals, group IV elemental nanostructures are much less well characterized. The interplay between quantum confinement effects and surface properties has not been fully understood in these systems, and the effects of preparation conditions on the physical properties of Group IV nanoparticles remain an open issue. In this talk we present results of first principles simulations -using both Density Functional Theory and Quantum Monte Carlo techniques- aimed at understanding the physical and chemical properties of C, Si and Ge nanoparticles with diameters up to 2-3 nm. In particular, we will present investigations of optical gaps[1,2] and surface properties[2,3,4], and simulations of the effect of different preparation conditions [5] on the structure of Si nanoparticles. Work done in collaboration with E.Draeger, J.Grossman, A.Puzder, J-Y Raty and A.Williamson. [1] A. J. Williamson, J.C. Grossman, R.Q. Hood, A. Puzder and G. Galli, Phys. Rev. Lett. 89, 196803, (2002). [2] J-Y. Raty, G. Galli, A.Van Buuren and L. J. Terminello, Phys. Rev. Lett. (accepted). [3] A. Puzder, A. J. Williamson, J. C. Grossman and G. Galli, J. Chem. Phys. 117, 6721 (2002). [4] A. Puzder, A. J. Williamson, J. C. Grossman and G. Galli, Phys. Rev. Lett. 88, 097401 (2002). [5] E. Draeger, J. Grossman, A. Williamson and G. Galli (submitted).

  3. Encoding First Principles Electronic Structure Information in Classical Potentials: SiO_2

    NASA Astrophysics Data System (ADS)

    Trickey, S. B.; Al-Derzi, A. R.; Flocke, N.; Zhu, Wuming; Cory, M.; Runge, K.; Zhu, Ting; Li, Ju; Yip, Sidney

    2002-03-01

    A widely used class of interionic potentials for simulation of the properties of SiO2 is calibrated to a combination of first principles electronic structure results for a small cluster and experimental crystalline data. We test the underlying realism and reliability of this procedure as part of an exploration of the necessary and sufficient transfer of information across the quantum mechanical to molecular dynamical interface in a chemically realistic, multi-scale simulation with no empirical inputs. The approach is to fit the parameters solely to calculated data from each of two clusters (H_4SiO_4, H_6Si_2O_7) versus fits purely to calculated α-quartz. No experimental input is used. This choice probes the significance of short- vs. long-ranged behavior. The fitted parameters exhibit large dependences on the size of cluster, choice of theoretical method (DFT, HF, Many-body Perturbation Theory, Coupled Cluster), level of methodological refinement, and accuracy of implementation (e.g. basis set). By implication, the relatively successful potentials in the literature represent a fortunate set of choices that are not readily improvable in a systematic fashion. After a summary of these findings, we will report studies of the sensitivity of the mechanical behavior of both bulk and nano-rod SiO2 as predicted in MD calculations using the various calculated parameter sets.

  4. First-principle studies of electronic structure and magnetic excitations in FeSe monolayer

    NASA Astrophysics Data System (ADS)

    Bazhirov, Timur; Cohen, Marvin L.

    2013-03-01

    Recent experimental advances made it possible to study single-layered superconducting systems of iron-based compounds. The results show evidence of significant enhancement of superconducting properties compared to the bulk case. We use first-principle pseudopotential density functional theory techniques and the local spin-density approximation to study the electronic properties of an FeSe monolayer in different spin configurations. The results show that the experimental shape of the Fermi surface is best described by a checkerboard antiferromagnetic (AFM) spin arrangement. To explore the underlying pairing mechanism, we study the evolution of the non-magnetic to the AFM-ordered structures under constrained magnetization, and we estimate the electronic coupling to magnetic excitations involving transfer and increase of iron magnetic moments and compare it to the electron-phonon coupling. Finally, we simulate the substrate-induced interaction by using uniform charge doping and show that the latter can lead to an increase in the density of states at the Fermi level and possibly produce higher superconducting transition temperatures. This work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility

  5. Hydration thermodynamics of pyrochlore structured oxides from TG and first principles calculations.

    PubMed

    Bjørheim, Tor S; Besikiotis, Vasileios; Haugsrud, Reidar

    2012-11-21

    In this contribution we investigate trends in the defect chemistry and hydration thermodynamics of rare-earth pyrochlore structured oxides, RE(2)X(2)O(7) (RE = La-Lu and X = Ti, Sn, Zr and Ce). First principles density functional theory (DFT) calculations have been performed to elucidate trends in the general defect chemistry and hydration enthalpy for the above-mentioned series. Further, to justify the use of such theoretical methods, the hydration properties of selected compositions were studied by means of thermogravimetric measurements. Both DFT calculations and TG measurements indicate that the hydration enthalpy becomes less exothermic with decreasing radii of RE ions within the RE(2)X(2)O(7) series (X = Ti, Sn, Zr and Ce), while it is less dependent on the X site ion. The observed hydration trends are discussed in connection with trends in the stability of both protons and oxygen vacancies and changes in the electronic density of states and bonding environment through the series. Finally, the findings are discussed with respect to existing correlations for other binary and ternary oxides.

  6. First-principles investigation of Zr-O compounds, their crystal structures, and mechanical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Oganov, Artem R.; Li, Xinfeng; Mahdi Davari Esfahani, M.; Dong, Huafeng

    2017-04-01

    First-principles evolutionary simulations are used to systematically predict stable compounds in the Zr-O system at pressures up to 120 GPa. Zr-O compounds and Hf-O compounds share many similarities, but four new phases Cmmm-Zr3O, R 3 ¯ c-Zr3O2, Pmma-ZrO, and Fe2P-type ZrO2 (P 6 ¯ 2m) appear in the Zr-O system: the latter two phases appear in the Hf-O system at higher pressure. OII ZrO2 (Pnma) transforms into Fe2P-type ZrO2 at 102 GPa. Meanwhile, Fe2P-type ZrO2 and P 6 ¯ 2m-ZrO have similar structures based on ω-Zr. However, the calculated Vickers hardness of Fe2P-type ZrO2 (5.6 GPa) is inferior to that of P 6 ¯ 2m-ZrO (14.1 GPa). The hardness of P 6 ¯ 2m-ZrO (14.1 GPa) is lower than that of P 6 ¯ 2m-HfO (16.1 GPa) and P 6 ¯ 2m-TiO (16.6 GPa). On the whole, Zr-O compounds exhibit lower hardnesses and bulk moduli than Hf-O compounds.

  7. Revealing and understanding the behavior of structural domain walls from first principles

    NASA Astrophysics Data System (ADS)

    Iniguez, Jorge

    2015-03-01

    Ferroelectric and ferroelastic domain walls (DWs) are becoming the focus of renewed excitement. Modern experimental techniques permit an unprecedented control on domain structures, and it is now possible to produce materials with a large volume fraction occupied by the DWs themselves. Also, recent experiments show that DWs can display distinct properties not present in the domains, which suggests the possibility of using the walls themselves as the functional material in nano-devices. In this talk I will review recent projects in which we have used theory and first-principles simulation to reveal and explain a variety of DW-related effects. The presentation will include the formation of novel two-dimensional crystals at the DWs of a ferroelastic material, the occurrence of ferroic orders (ferroelectric, ferromagnetic) confined at the DWs of various compounds, and cases in which peculiar (and useful) response and switching properties relie on existence of a multi-domain state. I will also summarize experimental evidence for most of these incredible findings, which clearly ratify domain and domain-wall engineering as a powerful strategy to obtain novel functional nano-materials. // Work done in collaboration with many researchers, the main ones being: J.C. Wojdeł (ICMAB-CSIC), C. Magén (INA at U. Zaragoza), M. Mostovoy (U. Groningen), P. Zubko (U. College London), as well as the groups of Beatriz Noheda (U. Groningen), R. Ramesh (UC Berkeley) and J.-M. Triscone (U. Geneva). Supported by MINECO-Spain.

  8. Structure of hydrophobic hydration of benzene and hexafluorobenzene from first principles

    SciTech Connect

    Allesch, M; Schwegler, E; Galli, G

    2006-10-23

    We report on the aqueous hydration of benzene and hexafluorobenzene, as obtained by carrying out extensive (>100 ps) first principles molecular dynamics simulations. Our results show that benzene and hexafluorobenzene do not behave as ordinary hydrophobic solutes, but rather present two distinct regions, one equatorial and the other axial, that exhibit different solvation properties. While in both cases the equatorial regions behave as typical hydrophobic solutes, the solvation properties of the axial regions depend strongly on the nature of the {pi}-water interaction. In particular, {pi}-hydrogen and {pi}-lone pair interactions are found to dominate in benzene and hexafluorobenzene, respectively, which leads to substantially different orientations of water near the two solutes. We present atomic and electronic structure results (in terms of Maximally Localized Wannier Functions) providing a microscopic description of benzene- and hexafluorobenzene-water interfaces, as well as a comparative study of the two solutes. Our results point at the importance of an accurate description of interfacial water in order to characterize hydration properties of apolar molecules, as these are strongly influenced by subtle charge rearrangements and dipole moment redistributions in interfacial regions.

  9. The electronic structure and magnetism of CaFeAs2: First principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Guangtao; Shi, Xianbiao; Zhang, Lin; Yi, Xia

    2014-12-01

    The electronic structure, magnetism and Fermi surface (FS) nesting of the recently discovered superconductive parent material CaFeAs2 are studied by the first-principles, based on the GGA and GGA+U methods. In the nonmagnetic state, the density of states at the Fermi level are mostly derived from the dxy, dyz and dzx orbits, just like LaOFeAs. The Fermi surfaces consist of four hole like FS sheets around the Γ-point, two electron like sheets near the Brillouin zone corner M-point, and small pockets near X-point. The hole like Fermi surfaces will strongly overlap with the electron like FS sheets, if they are shifted by the q-vector q=(π, π, 0). Such FS nesting will induce the magnetic instability and spin density wave (SDW), which has been confirmed to be more stable than other states by the calculated total energy. The calculated bare susceptibility χ0(q) peaked at M-point, and was obviously suppressed with the electron doping. This explains the emergence of the superconductivity in the electron-doped compound Ca1-xLaxFeAs2, because the electron doping suppressed the SDW and induced the superconductivity.

  10. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.; Schwegler, Eric

    2016-10-01

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. Such simulations are often performed at elevated temperatures to artificially "correct" for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. To address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na+, K+, and Cl- ions. We show that simulations at 390-400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. Our results suggest that an elevated temperature around 390-400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.

  11. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations

    SciTech Connect

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.; Schwegler, Eric

    2016-10-17

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperatures to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na+, K+, and Cl- ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.

  12. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations

    DOE PAGES

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y.; ...

    2016-10-17

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. In such simulations we often perform them at elevated temperaturesmore » to artificially “correct” for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. In order to address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na+, K+, and Cl- ions. We show that simulations at 390–400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. These results suggest that an elevated temperature around 390–400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.« less

  13. Structure and dynamics of aqueous solutions from PBE-based first-principles molecular dynamics simulations.

    PubMed

    Pham, Tuan Anh; Ogitsu, Tadashi; Lau, Edmond Y; Schwegler, Eric

    2016-10-21

    Establishing an accurate and predictive computational framework for the description of complex aqueous solutions is an ongoing challenge for density functional theory based first-principles molecular dynamics (FPMD) simulations. In this context, important advances have been made in recent years, including the development of sophisticated exchange-correlation functionals. On the other hand, simulations based on simple generalized gradient approximation (GGA) functionals remain an active field, particularly in the study of complex aqueous solutions due to a good balance between the accuracy, computational expense, and the applicability to a wide range of systems. Such simulations are often performed at elevated temperatures to artificially "correct" for GGA inaccuracies in the description of liquid water; however, a detailed understanding of how the choice of temperature affects the structure and dynamics of other components, such as solvated ions, is largely unknown. To address this question, we carried out a series of FPMD simulations at temperatures ranging from 300 to 460 K for liquid water and three representative aqueous solutions containing solvated Na(+), K(+), and Cl(-) ions. We show that simulations at 390-400 K with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional yield water structure and dynamics in good agreement with experiments at ambient conditions. Simultaneously, this computational setup provides ion solvation structures and ion effects on water dynamics consistent with experiments. Our results suggest that an elevated temperature around 390-400 K with the PBE functional can be used for the description of structural and dynamical properties of liquid water and complex solutions with solvated ions at ambient conditions.

  14. FIRST-PRINCIPLES APPROACHES TO THE STRUCTURE AND REACTIVITY OF ATMOSPHERICALLY RELEVANT AQUESOUS INTERFACES

    SciTech Connect

    Mundy, C; Kuo, I W

    2005-06-08

    successfully applied to studying the complex problems put forth by atmospheric chemists. To date, the majority of the molecular models of atmospherically relevant interfaces have been comprised of two genres of molecular models. The first is based on empirical interaction potentials. The use of an empirical interaction potential suffers from at least two shortcomings. First, empirical potentials are usually fit to reproduce bulk thermodynamic states, or gas phase spectroscopic data. Thus, without the explicit inclusion of charge transfer, it is not at all obvious that empirical potentials can faithfully reproduce the structure at a solid-vapor, or liquid-vapor interface where charge rearrangement is known to occur (see section 5). One solution is the empirical inclusion of polarization effects. These models are certainly an improvement, but still cannot offer insight into charge transfer processes and are usually difficult to parameterize. The other shortcoming of empirical models is that, in general, they cannot describe bond-making/breaking events, i.e. chemistry. In order to address chemistry one has to consider an ab initio (to be referred to as first-principles throughout the remaining text) approach to molecular modeling that explicitly treats the electronic degrees of freedom. First-principles modeling also give a direct link to spectroscopic data and chemistry, but at a large computational cost. The bottle-neck associated with first-principles modeling is usually determined by the level of electronic structure theory that one chooses to study a particular problem. High-level first-principles approaches, such as MP2, provide accurate representation of the electronic degrees of freedom but are only computationally tractable when applied to small system sizes (i.e. 10s of atoms). Nevertheless, this type of modeling has been extremely useful in deducing reaction mechanisms of atmospherically relevant chemistry that will be discussed in this review (see section 4). However

  15. Phase stability, electronic structure and mechanical properties of molybdenum disilicide: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Qiao, Yingjie; Zhang, Hexin; Hong, Changqing; Zhang, Xiaohong

    2009-05-01

    The phase stability, electronic structure and mechanical properties of MoSi2 at different phases were systematically investigated by first-principles density functional theory calculations. The results indicated that both tetragonal and hexagonal MoSi2 are thermodynamically and mechanically stable. The formation energy of the hexagonal phase is 6.27 kJ mol-1 smaller than that of the tetragonal one. In tetragonal MoSi2, Mo 4dxz, 4dyz and 4d_{z}^{2} orbitals overlap effectively with Si sp_{z}^{1} , px and py ones, while interactions between Mo 4d_{{x}^{2}-{y}^{2}} (4dxy) and Si 2p orbitals are confirmed in the hexagonal phase. However, the bond strengths of the hexagonal phase are smaller, leading to changes in the mechanical properties. Young's modulus decreases from 443.33 to 341.37 GPa as the phase transforms from the tetragonal to the hexagonal phase. The weakness of the Si-Mo bonds along the [0 0 1] direction and the Si-Si bonds within the (0 0 1) plane make the shear deformations of the hexagonal phase much easier to occur, and the G/B ratio correspondingly decreases, suggesting improvement in ductility. Moreover, the calculated Vicker's hardness of the hexagonal phase is 10.15 GPa, 48% smaller than the value in the tetragonal one. Besides the structural transformation, the external pressure can also affect the mechanical properties of the system. Different from the structural change, the external pressure enhances the Si-Si interactions while it reduces the Si-Mo (II) bond populations. Both the Vicker's hardness and ductility are improved as the hydrostatic pressure increases. The present calculations confirmed that the Si-Si (I) interactions play a central role in the hardness and ductility of MoSi2 materials.

  16. First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule

    NASA Astrophysics Data System (ADS)

    Saikia, Nabanita; Pati, Swapan K.; Deka, Ramesh C.

    2012-09-01

    One-dimensional nanostructures such as nanowires and nanotubes are stimulating tremendous research interest due to their structural, electronic and magnetic properties. We perform first principles calculation using density functional theory on the structural, and electronics properties of BNNTs adsorbed with isoniazid (INH) drug via noncovalent functionalization using the GGA/PBE functional and DZP basis set implemented in SIESTA program. The band structure, density of states and projected density of states (PDOS) plots suggest that isoniazid prefers to get adsorbed at the hollow site in case of (5,5) BNNT, whereas in (10,0) BNNT it favours the bridge site. The adsorption energy of INH onto (5,5) BNNT is smaller than in (10,0) BNNT which proposes that (10,0) BNNT with a larger radius compared to (5,5) BNNT is more favourable for INH adsorption as the corresponding distortion energy will also be quite lower. Functionalization of (5,5) and (10,0) BNNTs with isoniazid displays the presence of new impurity states (dispersionless bands) within the HOMO-LUMO energy gap of pristine BNNT leading to an increase in reactivity of the INH/BNNT system and lowering of the energy gap of the BNNTs. The PDOS plots show the major contribution towards the dispersionless impurity states is from INH molecule itself rather than from BNNT near the Fermi energy region. To summarize, noncovalent functionalization of BNNTs with isoniazid drug modulates the electronic properties of the pristine BNNT by lowering its energy gap with respect to the Fermi level, as well as demonstrating the preferential site selectivity for adsorption of isoniazid onto the nanotube sidewalls of varying chirality.

  17. First principle study of structural, electronic and magnetic properties of zigzag boron nitride nanoribbon: Role of vacancies

    SciTech Connect

    Kumar, Arun; Bahadur, Amar; Mishra, Madhukar; Vasudeva, Neena

    2015-05-15

    We study the effect of vacancies on the structural, electronic and magnetic properties of zigzag boron nitride nanoribbon (ZBNNR) by using first principle calculations. We find that the shift of the vacancies with respect to the ribbon edges causes change in the structural geometry, electronic structure and magnetization of ZBNNR. These vacancies also produce band gap modulation and consequently results the magnetization of ZBNNR.

  18. First-principles modeling of biological systems and structure-based drug-design.

    PubMed

    Sgrignani, Jacopo; Magistrato, Alessandra

    2013-03-01

    Molecular modeling techniques play a relevant role in drug design providing detailed information at atomistic level on the structural, dynamical, mechanistic and electronic properties of biological systems involved in diseases' onset, integrating and supporting commonly used experimental approaches. These information are often not accessible to the experimental techniques taken singularly, but are of crucial importance for drug design. Due to the enormous increase of the computer power in the last decades, quantum mechanical (QM) or first-principles-based methods have become often used to address biological issues of pharmaceutical relevance, providing relevant information for drug design. Due to their complexity and their size, biological systems are often investigated by means of a mixed quantum-classical (QM/MM) approach, which treats at an accurate QM level a limited chemically relevant portion of the system and at the molecular mechanics (MM) level the remaining of the biomolecule and its environment. This method provides a good compromise between computational cost and accuracy, allowing to characterize the properties of the biological system and the (free) energy landscape of the process in study with the accuracy of a QM description. In this review, after a brief introduction of QM and QM/MM methods, we will discuss few representative examples, taken from our work, of the application of these methods in the study of metallo-enzymes of pharmaceutical interest, of metal-containing anticancer drugs targeting the DNA as well as of neurodegenerative diseases. The information obtained from these studies may provide the basis for a rationale structure-based drug design of new and more efficient inhibitors or drugs.

  19. First-Principles Study of Lattice Dynamics, Structural Phase Transition, and Thermodynamic Properties of Barium Titanate

    NASA Astrophysics Data System (ADS)

    Zhang, Huai-Yong; Zeng, Zhao-Yi; Zhao, Ying-Qin; Lu, Qing; Cheng, Yan

    2016-08-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO3) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO3 and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO3 among four phases and the thermodynamic properties of BaTiO3 in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral→orthorhombic→tetragonal→cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient αV, heat capacity CV, Grüneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO3 are estimated from 0 K to 200 K.

  20. A first-principles study of the SnO2 monolayer with hexagonal structure.

    PubMed

    Xiao, Wen-Zhi; Xiao, Gang; Wang, Ling-Ling

    2016-11-07

    We report the structural, electronic, magnetic, and elastic properties of a two-dimensional (2D) honeycomb stannic oxide (SnO2) monolayer based on comprehensive first-principles calculations. The free-standing and well-ordered 2D centered honeycomb SnO2 (T-SnO2) monolayer with D3d point-group symmetry has good dynamical stability, as well as thermal stability at 500 K. The T-SnO2 monolayer is a nonmagnetic wide-bandgap semiconductor with an indirect bandgap of 2.55/4.13 eV obtained by the generalized gradient approximation with the Perdew-Burke-Ernzerhof/Heyd-Scuseria-Ernzerhof hybrid functional, but it acquires a net magnetic moment upon creation of a Sn vacancy defect. The elastic constants obtained from the relaxed ion model show that the T-SnO2 monolayer is much softer than MoS2. The bandgap monotonically decreases with increasing strain from -8% to 15%. An indirect-to-direct bandgap transition occurs upon applying biaxial strain below -8%. Synthesis of the T-SnO2 monolayer is proposed. We identify the Zr(0001) surface as being suitable to grow and stabilize the T-SnO2 monolayer. The unique structure and electronic properties mean that the T-SnO2 monolayer has promising applications in nanoelectronics. We hope that the present study on the stable free-standing SnO2 monolayer will inspire researchers to further explore its importance both experimentally and theoretically.

  1. A first-principles study of the SnO2 monolayer with hexagonal structure

    NASA Astrophysics Data System (ADS)

    Xiao, Wen-Zhi; Xiao, Gang; Wang, Ling-Ling

    2016-11-01

    We report the structural, electronic, magnetic, and elastic properties of a two-dimensional (2D) honeycomb stannic oxide (SnO2) monolayer based on comprehensive first-principles calculations. The free-standing and well-ordered 2D centered honeycomb SnO2 (T-SnO2) monolayer with D3d point-group symmetry has good dynamical stability, as well as thermal stability at 500 K. The T-SnO2 monolayer is a nonmagnetic wide-bandgap semiconductor with an indirect bandgap of 2.55/4.13 eV obtained by the generalized gradient approximation with the Perdew-Burke-Ernzerhof/Heyd-Scuseria-Ernzerhof hybrid functional, but it acquires a net magnetic moment upon creation of a Sn vacancy defect. The elastic constants obtained from the relaxed ion model show that the T-SnO2 monolayer is much softer than MoS2. The bandgap monotonically decreases with increasing strain from -8% to 15%. An indirect-to-direct bandgap transition occurs upon applying biaxial strain below -8%. Synthesis of the T-SnO2 monolayer is proposed. We identify the Zr(0001) surface as being suitable to grow and stabilize the T-SnO2 monolayer. The unique structure and electronic properties mean that the T-SnO2 monolayer has promising applications in nanoelectronics. We hope that the present study on the stable free-standing SnO2 monolayer will inspire researchers to further explore its importance both experimentally and theoretically.

  2. The electronic structure of epitaxially strained iridate thin films and superlattices from first principles

    NASA Astrophysics Data System (ADS)

    Voss, Johannes; Fennie, Craig J.

    2012-02-01

    Within the Ruddlesden-Popper iridates Srn+1IrnO3n+1, strong spin-orbit interactions lead to the formation of a half-filled, narrow Jeff=1/2 band and filled Jeff=3/2 bands. This places the iridates in the vicinity of a Mott transition, which is sensitive to perturbations in crystal structure, despite relatively weak on-site Coulomb interactions [1]. For example, Sr2IrO4 (n=1) is an antiferromagnetic Mott insulator that displays an almost rigid coupling between spin canting and IrO6 octahedron rotations [2], while epitaxially stabilized SrIrO3 (n=∞) is a correlated metal. In this talk, we will discuss from first-principles within the LDA+SO+U approach the possibility to engineer the electronic structure of SrIrO3 and CaIrO3 thin films using epitaxial strain and by creating superlattices of the form (AIrO3)m(A'BO3)m' with A, A' = Ca, Sr. [1] S.J. Moon, H. Jin, K.W. Kim, W.S. Choi, Y.S. Lee, J. Yu, G. Cao, A. Sumi, H. Funakubo, C. Bernhard, and T.W. Noh, PRL 101, 226402 (2008). [2] B.J. Kim, H. Jin, S.J. Moon, J.-Y. Kim, B.-G. Park, C.S. Leem, J. Yu, T.W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, and E. Rotenberg, PRL 101, 076402 (2008).

  3. First-principles Study of the Electronic Structure and Optical Properties of MgH2

    NASA Astrophysics Data System (ADS)

    Alford, Ashley; Chou, Mei-Yin

    2003-03-01

    It has been noticed that magnesium might play an interesting role in recently discovered switchable-mirror systems. For example, the films of rare earth and magnesium alloys are found to be superior to the pure rare-earth samples in maximum transparency and mirror-state reflectivity [1]. Moreover, the magnesium-rich Ni-Mg alloy films turned out to be a switchable-mirror system without rare earths [2]. In both cases, pure transparent MgH2 is reversibly formed when these alloys take up hydrogen. In order to model the optical properties of these films, we need to know the electronic and optical properties of MgH2. In this work, we investigate its bonding characteristics, band structure, and dielectric properties with first-principles theoretical methods. The stability of the crystal and the bonding are studied using density functional theory and pseudopotential methods. The excited state properties (the quasiparticle spectra) are studied by many-body perturbation theory within the so-called GW approximation in which the electronic self-energy is approximated by the full Green's function (G) times the screened Coulomb interaction (W). We will report the results for both the rutile-structured alpha-MgH2 and the low-symmetry gamma-MgH2. [1] P. van der Sluis, M. Ouwerkerk, and P. A. Duine, Appl. Phys. Lett. 70, 3356 (1997). [2] T. J. Richardson, J. L. Slack, R. D. armitage, R. Kostecki, B. Farangis, and M. D. Rubin, Appl. Phys. Lett. 78, 3047 (2001).

  4. Thymine adsorption on two-dimensional boron nitride structures: first-principles studies.

    PubMed

    Castro-Medina, J; García-Toral, D; López-Fuentes, M; Sánchez-Castillo, A; Torres-Morales, S; de la Garza, L Morales; Cocoletzi, Gregorio H

    2017-04-01

    First-principles total-energy calculations were performed to investigate the structural and electronic properties of thymine (T) adsorption on pristine and Al-doped two-dimensional hexagonal boron nitride (2D-hBN) surfaces. Periodic density functional theory, as developed in the PWscf code of the quantum espresso package, was applied. The pseudopotential theory was used to deal with electron-ion interactions. The generalized gradient approximation was applied to treat the exchange-correlation energies. Van der Waals interactions were incorporated in the calculations. Considering T as an elongated molecule and the interactions through one oxygen atom of the molecule ring, two geometries were explored in pristine and Al-doped systems: in (1) the ring side O interacts with B, and (2) the O at the molecule end interacting with the B. The pristine case yields (4 × 4-a), (5 × 5-b) and (6 × 6-b) as the ground states, , while the doped system shows (4 × 4-a), (5 × 5-a) and (6 × 6-a) as the ground states. Calculations of the adsorption energies indicate chemisorption. Doping enhances the surface reactivity, inducing larger binding energies. The total density of states (DOS) was calculated and interpreted with the aid of the projected DOS. Below the Fermi energy, the DOS graphs indicate that p orbitals make the largest contributions. Above the Fermi level, the DOS is formed mainly by -s and H-s orbitals. The DOS graphs indicate that the structures have non-semiconductor behavior.

  5. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    NASA Astrophysics Data System (ADS)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  6. Study of structural stability and electronic structure of nonstoichiometric CdS nano clusters from first principles.

    PubMed

    Datta, Soumendu; Kabir, Mukul; Saha-Dasgupta, Tanusri; Sarma, D D

    2009-09-01

    Structural stability of small sized nonstoichiometric CdS nano clusters between zincblende and wurtzite structures has been investigated using first-principles density functional calculations. Our study shows that the relative stability of these two structures depends sensitively on whether the surface is S-terminated or Cd-terminated. The associated band gap also exhibits non-monotonic behavior as a function of cluster size. Our findings may shed light on contradictory reports of experimentally observed structures of CdS nano clusters found in the literature.

  7. First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures

    SciTech Connect

    Sandip Mazumder; Ju Li

    2010-06-30

    of optical phonons, and (2) by developing a suite of numerical algorithms for solution of the BTE for phonons. The suite of numerical algorithms includes Monte Carlo techniques and deterministic techniques based on the Discrete Ordinates Method and the Ballistic-Diffusive approximation of the BTE. These methods were applied to calculation of thermal conductivity of silicon thin films, and to simulate heat conduction in multi-dimensional structures. In addition, thermal transport in silicon nanowires was investigated using two different first principles methods. One was to apply the Green-Kubo formulation to an equilibrium system. The other was to use Non-Equilibrium Molecular Dynamics (NEMD). Results of MD simulations showed that the nanowire cross-sectional shape and size significantly affects the thermal conductivity, as has been found experimentally. In summary, the project clarified the role of various phonon modes - in particular, optical phonon - in non-equilibrium transport in silicon. It laid the foundation for the solution of the BTE in complex three-dimensional structures using deterministic techniques, paving the way for the development of robust numerical tools that could be coupled to existing device simulation tools to enable coupled electro-thermal modeling of practical electronic/optoelectronic devices. Finally, it shed light on why the thermal conductivity of silicon nanowires is so sensitive to its cross-sectional shape.

  8. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Treesearch

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  9. Hydrogen storage in calcium alanate: First-principles thermodynamics and crystal structures

    NASA Astrophysics Data System (ADS)

    Wolverton, Christopher; Ozoliņš, Vidvuds

    2007-02-01

    Using first-principles density functional theory (DFT) calculations, we study the thermodynamics and crystal structure of calcium alanate, Ca(AlH4)2 , and its decomposition products CaAlH5 , CaH2 , and CaAl2 . Using a large database of AB2C8 and ABC5 structure types, we perform nearly 200 DFT calculations in an effort to predict the crystal structures of the Ca(AlH4)2 and CaAlH5 phases. For the low-energy T=0K phases, we perform DFT frozen-phonon calculations to ascertain the zero-point and vibrational entropy contributions to the thermodynamics of decomposition. We find the following: (i) For Ca(AlH4)2 , we confirm the previously predicted CaB2F8 -type structure as the stable phase. In addition, we uncover several phases (e.g., β-ThMo2O8 -type, AgAu2F8 -type, and PbRe2O8 -type) very competitive in energy with the ground state structure. (ii) For CaAlH5 , we find the stable structure type to be the recently observed α'-SrAlF5 -type, with UTlF5 -type, SrFeF5 -type and BaGaF5 -type structures being close in energy to the ground state. (iii) In agreement with recent experiments, our calculations show that the decomposition of Ca(AlH4)2 is divided into a weakly exothermic step [Ca(AlH4)2→CaAlH5+Al+3/2H2] , a weakly endothermic step [CaAlH5→CaH2+Al+3/2H2] , and a strong endothermic step [CaH2+2Al→CaAl2+H2] . (iv) Including static T=0K energies, zero-point energies, and the dynamic contributions of H2 gas, the DFT-calculated ΔH values for the first two decomposition steps ( -9 and +26kJ/mol H2 at the observed decomposition temperatures Ttilde 127 and 250°C , respectively) agree well with the experimental values recently reported ( -7 and +32kJ/mol H2 ). Only the second step [CaAlH5/CaH2] has thermodynamics near the targeted range that might make a suitable on-board hydrogen storage reaction for hydrogen-fueled vehicles. (v) Comparing the enthalpies for final stage of decomposition [ CaH2+2Al→CaAl2+H2 , ΔH=72kJ/mol H2 ] with the pure decomposition of CaH2

  10. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    NASA Astrophysics Data System (ADS)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  11. Hydrogen in aluminum: First-principles calculations of structure and thermodynamics

    NASA Astrophysics Data System (ADS)

    Wolverton, C.; Ozoliņš, V.; Asta, M.

    2004-04-01

    Despite decades of study, several key aspects of the Al-H system remain the subject of considerable debate. In an effort to elucidate some of these unknowns, we perform a systematic study of this system using first-principles density-functional calculations. We show that generalized gradient approximation (GGA) calculations provide an accurate picture of energetics, phase stability and structure, diffusion, and defect binding in the Al-H system. A series of calculations for hydrides in the M-H systems (M=Al, Ba, Ca, K, Mg, La, Li, Na, Ni, Pd, Sc, Sr, Ti, V, and Y) also shows that the GGA calculations are a quantitatively accurate predictor of hydride formation energies. For Al-H, we find: (i) In agreement with experiment, the observed metastable hydride, AlH3 is found to have a small, negative formation enthalpy at ambient conditions, but a strongly positive formation free energy. (ii) Linear response calculations of AlH3 yield vibrational frequencies, phonon densities of states (DOS), and heat capacities in excellent agreement with experimental measurements, and suggest the need for a reinterpretation of measured phonon DOS. (iii) Atomic relaxation and anharmonic vibrational effects both play an important role in the tetrahedral versus octahedral interstitial site preference of H in Al. (iv) The calculated heat of solution of H in the preferred tetrahedral site is large and positive (+0.71 eV), consistent with experimental solubility data and with Al as an endothermic hydrogen absorber. (v) Interstitial H interacts strongly with Al vacancies (□), with a calculated H-□ binding energy of 0.33 eV. (vi) In the absence of vacancies, the calculated migration energy of H between the tetrahedral and octahedral interstitial sites is 0.18 eV, but for H migrating away from an Al vacancy, the migration energy increases to 0.54 eV. Vacancy trapping of H can therefore provide an explanation for observed disparate H migration barriers.

  12. First Principles Study of Electronic and Magnetic Structures in Double Perovskites

    NASA Astrophysics Data System (ADS)

    Ball, Molly

    films of Sr2CrReO 6, where our experimental collaborators found extraordinarily large anisotropy fields and record-breaking strain-tunable magnetocrystalline anisotropy (MCA). We employed first principles calculations that examine the dependence of MCA on strain and could identify orbital magnetism on the Re atoms as the origin of this unique phenomenon. In the last section, we introduce double perovskites as novel lead-free halide solar cell materials, with current focus on Cs2AgBiBr 6 and Cs2AgBiCl6. While organic Pb based halides that can be synthesized without expensive clean rooms have achieved within record time efficiencies that rival that of traditional semiconductor based materials, creating quite a buzz within the field of photovoltaics, their Pb content and lacking air stability represented severe roadblocks towards market introduction. Here, we show with band structure calculations that spin-orbit coupling is a much more dominant interaction than in traditional semiconductors and thus needs to be considered when designing novel materials for maximum efficiency. The results of this study have given momentum to investigate additional halides double perovskites. Finally, we will summarize and discuss the importance of computational modeling in order to explore the wide and to date little explored composition space of double perovskites, one of the currently most promising materials classes for novel devices with unique and extremely tunable properties.

  13. Insight into the Dzyaloshinskii-Moriya interaction through first-principles study of chiral magnetic structures

    NASA Astrophysics Data System (ADS)

    Sandratskii, L. M.

    2017-07-01

    The purpose of the paper is to gain deeper insight into microscopic formation of the Dzyaloshinskii-Moriya interaction (DMI). The paper aims at the development of the physical picture able to address apparently contradicting conclusions of recent studies concerning the location of the DMI energy in the real and reciprocal spaces as well as the relation between values of the atomic moments and the DMI strength. The main tools of our study are the first-principles calculations of the energies of the spiral magnetic states with opposite chiralities. We suggest a method of the calculation of the spiral structures with account for the spin-orbit coupling (SOC). It is based on the application of the generalized Bloch theorem and generalized Bloch functions and allows to reduce the consideration of arbitrary incommensurate spiral to small chemical unit cell. The method neglects the anisotropy in the plane orthogonal to the rotation axis of the spirals that does not influence importantly the DMI energy. For comparison, the supercell calculation with full account for the SOC is performed. The concrete calculations are performed for the Co/Pt bilayer. We consider the distribution of the DMI energy in both real and reciprocal spaces and the dependence of the DMI on the number of electrons. The results of the calculations reveal a number of energy compensations in the formation of the DMI. Thus, the partial atomic contributions as functions of the spiral wave vector q are nonmonotonic and have strongly varying slopes. However, in the total DMI energy these atom-related features compensate each other, resulting in a smooth q dependence. The reason for the peculiar form of the partial DMI contributions is a q -dependent difference in the charge distribution between q and -q spirals. The strongly q -dependent relation between atomic contributions shows that the real-space distribution of the DMI energy obtained for a selected q value cannot be considered as a general

  14. Cesium stability in a typical mica structure in dry and wet environments from first-principles

    NASA Astrophysics Data System (ADS)

    Suehara, Shigeru; Yamada, Hirohisa

    2013-05-01

    Cesium ion stability in a typical mica structure in various environments of solid salts (XCl; X = Cs, K, and Na), metals (X) and saltwaters (XCl aqueous liquids) was investigated using first-principles density-functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) functional as well as a van der Waals (vdW) corrected functional (vdW-DFC09x). We specifically examined interlayer ion-exchange in bulk phlogopite-type mica, which is expected to produce a well-defined benchmark in a thermodynamic equilibrium state. In general, theoretical models have well reproduced the experimental and theoretical data found in the literature from the viewpoints of structure, heat capacity, and entropy. The vdW-DFC09x lattice parameters of the mica appear to be better reproducible than the PBE parameters are. However, the vdW correction calculations of the thermodynamic properties with the harmonic approximation using the phonon frequencies showed poor results in some cases, whereas the PBE calculations yielded robust and reasonable results in terms of structure and thermodynamic properties. The isotope effect of the 137Cs atom appears to be confined in thermodynamic properties such as entropy, heat capacity, and ion-exchange energy, although the theoretical infrared spectra showed a small redshift ca. 1 cm-1 in the far-infrared region of 50-75 cm-1. The calculated RDF and the coordination number for X-O (i.e., X-H2O) for the saltwater model indicated that the Cs, K, and Na ions with respective hydrated radii of 0.323, 0.284, and 0.238 nm were surrounded, respectively, by 6.5, 4.5, and 4.0 of H2O molecules in a water solution. Ion-exchange energy values based on free-energy calculations around ambient temperatures derived using the PBE functional and a harmonic approximation suggest that the cesium ion in mica interlayer phlogopite is stable in an environment consisting of KCl, NaCl, K, and Na solids, and in NaCl saltwater as well. However, it can be exchanged competitively by

  15. First principles study of structural stability, electronic structure and mechanical properties of ReN and TcN

    NASA Astrophysics Data System (ADS)

    Rajeswarapalanichamy, R.; Kavitha, M.; Sudha Priyanga, G.; Iyakutti, K.

    2015-03-01

    The crystal structure, structural stability, electronic and mechanical properties of ReN and TcN are investigated using first principles calculations. We have considered five different crystal structures: NaCl, zinc blende (ZB), NiAs, tungsten carbide (WC) and wurtzite (WZ). Among these ZB phase is found to be the lowest energy phase for ReN and TcN at normal pressure. Pressure induced structural phase transitions from ZB to WZ phase at 214 GPa in ReN and ZB to NiAs phase at 171 GPa in TcN are predicted. The electronic structure reveals that both ReN and TcN are metallic in nature. The computed elastic constants indicate that both the nitrides are mechanically stable. As ReN in NiAs phase has high bulk and shear moduli and low Poisson's ratio, it is found to be a potential ultra incompressible super hard material.

  16. Structural study of Co doped MnV2O4 from first principles

    NASA Astrophysics Data System (ADS)

    Krishna, Jyoti; Maitra, Tulika

    2017-05-01

    Inspired by the recent experiments, we have theoretically investigated the compound Mn1-xCoxV2O4 using first-principles density functional theory for x = 0.0, 0.25, 0.5, 0.75. On increasing Co doping on Mn site, chemical pressure on V-V bonds increases which make the system more itinerant as indicated by decrease in the calculated RV-V values with increasing x. The calculated band gap is also seen to decrease with increasing x. This Co-doping induced itinerancy facilitates superexchange interaction among Co and V ions leading to an increase in the magnetic transition temperature.

  17. Phase and structural stability in Ni-Al systems from first principles

    NASA Astrophysics Data System (ADS)

    Goiri, Jon Gabriel; Van der Ven, Anton

    2016-09-01

    We report on a comprehensive first-principles study of phase stability in the Ni-Al binary, both at zero Kelvin and at finite temperature. First-principles density functional theory calculations of the energies of enumerated orderings on fcc and the sublattices of B2 not only predict the stability of known phases, but also reveal the stability of a family of ordered phases that combine features of L 12 and L 10 in different ratios to adjust their overall composition. The calculations also confirm the stability of vacancy ordered B2 derivatives that are stable in the Al-rich half of the phase diagram. We introduce strain order parameters to systematically analyze instabilities with respect to the Bain path connecting the fcc and bcc lattices. Many unstable orderings on both fcc and bcc are predicted around compositions of xNi=0.625 , where a martensitic phase transformation is known to occur. Cluster expansion techniques together with Monte Carlo simulations were used to calculate a finite-temperature-composition phase diagram of the Ni-Al binary. The calculated phase diagram together with an analysis of Bain instabilities reveals the importance of anharmonicity in determining the phase bounds between the B2 based β phase and the L 12 based γ' phase, as well as properties related to martensitic transformations that are observed upon quenching Ni-rich β .

  18. Implicit solvent model for linear-scaling first-principles electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Helal, Hatem H.; Payne, Mike; Mostofi, Arash A.

    2009-03-01

    Density functional theory (DFT) enables first-principles calculations that exhibit cubic scaling of the computational time required with respect to the number of atoms in the system. This presents an unavoidable difficulty when first-principles accuracy is needed for the study of large-scale biological systems. The ONETEP program reformulates DFT so that the required computational effort scales only linearly with system size, recently demonstrated for up to 32,000 atoms on 64 cores.ootnotetextN. D. M. Hine, P. D. Haynes, A. A. Mostofi, C.-K. Skylaris and M. C. Payne, submitted to J. Chem. Phys. (2008). Further complicating DFT based studies of biomolecular systems is the need for an accurate representation of the electrostatic environment. Rather than introducing explicit solvent molecules into the system, which would be computationally prohibitive, we present our recent efforts to integrate an implicit solvent modelootnotetextD. A. Scherlis et al., J. Chem. Phys. 124, 074103 (2006). with ONETEP in order to study systems in solution consisting of many thousands of atoms. We report preliminary results of our methodology with a study of the DNA nucleosome core particle.

  19. Investigation of structural stability and elastic properties of CrH and MnH: A first principles study

    NASA Astrophysics Data System (ADS)

    Kanagaprabha, S.; Rajeswarapalanichamy, R.; Sudhapriyanga, G.; Murugan, A.; Santhosh, M.; Iyakutti, K.

    2015-06-01

    The structural and mechanical properties of CrH and MnH are investigated using first principles calculation based on density functional theory as implemented in VASP code with generalized gradient approximation. The calculated ground state properties are in good agreement with previous experimental and other theoretical results. A structural phase transition from NaCl to NiAs phase at a pressure of 76 GPa is predicted for both CrH and MnH.

  20. First Principles Predictions of Van Der Waals Bonded Inorganic Crystal Structures: Test Case, HgCl2

    NASA Astrophysics Data System (ADS)

    Cooper, Valentino R.; Donald, Kelling J.

    We study the crystals structure and stability of four possible polymorphs of HgCl2 using first principles density functional theory. Mercury (II) halides are a unique class of materials which, depending on the halide species, form in a wide range of crystal structures, ranging from densely packed solids to layered materials and molecular solids. Predicting the groundstate structure of any member of this group from first principles, therefore, requires a general purpose functional that treats van der Waals bonding and covalent/ionic bonding adequately. Here, we demonstrate that the non-local van der Waals density functional paired with the C09 exchange functional meets this bar for HgCl2. In particular, this functional is able to predict the correct groundstate among the structures tested as well as having extremely good agreement with the experimentally known crystal structure. These results highlight the maturity of this functional and open the door to using this method for truly first principles crystal structure predictions.

  1. First principles predictions of van der Waals bonded inorganic crystal structures: Test case, HgCl2

    SciTech Connect

    Cooper, Valentino R; Donald, Kelling J

    2015-01-01

    We study the crystals structure and stability of four possible polymorphs of HgCl2 using first principles density functional theory. Mercury (II) halides are a unique class of materials which, depending on the halide species, form in a wide range of crystal structures, ranging from densely packed solids to layered materials and molecular solids. Predicting the groundstate structure of any member of this group from first principles, therefore, requires a general purpose functional that treats van der Waals bonding and covalent/ionic bonding adequately. Here, we demonstrate that the non-local van der Waals density functional paired with the C09 exchange functional meets this bar for HgCl2. In particular, this functional is able to predict the correct groundstate among the structures tested as well as having extremely good agreement with the experimentally known crystal structure. These results highlight the maturity of this functional and open the door to using this method for truly first principles crystal structure predictions.

  2. Circuit elements at optical frequencies: A synthesis of first principles electronic structure and circuit theories

    NASA Astrophysics Data System (ADS)

    Tang, C.; Ramprasad, R.

    2006-03-01

    We present a new first principles based method to determine the equivalent circuit representations of nanostructured physical systems at optical frequencies. This method involves the determination of the frequency dependent effective permittivity of two constructs: an ordered composite system consisting of physical nano-elements using density functional theory, and an ordered arrangement of impedances using transmission line theory. Matching the calculated effective permittivity functions of these two constructs has enabled a mapping of the physical nano-system to its equivalent circuit. Specifically, we will show that silicon nanowires and carbon nanotubes can be represented as a series combination of inductance, capacitance and resistance. Once this mapping has been reasonably accomplished for a variety of physical systems, the nano-elements can be combined suitably to result in equivalent circuit topologies appropriate for optical and nanoelectronic devices, including left-handed (or negative refractive index) materials.

  3. O(N) complexity algorithms for First-Principles Electronic Structure Calculations

    SciTech Connect

    Fattebert, J L

    2007-02-16

    The fundamental equation governing a non-relativistic quantum system of N particles is the time-dependant Schroedinger Equation [Schroedinger, 1926]. In 1965, Kohn and Sham proposed to replace this original many-body problem by an auxiliary independent-particles problem that can be solved more easily (Density Functional Theory). Solving this simplified problem requires to find the subspace of dimension N spanned by the N eigenfunctions {Psi}{sub i} corresponding to the N lowest eigenvalues {var_epsilon}{sub i} of a non-linear Hamiltonian operator {cflx H} determined from first-principles. From the solution of the Kohn-Sham equations, forces acting on atoms can be derived to optimize geometries and simulate finite temperature phenomenon by molecular dynamics. This technique is used at LLNL to determine the Equation of State of various materials, and to study biomolecules and nanomaterials.

  4. Investigation of size effects on the structure of liquid GeSe2 calculated via first-principles molecular dynamics.

    PubMed

    Micoulaut, Matthieu; Le Roux, Sébastien; Massobrio, Carlo

    2012-06-14

    The structural properties of liquid GeSe(2) have been calculated by first-principles molecular dynamics by using a periodic simulation box containing N = 480 atoms. This has allowed a comparison with previous results obtained on a smaller system size (N = 120) [M. Micoulaut, R. Vuilleumier, and C. Massobrio, Phys. Rev. B 79, 214205 (2009)]. In the domain of first-principles molecular dynamics, we obtain an assessment of system size effects of unprecedented quality. Overall, no drastic differences are found between the two sets of results, confirming that N = 120 is a suitable size to achieve a realistic description of this prototypical disordered network. However, for N = 480, short range properties are characterized by an increase of chemical order, the number of Ge tetrahedra coordinated to four Se atoms being larger. At the intermediate range order level, size effect mostly modify the low wavevector region (k ~1 Å(-1)) in the concentration-concentration partial structure factor.

  5. Thermodynamics of solid electrolytes and related oxide ceramics based on the fluorite structure

    SciTech Connect

    Navrotsky, Alexandra

    2010-01-01

    Oxides based on the fluorite structure are important as electrolytes in solid oxide fuel cells, thermal barrier coatings, gate dielectrics, catalysts, and nuclear materials. Though the parent fluorite structure is simple, the substitution of trivalent for tetravalent cations, coupled with the presence of charge-balancing oxygen vacancies, leads to a wealth of short-range and long-range ordered structures and complex thermodynamic properties. The location of vacancies and the nature of clusters affect the energetics of mixing in rare earth doped zirconia, hafnia, ceria, urania, and thoria, with systematic trends in energetics as a function of cation radius. High temperature oxide melt solution calorimetry has provided direct measurement of formation enthalpies of these refractory materials. Surface and interfacial energies have also been measured in yttria stabilized zirconia (YSZ) nanomaterials. Other ionic conductors having perovskite, apatite, and mellilite structures are discussed briefly.

  6. Multiscale Methods for the Design of Structural Materials from First Principles: Systematic Search for New Nanostructures with Unprecedented Mechanical Properties

    DTIC Science & Technology

    2012-03-15

    Richard D. James, Traian Dumitrica and Kaushik Dayal Department of Aerospace Engineering and Mechanics University of Minnesota Air Force Office of...Nanotechnology, multiscale methods, first-principles methods, structural materials, carbon nanotubes, graphene sheets U U U UU 11 Richard D. James 612...Nanostructured Materials FA9550-09-1-0393 submitted to Dr. Fariba Fahroo of the Air Force Office of Scientific Research March 15, 2012 Richard D. James

  7. Investigation of structural stability and elastic properties of Zrh and Zrh{sub 2}: A first principles study

    SciTech Connect

    Kanagaprabha, S.; Rajeswarapalanichamy, R. Sudhapriyanga, G. Murugan, A. Santhosh, M.; Iyakutti, K.

    2014-04-24

    The electronic, structural and mechanical properties of ZrH and ZrH{sub 2} are investigated by means of first principles calculation based on density functional theory as implemented in VASP code with generalized gradient approximation. The calculated ground state properties are in good agreement with previous experimental and other theoretical results. Among the six crystallographic structures considered for ZrH, ZB phase is found to be the most stable phase, whereas ZrH{sub 2} is energetically stable in tetragonal structure at ambient condition. A structural phase transition from ZB→NaCl at a pressure 10 GPa is predicted for ZrH.

  8. First-Principles Study of Carbon and Vacancy Structures in Niobium

    SciTech Connect

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes with other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.

  9. First-Principles Study of Carbon and Vacancy Structures in Niobium

    DOE PAGES

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes withmore » other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.« less

  10. First-Principles Study of Carbon and Vacancy Structures in Niobium

    SciTech Connect

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-07-02

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes with other impurities. On the basis of the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. Calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.

  11. Phase stability and electronic structure of UMo2Al20: A first-principles study

    NASA Astrophysics Data System (ADS)

    Liu, Peng-Chuang; Xian, Ya-Jiang; Wang, Xin; Zhang, Yu-Ting; Zhang, Peng-Cheng

    2017-09-01

    In this paper, the phase stability of UMo2Al20 was explored using cluster formula in combination with first-principles calculations. Cluster formula analysis uncovered that the compound was composed of two principal clusters, i.e. [Mo-Al12] and [U-Al16]. The electronic interactions between U, Mo and Al atoms in this compound were discussed using elastic property, Bader charges and energy-resolved local bonding analysis, as well as the electronic interactions between Mo and Al atoms in [Mo-Al12] cluster and between U and Al atoms in [U-Al16] cluster. It revealed that UMo2Al20 satisfied the mechanical stability criterion for cubic system, and exhibited near ionic bonding character with weak bonding directionality. The calculations within both standard DFT and HSE frameworks demonstrated that U and Al atoms acted as an electron donor while Mo atoms acted as electron acceptor. The intrinsic stability of UMo2Al20 mainly stemmed from the bonding states of Mo-Al bonds and Al-Al bonds in [Mo-Al12] cluster. These calculations provide a further insight on the CeCr2Al20-type ternary compounds.

  12. Activation volumes of oxygen self-diffusion in fluorite structured oxides

    SciTech Connect

    Christopoulos, S-R G.; Kordatos, A.; Cooper, Michael William D.; Fitzpatrick, M. E.; Chroneos, A.

    2016-10-27

    In this study, fluorite structured oxides are used in numerous applications and as such it is necessary to determine their materials properties over a range of conditions. In the present study we employ molecular dynamics calculations to calculate the elastic and expansivity data, which are then used in a thermodynamic model (the cBΩ model) to calculate the activation volumes of oxygen self-diffusion coefficient in ThO2, UO2 and PuO2 fluorite structured oxides over a wide temperature range. We present relations to calculate the activation volumes of oxygen self-diffusion coefficient in ThO2, UO2 and PuO2 for a wide range of temperature (300–1700 K) and pressure (–7.5 to 7.5 GPa).

  13. Activation volumes of oxygen self-diffusion in fluorite structured oxides

    DOE PAGES

    Christopoulos, S-R G.; Kordatos, A.; Cooper, Michael William D.; ...

    2016-10-27

    In this study, fluorite structured oxides are used in numerous applications and as such it is necessary to determine their materials properties over a range of conditions. In the present study we employ molecular dynamics calculations to calculate the elastic and expansivity data, which are then used in a thermodynamic model (the cBΩ model) to calculate the activation volumes of oxygen self-diffusion coefficient in ThO2, UO2 and PuO2 fluorite structured oxides over a wide temperature range. We present relations to calculate the activation volumes of oxygen self-diffusion coefficient in ThO2, UO2 and PuO2 for a wide range of temperature (300–1700more » K) and pressure (–7.5 to 7.5 GPa).« less

  14. Activation volumes of oxygen self-diffusion in fluorite structured oxides

    NASA Astrophysics Data System (ADS)

    Christopoulos, S.-R. G.; Kordatos, A.; Cooper, M. W. D.; Fitzpatrick, M. E.; Chroneos, A.

    2016-10-01

    Fluorite structured oxides are used in numerous applications and as such it is necessary to determine their materials properties over a range of conditions. In the present study we employ molecular dynamics calculations to calculate the elastic and expansivity data, which are then used in a thermodynamic model (the cBΩ model) to calculate the activation volumes of oxygen self-diffusion coefficient in ThO2, UO2 and PuO2 fluorite structured oxides over a wide temperature range. We present relations to calculate the activation volumes of oxygen self-diffusion coefficient in ThO2, UO2 and PuO2 for a wide range of temperature (300-1700 K) and pressure (-7.5 to 7.5 GPa).

  15. Low Dimensional String-like Relaxation Underpins Superionic Conduction in Fluorites and Related Structures

    PubMed Central

    Annamareddy, Ajay; Eapen, Jacob

    2017-01-01

    Among the superionic conductors that show a Faraday transition – the continuous increase in the ionic conductivity over a range of temperatures – the fluorite structures have enjoyed incisive examinations over the past four decades; yet the fundamental nature of superionicity has remained largely inconclusive. Departing from the traditional quasi-static defect framework, we provide weighty evidence for string-like dynamical structures that govern the fast ion conduction process in fluorites. We show that lower temperatures encourage the growth of longer but slowly relaxing strings and vice-versa – a direct manifestation of heterogeneous dynamics. Remarkably, the ionic conductivity is inversely correlated to the lifetime of the ions that participate in the strings and not explicitly to the ion population. Our analysis methodology, which resolves a long-standing disagreement on defect structures and the mechanism of ionic transport in fcc fluorite structures, is well-positioned to describe the dynamics of low dimensional conduction in a larger class of superionic conductors. PMID:28344314

  16. A first principles study of structural, electronic mechanical and magnetic properties of rare earth nitride:TmN

    SciTech Connect

    Murugan, A.; Rajeswarapalanichamy, R. Santhosh, M.; Manikandan, M.

    2016-05-23

    The structural, electronic and mechanical properties of rare earth nitride TmN is investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure TmN is stable in the ferromagnetic state with NaCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that TmN is metallic at normal pressure. Ferromagnetic to non magnetic phase transition is predicted in TmN at high pressure.

  17. Phase stability, electronic structure and equation of state of cubic TcN from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Song, T.; Ma, Q.; Sun, X. W.; Liu, Z. J.; Fu, Z. J.; Wei, X. P.; Wang, T.; Tian, J. H.

    2016-09-01

    The phase transition, electronic band structure, and equation of state (EOS) of cubic TcN are investigated by first-principles pseudopotential method based on density-functional theory. The calculated enthalpies show that TcN has a transformation between zincblende and rocksalt phases and the pressure determined by the relative enthalpy is 32 GPa. The calculated band structure indicates the metallic feature and it might make cubic TcN a better candidate for hard materials. Particular attention is paid to the predictions of volume, bulk modulus and its pressure derivative which play a central role in the formulation of approximate EOSs using the quasi-harmonic Debye model.

  18. Extended x-ray absorption fine structure spectroscopy and first-principles study of SnWO4

    NASA Astrophysics Data System (ADS)

    Kuzmin, A.; Anspoks, A.; Kalinko, A.; Timoshenko, J.; Kalendarev, R.

    2014-04-01

    The local atomic structure in α- and β-SnWO4 was studied by synchrotron radiation W L3-edge x-ray absorption spectroscopy at 10 and 300 K. Strongly distorted WO6 octahedra were found in α-SnWO4, whereas nearly regular WO4 tetrahedra were observed in β-SnWO4, confirming previous results. The structural results obtained were supported by the first-principles calculations, suggesting that the second-order Jahn-Teller effect is responsible for octahedral distortion.

  19. First-principles study on the structural, elastic and electronic properties of Ti2SiN under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Hui; Wang, Zhenjun; Sun, Guodong; Yu, Pengfei; Zhang, Wenxue

    2016-07-01

    The structural, elastic and electronic properties of Ti2SiN under pressure range of 0-50 GPa have been systemically investigated by first-principles calculations. It is found that both Poisson's ratio and shear anisotropy factor of Ti2SiN increase with pressure, and Ti2SiN is elastic anisotropic. The DOS and Mulliken population analysis have been explored, which indicts that Ti2SiN is metallic-covalent-ionic in nature. The present calculations may contribute preliminary results and a better understanding of Ti2SiN for its applications under high pressure environments.

  20. First-principles study of electronic structure, optical and phonon properties of α-ZrW2O8

    NASA Astrophysics Data System (ADS)

    Li, Jinping; Meng, Songhe; Qin, Liyuan; Lu, Hantao

    2016-12-01

    ZrW2O8 exhibits isotropic negative thermal expansions over its entire temperature range of stability, yet so far its physical properties and mechanism have not been fully addressed. In this article, the electronic structure, elastic, thermal, optical and phonon properties of α-ZrW2O8 are systematically investigated from first principles. The agreements between the generalized gradient approximation (GGA) calculation and experiments are found to be quite satisfactory. The calculation results can be useful in relevant material designs, e.g., when ZrW2O8 is employed to adjust the thermal expansion coefficient of ceramic matrix composites.

  1. Structural and electronic properties of low-index surfaces of NbAl3 intermetallic with first-principles calculations

    NASA Astrophysics Data System (ADS)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Tang, Bin

    2017-10-01

    The structural, electronic and surface properties of low-index surfaces of tetragonal NbAl3 have been studied with first-principles plane-wave ultrasoft pseudo-potential method based on density functional theory. The atomic relaxations, surface energies and work functions are reported. The calculated atomic relaxations and surface energies suggest that the (111) surface is the most stable stoichiometric surface. Furthermore, the Al-terminated (110) surface is thermodynamically stable than other surfaces in both Al-rich and Nb-rich conditions.

  2. Electronic structure and thermoelectric property of Co2YGe (Y=Mn, Fe) Heusler compounds: a first principle study

    NASA Astrophysics Data System (ADS)

    Joshi, Himanshu; Rai, D. P.; Sandeep; Thapa, R. K.

    2016-10-01

    The electronic and thermoelectric properties of Co2YGe (Y=Mn, Fe) Heusler compounds have been studied by first principle density functional theory and compared with the known experimental and theoretical results. Results of the density of states (DOS) and band structures shows the half-metallicity of the Heusler alloy Co2MnGe, whereas the Heusler alloy Co2FeGe fails to give half-metallicity when treated with GGA. The ZT value calculated for these materials is much below the benchmark value 1.

  3. First-principles study of Al2Sm intermetallic compound on structural, mechanical properties and electronic structure

    NASA Astrophysics Data System (ADS)

    Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong

    2017-02-01

    The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.

  4. First-Principles Molecular Dynamics Simulation for Calcium under High-Pressure: Thermodynamic Effect on Simple Cubic Structure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Nagara, Hitose; Suzuki, Naoshi; Shimizu, Katsuya

    2012-12-01

    The crystal structure of the simple cubic phase in calcium is investigated by first-principles molecular dynamics simulations at pressure of 40 GPa and at temperatures of 300 and 10 K. For the k-point sampling over the Brillouin zone, at least 3 × 3 × 3 k-points are required to achieve reliable dynamic behavior of the simulation cell consisting of 4 × 4 × 4 simple cubic primitive cells. As a result of the simulation, a dynamically fluctuating simple cubic lattice emerges at 300 K. The dynamic structure is distorted slightly from the cubic lattice at 10 K, which is consistent with previous experimental observations. A static crystal structure obtained by reducing the particle velocities in the course of the simulation becomes an orthorhombic structure, which is far from the simple cubic structure. Our molecular dynamics study indicates that thermal contribution is crucial for a discussion about the emergence of the simple cubic calcium.

  5. Structural stability and mechanical property of Ni(111)-graphene-Ni(111) layered composite: A first-principles study

    NASA Astrophysics Data System (ADS)

    Rong, Ximing; Chen, Jun; Li, Jing-Tian; Zhuang, Jun; Ning, Xi-Jing

    2015-12-01

    A first-principles calculation of the structural stability and mechanical property of Ni(111)-graphene-Ni(111) layered composite was presented. Three different structural models were considered, and the most stable interfacial structure had been determined with top-fcc structure in both sides of graphene. Stretching calculations demonstrate that the tensile stress of the composite can reach twice of that of pure Ni in the ranges of 0-0.2 strain. The Young’s modulus in triaxial directions are 384 (x), 362 (y), and 303 (z) GPa for the Ni(111)-graphene-Ni(111) structure, and 212 (x), 251 (y), and 273 (z) GPa for pure single-crystal Ni(111).

  6. First-principles mobility calculations and atomic-scale interface roughness in nanoscale structures.

    PubMed

    Evans, M H; Zhang, X-G; Joannopoulos, J D; Pantelides, S T

    2005-09-02

    Calculations of mobilities have so far been carried out using approximate methods that suppress atomic-scale detail. Such approaches break down in nanoscale structures. Here we report the development of a method to calculate mobilities using atomic-scale models of the structures and density functional theory at various levels of sophistication and accuracy. The method is used to calculate the effect of atomic-scale roughness on electron mobilities in ultrathin double-gate silicon-on-insulator structures. The results elucidate the origin of the significant reduction in mobility observed in ultrathin structures at low electron densities.

  7. First-Principles Mobility Calculations and Atomic-Scale Interface Roughness in Nanoscale Structures

    SciTech Connect

    Evans, Matthew H; Zhang, Xiaoguang; Joannopoulos, J. D.; Pantelides, Sokrates T

    2005-01-01

    Calculations of mobilities have so far been carried out using approximate methods that suppress atomic-scale detail. Such approaches break down in nanoscale structures. Here we report the development of a method to calculate mobilities using atomic-scale models of the structures and density functional theory at various levels of sophistication and accuracy. The method is used to calculate the effect of atomic-scale roughness on electron mobilities in ultrathin double-gate silicon-on-insulator structures. The results elucidate the origin of the significant reduction in mobility observed in ultrathin structures at low electron densities.

  8. First-principles study of structural & electronic properties of pyramidal silicon nanowire

    SciTech Connect

    Jariwala, Pinank; Thakor, P. B.; Singh, Deobrat; Sonvane, Y. A.; Gupta, Sanjeev K.

    2016-05-23

    We have investigated the stable structural and electronic properties of Silicon (Si) nanowires having different cross-sections with 5-7 Si atoms per unit cell. These properties of the studied Si nanowires were significantly changed from those of diamond bulk Si structure. The binding energy increases as increasing atoms number per unit cell in different SiNWs structures. All the nanowires structures are behave like metallic rather than semiconductor in bulk systems. In general, the number of conduction channels increases when the nanowire becomes thicker. The density of charge revealed delocalized metallic bonding for all studied Si nanowires.

  9. First-principles studies of phase stability and the structural and dynamical properties of metal hydrides

    SciTech Connect

    Chou, M.Y.

    1992-04-01

    This report discusses the following topics: calculation of the Structural Properties of Yttrium; dynamical and pairing properties of {alpha}-YH{chi}; electronic and structural properties of YH{sub 2} and YH{sub 3}; phase diagram of hydrogen on Ru(000); peierls distortion in hexagonal YH{sub 3}; and study of hydrogen in niobium and palladium.

  10. Crystal structure and physical properties of Mo{sub 2}B: First-principle calculations

    SciTech Connect

    Zhou, Dan; Cui, Qiliang E-mail: liquan777@jlu.edu.cn; Li, Quan E-mail: liquan777@jlu.edu.cn; Wang, Jingshu

    2014-03-21

    Several decades ago, Mo{sub 2}B was assumed to have an Al{sub 2}Cu-type structure with I4/mcm space group. Using ab initio phonon calculations, we identify the earlier proposed Al{sub 2}Cu-type structure is dynamically unstable at ambient pressure. An energetically more favorable phase with the tetragonal I4/m structure was then predicted by employing frozen-phonon technique. The currently predicted I4/m phase is mechanically and dynamically stable and energetically more favorable than that of the earlier proposed Al{sub 2}Cu-type structure. The electronic structures calculations indicate that Mo{sub 2}B is a metal with several bands crossing the Fermi level. Our analysis indicates that the three-dimensional network of the covalent Mo-B bond is responsible for the ultra-incompressible property of Mo{sub 2}B.

  11. Hydrostatic pressure effects on structural and electronic properties of TATB from first principles calculations

    NASA Astrophysics Data System (ADS)

    Fedorov, Igor A.; Zhuravlev, Yuriy N.

    2014-06-01

    The structural and electronic properties of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) has been investigated within the framework of density functional theory including van der Waals interactions. The predicted crystal structure compares well with the experimental results at the ambient pressure. The computed lattice parameters and lattice energy have good agreement with experimental data. We study on the structural and electronic properties of the TATB under the hydrostatic pressure of 0-40 GPa. In addition, the electronic structure of the TATB has been studied as a function of uniaxial compression. The isothermal equations of state calculated from the results show good agreement with experiment in the pressure intervals studied. We have also calculated the quasiparticle band structure of TATB with the G0W0 approximation.

  12. First-principles study of electronic structures and stability of body-centered cubic Ti-Mo alloys by special quasirandom structures.

    PubMed

    Sahara, Ryoji; Emura, Satoshi; Ii, Seiichiro; Ueda, Shigenori; Tsuchiya, Koichi

    2014-06-01

    The electronic structures and structural properties of body-centered cubic Ti-Mo alloys were studied by first-principles calculations. The special quasirandom structures (SQS) model was adopted to emulate the solid solution state of the alloys. The valence band electronic structures of Ti-Mo and Ti-Mo-Fe alloys were measured by hard x-ray photoelectron spectroscopy. The structural parameters and valence band photoelectron spectra were calculated using first-principles calculations. The results obtained with the SQS models showed better agreement with the experimental results than those obtained using the conventional ordered structure models. This indicates that the SQS model is effective for predicting the various properties of solid solution alloys by means of first-principles calculations.

  13. First-principles study of electronic structures and stability of body-centered cubic Ti–Mo alloys by special quasirandom structures

    PubMed Central

    Sahara, Ryoji; Emura, Satoshi; Ii, Seiichiro; Ueda, Shigenori; Tsuchiya, Koichi

    2014-01-01

    The electronic structures and structural properties of body-centered cubic Ti–Mo alloys were studied by first-principles calculations. The special quasirandom structures (SQS) model was adopted to emulate the solid solution state of the alloys. The valence band electronic structures of Ti–Mo and Ti–Mo–Fe alloys were measured by hard x-ray photoelectron spectroscopy. The structural parameters and valence band photoelectron spectra were calculated using first-principles calculations. The results obtained with the SQS models showed better agreement with the experimental results than those obtained using the conventional ordered structure models. This indicates that the SQS model is effective for predicting the various properties of solid solution alloys by means of first-principles calculations. PMID:27877690

  14. Structural, electronic, mechanical, dielectric and optical properties of TiSiO4: First-principles study

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liu, Zheng-Tang; Ren, Juan; Liu, Qi-Jun

    2017-02-01

    Using the first-principles calculations, we have computed the structural parameters, band structures, elastic, dielectric and optical properties of TiSiO4 in orthorhombic CrVO4-type (Cmcm), tetragonal zircon-type (I41/amd) and scheelite-type (I41/a) phases. The obtained structural parameters of three phases were in agreement with previous results. The band structures, density of states and bond populations have been given to analyze the electronic properties and chemical bondings. The independent elastic constants of three phases have been calculated, showing that all of them were mechanically stable. The CrVO4 phase showed a brittle manner and the others behaved in a ductile manner. Moreover, the permittivity, refractive index, extinction coefficient, reflectivity, absorption coefficient, loss function and optical conductivity of three phases have been obtained and analyzed.

  15. Structural and mechanical properties of alkali hydrides investigated by the first-principles calculations and principal component analysis

    NASA Astrophysics Data System (ADS)

    Settouti, Nadera; Aourag, Hafid

    2016-08-01

    The structural and mechanical properties of alkali hydrides (LiH, NaH, KH, RbH, and CsH) were investigated via first-principles calculations which cover the optimized structural parameters. The density functional theory in combination with the generalized gradient approximation (GGA) were used in this study. From the present study, one could note that alkali hydrides are brittle materials and mechanically stable. It was found that stiffness and shear resistance are greater in LiH than in other hydrides. It is more brittle in nature, and comparatively harder than the other materials under study; it also presents a high degree of anisotropy. The results were then investigated and analyzed with principal component analysis (PCA), which is one of the most common techniques in multivariate analysis, was used to explore the correlations among material properties of alkali hydrides and to study their trends. The alkali hydrides obtained by the first-principles calculations were also compared with the alkaline-earth metal hydrides (BeH2, MgH2, CaH2, SrH2, and BaH2) and discussed in this work.

  16. A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers

    NASA Astrophysics Data System (ADS)

    Powell, B. J.; Baruah, T.; Bernstein, N.; Brake, K.; McKenzie, Ross H.; Meredith, P.; Pederson, M. R.

    2004-05-01

    We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, ΔHL. We show that ΔHL is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in ΔHL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.

  17. A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers.

    PubMed

    Powell, B J; Baruah, T; Bernstein, N; Brake, K; McKenzie, Ross H; Meredith, P; Pederson, M R

    2004-05-08

    We report first-principles density-functional calculations for hydroquinone (HQ), indolequinone (IQ), and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of biomacromolecules with important biological functions (including photoprotection) and with the potential for certain bioengineering applications. We have used the difference of self-consistent fields method to study the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, Delta(HL). We show that Delta(HL) is similar in IQ and SQ, but approximately twice as large in HQ. This may have important implications for our understanding of the observed broadband optical absorption of the eumelanins. The possibility of using this difference in Delta(HL) to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules have significantly different infrared and Raman signatures, and so these spectra could be used in situ to nondestructively identify the monomeric content of macromolecules. It is hoped that this may be a helpful analytical tool in determining the structure of eumelanin macromolecules and hence in helping to determine the structure-property-function relationships that control the behavior of the eumelanins.

  18. Structural and electronic properties of sodium azide at high pressure: A first principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Meiguang; Yin, Ketao; Zhang, Xinxin; Wang, Hui; Li, Quan; Wu, Zhijian

    2013-05-01

    The structural and electronic properties of NaN3 at high pressures were studied through ab initio calculations. Three new phases with I4/mcm, P6/m and C2/m structure were found to be stable at pressures of 6.5, 58 and 152 GPa, respectively. Similarity of the Raman spectra revealed that the experimental post-α phase should adopt the I4/mcm structure. The calculated insulator-metal transition at 58 GPa directly explained the observed darkening of NaN3 sample at above 50 GPa. The three proposed structures contain azide, N6 hexagon and polymeric nitrogen, respectively. Our finding of the novel N6 hexagon in NaN3 at moderate pressures provides a new view of the pressure-induced polymerization process of metal azides.

  19. Structural, mechanical and thermodynamic properties of ZrO2 polymorphs by first-principles calculation

    NASA Astrophysics Data System (ADS)

    Liang, Zuozhong; Wang, Wei; Zhang, Min; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-04-01

    The structural, mechanical and thermodynamic properties of ZrO2 polymorphs (namely, monoclinic (P21/c), tetragonal (P42/nmc), cubic (Fm 3 bar m), and orthorhombic (Pbca and Pnma)) are investigated systematically by employing DFT functionals (LDA, PBE and PW91). It is found that the structural parameters of ZrO2 polymorphs calculated by PBE and PW91 functionals are highly consistent with previous experiments with low absolute relative error (ARE). Moreover, all considered structures are mechanically stable according to the Born-Huang criterion and the PBE and PW91 functionals are more accurate than the LDA functional in predicting mechanical and thermodynamic properties. Significantly, we described mechanical and thermodynamic properties of ZrO2 polymorphs by introducing the charge density difference of related surfaces, which provides a better understanding of different behaviors of elastic constants (Cij) in various crystal structures of ZrO2.

  20. First principle calculations of structural phase transition and electronic properties in AmTe

    SciTech Connect

    Pataiya, Jagdeesh Makode, C.; Aynyas, Mahendra; Singh, A.; Sanyal, S. P.

    2015-06-24

    The tight-binding linear muffin-tin orbital (TB-LMTO) with in the local density approximation is used to calculate total energy, lattice parameters, bulk modulus, density of states and energy band structure of americium telluride at ambient as well as at high pressure. It is found that AmTe is stable in NaCl – type structure under ambient pressure. The phase transition pressure was found to be 15.0 GPa from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-phase) structure for this compound. From energy band diagram it is observed that AmTe exhibit metallic behaviour. The calculated ground state properties such as lattice parameters and bulk modulus are in general good agreement with the available results.

  1. First principle calculations of structural phase transition and electronic properties in AmTe

    NASA Astrophysics Data System (ADS)

    Pataiya, Jagdeesh; Aynyas, Mahendra; Makode, C.; Singh, A.; Sanyal, S. P.

    2015-06-01

    The tight-binding linear muffin-tin orbital (TB-LMTO) with in the local density approximation is used to calculate total energy, lattice parameters, bulk modulus, density of states and energy band structure of americium telluride at ambient as well as at high pressure. It is found that AmTe is stable in NaCl - type structure under ambient pressure. The phase transition pressure was found to be 15.0 GPa from NaCl-type (B1-phase) structure to CsCl-type (B2-phase) structure for this compound. From energy band diagram it is observed that AmTe exhibit metallic behaviour. The calculated ground state properties such as lattice parameters and bulk modulus are in general good agreement with the available results.

  2. First-principles study of structural stabilities of AlH3 under high pressure

    NASA Astrophysics Data System (ADS)

    Feng, Wenxia; Cui, Shouxin; Feng, Min

    2014-07-01

    The structural stabilities and electronic properties of AlH3 under high pressure are investigated by using the plane-wave pseudopotential method. Our results demonstrate that the sequence of the pressure-induced phase transition is Fd 3 bar m(β) → cmcm(α ') → R 3 bar c(α) → Pnma(hp 1) → Pm 3 bar n(hp 2), and the transition pressures are 0.49, 0.91, 47, and 70 GPa, respectively. Im 3 bar m , Pnnm(γ) and P63/m structures are not stable in the 0-100 GPa. β, α ', α, and hp1 structures of AlH3 are nonmetals, while Pm 3 bar n structure of AlH3 is metallic, and the pressure-induced metallization is ascribed to phase transition under higher compression.

  3. First-principle study of structure and stability of nickel carbides

    NASA Astrophysics Data System (ADS)

    Gibson, Josh S.; Uddin, Jamal; Cundari, Thomas R.; Bodiford, Nelli K.; Wilson, Angela K.

    2010-10-01

    Computational studies of nickel carbides, particularly Ni2C, are scarce. A systematic density functional theory study is reported for Ni2C, along with NiC and Ni3C, to understand the stability and electronic structure of nickel carbides of varying stoichiometry. A comprehensive study was executed that involved 28 trial structures of varying space group symmetry for Ni2C. An analysis of the electronic structure, geometry and thermodynamics of Ni2C is performed, and compared with that for Ni3C and NiC as well as several defect structures of varying composition. It is found that the most stable ground state arrangement of Ni2C exists within a simple orthorhombic lattice and that it has metallic character. The calculated formation energies (kcal mol - 1) of NiC, Ni2C, and Ni3C are 48.6, 7.9 and 6.4, respectively.

  4. Large-Scale Computations Leading to a First-Principles Approach to Nuclear Structure

    SciTech Connect

    Ormand, W E; Navratil, P

    2003-08-18

    We report on large-scale applications of the ab initio, no-core shell model with the primary goal of achieving an accurate description of nuclear structure from the fundamental inter-nucleon interactions. In particular, we show that realistic two-nucleon interactions are inadequate to describe the low-lying structure of {sup 10}B, and that realistic three-nucleon interactions are essential.

  5. The first principle investigations of structural and electronic properties of ZnTe

    SciTech Connect

    Khatta, Swati; Tripathi, S. K. Prakash, Satya

    2016-05-23

    Structural and electronic properties of ZnTe are investigated within the framework of density functional theory. The pseudopotential method along with local density approximation and generalized gradient approximation for the exchange-correlation potential is used within the quantum espresso package. The optimized equilibrium lattice parameter, bulk modulus and its pressure derivative are determined. The electronic band structure, density of states and partial density of states are calculated. The results are compared with available theoretical calculations and experimental results.

  6. First principle investigation of structural and electronic properties of bulk ZnSe

    SciTech Connect

    Khatta, Swati; Tripathi, S. K. Prakash, Satya

    2015-08-28

    Electronic and structural properties of ZnSe are investigated using plane-wave self-consistent field method within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The equilibrium lattice parameter, static bulk modulus and its pressure derivative are calculated. The electronic band structure, partial density of states and density of states are also obtained. The results are compared with available theoretical calculations and experimental results.

  7. Bridge Structure for the graphene/Ni(111) system: A first principles study

    SciTech Connect

    Fuentes-Cabrera, Miguel A; Baskes, Mike I.; Melechko, Anatoli Vasilievich; Simpson, Michael L

    2008-01-01

    The structure of graphene on Ni(111) is studied with density functional theory (DFT). Six different structures, i.e., top-fcc, top-hcp, hcp-fcc, bridge-top, bridge-fcc, and bridge-hcp, were investigated. Bridge-top, bridge-fcc, and bridge-hcp are studied here. Top-fcc and hcp-fcc have been considered before, experimentally and theoretically, and regarded as energetically stable structures. The calculations employed the local density approximation (LDA) and the Perdew, Burke, and Ernzerhof (PBE) generalized-gradient approximation to DFT. The results showed that with PBE, none of the structures is stable at the experimentally relevant temperatures; with LDA, only bridge-top and top-fcc are stable. These findings suggest that it will be worthwhile to carry on new experimental studies to revisit the structural determination of the graphene/Ni(111) system, with special emphasis on testing whether bridge-top could exist by itself or coexist with other structures.

  8. Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: insights from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Yanli; Ding, Yi

    2015-06-01

    Using dispersion-corrected density functional theory calculations, we investigate the structural and electronic properties of arsenic (As) nanosheet, which is a cousin of phosphorene. We find that the black-phosphorus like structure is dynamically unstable for As, which has an out-of-plane soft mode from its flat As zigzag lines. Hence different from phosphorene, the stable As monolayer possesses a unique buckling along the zigzag direction, which leads to a surface corrugation of 0.20 Å and a robust dynamic stability. The zigzag buckling alters the band feature of As nanosheet, transforming it from an indirect band gap semiconductor to a direct one for the buckled structure. Strain engineering can further tune the surface corrugation and band structure of As nanosheet, for which the direct or indirect gap feature can be switched by the zigzag-directional strains, while the strains along armchair direction could modulate the band gap and induce a metallic behaviour. Prominent anisotropic Dirac-like electronic structures and orientation-dependent elastic behaviours with a remarkable negative Poisson ratio are both found in the As nanosheets, enabling the system promising applications for nano-electrics and devices.

  9. First-principles predicted low-energy structures of NaSc(BH4)4

    NASA Astrophysics Data System (ADS)

    Tran, Huan Doan; Amsler, Maximilian; Botti, Silvana; Marques, Miguel A. L.; Goedecker, Stefan

    2014-03-01

    According to previous interpretations of experimental data, sodium-scandium double-cation borohydride NaSc(BH4)4 crystallizes in the crystallographic space group Cmcm where each sodium (scandium) atom is surrounded by six scandium (sodium) atoms. A careful investigation of this phase based on ab initio calculations indicates that the structure is dynamically unstable and gives rise to an energetically and dynamically more favorable phase with C2221 symmetry and nearly identical x-ray diffraction pattern. By additionally performing extensive structural searches with the minima-hopping method we discover a class of new low-energy structures exhibiting a novel structural motif in which each sodium (scandium) atom is surrounded by four scandium (sodium) atoms arranged at the corners of either a rectangle with nearly equal sides or a tetrahedron. These new phases are all predicted to be insulators with band gaps of 7.9-8.2 eV. Finally, we estimate the influence of these structures on the hydrogen-storage performance of NaSc(BH4)4.

  10. First-principles study of structural properties of SiO2 bilayers

    NASA Astrophysics Data System (ADS)

    Malashevich, Andrei; Ismail-Beigi, Sohrab; Altman, Eric I.

    Two dimensional (2D) materials draw a tremendous amount of interest because they exhibit unique physical properties due to reduced dimensionality. Recently, SiO2 2D bilayer systems were discovered. The structure of these bilayers is formed by two mirror-image planes of corner-sharing SiO4 tetrahedra and does not have a direct relation to bulk SiO2 systems. SiO2 bilayers may be obtained in crystalline or amorphous forms. In the crystalline form, the bilayers are constructed from six-membered rings of corner-sharing SiO4 tetrahedra. The amorphous form has rings of various sizes typically in the range from four to nine Si atoms in the ring. These structures may be of practical interest as atomically thin membranes and molecular sieves. In our work, we study the effect of strain and doping on the crystalline structure of SiO2 bilayers using density functional theory. We analyze the stability of structures depending on the ring size and establish strain and doping conditions that may render the structures with large ring sizes stable. This work is supported by the National Science Foundation through Grants MRSEC NSF DMR-1119826 and NSF DMR-1506800.

  11. First-principles study of structural, elastic and thermodynamic properties of AuIn2

    NASA Astrophysics Data System (ADS)

    Wu, Hai Ying; Chen, Ya Hong; Deng, Chen Rong; Yin, Peng Fei; Cao, Hong

    2015-12-01

    The structural, elastic and thermodynamic properties of AuIn2 in the CaF2 structure under pressure have been investigated using ab initio plane wave pseudopotential method within the generalized gradient approximation. The calculated structural parameters and equation of state are in excellent agreement with the available experimental and theoretical results. The elastic constants of AuIn2 at ambient condition are calculated, and the bulk modulus obtained from these calculated elastic constants agrees well with the experimental data. The pressure dependence of the elastic constants, bulk modulus, shear modulus and Young’s modulus has also been investigated. The Debye temperature presents a slight increase with pressure. AuIn2 exhibits ductibility and low hardness characteristics, the ductibility increases while the hardness decreases with the increasing of pressure. The pressure effect on the heat capacity and thermal expansion coefficient for AuIn2 is much larger.

  12. Magnetism, structure and chemical order in small CoPd clusters: A first-principles study

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2014-01-01

    The structural, electronic and magnetic properties of small ComPdn(N=m+n=8,m=0-N) nanoalloy clusters are studied in the framework of a generalized-gradient approximation to density-functional theory. The optimized cluster structures have a clear tendency to maximize the number of nearest-neighbor CoCo pairs. The magnetic order is found to be ferromagnetic-like (FM) for all the ground-state structures. Antiferromagnetic-like spin arrangements were found in some low-lying isomers. The average magnetic moment per atom μ increases approximately linearly with Co content. A remarkable enhancement of the local Co moments is observed as a result of Pd doping. This is a consequence of the increase in the number of Co d holes, due to CoPd charge transfer, combined with the reduced local coordination. The influence of spin-orbit interactions on the cluster properties is also discussed.

  13. Structure of a 13-fold superhelix (almost) determined from first principles

    PubMed Central

    Schoch, Guillaume A.; Sammito, Massimo; Millán, Claudia; Usón, Isabel; Rudolph, Markus G.

    2015-01-01

    Nuclear hormone receptors are cytoplasm-based transcription factors that bind a ligand, translate to the nucleus and initiate gene transcription in complex with a co-activator such as TIF2 (transcriptional intermediary factor 2). For structural studies the co-activator is usually mimicked by a peptide of circa 13 residues, which for the largest part forms an α-helix when bound to the receptor. The aim was to co-crystallize the glucocorticoid receptor in complex with a ligand and the TIF2 co-activator peptide. The 1.82 Å resolution diffraction data obtained from the crystal could not be phased by molecular replacement using the known receptor structures. HPLC analysis of the crystals revealed the absence of the receptor and indicated that only the co-activator peptide was present. The self-rotation function displayed 13-fold rotational symmetry, which initiated an exhaustive but unsuccessful molecular-replacement approach using motifs of 13-fold symmetry such as α- and β-barrels in various geometries. The structure was ultimately determined by using a single α-helix and the software ARCIMBOLDO, which assembles fragments placed by PHASER before using them as seeds for density modification model building in SHELXE. Systematic variation of the helix length revealed upper and lower size limits for successful structure determination. A beautiful but unanticipated structure was obtained that forms superhelices with left-handed twist throughout the crystal, stabilized by ligand interactions. Together with the increasing diversity of structural elements in the Protein Data Bank the results from TIF2 confirm the potential of fragment-based molecular replacement to significantly accelerate the phasing step for native diffraction data at around 2 Å resolution. PMID:25866655

  14. Structural and electronic phase transitions of ThS2 from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Zhu, Zhiyuan; Chen, Changfeng

    2016-10-01

    Thorium and its compounds have received considerable attention in recent years due to the renewed interest in developing the thorium fuel cycle as an alternative nuclear energy technology. There is pressing current need to explore the physical properties essential to the fundamental understanding and practical application of these materials. Here we report on a computational study of thorium disulfide (ThS2), which plays an important role in the thorium fuel reprocessing cycle. We have employed the density functional theory and evolutionary structure search methods to determine the crystal structures, electronic band structures, phonon dispersions and density of states, and thermodynamic properties of ThS2 under various pressure and temperature conditions. Our calculations identify several crystalline phases of ThS2 and a series of structural phase transitions induced by pressure and temperature. The calculated results also reveal electronic phase transitions from the semiconducting state in the low-pressure phases of ThS2 in the P n m a and F m 3 ¯m symmetry to the metallic state in the high-pressure phases of ThS2 in the P n m a and I 4 /m m m symmetry. These results explain the experimental observation of the thermodynamic stability of the P n m a phase of ThS2 at the ambient conditions and a pressure-induced structural phase transition in ThS2 around 40 GPa. Moreover, the present study reveals considerable additional information on the structural and electronic properties of ThS2 in a wide range of pressure and temperature. Such information provides key insights into the fundamental material behavior and the underlying mechanisms that lay the foundation for further exploration and application of ThS2.

  15. Self-interstitials structure in the hcp metals: A further perspective from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Pasianot, Roberto C.

    2016-12-01

    We study the structure of several standard and non-standard self-interstitial configurations in a series of hcp metals, by using Density Functional Theory as embodied in the computer codes SIESTA and WIEN2k. The considered metals include Be, Mg, Ti, Zr, Co, Zn, and Cd, thus spanning the whole range of experimental c/a ratios, different kinds of bonding, and even magnetism (Co). The results show the importance of low symmetry configurations, closely related to the non-basal crowdion, in order to rationalize the experimental data on self-interstitial structure and migration.

  16. Dynamic covalent bond from first principles: Diarylbibenzofuranone structural, electronic, and oxidation studies.

    PubMed

    Schleder, Gabriel R; Fazzio, Adalberto; Arantes, Jeverson T

    2017-07-27

    A structure that can self-heal under standard conditions is a challenge faced nowadays and is one of the most promising areas in smart materials science. This can be achieved by dynamic bonds, of which diarylbibenzofuranone (DABBF) dynamic covalent bond is an appealing solution. In this report, we studied the DABBF bond formation against arylbenzofuranone (ABF) and O2 reaction (autoxidation). Our results show that the barrierless DABBF bond formation is preferred over autoxidation due to the charge transfer process that results in the weakly bonded superoxide. We calculated the electronic and structural properties using total energy density functional theory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Conformers of hydrogenated SiC honeycomb structure: A first principles study

    NASA Astrophysics Data System (ADS)

    Banerjee, Seemita; Majumder, Chiranjib

    2013-08-01

    The structural and electronic properties of fully hydrogenated SiC graphane-like nano-structures have been investigated. The objective of this study is to underscore the relative stability of different conformers of hydrogenated SiC sheet. All calculations are carried out using plane wave based pseudo-potential approach under the density functional theory. The results reveal that the fully hydrogenated SiC sheet forms five stable isomers, and the chair conformer is most stable. Further study through molecular dynamic simulation strategy demonstrates that even at room temperature the chair conformer remains stable.

  18. First-principles study on the structural and electronic properties of metallic HfH2 under pressure

    PubMed Central

    Liu, Yunxian; Huang, Xiaoli; Duan, Defang; Tian, Fubo; Liu, Hanyu; Li, Da; Zhao, Zhonglong; Sha, Xiaojing; Yu, Hongyu; Zhang, Huadi; Liu, Bingbing; Cui, Tian

    2015-01-01

    The crystal structures and properties of hafnium hydride under pressure are explored using the first-principles calculations based on density function theory. The material undergoes pressure-induced structural phase transition I4/mmm→Cmma→P21/m at 180 and 250 GPa, respectively, and all of these structures are metallic. The superconducting critical temperature Tc values of I4/mmm, Cmma, and P21/m are 47–193 mK, 5.99–8.16 K and 10.62–12.8 K at 1 atm, 180 and 260 GPa, respectively. Furthermore, the bonding nature of HfH2 is investigated with the help of the electron localization function, the difference charge density and Bader charge analyses, which show that HfH2 is classified as a ionic crystal with the charges transferring from Hf atom to H. PMID:26096298

  19. Structural, phononic and electronic properties of Ge-doped γ-graphynes: A first-principles study

    NASA Astrophysics Data System (ADS)

    Liu, Junxian; Xin, Zihua; Yan, Xiao; Li, Hui; Yu, M.

    2017-05-01

    Three stable Ge-doped γ-graphyne-like structures have been systematically studied by first principles calculations based on density functional theory (DFT). These analogues were derived by substituting carbon atoms alternately with Ge atoms in the hexatomic ring of γ-graphyne family and referred to as GeC-graphyne, GeC-graphdiyne and GeC-graphyne-3. These novel systems were found to have planar structures with Ge atoms staying at hexagons with sp2-hybridization. Their dynamical stabilities were confirmed from calculated phonon dispersion spectrums, and their electronic band structures show direct band gap semiconducting behaviors with the band gaps of 1.186 eV, 0.967 eV and 0.828 eV, respectively, indicating that Ge-doping can effectively increase the band gap of pristine γ-graphyne family materials.

  20. First-principles study on adsorption structure and electronic state of stanene on α-alumina surface

    NASA Astrophysics Data System (ADS)

    Araidai, Masaaki; Kurosawa, Masashi; Ohta, Akio; Shiraishi, Kenji

    2017-09-01

    The adsorption structure and electronic state of stanene on an α-Al2O3(0001) 1×1 surface were investigated by first-principles calculations. The variation in the electronic state of the adsorbed stanene from that of the free-standing one increased with the stanene-alumina distance, because the strength of the stanene-alumina interaction increased with the distance. The band splitting induced by the Rashba effect was observed in the electronic band structures. It was observed from the band structures with spin-orbit interactions that the degrees of band-gap opening due to the spin-orbit interactions were much lower than that due to the interaction between stanene and the α-alumina surface. By population analyses for chemical bonds, we revealed that the electronic state of stanene on the α-alumina surface was affected by Sn-O bonds with antibonding nature.

  1. Structural distortion and orbital ordering in the triangular-lattice antiferromagnet NaVO2 from first principles

    NASA Astrophysics Data System (ADS)

    Ouyang, Z. W.; Xia, N. M.; Sheng, S. S.; Chen, J.; Xia, Z. C.; Rao, G. H.; Zheng, X. H.

    2011-03-01

    Triangular-lattice antiferromagnets with the general formula ATO2 (A =alkali metal, T =3d transition metal) often adopt a slightly distorted crystal structure at low temperatures, accompanying a lifting of magnetic frustration and the appearance of long-range magnetic ordering and sometimes a particular orbital ordering. Taking NaVO2 as an example, we successfully demonstrate that the tiny structural distortion with a ratio of lattice parameters, am/bm =1.755, and the formation of orbital ordering observed in recent neutron-diffraction experiments can be well interpreted by first-principles calculations including 3d electron correlations with parameter Ueff =3.6 eV. This distinct study on “pure” structural distortion is expected to be applied in other triangular-lattice antiferromagnetic systems.

  2. First-principles study on the structural and electronic properties of metallic HfH2 under pressure.

    PubMed

    Liu, Yunxian; Huang, Xiaoli; Duan, Defang; Tian, Fubo; Liu, Hanyu; Li, Da; Zhao, Zhonglong; Sha, Xiaojing; Yu, Hongyu; Zhang, Huadi; Liu, Bingbing; Cui, Tian

    2015-06-22

    The crystal structures and properties of hafnium hydride under pressure are explored using the first-principles calculations based on density function theory. The material undergoes pressure-induced structural phase transition I4/mmm → Cmma → P21/m at 180 and 250 GPa, respectively, and all of these structures are metallic. The superconducting critical temperature Tc values of I4/mmm, Cmma, and P21/m are 47-193 mK, 5.99-8.16 K and 10.62-12.8 K at 1 atm, 180 and 260 GPa, respectively. Furthermore, the bonding nature of HfH2 is investigated with the help of the electron localization function, the difference charge density and Bader charge analyses, which show that HfH2 is classified as a ionic crystal with the charges transferring from Hf atom to H.

  3. k.p Parameters with Accuracy Control from Preexistent First-Principles Band Structure Calculations

    NASA Astrophysics Data System (ADS)

    Sipahi, Guilherme; Bastos, Carlos M. O.; Sabino, Fernando P.; Faria Junior, Paulo E.; de Campos, Tiago; da Silva, Juarez L. F.

    The k.p method is a successful approach to obtain band structure, optical and transport properties of semiconductors. It overtakes the ab initio methods in confined systems due to its low computational cost since it is a continuum method that does not require all the atoms' orbital information. From an effective one-electron Hamiltonian, the k.p matrix representation can be calculated using perturbation theory and the parameters identified by symmetry arguments. The parameters determination, however, needs a complementary approach. In this paper, we developed a general method to extract the k.p parameters from preexistent band structures of bulk materials that is not limited by the crystal symmetry or by the model. To demonstrate our approach, we applied it to zinc blende GaAs band structure calculated by hybrid density functional theory within the Heyd-Scuseria-Ernzerhof functional (DFT-HSE), for the usual 8 ×8 k.p Hamiltonian. Our parameters reproduced the DFT-HSE band structure with great accuracy up to 20% of the first Brillouin zone (FBZ). Furthermore, for fitting regions ranging from 7-20% of FBZ, the parameters lie inside the range of values reported by the most reliable studies in the literature. The authors acknowledge financial support from the Brazilian agencies CNPq (Grant #246549/2012-2) and FAPESP (Grants #2011/19333-4, #2012/05618-0 and #2013/23393-8).

  4. Structural, electronic, vibrational, and dielectric properties of LaBGeO{sub 5} from first principles

    SciTech Connect

    Shaltaf, R. Juwhari, H. K.; Hamad, B.; Khalifeh, J.; Rignanese, G.-M.; Gonze, X.

    2014-02-21

    Structural, electronic, vibrational, and dielectric properties of LaBGeO{sub 5} with the stillwellite structure are determined based on ab initio density functional theory. The theoretically relaxed structure is found to agree well with the existing experimental data with a deviation of less than 0.2%. Both the density of states and the electronic band structure are calculated, showing five distinct groups of valence bands. Furthermore, the Born effective charge, the dielectric permittivity tensors, and the vibrational frequencies at the center of the Brillouin zone are all obtained. Compared to existing model calculations, the vibrational frequencies are found in much better agreement with the published experimental infrared and Raman data, with absolute and relative rms values of 6.04 cm{sup −1}, and 1.81%, respectively. Consequently, numerical values for both the parallel and perpendicular components of the permittivity tensor are established as 3.55 and 3.71 (10.34 and 12.28), respectively, for the high-(low-)frequency limit.

  5. Structural and electronic properties of Y2CrS4 from first-principles study

    NASA Astrophysics Data System (ADS)

    Wang, B.-T.; Yin, W.; Li, W.-D.; Wang, F.

    2011-04-01

    We systematically study the structural, electronic, and magnetic properties of chromium sulfide Y2CrS4 by using density-functional theory. We find that antiferromagnetic order is more energetically favorable than ferromagnetic state and near the Fermi level the main occupation is from Cr 3 d states.

  6. Structure determination of ultra dense magnesium borohydride: a first-principles study.

    PubMed

    Fan, Jing; Duan, Defang; Jin, Xilian; Bao, Kuo; Liu, Bingbing; Cui, Tian

    2013-06-07

    Magnesium borohydride (Mg(BH4)2) is one of the potential hydrogen storage materials. Recently, two experiments [Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, and H. Hagemann, Angew. Chem., Int. Ed. 50, 11162 (2011); L. George, V. Drozd, and S. K. Saxena, J. Phys. Chem. C 113, 486 (2009)] found that α-Mg(BH4)2 can irreversibly be transformed to an ultra dense δ-Mg(BH4)2 under high pressure. Its volumetric hydrogen content at ambient pressure (147 g/cm(3)) exceeds twice of DOE's (U.S. Department of Energy) target (70 g/cm(3)) and that of α-Mg(BH4)2 (117 g/cm(3)) by 20%. In this study, the experimentally proposed P4(2)nm structure of δ-phase has been found to be dynamically unstable. A new Fddd structure has been reported as a good candidate of δ-phase instead. Its enthalpy from 0 to 12 GPa is much lower than P4(2)nm structure and the simulated X-ray diffraction spectrum is in satisfied agreement with previous experiments. In addition, the previously proposed P-3m1 structure, which is denser than Fddd, is found to be a candidate of ε-phase due to the agreement of Raman shifts.

  7. First-principles prediction of stable SiC cage structures and their synthesis pathways

    NASA Astrophysics Data System (ADS)

    Pochet, Pascal; Genovese, Luigi; Caliste, Damien; Rousseau, Ian; Goedecker, Stefan; Deutsch, Thierry

    2010-07-01

    In this paper we use density functional theory calculations to investigate the structure and the stability of different SiC cagelike clusters. In addition to the fullerene family and the mixed four and six membered ring family, we introduce a family based on reconstructed nanotube slices. We propose an alternative synthesis pathway starting from SiC nanotubes.

  8. Structure determination of ultra dense magnesium borohydride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Duan, Defang; Jin, Xilian; Bao, Kuo; Liu, Bingbing; Cui, Tian

    2013-06-01

    Magnesium borohydride (Mg(BH4)2) is one of the potential hydrogen storage materials. Recently, two experiments [Y. Filinchuk, B. Richter, T. R. Jensen, V. Dmitriev, D. Chernyshov, and H. Hagemann, Angew. Chem., Int. Ed. 50, 11162 (2011);, 10.1002/anie.201100675 L. George, V. Drozd, and S. K. Saxena, J. Phys. Chem. C 113, 486 (2009), 10.1021/jp807842t] found that α-Mg(BH4)2 can irreversibly be transformed to an ultra dense δ-Mg(BH4)2 under high pressure. Its volumetric hydrogen content at ambient pressure (147 g/cm3) exceeds twice of DOE's (U.S. Department of Energy) target (70 g/cm3) and that of α-Mg(BH4)2 (117 g/cm3) by 20%. In this study, the experimentally proposed P42nm structure of δ-phase has been found to be dynamically unstable. A new Fddd structure has been reported as a good candidate of δ-phase instead. Its enthalpy from 0 to 12 GPa is much lower than P42nm structure and the simulated X-ray diffraction spectrum is in satisfied agreement with previous experiments. In addition, the previously proposed P-3m1 structure, which is denser than Fddd, is found to be a candidate of ɛ-phase due to the agreement of Raman shifts.

  9. Thermodynamic stability and structures of iron chloride surfaces: A first-principles investigation

    SciTech Connect

    Saraireh, Sherin A.; Altarawneh, Mohammednoor

    2014-08-07

    In this study, we report a comprehensive density functional theory investigation of the structure and thermodynamic stability of FeCl{sub 2} and FeCl{sub 3} surfaces. Calculated lattice constants and heats of formation for bulk FeCl{sub 2} and FeCl{sub 3} were found to be in relatively good agreement with experimental measurements. We provide structural parameters for 15 distinct FeCl{sub 2} and FeCl{sub 3} surfaces along the three low-index orientations. The optimized geometries for all surfaces are compared with analogous bulk values. Ab initio atomistic thermodynamic calculations have been carried out to assess the relative thermodynamic stability of FeCl{sub 2} and FeCl{sub 3} surfaces under practical operating conditions of temperatures and pressures. The FeCl{sub 2} (100-Cl) surface is found to afford the most stable configuration at all experimentally accessible gas phase conditions.

  10. Crystal structure analysis and first principle investigation of F doping in LiFePO4

    NASA Astrophysics Data System (ADS)

    Milović, Miloš; Jugović, Dragana; Cvjetićanin, Nikola; Uskoković, Dragan; Milošević, Aleksandar S.; Popović, Zoran S.; Vukajlović, Filip R.

    2013-11-01

    This work presents the synthesis of F-doped LiFePO4/C composite by the specific modification of the recently suggested synthesis procedure based on an aqueous precipitation of precursor material in molten stearic acid, followed by a high temperature treatment. Besides the lattice parameters and the primitive cell volume reductions, compared to the undoped sample synthesized under the same conditions, the Rietveld refinement also shows that fluorine ions preferably occupy specific oxygen sites. Particularly, the best refinement is accomplished when fluorine ions occupy O(2) sites exclusively. By means of up-to-date electronic structure and total energy calculations this experimental finding is theoretically confirmed. Such fluorine doping also produces closing of the gap in the electronic structure and consequently better conductivity properties of the doped compound. In addition, the morphological and electrochemical performances of the synthesized powder are fully characterized.

  11. Structure and density of basaltic melts at mantle conditions from first-principles simulations

    PubMed Central

    Bajgain, Suraj; Ghosh, Dipta B.; Karki, Bijaya B.

    2015-01-01

    The origin and stability of deep-mantle melts, and the magmatic processes at different times of Earth's history are controlled by the physical properties of constituent silicate liquids. Here we report density functional theory-based simulations of model basalt, hydrous model basalt and near-MORB to assess the effects of iron and water on the melt structure and density, respectively. Our results suggest that as pressure increases, all types of coordination between major cations and anions strongly increase, and the water speciation changes from isolated species to extended forms. These structural changes are responsible for rapid initial melt densification on compression thereby making these basaltic melts possibly buoyantly stable at one or more depths. Our finding that the melt-water system is ideal (nearly zero volume of mixing) and miscible (negative enthalpy of mixing) over most of the mantle conditions strengthens the idea of potential water enrichment of deep-mantle melts and early magma ocean. PMID:26450568

  12. First principles study on structural, lattice dynamical and thermal properties of BaCeO3

    NASA Astrophysics Data System (ADS)

    Zhang, Qingping; Ding, Jinwen; He, Min

    2017-09-01

    BaCeO3 exhibits impressive application potentials on solid oxide fuel cell electrolyte, hydrogen separation membrane and photocatalyst, owing to its unique ionic and electronic properties. In this article, the electronic structures, phonon spectra and thermal properties of BaCeO3 in orthorhombic, rhombohedral and cubic phases are investigated based on density functional theory. Comparisons with reported experimental results are also presented. The calculation shows that orthorhombic structure is both energetically and dynamically stable under ground state, which is supported by the experiment. Moreover, charge transfer between cations and anions accompanied with phase transition is observed, which is responsible for the softened phonon modes in rhombohedral and cubic phases. Besides, thermal properties are discussed. Oxygen atoms contribute most to the specific heat. The calculated entropy and specific heat at constant pressure fit well with the experimental ones within the measured temperature range.

  13. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    SciTech Connect

    Dave, Mudra R.; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  14. First principle calculation of structure and lattice dynamics of Lu2Si2O7

    NASA Astrophysics Data System (ADS)

    Nazipov, D. V.; Nikiforov, A. E.

    2016-12-01

    Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT) with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.

  15. Surface structure and properties of functionalized nanodiamonds: a first-principles study.

    PubMed

    Datta, Aditi; Kirca, Mesut; Fu, Yao; To, Albert C

    2011-02-11

    The goal of this work is to gain fundamental understanding of the surface and internal structure of functionalized detonation nanodiamonds (NDs) using quantum mechanics based density functional theory (DFT) calculations. The unique structure of ND assists in the binding of different functional groups to its surface which in turn facilitates binding with drug molecules. The ability to comprehensively model the surface properties, as well as drug-ND interactions during functionalization, is a challenge and is the problem of our interest. First, the structure of NDs of technologically relevant size (∼5 nm) was optimized using classical mechanics based molecular mechanics simulations. Quantum mechanics based density functional theory (DFT) was then employed to analyse the properties of smaller relevant parts of the optimized cluster further to address the effect of functionalization on the stability of the cluster and reactivity at its surface. It is found that functionalization is preferred over reconstruction at the (100) surface and promotes graphitization in the (111) surface for NDs functionalized with the carbonyl oxygen (C = O) group. It is also seen that the edges of ND are the preferred sites for functionalization with the carboxyl group (-COOH) vis-à-vis the corners of ND.

  16. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study.

    PubMed

    Yao, Yin; Liu, Anping; Bai, Jianhui; Zhang, Xuanmei; Wang, Rui

    2016-12-01

    In this paper, we investigate the structural and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with edge-chemistry modified by H, F, OH, and O, using the ab initio density functional theory method and local spin-density approximation. Three kinds of spin polarized configurations are considered: nonspin polarization (NM), ferromagnetic spin coupling for all electrons (FM), ferromagnetic ordering along each edge, and antiparallel spin orientation between the two edges (AFM). The H, F, and OH groups modified 8-ZSiNRs have the AFM ground state. The directly edge oxidized (O1) ZSiNRs yield the same energy and band structure for NM, FM, and AFM configurations, owning to the same s p (2) hybridization. And replacing the Si atoms on the two edges with O atoms (O2) yields FM ground state. The edge-chemistry-modified ZSiNRs all exhibit metallic band structures. And the modifications introduce special edge state strongly localized at the Si atoms in the edge, except for the O1 form. The modification of the zigzag edges of silicene nanoribbons is a key issue to apply the silicene into the field effect transistors (FETs) and gives more necessity to better understand the experimental findings.

  17. First principles study of the structural, electronic, and transport properties of triarylamine-based nanowires

    SciTech Connect

    Akande, Akinlolu Bhattacharya, Sandip; Cathcart, Thomas; Sanvito, Stefano

    2014-02-21

    We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate the charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.1–12 cm{sup 2}/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.

  18. Electronic Structures of Silicene Nanoribbons: Two-Edge-Chemistry Modification and First-Principles Study

    NASA Astrophysics Data System (ADS)

    Yao, Yin; Liu, Anping; Bai, Jianhui; Zhang, Xuanmei; Wang, Rui

    2016-08-01

    In this paper, we investigate the structural and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with edge-chemistry modified by H, F, OH, and O, using the ab initio density functional theory method and local spin-density approximation. Three kinds of spin polarized configurations are considered: nonspin polarization (NM), ferromagnetic spin coupling for all electrons (FM), ferromagnetic ordering along each edge, and antiparallel spin orientation between the two edges (AFM). The H, F, and OH groups modified 8-ZSiNRs have the AFM ground state. The directly edge oxidized (O1) ZSiNRs yield the same energy and band structure for NM, FM, and AFM configurations, owning to the same s p 2 hybridization. And replacing the Si atoms on the two edges with O atoms (O2) yields FM ground state. The edge-chemistry-modified ZSiNRs all exhibit metallic band structures. And the modifications introduce special edge state strongly localized at the Si atoms in the edge, except for the O1 form. The modification of the zigzag edges of silicene nanoribbons is a key issue to apply the silicene into the field effect transistors (FETs) and gives more necessity to better understand the experimental findings.

  19. Structure and physical properties of Antimony Asenide: a first principle study

    NASA Astrophysics Data System (ADS)

    Do, Dat; Mahanti, S. D.

    2013-03-01

    The group V elements, Sb, As and Bi have attracted renewed attention especially after the discovery of the strong topological insulator Bi1-xSbx. While the mixing of group V elements are thought to be random, recently, Shoemaker et al., arXiv:1210.1986 [cond-mat.mtrl-sci], using single-crystal and high-resolution synchrotron x-ray diffraction, and neutron and x-ray pair distribution function analysis, show that SbAs has chemical ordering. Here we present a detailed theoretical study of the structure and physical properties of SbAs. Our cluster expansion calculation predicts the existence of the chemical ordering, in agreement with experiment. The electronic structure calculations reveal that SbAs is a semimetal with a pseudo gap. We also discuss the similarities and differences of SbAs with its two end-members Sb and As and the Sb-Bi system (bulk), and compare the surface electronic structures of all these systems. This work is partially supported by Center for Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences - DE-SC0001054

  20. First-principles study of the structure of water layers on flat and stepped Pb electrodes

    PubMed Central

    Lin, Xiaohang; Evers, Ferdinand

    2016-01-01

    Summary On the basis of perodic density functional theory (DFT) calculations, we have addressed the geometric structures and electronic properties of water layers on flat and stepped Pb surfaces. In contrast to late d-band metals, on Pb(111) the energy minimum structure does not correspond to an ice-like hexagonal arrangement at a coverage of 2/3, but rather to a distorted structure at a coverage of 1 due to the larger lattice constant of Pb. At stepped Pb surfaces, the water layers are pinned at the step edge and form a complex network consisting of rectangles, pentagons and hexagons. The thermal stability of the water layers has been studied by using ab initio molecular dynamics simulations (AIMD) at a temperature of 140 K. Whereas the water layer on Pb(111) is already unstable at this temperature, the water layers on Pb(100), Pb(311), Pb(511) and Pb(711) exhibit a higher stability because of stronger water–water interactions. The vibrational spectra of the water layers at the stepped surfaces show a characteristic splitting into three modes in the O–H stretch region. PMID:27335744

  1. A first principles study of the electronic structure, elastic and thermal properties of UB2

    NASA Astrophysics Data System (ADS)

    Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.

    2017-07-01

    Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.

  2. First-principles study of crystal and electronic structure of rare-earth cobaltites

    SciTech Connect

    Topsakal, M.; Leighton, C.; Wentzcovitch, R. M.

    2016-06-28

    Using density functional theory plus self-consistent Hubbard U (DFT + U{sub sc}) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO{sub 3} (R = Pr – Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO{sub 3} with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (d{sub Co–O}), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (Δ{sub CF}) and band gap energy (E{sub g}). Agreement with experiment for the latter improves considerably with the use of DFT + U{sub sc} and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO{sub 3} where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.

  3. Surface structure and hole localization in bismuth vanadate: A first principles study

    NASA Astrophysics Data System (ADS)

    Kweon, Kyoung E.; Hwang, Gyeong S.

    2013-09-01

    The monoclinic and tetragonal phases of bismuth vanadate (BiVO4) have been found to exhibit significantly different photocatalytic activities for water splitting. To assess a possible surface effect on the phase-dependent behavior, we calculate and compare the geometries and electronic structures of the monoclinic and tetragonal BiVO4 (001) surfaces using hybrid density functional theory. The relaxed atomic configurations of these two surfaces are found to be nearly identical, while an excess hole shows a relatively stronger tendency to localize at the surface than the bulk in both phases. Possible factors for the phase-dependent photocatalytic activity of BiVO4 are discussed.

  4. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    PubMed Central

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F.; Zhang, Yanwen; Weber, William J.

    2015-01-01

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties. PMID:26555848

  5. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7

    DOE PAGES

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; ...

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallizationmore » during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. Lastly, in view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less

  6. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd2Ti2O7.

    PubMed

    Aidhy, Dilpuneet S; Sachan, Ritesh; Zarkadoula, Eva; Pakarinen, Olli; Chisholm, Matthew F; Zhang, Yanwen; Weber, William J

    2015-11-10

    The structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd2Ti2O7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region is predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. In view of these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.

  7. First-principles study of structural, electronic and optical properties of ZnF2

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Bang; Cheng, Xin-Lu; Zhang, Hong; Xiong, Zheng-Wei

    2014-07-01

    The structural, electronic, and optical properties of rutile—, CaCl2-, and PdF2—ZnF2 are calculated by the plane-wave pseudopotential method within the density functional theory. The calculated equilibrium lattice constants are in reasonable agreement with the available experimental and other calculated results. The band structures show that the rutile—, CaCl2-, and PdF2—ZnF2 are all direct band insulator. The band gaps are 3.63, 3.62, and 3.36 eV, respectively. The contribution of the different bands was analyzed by the density of states. The Mulliken population analysis is performed. A mixture of covalent and weak ionic chemical bonding exists in ZnF2. Furthermore, in order to understand the optical properties of ZnF2, the dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, and optical reflectivity are also performed in the energy range from 0 to 30 eV. It is found that the main absorption parts locate in the UV region for ZnF2. This is the first quantitative theoretical prediction of the electronic and optical properties of ZnF2 compound, and it still awaits experimental confirmation.

  8. First principles study of the structural, electronic and optical properties of crystalline o-phenanthroline

    NASA Astrophysics Data System (ADS)

    Nejatipour, Hajar; Dadsetani, Mehrdad

    2016-05-01

    In a comprehensive study, structural properties, electronic structure and optical response of crystalline o-phenanthroline were investigated. Our results show that in generalized gradient approximation (GGA) approximation, o-phenanthroline is a direct bandgap semiconductor of 2.60 eV. In the framework of many-body approach, by solving the Bethe-Salpeter equation (BSE), dielectric properties of crystalline o-phenanthroline were studied and compared with phenanthrene. Highly anisotropic components of the imaginary part of the macroscopic dielectric function in o-phenanthroline show four main excitonic features in the bandgap region. In comparison to phenanthrene, these excitons occur at lower energies. Due to smaller bond lengths originated from the polarity nature of bonds in presence of nitrogen atoms, denser packing, and therefore, a weaker screening effect, exciton binding energies in o-phenanthroline were found to be larger than those in phenanthrene. Our results showed that in comparison to the independent-particle picture, excitonic effects highly redistribute the oscillator strength.

  9. First-principles studies of electric field effects on the electronic structure of trilayer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Li, Xiang-Guo; Fry, James N.; Cheng, Hai-Ping

    2016-10-01

    A gate electric field is a powerful way to manipulate the physical properties of nanojunctions made of two-dimensional crystals. To simulate field effects on the electronic structure of trilayer graphene, we used density functional theory in combination with the effective screening medium method, which enables us to understand the field-dependent layer-layer interactions and the fundamental physics underlying band gap variations and the resulting band modifications. Two different graphene stacking orders, Bernal (or ABC) and rhombohedral (or ABA), were considered. In addition to confirming the experimentally observed band gap opening in ABC-stacked and the band overlap in ABA-stacked trilayer systems, our results reveal rich physics in these fascinating systems, where layer-layer couplings are present but some characteristics features of single-layer graphene are partially preserved. For ABC stacking, the electric-field-induced band gap size can be tuned by charge doping, while for ABA band the tunable quantity is the band overlap. Our calculations show that the electronic structures of the two stacking orders respond very differently to charge doping. We find that in the ABA stacking hole doping can reopen a band gap in the band-overlapping region, a phenomenon distinctly different from electron doping. The physical origins of the observed behaviors were fully analyzed, and we conclude that the dual-gate configuration greatly enhances the tunability of the trilayer systems.

  10. Changes of structure and dipole moment of water with temperature and pressure: a first principles study.

    PubMed

    Kang, Dongdong; Dai, Jiayu; Yuan, Jianmin

    2011-07-14

    The changes of structure and distribution of dipole moment of water with temperatures up to 2800 K and densities up to 2.2 g/cm(3) are investigated using ab initio molecular dynamics. Along the isochore of 1.0 g/cm(3), the structure of liquid water above 800 K is dramatically different from that at ambient conditions, where the hydrogen-bonds network collapses. Along the isotherm of 1800 K, the transition from the liquid state to an amorphous superionic phase occurs at 2.0 g/cm(3) (32.9 GPa), which is not observed along the isotherm of 2800 K. With increasing temperature, the average dipole moment of water molecules is decreased arising from the weakened polarization by the collapse of the hydrogen-bonds network, while it is contrarily increased with compression due to the strengthening effect upon the polarization of water molecules. Both higher temperature and pressure broaden the distribution of dipole moment of water molecules due to the enhanced intramolecular charge fluctuations.

  11. Band Structure and Optical Properties of Kesterite Type Compounds: first principle calculations

    NASA Astrophysics Data System (ADS)

    Palaz, S.; Unver, H.; Ugur, G.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In present work, our research is mainly focused on the electronic structures, optical and magnetic properties of Cu2FeSnZ4 (Z = S, Se) compounds by using ab initio calculations within the generalized gradient approximation (GGA). The calculations are performed by using the Vienna ab-initio simulation package (VASP) based on the density functional theory. The band structure of the Cu2FeSnZ4 ( Z = S, Se) compounds for majority spin (spin-up) and minority spin (spin-down) were calculated. It is seen that for these compounds, the majority spin states cross the Fermi level and thus have the metallic character, while the minority spin states open the band gaps around the Fermi level and thus have the narrow-band semiconducting nature. For better understanding of the electronic states, the total and partial density of states were calculated, too. The real and imaginary parts of dielectric functions and hence the optical functions such as energy-loss function, the effective number of valance electrons and the effective optical dielectric constant for Cu2FeSnZ4 (Z = S, Se) compounds were also calculated.

  12. Structural and configurational properties of nanoconfined monolayer ice from first principles

    PubMed Central

    Corsetti, Fabiano; Matthews, Paul; Artacho, Emilio

    2016-01-01

    Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. Here we investigate the properties of ice confined to a quasi-2D monolayer by a featureless, chemically neutral potential, in order to characterize its intrinsic behaviour. We use density-functional theory simulations with a non-local van der Waals density functional. An ab initio random structure search reveals all the energetically competitive monolayer configurations to belong to only two of the previously-identified families, characterized by a square or honeycomb hydrogen-bonding network, respectively. We discuss the modified ice rules needed for each network, and propose a simple point dipole 2D lattice model that successfully explains the energetics of the square configurations. All identified stable phases for both networks are found to be non-polar (but with a topologically non-trivial texture for the square) and, hence, non-ferroelectric, in contrast to previous predictions from a five-site empirical force-field model. Our results are in good agreement with very recently reported experimental observations. PMID:26728125

  13. Electronic structures of Tl-based materials for γ-ray detectors; First-principles study

    NASA Astrophysics Data System (ADS)

    Song, Jung-Hwan; Jin, Hosub; Freeman, Arthur J.; Johnsen, Simon; Androulakis, John; Sebastian, Peter; Liu, Zhifu; Peter, John A.; Cho, Nam-Ki; Wessels, Bruce; Kanatzidis, Mercouri G.

    2011-03-01

    For Tl-based semiconductors, investigated to find good candidate materials for γ -ray detectors, we performed ab-initio calculations using the full-potential linearized augmented plane wave (FLAPW) method to find their electronic structures and to estimate their physical properties such as band gaps, effective masses, absorption coefficients, dielectric constants, and work functions. Within the LDA scheme, the underestimation of the band gap is well-known and causes serious problems in obtaining optical properties. Therefore, we adopted the screened-exchange LDA (sX-LDA) scheme and acquired correct gap values close to experimental ones. With the sX-LDA, we found that Tl 6 I4 S and Tl 6 I4 Se have direct band gaps of 2.36 and 1.88 eV, respectively, and they exhibit dispersive bands near the band edges. Based on the calculated and experimental results, we discuss the relationship between atom species/crystal structure and electronic characteristics, and suggest several materials for γ -ray detectors. Supported by NSF (Grant No. ARI-MA CMMI-0938810).

  14. First-principles prediction of low-energy structures for AlH3

    NASA Astrophysics Data System (ADS)

    Sun, Shoutian; Ke, Xuezhi; Chen, Changfeng; Tanaka, Isao

    2009-01-01

    We report density-functional calculations that predict ten different low-energy structures for aluminum hydride AlH3 with space groups Pnma , P6/mmm , I4/mcm , P4/mbm , P4/nmm , Pm3¯m , P21/m , P21/c , Pbcm , and P4/n . Phonon calculations within harmonic approximation reveal unstable modes in the P6/mmm , I4/mcm , P4/mbm , P4/nmm , Pm3¯m , P21/m , and P21/c structures, indicating that they are unstable at low temperatures. The calculations show that the thermodynamic stabilities for AlH3 with space groups Pnma , Pbcm , and P4/n are overall close to the existing α - and γ-AlH3 . From x-ray powder-diffraction patterns, the simulated main-peak positions for AlH3 (P4/n) are in good agreement with experimental δ-AlH3 . A full Rietveld analysis reveals that the fitting space groups R3¯c , Pbcm , and Pnma to the experimental x-ray powder-diffraction pattern of α-AlH3 gives almost the same satisfactory result.

  15. Structural and configurational properties of nanoconfined monolayer ice from first principles

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Matthews, Paul; Artacho, Emilio

    2016-01-01

    Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. Here we investigate the properties of ice confined to a quasi-2D monolayer by a featureless, chemically neutral potential, in order to characterize its intrinsic behaviour. We use density-functional theory simulations with a non-local van der Waals density functional. An ab initio random structure search reveals all the energetically competitive monolayer configurations to belong to only two of the previously-identified families, characterized by a square or honeycomb hydrogen-bonding network, respectively. We discuss the modified ice rules needed for each network, and propose a simple point dipole 2D lattice model that successfully explains the energetics of the square configurations. All identified stable phases for both networks are found to be non-polar (but with a topologically non-trivial texture for the square) and, hence, non-ferroelectric, in contrast to previous predictions from a five-site empirical force-field model. Our results are in good agreement with very recently reported experimental observations.

  16. First-principles investigations of electronic structures of pristine and doped anatase titanium dioxide

    NASA Astrophysics Data System (ADS)

    Wang, Yushan

    2007-12-01

    The formation and development of quantum theory in the first half of the 20th century has led to a revolution in our understanding of pure and applied physics. Quantum theory has nowadays demonstrated a surprisingly accurate and predictive power in modern science and engineering. In this study, an important branch of quantum theory, density functional theory (DFT), is applied to studies of TiO2 and doped TiO2, which have shown considerable applications in industry. The first chapter is an introduction to the theoretical background of DFT, in which a large quantity of efforts are focused on the analysis of exchange-correlation energy and how to approximate it by using local density approximation (LDA), generalized gradient approximation (GGA), and LDA+U, where the U is the Hubbard coefficient. This is followed in the second chapter by a discussion of practical implementations of the DFT-based calculations. We primarily introduce linearized augmented plane wave (LAPW) and augmented plane wave plus local orbital (APW+LO) methods, both of which are applied in our calculations. In chapter 3, we briefly introduce some fundamental properties of TiO2 and its applications in industry. Chapters 4 through 8 are divided into two categories. Chapters 4 through 6 are mainly concerned with insights into the mechanism of optical excitation in anatase TiO2. Chapters 7 and 8 are concerned with TiO2-based dilute magnetic semiconductors (DMS). Chapter 4 presents detailed calculations on pristine TiO2, including the structural optimization, density of states (DOS), band structure, and optical properties. Our calculations involve both bulk and slab TiO 2, presenting reasonable results without considering inherent drawbacks of the calculation methods involved. Calculations on slab TiO2 provide insight to account for the particular property of TiO2 in nanoscale particles where a significant fraction of atoms are on the surface. In chapter 5, we investigate effects of the non-metal dopants

  17. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    SciTech Connect

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-05-28

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  18. Effect of tensile strain on the electronic structure of Ge: A first-principles calculation

    SciTech Connect

    Liu, Li; Zhang, Miao; Di, Zengfeng E-mail: shijin.zhao@shu.edu.cn; Hu, Lijuan; Zhao, Shi-Jin E-mail: shijin.zhao@shu.edu.cn

    2014-09-21

    Taking the change of L-point conduction band valley degeneracy under strain into consideration, we investigate the effect of biaxially tensile strain (parallel to the (001), (110), and (111) planes) and uniaxially tensile strain (along the [001], [110], and [111] directions) on the electronic structure of Ge using density functional theory calculations. Our calculation shows that biaxial tension parallel to (001) is the most efficient way to transform Ge into a direct bandgap material among all tensile strains considered. [111]-tension is the best choice among all uniaxial approaches for an indirect- to direct-bandgap transition of Ge. The calculation results, which are further elaborated by bond-orbital approximation, provide a useful guidance on the optical applications of Ge through strain engineering.

  19. Structure and Formation of Synthetic Hemozoin: Insights from First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Marom, Noa; Tkatchenko, Alexandre; Kapishnikov, Sergey; Kronik, Leeor; Leiserowitz, Leslie

    2011-03-01

    Malaria has reemerged due to parasite resistance to synthetic drugs that act by inhibiting crystallization of the malaria pigment, hemozoin (HZ). Understanding the process of HZ nucleation is therefore vital. The crystal structure of synthetic HZ, β -hematin (β H), has recently been determined via x-ray diffraction. We employ van der Waals (vdW) corrected density functional theory to study the β H crystal and its repeat unit, a heme dimer. We find that vdW interactions play a major role in the binding of the heme dimer and the β H crystal. Accounting for the β H periodicity is a must for obtaining the correct geometry of the heme dimer, due to vdW interactions with adjacent dimers. The different isomers of the heme dimer are close in energy, consistent with the observed pseudo-polymorphism. We use these findings to comment on β H crystallization mechanisms.

  20. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.

    PubMed

    Olovsson, W; Tanaka, I; Puschnig, P; Ambrosch-Draxl, C

    2009-03-11

    We obtain x-ray absorption near-edge structures (XANES) by solving the equation of motion for the two-particle Green's function for the electron-hole pair, the Bethe-Salpeter equation (BSE), within the all-electron full-potential linearized augmented plane wave method (FPLAPW). The excited states are calculated for the Li K-edge in the insulating solids LiF, Li(2)O and Li(2)S, and absorption spectra are compared with independent particle results using the random phase approximation (RPA), as well as supercell calculations using the core-hole approximation within density functional theory (DFT). The binding energies of strongly bound excitations are determined in the materials, and core-exciton wavefunctions are demonstrated for LiF.

  1. Surface structure and hole localization in bismuth vanadate: A first principles study

    SciTech Connect

    Kweon, Kyoung E.; Hwang, Gyeong S.

    2013-09-23

    The monoclinic and tetragonal phases of bismuth vanadate (BiVO{sub 4}) have been found to exhibit significantly different photocatalytic activities for water splitting. To assess a possible surface effect on the phase-dependent behavior, we calculate and compare the geometries and electronic structures of the monoclinic and tetragonal BiVO{sub 4} (001) surfaces using hybrid density functional theory. The relaxed atomic configurations of these two surfaces are found to be nearly identical, while an excess hole shows a relatively stronger tendency to localize at the surface than the bulk in both phases. Possible factors for the phase-dependent photocatalytic activity of BiVO{sub 4} are discussed.

  2. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-05-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  3. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  4. First-principles investigations on the electronic structures of U3Si2

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Qiu, Nianxiang; Wen, Xiaodong; Tian, Yonghui; He, Jian; Luo, Kan; Zha, Xianhu; Zhou, Yuhong; Huang, Qing; Lang, Jiajian; Du, Shiyu

    2016-02-01

    U3Si2 has been widely utilized as a high-power uranium fuel for research reactors due to its high density of uranium. However, theoretical investigations on this material are still scarce up to now. For this reason, the computational study via density functional theory (DFT) is performed on the U3Si2 compound in this work. The properties of U3Si2, such as stable crystalline structures, density of states, charge distributions, formation energy of defects, as well as the mechanical properties are explored. The calculation results show that the U3Si2 material is metallic and brittle, which is in good agreement with the previous experimental observations. The formation energy of uranium vacancy defect is predicted to be the lowest, similar with that of UN. The theoretical investigation of this work is expected to provide new insight of uranium silicide fuels.

  5. Silver-filled single-walled carbon nanotubes: Atomic and electronic structures from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Zhao, Mingwen; Xia, Yueyuan; He, Tao; Song, Chen; Lin, Xiaohang; Liu, Xiangdong; Mei, Liangmo

    2006-11-01

    We have studied the atomic and electronic structures of silver-filled (n,0) single-walled carbon nanotubes (Ag@SWCNTs) for n=6 , 7, 8, and 10 by using first-principles calculations. We find that silver atoms encapsulated in SWCNTs self-aggregate to form ultrathin nanowires, of which the atomic arrangement depends on the diameter of the SWCNTs as well as the silver content. The electronic structures of the Ag@SWCNTs can be tuned from semiconducting to metallic by controlling the silver content. The hybridization of electronic states and the charge transfer between the encapsulated silver nanowires (AgNWs) and the SWCNTs are also addressed by performing Milliken population analysis combined with the projected density of states.

  6. On the influence of tetrahedral covalent-hybridization on electronic band structure of topological insulators from first principles

    SciTech Connect

    Zhang, X. M.; Xu, G. Z.; Liu, E. K.; Wang, W. H. Wu, G. H.; Liu, Z. Y.

    2015-01-28

    Based on first-principles calculations, we investigate the influence of tetrahedral covalent-hybridization between main-group and transition-metal atoms on the topological band structures of binary HgTe and ternary half-Heusler compounds, respectively. Results show that, for the binary HgTe, when its zinc-blend structure is artificially changed to rock-salt one, the tetrahedral covalent-hybridization will be removed and correspondingly the topologically insulating band character lost. While for the ternary half-Heusler system, the strength of covalent-hybridization can be tuned by varying both chemical compositions and atomic arrangements, and the competition between tetrahedral and octahedral covalent-hybridization has been discussed in details. As a result, we found that a proper strength of tetrahedral covalent-hybridization is probably in favor to realizing the topologically insulating state with band inversion occurring at the Γ point of the Brillouin zone.

  7. Electronic structure and thermoelectric properties of (PbSe)m/(SnSe)n superlattice: A first principles study

    NASA Astrophysics Data System (ADS)

    Do, Duc Cuong; Rhim, S. H.; Hong, Soon Cheol

    2015-03-01

    Figure of merit (ZT) of thermoelectric materials can be enhanced by lowering thermal conductivity or/and increasing electrical conductivity. The extremely high ZT of layered structure SnSe opened up a new direction in study of thermoelectricity due to its low thermal conductivity, which, however, is limited to high temperature. Here, we performed first principles density functional calculations to explore room-temperature thermoelectricity. We consider (PbSe)m/(SnSe)n superlattices with different period, whose quantum well structure is expected to increase electrical conductivity by modulation of charge doping at interface. Calculations of Seebeck coefficients for the superlattices are presented. Supported by the Ministry of Trade, Industry & Energy, Korea (20132020000110) and Priority Research Centers Program (2009-0093818) through National Research Foundation of Korea.

  8. Structural, electronic, and elastic properties of CuFeS2: first-principles study

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Gao, Xiang; Cheng, Yan; Chen, Xiangrong; Cai, Lingcang

    2015-03-01

    The structural, electronic, and elastic properties of CuFeS2 have been investigated by using the generalized gradient approximation (GGA), GGA + U (on-site Coulomb repulsion energy), the local density approximation (LDA), and the LDA + U approach in the frame of density functional theory. It is shown that when the GGA + U formalism is selected with a U value of 3 eV for the 3d state of Fe, the calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA + U calculations indicate that CuFeS2 is a semiconductor with a band gap of 0.552 eV and with a magnetic moment of 3.64 µB per Fe atom, which are well consistent with the experimental results. Combined with the density of states, the band structure characteristics of CuFeS2 have been analyzed and their origins have been specified, which reveals a hybridization existing between Fe-3d, Cu-3s, and S-3p, respectively. The charge and Mulliken population analyses indicate that CuFeS2 is a covalent crystal. Moreover, the calculated elastic constants prove that CuFeS2 is mechanically stable but anisotropic. The bulk modulus obtained from elastic constants is 87.1 GPa, which agrees well with the experimental value of 91 ± 15 GPa and better than the theoretical bulk modulus 74 GPa obtained from GGA method by Lazewski et al. The obtained shear modulus and Debye temperature are 21.0 GPa and 287 K, respectively, and the latter accords well with the available experimental value. It is expected that our work can provide useful information to further investigate CuFeS2 from both the experimental and theoretical sides.

  9. Analysis of structural and electronic properties of Pr2NiO4 through first-principles calculations.

    PubMed

    Aspera, S M; Sakaue, M; Wungu, T D K; Alaydrus, M; Linh, T P T; Kasai, H; Nakanishi, M; Ishihara, T

    2012-10-10

    The structural and electronic properties of bulk Pr(2)NiO(4+δ) (δ = 0 and 0.031) were analyzed using first-principles calculations based on the density functional theory (DFT) for application to electrode materials in solid-oxide fuel cells (SOFCs). Two structures of Pr(2)NiO(4) were analyzed: one in space group I4/mmm associated with the high temperature tetragonal (HTT) structure, and the other in Bmab with the low temperature orthorhombic (LTO) structure. The main difference between the two structures is the pronounced tilting of the nickelate octahedra found in the Bmab structure. Here, we will show that the difference in the electronic properties between the two structures, i.e. half-metallic for the I4/mmm structure and metallic for the Bmab structure, is attributed to the tilting of the nickelate octahedra. Furthermore, we found that the presence of interstitial O atoms at the Pr(2)O(2) bilayers is responsible for the tilting of the octahedra and thus is a dominant factor in the transition from the I4/mmm structure to the Bmab structure. These results would be of great significance to materials design related to the enhancement of O diffusivity in this material.

  10. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations

    PubMed Central

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-01-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future. PMID:27373712

  11. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    PubMed

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  12. Structural and electronic properties of photoexcited TiO2 nanoparticles from first principles.

    PubMed

    Nunzi, Francesca; Agrawal, Saurabh; Selloni, Annabella; De Angelis, Filippo

    2015-02-10

    The structure and energetics of excitons and individual electron and hole polarons in a model anatase TiO2 nanoparticle (NP) are investigated by means of Density Functional Theory (DFT) and Time Dependent (TD)-DFT calculations. The effect of the Hartree-Fock exchange (HF-exc) contribution in the description of TiO2 NPs with unpaired electrons is examined by comparing the results from semilocal and hybrid DFT functionals with different HF-exc percentages, including a long-range corrected hybrid functional. The performances of TD-DFT and ground state (SCF) DFT approaches in the description of the photoexcited polaron states in TiO2 NPs are also analyzed. Our results confirm that the HF-exc contribution is essential to properly describe the self-trapping of the charge carriers. They also suggest that long-range corrected functionals are needed to properly describe excited state relaxation in TiO2 NPs. TD-DFT geometry optimization of the lowest excited singlet and triplet states deliver photoluminescence values in close agreement with the experimental data.

  13. Unexpected electronic structure of the alloyed and doped arsenene sheets: First-Principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Yang; Huang, Yang; Chen, Qing-Yuan; Cao, Chao; He, Yao

    2016-07-01

    We study the equilibrium geometry and electronic structure of alloyed and doped arsenene sheets based on the density functional theory calculations. AsN, AsP and SbAs alloys possess indirect band gap and BiAs is direct band gap. Although AsP, SbAs and BiAs alloyed arsenene sheets maintain the semiconducting character of pure arsenene, they have indirect-direct and semiconducting-metallic transitions by applying biaxial strain. We find that B- and N-doped arsenene render p-type semiconducting character, while C- and O-doped arsenene are metallic character. Especially, the C-doped arsenene is spin-polarization asymmetric and can be tuned into the bipolar spin-gapless semiconductor by the external electric field. Moreover, the doping concentration can effectively affect the magnetism of the C-doped system. Finally, we briefly study the chemical molecule adsorbed arsenene. Our results may be valuable for alloyed and doped arsenene sheets applications in mechanical sensors and spintronic devices in the future.

  14. Energetics and electronic structure of phenyl-disubstituted polyacetylene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Sony, Priya; Shukla, Alok; Ambrosch-Draxl, Claudia

    2010-07-01

    Phenyl-disubstituted polyacetylene (PDPA) is an organic semiconductor which has been studied during recent years for its efficient photoluminescence. In contrast, the molecular geometry, providing the basis for the electronic and optical properties has been hardly investigated. In this paper, we apply a density-functional-theory based molecular-dynamics approach to reveal the molecular structure of PDPA in detail. We find that oligomers of this material are limited in length, being stable only up to eight repeat units, while the polymer is energetically unfavorable. These facts, which are in excellent agreement with experimental findings, are explained through a detailed analysis of the bond lengths. A consequence of the latter is the appearance of pronounced torsion angles of the phenyl rings with respect to the plane of the polyene backbone, ranging from 55° up to 95° . We point out that such large torsion angles do not destroy the conjugation of the π electrons from the backbone to the side phenyl rings, as is evident from the electronic charge density.

  15. Electronic structure and optical properties of doped gallium phosphide: A first-principles simulation

    NASA Astrophysics Data System (ADS)

    Lu, Xuefeng; Gao, Xu; Li, Cuixia; Ren, Junqiang; Guo, Xin; La, Peiqing

    2017-09-01

    Using DFT-GGA-PW91 calculations we investigate the electronic structures and optical properties of doped GaP. It is found that the lattice constants and volume increase slightly for Al, In, As and Sb doped systems and EG distinctly decrease after doping. The formation energies are 0.587 and 0.273 eV for As and Sb doped systems, respectively, and lower remarkably than those in other systems, indicating that the stability of the two systems is higher. The direct band gap transition occurs when doped with In, As and Sb elements. The charge density difference images reveal that electron loss near Al atom is observed accompanying the enhancement of covalent bond feature, and then electron enrichment is present around N atom demonstrating that the ionic bond characteristic is obvious. The Sb-doped system has the higher static dielectric constant illustrating the applications in semiconductor devices. The absorption peak value is located at 194.7 nm for Al-doped system and this shows that the system can absorb a large amount of light and displays ;Barrier-type; characteristics in UV region. In the visible region, the doped systems have lower reflectivity coefficient, indicating that the systems all have ;clear-type; properties. This is conducive to fundamentally insights to a tunable band gap semiconductor with enormous potential in device fields.

  16. Electronic structures and superconductivity of endohedrally doped C28 solids from first principles

    NASA Astrophysics Data System (ADS)

    Romero, Nichols A.; Kim, Jeongnim; Martin, Richard M.

    2007-11-01

    We present ab initio calculations of the crystalline phases of C28 : hyperdiamond and hyperlonsdaleite, in their pristine and endohedrally doped forms. These are hard materials with strong covalent bonds between the C28 molecules, and yet their electronic properties have remarkable similarities to the weakly bonded C28H4 molecular solids previously investigated [Phys. Rev. B 70, 140504(R) (2004)]. Our calculations show that they exhibit very narrow bands near the Fermi energy with an electron-phonon coupling that is well described by a molecular model and is larger than in C60 . Our study focuses on C28 solids endohedrally doped with Zr, a group-IVB tetravalent atom. Solid Zr@C28 is a small-gap insulator with Jahn-Teller distortions. Since the two structures considered are degenerate in energy, the actual material is expected to have disorder affecting the states at the Fermi energy and leading to a nonvanishing density of states. We conclude that the small density of states at the Fermi energy for Zr@C28 will lead to a superconducting transition temperature Tc lower than that found in K3C60 ; however, our results suggest that a higher Tc may be obtained using group-IIIB trivalent atoms.

  17. Electronic Structure of Organic/Inorganic Interfaces: Insights from First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Segev, Lior

    Electronic devices based on molecules draw a lot of attention in both scientific and industrial activities. Molecules in electronic devices can serve as the heart of the device, featuring versatile physical properties i.e. electronical, optical, magnetic, etc. Molecules can also function as an assist mechanism in which the electronic properties of the underlying material are modified in a predictable fashion according to the molecular monolayer properties. But, the route to applications in both these directions lies in answering fundamental questions related to band offsets between two materials, full electronic structure determination of molecule and substrates, work function modifications, etc. To tackle these questions, we chose to study the interface formed by an alkyl monolayer adsorbed on a Si substrate by utilizing two ab initio methods. First, the density functional theory (DFT) utilizing the local density or the B3LYP approximations for the exchange-correlation potential and, second, the many-body perturbation theory based on the GW approximation. We adapted a "divide and conquer" approach to our system by simulating the infinite counterpart, polyethylene, of our finite alkyl chain to test how the band gap of the two molecules changes when moving from an infinite 1D molecule to a finite length molecule. We find excellent agreement between our GW simulation results for polyethylene and experimental results for the bandstructure, ionization potential and band gap values. From DFT simulations, we analyze the ultra-violet photoelectron spectra (UPS) of odd and even number of carbons alkyl chains and identify the origin of their differences in spectral signature. GW simulations of the full alkyl monolayer/Si(111) system reveal that the projected density of states (DOS) of the upper alkyl chain have an excellent agreement to experimental UPS and inverse-photoemission spectra results. Based on this correspondence, we find the band alignment between the alkyl

  18. Structural and electronic phase transitions of ThS2 from first-principles calculations

    SciTech Connect

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Zhu, Zhiyuan; Chen, Changfeng

    2016-10-07

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS2, which may play an important role in the next generation nuclear energy fuel technology.

  19. Structural and electronic phase transitions of ThS2 from first-principles calculations

    SciTech Connect

    Guo, Yongliang; Wang, Changying; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Zhu, Zhiyuan; Chen, Changfeng

    2016-10-07

    Performed a systematic study using first-principles methods of the pressure-induced structural and electronic phase transitions in ThS2, which may play an important role in the next generation nuclear energy fuel technology.

  20. First principles DFT investigation of yttrium-decorated boron-nitride nanotube: Electronic structure and hydrogen storage

    SciTech Connect

    Jain, Richa Naja; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2015-06-24

    The electronic structure and hydrogen storage capability of Yttrium-doped BNNTs has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site in the center of the hexagonal ring with a binding energy of 0.8048eV. Decorating by Y makes the system half-metallic and magnetic with a magnetic moment of 1.0µ{sub B}. Y decorated Boron-Nitride (8,0) nanotube can adsorb up to five hydrogen molecules whose average binding energy is computed as 0.5044eV. All the hydrogen molecules are adsorbed with an average desorption temperature of 644.708 K. Taking that the Y atoms can be placed only in alternate hexagons, the implied wt% comes out to be 5.31%, a relatively acceptable value for hydrogen storage materials. Thus, this system can serve as potential hydrogen storage medium.

  1. The structural, electronic and phonon behavior of CsPbI{sub 3}: A first principles study

    SciTech Connect

    Bano, Amreen Khare, Preeti; Parey, Vanshree; Shukla, Aarti; Gaur, N. K.

    2016-05-06

    Metal halide perovskites are optoelectronic materials that have attracted enormous attention as solar cells with power conversion efficiencies reaching 20%. The benefit of using hybrid compounds resides in their ability to combine the advantage of these two classes of compounds: the high mobility of inorganic materials and the ease of processing of organic materials. In spite of the growing attention of this new material, very little is known about the electronic and phonon properties of the inorganic part of this compounds. A theoretical study of structural, electronic and phonon properties of metal-halide cubic perovskite, CsPbI{sub 3} is presented, using first-principles calculations with planewave pseudopotential method as personified in PWSCF code. In this approach local density approximation (LDA) is used for exchange-correlation potential.

  2. First-principles study of electronic structure, chemical bonding and elastic properties for new superconductor CaFeAs2

    NASA Astrophysics Data System (ADS)

    Yan, J. G.; Chen, Z. J.; Xu, G. B.; Kuang, Z.; Chen, T. H.; Li, D. H.

    2017-01-01

    Using first-principles calculation we investigated the structural, electronic and elastic properties of paramagnetic CaFeAs2. Our results indicated that the density of states (DOS) was dominated predominantly by Fe-3d states at Fermi levels, and stronger hybridization exists between As1 and As1 atoms. Three hole pockets are formed at Γ and Z points, and two electronic pockets are formed at A and E points. The Dirac cone-like bands appear near B and D points. For the first time we calculated the elastic properties and found that CaFeAs2 is a mechanically stable and moderately hard material, it has elastic anisotropy and brittleness, which agrees well with the bonding picture and the calculation of Debye temperature (ΘD).

  3. Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study.

    PubMed

    Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia

    2010-02-05

    We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.

  4. Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations

    PubMed Central

    Jiang, Hao; Cao, Guanghan; Cao, Chao

    2015-01-01

    The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the , dxy, and orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound. PMID:26525099

  5. Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Cao, Guanghan; Cao, Chao

    2015-11-01

    The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the , dxy, and orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound.

  6. Atomic structures and electronic properties of interfaces between aluminum and carbides/nitrides: A first-principles study

    NASA Astrophysics Data System (ADS)

    Lin, Zijun; Peng, Xianghe; Fu, Tao; Zhao, Yinbo; Feng, Chao; Huang, Cheng; Wang, Zhongchang

    2017-05-01

    We perform a first-principles investigation of the atomic structures and electronic properties of interfaces between aluminum and four kinds of ceramics, TiC, TiN, VC and VN, under three orientations (001), (110) and (111). We find that the stable interfaces are those with bonding between Al atom and metalloid C (or N) atom, which is attributed to the overlap of p states of Al and d states of metalloid atoms at Femi level forming covalent components. Among the interfaces with the three orientations, the (111) interfaces are found to possess the largest adhesion energy in that the stacking of atoms follows intrinsic atomic distribution and this interfacial bonding is relatively strong. It is also found that the interfaces between Al and metal carbides (TiC and VC) are more stable than those between Al and metal nitrides (TiN and VN).

  7. Structural, electronic transport and optical properties of functionalized quasi-2D TiC2 from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Berdiyorov, G. R.; Madjet, M. E.

    2016-12-01

    Using the first-principles density functional theory, we study the effect of surface functionalization on the structural and optoelectronic properties of recently proposed quasi-two-dimensional material TiC2 [T. Zhao, S. Zhang, Y. Guo, Q. Wang, Nanoscale 8 (2016) 233]. Hydrogenated, fluorinated, oxidized and hydroxylated surfaces are considered. Significant changes in the lattice parameters and partial charge distributions are found due to the surface termination. Direct contribution of the adatoms to the system density of states near the Fermi level is obtained, which has a major impact on the optoelectronic properties of the material. For example, surface termination results in larger absorption in the visible range of the spectrum. The electronic transport is also affected by the surface functionalization: the current in the system can be reduced by an order of magnitude. These findings indicate the importance of the effects of surface passivation on optoelectronic properties of this quasi-2D material.

  8. Special quasirandom structure modeling of fluorite-structured oxide solid solutions with aliovalent cation substitutions

    NASA Astrophysics Data System (ADS)

    Wolff-Goodrich, Silas; Hanken, Benjamin E.; Solomon, Jonathan M.; Asta, Mark

    2015-07-01

    The accuracy of the special quasirandom structure (SQS) approach for modeling the structure and energetics of fluorite-structured oxide solid solutions with aliovalent cation substitutions is assessed in an ionic-pair potential study of urania and ceria based systems mixed with trivalent rare-earth ions. Mixing enthalpies for SQS supercells containing 96 and 324 lattice sites were calculated using ionic pair potentials for U0.5La0.5O1.75, U0.5Y0.5O1.75, Ce0.5La0.5O1.75, Ce0.5Y0.5O1.75, and Ce0.5Gd0.5O1.75, which all have stoichiometries of pyrochlores. The SQS results were compared to benchmark values for random substitutional disorder obtained using large supercell models. The calculations show significant improvement of the mixing enthalpy for the larger 324 site SQS, which is attributed to a better description of the structural distortions, as characterized by the radial distribution functions in relaxed systems.

  9. On structural and lattice dynamic stability of LaF{sub 3} under high pressure: A first principle study

    SciTech Connect

    Sahoo, B. D. Joshi, K. D.; Gupta, Satish C.

    2015-06-24

    Structural and lattice dynamical stability of the LaF3 has been analyzed as a function of hydrostatic compression through first principle electronic band structure calculations. The comparison of enthalpies of various plausible structures calculated at various pressures suggests a phase transition from ambient condition tysonite structure (space group P-3c1) to a primitive orthorhombic structure (space group Pmmn) at a pressure of ∼19.5 GPa, in line with the experimental value of 16 GPa. Further, it is predicted that this phase will remain stable up to 100 GPa (the maximum pressure up to which calculations have been performed in the present work). The theoretically determined equation of state displays a good agreement with experimental data. Various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus have been derived from the theoretically determined equation of state and compared with the available experimental data. Our lattice dynamic calculations correctly demonstrate that at zero pressure the tysonite structure is lattice dynamically stable whereas the Pmmn structure is unstable lattice dynamically. Further, at transition pressure the theoretically calculated phonon spectra clearly show that the Pmmn phase emerges as lattice dynamically stable phase whereas the tysonite structure becomes unstable dynamically, supporting our static lattice calculations.

  10. Structural, Elastic, Electronic and Optical Properties of LaOAgS-Type Silver Fluoride Chalcogenides: First-Principles Study

    NASA Astrophysics Data System (ADS)

    Boudiaf, K.; Bouhemadou, A.; Boudrifa, O.; Haddadi, K.; Saoud, F. Saad; Khenata, R.; Al-Douri, Y.; Bin-Omran, S.; Ghebouli, M. A.

    2017-07-01

    First-principles density functional calculations were performed to investigate the structural parameters, elastic moduli and related properties, electronic band structure and optical properties of three LaOAgS-type barium silver fluoride chalcogenides BaAg ChF ( Ch denotes the chalcogenides S, Se and Te). The calculated structural parameters are in good accordance with the existing experimental data. The single-crystal and polycrystal elastic moduli were determined via the strain-stress technique. The investigated compounds show a strong anisotropic behaviour of the structural and elastic parameters. The calculated electronic band structure using the Tran-Blaha modified Becke-Johnson potential reveals that the three considered systems are large direct band gap semiconductors. The assignments of the energy band electronic states and chemical bonding character were accomplished with the help of the l-decomposed atomic densities of states diagrams. Frequency-dependent polarized optical functions were computed for an energy range from 0 eV to 30 eV. The microscopic origin of the electronic states that is responsible for the optical spectra structures were determined. The optical spectra exhibit a considerable anisotropy. Several trends in the variation of the considered physical properties with the atomic number Z of the chalcogenide Ch element in the BaAg ChF series are observed.

  11. A first-principles study of structural and mechanical properties of Ti3AlCxN1-x alloys

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish

    2017-04-01

    The structural stability, electronic structural and mechanical properties of Ti3AlC_{x} N_{1-{x}} ( 0≤ x≤ 1 has been investigated using the first-principles pseudopotential plane-wave method. The results for the formation energy of these compounds indicate that all the structures are stable. The equilibrium lattice constant values of Ti3AlC and Ti3AlN compounds are in good agreement with the experimental and theoretical data. Bonding behaviour of these alloys has been explained based on Cauchy pressure, electronic density of states and charge density. The Ti3AlN and Ti3AlC_{{x}} N_{1-x} alloys show metallic bonding whereas Ti3AlC and Ti3Al display directional bonding, judged from Cauchy pressure values. All the structures satisfy the Born stability criteria in terms of elastic constants. Based on the G/ B ratios, all structures are associated with ductile behaviour except Ti3Al and Ti3AlC which are brittle.

  12. First-principles study of pressure-induced phase transitions and electronic structure of Be3P2 polymorphs

    NASA Astrophysics Data System (ADS)

    Joshi, K. B.; Paliwal, U.

    2012-03-01

    Structural parameters and electronic bandgaps of two polymorphs of Be3P2 were determined using the first-principles periodic linear combination of atomic orbitals method within the framework of density functional theory implemented in the CRYSTAL code. We studied the tetragonal structure and the cubic O2-type polymorph of Be3P2 which is found to exist at high pressure. Coupling total energy calculations with the Murnaghan equation of state, equilibrium lattice constants and bulk moduli for tetragonal and cubic O2-type Be3P2 are reported. Isothermal pressure-induced structural phase transitions from tetragonal → cubic O2-type and cubic α → cubic O2-type are observed to occur at 25.5 GPa and 217.5 GPa, respectively, from enthalpy calculations. The electronic band structure calculations predict that both tetragonal and cubic O2-type polymorphs of Be3P2 have direct bandgaps of 1.45 eV and 1.22 eV, suggesting utility in IR sensors and detectors. Pressure-dependent band structure calculations were performed to obtain pressure coefficient and volume deformation potential.

  13. First-principles study on structure stabilities of α-S and Na-S battery systems

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  14. A first principles study on the structure of ice-VI: static distortion, molecular geometry, and proton ordering.

    PubMed

    Kuo, Jer-Lai; Kuhs, Werner F

    2006-03-02

    We have studied the structure of ice-VI by examining all ice-rule-allowed structures in its primary unit cell of 10 water molecules with first principles methods. A significant amount of static distortions in the oxygen positions away from their crystallographic positions are found, which is in good agreements with significant higher-order terms in the atomic displacement parameters obtained from X-ray and neutron diffraction data. Structural anomalies (such as exceptionally short OH bonds and small H-O-H angles) noted in conventional crystal structure refinements were not seen in our ab initio calculations, and it is evident that these structural anomalies arose from oversimplified models in which static distortions are not properly accounted for. Our results also show that the molecular geometry of water in ice-VI is similar to but richer than those in ice-Ih and ice-VII. Larger distortions in bond lengths/angles and correlation between the molecular geometry and the neighboring environments were found. Different proton-ordering schemes proposed in the literature were examined, and our calculations provide evidence in favor of a ferroelectric phase of the proton-ordered counterpart of ice-VI at about 80 K.

  15. First-principles study of the crystal structures and physical properties of H18-BN and Rh6-BN

    NASA Astrophysics Data System (ADS)

    Ren, Xiao-Yan; Zhao, Chun-Xiang; Niu, Chun-Yao; Wang, Jia-Qi; Jia, Yu; Cho, Jun-Hyung

    2016-12-01

    As the analog of carbon allotropes, new three-dimensional (3D) boron nitride (BN) allotropes have attracted much attention of researchers due to their great importance in fundamental sciences and wide practical applications. Here, based on first-principles density-functional theory calculations, we predict two new stable BN allotropes: One is H18-BN with the P 6 bar m 2 (D3h1) symmetry containing eighteen atoms in the hexagonal unit cell and the other is Rh6-BN with the R 3 bar m (C3v5) symmetry containing six atoms in the rhombohedral primitive unit cell. The dynamic stabilities of the two structures are examined through the phonon spectrum analysis as well as molecular dynamics simulations, whereas the mechanical properties are analyzed by elastic constants, bulk modulus and shear modulus. From the analysis of the enthalpy evolution with respect to pressure, we find that h-BN can be transformed into either H18-BN or RH6-BN structure under a higher pressure of ∼ 15 GPa. We also find that both the H18-BN and Rh6-BN allotropes are brittle materials with indirect band gaps of 2.31 and 4.48 eV, respectively. The simulated XRD spectra provide detailed structural information of H18-BN and Rh6-BN for future experimental examinations. Our findings not only greatly enrich the existing structural family of 3D-BN materials but also stimulate further experiments.

  16. Influences of Stone-Wales defects on the structure, stability and electronic properties of antimonene: A first principle study

    NASA Astrophysics Data System (ADS)

    Hu, Yonghong; Wu, Yunyi; Zhang, Shengli

    2016-12-01

    Defects are inevitably present in materials, and their existence strongly affects the fundamental physical properties of 2D materials. Here, we performed first-principles calculations to study the structural and electronic properties of antimonene with Stone-Wales defects, highlighting the differences in the structure and electronic properties. Our calculations show that the presence of a SW defect in antimonene changes the geometrical symmetry. And the band gap decreases in electronic band structure with the decrease of the SW defect concentration. The formation energy and cohesive energy of a SW defect in antimonene are studied, showing the possibility of its existence and its good stability, respectively. The difference charge density near the SW defect is explored, by which the structural deformations of antimonene are explained. At last, we calculated the STM images for the SW defective antimonene to provide more information and characters for possible experimental observation. These results may provide meaningful references to the development and design of novel nanodevices based on new 2D materials.

  17. Crystal structure of Sr6Y2Al4O15: XRD refinements and first-principle calculations

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Hai; Guo, Dong-Fang; Li, Zhao-Fei; Wang, Xiao-Ming; Lin, Jian-Hua; Zeng, Zheng-Zhi; Jing, Xi-Ping

    2012-08-01

    The ternary oxide phase Sr6Y2Al4O15 (SYA) was synthesized and the crystal structure was determined by using the X-ray powder diffraction data. Structure of the phase can be considered as an oxygen-deficient perovskite Sr(Y1/3Al2/3)O2.5 and has a monoclinic C2 (S.G. No. 5) unit cell with the unit cell parameters: a=17.597(1) Å, b=5.7408(1) Å, c=7.6860(1) Å, β=90.7659(3)°, Vcell=776.37(1) Å3, Z=2. By bond parameter analysis and first-principle calculations, we confirmed the reasonability of our crystal structure model. According to the calculated band structure, SYA has an indirect band gap ˜4.3 eV and a direct band gap ˜4.4 eV, which is wide to be transparent to UV and visible lights. We also synthesized other rare-earth isomorphs Sr6Ln2Al4O15 (Ln=Tb, Dy, Ho, Er, Tm, Yb and Lu) and obtained their cell parameters.

  18. First-Principles Calculation of Electronic Structure and Optical Properties of Sb-Doped ZnO

    NASA Astrophysics Data System (ADS)

    Zhang, Fu-Chun; Zhang, Zhi-Yong; Zhang, Wei-Hu; Yan, Jun-Feng; Yun, Jiang-Ni

    2008-10-01

    The geometric structure, electronic structure, optical properties and the formation energy of Sb-doped ZnO with the wurtzite structure are investigated using the first-principles ultra-soft pseudo-potential approach of plane wave based upon the density functional theory. The calculated results indicate that the volume of ZnO doped with Sb becomes larger, and the doping system yields the lowest formation energy of Sb on the interstitial site and the oxygen site. Furthermore, Sb dopant first occupies the octahedral oxygen sites of the wurtzite structure. It is found that Sb substituting on oxygen site behaves as a deep acceptor and shows the p-type degenerate semiconductor character. After doping, the electron density difference demonstrates the considerable electron charge density redistribution, which induces the effect of Sb-doped ZnO to increase the charge overlap between atoms. The density of states move towards lower energy and the optical band gap is broadened. Our calculated results are in agreement with other experimental results and could make more precise monitoring and controlling possible during the growth of ZnO p-type materials.

  19. First-principles molecular dynamics study of glassy GeS2: Atomic structure and bonding properties

    NASA Astrophysics Data System (ADS)

    Celino, M.; Le Roux, S.; Ori, G.; Coasne, B.; Bouzid, A.; Boero, M.; Massobrio, C.

    2013-11-01

    The structure of glassy GeS2 is studied in the framework of density functional theory, by using a fully self-consistent first-principles molecular dynamics (FPMD) scheme. A comparative analysis is performed with previous molecular dynamics data obtained within the Harris functional (HFMD) total energy approach. The calculated total neutron structure factor exhibits an unprecedented agreement with the experimental counterpart. In particular, the height of the first sharp diffraction peak (FSDP) improves considerably upon the HFMD results. Both the Ge and the S subnetworks are affected by a consistent number of miscoordinations, coexisting with the main tetrahedral structural motif. Glassy GeS2 features a short-range order quite similar to the one found in glassy GeSe2, a notable exception being the larger number of edge-sharing connections. An electronic structure localization analysis, based on the Wannier functions formalism, provides evidence of a more enhanced ionic character in glassy GeS2 when compared to glassy GeSe2.

  20. First Principle Calculations of the Electronic Structure, Phase Transition and Properties of ZrSiO4 Polymorphs

    SciTech Connect

    Du, Jincheng; Devanathan, Ram; Corrales, L Rene; Weber, William J

    2012-01-01

    First principle periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal-mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The atomic charges determined using the Bader method show that bonding in reidite has a stronger covalent character.

  1. First-principles calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs

    SciTech Connect

    Du, Jincheng; Devanathan, Ramaswami; Corrales, Louis R.; Weber, William J.

    2012-05-01

    First-principles periodic density functional theory (DFT) calculations have been performed to understand the electronic structure, chemical bonding, phase transition, and physical properties of the mineral zircon (in the chemical composition of ZrSiO4) and its high pressure phase reidite. Temperature effect on phase transition and thermal–mechanical properties such as heat capacity and bulk modulus have been studied by combining the equation of states obtained from DFT calculations with the quasi-harmonic Debye model to take into account the entropy contribution to free energy. Local density approximation (LDA) and generalized gradient approximation (GGA) DFT functionals have been systematically compared in predicting the structure and property of this material. It is found that the LDA functional provides a better description of the equilibrium structure and bulk modulus, while GGA predicts a transition pressure closer to experimental values. Both functionals correctly predict the relative stability of the two phases, with GGA giving slightly larger energy differences. The calculated band structures show that both zircon and reidite have indirect bandgaps and the reidite phase has a narrower bandgap than the zircon phase. The electronic density of states and atomic charges analyses show that bonding in the high-pressure reidite phase has a stronger covalent character.

  2. Anisotropic electronic band structure of intrinsic Si(110) studied by angle-resolved photoemission spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Matsushita, Stephane Yu; Takayama, Akari; Kawamoto, Erina; Hu, Chunping; Hagiwara, Satoshi; Watanabe, Kazuyuki; Takahashi, Takashi; Suto, Shozo

    2017-09-01

    We have studied the electronic band structure of the hydrogen-terminated Si(110)-(1 ×1 ) [H:Si(110)-(1 ×1 )] surface using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations in the framework of density functional theory with local density approximation (LDA). The bulk-truncated H:Si(110)-(1 ×1 ) surface is a good template to investigate the electronic band structure of the intrinsic Si(110). In the ARPES spectra, seven bulk states and one surface state due to the H-H interaction are observed clearly. The four bulk states consisting of Si 3 px y orbitals exhibit anisotropic band dispersions along the high symmetric direction of Γ ¯-X ¯ and Γ ¯-X¯' directions, where one state shows one-dimensional character. The calculated band structures show a good agreement with the experimental results except the surface state. We discuss the exact nature of electronic band structures and the applicability of LDA. We have estimated the anisotropic effective masses of electrons and holes of Si(110) for device application.

  3. First-principle calculations on the structural stability and electronic properties of superhard BxCy compounds.

    PubMed

    Li, M M; Fan, Xiaofeng; Zheng, W T

    2013-10-23

    With first-principle calculations, we studied the structural stability and electronic properties of the BxCy compounds based on three kinds of phases including diamond-like, C20-like and B15-like phases. The C20-like structure B8C12 is found to be a new stable structure with relatively low formation energy in middle boron concentration and is expected to be synthesized experimentally. Combined with a microscopic model, the Vickers hardness of the different configurations of BxCy compounds is analyzed with the change of boron concentration. It is found that the hardness of the B-C system has a decreasing trend with the increase of boron concentration. In addition, all the structures have metallic properties, except B12C3 and B14C. With the analysis of Mulliken bond population and charge distribution, the bonds with high electron density and short bond length have an important contribution to the hardness in the B-C system, while the effect of metallicity to hardness can be ignored.

  4. First-principles calculations for the structural stabilities of ordered Nb4 clusters on the Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Lin, Qiubao; Li, Renquan; Zhu, Zizhong

    2006-06-01

    First-principles density-functional theory and supercell models are employed to study the structural stabilities and electronic structures of periodically two-dimensional arrays of Nb4 clusters on the Cu(111) surface. The calculations on the relaxed geometries and cohesive energies show that Nb4 clusters with both the tetrahedron and quadrangle configurations can be stably absorbed on the Cu(111) surface, which might have important applications. The absorption energies are 2.00, 1.43eV/Nb atom for quadrangle- and tetrahedron- Nb4 on Cu(111) , respectively, showing that adsorption of quadrangle- Nb4 clusters are more stable than those of tetrahedron- Nb4 . The energy barrier for the tetrahedron- Nb4 adsorption to the quadrangle one is around 1.21eV/cluster . Electronic structure calculations suggest that adsorption of Nb4 on Cu(111) surface causes significant charge redistributions between the surface layer Cu and the Nb4 adsorbate, leading to remarkable changes on the electronic structure of the copper surface.

  5. Structural Polymorphism in "Kesterite" Cu2ZnSnS4: Raman Spectroscopy and First-Principles Calculations Analysis.

    PubMed

    Dimitrievska, Mirjana; Boero, Federica; Litvinchuk, Alexander P; Delsante, Simona; Borzone, Gabriella; Perez-Rodriguez, Alejandro; Izquierdo-Roca, Victor

    2017-03-20

    This work presents a comprehensive analysis of the structural and vibrational properties of the kesterite Cu2ZnSnS4 (CZTS, I4̅ space group) as well as its polymorphs with the space groups P4̅2c and P4̅2m, from both experimental and theoretical point of views. Multiwavelength Raman scattering measurements performed on bulk CZTS polycrystalline samples were utilized to experimentally determine properties of the most intense Raman modes expected in these crystalline structures according to group theory analysis. The experimental results compare well with the vibrational frequencies that have been computed by first-principles calculations based on density functional theory. Vibrational patterns of the most intense fully symmetric modes corresponding to the P4̅2c structure were compared with the corresponding modes in the I4̅ CZTS structure. The results point to the need to look beyond the standard phases (kesterite and stannite) of CZTS while exploring and explaining the electronic and vibrational properties of these materials, as well as the possibility of using Raman spectroscopy as an effective technique for detecting the presence of different crystallographic modifications within the same material.

  6. First-principle calculation of the electronic structure, DOS and effective mass TlInSe2

    NASA Astrophysics Data System (ADS)

    Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.

    2017-05-01

    The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.

  7. The structural, elastic, electronic and dynamical properties of chalcopyrite semiconductor BeGeAs2 from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Çiftci, Yasemin Ö.; Evecen, Meryem; Aldırmaz, Emine

    2017-01-01

    First-principles calculations for the structural, elastic, electronic and vibrational properties of BeGeAs2 with chalcopyrite structure have been reported in the frame work of the density functional theory. The calculated ground state properties are in good agreement with the available data. By considering the electronic band structure and electronic density of states calculation, it is found that this compound is a semiconductor which confirmed the previous work. Single-crystal elastic constants and related properties such as Young's modulus, Poisson ratio, shear modulus and bulk modulus have been predicted using the stress-finite strain technique. It can be seen from the calculated elastic constants that this compound is mechanically stable in the chalcopyrite structure. Pressure dependences of elastic constants and band gap are also reported. Finally, the phonon dispersion curves and total and partial density of states were calculated and discussed. The calculated phonon frequencies BeGeAs2 are positive, indicating the dynamical stability of the studied compound.

  8. Electronic structure and phonon-mediated superconductivity in ScIrP compound: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Cuamba, Armindo S.; Lu, Hong-Yan; Ting, C. S.

    2016-09-01

    In this work, we study the electronic structure, lattice dynamics, and the electron-phonon interaction of the ScIrP compound using a first-principles method. The band structure has a complex three-dimensional structure with a hole pocket centered at the Γ point; the inclusion of spin-orbit coupling (SOC) removes the degeneracies of some bands near the Fermi level. The SOC also has a considerable effect on the phonon property of this material; it decreases the energy of some phonon modes and increases the strength of the dominant peaks of the Eliashberg spectral function. Thus it enhances the electron-phonon coupling constant as well as the superconductivity transition temperature Tc. The averaged logarithmic phonon frequency is estimated to be 161.619 K, and the electron-phonon coupling constant is 0.596. Setting the Coulomb pseudopotential μ*=0.10 , the obtained Tc from McMillan's equation with SOC is ˜3.6 K, in good agreement with the experimentally measured Tc=3.4 K. This result demonstrates that the superconductivity in ScIrP should originate in the phonon-mediated electron-electron interaction with s -wave pairing symmetry.

  9. Structural, electronic and optical properties of Bi2O3 polymorphs by first-principles calculations for photocatalytic water splitting

    NASA Astrophysics Data System (ADS)

    Azhar, N. S.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-03-01

    Crystal structures of α-Bi2O3 and β-Bi2O3 were calculated using Cambridge serial total energy package (CASTEP) based on the first-principles plane-wave ultrasoft pseudopotential method within local density approximation (LDA) and generalized gradient approximation (GGA) together with Perdew–Burke–Ernzerhof (GGA-PBE) and Perdew–Burke–Ernzerhof revised for solid (GGA-PBEsol). The structural parameter of α-Bi2O3 and β-Bi2O3 are in good agreement with previous experimental and theoretical data. All of the polymorphs were calculated for the total density of states (TDOS) and the partial density of states (PDOS) of Bi, O atoms. Density of states exhibits hybridization of Bi 6s and O 2p orbitals and the calculated charge density profiles exhibit the ionic character in the chemical bonding of this compound. The narrowed band gap (E g) and red-shift of light absorption edge are responsible for the photocatalytic activity of Bi2O3 for water splitting application. The optical properties such as optical absorption and electron energy loss function were calculated to show the best structure among these polymorphs for the photocatalytic water splitting application.

  10. First-principles study of interface magnetic structure in Nd2Fe14B /(Fe ,Co ) exchange spring magnets

    NASA Astrophysics Data System (ADS)

    Umetsu, Nobuyuki; Sakuma, Akimasa; Toga, Yuta

    2016-01-01

    The magnetic properties of Nd2Fe14B (NFB)/transition metal (TM = Fe, Co) multilayer systems are studied on the basis of first-principles density functional calculations. Assuming a collinear spin structure, we optimize the model structure under a variety of crystallographic alignments of the NFB layer, and analyze the mechanism of interface magnetic coupling. Improvements in remanent magnetization compared to that of single NFB are observed in NFB(001)/Fe, NFB(110)/Fe, and NFB(100)/Co. On the other hand, in NFB(100)/Fe, remanence degradation due to the antiparallel magnetization alignment between NFB and Fe layers is observed. In this system, which has the shortest optimized interlayer distance among all considered systems, an itinerant electron magnetism is required around the interface to lower the total energy, and accordingly, antiferromagnetic coupling is preferred. The significant difference in property between NFB(100)/Fe and NFB(100)/Co is attributed to the difference between their interface structures, optimized interlayer distances, and magnetic stiffness of TM layers.

  11. First-Principles Study on Structural and Thermoelectric Properties of Al- and Sb-Doped Mg2Si

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Iida, Tsutomu; Funashima, Hiroki; Morioka, Shunsuke; Sakamoto, Mariko; Nishio, Keishi; Kogo, Yasuo; Takanashi, Yoshifumi; Hamada, Noriaki

    2015-06-01

    We theoretically investigate the structural and thermoelectric properties of magnesium silicide (Mg2Si) incorporating Al or Sb atoms as impurities using first-principles calculations. We optimized the structural properties through variable-cell relaxation using a pseudopotential method based on density functional theory. The result indicates that the lattice constant can be affected by the insertion of impurity atoms into the system, mainly because the ionic radii of these impurities differ from those of the matrix constituents Mg and Si. We then estimate, on the basis of the optimized structures, the site preferences of the impurity atoms using a formation energy calculation. The result shows a nontrivial concentration-dependence of the site occupation, such that Al tends to go into the Si, Mg, and interstitial sites with comparable formation energies at low doping levels (<2 at.%); it can start to substitute for the Mg sites preferentially at higher doping levels (<4 at.%). Sb, on the other hand, shows a strong preference for the Si sites at all impurity concentrations. Furthermore, we obtain the temperature-dependence of the thermoelectromotive force (Seebeck coefficient) of the Al- and Sb-doped Mg2Si using the full-potential linearized augmented-plane-wave method and the Boltzmann transport equation.

  12. First principle studies of doping effects on the electronic and geometric structures of graphitic C3N4

    NASA Astrophysics Data System (ADS)

    Zuluaga, Sebastian; Stolbov, Sergey

    2013-03-01

    Layered carbon nitride g-C3N4 is a promising material as a photo-anode for the H production from water. By doping, the band gap (2.7 eV) can be tuned to the value optimal for efficient absorption of visible light irradiation. We present here our first principle computational study of the effects of doping with B, P and S on the geometric and electronic structures of g-C3N4 and compare them to experimental results. We have evaluated within density functional theory the energetics of various doping scenarios in terms of both thermodynamics and kinetics, and selected the energetically most favorable structures. Our calculations reveal important details of valence charge density redistribution upon the doping. The doping effect on the electronic density of states (DOS), in particular on band gap width, has been evaluated using an accurate GW method. We find the DOS to strongly depend on the doping geometry. The detailed analysis of the projected DOS provides significant insight into the mechanism underlying modification of the electronic structure upon doping.

  13. Attempts at a determination of the fine-structure constant from first principles: a brief historical overview

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.; Nándori, I.

    2014-12-01

    It has been a notably elusive task to find a remotely sensical ansatz for a calculation of Sommerfeld's electrodynamic fine-structure constant αQED ≈ 1 / 137.036 based on first principles. However, this has not prevented a number of researchers to invest considerable effort into the problem, despite the formidable challenges, and a number of attempts have been recorded in the literature. Here, we review a possible approach based on the quantum electrodynamic (QED) β function, and on algebraic identities relating αQED to invariant properties of "internal" symmetry groups, as well as attempts to relate the strength of the electromagnetic interaction to the natural cutoff scale for other gauge theories. Conjectures based on both classical as well as quantum-field theoretical considerations are discussed. We point out apparent strengths and weaknesses of the most prominent attempts that were recorded in the literature. This includes possible connections to scaling properties of the Einstein-Maxwell Lagrangian which describes gravitational and electromagnetic interactions on curved space-times. Alternative approaches inspired by string theory are also discussed. A conceivable variation of the fine-structure constant with time would suggest a connection of αQED to global structures of the Universe, which in turn are largely determined by gravitational interactions.

  14. First-principles study of the Pd–Si system and Pd(001)/SiC(001) hetero-structure

    SciTech Connect

    Turchi, P.E.A.; Ivashchenko, V.I.

    2014-11-01

    First-principles molecular dynamics simulations of the Pd(001)/3C–SiC(001) nano-layered structure were carried out at different temperatures ranging from 300 to 2100 K. Various PdSi (Pnma, Fm3m, P6m2, Pm3m), Pd2Si (P6⁻2m, P63/mmc, P3m1, P3⁻1m) and Pd3Si (Pnma, P6322, Pm3m, I4/mmm) structures under pressure were studied to identify the structure of the Pd/Si and Pd/C interfaces in the Pd/SiC systems at high temperatures. It was found that a large atomic mixing at the Pd/Si interface occurred at 1500–1800 K, whereas the Pd/C interface remained sharp even at the highest temperature of 2100 K. At the Pd/C interface, voids and a graphite-like clustering were detected. Palladium and silicon atoms interact at the Pd/Si interface to mostly form C22-Pd2Si and D011-Pd3Si fragments, in agreement with experiment.

  15. PubChemQC Project: A Large-Scale First-Principles Electronic Structure Database for Data-Driven Chemistry.

    PubMed

    Nakata, Maho; Shimazaki, Tomomi

    2017-06-26

    Large-scale molecular databases play an essential role in the investigation of various subjects such as the development of organic materials, in silico drug design, and data-driven studies with machine learning. We have developed a large-scale quantum chemistry database based on first-principles methods. Our database currently contains the ground-state electronic structures of 3 million molecules based on density functional theory (DFT) at the B3LYP/6-31G* level, and we successively calculated 10 low-lying excited states of over 2 million molecules via time-dependent DFT with the B3LYP functional and the 6-31+G* basis set. To select the molecules calculated in our project, we referred to the PubChem Project, which was used as the source of the molecular structures in short strings using the InChI and SMILES representations. Accordingly, we have named our quantum chemistry database project "PubChemQC" ( http://pubchemqc.riken.jp/ ) and placed it in the public domain. In this paper, we show the fundamental features of the PubChemQC database and discuss the techniques used to construct the data set for large-scale quantum chemistry calculations. We also present a machine learning approach to predict the electronic structure of molecules as an example to demonstrate the suitability of the large-scale quantum chemistry database.

  16. First-principle electronic structure calculations for magnetic moment in iron-based superconductors: An LSDA + negative U study

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Hayashi, N.; Nakai, N.; Okumura, M.; Machida, M.

    2009-10-01

    In order to resolve a discrepancy of the magnetic moment on Fe between the experimental and calculation results, we perform first-principle electronic structure calculations for iron-based superconductors LaFeAsO1-x and LiFeAs also show similar SDW. So far, the first-principle calculations on LaFeAsO actually predicted the SDW state as a ground state. However, the predicted magnetic moment (∼2 μB) per an Fe atom is much larger than the observed one (∼0.35 μB) in experiments [2,4]. The authors suggested that the discrepancy can be resolved by expanding U into a negative U range within LSDA + U framework. In this paper, we revisit the discrepancy and clarify why the negative correction is essential in these compounds. See Ref. [5] for the details of calculation data by LSDA + negative U. In the first-principle calculation on compounds including transition metals, the total energy is frequently corrected by “LSDA + U” approach. The parameter U is theoretically re-expressed as U(≡U-J), where U is the on-site Coulomb repulsion (Hubbard U) and J is the atomic-orbital intra-exchange energy (Hund’s coupling parameter) [6]. The parameter U employed in the electronic structure calculations is usually positive. The positivity promotes the localized character of d-electrons and enhances the magnetic moment in the cases of magnetically ordered compounds. Normally, this positive correction successfully works. In choosing the parameter, one can principally extend the parameter U range to a negative region. The negative case [7] is not popular, but it can occur in the following two cases [8]: (i) the Hubbard U becomes negative and (ii) the intra-exchange J is effectively larger than the Hubbard U. The case (i) has been suggested by many authors based on various theoretical considerations. Here, we note that U should be estimated once screening effects on the long-range Coulomb interaction are taken into account. In fact, small U has been reported [9]. Thus, when the

  17. The structure of Mn-doped tris(8-hydroxyquinoline)gallium by extended x-ray absorption fine structure spectroscopy and first principles calculations

    NASA Astrophysics Data System (ADS)

    Fang, Shaojie; Pang, Zhiyong; Du, Yonghua; Zheng, Lirong; Zhang, Xijian; Wang, Fenggong; Yuan, Huimin; Han, Shenghao

    2012-12-01

    Metal-Mqx (M = Al, Ga, Zn, Be, and Ca, x = 2 or 3) complexes play a key role in organic spintronics and organic optoelectronics. However, the accurate structure determination of these complexes has been a challenge for a long time. Here, we report the structure of Mn-Gaq3 investigated by using first-principle density functional theory (DFT) calculations and extended X-ray absorption fine structure (EXAFS) spectroscopy. First, the structures of Mn-Gaq3 were predicted by first-principle DFT calculations. Then, all reasonable structures achieved from the calculations were used to fit the EXAFS spectra. By this method, the structure of Mn-Gaq3 is well obtained. We believe this method is also applicable to other metal-Mqx films.

  18. Pressure induced structural phase transition in solid oxidizer KClO3: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2013-05-01

    High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P21/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

  19. Competing collinear magnetic structures in superconducting FeSe by first-principles quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Busemeyer, Brian; Dagrada, Mario; Sorella, Sandro; Casula, Michele; Wagner, Lucas K.

    2016-07-01

    Resolving the interplay between magnetic interactions and structural properties in strongly correlated materials through a quantitatively accurate approach has been a major challenge in condensed-matter physics. Here we apply highly accurate first-principles quantum Monte Carlo (QMC) techniques to obtain structural and magnetic properties of the iron selenide (FeSe) superconductor under pressure. Where comparable, the computed properties are very close to the experimental values. Of potential ordered magnetic configurations, collinear spin configurations are the most energetically favorable over the explored pressure range. They become nearly degenerate in energy with bicollinear spin orderings at around 7 GPa, when the experimental critical temperature Tc is the highest. On the other hand, ferromagnetic, checkerboard, and staggered dimer configurations become relatively higher in energy as the pressure increases. The behavior under pressure is explained by an analysis of the local charge compressibility and the orbital occupation as described by the QMC many-body wave function, which reveals how spin, charge, and orbital degrees of freedom are strongly coupled in this compound. This remarkable pressure evolution suggests that stripelike magnetic fluctuations may be responsible for the enhanced Tc in FeSe and that higher Tc is associated with nearness to a crossover between collinear and bicollinear ordering.

  20. Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys: first-principles calculations

    NASA Astrophysics Data System (ADS)

    Hu, Riming; Zhou, Zhaobo; Zhou, Xiaolong; Yu, Jie; Zhang, Kunhua

    2017-07-01

    The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys (Ru5Ir15, Ru6Ir14, Ru8Ir12) were investigated by first principles calculations. The negative values of cohesive energy and formation enthalpy show that these compounds are thermodynamically stable, and Ru-Ir alloys tend to exist in the form of Ru5Ir15, Ru6Ir14 and Ru8Ir12. The calculated results of electronic structure reveal that strong hybridizations exist near the Fermi level, being characteristic of Ru-d and Ir-d states, as a result, it is mainly composed of Ru-Ir bond in Ru-Ir alloy. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that Ru6Ir14 compound has the highest hardness, and Ru8Ir12 compound has the maximal elastic anisotropy ratio. Meanwhile, Ru5Ir15, Ru6Ir14, Ru8Ir12 are brittle, and the vickers hardness values of these alloys are 25.29 GPa, 27.96 GPa, 27.39 GPa, respectively.

  1. Structural, elastic, and electronic properties of cubic perovskite BaHfO3 obtained from first principles

    NASA Astrophysics Data System (ADS)

    Zhao, Hongsheng; Chang, Aimin; Wang, Yunlan

    2009-08-01

    We investigated the structural, elastic, and electronic properties of the cubic perovskite-type BaHfO3 using a first-principles method based on the plane-wave basis set. Analysis of the band structure shows that perovskite-type BaHfO3 is a wide gap indirect semiconductor. The band-gap is predicted to be 3.94 eV within the screened exchange local density approximation (sX-LDA). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants ( C11, C12, and C44), bulk modules B and its pressure derivatives B‧, compressibility β, shear modulus G, Young's modulus Y, Poisson's ratio ν, and Lamé constants ( μ,λ) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO3. The bonding-charge density calculation make it clear that the covalent bonds exist between the Hf and O atoms and the ionic bonds exist between the Ba atoms and HfO3 ionic groups in BaHfO3.

  2. First principles study of structural, elastic, electronic and optical properties of the cubic perovskite BaHfO 3

    NASA Astrophysics Data System (ADS)

    Bouhemadou, A.; Djabi, F.; Khenata, R.

    2008-06-01

    First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO 3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO 3 is a direct band gap between the occupied O 2 p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO 3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2 p states and Hf 5 d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO 3 compound, and it still awaits experimental confirmation.

  3. Structure and dynamics of bulk liquid iron at pressures up to 58 GPa. A first-principles study

    NASA Astrophysics Data System (ADS)

    Gonzalez, David; Marques, Miriam; Gonzalez, Luis Enrique

    The static and dynamic properties of bulk liquid Fe at a several high pressure states, have been studied by using first-principles molecular dynamics simulations based on the density functional theory and the projector augmented wave technique. Results are reported for four thermodynamic states at pressures of 27, 42, 50 and 58 GPa for which x-ray scattering data are available. The calculated static structure shows very good agreement with the available experimental data, including an asymmetric second peak which becomes more marked with increasing pressure. The dynamical structure reveals the existence of propagating density fluctuations and the associated dispersion relation has also been determined. The relaxation mechanisms for the density fluctuations have been analyzed in terms of a model with two decay channels (fast and slow, respectively). We found that the thermal relaxation proceeds along the slow decaying channel whereas the fast one is that of the viscoelastic relaxation. Finally, results are also reported for some transport coefficients. We acknowledge financial support from Spanish MCI (FIS2014-59279-P) and JCyL (CIP13/03 and VA104A11-2).

  4. Effect of Sr doping on the electronic band structure and optical properties of ZnO: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Mahmood, Asad; Tezcan, Fatih; Kardaş, Gülfeza; Karadaǧ, Faruk

    2017-09-01

    Incorporating impurities in ZnO provide opportunities to manipulate its electronic and optical properties, which can be exploited for optoelectronic device applications. Among various elements doped in ZnO crystal structure, limited attempts have been accounted for the Sr-doped ZnO system. Further, no theoretical evidence has been reported so far to explore the Sr-doped ZnO frameworks. Here, we report first principle study for the pure and Sr-doped ZnO (Zn1-xSrxO) structure. We employed the Perdew-Burke-Ernzerhof exchange-correlation function parameters in generalized gradient approximations. In light of these estimations, we calculated the electronic band gap, density of states, and optical parameters, for example, absorption, dielectric functions, reflectivity, refractive index, and energy-loss. The studies suggested that Sr incorporation expanded the optical band gap of ZnO. In addition, the energy-loss significantly increased with Sr content which might be associated with an increase in the degree of disorder in the crystal lattice with Sr incorporation. Also, significant changes were seen in the optical properties of ZnO with Sr content in the low energy region. The theoretical results were likewise compared with the previously reported experimental data.

  5. First-principles study on structural, thermal, mechanical and dynamic stability of T’-MoS2

    NASA Astrophysics Data System (ADS)

    Liu, Y. C.; Wang, V.; Xia, M. G.; Zhang, S. L.

    2017-03-01

    Using first-principles density functional theory calculations, we investigate the structure, stability, optical modes and electronic band gap of a distorted tetragonal MoS2 monolayer (T’-MoS2). Our simulated scanning tunnel microscopy (STM) images of T’-MoS2 are dramatically similar to those STM images which were identified as K x (H2O) y MoS2 from a previous experimental study. This similarity suggests that T’-MoS2 might have already been experimentally observed, but due to being unexpected was misidentified. Furthermore, we verify the stability of T’-MoS2 from the thermal, mechanical and dynamic aspects, by ab initio molecular dynamics simulation, elastic constants evaluation and phonon band structure calculation based on density functional perturbation theory, respectively. In addition, we calculate the eigenfrequencies and eigenvectors of the optical modes of T’-MoS2 at Γ point and distinguish their Raman and infrared activity by pointing out their irreducible representations using group theory. At the same time, we compare the Raman modes of T’-MoS2 with those of H-MoS2 and T-MoS2. Our results provide useful guidance for further experimental identification and characterization of T’-MoS2.

  6. Electronic structure and optical properties of prominent phases of TiO2: First-principles study

    NASA Astrophysics Data System (ADS)

    Singh, Santosh; Tripathi, Madhvendra Nath

    2017-07-01

    First-principles study based on density functional theory (DFT) of two prominent phases, the rutile and the anatase phases, of titanium dioxide (TiO_2) are reported within the generalized gradient approximation (GGA). Our calculated band structure shows that there is a significant presence of O-2p and Ti-3d hybridization in the valence bands. These bands are well separated from the conduction bands by a direct band gap value of 1.73 eV in the rutile phase and an indirect band gap value of 2.03 eV in the anatase phase, from Γ to X. Our calculations reproduced the peaks in the conduction and valence band, are in good agreement with experimental observations. Our structural optimization for the rutile and anatase phase led to lattice parameter values of 4.62 Å and 2.99 Å rutile and 3.80 Å and 9.55 Å for anatase for a and c. The static dielectric values 7.0 and 5.1 for the rutile and anatase phases respectively are in excellent agreement with experimental results. Our calculation of optical properties reveals that maximum value of the transmittance in anatase phase of TiO_2 may be achieved by considering the anisotropic behaviour of the optical spectra in the optical region for transparent conducting application.

  7. First principle investigation of electronic structure, chemical bonding and optical properties of tetrabarium gallium trinitride oxide single crystal

    SciTech Connect

    Khan, Saleem Ayaz Azam, Sikander

    2015-10-15

    The electronic band structure, valence electron charge density and optical susceptibilities of tetrabarium gallium trinitride (TGT) were calculated via first principle study. The electronic band structure calculation describes TGT as semiconductor having direct band gap of 1.38 eV. The valence electronic charge density contour verified the non-polar covalent nature of the bond. The absorption edge and first peak of dielectric tensor components showed electrons transition from N-p state to Ba-d state. The calculated uniaxial anisotropy (0.4842) and birefringence (−0.0061) of present paper is prearranged as follow the spectral components of the dielectric tensor. The first peak in energy loss function (ELOS) shows the energy loss of fast traveling electrons in the material. The first sharp peak produced in ELOS around 10.5 eV show plasmon loss having plasma frequencies 0.1536, 0.004 and 0.066 of dielectric tensor components. This plasmon loss also cause decrease in reflectivity spectra.

  8. First principles study of electronic structure dependent optical properties of oxychalcogenides BiOCuCh (Ch = S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Ul Islam, A. K. M. Farid; Helal, M. A.; Liton, M. N. H.; Kamruzzaman, M.; Islam, H. M. Tariqul

    2016-11-01

    The optical properties of BiOCuCh and their dependency on the electronic structures are investigated using first principles study. Modified Perdew-Burke-Ernzerhof generalized gradient approximation functional for solids are used to optimize lattice parameters. These optimized lattice parameters are used to calculate the electronic energy band, density of state and optical properties. It is observed that the optical constants are dependent on the energy band gap and also on the contribution of Copper and Chalcogen atoms in the formation of electronic band structure. The obtained results reveal that the optical constants are dominated by the inter-band transitions. In the case of higher incident photon energy these materials behave like metal, where optical constants are dominated by the free carriers. The obtained optical band gaps 0.60, 0.56 and 0.55 eV for BiOCuS, BiOCuSe and BiOCuTe, respectively are consistent with available theoretical results. We also calculate the carrier concentration, electrical conductivity, effective mass of the carrier and their temperature dependency using semi-classical BoltzTraP package. Among these three materials BiOCuTe shows higher electrical conductivity. Analyzing their optical properties, we conclude that these materials are useful in the optoelectronic devices such as coating materials, high frequency reflector, infrared radiation detector and emitter and also important to design quantum devices.

  9. Interfacial bonding and electronic structure of GaN/GaAs interface: A first-principles study

    SciTech Connect

    Cao, Ruyue; Zhang, Zhaofu; Wang, Changhong; Li, Haobo; Dong, Hong; Liu, Hui; Wang, Weichao; Xie, Xinjian

    2015-04-07

    Understanding of GaN interfacing with GaAs is crucial for GaN to be an effective interfacial layer between high-k oxides and III-V materials with the application in high-mobility metal-oxide-semiconductor field effect transistor (MOSFET) devices. Utilizing first principles calculations, here, we investigate the structural and electronic properties of the GaN/GaAs interface with respect to the interfacial nitrogen contents. The decrease of interfacial N contents leads to more Ga dangling bonds and As-As dimers. At the N-rich limit, the interface with N concentration of 87.5% shows the most stability. Furthermore, a strong band offsets dependence on the interfacial N concentration is also observed. The valance band offset of N7 with hybrid functional calculation is 0.51 eV. The electronic structure analysis shows that significant interface states exist in all the GaN/GaAs models with various N contents, which originate from the interfacial dangling bonds and some unsaturated Ga and N atoms. These large amounts of gap states result in Fermi level pinning and essentially degrade the device performance.

  10. First-principles study of the electronic structure of nonmetal-doped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Ma, Jing; Zhou, Jian-Ping; Chen, Xiao-Ming; Wang, Jing-Zhou

    2016-02-01

    In this paper, we present a detailed study of the structure, defect formation energy, and electronic and magnetic properties of nonmetal-doped TiO2 by using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA). The formation energy reduces with increasing electronegativity of the dopant. After doping with nonmetal elements, some band gaps of the doped-TiO2 become narrow, and others become wide, in which impurity states appear in the band gap. The relative positions of the impurity states are much different, mainly caused by the different electronegativities of the nonmetal elements F, O, B, C and N. When H is added to achieve a charge balance, the impurity states approach the valence band maximum, because the electronegativity difference among the nonmetal elements is decreased. Therefore, nonmetal and H codoping is an effective way to improve the visible-light catalytic activity of anatase TiO2. In addition, N-doping and C-doping can cause spin polarization of the TiO2 electronic structure and form 1.0 μ B and 2.0 μ B magnetic moment, respectively.

  11. Interfacial properties and electron structure of Al/B4C interface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Xian, Yajiang; Qiu, Ruizhi; Wang, Xin; Zhang, Pengcheng

    2016-09-01

    This research aims at investigating the structural, mechanical and electronic properties of the Al (111)/B4C (0001) interface by first-principles calculations. This model geometry Al (111)/B4C (0001) is chosen because the close-packed planes of Al and B4C have the (111) and (0001) orientation, respectively, and the lattice mismatch is only ∼2.1%. Among four B4C (0001) surfaces with different terminations, our calculation of surface free energies predicted that C-terminated B4C (0001) surface is the most stable one. Relaxed atomic geometries, the work of adhesion and interfacial free energies were calculated for three C-terminated B4C (0001)/Al (111) interfaces with different stacking sequences (top-site, hollow-site, and bridge-site). Results reveal that the relaxed top-site (hollow-site-like) Al/B4C interface has the best adhesion force and also be the most stable. The interfacial electron structure including charge density difference, Bader charge and density of states (DOS) is analyzed to determine the nature of metal/carbide bonding and we find the formation of Alsbnd C bond and possibly the formation of Al4C3 in the interface.

  12. First-principle study of the lattice dynamic and thermodynamic properties of Zn-based semiconductors with wurtzite structure

    NASA Astrophysics Data System (ADS)

    Kang, Y. S.; Zhao, G. J.; Liang, X. X.

    2017-06-01

    The first-principle calculations for the structural, dynamic and thermodynamic properties of the IIB-VIA Zn-based compound semiconductors ZnX (X=O, S, Se, Te) with wurtzite structure are preformed in this work. The density-functional perturbation theory are applied to obtain the Born effective charge tensors, the phonon dispersion curves, as well as corresponding density of states. The results show that the Born effective charge tensors are anisotropic and exhibit the anisotropy of material itself. The calculated phonon frequencies of ZnO and ZnS at Γ point and along high symmetry directions are in agreement with other calculations and experimental data. The phonon contributions to the internal energy, free energy, entropy and specific heat are determined within the harmonic approximation based on the calculated phonon dispersion relations. The calculated results of entropy are slightly larger than the experimental values by about 4.5%, since the effects of anharmonicity are ignored and the theoretical lattice constants are used in the calculations.

  13. Structural and thickness dependence of polar SMOKE spectra : first-principles determinations for Co thin films and multilayers

    NASA Astrophysics Data System (ADS)

    Kim, Miyoung; Freeman, A. J.; Wu, Ruqian

    1998-03-01

    We performed first principles calculations of the polar surface magneto-optical Kerr effect (SMOKE) for free standing fcc Co thin films with various number of layers and for Co/Pt multilayers. The local density full-potential linearized augmented plane wave (FLAPW) ( E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B 24), 864 (1981) method was used to obtain semi-relativistic self-consistent charge densities. Spin-orbit coupling was treated in a second variational manner and then the Kerr angles were determined using the optical condutivity tensor obtained from linear response theory. We find that the Co monolayer exhibits a totally different SMOKE from that of bulk Co, while the SMOKE of Co thin films with 3 or more layers recover the bulk characteristics but with different peak positions dependent on the thickness. The electronic and magnetic structures and spin- and l-decomposed conductivities are presented to illustrate the thickness dependence. Also the calculated result for Co/Pt multilayers will be presented and discussed with a comparison of experiments on multilayers and alloys to describe the structural dependence of SMOKE.

  14. Electronic Structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by First-Principles Calculation

    NASA Astrophysics Data System (ADS)

    Wang, Jin-song; Liu, Hong-xia; Deng, Shuping; Li, De-cong; Shen, Lan-xian; Cheng, Feng; Deng, Shu-kang

    2016-10-01

    Sn-based clathrates possess excellent thermoelectric properties ascribed to their higher Seebeck coefficient and lower thermal conductivity. Guest atoms significantly modulate the thermoelectric properties of Sn-based calculates because of their diverse atomic radius and interactions with framework atoms. Thus, we explored the electronic structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by first-principles calculation. Results revealed significant differences between Yb8Ga16Sn30 and M8Ga16Sn30 (M = Ba, Sr,). In particular, the Yb-filled compound substitution possesses lowest formation energy and the off-center distance of the Yb atom is the largest compared with the other structures. I-M8Ga16Sn30 (M = Ba, Sr, Yb) is an indirect band gap semiconductor, and the enhanced hybridization effect between the guest and framework atoms' orbits exists because the Yb f orbit results in a decrease in band gap. Ba- and Sr-filled clathrates have similar valence bands but slightly different conduction bands; however, Yb8Ga16Sn30 possess the spiculate density of states near the Fermi level that reveals excellent thermoelectric properties.

  15. First-principles study of the structural, electronic, dynamical, and thermodynamic properties of Li5AlO4

    NASA Astrophysics Data System (ADS)

    Guan, Qiushi; Chen, Xiaojun; Gao, Tao; Xiao, Chengjian; Zhao, Linjie; He, Jianchao; Long, Xinggui

    2015-10-01

    Pentalithium aluminate, Li5AlO4, has attracted increasing attention for its high lithium density and potential uses in tritium breeding materials and thermal batteries. In this work, the structural, electronic, lattice dynamical, and thermodynamic properties of α- and β-phase Li5AlO4 were investigated using first-principles density functional theory. The optimized structural parameters were consistent with the experimental values, with the absolute deviation being less than 2.5%. The indirect band gaps of α- and β-Li5AlO4 were 4.82 and 5.16 eV, respectively, showing that they are insulators. In addition, the vibrational properties of α- and β-Li5AlO4 were computed using density functional perturbation theory. By adding Born effective charges into the phonon calculations, the longitudinal optical-transverse optical (LO-TO) splittings were calculated. The optical modes at the Γ point were categorized as Raman- and IR-active modes. Our results show that β-Li5AlO4 is more polar and anisotropic than α-Li5AlO4. Furthermore, their thermodynamic functions were determined using the calculated phonon density of states. The results were in good agreement with those of previous theoretical studies. The data presented in this work will help in the further characterization of Li5AlO4, which may be valuable for future experimental studies.

  16. Electronic Structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by First-Principles Calculation

    NASA Astrophysics Data System (ADS)

    Wang, Jin-song; Liu, Hong-xia; Deng, Shuping; Li, De-cong; Shen, Lan-xian; Cheng, Feng; Deng, Shu-kang

    2017-05-01

    Sn-based clathrates possess excellent thermoelectric properties ascribed to their higher Seebeck coefficient and lower thermal conductivity. Guest atoms significantly modulate the thermoelectric properties of Sn-based calculates because of their diverse atomic radius and interactions with framework atoms. Thus, we explored the electronic structure of I-M8Ga16Sn30 (M = Ba, Sr, Yb) by first-principles calculation. Results revealed significant differences between Yb8Ga16Sn30 and M8Ga16Sn30 (M = Ba, Sr,). In particular, the Yb-filled compound substitution possesses lowest formation energy and the off-center distance of the Yb atom is the largest compared with the other structures. I-M8Ga16Sn30 (M = Ba, Sr, Yb) is an indirect band gap semiconductor, and the enhanced hybridization effect between the guest and framework atoms' orbits exists because the Yb f orbit results in a decrease in band gap. Ba- and Sr-filled clathrates have similar valence bands but slightly different conduction bands; however, Yb8Ga16Sn30 possess the spiculate density of states near the Fermi level that reveals excellent thermoelectric properties.

  17. First principles study of pressure induced structural phase transition in hydrogen storage material—MgH2

    NASA Astrophysics Data System (ADS)

    Kanagaprabha, S.; Asvinimeenaatci, A. T.; Rajeswarapalanichamy, R.; Iyakutti, K.

    2012-01-01

    First principles calculation were performed using Vienna ab-initio simulation package within the frame work of density functional theory (DFT) to understand the electronic properties of magnesium hydride. At normal pressure, the most stable structure of MgH 2 is rutile type with a wide band gap of 3.52 eV, which agrees well with the available data. A pressure induced semi-conductor to metallic transition at a pressure of 92.54 GPa is predicted. Our results indicate a sequence of pressure induced structural phase transition in MgH 2. The obtained sequence of phase transition was α→γ→β→δ→ε at a pressure of 0.37 GPa, 3.89 GPa,7.23 GPa and 11.26 GPa, respectively. Thus our results indicate that MgH 2 is one of the best hydrogen storage material and the maximum storage capacity achieved was 7.7%.

  18. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Dri, Fernando L.; Shang, ShunLi; Hector, Louis G., Jr.; Saxe, Paul; Liu, Zi-Kui; Moon, Robert J.; Zavattieri, Pablo D.

    2014-12-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500 K) of the monoclinic cellulose Iβ lattice parameters, constant pressure heat capacity, Cp, entropy, S, enthalpy, H, the linear thermal expansion components, ξi, and components of the isentropic and isothermal (single crystal) elastic stiffness matrices, CijS (T) and CijT (T) , respectively. Thermodynamic quantities from phonon calculations computed with DFT and the supercell method provided necessary inputs to compute the temperature dependence of cellulose Iβ properties via the quasi-harmonic approach. The notable exceptions were the thermal conductivity components, λi (the prediction of which has proven to be problematic for insulators using DFT) for which the reverse, non-equilibrium molecular dynamics approach with a force field was applied. The extent to which anisotropy of Young's modulus and Poisson's ratio is temperature-dependent was explored in terms of the variations of each with respect to crystallographic directions and preferred planes containing specific bonding characteristics (as revealed quantitatively from phonon force constants for each atomic pair, and qualitatively from charge density difference contours). Comparisons of the predicted quantities with available experimental data revealed reasonable agreement up to 500 K. Computed properties were interpreted in terms of the cellulose Iβ structure and bonding interactions.

  19. First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO3.

    PubMed

    Mei, Zhi-Gang; Shang, Shun-Li; Wang, Yi; Liu, Zi-Kui

    2010-07-28

    The structural and elastic properties of BiMnO(3) with monoclinic (C 2/c) and orthorhombic (Pnma) ferromagnetic (FM) structures have been studied by first-principles calculations within LDA + U and GGA + U approaches. The equilibrium volumes and bulk moduli of BiMnO(3) phases are evaluated by equation of state (EOS) fittings, and the bulk properties predicted by LDA + U calculations are in better agreement with experiment. The orthorhombic phase is found to be more stable than the monoclinic phase at ambient pressure. A monoclinic to monoclinic phase transition is predicted to occur at a pressure of about 10 GPa, which is ascribed to magnetism versus volume instability of monoclinic BiMnO(3). The single-crystal elastic stiffness constants c(ij)s of the monoclinic and orthorhombic phases are investigated using the stress-strain method. The c(46) of the monoclinic phase is predicted to be negative. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young's modulus, bulk modulus-shear modulus ratio, Poisson's ratio, and elastic anisotropy ratio are determined based on the calculated elastic constants. The presently predicted phase transition and elastic properties open new directions for investigation of the phase transitions in BiMnO(3), and provide helpful guidance for the future elastic constant measurements.

  20. First principles study of electronic structure dependent optical properties of oxychalcogenides BiOCu Ch ( Ch = S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Ul Islam, A. K. M. Farid; Helal, M. A.; Liton, M. N. H.; Kamruzzaman, M.; Islam, H. M. Tariqul

    2017-04-01

    The optical properties of BiOCu Ch and their dependency on the electronic structures are investigated using first principles study. Modified Perdew-Burke-Ernzerhof generalized gradient approximation functional for solids are used to optimize lattice parameters. These optimized lattice parameters are used to calculate the electronic energy band, density of state and optical properties. It is observed that the optical constants are dependent on the energy band gap and also on the contribution of Copper and Chalcogen atoms in the formation of electronic band structure. The obtained results reveal that the optical constants are dominated by the inter-band transitions. In the case of higher incident photon energy these materials behave like metal, where optical constants are dominated by the free carriers. The obtained optical band gaps 0.60, 0.56 and 0.55 eV for BiOCuS, BiOCuSe and BiOCuTe, respectively are consistent with available theoretical results. We also calculate the carrier concentration, electrical conductivity, effective mass of the carrier and their temperature dependency using semi-classical BoltzTraP package. Among these three materials BiOCuTe shows higher electrical conductivity. Analyzing their optical properties, we conclude that these materials are useful in the optoelectronic devices such as coating materials, high frequency reflector, infrared radiation detector and emitter and also important to design quantum devices.

  1. Quantum wells formed in transition-metal dichalcogenide nanosheet-superlattices: stability and electronic structures from first principles.

    PubMed

    Su, Xiangying; Zhang, Ruizhi; Guo, Chongfeng; Guo, Meng; Ren, Zhaoyu

    2014-01-28

    The possibility of forming quantum wells (QWs) in transition-metal dichalcogenide nanosheet assembled superlattices (SLs) was investigated by using the first principles calculations. The interfacial binding energies and electronic structures of MoS2/MX2 (MX2 = MoSe2, WS2, and WSe2) SLs were calculated. The interfacial binding energies show that all the SLs are stable, and the most stable atomic configuration is that where M atoms are located right above S atoms. By calculating the band offsets in the SLs, it was found that a QW with a depth of 0.17 eV can be formed in the MoS2 layer in MoS2/WSe2 SLs. The calculated band structure shows that this SL has an indirect band gap due to the tensile strained state of the MoS2 layer. The charge transfer between the two layers is very small, which is in favor of the QWs' formation. In particular, the depth of the QW in the SLs can be adjusted by strain engineering, which can be attributed to the different strain dependencies of the two materials' band gaps. These findings will guide the choice of future nanosheet assembled SLs to work on and suggest a new route to facilitate the design of QW based optoelectronic devices.

  2. Effects of carbon vacancies on the structures, mechanical properties, and chemical bonding of zirconium carbides: a first-principles study.

    PubMed

    Xie, Congwei; Oganov, Artem R; Li, Duan; Debela, Tekalign Terfa; Liu, Ning; Dong, Dong; Zeng, Qingfeng

    2016-04-28

    Interstitial carbides are able to maintain structural stability even with a high concentration of carbon vacancies. This feature provides them with tunable properties through the design of carbon vacancies, and thus making it important to reveal how carbon vacancies affect their properties. In the present study, using first-principles, we have calculated the properties of a number of stable and metastable zirconium carbides ZrC1-x (x = 0 and 1/n, n = 2-8) which were predicted by the evolutionary algorithm USPEX. Effects of carbon vacancies on the structures, mechanical properties, and chemical bonding of these zirconium carbides were systematically investigated. The distribution of carbon vacancies has significant influence on mechanical properties, especially Pugh's ratio. Nonadjacent carbon vacancies enhance Pugh's ratio, while grouped carbon vacancies decrease Pugh's ratio. This is explained by the changes in strength of Zr-C and Zr-Zr bonding around differently distributed carbon vacancies. We further explored the mechanical properties of zirconium carbides with impurities (N and O) by inserting N and O atoms into the sites of carbon vacancies. The enhanced mechanical properties of zirconium carbides were found.

  3. First-principles prediction of disordering tendencies in pyrochlore oxides

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Stanek, C. R.; Sickafus, K. E.; Uberuaga, B. P.

    2009-03-01

    Using first-principles calculations, we systematically predict the order-disorder energetics of series of zirconate (A2Zr2O7) , hafnate (A2Hf2O7) , titanate (A2Ti2O7) , and stannate (A2Sn2O7) pyrochlores. The disordered defect-fluorite structure is modeled using an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most relevant near-neighbor intrasublattice and intersublattice pair-correlation functions of the random mixture. The order-disorder transition temperatures of these pyrochlores estimated from our SQS calculations show overall good agreement with existing experiments. We confirm previous studies suggesting that the bonding in pyrochlores is not purely ionic and thus electronic effects also play a role in determining their disordering tendencies. Our results have important consequences for numerous applications, including nuclear waste forms and fast ion conductors.

  4. First Principles Study of Electronic and Crystallographic Structure and Elastic Properties of RbNiF3

    NASA Astrophysics Data System (ADS)

    Antonov, V.; Krezhov, K.; Trendafilova, N.

    2010-01-01

    First principles calculations, based on density functional theory (DFT) with ultra-soft pseudo potentials were performed to simulate the electronic, magnetic and crystallographic structure and elastic properties of RbNiF3, a candidate for magneto optical applications. The transparent magnetodielectric RbNiF3 is of interest because in contrast to the majority of other ABF3 compounds, which are orthorhombic perovskites, it is a representative of a much smaller group of chalcogenides with hexagonal crystal symmetry. In fact, this is the structural phase at normal pressure and it is isomorphous with the hexagonal modification of BaTiO3. The compound becomes ferrimagnetically ordered below a Néel temperature reported as 135 K. Synthesis at elevated temperature and pressure yields another phase that is a cubic perovskite (a0 = 4.077 Ǻ), reported as antiferromagnetic. Computer simulations were performed using the generalized gradient approximation exchange-correlation functional with included Hubbard correction term; (GGA+U) approach. The relative stabilities of the hexagonal and cubic phases versus applied pressure were investigated. The stability of different magnetic structures available from theoretical calculations and experimental results has been studied. The elastic constants have been evaluated via the Birch-Murnaghan equation of state. According to the DFT calculations RbNiF3 is an insulator in both phase structures. The present results for calculated electronic band structure, magnetic structures, lattice parameters, atomic positions and elastic constants can reproduce reasonably well the available own and literature data. For the cubic phase G type antiferromagnetic ordering with magnetization collinear to axis <111> was predicted.

  5. First-principles simulations of CaO and CaSiO3 liquids: structure, thermodynamics and diffusion

    NASA Astrophysics Data System (ADS)

    Bajgain, Suraj K.; Ghosh, Dipta B.; Karki, Bijaya B.

    2015-05-01

    We have performed first-principles molecular dynamics simulations of CaO and CaSiO3 liquids over broad ranges of pressure (0-150 GPa) and temperature (2,500-8,000 K) within density-functional theory. The simulated liquid structure changes considerably on compression with the mean cation-anion coordination numbers increasing nearly linearly with volume. The Ca-O coordination number increases from 5 (7) near the ambient pressure to 8 (10) at high pressure for CaO (CaSiO3) liquid. The Si-O coordination number increases from 4 to 6 over the same pressure regime. Our results show that both liquids are much more compressible than their solid counterparts implying the possibility of liquid-solid density crossovers at high pressure. The Grüneisen parameter of both the liquids increases with pressure, which is opposite in case of crystalline phases. The calculated self-diffusion coefficients strongly depend on temperature and pressure, thereby requiring non-Arrhenian representation with variable activation volume. The diffusivity differences between the two liquids tend to be large at low-temperature and low-pressure regime. Also, comparisons with MgSiO3 liquid suggest that network modifier cations Ca and Mg behave similarly though Ca is more coordinated and more mobile as compared to Mg.

  6. Atomic partial charges on CH3NH3PbI3 from first-principles electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Madjet, Mohamed E.; El-Mellouhi, Fedwa; Carignano, Marcelo A.; Berdiyorov, Golibjon R.

    2016-04-01

    We calculated the partial charges in methylammonium (MA) lead-iodide perovskite CH3NH3PbI3 in its different crystalline phases using different first-principles electronic charge partitioning approaches, including the Bader, ChelpG, and density-derived electrostatic and chemical (DDEC) schemes. Among the three charge partitioning methods, the DDEC approach provides chemically intuitive and reliable atomic charges for this material, which consists of a mixture of transition metals, halide ions, and organic molecules. The DDEC charges are also found to be robust against the use of hybrid functionals and/or upon inclusion of spin-orbit coupling or dispersive interactions. We calculated explicitly the atomic charges with a special focus on the dipole moment of the MA molecules within the perovskite structure. The value of the dipole moment of the MA is reduced with respect to the isolated molecule due to charge redistribution involving the inorganic cage. DDEC charges and dipole moment of the organic part remain nearly unchanged upon its rotation within the octahedral cavities. Our findings will be of both fundamental and practical importance, as the accurate and consistent determination of the atomic charges is important in order to understand the average equilibrium distribution of the electrons and to help in the development of force fields for larger scale atomistic simulations to describe static, dynamic, and thermodynamic properties of the material.

  7. First principles many-body calculations of electronic structure and optical properties of SiC nanoribbons

    NASA Astrophysics Data System (ADS)

    Alaal, Naresh; Loganathan, Vaideesh; Medhekar, Nikhil; Shukla, Alok

    2016-03-01

    A first principles many-body approach is employed to calculate the band structure and optical response of nanometer-sized ribbons of SiC. Many-body effects are incorporated using the GW approximation, and excitonic effects are included using the Bethe-Salpeter equation. Both unpassivated and hydrogen-passivated armchair SiC nanoribbons are studied. As a consequence of low dimensionality, large quasiparticle corrections are seen to the Kohn-Sham energy gaps. In both cases quasiparticle band gaps are increased by up to 2 eV, as compared to their Kohn-Sham energy values. Inclusion of electron-hole interactions modifies the absorption spectra significantly, giving rise to strongly bound excitonic peaks in these systems. The results suggest that hydrogen passivated armchair SiC nanoribbons have the potential to be used in optoelectronic devices operating in the UV-Vis region of the spectrum. We also compute the formation energies of these nanoribbons as a function of their widths, and conclude that hydrogen-saturated ribbons will be much more stable as compared to bare ones.

  8. Electronic structures and optical properties of Nb-doped SrTiO3 from first principles

    NASA Astrophysics Data System (ADS)

    Shujuan, Jiao; Jinliang, Yan; Guipeng, Sun; Yinnü, Zhao

    2016-07-01

    The n-type Nb-doped SrTiO3 with different doping concentrations were studied by first principles calculations. The effects of Nb concentration on the formation enthalpy, electronic structure and optical property were investigated. Results show that Nb preferentially enters the Ti site in SrTiO3, which is in good agreement with the experimental observation. The Fermi level of Nb-doped SrTiO3 moves into the bottom of the conduction band, and the system becomes an n-type semiconductor. The effect of Nb-doping concentration on the conductivity was discussed from the microscopic point of view. Furthermore, the 1.11 at% Nb-doped SrTiO3 shows strong absorption in the visible light and becomes a very useful material for photo-catalytic activity. The 1.67 at% and 2.5 at% Nb-doped models will be potential transparent conductive materials. Project supported by the National Natural Science Foundation of China (No. 10974077) and the Innovation Project of Shandong Graduate Education, China (No. SDYY13093).

  9. Structural and electronic properties of Li-ion battery cathode material MoF{sub 3} from first-principles

    SciTech Connect

    Li, A.Y.; Wu, S.Q.; Yang, Y.; Zhu, Z.Z.

    2015-07-15

    The transition metal fluorides have been extensively investigated recently as the electrode materials with high working voltage and large capacity. The structural, electronic and magnetic properties of MoF{sub 3} are studied by the first-principles calculations within both the generalized gradient approximation (GGA) and GGA+U frameworks. Our results show that the antiferromagnetic configuration of MoF{sub 3} is more stable than the ferromagnetic one, which is consistent with experimental results. The analysis of the electronic density of states shows that MoF{sub 3} is a Mott–Hubbard insulator with a d–d type band gap, which is similar to the case of FeF{sub 3}. Moreover, small spin polarizations were found on the sites of fluorine ions, which accords with a fluorine-mediated superexchange mechanism for the Mo–Mo magnetic interaction. - Graphical abstract: Deformation charge density and spin-density for MoF{sub 3} in the AF configuration. - Highlights: • The ground state of MoF{sub 3} is shown to be antiferromagnetic, in consistent with experiments. • The electronic states show that MoF{sub 3} is a Mott–Hubbard insulator with a d–d type band gap. • A fluorine-mediated super-exchange mechanism for the Mo–Mo magnetic interaction is shown.

  10. First-principles electronic structure study of the monoclinic crystal bismuth triborate BiB3O6.

    PubMed

    Yang, Jun; Dolg, Michael

    2006-10-05

    Monoclinic BiB(3)O(6) is an excellent nonlinear optical material with many advantages compared to other borate crystals. The origins of the optical effects and the chemical stability of BiB(3)O(6) are studied with gradient-corrected hybrid B3PW density functional theory within the Gaussian-orbital-based CO-LCAO scheme. Including spin-orbit coupling, the B3PW hybrid functional provides an estimate of the indirect band gap of 4.29-4.99 eV closer to the experimental value of 4.3 eV than HF, LDA, or GGA. The crystal orbital overlap population to give a detailed first-principles analysis of chemical bonding and the density of optical absorptions by convoluting the occupied density of states and the virtual density of states have been calculated. Obvious Bi-O covalent bonds have been found with different energy ranges for 6s-2p and 6p-2p interactions. The reason that [BiO(4)](5-) units are mainly responsible for the optics of BiB(3)O(6) in the long-wavelength region is due to the electronic transfer from occupied O 2p to empty Bi 6p orbitals favored by the Bi-O covalent bonds. The relativistic and correlation effects lead to fundamental differences of the band structure, chemical bonds, and optical effects for BiB(3)O(6) compared with nonrelativistic and uncorrelated calculations.

  11. Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations.

    PubMed

    Jiang, Hao; Cao, Guanghan; Cao, Chao

    2015-11-03

    The electronic structure of quasi-one-dimensional superconductor K2Cr3As3 is studied through systematic first-principles calculations. The ground state of K2Cr3As3 is paramagnetic. Close to the Fermi level, the Cr-3dz(2), dxy, and d(x(2)-y(2)) orbitals dominate the electronic states, and three bands cross EF to form one 3D Fermi surface sheet and two quasi-1D sheets. The electronic DOS at EF is less than 1/3 of the experimental value, indicating a large electron renormalization factor around EF. Despite of the relatively small atomic numbers, the antisymmetric spin-orbit coupling splitting is sizable (≈60 meV) on the 3D Fermi surface sheet as well as on one of the quasi-1D sheets. Finally, the imaginary part of bare electron susceptibility shows large peaks at Γ, suggesting the presence of large ferromagnetic spin fluctuation in the compound.

  12. The electronic structures and ferromagnetism of Fe-doped GaSb: The first-principle calculation study

    NASA Astrophysics Data System (ADS)

    Lin, Xue-ling; Niu, Cao-ping; Pan, Feng-chun; Chen, Huan-ming; Wang, Xu-ming

    2017-09-01

    The electronic structures and the magnetic properties of Fe doped GaSb have been investigated by the first-principles calculation based on the framework of the generalized gradient approximation (GGA) and GGA+U schemes. The calculated results indicated that Fe atoms tend to form the anti-ferromagnetic (AFM) coupling with the nearest-neighbor positions preferentially. Compared with the anti-ferromagnetic coupling, the ferromagnetic interactions occurred at the second nearest-neighbor and third nearest-neighbor sites have a bigger superiority energetically. The effect of strong electron correlation at Fe-d orbit taking on the magnetic properties predicted by GGA+U approach demonstrated that the ferromagnetic (FM) coupling between the Fe ions is even stronger in consideration of the strong electron correlation effect. The ferromagnetism in Fe doped GaSb system predicted by our investigation implied that the doping of Fe into GaSb can be as a vital routine for manufacturing the FM semiconductors with higher Curie temperature.

  13. Structural and electronic properties of free standing one-sided and two-sided hydrogenated silicene: A first principle study

    SciTech Connect

    Mohan, Brij Kumar, Ashok Ahluwalia, P. K.

    2014-04-24

    We performed first-principle study of the structural and electronic properties of two-dimensional hydrogenated silicene for two configurations; one is hydrogenation along one side of silicene sheet and second is hydrogenation in both sides of silicene sheet. The one-side hydrogenated silicene is found stable at planar geometry while increased buckling of 0.725 Å is found for both-side hydrogenated silicene. The result shows that the hydrogenation occupy the extended π-bonding network of silicene, and thus it exhibits semi-conducting behaviour with a band gap of 1.77 eV and 2.19 eV for one-side hydrogenated silicene and both-side hydrogenated silicene respectively. However, both-side hydrogenated silicene of binding energy 4.56 eV is more stable than one-side hydrogenated silicene of binding energy 4.30 eV, but experimentally silicene is synthesized on substrates which interacts one side of silicene layer and only other side is available for H-atoms. Therefore, practically one-side hydrogenation is also important.

  14. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    NASA Astrophysics Data System (ADS)

    Schulthess, T. C.; Temmerman, W. M.; Szotek, Z.; Svane, A.; Petit, L.

    2007-04-01

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments.

  15. Structural and electronic properties of free standing one-sided and two-sided hydrogenated silicene: A first principle study

    NASA Astrophysics Data System (ADS)

    Mohan, Brij; Kumar, Ashok; Ahluwalia, P. K.

    2014-04-01

    We performed first-principle study of the structural and electronic properties of two-dimensional hydrogenated silicene for two configurations; one is hydrogenation along one side of silicene sheet and second is hydrogenation in both sides of silicene sheet. The one-side hydrogenated silicene is found stable at planar geometry while increased buckling of 0.725 Å is found for both-side hydrogenated silicene. The result shows that the hydrogenation occupy the extended π-bonding network of silicene, and thus it exhibits semi-conducting behaviour with a band gap of 1.77 eV and 2.19 eV for one-side hydrogenated silicene and both-side hydrogenated silicene respectively. However, both-side hydrogenated silicene of binding energy 4.56 eV is more stable than one-side hydrogenated silicene of binding energy 4.30 eV, but experimentally silicene is synthesized on substrates which interacts one side of silicene layer and only other side is available for H-atoms. Therefore, practically one-side hydrogenation is also important.

  16. First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors

    SciTech Connect

    Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa; Svane, Axel; Petit, Leon

    2007-01-01

    We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.

  17. Electronic structure and magnetism of Ge(Sn)TMXTe1-X (TM = V, Cr, Mn): A first principles study

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Bose, S. K.; Kudrnovský, J.

    2016-12-01

    This work presents the results of first principles calculations of the electronic and magnetic properties of the compound SnTe and GeTe in zinc blende (ZB) and rock salt (RS) structures, doped with 3d transition metal V, Cr, and Mn. The present study, initiated from the viewpoint of potential application in spintronics, is motivated by our earlier work involving these two compounds, where the doping was limited to the Sn and Ge sublattices. In view of some discrepancies between our calculated results and the available experimental data, in this work we have examined the effect of the Te-sublattice doping. The case of Mn-doping, where the previous results of calculations seemed to differ most from the experimentally available data, is examined further by looking at the effect of Mn atoms partially occupying interstitial sites as well. From the standpoint of potential application in spintronics, we look for half-metallic (HM) states and tabulate their properties in both rock salt and zinc blende structures. ZB structure is found to be more conducive to HM state in general. Among the binary compounds we identify several HM candidates: VGe, VSn, MnGe, MnSn and MnTe at their equilibrium volumes and all in ZB structure. Estimates of the Curie temperature for the ferromagnetic compounds including the half-metals are presented. It is shown that despite the ferromagnetic (FM) nature of the Mn-Mn interaction for the Te-doped case, a simultaneous doping of both Ge(Sn)- and Te-sublattice with Mn atoms would leave the material predominantly antiferromagnetic (AFM).

  18. Combining (27)Al Solid-State NMR and First-Principles Simulations To Explore Crystal Structure in Disordered Aluminum Oxynitride.

    PubMed

    Tu, Bingtian; Liu, Xin; Wang, Hao; Wang, Weimin; Zhai, Pengcheng; Fu, Zhengyi

    2016-12-19

    The nuclear magnetic resonance (NMR) technique gives insight into the local information in a crystal structure, while Rietveld refinement of powder X-ray diffraction (PXRD) sketches out the framework of a crystal lattice. In this work, first-principles calculations were combined with the solid-state NMR technique and Rietveld refinement to explore the crystal structure of a disordered aluminum oxynitride (γ-alon). The theoretical NMR parameters (chemical shift, δiso, quadrupolar coupling constants, CQ, and asymmetry parameter, η) of Al22.5O28.5N3.5, predicted by the gauge-including projector augmented wave (GIPAW) algorithm, were used to facilitate the analytical investigation of the (27)Al magic-angle spinning (MAS) NMR spectra of the as-prepared sample, whose formula was confirmed to be Al2.811O3.565N0.435 by quantitative analysis. The experimental δiso, CQ, and η of (27)Al showed a small discrepancy compared with theoretical models. The ratio of aluminum located at the 8a to 16d sites was calculated to be 0.531 from the relative integration of peaks in the (27)Al NMR spectra. The occupancies of aluminum at the 8a and 16d positions were determined through NMR investigations to be 0.9755 and 0.9178, respectively, and were used in the Rietveld refinement to obtain the lattice parameter and anion parameter of Al2.811O3.565N0.435. The results from (27)Al NMR investigations and PXRD structural refinement complemented each other. This work provides a powerful and accessible strategy to precisely understand the crystal structure of novel oxynitride materials with multiple disorder.

  19. First-Principles Calculations for the Structural and Electronic Properties of ScxAl1-xN Alloys

    NASA Astrophysics Data System (ADS)

    Mohammad, Rezek; Katircioğlu, Şenay

    2013-10-01

    The first-principles calculations based on Density Functional Theory (DFT) within generalized gradient approximation (GGA) of Engel-Vosko-Perdew-Wang and modified exact exchange potential of Becke-Johnson have been introduced for the structural and electronic properties of the ScxAl1-xN alloys, respectively. The present lattice constants calculated for the ScAlN alloys and the end compounds (AlN and ScN) are found to be in very good agreement with the available experimental and theoretical ones. The stable ground state structures of the ScxAl1-xN alloys are determined to be wurtzite for the Sc concentration less than 0.403 and rock-salt for the higher Sc concentrations. The present electronic band structure calculations within Becke-Johnson scheme are found to be capable of providing energy band gaps of the AlN and ScN compounds very close to the ones of the available experiments and expensive calculations. According to the calculations of Becke-Johnson potential, the ScxAl1-xN alloys in the wurtzite and zinc-blende structures are direct band gap materials for the Sc concentrations in the ranges of (0.056 ≤ x ≤ 0.833) and (0.03125 ≤ x ≤ 0.0625, 0.375 ≤ x ≤ 0.96875), respectively. However, the ScAlN alloys in the rock-salt phase are determined to be direct band gap materials for total range of the Sc concentration considered in this work. While the energy gaps of the RS-AlScN alloys are found to be extending from near ultraviolet to near infrared with a large (negative) bowing, the ones of the WZ-AlScN and ZB-AlScN alloys are determined to be varying in a small energy range around near ultraviolet with a small (negative) bowing.

  20. The effect of moisture on the structures and properties of lead halide perovskites: a first-principles theoretical investigation.

    PubMed

    Zhang, Lei; Ju, Ming-Gang; Liang, WanZhen

    2016-08-17

    With efficiencies exceeding 20% and low production costs, lead halide perovskite solar cells (PSCs) have become potential candidates for future commercial applications. However, there are serious concerns about their long-term stability and environmental friendliness, heavily related to their commercial viability. Herein, we present a theoretical investigation based on the ab initio molecular dynamics (AIMD) simulations and the first-principles density functional theory (DFT) calculations to investigate the effects of sunlight and moisture on the structures and properties of MAPbI3 perovskites. AIMD simulations have been performed to simulate the impact of a few water molecules on the structures of MAPbI3 surfaces terminated in three different ways. The evolution of geometric and electronic structures as well as the absorption spectra has been shown. It is found that the PbI2-terminated surface is the most stable while both the MAI-terminated and PbI2-defective surfaces undergo structural reconstruction, leading to the formation of hydrated compounds in a humid environment. The moisture-induced weakening of photoabsorption is closely related to the formation of hydrated species, and the hydrated crystals MAPbI3·H2O and MA4PbI6·2H2O scarcely absorb the visible light. The electronic excitation in the bare and water-absorbed MAPbI3 nanoparticles tends to weaken Pb-I bonds, especially those around water molecules, and the maximal decrease of photoexcitation-induced bond order can reach up to 20% in the excited state in which the water molecules are involved in the electronic excitation, indicating the accelerated decomposition of perovskites in the presence of sunlight and moisture. This work is valuable for understanding the mechanism of chemical or photochemical instability of MAPbI3 perovskites in the presence of moisture.

  1. Determination of solubility limit of Sn(4+) in fluorite structured terbia with simultaneous evaluation of photocatalytic function.

    PubMed

    Tripathi, Vikash Kumar; Nagarajan, Rajamani

    2016-07-05

    Although the fluorite structure is highly common among stoichiometric and non-stoichiometric terbia compositions, high pressures are necessary to stabilize SnO2 in the fluorite structure. With this objective, the extent of solubility of Sn(4+) in terbia possessing the fluorite structure has been determined by conducting its synthesis via an epoxide mediated sol-gel method. Up to 40% of Sn(4+) can be incorporated in terbia, which retains its fluorite structure, as concluded from PXRD, FTIR, Raman spectroscopy, FESEM, HR-TEM and SAED measurements. The cubic lattice constant decreases systematically, as inferred from successful Rietveld refinements of PXRD patterns. The stretching vibration of the Tb-O bond is manifested as broad band at 734 cm(-1) for the terbia, and moves to lower wavenumber for the tin substituted samples. The broad band at 611 cm(-1) in the Raman spectrum of terbia became even broader with the maxima shifting towards higher values, which indicated the strain of the lattice and generation of oxygen vacancies with progressive tin substitution. The band gap value increased from 1.78 eV for terbia to 2.05 eV for the 40% tin substituted sample. Emission in the blue region became intense upon tin substitution, which was indicative of increased oxygen vacancies and this has been constructively utilized for environmental remediation as a catalyst to degrade aqueous Rhodamine-6G and Methylene Blue dye solutions.

  2. First principles study of structure and properties of La- and Mn-modified BiFeO3

    NASA Astrophysics Data System (ADS)

    Antonov, V.; Georgieva, I.; Trendafilova, N.; Kovacheva, D.; Krezhov, K.

    2012-07-01

    First principles calculations have been performed to study the effects of the La3+ and Mn3+ substitutions in the multiferroic BiFeO3. The real compositions Bi1-xLaxFeO3 and BiFe1-xMnxO3 with x = 0.0, 0.1, 0.2, 0.3 were modeled by substitution of one, two and three Bi3+ or Fe3+ by La3+ or Mn3+ in the orthorhombic BiFeO3 structure, respectively. Density functional theory within the generalized gradient approximation with Hubbard correction of Dudarev (GGA + U) and plane wave pseudo-potential approach has been used to track the changes that occur in the structural parameters, electronic structure, magnetic, optical and polarization properties of the modified BiFeO3. The substitution of one Bi3+ with La3+ increases the band gap energy whereas the augmentation of La3+ substitutes decreases it. The substitutions of Fe3+ with Mn3+ do not change the band gap energy. The calculations predicted larger polarization of the modified BiFeO3, antiferromagnetism for Bi1-xLaxFeO3 and small ferrimagnetism for BiFe1-xMnxO3. Better multiferroic properties are expected for BiFe1-xMnxO3 materials (x = 0.1, 0.2) due to the increasing polarization and ferrimagnetic behavior. The optical properties were estimated by the calculated imaginary and real parts of the dielectric function. The increase of La3+ and Mn3+ substitutes lead to lower absorption intensity at energy range 2-7 eV.

  3. Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study.

    PubMed

    Ding, Yi; Wang, Yanli

    2016-08-17

    Germanium monochalcogenides, i.e. GeS and GeSe sheets, are isoelectronic analogues of phosphorene, which have been synthesized in recent experiments (P. Ramasamy et al., J. Mater. Chem. C, 2016, 4, 479). Utilizing first-principles calculations, we have investigated their tunable electronic and magnetic properties via light non-metallic atom (B, C, N, O, Si, P, S) functionalization. We find that on these GeS and GeSe sheets O and S adatoms prefer to locate at the top site above the Ge atom, while the other ones like to occupy the anion site, which push the original S/Se atom to the hollow site instead. O and S adatoms slightly affect the semiconducting behaviour of the doped systems, while B, C, N, Si, P ones will drastically modify their band structures and induce versatile spintronic properties. Through the supercell calculations, B and C adatoms are found to induce a bipolar semiconducting behaviour in the decorated systems, while the N/P adatom will cause a spin-gapless-semiconducting/nearly-half-metallic feature in them. The B/C/N/Si/P-substituted GeS/GeSe sheet can be formed by removing the hollow-site S/Se atom from the adatom-decorated structures, which exhibit an opposite semiconducting/metallic behaviour to their phosphorene counterparts. A general odd-even rule is proposed for this phenomenon, which shows that an odd (even) number of valence electron difference between the substitution and host atoms would cause a metallic (semiconducting) feature in the substituted systems. Our study demonstrates that atom functionalization is an efficient way to tailor the properties of GeS and GeSe nanosheets, which have adaptable electronic properties for potential applications in nanoelectronics and spintronics.

  4. First-principles study of electronic structures and photocatalytic activity of low-Miller-index surfaces of ZnO

    SciTech Connect

    Zhang Haifeng; Lu Shixiang; Xu Wenguo; Yuan Feng

    2013-01-21

    First-principles calculations have been performed to investigate the electronic structures and optical properties of the main low-Miller-index surfaces of ZnO: nonpolar (1010) and (1120) surfaces as well as polar (0001)-Zn and (0001)-O surfaces. According to the structure optimization results, there are similar relaxation behaviors for the (1010) and (1120) surfaces, both with a strong tilting of the surface Zn-O dimers and an obvious contraction of the surface bonds. For the polar surfaces, the surface double layers both tend to relax inwards, but the largest relaxation is found on the (0001)-O surfaces. The calculated band gaps are 0.56, 0.89, 0.21, and 0.71 eV for (1010), (1120), (0001)-Zn and (0001)-O surfaces, respectively. For the nonpolar (1010) and 1120 surfaces, the Fermi levels locate at the valence band maximum, which are similar to that of bulk ZnO. The surface states in the conduction band lead to the increased Fermi level and cause the n-type conduction behavior for (0001)-Zn surface. For the (0001)-O surface, the Fermi level shifts down a little into the valence band, leading to the p-type conduction behavior. From the optical properties calculations, absorption regions of all the four surfaces are quite wide and the main absorption peaks locate in the UV region. For the (0001)-Zn surface, it has the strongest absorptions in the near UV-light range and a remarkable red-shift phenomenon of the absorption edge. This indicates that (0001)-Zn surface has the highest photocatalytic activity among the four surfaces as the low excitation energy is required theoretically. The computed results are in accordance with the experimental observations.

  5. First-principles study of structural, electronic, vibrational, dielectric and elastic properties of tetragonal Ba2YTaO6

    NASA Astrophysics Data System (ADS)

    Ganeshraj, C.; Santhosh, P. N.

    2014-10-01

    We report first-principles study of structural, electronic, vibrational, dielectric, and elastic properties of Ba2YTaO6, a pinning material in high temperature superconductors (HTS), by using density functional theory. By using different exchange-correlation potentials, the accuracy of the calculated lattice constants of Ba2YTaO6 has been achieved with GGA-RPBE, since many important physical quantities crucially depend on change in volume. We have calculated the electronic band structure dispersion, total and partial density of states to study the band gap origin and found that Ba2YTaO6 is an insulator with a direct band gap of 3.50 eV. From Mulliken population and charge density studies, we conclude that Ba2YTaO6 have a mixed ionic-covalent character. Moreover, the vibrational properties, born effective charges, and the dielectric permittivity tensor have been calculated using linear response method. Vibrational spectrum determined through our calculations agrees well with the observed Raman spectrum, and allows assignment of symmetry labels to modes. We perform a detailed analysis of the contribution of the various infrared-active modes to the static dielectric constant to explain its anisotropy, while electronic dielectric tensor of Ba2YTaO6 is nearly isotropic, and found that static dielectric constant is in good agreement with experimental value. The six independent elastic constants were calculated and found that tetragonal Ba2YTaO6 is mechanically stable. Other elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and elastic anisotropy ratios are also investigated and found that Poisson's ratio and Young's modulus of Ba2YTaO6 are similar to that of other pinning materials in HTS.

  6. Electronic structures and mechanical properties of Al(111)/ZrB2(0001) heterojunctions from first-principles calculation

    NASA Astrophysics Data System (ADS)

    Luo, Kan; Deng, Qihuang; Zha, Xianhu; Huang, Qing; Francisco, Joseph S.; Yu, Xiaohui; Qiao, Yingjie; He, Jian; Du, Shiyu

    2015-07-01

    Employing first-principles density functional theory (DFT), the structures and electronic and mechanical properties of Al(111)/ZrB2(0001) heterojunctions are investigated. It is found that both B-terminated ZrB2(0001) and Zr-terminated ZrB2(0001) can form heterojunction interfaces with Al(111) surface. The heterojunction with B-terminated ZrB2(0001) is demonstrated to be most stable by comparing the surface adhesion energies of six different heterojunction models. In the stable configurations, the Al atom is found projecting to the hexagonal hollow site of neighbouring boron layer for the B-terminated ZrB2(001), and locating at the top site of the boron atoms for Zr-terminated ZrB2(001) interface. The mechanisms of interface interaction are investigated by density of states, charge density difference and band structure calculations. It is found that covalent bonds between surface Al atoms and B atoms are formed in the B-terminated heterojunction, whereas the Al atoms and Zr atoms are stabilised by interface metallic bonds for the Zr-terminated case. Mechanical properties of Al/ZrB2 heterojunctions are also predicted in the current work. The values of moduli of Al/ZrB2 heterojunctions are determined to be between those of single crystal Al and ZrB2, which exhibit the transition of mechanical strength between two bulk phases. DFT calculations with the current models provide the mechanical properties for each heterojunction and the corresponding contributions by each type of interface in the composite materials. This work paves the way for industrial applications of Al(111)/ZrB2(0001) heterojunctions.

  7. Interface structure in Cu/Ta2O5/Pt resistance switch: a first-principles study.

    PubMed

    Xiao, Bo; Watanabe, Satoshi

    2015-01-14

    The interface structures of a Cu/Ta2O5/Pt resistance switch under various oxidation conditions have been examined from first-principles. The O-rich Cu/Ta2O5 interface is found to be stable within a wide range of O chemical potentials. In this interface structure, a considerable number of interface Cu atoms tend to migrate to the amorphous Ta2O5 (a-Ta2O5) layer, which causes the formation of the Cu2O layer. The interface Cu atoms become more ionized with an increase in the interface O concentration and/or temperature. These ionized Cu(+) ions could function as one of the main sources for the formation of conduction filaments in the Cu/a-Ta2O5/Pt resistance switch. In contrast, the ionization of the interface Cu atoms is not observed in the Cu/crystal-Ta2O5 interface primarily due to the much lower Cu ionic conductivity in crystal-Ta2O5 than that in amorphous state. In addition, the Pt electrode could not be ionized, irrespective of the interface O concentration and temperature. The formation of interface O vacancies in Pt/Ta2O5 is always energetically more stable than that in Cu/Ta2O5, which may be partly responsible for the cone shape of conduction filament formed in the Cu/a-Ta2O5/Pt resistance switch, where the base of the cone lies on the Pt/Ta2O5 interface.

  8. First-principles study of structural, elastic, and electronic properties of CeB6 under pressure

    NASA Astrophysics Data System (ADS)

    Tang, Mei; Liu, Lei; Cheng, Yan; Ji, Guang-Fu

    2015-12-01

    We performed a first-principles study of the electronic, elastic, and thermal properties of the rareearth hexaboride CeB6 using the local density approximation (LDA) in consideration of the effective onsite Coulomb parameter U eff . To systemically evaluate the effect of U eff on the structure of the material, the dependences of the lattice parameter a 0 and bulk modulus B on U eff were examined in the framework of the LDA+ U and GGA(PBE)+ U scheme. We obtained a lattice constant a 0, elastic constants C ij , and a bulk modulus B at 0 K and 0 GPa that were in good agreement with the experimental results and other theoretical findings. We focused on the electronic structure by analyzing the variation of the density of states with different U eff values and pressures, which indicates the metallic characteristic of CeB6. Interestingly, the effect of high pressure was similar to that of increasing U eff , as the peaks at the bottom of the conduction band moved to the high-energy region in both cases. The elastic constants C ij , bulk modulus B, shear modulus G, Young's modulus E, shear-sound velocity V S , and longitudinal-sound velocity V L were calculated from 0 to 120 GPa. Additionally, the Debye temperature Θ D and elastic Debye temperature Θ E were systematically calculated using the thermodynamic methods in the range of 0-100 GPa. This research may provide a comprehensive understanding of the Kondo compound CeB6 and similar rare-earth hexaborides.

  9. First-principles study of configurational disorder in B4C using a superatom-special quasirandom structure method

    NASA Astrophysics Data System (ADS)

    Ektarawong, A.; Simak, S. I.; Hultman, L.; Birch, J.; Alling, B.

    2014-07-01

    Configurationally disordered crystalline boron carbide, with the composition B4C, is studied using first-principles calculations. We investigate both dilute and high concentrations of carbon-boron substitutional defects. For the latter purpose, we suggest a superatom's picture of the complex structure and combine it with a special quasirandom structure approach for disorder. In this way, we model a random distribution of high concentrations of the identified low-energy defects: (1) bipolar defects and (2) rotation of icosahedral carbon among the three polar-up sites. Additionally, the substitutional disorder of the icosahedral carbon at all six polar sites, as previously discussed in the literature, is also considered. Two configurational phase transitions from the ordered to the disordered configurations are predicted to take place upon an increase in temperature using a mean-field approximation for the entropy. The first transition, at 870 K, induces substitutional disorder of the icosahedral carbon atoms among the three polar-up sites; meanwhile the second transition, at 2325 K, reveals the random substitution of the icosahedral carbon atoms at all six polar sites coexisting with bipolar defects. Already the first transition removes the monoclinic distortion existing in the ordered ground-state configuration and restore the rhombohedral system (R3m). The restoration of inversion symmetry yielding the full rhombohedral symmetry (R3¯m ) on average, corresponding to what is reported in the literature, is achieved after the second transition. Investigating the effects of high pressure on the configurational stability of the disordered B4C phases reveals a tendency to stabilize the ordered ground-state configuration as the configurationally ordering/disordering transition temperature increases with pressure exerted on B4C. The electronic density of states, obtained from the disordered phases, indicates a sensitivity of the band gap to the degree of configurational

  10. First-principles study of structural, electronic, vibrational, dielectric and elastic properties of tetragonal Ba₂YTaO₆

    SciTech Connect

    Ganeshraj, C.; Santhosh, P. N.

    2014-10-14

    We report first-principles study of structural, electronic, vibrational, dielectric, and elastic properties of Ba₂YTaO₆, a pinning material in high temperature superconductors (HTS), by using density functional theory. By using different exchange-correlation potentials, the accuracy of the calculated lattice constants of Ba₂YTaO₆ has been achieved with GGA-RPBE, since many important physical quantities crucially depend on change in volume. We have calculated the electronic band structure dispersion, total and partial density of states to study the band gap origin and found that Ba₂YTaO₆ is an insulator with a direct band gap of 3.50 eV. From Mulliken population and charge density studies, we conclude that Ba₂YTaO₆ have a mixed ionic-covalent character. Moreover, the vibrational properties, born effective charges, and the dielectric permittivity tensor have been calculated using linear response method. Vibrational spectrum determined through our calculations agrees well with the observed Raman spectrum, and allows assignment of symmetry labels to modes. We perform a detailed analysis of the contribution of the various infrared-active modes to the static dielectric constant to explain its anisotropy, while electronic dielectric tensor of Ba₂YTaO₆ is nearly isotropic, and found that static dielectric constant is in good agreement with experimental value. The six independent elastic constants were calculated and found that tetragonal Ba₂YTaO₆ is mechanically stable. Other elastic properties, including bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and elastic anisotropy ratios are also investigated and found that Poisson's ratio and Young's modulus of Ba₂YTaO₆ are similar to that of other pinning materials in HTS.

  11. Structurally unstable III-Bi-O3 perovskites are predicted to be topological insulators but their stable structural forms are just band insulators: A first principles study

    NASA Astrophysics Data System (ADS)

    Trimarchi, Giancarlo; Freeman, Arthur J.; Zhang, Xiuwen; Zunger, Alex

    2014-03-01

    Several Bi oxides in the assumed cubic Pm 3 m perovskite structure have recently been identified as topological insulators or semi-metals by first-principles calculations. In these perovskites, Bi is at the octahedral site and the A atom at the interstitial site is a column III cation, i.e., Al, Ga, In, Sc, Y, La. We use density functional total-energy calculations and crystal structure prediction to determine the energetically stable phases for these oxides. We find that these Pm 3 m ABiO3 perovskites are topological insulators, confirming recent results obtained by our and other groups. However, switching the position of Bi and A in the Pm 3 m perovskite produces trivial insulators or semimetals, as opposed to topological insulators. Indeed, symmetry-lowering via concerted tilting and internal deformation of the octahedra, stabilizes these Bi oxides, irrespective of the position of Bi, producing the stable Pnma perovskite structure that is not a topological insulator. This illustrates that a simultaneous application of ``first-principles thermodynamics'' with first-principles electronic structure (Z2 evaluation) is needed to establish stable topological insulators. Work at Northwestern supported by the DOE ER46536 grant; work at U. of Colorado, Boulder supported by the NSF DMR-1334170 grant.

  12. Understanding the Atomic-Level Chemistry and Structure of Oxide Deposits on Fuel Rods in Light Water Nuclear Reactors Using First Principles Methods

    NASA Astrophysics Data System (ADS)

    Rak, Zs.; O'Brien, C. J.; Brenner, D. W.; Andersson, D. A.; Stanek, C. R.

    2016-11-01

    The results of recent studies are discussed in which first principles calculations at the atomic level have been used to expand the thermodynamic database for science-based predictive modeling of the chemistry, composition and structure of unwanted oxides that deposit on the fuel rods in pressurized light water nuclear reactors. Issues discussed include the origin of the particles that make up deposits, the structure and properties of the deposits, and the forms by which boron uptake into the deposits can occur. These first principles approaches have implications for other research areas, such as hydrothermal synthesis and the stability and corrosion resistance of other materials under other extreme conditions.

  13. The structures, stabilities, electronic and magnetic properties of fully and partially hydrogenated germanene nanoribbons: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Liu, Jingwei; Yu, Guangtao; Shen, Xiaopeng; Zhang, Hui; Li, Hui; Huang, Xuri; Chen, Wei

    2017-03-01

    Based on the first-principles DFT computations, we systematically investigated the geometries, stabilities, electronic and magnetic properties of fully and partially hydrogenated Ge nanoribbons (fH-GeNRs and pH-GeNRs) with the zigzag and armchair edges. It is revealed that the chair-like configuration is the lowest-lying one for zigzag/armchair-edged fH-GeNRs. Regardless of the edge chirality, the full hydrogenation can effectively widen the band gap of GeNR, and endow fH-GeNRs with the nonmagnetic (NM) semiconducting behaviors, where the band gap decreases with the increase of ribbon width. Comparatively, independent of hydrogenation ratio, all the pH-GeNRs with zigzag edge are the antiferromagnetic semiconductors while all the pH-GeNRs with armchair edge are NM semiconductors. When increasing the hydrogenation ratio, the band gap of pH-GeNRs can increase, but the variation of band gap can exhibit the intriguing three family behavior for the armchair-edged pH-GeNRs. Especially, all these pH-GeNRs can exhibit the almost same electronic and magnetic properties as the remaining pristine GeNRs without hydrogenation. This may offer a potential strategy to realize the "narrow" GeNRs in large scale. Finally, all these hydrogenated GeNRs can possess high structure stability, indicating a great possibility of their experimental realization. These valuable insights can be advantageous for promoting the Ge-based nanomaterials in the application of multifunctional nanodevice.

  14. Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Rafique, Muhammad; Shuai, Yong; Tan, He-Ping; Hassan, Muhammad

    2017-03-01

    We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO3 halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO3 halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO3 doped graphene layer, the bond length between Csbnd O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO3 and VO3 substitution, system exhibits semiconductor properties. Interestingly, TiO3-substituted system shows dilute magnetic semiconductor behavior with 2.00 μB magnetic moment. On the other hand, the substitution of CoO3, CrO3, FeO3 and MnO3 induced 1.015 μB, 2.347 μB, 2.084 μB and 3.584 μB magnetic moment, respectively. In second case of O atoms doped in graphene and TM atoms adsorbed at the hollow site, the O atom bulges out of graphene plane and bond length between TM-O atom is increased. After TM atoms adsorption at the O substituted graphene ring the Fermi level (EF) shifts into conduction band. In case of Cr and Ni adsorption, system displays indirect band gap semiconductor properties with 0.0 μB magnetic moment. Co adsorption exhibits dilute magnetic semiconductor behavior producing 0.916 μB magnetic moment. Fe, Mn, Ti and V adsorption introduces band gap at high symmetric K-point also inducing 1.54 μB, 0.9909 μB, 1.912 μB, and 0.98 μB magnetic moments, respectively

  15. First-Principles Analysis on π-bonded Chain Structure on Several Polytypes of SiC Surfaces: Importance of Stacking Sequence on Energetics and Electronic Structures

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Tajima, Nobuo; Yamasaki, Takahiro; Ohno, Takahisa

    2017-09-01

    Using first principles calculations based on a density functional theory, the energetics and electronic properties of a (2 × 1) π-bonded chain structure in several polytypes of SiC surfaces are discussed with special attention to the stacking sequence of SiC bilayers. We found that the stacking sequence of the topmost two SiC bilayers plays a decisive role for the stability and electronic structures of the π-bonded chain structure. We showed that the homo-elemental bonds in π-bonded chain structures cause alterations in the electronic structures of both the Si- and C-faces. The energetics of π-bonded chain structures on other group IV and IV-IV compound semiconductors were also investigated. We also showed that the buckling structure in the monolayer honeycomb lattice reflects the buckling of the topmost two atoms in the π-bonded chain structure observed in Si(111) and Ge(111).

  16. Density functional theory study of the electronic structure of fluorite Cu2Se

    NASA Astrophysics Data System (ADS)

    Råsander, Mikael; Bergqvist, Lars; Delin, Anna

    2013-03-01

    We have investigated the electronic structure of fluorite Cu2Se using density functional theory calculations within the LDA, PBE and AM05 approximations as well as the non-local hybrid PBE0 and HSE approximations. We find that Cu2Se is a zero gap semiconductor when using either a local or semi-local density functional approximation while the PBE0 functional opens up a gap. For the HSE approximation, we find that the presence of a gap depends on the range separation for the non-local exchange. For the occupied part in the density of states we find that LDA, PBE, AM05, PBE0 and HSE agree with regard to the overall electronic structure. However, the hybrid functionals result in peaks shifted towards lower energy compared to LDA, PBE and AM05. The valence bands obtained using the hybrid functionals are in good agreement with experimental valence band spectra. We also find that the PBE, PBE0 and HSE approximations give similar results regarding bulk properties, such as lattice constants and bulk modulus. In addition, we have investigated the localization of the Cu d-states and its effect on the band gap in the material using the LDA + U approach. We find that a sufficiently high U indeed opens up a gap; however, this U leads to valence bands that disagree with experimental observations.

  17. Density functional theory study of the electronic structure of fluorite Cu2Se.

    PubMed

    Råsander, Mikael; Bergqvist, Lars; Delin, Anna

    2013-03-27

    We have investigated the electronic structure of fluorite Cu2Se using density functional theory calculations within the LDA, PBE and AM05 approximations as well as the non-local hybrid PBE0 and HSE approximations. We find that Cu2Se is a zero gap semiconductor when using either a local or semi-local density functional approximation while the PBE0 functional opens up a gap. For the HSE approximation, we find that the presence of a gap depends on the range separation for the non-local exchange. For the occupied part in the density of states we find that LDA, PBE, AM05, PBE0 and HSE agree with regard to the overall electronic structure. However, the hybrid functionals result in peaks shifted towards lower energy compared to LDA, PBE and AM05. The valence bands obtained using the hybrid functionals are in good agreement with experimental valence band spectra. We also find that the PBE, PBE0 and HSE approximations give similar results regarding bulk properties, such as lattice constants and bulk modulus. In addition, we have investigated the localization of the Cu d-states and its effect on the band gap in the material using the LDA + U approach. We find that a sufficiently high U indeed opens up a gap; however, this U leads to valence bands that disagree with experimental observations.

  18. A first principles study of structural stability, electronic structure and mechanical properties of beryllium alanate BeAlH5

    NASA Astrophysics Data System (ADS)

    Santhosh, M.; Rajeswarapalanichamy, R.; Priyanga, G. Sudha; Kanagaprabha, S.; Cinthia, A. Jemmy; Iyakutti, K.

    2015-06-01

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of BeAlH5 for monoclinic crystal structures with two different types of space group namely P21 and C2/c. Among the considered structures monoclinic (P21) phase is found to be the most stable at ambient condition. The structural phase transition from monoclinic (P21) to monoclinic (C2/c) phase is observed in BeAlH5. The electronic structure reveals that this compound is insulator. The calculated elastic constants indicate that this material is mechanically stable at ambient condition.

  19. First Principles Simulation of the Energetics, Structure and Effect of the 'Titanium-Clinohumite' Defect in Forsterite

    NASA Astrophysics Data System (ADS)

    Walker, A. M.; Berry, A. J.; Hermann, J.; O'Neill, H. S.

    2005-12-01

    Infrared spectroscopy (IR) of hydrogen bearing forsterite and olivine synthesised under differing chemical conditions show that the O-H stretching modes are controlled by the point defects present in the sample. Experiments where the silica activity was varied yield distinct infrared fingerprints that clearly distinguish when forsterite is buffered by MgO to form, in the simplest case, hydrated silicon vacancies from when forsterite is buffered by pyroxene to form hydrated magnesium vacancies[1,2]. This poses a problem for the interpretation of the spectra of natural mantle-derived samples as their most common fingerprint is more similar to that found in the MgO buffered experiments, despite the presence of pyroxene in the Earth's upper mantle. Recent experiments have shown that it is necessary to introduce trace amounts of titanium to reproduce exactly the infrared fingerprint of mantle olivines, and that this titanium fingerprint is present whether the sample is buffered by MgO or pyroxene[3]. In this work, we use first principles calculations to predict the structure of this titanium-bearing hydrous defect and assess its likely impact on the physical properties of mantle olivine. Calculations utilising the SIESTA[4] methodology for the implementation of density functional theory allow the energies and structures of titanium and hydrous defects in forsterite to be probed. This approach, which makes use of a numerical basis of a linear combination of atomic orbitals to describe the valence electrons, and pseudopotentials to describe the core electrons and nuclei, allows the large number of possible defect configurations to be examined efficiently. The calculations indicate that: (i) The most stable configuration for titanium in anhydrous forsterite is a direct substitution for silicon; this is supported by XANES and EXAFS data. (ii) The most stable configuration for cations and hydrogen in titanium-free forsterite coexisting with pyroxene is the formation of

  20. La2Hf2O7 crystal and local structure changes on the fluorite - pyrochlore phase transition

    NASA Astrophysics Data System (ADS)

    Popov, V. V.; Menushenkov, A. P.; Yastrebtsev, A. A.; Zubavichus, Ya V.

    2016-09-01

    The process of La2Hf2O7 (rLa3+/rHf4+ = 1.63) nanocrystals formation and evolution upon calcinations up to 1400 °C has been investigated by means of synchrotron radiation X-ray diffraction (XRD) and Raman spectroscopy. It has been shown that isothermal calcination at 800 °C/3h of the X-ray amorphous precursor firstly leads to the formation of oxide nanocrystalline powders with a defect fluorite structure. In the temperature range 900 - 1000 °C we observed the nucleation and growth of pyrochlore nanodomains inside a well crystalline fluorite matrix. The pyrochlore-type superstructural ordering of cations and anions appears at calcinations temperature higher than 1000 °C.

  1. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Du, Yu-Lei

    2009-11-01

    We perform a first-principles study on the electronic structure and elastic properties of Ti3AlC with an antiperovskite structure. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of this compound. The elastic constants of Ti3AlC are derived yielding c11 = 356 GPa, c11 = 55 GPa, c44 = 157 GPa. The bulk modulus B, shear modulus G and Young's modulus E are determined to be 156, 151 and 342 GPa, respectively. These properties are compared with those of Ti3AlC2 and Ti2AlC with a layered structure in the Ti-Al-C system and Fe3AlC with the same antiperovskite structure.

  2. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide

    NASA Astrophysics Data System (ADS)

    Zhu, Zun-Lue; Fu, Hong-Zhi; Sun, Jin-Feng; Liu, Yu-Fang; Shi, De-Heng; Xu, Guo-Liang

    2009-08-01

    The first-principles plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to anaylse the equilibrium lattice parameters, six independent elastic constants, bulk moduli, thermal expansions and heat capacities of MoSi2. The quasi-harmonic Debye model, using a set of total energy versus cell volume obtained with the plane-wave pseudopotential method, is applied to the study of the elastic properties, thermodynamic properties and vibrational effects. The calculated zero pressure elastic constants are in overall good agreement with the experimental data. The calculated heat capacities and the thermal expansions agree well with the observed values under ambient conditions and those calculated by others. The results show that the temperature has hardly any effect under high pressure.

  3. Electronic structure and magnetism in the frustrated antiferromagnet LiCrO2 : First-principles calculations

    NASA Astrophysics Data System (ADS)

    Mazin, I. I.

    2007-03-01

    LiCrO2 is a two-dimensional triangular antiferromagnet, isostructural with the common battery material LiCoO2 and a well-known Jahn-Teller antiferromagnet NaNiO2 . As opposed to the latter, LiCrO2 exibits antiferromagnetic exchange in the Cr planes, which has been ascribed to direct Cr-Cr d-d overlap. Using local density approximation (LDA) and LDA+U first-principles calculations, I confirm this conjecture and show that (a) direct d-d overlap is indeed enhanced compared to isostructural Ni and Co compounds, (b) the p-d charge-transfer gap is also enhanced, thus suppressing the ferromagnetic superexchange, (c) the calculated magnetic Hamiltonian maps well onto the nearest-neighbor Heisenberg exchange model, and (d) the interplanar inteaction is antiferromagnetic.

  4. Alloying effects on structural and thermal behavior of Ti1-xZrxC: A first principles study

    NASA Astrophysics Data System (ADS)

    Chauhan, Mamta; Gupta, Dinesh C.

    2016-05-01

    The formation energy, equilibrium lattice parameter, bulk modulus, Debye temperature and heat capacity at constant volume have been calculated for TiC, ZrC, and their intermediate alloys (Ti1-xZrxC, x = 0,0.25.0.5,0.75,1) using first principles approach. The calculated values of lattice parameter and bulk modulus agree well with the available experimental and earlier theoretical reports. The variation of lattice parameter and bulk modulus with the change in concentration of Zr atom in Ti1-xZrxC has also been reported. The heat capacities of TiC, ZrC, and their intermediate alloys have been calculated by considering both vibrational and electronic contributions.

  5. First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations

    NASA Astrophysics Data System (ADS)

    Berrezoug, H. I.; Merad, A. E.; Aillerie, M.; Zerga, A.

    2017-03-01

    Structural, electronic and optical properties of pure and Ga doped ZnO (GZO), with different concentrations (x  =  6.25%, 12.5% and 25%) are investigated by the ab initio full-potential linearized augmented plane wave (FP-LAPW) method, using the exchange and correlation potential within the generalized gradient approximation and the modified Becke–Johnson (mBJ) exchange potential. In the present work, some electronic properties, such as the band structure and the density of states as well as some optical properties, such as the dielectric function ε(ω), the refractive index n(ω), the reflectivity R(ω) and the electron energy-loss L(ω) were improved. The calculated lattice constants and the optical band gap (3.27 eV) of pure ZnO were found to be in good agreement with the experimental results. We have shown that the increase of the Ga concentration in ZnO creates shallow donor states Ga-4s in the minimum of the conduction band around the Fermi level, increasing the optical band gap and the conductivity. The absorption edge, presents in the imaginary part of the dielectric function, moves to higher energy levels with increasing Ga concentration. The static refractive index and the reflectivity of GZO increased with the increasing Ga concentrations. The L(ω) spectrum shows a single metal property for pure ZnO, and two peaks were observed for GZO, a small one around 2 eV originated from Ga doping and a second moved to higher energies indicating that the metallic character is more present in GZO than in pure ZnO.

  6. First-principles molecular dynamics study for average structure and oxygen diffusivity at high temperature in cubic Bi2O3.

    PubMed

    Seko, Atsuto; Koyama, Yukinori; Matsumoto, Akifumi; Tanaka, Isao

    2012-11-28

    Bismuth oxide, Bi(2)O(3), has a cubic structure (δ-phase) at high temperature. High oxygen conductivity of δ-Bi(2)O(3) should be closely related to disordering of the oxygen sublattice. In order to reconstruct the disordered structure in the crystal using first-principles molecular dynamics (FPMD), a sufficiently long simulation time is essentially required. In this study, the FPMD simulation up to 1 ns is performed with special interest given to the convergence of the average structure and the oxygen diffusivity with respect to the simulation time. The obtained average structure and the oxygen diffusivity are in good agreement with those obtained by experimental analysis.

  7. First-principles study of the pressure and crystal-structure dependences of the superconducting transition temperature in compressed sulfur hydrides

    NASA Astrophysics Data System (ADS)

    Akashi, Ryosuke; Kawamura, Mitsuaki; Tsuneyuki, Shinji; Nomura, Yusuke; Arita, Ryotaro

    2015-06-01

    We calculate the superconducting transition temperatures (Tc) in sulfur hydrides H2S and H3S from first principles using the density functional theory for superconductors. At pressures of ≲150 GPa, the high values of Tc (≥130 K) observed in a recent experiment (A. P. Drozdov, M. I. Eremets, and I. A. Troyan, arXiv:1412.0460) are accurately reproduced by assuming that H2S decomposes into R 3 m H3S and S. For higher pressures, the calculated Tc's for I m 3 ¯m H3S are systematically higher than those for R 3 m H3S and the experimentally observed maximum value (190 K), which suggests the possibility of another higher-Tc phase. We also quantify the isotope effect from first principles and demonstrate that the isotope effect coefficient can be larger than the conventional value (0.5) when multiple structural phases energetically compete.

  8. The role of the coordination defect (CD) in the structures of anion-deficient, fluorite-related compounds.

    PubMed

    Bevan, D J M; Martin, Lisandra L; Martin, Raymond L

    2013-02-01

    The various superstructure phases that occur with the anion-deficient compositions of binary oxides MO(2-x) with the fluorite structure as parent are explored here in terms of the original 'coordination defect' (or CD) concept in which each vacant oxygen site, □, is 'coordinated' by six O atoms thereby creating the octahedral 'structure-determining' entity [M(3.5)□O(6)]. It emerges that the structure and composition of each anion-deficient (polymorph) phase can be described in terms of crystallographic `motifs' which comprise sets of parallel coplanar polygons based on ½<210>(F) and ½<111>(F) CD linkages.

  9. Temperature-dependence of structural and mechanical properties of TiB{sub 2}: A first principle investigation

    SciTech Connect

    Xiang, Huimin; Feng, Zhihai; Li, Zhongping; Zhou, Yanchun E-mail: yczhou714@gmail.com

    2015-06-14

    High temperature mechanical and thermodynamic properties of TiB{sub 2} are important to its applications as ultrahigh temperature ceramic, which were not well understood. In this study, the thermodynamic and mechanical properties of TiB{sub 2} were investigated by the combination of first principle and phonon dispersion calculations. The thermal expansion of TiB{sub 2} was anisotropic, α{sub c}/α{sub a} is nearly constant (1.46) from 300 K to 1500 K, theoretically. The origination of this anisotropy is the anisotropic compressibility. The heat capacity at constant pressure was estimated from the theoretical entropy and fitted the experimental result quite well when higher-order anharmonic effects were considered. Theoretical isentropic elastic constants and mechanical properties were calculated and their temperature dependence agreed with the existed experiments. From room temperature to 1500 K, the theoretical slope is −0.0211 GPa·K{sup −1}, −0.0155 GPa·K{sup −1}, and −0.0384 GPa·K{sup −1} for B, G, and E, respectively. Our theoretical results highlight the suitability of this method in predicting temperature dependent properties of ultrahigh temperature ceramics and show ability in selecting and designing of novel ultrahigh temperature ceramics.

  10. Strontium ruthenate–anatase titanium dioxide heterojunctions from first-principles: Electronic structure, spin, and interface dipoles

    SciTech Connect

    Ferdous, Naheed; Ertekin, Elif

    2016-07-21

    The epitaxial integration of functional oxides with wide band gap semiconductors offers the possibility of new material systems for electronics and energy conversion applications. We use first principles to consider an epitaxial interface between the correlated metal oxide SrRuO{sub 3} and the wide band gap semiconductor TiO{sub 2}, and assess energy level alignment, interfacial chemistry, and interfacial dipole formation. Due to the ferromagnetic, half-metallic character of SrRuO{sub 3}, according to which only one spin is present at the Fermi level, we demonstrate the existence of a spin dependent band alignment across the interface. For two different terminations of SrRuO{sub 3}, the interface is found to be rectifying with a Schottky barrier of ≈1.3–1.6 eV, in good agreement with experiment. In the minority spin, SrRuO{sub 3} exhibits a Schottky barrier alignment with TiO{sub 2} and our calculated Schottky barrier height is in excellent agreement with previous experimental measurements. For majority spin carriers, we find that SrRuO{sub 3} recovers its exchange splitting gap and bulk-like properties within a few monolayers of the interface. These results demonstrate a possible approach to achieve spin-dependent transport across a heteroepitaxial interface between a functional oxide material and a conventional wide band gap semiconductor.

  11. Stability, bonding and electronic structures of halogenated MoS2 monolayer: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Hongxing; Huang, Min; Cao, Gengyu

    2017-07-01

    Surface decoration is a convenient and effective way to tune the properties of two dimensional (2D) materials. Here we performed a first-principles study of the functionalization of MoS2 monolayer by halogen atoms (F, Cl, Br and I). The adsorption of halogen monomer, halogen dimer on MoS2 monolayer, and the halogenation of one side of MoS2 were studied. Halogen monomers can adsorb stably on MoS2 inducing impurity states and magnetic moment of 1.0 μB per supercell. Long range antiferromagnetic (AFM) couplings are found between halogen adatoms. Semihalogenated Cl- and Br-MoS2 can be in nonbonding or bonding state, with the nonbonding state being more energetic favorable. Semihalogenated I-MoS2 can only be in nonbonding state. Semifluorinated F-MoS2 can stabilize in bonding state with a titled configuration and large binding energy. MoS2 monolayer is transferred from a semiconductor to metal upon semifluorination.

  12. Electronic structures and formation energies of pentavalent-ion-doped SnO2: First-principles hybrid functional calculations

    NASA Astrophysics Data System (ADS)

    Behtash, Maziar; Joo, Paul H.; Nazir, Safdar; Yang, Kesong

    2015-05-01

    We studied the electronic properties and relative thermodynamic stability of several pentavalent-ion (Ta, Nb, P, Sb, and I) doped SnO2 systems using first-principles hybrid density functional theory calculations, in order to evaluate their potential as transparent conducting oxides (TCOs). I-doped SnO2, though conductive, shows a narrowed optical band gap with respect to the undoped system due to the formation of gap states above the valence band. Nb-doped SnO2 forms localized impurity states below the conduction band bottom, suggesting that the Nb dopant exists as an Nb4+-like cation, which is consistent with the recent experimental finding of the formation of the impurity level below the conduction band bottom [Appl. Phys. Express 5, 061201 (2012)]. Ta- and Sb-doped SnO2 display n-type conductivity, high charge carrier density, and widened optical band gap. P-doped SnO2 shows similar n-type electronic properties with that of Sb- and Ta-doped systems, and thus P-doped SnO2 is proposed as a promising candidate TCO for further experimental validation.

  13. First-principles investigation of the structural and electronic properties of self-assemblies of functional molecules on graphene

    NASA Astrophysics Data System (ADS)

    Quesne-Turin, Ambroise; Touzeau, Jeremy; Dappe, Yannick J.; Diawara, Boubakar; Maurel, François; Seydou, Mahamadou

    2017-05-01

    Graphene-based two-dimensional materials have attracted an increasing attention these last years. Among them, the system formed by molecular adsorption on, aim of modifying the conductivity of graphene and make it semiconducting, is of particular interest. We use here hierarchical first-principles simulations to investigate the energetic and electronic properties of an electron-donor, melamine, and an acceptor, NaphtaleneTetraCarboxylic DiImide (NTCDI), and the assembly of their complexes on graphene surface. In particular, the van der Waals-corrected density functional theory (DFT) method is used to compute the interaction and adsorption energies during assembly. The effect of dispersion interactions on both geometries and energies is investigated. Depending on the surface coverage and the molecular organization, there is a significant local deformation of the graphene surface. Self-assembly is driven by the competition between hydrogen bonds in the building blocks and their adsorption on the surface. The dispersion contribution accounts significantly in both intermolecular and adsorption energies. The electron transfer mechanism and density of states (DOS) calculations show the electron-donor and acceptor characters of melamine and NTCDI, respectively. Molecular adsorption affects differently the energy levels around the Fermi level differently, leading to band gap opening. These results provide information about the new materials obtained by controlling molecular assembly on graphene.

  14. First-principles study of structural, electronic, magnetic and thermodynamic properties of the double perovskite Ba2CeCoO6

    NASA Astrophysics Data System (ADS)

    Xie, Huan-Huan; Gao, Qiang; Li, Lei; Lei, Gang; Hu, Xian-Ru; Deng, Jian-Bo

    2016-07-01

    The structural, electronic and magnetic properties of cubic double perovskite Ba2CeCoO6 were calculated using first-principles full-potential local-orbital minimum-basis method. This compound has a cubic crystal structure with space group Fm 3 bar m. By analysing the band structure we found, at the equilibrium lattice constant, this compound is a half-metal. Moreover, the half-metallicity can be kept under a large range of pressure. Meanwhile, the thermodynamic characters are investigated using the quasi-harmonic Debye model.

  15. First-Principles Calculation of the Structural, Magnetic, and Electronic Properties of the CoxCu1-x Solid Solutions Using Special Quasirandom Structures

    NASA Astrophysics Data System (ADS)

    Kong, Yi; Liu, Baixin

    2007-02-01

    We investigate, in the present study, the structural properties, magnetic moments and charge distribution of the solid solution in an immiscible Co-Cu system at equilibrium by first-principles calculation using special quasirandom structures (SQS). In order to mimic the pair and multisite correlation functions of the randomly substitutional fcc solid solutions, the original SQS is developed to include five 16-atom SQS unit cells, i.e., 1/16, 2/16, 3/16, 4/16, and 8/16, enabling to mimic at nine specific alloys compositions. Correspondingly, a new error analysis method is proposed for comparing the situations of various alloy compositions within the SQS unit cells having a same number of atoms. The developed SQS are then applied in the first-principles calculation to study the CoxCu1-x solid solutions (x refers to the Co concentration). It turns out that the calculated results of the lattice constants and magnetic moments versus the Co concentration are in good agreement with the experimental data, and especially, the sharp drop in the magnetic moment near the composition x=0.1 is well reproduced. The heats of formation are also calculated and in good agreement with those obtained from Mediema’s thermodynamic theory and available experimental data. At the alloy compositions x=0.25 and 0.75, some hypothetical crystalline structures of the Co-Cu compounds are respectively calculated and their heats of formation are found to be higher than the solid solution counterparts. Finally, the electron distribution among the atoms in the CoxCu1-x solid solutions is studied and the obtained charge densities show that in the CoxCu1-x solid solutions, the charge distributes mostly between the Co-Co atoms, thus forming attractive covalent bonding.

  16. Electronic structures and ferromagnetism of SnO{sub 2} (rutile) doped with double-impurities: First-principles calculations

    SciTech Connect

    Fakhim Lamrani, A.; Belaiche, M.; Benyoussef, A.; and others

    2014-01-07

    The electronic and magnetic properties of double-impurities-doped SnO{sub 2} (rutile) are explored using first-principles calculations within the generalized gradient approximation to examine their potential use as spintronic system. Calculations are performed for double impurities (M1 and M2) from M1 = Cr, and M2 = Mn, and Re. The origins of ferromagnetism are shown to be different in the two cases. For Sn{sub 1-2x}Cr{sub x}Mn{sub x}O2, the hybridization between Cr-3d and O-2p results in Cr becoming ferromagnetic with a magnetic moment of about 5.0 μ{sub B} per supercell. The Cr-and Mn-doped SnO{sub 2} system exhibits half-metallic ferromagnetism. The strong ferromagnetic couplings between local magnetic moments can be attributed to p-d hybridization. In contrast, in (Cr, Re) codoped TiO{sub 2}, the local magnetic moments of the impurities and their oxidation states agree with the charge transfer between Cr and Re, which would lead to the ferromagnetic through the double-exchange mechanism in transition metal oxides. Since there are two possible couplings between the impurities, we studied both configurations (ferromagnetic and antiferromagnetic (AF)) for double-impurities-doped SnO{sub 2}. Our calculations show that a ferromagnetic alignment of the spins is energetically always more stable than simple AF arrangements, which makes these materials possible candidates for spin injection in spintronic devices.

  17. Structural Polymorphism in “Kesterite” Cu2ZnSnS4 : Raman Spectroscopy and First-Principles Calculations Analysis

    DOE PAGES

    Dimitrievska, Mirjana; Boero, Federica; Litvinchuk, Alexander P.; ...

    2017-03-06

    This work presents detailed structural and vibrational characterization of different Cu2ZnSnS4 (CZTS) polymorphs (space groups: Imore » $$\\bar{4}$$, P$$\\bar{4}$$2c, and P$$\\bar{4}$$2m), using Raman spectroscopy and first-principles calculations. Multiwavelength Raman measurements on bulk crystalline CZTS samples permitted determination of the vibrational modes of each polymorph structure, with frequencies matching well with the results obtained from simulations. Lastly, the results present Raman spectra fingerprints as well as experimental references for the different polymorph modifications.« less

  18. Electronic bands, Fermi surface, and elastic properties of new 4.2 K superconductor SrPtAs with a honeycomb structure from first principles calculations

    NASA Astrophysics Data System (ADS)

    Shein, I. R.; Ivanovskii, A. L.

    2011-10-01

    The hexagonal phase SrPtAs (s.g. P6/ mmm; #194) with a honeycomb lattice structure was recently declared as a new low-temperature ( T C ∼ 4.2 K) superconductor. Here, by means of first-principles calculations the optimized structural parameters, electronic bands, Fermi surface, total and partial densities of states, inter-atomic bonding picture, independent elastic constants, bulk and shear moduli for SrPtAs were obtained for the first time and analyzed in comparison with the related layered superconductor SrPt 2As 2.

  19. Novel fluorite structured superparamagnetic RbGdF₄ nanocrystals as versatile upconversion host.

    PubMed

    Ahmad, Shahzad; Nagarajan, Rajamani; Raj, Packiya; Prakash, G Vijaya

    2014-10-06

    Fluorite structured nanocrystals of RbGdF4 in cubic symmetry have successfully been synthesized by employing a simple, one-step, and template-free wet chemical method at room temperature. Considering the structural model of cubic KLaF4 in the Fm̅3m space group, the observed powder X-ray diffraction (PXRD) pattern was fitted by the Le Bail procedure with the cubic lattice constant of a = 5.8244 (1) Å. Both high-resolution transmission electron microscopic (HR-TEM) and dynamic light scattering (DLS) measurements revealed the monodispersity of the nanocrystals with their size in the range of 2-18 nm. Upon excitation at 980 nm, Yb(3+), (Er(3+)/Ho(3+)/Tm(3+)) codoped RbGdF4 nanocrystals showed multicolor upconversion including red, yellow, blue, and the combination of basic color (near-white) emissions. Also, near-white upconversion emission from Yb(3+), Ho(3+), Tm(3+) triply doped cubic RbGdF4 nanocrystals was observed at varying laser power densities. RbGdF4 nanocrystals exhibited superparamagnetic behavior with a molar magnetic susceptibility of 2.61 × 10(-2) emu·Oe(-1)·mol(-1) at room temperature, while at low temperature (5 K) a saturation magnetization value of 90.41 emu·g(-1) at an applied field of at 10 kOe was observed. Non-interaction of the localized magnetic moment of Gd(3+) ions in the host matrix has been reasoned out for the observed superparamagnetic behavior. From the Langevin fit of the magnetic data, the average particle diameter obtained was approximately 2.2 nm, matching well with the values from other measurements. RbGdF4 nanocrystals exhibited a large ionic longitudinal relaxivity (r1 = 2.30 s(-1)·mM(-1)), suggesting their potential applicability as a promising agent for T1 contrast magnetic resonance imaging (MRI) in addition to the applications arising from the coupling of optical and magnetic functions such as multiplexing biodetection, bioimaging (optical and MRI), and other optical technologies.

  20. Elucidation of crystal and electronic structures within highly strained BiFeO3 by transmission electron microscopy and first-principles simulation

    NASA Astrophysics Data System (ADS)

    Bae, In-Tae; Kovács, András; Zhao, Hong Jian; Íñiguez, Jorge; Yasui, Shintaro; Ichinose, Tomohiro; Naganuma, Hiroshi

    2017-04-01

    Crystal and electronic structures of ~380 nm BiFeO3 film grown on LaAlO3 substrate are comprehensively studied using advanced transmission electron microscopy (TEM) technique combined with first-principles theory. Cross-sectional TEM images reveal the BiFeO3 film consists of two zones with different crystal structures. While zone II turns out to have rhombohedral BiFeO3, the crystal structure of zone I matches none of BiFeO3 phases reported experimentally or predicted theoretically. Detailed electron diffraction analysis combined with first-principles calculation allows us to determine that zone I displays an orthorhombic-like monoclinic structure with space group of Cm (=8). The growth mechanism and electronic structure in zone I are further discussed in comparison with those of zone II. This study is the first to provide an experimentally validated complete crystallographic detail of a highly strained BiFeO3 that includes the lattice parameter as well as the basis atom locations in the unit cell.

  1. First principle study on electronic structure, structural phase stability, optical and vibrational properties of Ba2ScMO6 (M = Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Rameshe, Balasubramaniam; Murugan, Ramaswamy; Palanivel, Balan

    2016-12-01

    First principle calculations are performed to investigate the electronic structure, structural phase stability, optical and vibrational properties of double perovskite oxide semiconductors namely Ba2ScMO6 (M = Nb, Ta) in the cubic symmetry using WIEN2k. In order to study the ground state properties of these compounds, the total energies are calculated as a function of reduced volumes and fitted with Brich Murnaghan equation. The estimated ground state parameters are comparable with the available experimental data. Calculations of electronic band structure on these compounds reveal that both Ba2ScNbO6 and Ba2ScTaO6 exhibit a semiconducting behavior with a direct energy gap of 2.78 and 3.15 eV, respectively. To explore the optical transitions in these compounds, the real and imaginary parts of the dielectric function, refractive index, extinction coefficient, reflectivity, optical absorption coefficient, real part of optical conductivity and the energy-loss function are calculated at ambient pressure and analyzed. The collective Raman active modes of the atoms of these materials are also calculated in order to understand the structural stability of these compounds.

  2. Room-temperature ferromagnetism in Cr-doped Si achieved by controlling atomic structure, Cr concentration, and carrier densities: A first-principles study

    SciTech Connect

    Wei, Xin-Yuan; Yang, Zhong-Qin; Zhu, Yan; Li, Yun

    2015-04-28

    By using first-principles calculations, we investigated how to achieve a strong ferromagnetism in Cr-doped Si by controlling the atomic structure and Cr concentration as well as carrier densities. We found that the configuration in which the Cr atom occupies the tetrahedral interstitial site can exist stably and the Cr atom has a large magnetic moment. Using this doping configuration, room-temperature ferromagnetism can be achieved in both n-type and p-type Si by tuning Cr concentration and carrier densities. The results indicate that the carrier density plays a crucial role in realizing strong ferromagnetism in diluted magnetic semiconductors.

  3. Origin of structural analogies and differences between the atomic structures of GeSe{sub 4} and GeS{sub 4} glasses: A first principles study

    SciTech Connect

    Bouzid, Assil; Le Roux, Sébastien; Ori, Guido; Boero, Mauro; Massobrio, Carlo

    2015-07-21

    First-principles molecular dynamics simulations based on density functional theory are employed for a comparative study of structural and bonding properties of two stoichiometrically identical chalcogenide glasses, GeSe{sub 4} and GeS{sub 4}. Two periodic cells of 120 and 480 atoms are adopted. Both glasses feature a coexistence of Ge-centered tetrahedra and Se(S) homopolar connections. Results obtained for N = 480 indicate substantial differences at the level of the Se(S) environment, since Ge–Se–Se connections are more frequent than the corresponding Ge–S–S ones. The presence of a more prominent first sharp diffraction peak in the total neutron structure factor of glassy GeS{sub 4} is rationalized in terms of a higher number of large size rings, accounting for extended Ge–Se correlations. Both the electronic density of states and appropriate electronic localization tools provide evidence of a higher ionic character of Ge–S bonds when compared to Ge–Se bonds. An interesting byproduct of these investigations is the occurrence of discernible size effects that affect structural motifs involving next nearest neighbor distances, when 120 or 480 atoms are used.

  4. Origin of structural analogies and differences between the atomic structures of GeSe4 and GeS4 glasses: A first principles study.

    PubMed

    Bouzid, Assil; Le Roux, Sébastien; Ori, Guido; Boero, Mauro; Massobrio, Carlo

    2015-07-21

    First-principles molecular dynamics simulations based on density functional theory are employed for a comparative study of structural and bonding properties of two stoichiometrically identical chalcogenide glasses, GeSe4 and GeS4. Two periodic cells of 120 and 480 atoms are adopted. Both glasses feature a coexistence of Ge-centered tetrahedra and Se(S) homopolar connections. Results obtained for N = 480 indicate substantial differences at the level of the Se(S) environment, since Ge-Se-Se connections are more frequent than the corresponding Ge-S-S ones. The presence of a more prominent first sharp diffraction peak in the total neutron structure factor of glassy GeS4 is rationalized in terms of a higher number of large size rings, accounting for extended Ge-Se correlations. Both the electronic density of states and appropriate electronic localization tools provide evidence of a higher ionic character of Ge-S bonds when compared to Ge-Se bonds. An interesting byproduct of these investigations is the occurrence of discernible size effects that affect structural motifs involving next nearest neighbor distances, when 120 or 480 atoms are used.

  5. CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES: First-Principles Study of Structural, Elastic and Electronic Properties of OsSi

    NASA Astrophysics Data System (ADS)

    Li, Jin; Linghu, Rong-Feng; Yang, Ze-Jin; Cao, Yang; Yang, Xiang-Dong

    2009-10-01

    First-principles study of structural, elastic, and electronic properties of the B20 structure OsSi has been reported using the plane-wave pseudopotential density functional theory method. The calculated equilibrium lattice and elastic constants are in good agreement with the experimental data and other theoretical results. The dependence of the elastic constants, the aggregate elastic modulus, the deviation from the Cauchy relation, the elastic wave velocities in different directions and the elastic anisotropy on pressure have been obtained and discussed. This could be the first quantitative theoretical prediction of the elastic properties under high pressure of OsSi compound. Moreover, the electronic structure calculations show that OsSi is a degenerate semiconductor with the gap value of 0.68 eV, which is higher than the experimental value of 0.26 eV. The analysis of the PDOS reveals that hybridization between Os d and Si p states indicates a certain covalency of the Os-Si bonds.

  6. First-principles study on the structure, elastic properties, hardness and electronic structure of TMB{sub 4} (TM=Cr, Re, Ru and Os) compounds

    SciTech Connect

    Pan, Y.; Zheng, W.T.; Guan, W.M.; Zhang, K.H.; Fan, X.F.

    2013-11-15

    The structural formation, elastic properties, hardness and electronic structure of TMB{sub 4} (TM=Cr, Re, Ru and Os) compounds are investigated using first-principles approach. The value of C{sub 22} for these compounds is almost two times bigger than the C{sub 11} and C{sub 33}. The intrinsic hardness, shear modulus and Young's modulus are calculated to be in a sequence of CrB{sub 4}>ReB{sub 4}>RuB{sub 4}>OsB{sub 4}, and the Poisson's ratio and B/G ratio of TMB{sub 4} follow the order of CrB{sub 4}first-principles calculations show that the intrinsic hardness of CrB{sub 4} and ReB{sub 4} are bigger than 40 GPa, which are the potential superhard materials due to the B–B bonds cage structure. Display Omitted - Highlights: • The intrinsic hardness of CrB{sub 4} and ReB{sub 4} is bigger than 40 GPa. • The hardness of TMB{sub 4} is calculated to be in a sequence of CrB{sub 4}>ReB{sub 4}>RuB{sub 4}>OsB{sub 4}. • The trend of hardness for TMB{sub 4} is consistent with the variation of elastic modulus. • The C{sub 22} value of TMB{sub 4} is bigger than that of C{sub 11} and C{sub 33}. • The high hardness of TMB{sub 4} is originated from the B–B bonds cage.

  7. First-principles investigation on the geometry and electronic structure of the three-dimensional cuboidal C(60) polymer.

    PubMed

    Yang, Jianjun; Tse, John S; Iitaka, Toshiaki

    2007-10-07

    The structural stability and electronic properties of the recently characterized three-dimensional (3D) cuboid-shaped C(60) polymer are studied using periodic ab initio density functional methods. It is shown that the experimentally observed structure is metastable and not fully relaxed from the high pressure state. A second polymorph, which is more stable than the experimental structure, is identified from the calculations. This new structure differs from the observed structure in the number of fourfold-coordinated atoms per C(60) molecule. Both structures are found to be metallic with bulk moduli only about one-third that of diamond. The cuboidal C(60) is not the long sought after superhard 3D carbon polymer; however, the two polymorphs studied here reveal unusual electronic band structures that might suggest interesting electronic properties.

  8. First-principles investigation on the geometry and electronic structure of the three-dimensional cuboidal C60 polymer

    NASA Astrophysics Data System (ADS)

    Yang, Jianjun; Tse, John S.; Iitaka, Toshiaki

    2007-10-01

    The structural stability and electronic properties of the recently characterized three-dimensional (3D) cuboid-shaped C60 polymer are studied using periodic ab initio density functional methods. It is shown that the experimentally observed structure is metastable and not fully relaxed from the high pressure state. A second polymorph, which is more stable than the experimental structure, is identified from the calculations. This new structure differs from the observed structure in the number of fourfold-coordinated atoms per C60 molecule. Both structures are found to be metallic with bulk moduli only about one-third that of diamond. The cuboidal C60 is not the long sought after superhard 3D carbon polymer; however, the two polymorphs studied here reveal unusual electronic band structures that might suggest interesting electronic properties.

  9. Dynamic Fluctuation of U(3+) Coordination Structure in the Molten LiCl-KCl Eutectic via First Principles Molecular Dynamics Simulations.

    PubMed

    Li, Xuejiao; Song, Jia; Shi, Shuping; Yan, Liuming; Zhang, Zhaochun; Jiang, Tao; Peng, Shuming

    2017-01-26

    The dynamic fluctuation of the U(3+) coordination structure in a molten LiCl-KCl mixture was studied using first principles molecular dynamics (FPMD) simulations. The radial distribution function, probability distribution of coordination numbers, fluctuation of coordination number and cage volume, self-diffusion coefficient and solvodynamic mean radius of U(3+), dynamics of the nearest U-Cl distances, and van Hove function were evaluated. It was revealed that fast exchange of Cl(-) occurred between the first and second coordination shells of U(3+) accompanied with fast fluctuation of coordination number and rearrangement of coordination structure. It was concluded that 6-fold coordination structure dominated the coordination structure of U(3+) in the molten LiCl-KCl-UCl3 mixture and a high temperature was conducive to the formation of low coordinated structure.

  10. Structure and stability of silicon nanoclusters passivated by hydrogen and oxygen: evolutionary algorithm and first- principles study

    NASA Astrophysics Data System (ADS)

    Baturin, V. S.; Lepeshkin, S. V.; Matsko, N. L.; Uspenskii, Yu A.

    2016-02-01

    We investigate the structural and thermodynamical properties of small silicon clusters. Using the graph theory applied to previously obtained structures of Si10H2m clusters we trace the connection between geometry and passivation degree. The existing data on these clusters and structures of Si10O4n clusters obtained here using evolutionary calculations allowed to analyze the features of Si10H2m clusters in hydrogen atmosphere and Si10O4n clusters in oxygen atmosphere. We have shown the basic differences between structures and thermodynamical properties of silicon clusters, passivated by hydrogen and silicon oxide clusters.

  11. Electronic structure and ground-state properties of Na{sub 2}Po: A first-principles study

    SciTech Connect

    Eithiraj, R. D.

    2015-06-24

    Self-consistent scalar-relativistic band structure calculations have been performed to investigate the electronic structure and ground-state properties of Na{sub 2}Po in cubic antifluorite (anti-CaF{sub 2}-type) structure using the linear muffin-tin orbital in its tight-binding representation (TB-LMTO) method. Ground state properties such as equilibrium lattice constant and bulk modulus were calculated. The results of the electronic structure calculations show that Na{sub 2}Po is direct bandgap semiconductor.

  12. First-principles prediction of disordering tendencies in pyrochlore oxides

    SciTech Connect

    Jiang Chao; Stanek, C. R.; Sickafus, K. E.; Uberuaga, B. P.

    2009-03-01

    Using first-principles calculations, we systematically predict the order-disorder energetics of series of zirconate (A{sub 2}Zr{sub 2}O{sub 7}), hafnate (A{sub 2}Hf{sub 2}O{sub 7}), titanate (A{sub 2}Ti{sub 2}O{sub 7}), and stannate (A{sub 2}Sn{sub 2}O{sub 7}) pyrochlores. The disordered defect-fluorite structure is modeled using an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most relevant near-neighbor intrasublattice and intersublattice pair-correlation functions of the random mixture. The order-disorder transition temperatures of these pyrochlores estimated from our SQS calculations show overall good agreement with existing experiments. We confirm previous studies suggesting that the bonding in pyrochlores is not purely ionic and thus electronic effects also play a role in determining their disordering tendencies. Our results have important consequences for numerous applications, including nuclear waste forms and fast ion conductors.

  13. First-principles prediction of disordering tendencies in complex oxides

    SciTech Connect

    Jiang, Chao; Stanek, Christopher R; Sickafus, Kurt E; Uberuaga, Blas P

    2008-01-01

    The disordering tendencies of a series of zirconate (A{sub 2}Zr{sub 2}O{sub 7}) , hafnate (A{sub 2}Hf{sub 2}O{sub 7}), titanate (A{sub 2}Ti{sub 2}O{sub 7}), and stannate (A{sub 2} Sn{sub 2}O{sub 7}) pyrochlores are predicted in this study using first-principles total energy calculations. To model the disordered (A{sub 1/2}B{sub 1/2})(O{sub 7/8}/V{sub 1/8}){sub 2} fluorite structure, we have developed an 88-atom two-sublattice special quasirandom structure (SQS) that closely reproduces the most important near-neighbor intra-sublattice and inter-sublattice pair correlation functions of the random alloy. From the calculated disordering energies, the order-disorder transition temperatures of those pyrochlores are further predicted and our results agree well with the existing experimental phase diagrams. It is clearly demonstrated that both size and electronic effects play an important role in determining the disordering tendencies of pyrochlore compounds.

  14. Redetermination of the structure of ALa2WO7 (A=Ba, Sr) with fluorite-like metal ordering

    NASA Astrophysics Data System (ADS)

    Fu, W. T.; IJdo, D. J. W.; Bontenbal, A.

    2013-05-01

    The crystal structures of ALa2WO7 (A=Ba, and Sr) at room temperature were re-determined by the Rietveld method using the combined X-ray and neutron powder diffraction data. The compounds are confirmed to be isomorphic, crystallizing in the space group P1121/b. In ALa2WO7 the ordering of metal atoms is fluorite-like, but it differs from that of the fluorite-defect compounds of the formula Ln3MO7 (Ln=lanthanide or Y, M=pentavalent metal). The structure of ALa2WO7 consists of isolated WO6 octahedra, whereas in the normal Ln3MO7 the MO6 octahedra share corners forming one-dimensional chains. Although ALa2WO7 has a centric space group, La ions are not situate at the centre of symmetry, which explains the 5D0→7F2 transition being dominant in emission spectrum of Eu-doped materials.

  15. First principles investigation of electronic and magnetic structures of centrosymmetric BiMnO3 using an improved approach

    NASA Astrophysics Data System (ADS)

    Zhu, X. H.; Chen, X. R.; Liu, B. G.

    2016-10-01

    Recent temperature-dependent x-ray diffraction and Raman spectroscopy experiment proved that single-crystalline BiMnO3 assumes a centrosymmetric monoclinic structure (C2/c space group). Here we investigate magnetic structure and electronic structure of this centrosymmetric BiMnO3 phase by using the modified Becke-Johnson (mBJ) exchange functional within the density functional theory (DFT). Our mBJ calculated semiconductor gap, magnetic moment, and other aspects of the electronic structure, in contrast with previous DFT results, are in good agreement with recent experimental values. This satisfactory description of the electronic structure and magnetism of the BiMnO3 is because mBJ reasonably captures the kinetic property and correlation of electrons. Our calculated results with mBJ approach are both useful to study such Bi-based perovskite oxide materials for spintronics applications.

  16. Structural diversity and electronic properties of Cu2SnX3 (X=S, Se): A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Zhai, Yingteng; Chen, Shiyou; Yang, Jihui; Xiang, Hongjun; Gong, Xingao; Walsh, Aron; Kang, Joongoo; Wei, Suhuai

    2012-02-01

    The ternary semiconductors Cu2SnX3 (X=S, Se) are found frequently as secondary phases in synthesized Cu2ZnSnS4 and Cu2ZnSnSe4 samples, but previous reports on their crystal structures and electronic band gaps are conflicting. Here we report their properties as calculated using a first-principles approach. We find that: (i) the diverse range of crystal structures can all be derived from the zinc-blende structure. (ii) The energy stability of different structures is determined primarily by the local cation coordination around anions, which makes Cu and Sn partially disordered in the cation sublattice. (iii) The direct band gaps of the low energy compounds Cu2SnS3 and Cu2SnSe3 should be in the range of 0.8-0.9 eV and 0.4 eV respectively.

  17. Atomic-scale structural and electronic properties of SrTiO3/GaAs interfaces: A combined STEM-EELS and first-principles study

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar

    2017-07-01

    The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.

  18. Dimorphic HT- and LT-TbTiGe: Electronic and magnetic structures and bonding properties from first principles

    NASA Astrophysics Data System (ADS)

    Matar, Samir F.; Chevalier, Bernard; Etourneau, Jean

    2016-01-01

    TbTiGe intermetallic compound is characterized by temperature dimorphism with different but related crystal structures with ferromagnetic high temperature (HT) form versus antiferromagnetic low temperature (LT) form. Such different structure properties and magnetic behaviors have been addressed based on DFT computations of cohesive energies, charge transfers, mechanical and chemical properties of the two structures. This is particularly illustrated by harder and less ductile LT-form with stronger Ti-Ge bond and larger charge transfer from Tb and Ti on one hand and Ge on the other hand.

  19. Structure and cation ordering in La2UO6, Ce2UO6, LaUO4, and CeUO4 by first principles calculations

    DOE PAGES

    Casillas-Trujillo, Luis; Xu, H.; McMurray, Jake W.; ...

    2016-07-06

    In the present work, we have used density functional theory (DFT) and DFT+U to investigate the crystal structure and phase stability of four model compounds in the Ln2O3-UO2-UO3 ternary oxide system: La2UO6, Ce2UO6, LaUO4, CeUO4, due to the highly-correlated nature of the f-electrons in uranium. We have considered both hypothetical ordered compounds and compounds in which the cations randomly occupy atomic sites in a fluorite-like lattice. We determined that ordered compounds are stable and are energetically favored compared to disordered configurations, though the ordering tendencies are weak. To model and analyze the structures of these complex oxides, we have usedmore » supercells based on a layered atomic model. In the layer model, the supercell is composed of alternating planes of anions and cations. We have considered two different ordering motifs for the cations, namely single species (isoatomic) cation layers versus mixed species cation layers. Energy differences between various ordered cationic arrangements were found to be small. This may have implications regarding radiation stability, since cationic arrangements should be able to change under irradiation with little cost in energy.« less

  20. Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations.

    PubMed

    Egger, David A; Kronik, Leeor

    2014-08-07

    A microscopic picture of structure and bonding in organic-inorganic perovskites is imperative to understanding their remarkable semiconducting and photovoltaic properties. On the basis of a density functional theory treatment that includes both spin-orbit coupling and dispersive interactions, we provide detailed insight into the crystal binding of lead-halide perovskites and quantify the effect of different types of interactions on the structural properties. Our analysis reveals that cohesion in these materials is characterized by a variety of interactions that includes important contributions from both van der Waals interactions among the halide atoms and hydrogen bonding. We also assess the role of spin-orbit coupling and show that it causes slight changes in lead-halide bonding that do not significantly affect the lattice parameters. Our results establish that consideration of dispersive effects is essential for understanding the structure and bonding in organic-inorganic perovskites in general and for providing reliable theoretical predictions of structural parameters in particular.

  1. Half metallicity and magnetic stability of sp-electron superlattices in rock-salt structure: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhou, Baozeng; Dong, Shengjie; Chen, Shanxing; Zhang, Zidan; Zhao, Hui; Wu, Ping

    2014-08-01

    Density functional calculations were performed to study the structural, electronic, and magnetic properties of sp-electron half-metallic superlattices (KS)1/(CaS)1, (RbS)1/(SrS)1, and (CsS)1/(BaS)1 (001) in rock-salt structure. All the superlattices are found to be spin polarized, and the calculated band structure suggests a 100% polarization of the conduction carriers. The p-p hybridization is shown to be essential for the formations of localized orbitals and spin-splitting. The half-metallic electronic structure will be destroyed upon an excessive lattice compression, accompanying with a metallic transition. Moreover, the analysis of the orbital-decomposed partial density of states and spin density reveal that S atoms in different layers of the superlattice show distinct polarization directions. Discussion of volume-conserving deformations further demonstrates the stability of half metallicity in sp-electron superlattices.

  2. Prediction of unusual stable ordered structures of Au-Pd alloys via a first-principles cluster expansion

    NASA Astrophysics Data System (ADS)

    Barabash, Sergey V.; Blum, Volker; Müller, Stefan; Zunger, Alex

    2006-07-01

    We describe an iterative procedure which yields an accurate cluster expansion for Au-Pd using only a limited number of ab initio formation enthalpies. Our procedure addresses two problems: (a) given the local-density-approximation (LDA) formation energies for a fixed set of structures, it finds the pair and many-body cluster interactions best able to predict the formation energies of new structures, and (b) given such pair and many-body interactions, it augments the LDA set of “input structures” by identifying additional structures that carry most information not yet included in the “input.” Neither step can be done by intuitive selection. Using methods including genetic algorithm and statistical analysis to iteratively solve these problems, we build a cluster expansion able to predict the formation enthalpy of an arbitrary fcc lattice configuration with precision comparable to that of ab initio calculations themselves. We also study possible competing non-fcc structures of Au-Pd, using the results of a “data mining” study. We then address the unresolved problem of bulk ordering in Au-Pd. Experimentally, the phase diagram of Au-Pd shows only a disordered solid solution. Even though the mixing enthalpy is negative, implying ordering, no ordered bulk phases have been detected. Thin film growth shows L12 -ordered structures with composition Au3Pd and AuPd3 and L10 structure with composition AuPd. We find that (i) all the ground states of Au-Pd are fcc structures; (ii) the low- T ordered states of bulk Au-Pd are different from those observed experimentally in thin films; specifically, the ordered bulk Au3Pd is stable in D023 structure and and AuPd in chalcopyritelike Au2Pd2 (201) superlattice structure, whereas thin films are seen in the L12 and L10 structures; (iii) AuPd3 L12 is stable and does not phase separate, contrary to the suggestions of an earlier investigation; (iv) at compositions around Au3Pd , we find several long-period superstructures (LPS

  3. Structural and elastic properties of La{sub 2}Mg{sub 17} from first-principles calculations

    SciTech Connect

    Luo, Tao-Peng; Ma, Li; Pan, Rong-Kai; Zhou, Si-Chen; Wang, Hai-Chen; Tang, Bi-Yu

    2013-10-15

    Structural and elastic properties of La{sub 2}Mg{sub 17} with layer structure have been investigated within framework of the density functional theory. Different from the general layer-structured materials, the obtained c/a is less than unity. The calculated elastic constants C{sub 33} is larger than C{sub 11}, being novel in comparison with other alloys with layer structure. The calculated bulk, shear and Young’s modulus of La{sub 2}Mg{sub 17} are higher than other Mg–La alloys with higher La content, implying the stronger covalent bonding. Moreover, the elastic isotropies of La{sub 2}Mg{sub 17} are more excellent. The electronic structure within basal plane is highly symmetric, and the electronic interaction within basal plane is slightly weaker than one between basal planes, which reveal the underlying mechanism for the structural and elastic properties of La{sub 2}Mg{sub 17}. - Graphical abstract: The crystal structure (a) and the atomic positions for (b) (0 0 0 2), (c) (0 0 0 4) and (d) (1 2{sup ¯} 1 0) plane of La{sub 2}Mg{sub 17}. Display Omitted - Highlights: • The c/a of La{sub 2}Mg{sub 17} is anomalously less than unity. • It is novel that for La{sub 2}Mg{sub 17} the elastic constants C{sub 33} is larger than C{sub 11}. • The elastic modulus of La{sub 2}Mg{sub 17} is higher than other Mg–La alloys. • The elastic isotropy of La{sub 2}Mg{sub 17} is excellent. • The electronic structure within basal plane is highly symmetric.

  4. First-principles Exploration of Crystal Structures of Pure Iron at Earth’s Inner Core Conditions

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Tsuchiya, T.; Tsuchiya, J.

    2009-12-01

    Determining the structure of Earth’s inner core has been a long standing challenge for geoscience. Iron has been considered as a main composition of the inner core and expected to exist as an iron-nickel-light elements alloy there. In order to get some information about the structure of the inner core, pure iron has been also investigated by many experimental and ab-initio studies. Pure iron has been expected to take the hexagonal close-packed (hcp) structure at the inner core conditions (Jephcoat and Olson, Nature 325, 332-335, 1987.; Mao et al., Nature 396, 741-743, 1998.; Fiquet et al., Science 291, 468-471, 2001.; Uchida et al., J. Geophys. Res. 106, 21799-21810, 2001.). On the other hand, the face-centered cubic (fcc) structure (Mikhaylushkin et al., Phys. Rev. Lett. 99, 165505-165508, 2007.) and the body-centered cubic structure (Vocadlo et al., Phys. Earth Planet In. 170, 52-59, 2008.) have been also considered as the candidate structures. In this study, first we explored the crystal structures of pure iron at 400 GPa by our originally developing algorithm for the structure exploration, Free Energy Surface Trekking (FEST). In FEST, using a minus sign of driving force acting on a simulation cell, we force a system to climb up to a ridge of a free energy surface (ascent-run). Then, flipping the negative driving force to an original one, we make the system go down to a neighboring potential well (descent-run). The more different directions we examine in the ascent-run, the more accurate topography we capture of free energy surface. For the exploration of the ultrahigh-pressure structures of pure iron, we used 16 atoms supercell and explored 64 pathways around the initial local minimum corresponding to hcp. As the result, 30 pathways lead to a complex hcp (chcp) structure, which has ABCACABCBCAB stacking with 12 layers. Other 33 pathways lead to hcp and 1 pathway fcc. The enthalpy of chcp was found higher than that of hcp but only by 4 mRy/atom and lower than

  5. Prediction of unusual stable ordered structures of Au-Pd alloys via a first-principles cluster expansion

    SciTech Connect

    Barabash, Sergey V.; Blum, Volker; Zunger, Alex; Mueller, Stefan

    2006-07-15

    We describe an iterative procedure which yields an accurate cluster expansion for Au-Pd using only a limited number of ab initio formation enthalpies. Our procedure addresses two problems: (a) given the local-density-approximation (LDA) formation energies for a fixed set of structures, it finds the pair and many-body cluster interactions best able to predict the formation energies of new structures, and (b) given such pair and many-body interactions, it augments the LDA set of 'input structures' by identifying additional structures that carry most information not yet included in the 'input'. Neither step can be done by intuitive selection. Using methods including genetic algorithm and statistical analysis to iteratively solve these problems, we build a cluster expansion able to predict the formation enthalpy of an arbitrary fcc lattice configuration with precision comparable to that of ab initio calculations themselves. We also study possible competing non-fcc structures of Au-Pd, using the results of a 'data mining' study. We then address the unresolved problem of bulk ordering in Au-Pd. Experimentally, the phase diagram of Au-Pd shows only a disordered solid solution. Even though the mixing enthalpy is negative, implying ordering, no ordered bulk phases have been detected. Thin film growth shows L1{sub 2}-ordered structures with composition Au{sub 3}Pd and AuPd{sub 3} and L1{sub 0} structure with composition AuPd. We find that (i) all the ground states of Au-Pd are fcc structures; (ii) the low-T ordered states of bulk Au-Pd are different from those observed experimentally in thin films; specifically, the ordered bulk Au{sub 3}Pd is stable in D0{sub 23} structure and and AuPd in chalcopyritelike Au{sub 2}Pd{sub 2} (201) superlattice structure, whereas thin films are seen in the L1{sub 2} and L1{sub 0} structures; (iii) AuPd{sub 3} L1{sub 2} is stable and does not phase separate, contrary to the suggestions of an earlier investigation; (iv) at compositions around

  6. Phase transitions, mechanical properties and electronic structures of novel boron phases under high-pressure: A first-principles study

    PubMed Central

    Fan, Changzeng; Li, Jian; Wang, Limin

    2014-01-01

    We have explored the mechanical properties, electronic structures and phase transition behaviors of three designed new phases for element boron from ambient condition to high-pressure of 120 GPa including (1) a C2/c symmetric structure (m-B16); (2) a symmetric structure (c-B56) and (3) a Pmna symmetric structure (o-B24). The calculation of the elastic constants and phonon dispersions shows that the phases are of mechanical and dynamic stability. The m-B16 phase is found to transform into another new phase (the o-B16 phase) when pressure exceeds 68 GPa. This might offer a new synthesis strategy for o-B16 from the metastable m-B16 at low temperature under high pressure, bypassing the thermodynamically stable γ-B28. The enthalpies of the c-B56 and o-B24 phases are observed to increase with pressure. The hardness of m-B16 and o-B16 is calculated to be about 56 GPa and 61 GPa, approaching to the highest value of 61 GPa recorded for α-Ga-B among all available Boron phases. The electronic structures and bonding characters are analyzed according to the difference charge-density and crystal orbital Hamilton population (COHP), revealing the metallic nature of the three phases. PMID:25345910

  7. First-principles predicted low-energy structures of NaSc(BH{sub 4}){sub 4}

    SciTech Connect

    Tran, Huan Doan Amsler, Maximilian; Goedecker, Stefan; Botti, Silvana; Marques, Miguel A. L.

    2014-03-28

    According to previous interpretations of experimental data, sodium-scandium double-cation borohydride NaSc(BH{sub 4}){sub 4} crystallizes in the crystallographic space group Cmcm where each sodium (scandium) atom is surrounded by six scandium (sodium) atoms. A careful investigation of this phase based on ab initio calculations indicates that the structure is dynamically unstable and gives rise to an energetically and dynamically more favorable phase with C222{sub 1} symmetry and nearly identical x-ray diffraction pattern. By additionally performing extensive structural searches with the minima-hopping method we discover a class of new low-energy structures exhibiting a novel structural motif in which each sodium (scandium) atom is surrounded by four scandium (sodium) atoms arranged at the corners of either a rectangle with nearly equal sides or a tetrahedron. These new phases are all predicted to be insulators with band gaps of 7.9–8.2 eV. Finally, we estimate the influence of these structures on the hydrogen-storage performance of NaSc(BH{sub 4}){sub 4}.

  8. First principle investigation of crystal lattice structure, thermodynamics and mechanical properties in ZnZrAl2 intermetallic compound

    NASA Astrophysics Data System (ADS)

    Wei, Zhenyi; Tou, Shushi; Wu, Bo; Bai, Kewu

    2016-12-01

    ZnZrAl2 is a kind of heterogeneous nucleation to promote the refine of grain of ZA43 alloy. ZnZrAl2 intermetallic is also considered as a candidate for superalloys. The crystal lattice structure, alloy thermodynamics and mechanical properties of ZnZrAl2 intermetallic compound were investigated by ab initio calculations based on density functional theory (DFT). In particular, the site preference of atoms in different sublattices was predicted based on alloy thermodynamics. At ground state, the most stable structure is L12 structure with sublattice model (Zn)1a(Zr0.3333Al0.6667)3c or (Zr)1a(Zn0.3333Al0.6667)3c, and the occupying preferences of Zn, Zr and Al atoms are independent with the increasing temperature. The bulk, shear, Young's modulus and the Poisson's ratio of the L12 structure ZnZrAl2 were calculated based on the site occupying configurations. The results show that ZnZrAl2 is a brittle material in nature. Electronic structures analysis revealed that Al-Zr atoms possess a covalent bonding character, while the Zn-Zr atoms have a metallic bonding character. ZnZrAl2 has stable mechanical properties at high temperature. The grain refinement effect of ZnZrAl2 precipitates in Zn-Al alloys were discussed based on crystal lattice match theory.

  9. A first principles study of the binding of formic acid in catalase complementing high resolution X-ray structures

    NASA Astrophysics Data System (ADS)

    Rovira, Carme; Alfonso-Prieto, Mercedes; Biarnés, Xevi; Carpena, Xavi; Fita, Ignacio; Loewen, Peter C.

    2006-03-01

    Density functional molecular dynamics simulations using a QM/MM approach are used to get insight into the binding modes of formic acid in catalase. Two ligand binding sites are found, named A and B, in agreement with recent high resolution structures of catalase with bound formic acid. In addition, the calculations show that the His56 residue is protonated and the ligand is present as a formate anion. The lowest energy minimum structure ( A) corresponds to the ligand interacting with both the heme iron and the catalytic residues (His56 and Asn129). The second minimum energy structure ( B) corresponds to the situation in which the ligand interacts solely with the catalytic residues. A mechanism for the process of formic acid binding in catalase is suggested.

  10. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    SciTech Connect

    Pagare, Gitanjali; Jain, Ekta; Sanyal, S. P.

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time. Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.

  11. First principles simulation of laser-induced periodic surface structure using the particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.

    2015-11-01

    We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.

  12. A First-Principles Study on the Structural and Electronic Properties of Sn-Based Organic-Inorganic Halide Perovskites

    NASA Astrophysics Data System (ADS)

    Ma, Zi-Qian; Pan, Hui; Wong, Pak Kin

    2016-11-01

    Organic-inorganic halide perovskites have attracted increasing interest on solar-energy harvesting because of their outstanding electronic properties. In this work, we systematically investigate the structural and electronic properties of Sn-based hybrid perovskites MASnX3 and FASnX3 (X = I, Br) based on density-functional-theory calculations. We find that their electronic properties strongly depend on the organic molecules, halide atoms, and structures. We show that there is a general rule to predict the band gap of the Sn-based hybrid perovskite: its band gap increases as the size of halide atom decreases as well as that of organic molecule increase. The band gap of high temperature phase (cubic structure) is smaller than that of low temperature phase (orthorhombic structure). The band gap of tetragonal structure (medium-temperature phase) may be larger or smaller than that of cubic phase, depending on the orientation of the molecule. Tunable band gap within a range of 0.73-1.53 eV can be achieved by choosing halide atom and organic molecule, and controlling structure. We further show that carrier effective mass also reduces as the size of halide atom increases and that of molecule decreases. By comparing with Pb-based hybrid perovskites, the Sn-based systems show enhanced visible-light absorption and carrier mobility due to narrowed band gap and reduced carrier effective mass. These Sn-based organic-inorganic halide perovskites may find applications in solar energy harvesting with improved performance.

  13. Determination of the lowest-energy structure of Ag{sub 8} from first-principles calculations

    SciTech Connect

    Pereiro, M.; Baldomir, D.

    2005-10-15

    The ground-state electronic and structural properties and the electronic excitations of the lowest-energy isomers of the Ag{sub 8} cluster are calculated using density functional theory (DFT) and time-dependent DFT (TDDFT) in real-time and real-space schemes, respectively. The optical spectra provided by TDDFT predict that the D{sub 2d} dodecahedron isomer is the structural minimum of the Ag{sub 8} cluster. Indeed, it is borne out by the experimental findings.

  14. First Principles Modeling of Structure and Transport in Solid Polymer Electrolytes, Ionic Liquids, and Methanol/Water Mixtures

    DTIC Science & Technology

    2016-02-10

    Received Paper 2.00 3.00 Jun He, Stephen J. Paddison. Structural relaxation and cation (H+, Li+, Na+) diffusion in crystallinepolymer electrolytes...I: Structural Relaxation and Cation (Li+, H+, Na+) Diffusion in Crystalline Polymer Electrolytes Note: See attached manuscript (to be submitted to...function of cation-oxygen (1), and cation-P (2) in relaxed crystalline PEO6:HPF6, PEO6:LiPF6 (b), and PEO6:NaPF6 at 300 K. The integrated total

  15. Hydrostatic Pressure Effects on Structural and Electronic Properties of ETN and PETN from First-Principles Calculations.

    PubMed

    Fedorov, Igor A; Fedorova, Tatyana P; Zhuravlev, Yuriy N

    2016-05-26

    We studied the structural and electronic properties of pentaerythritol tetranitrate (PETN) and erythritol tetranitrate (ETN) crystals within the framework of density functional theory with van der Waals interactions. The computed lattice parameters have good agreement with experimental data. Electronic and structural properties of the crystals under 0-20 GPa hydrostatic pressure were studied. The parameters of equations of state calculated from the theoretical data show good agreement with experiment within the studied pressure intervals. We have also calculated the detonation velocity and pressure.

  16. Structural and electronic properties of rare earth skutterudites EuRu4P12: a first principle study

    NASA Astrophysics Data System (ADS)

    Yadav, Priya; Kumari, Meena; Rajpoot, Priyanka; Nautiyal, Shashank; Verma, U. P.

    2017-05-01

    Ternary skutterudites materials exhibit a large variety of electronic properties due to the unpaired 3d and 4f electronic configuration of the transition and rare-earth elements respectively. In this communication we have performed structural optimization and electronic structure calculation of the Rare Earth Skutterudite EuRu4P12, using FP-LAPW method. The optimized lattice parameter is in good agreement with the available experimental value. No band gap between the valence band and the conduction band has been observed which indicates that its character is metallic.

  17. Reversal of the lattice structure in SrCoO(x) epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations.

    PubMed

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S S Ambrose; Cooper, Valentino R; Rabe, Karin M; Lee, Ho Nyung

    2013-08-30

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoO(x) (x=2.5-3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases: i.e., the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First-principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator transition, which originate from the modification in the Co valence states and crystallographic structures. More interestingly, the two phases can be reversibly controlled by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides.

  18. First-principles free energy calculations of the structural phase transition in LiBH4 with I, Cl, Na, and K substitution

    NASA Astrophysics Data System (ADS)

    Bernstein, N.; Johannes, M. D.; Hoang, Khang

    2013-12-01

    LiBH4 is a fast ionic conductor in its high-temperature phase, which is stabilized at room temperature by various chemical substitutions, making it a potential solid electrolyte material for Li-ion batteries. Using first-principles variable-cell-shape molecular dynamics simulations, we reproduce the experimentally observed low- and high-temperature structures. Using the height of a structure-factor-like peak as a collective coordinate, we calculate the free energy differences between the two structures as a function of temperature and substitutional ion concentration. We get good agreement with experiment for I, Cl, and Na, and predict that K is even more effective for lowering the critical temperature. Decomposition of the free energy into enthalpy and entropy reveals that the mechanism driving this lowering varies among substitutional elements. Calculating the full free energy, rather than simply the enthalpy, is therefore crucial to understanding how chemical substitution stabilizes the high conductivity phase.

  19. Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2010-09-01

    The crystallographic and magnetic structures of the Ni2XGa (X=Mn, Fe, Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The formation energies of several kinds of defects (atomic exchange, antisite, vacancy) are estimated. The Ga atoms stabilize the cubic structure, and the effect of X atoms on the structural stability is opposite. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site(s) of the deficient one(s), except for Ga-rich Ni-deficient type. The magnitude of the variation in Ni moments is much larger than that of Mn in defective Ni2XGa. The value of Ni magnetic moment sensitively depends on the distance between Ni and X. Excess Mn could be ferromagnetic or antiferromagnetic, depending on the distance between the neighboring Mn atoms.

  20. Structural, mechanical, electronic, optical properties and effective masses of CuMO2 (M = Sc, Y, La) compounds: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Zhang, Ning-Chao; Sun, Yan-Yun; Liu, Fu-Sheng; Liu, Zheng-Tang

    2014-05-01

    The structural, elastic, mechanical, electronic, optical properties and effective masses of CuMIIIBO2 (MIIIB = Sc, Y, La) compounds have been investigated by the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory under local density approximation. The equilibrium structural parameters are in good agreement with previous experimental and theoretical data. To our knowledge, there are no available data of elastic constants for comparison. The bulk, shear and Young's modulus, ratio of B/G, Poisson's ratio and Lamé's constants of CuMIIIBO2 have been studied. The electronic structures of CuMIIIBO2 are consistent with other calculations. The population analysis, charge densities and effective masses have been shown and analyzed. The imaginary and real parts of the dielectric function, refractive index and extinction coefficient of CuMIIIBO2 are calculated. The interband transitions to absorption of CuMIIIBO2 have been analyzed.

  1. The effects of surface bond relaxation on electronic structure of Sb{sub 2}Te{sub 3} nano-films by first-principles calculation

    SciTech Connect

    Li, C. Zhao, Y. F.; Fu, C. X.; Gong, Y. Y.; Chi, B. Q.; Sun, C. Q.

    2014-10-15

    The effects of vertical compressive stress on Sb{sub 2}Te{sub 3} nano-films have been investigated by the first principles calculation, including stability, electronic structure, crystal structure, and bond order. It is found that the band gap of nano-film is sensitive to the stress in Sb{sub 2}Te{sub 3} nano-film and the critical thickness increases under compressive stress. The band gap and band order of Sb{sub 2}Te{sub 3} film has been affected collectively by the surface and internal crystal structures, the contraction ratio between surface bond length of nano-film and the corresponding bond length of bulk decides the band order of Sb{sub 2}Te{sub 3} film.

  2. First-Principles Study of Structural, Electronic, Mechanical, Thermal, and Phonon Properties of III-Phosphides (BP, AlP, GaP, and InP)

    NASA Astrophysics Data System (ADS)

    Ehsanfar, S.; Kanjouri, F.; Tashakori, H.; Esmailian, A.

    2017-10-01

    Based on first-principles calculations with generalized gradient approximation as exchange-correlation functional, the structural, electronic, mechanical, thermal, and phonon properties of III-phosphide binary compounds, namely BP, AlP, GaP, and InP, with cubic zincblende structure have been investigated. The calculations were performed in the framework of density functional theory and density functional perturbation theory (DFPT) implemented in the Quantum ESPRESSO package. The results obtained for the structural and electronic properties are in good agreement with available theoretical and experimental results. The results of our electronic calculations indicate semiconducting properties for these binary compounds. Furthermore, the frequency bandgaps and phonon density of states were also investigated. The computed mechanical constants predict that BP, AlP, GaP, and InP are elastically stable. Finally, we determined the heat capacity and entropy for these binary compounds within a quasiharmonic Debye model using DFPT for comparison.

  3. Electronic structure and ground state properties of A4[Cu4O4] (A=Li, Na, K and Rb): A first principle study

    NASA Astrophysics Data System (ADS)

    Umamaheswari, R.; Yogeswari, M.; Kalpana, G.

    2012-06-01

    The results of first principles calculations of the electronic band structure and ground-state properties of alkali metal copper oxides A4[Cu4O4] (A = Li, Na, K and Rb) compounds are in tetragonal body centered structure with two different space groups I-4m2 and I4/mmm. The calculations have been carried out using the tight-binding linear muffin-tin orbital method within the local density approximation. The total energies calculated within the atomic sphere approximation where used to determine the ground-state properties such as equilibrium lattice parameters, c/a ratio, the bulk modulus and cohesive energy and these are found to be in good agreement with the available experimental values. The results of the electronic band structure calculations show that LiCuO, KCuO and RbCuO are indirect band gap semiconductors, whereas NaCuO is direct band gap semiconductor.

  4. Structural, electronic and spectral properties of carborane-containing boron dipyrromethenes (BODIPYs): A first-principles study.

    PubMed

    Li, Xiaojun

    2017-10-05

    In this work, we reported the geometrical structures, electronic and spectral properties of the carborane-containing BODIPYs complexes using the density functional theory calculations. In two structures, the calculated main bond lengths and bond angels of structural framework are consistent with X-ray experiment, and the two BODIPYs complexes are thermodynamically and kinetically stable. The strongest DOS band is mainly dominated by the BB and BH σ-bonds of carborane fragment, whereas the π-type MOs on the pyrromethene fragment contribute to the high-energy DOS bands. Analysis of the AdNDP chemical bonding indicates that the carborane cage can be stabilized by eleven delocalized 3c2e and two delocalized 4c2e σ-bonds, while the pyrromethene fragment corresponds to five delocalized 3c2e π-bonds. In addition, the main characteristic peaks of the two simulated IR spectra for the BODIPYs complexes are properly assigned. Hopefully, all these results will be helpful for understanding the electronic structures, and further stimulate the study on the biological and medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The Solvation Structure of Lithium Ions in an Ether Based Electrolyte Solution from First-Principles Molecular Dynamics.

    PubMed

    Callsen, Martin; Sodeyama, Keitaro; Futera, Zdeněk; Tateyama, Yoshitaka; Hamada, Ikutaro

    2017-01-12

    The solvation and desolvation of the Li ion play a crucial role in the electrolytes of Li based secondary batteries, and their understanding at the microscopic level is of great importance. Oligoether (glyme) based electrolytes have attracted much attention as electrolytes used in Li based secondary batteries, such as Li-ion, Li-S, and Li-O2 batteries. However, the solvation structure of the Li ion in glyme based electrolytes has not been fully clarified yet. We present a computational study on the solvation structure of lithium ions in the mixture of triglyme and lithium bis(trifluoromethylsulfonyl)-amide (LiTFSA) by means of molecular orbital and molecular dynamics calculations based on density functional theory. We found that, in the electrolyte solution composed of the equimolar mixture of triglyme and LiTFSA, lithium ions are solvated mainly by crown-ether-like curled triglyme molecules and in direct contact with an TFSA anion. We also found the aggregate formed with Li ion and TFSA anions and/or triglyme molecule(s) is equally stable, which has not been reported in the previous classical molecular dynamics simulations, suggesting that in reality a small fraction of Li ions form aggregates and they might have a significant impact on the Li ion transport. Our results demonstrate the importance of performing electronic structure based molecular dynamics of electrolyte solution to clarify the detailed solvation structure of the Li ion.

  6. First-principles study of the electronic structure of iron-selenium: Implications for electron-phonon superconductivity

    NASA Astrophysics Data System (ADS)

    Koufos, Alexander P.; Papaconstantopoulos, Dimitrios A.; Mehl, Michael J.

    2014-01-01

    We have performed density functional theory calculations using the linearized augmented plane wave method (LAPW) with the local density approximation (LDA) functional to study the electronic structure of the iron-based superconductor iron-selenium (FeSe). In our study, we have performed a comprehensive set of calculations involving structural, atomic, and spin configurations. All calculations were executed using the tetragonal lead-oxide or P4/nmm structure, with various volumes, c /a ratios, and internal parameters. Furthermore, we investigated the spin polarization using the LDA functional to assess ferromagnetism in this material. The paramagnetic LDA calculations find the equilibrium configuration of FeSe in the P4/nmm structure to have a volume of 472.5 a.u.3 with a c /a ratio of 1.50 and internal parameter of 0.255, with the ferromagnetic having comparable results to the paramagnetic case. In addition, we calculated total energies for FeSe using a pseudopotential method, and found comparable results to the LAPW calculations. Superconductivity calculations were done using the Gaspari-Gyorffy and the McMillan formalisms and found substantial electron-phonon coupling. Under pressure, our calculations show that the superconductivity critical temperature continues to rise, but underestimates the measured values.

  7. Structural, electronic and spectral properties of carborane-containing boron dipyrromethenes (BODIPYs): A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun

    2017-10-01

    In this work, we reported the geometrical structures, electronic and spectral properties of the carborane-containing BODIPYs complexes using the density functional theory calculations. In two structures, the calculated main bond lengths and bond angels of structural framework are consistent with X-ray experiment, and the two BODIPYs complexes are thermodynamically and kinetically stable. The strongest DOS band is mainly dominated by the Bsbnd B and Bsbnd H σ-bonds of carborane fragment, whereas the π-type MOs on the pyrromethene fragment contribute to the high-energy DOS bands. Analysis of the AdNDP chemical bonding indicates that the carborane cage can be stabilized by eleven delocalized 3csbnd 2e and two delocalized 4csbnd 2e σ-bonds, while the pyrromethene fragment corresponds to five delocalized 3csbnd 2e π-bonds. In addition, the main characteristic peaks of the two simulated IR spectra for the BODIPYs complexes are properly assigned. Hopefully, all these results will be helpful for understanding the electronic structures, and further stimulate the study on the biological and medical applications.

  8. First principles simulations of structural phase transformations in the solid electrolyte LiBH4 with chemical substitutions

    NASA Astrophysics Data System (ADS)

    Bernstein, Noam; Hoang, Khang; Johannes, Michelle

    2014-03-01

    The proposed hydrogen storage material LiBH4 has been shown to have possible applications as a Li-ion battery solid electrolyte, due to its high Li-ion conductivity over 10-3 S/cm-1 [1], comparable to polymer gel electrolytes. The high conductivity is only observed above a phase transition temperature that is outside of the useful operating range, but doping the material with various substitutions for the Li or BH4 units can bring the phase transition below room temperature. Both smaller and larger substituting species can stabilize the high T structure, indicating that it is not a simple volume effect. We show that variable-cell-shape molecular-dynamics simulations using density functional theory forces and stresses reproduce the structural phase transition. Using umbrella integration to compute the free energy differences between the two structures, we calculate the phase transition temperature and its dependence on substitutional I, Cl, and Na concentrations, and show that they are in very good agreement with experiment. We calculate the effect of K substitution, and predict that it will be even more effective at stabilizing the high T structure. Decomposing the free energy difference changes into enthalpy and entropy contributions shows that the mechanis

  9. Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures

    NASA Astrophysics Data System (ADS)

    Angsten, Thomas; Mayeshiba, Tam; Wu, Henry; Morgan, Dane

    2014-01-01

    This work demonstrates how databases of diffusion-related properties can be developed from high-throughput ab initio calculations. The formation and migration energies for vacancies of all adequately stable pure elements in both the face-centered cubic (fcc) and hexagonal close packing (hcp) crystal structures were determined using ab initio calculations. For hcp migration, both the basal plane and z-direction nearest-neighbor vacancy hops were considered. Energy barriers were successfully calculated for 49 elements in the fcc structure and 44 elements in the hcp structure. These data were plotted against various elemental properties in order to discover significant correlations. The calculated data show smooth and continuous trends when plotted against Mendeleev numbers. The vacancy formation energies were plotted against cohesive energies to produce linear trends with regressed slopes of 0.317 and 0.323 for the fcc and hcp structures respectively. This result shows the expected increase in vacancy formation energy with stronger bonding. The slope of approximately 0.3, being well below that predicted by a simple fixed bond strength model, is consistent with a reduction in the vacancy formation energy due to many-body effects and relaxation. Vacancy migration barriers are found to increase nearly linearly with increasing stiffness, consistent with the local expansion required to migrate an atom. A simple semi-empirical expression is created to predict the vacancy migration energy from the lattice constant and bulk modulus for fcc systems, yielding estimates with errors of approximately 30%.

  10. Structural, mechanical, and electronic properties of Rh2B and RhB2: first-principles calculations

    PubMed Central

    Chu, Binhua; Li, Da; Tian, Fubo; Duan, Defang; Sha, Xiaojing; Lv, Yunzhou; Zhang, Huadi; Liu, Bingbing; Cui, Tian

    2015-01-01

    The crystal structures of Rh2B and RhB2 at ambient pressure were explored by using the evolutionary methodology. A monoclinic P21/m structure of Rh2B was predicted and donated as Rh2B-I, which is energetically much superior to the previously experimentally proposed Pnma structure. At the pressure of about 39 GPa, the P21/m phase of Rh2B transforms to the C2/m phases. For RhB2, a new monoclinic P21/m phase was predicted, named as RhB2-II, it has the same structure type with Rh2B. Rh2B-I and RhB2-II are both mechanically and dynamically stable. They are potential low compressible materials. The analysis of electronic density of states and chemical bonding indicates that the formation of strong and directional covalent B-B and Rh-B bonds in these compounds contribute greatly to their stabilities and high incompressibility. PMID:26123399

  11. First-principles study of electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate.

    PubMed

    Li, Zhimin; Huang, Huisheng; Zhang, Tonglai; Zhang, Shengtao; Zhang, Jianguo; Yang, Li

    2014-01-01

    The electric field effects on the structure, decomposition mechanism, and stability of crystalline lead styphnate have been studied using density functional theory. The results indicate that the influence of external electric field on the crystal structure is anisotropic. The electric field effects on the distance of the Pb-O ionic interactions are stronger than those on the covalent interactions. However, the changes of most structural parameters are not monotonically dependent on the increased electric field. This reveals that lead styphnate can undergo a phase transition upon the external electric field. When the applied field is increased to 0.003 a.u., the effective band gap and total density of states vary evidently. And the Franz-Keldysh effect yields larger influence on the band gap than the structural change induced by external electric field. Furthermore, lead styphnate has different initial decomposition reactions in the presence and absence of the electric field. Finally, we find that its sensitivity becomes more and more sensitive with the increasing electric field.

  12. First-principles study of the structural, electronic and thermal properties of CaLiF3

    NASA Astrophysics Data System (ADS)

    Chouit, N.; Amara Korba, S.; Slimani, M.; Meradji, H.; Ghemid, S.; Khenata, R.

    2013-09-01

    Density functional theory calculations have been performed to study the structural, electronic and optical properties of CaLiF3 cubic fluoroperovskite. Our calculations were carried out by means of the full-potential linearized augmented plane-wave method. The exchange-correlation potential is treated by the local density approximation and the generalized gradient approximation (GGA) (Perdew, Burke and Ernzerhof). Moreover, the alternative form of GGA proposed by Engel and Vosko is also used for band structure calculations. The calculated total energy versus volume allows us to obtain structural properties such as the lattice constant (a0), bulk modulus (B0) and pressure derivative of the bulk modulus (B'0 ). Band structure, density of states and band gap pressure coefficients are also given. Our calculations show that CaLiF3 has an indirect band gap (R-Γ). Following the quasi-harmonic Debye model, in which the phononic effects are considered, the temperature and pressure effects on the lattice constant, bulk modulus, thermal expansion coefficient, Debye temperature and heat capacities are calculated.

  13. Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Kuwabara, Akihide; Tanaka, Isao

    2005-05-01

    The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However, using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3 are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied by means of density functional theory and direct ab initio force constant approach. The calculated electronic structures, phonon density of states, and thermodynamic functions [including S(T) and H(T)-H(0) ] for the three hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but positive free energies of formation. This conclusion is the same as that made by Wolverton for the hexagonal AlH3 [Phys. Rev. B 69, 144109 (2004)]. The thermodynamic properties indicate that the orthorhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3 .

  14. First-principles investigation of electronic, structural, and vibrational properties of a-Si3N4

    NASA Astrophysics Data System (ADS)

    Giacomazzi, Luigi; Umari, P.

    2009-10-01

    Using a density-functional scheme, we investigate the electronic, structural, and vibrational properties of amorphous silicon nitride. Through a Car-Parrinello molecular-dynamics simulation, we generate a model structure formed mainly by a network of SiN4 tetrahedra a large fraction of which are edge sharing. Only a small fraction of atoms are overcoordinated and undercoordinated. First, the structural properties such as angular distributions, atomic arrangements in first-neighbor shells, the neutron total structure factor, the radial distribution function, and pair-correlation functions are examined. Next, the electronic properties are analyzed by considering the quasiparticle density of states which is calculated through the GW method. Good agreement is found with experimental data when available. Successively, we focus on a range of vibrational spectra. First, the vibrational density of states is analyzed in terms of its decomposition into N and Si contributions. Then, we investigate the Born effective charge tensors, the high-frequency, and static dielectric constants and calculate the real and imaginary parts of the dielectric function in the infrared. Therefrom we obtain the infrared-absorption spectrum and the refractive index that are found to be in accord with experimental measurements. Moreover, we address the Raman spectrum which is compared with available experimental data. Electronic structure and vibrational properties of the point defects present in our model are also discussed. Density-functional and GW schemes appear to be appropriate for modeling materials based on silicon nitride. In particular, our modeling of silicon nitride achieved a successful level of comparison with experiments. This allows us to infer that a-Si3N4 features a high content of edge-sharing tetrahedra, which are absent in the crystalline phases of silicon nitride at ambient conditions.

  15. Experimental and first-principles investigation of the electronic structure anisotropy of Cr2AlC

    NASA Astrophysics Data System (ADS)

    Bugnet, M.; Jaouen, M.; Mauchamp, V.; Cabioc'h, T.; Hug, G.

    2014-11-01

    The anisotropy of the electronic structure of the MAX phase Cr2AlC has been investigated by electron-energy-loss spectroscopy (EELS) at the C K edge, and x-ray-absorption spectroscopy (XAS) at the Al K , Cr L2 ,3, and Cr K edges. The experimental spectra were interpreted using either a multiple-scattering approach or a full-potential band-structure method. The anisotropy is found to be small around C atoms because of the rather isotropic nature of the octahedral site, and of the averaging of the empty C p states probed by EELS at the C K edge. In turn, a pronounced anisotropy of the charge distribution around Al atoms is evidenced from polarized XAS measurements performed on textured Cr2AlC sputtered thin films. From the analysis of the XAS data using the multiple-scattering feff code, it is demonstrated that the probed thin film is constituted of 70 % (0001) and 30 % (10 1 ¯3 ) grains oriented parallel to the film surface. A decomposition of the calculated spectrum in coordination shells allows for the ability to connect XAS fine structures to the Cr2AlC structure. Combining high-resolution data with up-to-date multiple-scattering calculations, it is shown that the crystalline orientations of the grains present in a probe of 100 ×100 μ m 2 can be determined from the Cr K edge. Interestingly, it is also revealed that a static disorder is involved in the studied thin films. These findings highlight that, given the overall agreement between experimental and calculated spectra, the Cr2AlC electronic structure is accurately predicted using density functional theory.

  16. Assessing exchange-correlation functional performance for structure and property predictions of oxyfluoride compounds from first principles

    NASA Astrophysics Data System (ADS)

    Charles, Nenian; Rondinelli, James M.

    2016-11-01

    Motivated by the resurgence of electronic and optical property design in ordered fluoride and oxyfluoride compounds, we present a density functional theory (DFT) study of 19 materials with structures, ranging from simple to complex, and variable oxygen-to-fluorine ratios. We focus on understanding the accuracy of the exchange-correlation potentials (Vx c) to DFT for the prediction of structural, electronic, and lattice dynamical properties at four different levels of theory, i.e., the local density approximation (LDA), generalized gradient approximation (GGA), metaGGA, and hybrid functional level which includes fractions of exact exchange. We investigate in detail the metaGGA functionals MS2 [Sun et al., Phys. Rev. Lett. 111, 106401 (2013), 10.1103/PhysRevLett.111.106401] and SCAN [Sun et al., Phys. Rev. Lett. 115, 036402 (2015), 10.1103/PhysRevLett.115.036402], and show that although the metaGGAs show improvements over the LDA and GGA functionals in describing the electronic structure and phonon frequencies, the static structural properties of fluorides and oxyfluorides are often more accurately predicted by the GGA-level Perdew-Burke-Ernzerhof functional for solids, PBEsol. Results from LDA calculations are unsatisfactory for any compound, regardless of oxygen concentration. The PBEsol and Heyd-Scuseria-Ernzerhof (HSE06) functionals give good performance in all-oxide or all-fluoride compounds. For the oxyfluorides, PBEsol is consistently more accurate for structural properties across all oxygen concentrations; however, we stress the need for detailed property assessment with various functionals for oxyfluorides with variable composition. The "best" functional is anticipated to be more strongly dependent on the property of interest. Our study provides useful insights in selecting an Vx c that achieves optimal performance compromises, enabling more accurate predictive design of functional fluoride-based materials with density functional theory.

  17. Fragmentation of the fluorite type in Fe8Al(17.4)Si(7.6): structural complexity in intermetallics dictated by the 18 electron rule.

    PubMed

    Fredrickson, Rie T; Fredrickson, Daniel C

    2012-10-01

    This Article presents the synthesis, structure determination, and bonding analysis of Fe(8)Al(17.4)Si(7.6). Fe(8)Al(17.4)Si(7.6) crystallizes in a new monoclinic structure type based on columns of the fluorite (CaF(2)) structure type. As such, the compound can be seen as part of a structural series in which the fluorite structure-adopted by several transition metal disilicides (TMSi(2))-is fragmented by the incorporation of Al. Electronic structure analysis using density functional theory (DFT) and DFT-calibrated Hückel calculations indicates that the fluorite-type TMSi(2) phases (TM = Co, Ni) exhibit density of states (DOS) pseudogaps near their Fermi energies. An analogous pseudogap occurs for Fe(8)Al(17.4)Si(7.6), revealing that its complex structure serves to preserve this stabilizing feature of the electronic structure. Pursuing the origins of these pseudogaps leads to a simple picture: the DOS minimum in the TMSi(2) structures arises via a bonding scheme analogous to those of 18 electron transition metal complexes. Replacement of Si with Al leads to the necessity of increasing the (Si/Al):TM ratio to maintain this valence electron concentration. The excess Si/Al atoms are accommodated through the fragmentation of the fluorite type. The resulting picture highlights how the elucidating power of bonding concepts from transition metal complexes can extend into the intermetallic realm.

  18. Influence of stresses on structure and properties of Ti and Zr- based alloys from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Barannikova, S. A.; Zharmukhambetova, A. M.; Nikonov, A. Yu; Dmitriev, A. V.; Ponomareva, A. V.; Abrikosov, I. A.

    2015-01-01

    Computer simulations in the framework of the Density Functional Theory have become an established tool for computer simulations of materials properties. In most cases, however, information is obtained at ambient conditions, preventing design of materials for applications at extreme conditions. In this work we employ ab initio calculations to investigate the influence of stresses on structure and stability of Ti-Mo and Zr-Nb alloys, an important class of construction materials. Calculations reproduce known phase stability trends in these systems, and we resolve the controversy regarding the stability of body-centered cubic solid solution in Mo-rich Ti-Mo alloys against the isostructural decomposition. Calculated results are explained in terms of the electronic structure effects, as well as in terms of physically transparent thermodynamic arguments that relate phase stability to deviations of concentration dependence of atomic volume from the linear behavior.

  19. Tuning electronic structure of SnS2 nanosheets by vertical electric field: a first-principles investigation

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Wang, Tianxing; Xia, Congxin; Jia, Yu

    2016-07-01

    Based on density functional theory, we investigated band gap tuning in transition-metal dichalcogenides SnS2 nanosheets by external electric fields applied perpendicular to the layers. We show that the fundamental band gap value of 2H and 4H SnS2 multilayer structures continuously decreases with increasing strength of applied electric fields, eventually rendering them metallic. We interpret our results in the light of the giant Stark effect and obtain a robust relationship, which is essentially characterized by the interlayer spacing, for the rate of band gap change with applied external field. And it is also valid for monolayer structure, though it need very large electric filed to make the gap change.

  20. The structural and electronic properties of cubic AgMO{sub 3} (M=Nb, Ta) by first principles calculations

    SciTech Connect

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket

    2016-05-06

    We report the electronic structure of the AgMO{sub 3}(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O{sub 3} reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.

  1. A first principles study of the lattice stability of diamond-structure semiconductors under intense laser irradiation

    SciTech Connect

    Feng Shiquan; Zhao Jianling; Cheng Xinlu

    2013-01-14

    Using density-functional linear-response theory, we calculated the phonon dispersion curves for the diamond structural elemental semiconductors of Ge, C and zinc-blende structure semiconductors of GaAs, InSb at different electronic temperatures. We found that the transverse-acoustic phonon frequencies of C and Ge become imaginary as the electron temperature is elevated, which means the lattices of C and Ge become unstable under intense laser irradiation. These results are very similar with previous theoretical and experimental results for Si. For GaAs and InSb, not only can be obtained the similar results for their transverse-acoustic modes, but also their LO-TO splitting gradually decreases as the electronic temperature is increased. It means that the electronic excitation weakens the strength of the ionicity of ionic crystal under intense laser irradiation.

  2. Structural, electronic and optical properties of orthorhombic CdGeO{sub 3} from first principles calculations

    SciTech Connect

    Barboza, C.A.; Henriques, J.M.; Albuquerque, E.L.; Caetano, E.W.S.; Freire, V.N.; Costa, J.A.P. da

    2010-02-15

    Orthorhombic perovskite CdGeO{sub 3} was studied using the density-functional theory (DFT) formalism. The electronic band structure, density of states, effective masses, dielectric function and optical absorption were obtained. Comparing with orthorhombic CaGeO{sub 3}, which is an indirect S->GAMMA gap material, the substitution of calcium by cadmium changes the valence band maximum from the S point to the GAMMA point in reciprocal space, and decreases the Kohn-Sham band gap energy. Our results suggest that orthorhombic CdGeO{sub 3} has features of a semiconductor and is potentially useful for optoelectronic applications. - Abstract: Graphical Abstract Legend (TOC Figure): Different views of the unit cell of orthorhombic CdGeO{sub 3} (left, top). The electronic band structure near the main gap and the partial density of states (PDOS) are shown also (right), as well as the optical absorption for different polarizations of incident light (left, bottom).

  3. The structural and electronic properties of cubic AgMO3 (M=Nb, Ta) by first principles calculations

    NASA Astrophysics Data System (ADS)

    Prasad, K. Ganga; Niranjan, Manish K.; Asthana, Saket

    2016-05-01

    We report the electronic structure of the AgMO3(M=Nb, Ta) within the frame work of density functional theory and calculations are performed within the generalized gradient approximation (GGA) by using ultrasoft pseudopotentials. The calculated equilibrium lattice parameters and volumes are extracted from fitting of Birch third order equation of state and which are reasonable agreement with the available experimental results. The density of states,band structure of Ag(Nb,Ta)O3 reveals that the valance bands mostly occupied with O-2p and O-2s states and whereas conduction band occupied with Nb (Ta) 4d(5d) states including less contribution from Ag 5s states.

  4. First-Principles Study of the Structural, Optical, Dynamical and Thermodynamic Properties of BaZnO2 Under Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Xian; Hu, Cui-E.; Chen, Yang-Mei; Cheng, Yan; Ji, Guang-Fu

    2016-11-01

    The structural, optical, dynamical, and thermodynamic properties of BaZnO2 under pressure are studied based on the density functional theory. The calculated structural parameters are consistent with the available experimental data. In the ground state, the electronic band structure and density of states indicate that BaZnO2 is an insulator with a direct gap of 2.2 eV. The Mulliken charges are also analyzed to characterize the bonding property. After the structural relaxation, the optical properties are studied. It is found that the dielectric function of E Vert x and EVert y are isotropic, whereas the EVert x and EVert z are anisotropic. The effect of pressure on the energy-loss function in the ultraviolet region becomes more obvious as the pressure increases. Furthermore, the dynamical properties under different pressures are investigated using the finite displacement method. We find that the P3121 phase of BaZnO2 is dynamically stable under the pressure ranging from 0 GPa to 30 GPa. The phonon dispersion curves, phonon density of states, vibrational modes and atoms that contribute to these vibrations at {{\\varvec{Γ }}} point under different pressures are also reported in this work. Finally, by employing the quasi-harmonic approximation, the thermodynamic properties such as the temperature dependence of the thermal expansion coefficient, specific heat, entropy and Gibbs free energy under different pressures are investigated. It is found that the influences of the temperature on the heat capacity are much more significant than that of the pressure on it.

  5. Strain effects on the structural, magnetic, and thermodynamic properties of the Au(001)/Fe(001) interface from first principles

    NASA Astrophysics Data System (ADS)

    Benoit, Magali; Combe, Nicolas; Ponchet, Anne; Morillo, Joseph; Casanove, Marie-José

    2014-10-01

    The structural, magnetic, and thermodynamic properties of the Au(001)/Fe(001) interface are investigated as a function of the in-plane strain using density functional theory calculations for two different Au slab thicknesses: 2 and 8 monolayers. The structural and magnetic properties are analyzed by studying the interlayer distance in the direction perpendicular to the interface and the atomic magnetic moments of Fe atoms, as a function of the in-plane strain. The structural study evidences both the bulk elastic and surface and interface contributions. The atomic magnetic moments of Fe atoms are essentially dependent on their local environment (number and distance of the Fe first neighbors). Thermodynamic properties of the interface are investigated through the calculation of the interface energy and interface stress. These thermodynamic quantities are subsequently used in a simple model to evaluate the strain state of an ideal spherical symmetric Fe@Au core-shell nanoparticle. The surface elastic effects are found to be significant for nanoparticles of diameter smaller than ˜20 nm and predominant for diameters smaller than ˜2.3 nm. Interface elastic effects are weaker than surface elastic effects but can not be neglected for very small nanoparticles (≲1.9 nm) or for thin shells.

  6. First-principles calculations of the structural, electronic, optical and thermal properties of the BNxAs1-x alloys

    NASA Astrophysics Data System (ADS)

    Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin

    2016-06-01

    The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.

  7. First-Principles Structure Prediction of Dual Cation Ammine Borohydrides: LiMg(BH4)3(NH3)x

    NASA Astrophysics Data System (ADS)

    Kışlak, Yusuf; Tekin, Adem

    On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. In addition, hydrogen storage is also required for off-board purposes such as stationary power generation and hydrogen delivery and refueling infrastructure. After decades of extensive exploration, research into hydrogen storage materials based on metal borohydrides has become a highly active and exciting area owing to the high theoretical hydrogen capacities of these materials. However, they are thermodynamically too stable and therefore a very high temperature is required for their decomposition. This temperature can be lowered to the tolerable levels by the addition of ammonia and the resulting material is called as Ammine Metal Borohydrides (AMBs). In this study, we aim to search the ground state crystal structures of LiMg(BH4)3(NH3)x [1] with x = 2, 3, 4 using CrystAl Structure Prediction via Simulated Annealing (CASPESA) method. This approach was successfully located the experimentally determined structure of LiMg(BH4)3(NH3)2 [1] and other interesting local minima. For x = 3 and 4 cases, our methodology also resulted new crystal phases.

  8. The Electronic, Elastic, and Structural Properties of Ti-Pd Intermetallics and Associated Hydrides from First-Principles Calculations

    SciTech Connect

    Chen, Xingqiu; Fu, Chong Long; Morris, James R

    2010-01-01

    Using an ab initio density functional approach, we report on the ground-state phase stabilities, enthalpies of formation, electronic, and elastic properties of the Ti-Pd alloy system. The calculated enthalpies of formation are in excellent agreement with available calorimetric data. We found a linear dependence between the calculated enthalpies of formation of several intermetallic structures and the Pd-concentration, indicating that each of these compounds has a very limited composition range. The elastic constants for many of these Ti-Pd intermetallics were calculated and analyzed. The B2 TiPd phase is found to be mechanically unstable with respect to the transformation into the monoclinic B19 structure. A series of hydrides, Ti2PdHx (x=1, 1.5, 2, 3, 4), have been investigated in terms of electronic structure, enthalpies of hydrogen absorption, and site preference of H atoms. Our results illustrate the physical mechanism for hydrogen absorption in term of the charge transfer, and explain why TiPd2 does not form a stable hydride.

  9. Solid State Structure-Reactivity Studies on Bixbyites, Fluorites and Perovskites Belonging to the Vanadate, Titanate and Cerate Families

    NASA Astrophysics Data System (ADS)

    Shafi, Shahid P.

    This thesis primarily focuses on the systematic understanding of structure-reactivity relationships in two representative systems: bixbyite and related structures as well as indium doped CeO2. Topotactic reaction routes have gained significant attention over the past two decades due to their potential to access kinetically controlled metastable materials. This has contributed substantially to the understanding of solid state reaction pathways and provided first insights into mechanisms. Contrary to the widely used ex-situ methods, in-situ techniques including powder x-ray diffraction and thermogravimetric-differential thermal analysis have been employed extensively throughout this work in order to follow the reaction pathways in real time. Detailed analysis of the AVO3 (A = In, Sc) bixbyite reactivity under oxidative conditions has been carried out and a variety of novel metastable oxygen defect phases have been identified and characterized. The novel metastable materials have oxygen deficient fluorite structures and consequently are potential ion conductors. Structural aspects of the topotactic vs. reconstructive transformations are illustrated with this model system. The structure-reactivity study of AVO3 phases was extended to AVO3 perovskite family. Based on the research methodologies and results from AVO3 bixbyite reactivity studies a generalized mechanistic oxidation pathway has been established with a non-vanadium phase, ScTiO3 bixbyite. However, there is stark contrast in terms of structural stability and features beyond this stability limit during AVO3 and ScTiO3 bixbyite reaction pathways. A series of complex reaction sequences including phase separation and phase transitions were identified during the investigation of ScTiO3 reactivity. The two-step formation pathway for the fluorite-type oxide ion conductor Ce1-xInxO2-delta (0 ≤ x ≤ 0.3) is being reported. The formation of the BaCe1-xInxO 3-delta perovskites and the subsequent CO2-capture reaction

  10. Impurity-doped Si10 cluster: Understanding the structural and electronic properties from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Majumder, Chiranjib; Kulshreshtha, S. K.

    2004-12-01

    Structural and electronic properties of metal-doped silicon clusters ( MSi10 , M=Li , Be, B, C, Na, Mg, Al, and Si) have been investigated via ab initio molecular dynamics simulation under the formalism of the density functional theory. The exchange-correlation energy has been calculated using the generalized gradient approximation method. Several stable isomers of MSi10 clusters have been identified based on different initial configurations and their relative stabilities have been analyzed. From the results it is revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurty atom. Whereas Be and B atoms form stable isomers, the impurity atom being placed at the center of the bicapped tetragonal antiprism structure of the Si10 cluster, all other elements diffuse outside the cage of Si10 cluster. Further, to understand the stability and the chemical bonding, the LCAO-MO based all electron calculations have been carried out for the lowest energy isomers using the hybrid B3LYP energy functional. Based on the interaction energy of the M atoms with Si10 clusters it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. Based on the binding energy, the relative stability of MSi10 clusters is found to follow the order of CSi10>BSi10>BeSi10>Si11>AlSi10>LiSi10>NaSi10>MgSi10 , leading one to infer that while the substitution of C, B and Be enhances the stability of the Si11 cluster, others have an opposite effect. The extra stability of the BeSi10 clusters is due to its encapsulated close packed structure and large energy gap between the HOMO and LUMO energy levels.

  11. The crystal structure and chemical state of aluminum-doped hydroxyapatite by experimental and first principles calculation studies.

    PubMed

    Wang, Ming; Wang, Liping; Shi, Chao; Sun, Tian; Zeng, Yi; Zhu, Yingchun

    2016-08-03

    Aluminum (Al) is a trace element found in hard tissues, and the induction of bone diseases by Al accumulation has generated interest in the role and mechanism of Al in bone metabolism. Because hydroxyapatite (HA) constitutes the main inorganic content of human hard tissues, the biological effect of Al in human hard tissues is closely related to the intrinsic state of Al-doped HA (Al-HA). However, few investigations to date have focused on the crystallography of Al-HA. Herein, we determined the crystallographic characteristics and energy states of Al-HA by conducting theoretical and experimental studies. Al-HA [Ca10-1.5xAlx(PO4)6(OH)2] with a defect structure was synthesized. XRD patterns and morphology images revealed that doping of Al decreased the crystallinity and the HA nanocrystal size. The optimized crystal structure indicated that Al was preferentially substituted for Ca(2) and Ca vacancies appeared at the Ca(2)1 site. Al doping locally distorted the regularity and integrity of the HA crystal structure, leading to the occurrence of Ca(2+) vacancies and the displacement and rotation of OH(-) and [PO4](3-) chains. The total energy of Al-HA increased and the stability decreased. Consequently, Al-HA might be readily degraded by osteoclasts and bone resorption could be accelerated. The destruction and over-resorption of bones caused by excessive Al could result in abnormal bone metabolism. The present findings not only provide the first crystallographic information on the disruptive effects of Al doping in HA but also complement the present understanding of the mechanisms underlying Al-induced bone diseases.

  12. First-principles studies of phase stability and crystal structures in Li-Zn mixed-metal borohydrides

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Zhang, Yongsheng; Wolverton, C.

    2013-07-01

    We address the problem of finding mixed-metal borohydrides with favorable thermodynamics and illustrate the approach using the example of LiZn2(BH4)5. Using density functional theory (DFT), along with the grand-canonical linear programming method (GCLP), we examine the experimentally and computationally proposed crystal structures and the finite-temperature thermodynamics of dehydrogenation for the quaternary hydride LiZn2(BH4)5. We find the following: (i) For LiZn2(BH4)5, DFT calculations of the experimental crystal structures reveal that the structure from the neutron diffraction experiments of Ravnsbæk is more stable [by 24 kJ/(mol f.u.)] than that based on a previous x-ray study. (ii) Our DFT calculations show that when using the neutron-diffraction structure of LiZn2(BH4)5, the recently theoretically predicted LiZn(BH4)3 compound is unstable with respect to the decomposition into LiZn2(BH4)5+LiBH4. (iii) GCLP calculations show that even though LiZn2(BH4)5 is a combination of weakly [Zn(BH4)2] and strongly (LiBH4) bound borohydrides, its decomposition is not intermediate between the two individual borohydrides. Rather, we find that the decomposition of LiZn2(BH4)5 is divided into a weakly exothermic step [LiZn2(BH4)5→2Zn+(1)/(5)LiBH4+(2)/(5)Li2B12H12+(36)/(5)H2] and three strong endothermic steps (12LiBH4→10LiH+Li2B12H12+13H2; Zn+LiH→LiZn+(1)/(2)H2; 2Zn+Li2B12H12→2LiZn+12B+6H2). DFT-calculated ΔHZPET=0K values for the first three LiZn2(BH4)5 decomposition steps are -19, +37, +74 kJ/(mol H2), respectively. The behavior of LiZn2(BH4)5 shows that mixed-metal borohydrides formed by mixing borohydrides of high and low thermodynamics stabilities do not necessarily have an intermediate decomposition tendency. Our results suggest the correct strategy to find intermediate decomposition in mixed-metal borohydrides is to search for stable mixed-metal products such as ternary metal borides.

  13. Theoretical calculations of structural, electronic, and elastic properties of CdSe1-x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1-x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  14. Atomic structure of the Zr-He, Zr-vac, and Zr-vac-He systems: First-principles calculation

    NASA Astrophysics Data System (ADS)

    Lopatina, O. V.; Koroteev, Yu. M.; Chernov, I. P.

    2017-01-01

    The ab initio investigations have been performed for the atomic structure of the Zr-He, Zr-vac, and Zr-vac-He systems with concentrations of helium atoms and vacancies (vac) of 6 at %. A heliuminduced instability of the zirconia lattice has been revealed in the Zr-He system, which disappears with the formation of vacancies. The most preferred positions of impurities in the metal lattice have been determined. The energy of helium dissolution and the excess volume introduced by helium have been calculated. It has been established that the presence of helium in the Zr lattice leads to a significant decrease in the energy of vacancy formation.

  15. First principles study on electronic structure and elastic properties of LaCd and LaHg

    SciTech Connect

    Devi, Hansa E-mail: gita-pagare@yahoo.co.in; Pagare, Gitanjali E-mail: gita-pagare@yahoo.co.in; Chouhan, S. S. E-mail: gita-pagare@yahoo.co.in; Sanyal, Sankar P.

    2014-04-24

    Full -potential linearized augmented plane wave method (FP- LAPW) has been used for the comparative study of electronic structure and elastic properties of CsCl-type LaCd and LaHg intermetallic compounds using generalized gradient approximation (GGA). The density of states at the Fermi Level, N (E{sub F}), is found to be 0.06 and 3.03 states/eV for LaCd and LaHg respectively. We report elastic constants for these compounds for the first time. The ductility/brittleness of these compounds has been analyzed using Pugh rule and Cauchy’s pressure.

  16. First Principles Study of Electronic Structure, Magnetic, and Mechanical Properties of Transition Metal Monoxides TMO(TM=Co and Ni)

    NASA Astrophysics Data System (ADS)

    Cinthia, Arumainayagam Jemmy; Rajeswarapalanichamy, Ratnavelu; Iyakutti, Kombiah

    2015-10-01

    The ground-state properties, electronic structure, magnetic and mechanical properties of cobalt oxide (CoO) and nickel oxide (NiO) are investigated using generalised gradient approximation parameterised by Perdew-Burke-Ernzerhof (GGA-PBE) and GGA-PBE+U formalisms. These oxides are found to be stable in the antiferromagnetic (AFM) state at normal pressure. The computed lattice parameters are in agreement with the experimental and other theoretical works. Pressure-induced magnetic transition from AFM to ferromagnetic (FM) state is predicted in NiO at a pressure of 84 GPa. Both these compounds are found to be mechanically stable in the AFM state at normal pressure.

  17. Strain effect on electronic structure and thermoelectric properties of orthorhombic SnSe: A first principles study

    SciTech Connect

    Cuong, Do Duc; Rhim, S. H. Hong, Soon Cheol; Lee, Joo-Hyong

    2015-11-15

    Strain effect on thermoelectricity of orthorhombic SnSe is studied using density function theory. The Seebeck coefficients are obtained by solving Boltzmann Transport equation (BTE) with interpolated band energies. As expected from the crystal structure, calculated Seebeck coefficients are highly anisotropic, and agree well with experiment. Changes in the Seebeck coefficients are presented, when strain is applied along b and c direction with strength from -3% to +3%, where influence by band gaps and band dispersions are significant. Moreover, for compressive strains, the sign change of Seebeck coefficients at particular direction suggests that the bipolar transport is possible for SnSe.

  18. A comparable study of structural and electrical transport properties of Al and Cu nanowires using first-principle calculations

    SciTech Connect

    Gao, N.; Li, J. C. E-mail: jiangq@jlu.edu.cn; Jiang, Q. E-mail: jiangq@jlu.edu.cn

    2013-12-23

    The structural and quantum transport properties of Al and Cu nanowires with diameters up to 3.6 nm are studied using density functional theory combined with Landauer formalism. Contrary to the classical electronic behavior, the conductance of Al wires is larger than that of Cu. This is mainly attributed to the larger contribution of conductance channels from Al-3p, which is determined by the chemical nature. Meanwhile, the stronger axial contraction of Al wires plays a minor role to conductance. This makes Al wires possible candidate interconnects in integrated circuits.

  19. Prediction of Pressure-Induced Structural Transition and Mechanical Properties of MgY from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Pu, Chun-Ying; Xun, Xian-Chao; Song, Hai-Zhen; Zhang, Fei-Wu; Lu, Zhi-Wen; Zhou, Da-Wei

    2016-01-01

    Using the particle swarm optimization algorithm on crystal structure prediction, we first predict that MgY alloy undergoes a first-order phase transition from CsCl phase to P4/NMM phase at about 55 GPa with a small volume collapse of 2.63%. The dynamical stability of P4/NMM phase at 55 GPa is evaluated by the phonon spectrum calculation and the electronic structure is discussed. The elastic constants are calculated, after which the bulk moduli, shear moduli, Young's modui, and Debye temperature are derived. The brittleness/ductile behavior, and anisotropy of two phases under pressure are discussed in details. Our results show that external pressure can change the brittle behavior to ductile at 10 GPa for CsCl phase and improve the ductility of MgY alloy. As pressure increases, the elastic anisotropy in shear of CsCl phase decreases, while that of P4/NMM phase remains nearly constant. The elastic anisotropic constructions of the directional dependences of reciprocals of bulk modulus and Young's modulus are also calculated and discussed. Supported by the Henan Joint Funds of the National Natural Science Foundation of China under Grant Nos. U1304612, U1404608, the National Natural Science Foundation of China under Grant Nos. 51501093, 51374132, and the Special Fund of the Theoretical Physics of China under Grant No. 11247222, Postdoctoral Science Foundation of China under Grant No. 2015M581767, and Young Core Instructor Foundation of Henan Province under Grant No. 2015GGJS-122

  20. First-principles studies on structural and electronic properties of GaN-AlN heterostructure nanowires.

    PubMed

    Zhang, Haijun; Li, Yafei; Tang, Qing; Liu, Lu; Zhou, Zhen

    2012-02-21

    The structural and electronic properties of core-shell, eutectic, biaxial and superlattice GaN-AlN nanowires were studied through density functional theory computations. Due to more surface dangling bonds, nanowires with smaller diameters are energetically unfavorable. For the GaN-AlN heterostructure nanowires, their electronic properties highly depend on the GaN content, axial strain, configuration, and size. The valence bands are less affected by the GaN content, while the conduction bands depend on it. Hydrogen-passivated nanowires have much larger band gaps than their counterparts, since the surface states are removed by saturating the dangling bonds with hydrogen atoms. Moreover, due to multiple quantum-well structures, the confined electrons (holes) of superlattice nanowires become more localized and the difference of the mobility between the electron and hole becomes less apparent if the width of the barrier is larger. These findings are of value for better understanding heterostructure nanowires and their potential utilization. This journal is © The Royal Society of Chemistry 2012

  1. Investigation of the structural, electronic, and magnetic properties of Ni-based Heusler alloys from first principles

    NASA Astrophysics Data System (ADS)

    Qawasmeh, Yasmeen; Hamad, Bothina

    2012-02-01

    Density functional theory (DFT) calculations are performed to investigate the structural, electronic, magnetic, and elastic properties of Ni2MnZ (Z = B, Al, Ga, In) and Ni2FeZ (Z = Al, Ga) full Heusler alloys. The alloys are found to be metallic ferromagnets with total magnetic moments of about 4μB/f.u. and 3μB/f.u for Ni2MnZ and Ni2FeZ alloys, respectively. The Ni2MnAl and Ni2MnIn alloys are found to be stable at L21 phase, while the other alloys are more stable in the tetragonal phase with c/a ratios of 1.38 and 1.27 for Ni2MnB and Ni2MnGa, respectively and 1.35 for both Ni2FeAl and Ni2FeGa. The Ni2MnB alloy exhibits the highest electron spin polarization in its tetragonal phase, which is about 88% greater than that of L21 structure. However, the Ni2MnGa, Ni2FeAl, and Ni2FeGa alloys exhibit lower spin polarizations in their tetragonal phase than those at the L21. The most contribution of the total magnetic moments comes from Mn or Fe atoms, whereas Ni atoms exhibit much smaller magnetic moments. However, Z atoms have small induced magnetic moments, which are coupled antiferromagnetically with Ni, Mn and Fe.

  2. Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study.

    PubMed

    Yang, Zongxian; Woo, Tom K; Baudin, Micael; Hermansson, Kersti

    2004-04-22

    The atomic and electronic structure of (111), (110), and (100) surfaces of ceria (CeO2) were studied using density-functional theory within the generalized gradient approximation. Both stoichiometric surfaces and surfaces with oxygen vacancies (unreduced and reduced surfaces, respectively) have been examined. It is found that the (111) surface is the most stable among the considered surfaces, followed by (110) and (100) surfaces, in agreement with experimental observations and previous theoretical results. Different features of relaxation are found for the three surfaces. While the (111) surface undergoes very small relaxation, considerably larger relaxations are found for the (110) and (100) surfaces. The formation of an oxygen vacancy is closely related to the surface structure and occurs more easily for the (110) surface than for (111). The preferred vacancy location is in the surface layer for CeO2(110) and in the subsurface layer (the second O-atomic layer) for CeO2(111). For both surfaces, the O vacancy forms more readily than in the bulk. An interesting oscillatory behavior is found for the vacancy formation energy in the upper three layers of CeO2(111). Analysis of the reduced surfaces suggests that the additional charge resulting from the formation of the oxygen vacancies is localized in the first three layers of the surface. Furthermore, they are not only trapped in the 4f states of cerium. (c) 2004 American Institute of Physics

  3. Phase diagram, structure, and magnetic properties of the Ge-Mn system: A first-principles study

    NASA Astrophysics Data System (ADS)

    Arras, Emmanuel; Caliste, Damien; Deutsch, Thierry; Lançon, Frédéric; Pochet, Pascal

    2011-05-01

    We study the whole Ge-Mn phase diagram with density functional theory (DFT) methods. The 16 known phases are described and trends are analyzed. The compounds are then simulated, allowing a complete evaluation of this method in the projector augmented-wave approach within the collinear spin-polarized framework. Structural parameters, as well as magnetic properties, are compared to experimental values. Stability issues are addressed using a thermodynamic approach based on the grand potential, showing good agreement with experimental data. The impact of semicore electrons and the exchange-correlation functional are also discussed. Finally, it is shown that DFT methods are well suited to study this system, provided that the generalized gradient approximation is used, as opposed to the local density approximation, and correlations between structural errors and Mn concentration are taken into account. In addition, the precision achieved when compared to experiments is 40 meV/atom on energy, ±3% on the lattice parameter, and 0.2μB/Mn on magnetic moments. Magnetic orders are mostly well reproduced.

  4. Electronic structure and optical properties of F-doped β-Ga2O3 from first principles calculations

    NASA Astrophysics Data System (ADS)

    Jinliang, Yan; Chong, Qu

    2016-04-01

    The effects of F-doping concentration on geometric structure, electronic structure and optical property of β-Ga2O3 were investigated. All F-doped β-Ga2O3 with different concentrations are easy to be formed under Ga-rich conditions, the stability and lattice parameters increase with the F-doping concentration. F-doped β-Ga2O3 materials display characteristics of the n-type semiconductor, occupied states contributed from Ga 4s, Ga 4p and O 2p states in the conduction band increase with an increase in F-doping concentration. The increase of F concentration leads to the narrowing of the band gap and the broadening of the occupied states. F-doped β-Ga2O3 exhibits the sharp band edge absorption and a broad absorption band. Absorption edges are blue-shifted, and the intensity of broad band absorption has been enhanced with respect to the fluorine content. The broad band absorption is ascribed to the intra-band transitions from occupied states to empty states in the conduction band. Project supported by the Innovation Project of Shandong Graduate Education, China (No. SDYY13093) and the National Natural Science Foundation of China (No. 10974077).

  5. Structure of fluorite-like compound based on Nd₅Mo₃O₁₆ with lead partly substituting for neodymium.

    PubMed

    Antipin, Alexander M; Sorokina, Natalia I; Alekseeva, Olga A; Kuskova, Alexandra N; Kharitonova, Elena P; Orlova, Ekaterina I; Voronkova, Valentina I

    2015-04-01

    A single crystal of Nd5Mo3O16 with lead partly substituting for neodymium, which has a fluorite-like structure, was studied by precision X-ray diffraction, high-resolution transmission microscopy and EDX microanalysis. The crystal structure is determined in the space group Pn3¯n. It was found that the Pb atoms substitute in part for Nd atoms in the structure and are located in the vicinity of Nd2 positions. Partial substitutions of Mo cations for Nd positions and of Nd for Mo positions in crystals of the Ln5Mo3O16 oxide family are corroborated by X-ray diffraction for the first time. The first experimental verification of the location of an additional oxygen ion in the voids abutting MoO4 tetrahedra was obtained.

  6. First-principles study of the structural and dynamic properties of the liquid and amorphous Li–Si alloys

    SciTech Connect

    Chiang, Han-Hsin; Kuo, Chin-Lung; Lu, Jian-Ming

    2016-01-21

    We have performed density functional theory calculations and ab initio molecular dynamics to investigate the structures and dynamic properties of the liquid and amorphous Li{sub x}Si alloys over a range of composition from x = 1.0 − 4.8. Our results show that Si atoms can form a variety of covalently bonded polyanions with diverse local bonding structures in the liquid alloys. Like in c-LiSi, Si atoms can form a continuous bond network in liquid Li{sub 1.0}Si at 1050 K, while it gradually disintegrates into many smaller Si polyanions as the Li content increases in the alloys. The average sizes of Si polyanions in these liquid alloys were found to be relatively larger than those in their crystalline counterparts, which can even persist in the highly lithiated Li{sub 4.81}Si alloy at 1500 K. Our results also show that amorphous Li{sub x}Si alloys have similar local bonding structures but a largely increased short-range order as compared to their liquid counterparts. The differences between the average coordination number of each atomic pair in amorphous solids and that in the liquids are less than 1.1. Furthermore, our calculations reveal that Li and Si atoms can exhibit very distinct dynamic behaviors in the liquids and their diffusivities appear to be largely dependent on the chemical composition of the alloys. The diffusivity of Li was found to increase with the Li content in the alloys primarily because of the reduced interactions between Li and Si atoms, while the Si diffusivity also increases due to the gradual disintegration of the strongly interconnected Si bond network. The diffusivity of Li in amorphous Li{sub x}Si was predicted to lie in the range between 10{sup −7} and 10{sup −9} cm{sup 2}/s at 300 K, which is more than 20-fold larger than that of Si over the composition range considered. Our calculations further show that the diffusivities of both Li and Si can increase by two orders of magnitude as x increases from 1.0 to 3.57 in amorphous Li

  7. Structural stability and magnetic coupling in CaCu(3)Co(4)O(12) from first principles.

    PubMed

    Xiang, H P; Liu, X J; Meng, J; Wu, Z J

    2009-01-28

    The structural, electronic and magnetic properties of CaCu(3)Co(4)O(12) were studied by use of the full-potential linearized augmented plane wave method. The calculated results indicate that CaCu(3)Co(4)O(12) is stable both thermodynamically and mechanically. Both GGA (generalized gradient approximation) and GGA+U methods predict that CaCu(3)Co(4)O(12) is metallic. The ferromagnetic configuration is only slightly more stable in energy compared with the non-magnetic configuration (3.7 meV), suggesting that they are competitive for being the ground state. Co is in the low spin state (S = 1/2).

  8. First-principles studies of the electric-field effect on the band structure of trilayer graphenes

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Li, Xiang-Guo; Cheng, Hai-Ping

    Electric-field effects on the electronic structure of trilayer graphene are investigated using the density functional theory in the generalized gradient approximation. Two different stacking orders, namely Bernal and rhombohedral, of trilayer graphene are considered. Our calculations reproduce the experimentally data on band gap opening in Bernal stacking and band overlap in rhombohedral trilayer graphene. In addition, we studied effects of charge doping using dual gate configurations. The size of band gap opening in Bernal trilayer graphene can be tuned by charge doping, and charge doping also causes an electron-hole asymmetry in the density of states. Furthermore, hole-doping can reopen a band gap in the band overlapping region of rhombohedral trilayer grapheme induced by electric fields, which contributes to an extra peak in the optical conductivity spectra. This work is supported by DOE # DE-FG02-02ER45995.

  9. Effects of element doping on electronic structures and optical properties in cubic boron nitride from first-principles

    NASA Astrophysics Data System (ADS)

    Wei, Yin; Wang, Hongjie; Lu, Xuefeng; Fan, Xingyu; Wei, Heng

    2017-06-01

    Attractive potential applications of cubic boron nitride (c-BN) derive from the properties of semiconductors, widely used in optoelectronic and microelectronic devices. In this paper, the effects of element doping on the electronic structures and optical properties in cubic boron nitride are investigated. The Al- and Ga-doped systems have the lower bonding energies of -11.544 eV and -5.302 eV, respectively, indicating better stability. Difference charge density maps demonstrate that the electron loss increases after P doping and decreases after Al, Ga and As dopings, indicating that the covalent character of polar covalent bonds decreases by doping in the range of P, Al, Ga and As, which is in accordance with the calculated atom population values. The Al- and Ga-doped systems show lower dielectric loss, absorption and reflectivity in the lower energy region, displaying the “transparent-type” characteristic and their potential applications in electron devices.

  10. Possibility of transforming the electronic structure of one species of graphene adatoms into that of another by application of gate voltage: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Chan, Kevin T.; Lee, Hoonkyung; Cohen, Marvin L.

    2011-10-01

    Graphene provides many advantages for controlling the electronic structure of adatoms and other adsorbates via gating. Using the projected density of states and charge density obtained from first-principles density-functional periodic supercell calculations, we investigate the possibility of performing “alchemy” of adatoms on graphene, i.e., transforming the electronic structure of one species of adatom into that of another species by application of a gate voltage. Gating is modeled as a change in the number of electrons in the unit cell, with the inclusion of a compensating uniform background charge. Within this model and the generalized gradient approximation to the exchange-correlation functional, we find that such transformations are possible for K, Ca, and several transition-metal adatoms. Gate control of the occupation of the p states of In on graphene is also investigated. The validity of the supercell approximation with uniform compensating charge and the model for exchange and correlation is also discussed.

  11. First-principles calculation of the structural, electronic, and magnetic properties of cubic perovskite RbXF3 (X = Mn, V, Co, Fe)

    NASA Astrophysics Data System (ADS)

    rehman Hashmi, Muhammad Raza ur; Zafar, Muhammad; Shakil, M.; Sattar, Atif; Ahmed, Shabbir; Ahmad, S. A.

    2016-11-01

    First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction (GGA+U) within the framework of spin polarized density functional theory (DFT+U) are used to study the structural, electronic, and magnetic properties of cubic perovskite compounds RbXF3 (X = Mn, V, Co, and Fe). It is found that the calculated structural parameters, i.e., lattice constant, bulk modulus, and its pressure derivative are in good agreement with the previous results. Our results reveal that the strong spin polarization of the 3d states of the X atoms is the origin of ferromagnetism in RbXF3. Cohesive energies and the magnetic moments of RbXF3 have also been calculated. The calculated electronic properties show the half-metallic nature of RbCoF3 and RbFeF3, making these materials suitable for spintronic applications.

  12. Absence of a Dirac cone in silicene on Ag(111): First-principles density functional calculations with a modified effective band structure technique

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Peng; Cheng, Hai-Ping

    2013-06-01

    We investigate the currently debated issue of the existence of the Dirac cone in silicene on an Ag(111) surface, using first-principles calculations based on density functional theory to obtain the band structure. By unfolding the band structure in the Brillouin zone of a supercell to that of a primitive cell, followed by projecting onto Ag and silicene subsystems, we demonstrate that the Dirac cone in silicene on Ag(111) is destroyed. Our results clearly indicate that the linear dispersions observed in both angular-resolved photoemission spectroscopy [P. Vogt , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.155501 108, 155501 (2012)] and scanning tunneling spectroscopy [L. Chen , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.056804 109, 056804 (2012)] come from the Ag substrate and not from silicene.

  13. Pressure induced structural and magnetic phase transition in magnesium nitrides MgNx (x = 1, 2, 3): A first principles study

    NASA Astrophysics Data System (ADS)

    Rajeswarapalanichamy, R.; Sudhapriyanga, G.; Cinthia, A. Jemmy; Santhosh, M.; Murugan, A.

    2014-04-01

    The structural and magnetic properties of magnesium nitrides are investigated by the first principles calculations based on density functional theory using Vienna ab-initio simulation package. The calculated lattice parameters are in good agreement with the available results. A pressure-induced structural phase transition from NaCl to CsCl in MgN, CaF2 to AlB2 in MgN2 and LaF3 to BiF3 phase in MgN3 is observed. At ambient condition MgN and MgN3 are stable in the ferromagnetic state. On further increasing the pressure, a ferromagnetic to non magnetic transition is observed in MgN.

  14. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    SciTech Connect

    Bauchy, M.; Kachmar, A.; Micoulaut, M.

    2014-11-21

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10 First Principles Molecular Dynamics. Within the above range of compositions, thresholds, and anomalies are found in the behavior of reciprocal and real space properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27 structural and dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions.

  15. First-principles study of graphene under c-HfO{sub 2}(111) layers: Electronic structures and transport properties

    SciTech Connect

    Kaneko, Tomoaki; Ohno, Takahisa

    2016-08-22

    We investigated the electronic properties, stability, and transport of graphene under c-HfO{sub 2}(111) layers by performing first-principles calculations with special attention to the chemical bonding between graphene and HfO{sub 2} surfaces. When the interface of HfO{sub 2}/graphene is terminated by an O layer, the linear dispersion of graphene is preserved and the degradation of transport is suppressed. For other interface structures, HfO{sub 2} is tightly adsorbed on graphene and the transport is strictly limited. In terms of the stability of the interface structures, an O-terminated interface is preferable, which is achieved under an O-deficient condition.

  16. A first-principles investigation on the effect of the divacancy defect on the band structures of boron nitride (BN) nanoribbons

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Yu, Guangtao; Chen, Wei; Guan, Jia; Huang, Xuri

    2015-05-01

    On the basis of the comprehensive first-principles computations, we investigated the geometries, electronic and magnetic properties of zigzag and armchair boron nitride nanoribbons (BNNRs) with the divacancy defect of 5-8-5 ring fusions formed by removing B-N pair, where the defect orientation and position are considered. Our computed results reveal that all of the defective BNNRs systems can uniformly exhibit nonmagnetic semiconducting behavior, and the formation of the divacancy 5-8-5 defect can significantly impact the band structures of BNNRs with not only the zigzag but also armchair edges, where their wide band gaps are reduced and the defect orientation and position play an important role. Clearly, introducing divacancy defect can be a promising and effective approach to engineer the band structures of BNNRs, and the present computed results can provide some valuable insights for promoting the practical applications of excellent BN-based nanomaterials in the nanodevices.

  17. The structural evolution of hydrogenated silicon carbide nanocrystals: an approach from bond energy model, Wang-Landau method and first-principles studies

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ting; Zhao, Yu-Jun; Yang, Xiao-Bao

    2016-06-01

    The novel properties of nanomaterials are attributed to their variety of structures, while it is a central task to determine the stable configurations under different environment conditions. Exemplified with the hydrogenated cubic silicon carbide nanocrystals (H-SiCNCs), we propose an efficient approach to determine the stable H-SiCNCs by the convex analysis with the possible candidates pre-screened by the Wang-Landau method and a bond energy model, followed by the property analysis from first-principles. We find that the configurations of H-SiCNCs are dominated by the hydrogen and carbon chemical potentials according to the phase diagram, and there are structural transitions with the increasing size from tetrahedron, hexahedron, to octahedron. The energy gaps of tetrahedral H-SiCNCs are larger than that of octahedral ones at similar sizes, and in hexagonal ones there is a charge separation for the highest occupied molecular orbitals and lowest unoccupied molecular orbitals.

  18. First Principles Calculations of Structural, Electronic, Thermodynamic and Thermal Properties of BaxSr1-xTe Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Chelli, S.; Meradji, H.; Amara Korba, S.; Ghemid, S.; El Haj Hassan, F.

    2014-12-01

    The structural, electronic thermodynamic and thermal properties of BaxSr1-xTe ternary mixed crystals have been studied using the ab initio full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, the Perdew-Burke-Ernzerhof-generalized gradient approximation (PBE-GGA) was used for the exchange-correlation potential. Moreover, the recently proposed modified Becke Johnson (mBJ) potential approximation, which successfully corrects the band-gap problem was also used for band structure calculations. The ground-state properties are determined for the cubic bulk materials BaTe, SrTe and their mixed crystals at various concentrations (x = 0.25, 0.5 and 0.75). The effect of composition on lattice constant, bulk modulus and band gap was analyzed. Deviation of the lattice constant from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for the ternary BaxSr1-xTe alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing, ΔHm as well as the phase diagram. It was shown that these alloys are stable at high temperature. Thermal effects on some macroscopic properties of BaxSr1-xTe alloys were investigated using the quasi-harmonic Debye model, in which the phononic effects are considered.

  19. First-principles study on the structural, electronic, and optical properties of Ca1- x Sr x Se alloys

    NASA Astrophysics Data System (ADS)

    Ahmadian, F.; Salary, A.

    2016-01-01

    The structural, electronic, and optical properties of binary CaSe and SrSe compounds and Ca1- x Sr x Se alloys were studied by using the full potential linearized augmented plane wave (FPLAPW) method within density functional theory (DFT). The band structure calculations showed that the CaSe and the SrSe binary compounds in the rocksalt (RS), zinc-blende (ZB) and wurtzite (WZ) phases were semiconductors while they had a metallic characteristic in the CsCl phase. The lattice constant and bulk modulus values for the Ca1- x Sr x Se alloys in the RS and the ZB phases at different concentrations were calculated and compared with those obtained by using Vegard's law. The energy band gap values in the RS and the ZB phases were estimated for different x values by using both define acronyms the Perdew, Burke, and Ernzerhof (PBE-GGA) and the Engel and Vosko (EV-GGA) schemes, and the results were compared with those obtained by using the empirical electronegativity expression. The band gap bowing parameters were calculated by using quadratic functions and the procedure of Bernard and Zunger to fit the non-linear variation of the band gaps. The static dielectric constant ɛ 1(0) was calculated at different concentrations. The energy loss function L( ω) for the Ca1- x Sr x Se alloys in the RS and the ZB phases has a main peak corresponding to the plasmon frequency. The values of the static refractive index ( n(0)) for the Ca1- x Sr x Se alloys were calculated and compared with the values predicted by using the Moss, Ravindra, and Vandamme models. Finally, the extinction indic incident photon energies. es ( k( ω)) and the reflectivities ( R( ω)) for the Ca1- x Sr x Se alloys were calculated within a wide range of incident photon energies.

  20. Electronic structure, mechanical, and optical properties of CaO·Al2O3 system: a first principles approach

    NASA Astrophysics Data System (ADS)

    Hussain, A.; Mehmood, S.; Rasool, M. N.; Aryal, S.; Rulis, P.; Ching, W. Y.

    2016-08-01

    A comprehensive study of the structure, bonding, mechanical and optical properties of five stable phases within the calcium aluminate (Ca-Al-O) series with different CaO to Al2O3 proportions has been carried out using the density functional theory based orthogonalized linear combination of atomic orbitals (OLCAO) method. The phases are C3A, C12A7-crystal, CA, CA2, and CA6 and the oxygen deficient C12A7-electride phase. These five stable phases are wide band gap insulators with energy gap values ranging from 3.85 to 4.62 eV. The charge neutral C12A7-crystal has localized defective states in the gap whereas the C12A7-electride phase has a region of metallic bands of about 2 eV wide in the gap. Effective charge and bond order calculations reveal intimate details of electronic structure and bonding in relation to the aluminate contents in the series. It is shown that Al-O bonds dominate the Ca-O bonds in determining the crystal strength with CA6 having the highest and C12A7 having the lowest bond order density. Calculations of elastic coefficients and mechanical properties in these crystals show a high degree of diversity and anisotropic behavior consistent with the bond order calculations. The refractive index values from optical properties calculations are in good agreement with available literature. Other results furnish more insights for the Ca-Al-O series and provide the opportunity for further investigations on similar or more complicated quaternary systems with potential novel properties.