Sample records for fluorocarbons

  1. PRODUCTION OF FLUOROCARBONS

    DOEpatents

    Sarsfield, N.F.

    1949-06-21

    This patent pertains to a process for recovering fluorocarbons from a liquid mixture of hydrocarbons with partially and completely fluorinated products thereof. It consists of contacting the mxture in the cold with a liquid which is a solvent for the hydrocarbons and which is a nonsolvent for the fluorocarbons, extracting the hydrocarbons, separating the fluorocarbon-containing layer from the solvent-containing layer, and submitting the fluorocarbon layer to fractlonal distillation, to isolate the desired fluorocarbon fraction. Suitable solvents wnich may be used in the process include the lower aliphatic alcohols, and the lower aliphatic ketones.

  2. Thermodynamic properties of gaseous fluorocarbons and isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1977-01-01

    Equations and computer code are given for the thermodynamic properties of gaseous fluorocarbons in chemical equilibrium. In addition, isentropic equilibrium expansions of two binary mixtures of fluorocarbons and argon are included. The computer code calculates the equilibrium thermodynamic properties and, in some cases, the transport properties for the following fluorocarbons: CCl2F, CCl2F2, CBrF3, CF4, CHCl2F, CHF3, CCL2F-CCl2F, CCLF2-CClF2, CF3-CF3, and C4F8. Equilibrium thermodynamic properties are tabulated for six of the fluorocarbons(CCl3F, CCL2F2, CBrF3, CF4, CF3-CF3, and C4F8) and pressure-enthalpy diagrams are presented for CBrF3.

  3. Fluorinated diamond bonded in fluorocarbon resin

    DOEpatents

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  4. Highly exothermic and superhydrophobic Mg/fluorocarbon core/shell nanoenergetic arrays.

    PubMed

    Zhou, Xiang; Xu, Daguo; Yang, Guangcheng; Zhang, Qiaobao; Shen, Jinpeng; Lu, Jian; Zhang, Kaili

    2014-07-09

    Mg/fluorocarbon core/shell nanoenergetic arrays are prepared onto silicon substrate, with Mg nanorods as the core and fluorocarbon as the shell. Mg nanorods are deposited by the glancing angle deposition technique, and the fluorocarbon layer is then prepared as a shell to encase the Mg nanorods by the magnetron sputtering deposition process. Scanning electron microscopy and transmission electron microscopy show the core/shell structure of the Mg/fluorocarbon arrays. X-ray energy-dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy are used to characterize the structural composition of the Mg/fluorocarbon. It is found that the as-prepared fluorocarbon layer consists of shorter molecular chains compared to that of bulk polytetrafluoroethylene, which is proven beneficial to the low onset reaction temperature of Mg/fluorocarbon. Water contact angle test demonstrates the superhydrophobicity of the Mg/fluorocarbon arrays, and a static contact angle as high as 162° is achieved. Thermal analysis shows that the Mg/fluorocarbon material exhibits a very low onset reaction temperature of about 270 °C as well as an ultrahigh heat of reaction approaching 9 kJ/g. A preliminary combustion test reveals rapid combustion wave propagation, and a convective mechanism is adopted to explain the combustion behaviors.

  5. Molecular origins of fluorocarbon hydrophobicity

    PubMed Central

    Dalvi, Vishwanath H.; Rossky, Peter J.

    2010-01-01

    We have undertaken atomistic molecular simulations to systematically determine the structural contributions to the hydrophobicity of fluorinated solutes and surfaces compared to the corresponding hydrocarbon, yielding a unified explanation for these phenomena. We have transformed a short chain alkane, n-octane, to n-perfluorooctane in stages. The free-energy changes and the entropic components calculated for each transformation stage yield considerable insight into the relevant physics. To evaluate the effect of a surface, we have also conducted contact-angle simulations of water on self-assembled monolayers of hydrocarbon and fluorocarbon thiols. Our results, which are consistent with experimental observations, indicate that the hydrophobicity of the fluorocarbon, whether the interaction with water is as solute or as surface, is due to its “fatness.” In solution, the extra work of cavity formation to accommodate a fluorocarbon, compared to a hydrocarbon, is not offset by enhanced energetic interactions with water. The enhanced hydrophobicity of fluorinated surfaces arises because fluorocarbons pack less densely on surfaces leading to poorer van der Waals interactions with water. We find that interaction of water with a hydrophobic solute/surface is primarily a function of van der Waals interactions and is substantially independent of electrostatic interactions. This independence is primarily due to the strong tendency of water at room temperature to maintain its hydrogen bonding network structure at an interface lacking hydrophilic sites. PMID:20643968

  6. Cause and Effects of Fluorocarbon Degradation in Electronics and Opto-Electronic Systems

    NASA Technical Reports Server (NTRS)

    Predmore, Roamer E.; Canham, John S.

    2002-01-01

    Trace degradation of fluorocarbon or halocarbon materials must be addressed in their application in sensitive systems. As the dimensions and/or tolerances of components in a system decrease, the sensitivity of the system to trace fluorocarbon or halocarbon degradation products increases. Trace quantities of highly reactive degradation products from fluorocarbons have caused a number of failures of flight hardware. It is of utmost importance that the risk of system failure, resulting from trace amounts of reactive fluorocarbon degradation products be addressed in designs containing fluorocarbon or halocarbon materials. Thermal, electrical, and mechanical energy input into the system can multiply the risk of failure.

  7. water-soluble fluorocarbon coating

    NASA Technical Reports Server (NTRS)

    Nanelli, P.

    1979-01-01

    Water-soluble fluorocarbon proves durable nonpolluting coating for variety of substrates. Coatings can be used on metals, masonry, textiles, paper, and glass, and have superior hardness and flexibility, strong resistance to chemicals fire, and weather.

  8. Process for synthesizing a new series of fluorocarbon polymers

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1970-01-01

    Two-step process for preparing fluorocarbon materials includes - /1/ adding gaseous fluorine to a polyperfluoropolyene to create fluorocarbon radicals, with reactive sites at unsaturated carbon atoms, and /2/ introducing a monomer, after evacuation of fluorine gas, and allowing copolymerization with the free radicals.

  9. Fluorocarbon seal replaces metal piston ring in low density gas environment

    NASA Technical Reports Server (NTRS)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  10. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOEpatents

    Taylor, G.W.; Roybal, H.E.

    1983-11-14

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al/sub 2/O/sub 3/ yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  11. Fluorinated diamond particles bonded in a filled fluorocarbon resin matrix

    DOEpatents

    Taylor, Gene W.; Roybal, Herman E.

    1985-01-01

    A method of producing fluorinated diamond particles bonded in a filled fluorocarbon resin matrix. Simple hot pressing techniques permit the formation of such matrices from which diamond impregnated grinding tools and other articles of manufacture can be produced. Teflon fluorocarbon resins filled with Al.sub.2 O.sub.3 yield grinding tools with substantially improved work-to-wear ratios over grinding wheels known in the art.

  12. Effect of fluorocarbons on acetylcholinesterase activity and some counter measures

    NASA Technical Reports Server (NTRS)

    Young, W.; Parker, J. A.

    1975-01-01

    An isolated vagal sympathetic heart system has been successfully used for the study of the effect of fluorocarbons (FCs) on cardiac performance and in situ enzyme activity. Dichlorodifluoromethane sensitizes this preparation to sympathetic stimulation and to exogenous epinephrine challenge. Partial and complete A-V block and even cardiac arrest have been induced by epinephrine challenge in the FC sensitized heart. Potassium chloride alone restores the rhythmicity but not the normal contractility of the heart in such a situation. Addition of glucose will, however, completely restore the normal function of the heart which is sensitized by dichlorodifluoromethane. The ED 50 values of acetylcholinesterase activity which are used as a measure of relative effectiveness of fluorocarbons are compared with the maximum permissible concentration. Kinetic studies indicate that all the fluorocarbons tested so far are noncompetitive.

  13. METHOD FOR DETERMINING THE STABILITY OF FLUOROCARBON IOLS

    DOEpatents

    Sheldon, Z.D.; Haendler, H.M.

    1959-07-21

    A method of determining the stability of a fluorocarbon oil to uranium hexafluoride is presented. The method comprises reacting a weighed sample of the oil with condensed uranium hexafluoride in a reaction zone and titrating the amount of uranium tetrafluoride produced with potassium dichromate.

  14. [Artificial blood. Experimental studies on fluorocarbons as chemical blood substitutes].

    PubMed

    Motta, G; Grunert, A; Herrmann, M; Ratto, G B; Spinelli, E; Lunghi, C; Tomellini, M; Bisio, E; Hirlinger, W K; Mayer, M

    1983-01-14

    Fluorocarbonates are organic compounds capable of carrying oxygen and surrendering it to tissues by means of biological sound modalities. Experimentation of an emulsion consisting of perfluorotripropylamine and perfluorodecaline (Fluosol DA 20%) as a blood substitute is reported. Acute (Ht less than 1%) and chronic morphological (Ht = 15%) studies were performed on rats, and a semi-acute biochemical and morphological protocol (Ht = 21%) was experimented in pigs. The first signs of altered cerebral electrical activity occurred at Ht = 2% in the acute experiments, and death due to respiratory arrest took pace at Ht = 0.5%. In the semiacute and chronic experiments, widespread infiltration of fluorocarbonic micelles was noted on histological and electron microscope lung and liver preparations.

  15. Method and means for producing fluorocarbon finishes on fibrous structures

    NASA Technical Reports Server (NTRS)

    Toy, Madeline S. (Inventor); Stringham, Roger S. (Inventor); Fogg, Lawrence C. (Inventor)

    1981-01-01

    An improved process and apparatus is provided for imparting chemically bonded fluorocarbon finishes to textiles. In the process, the textiles are contacted with a gaseous mixture of fluoroolefins in an inert diluent gas in the presence of ultraviolet light under predetermined conditions.

  16. Release and fate of fluorocarbons in a shredder residue landfill cell: 2. Field investigations.

    PubMed

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to determine the gas composition, attenuation, and emission of fluorocarbons in a monofill shredder residue landfill cell by field investigation. Landfill gas generated within the shredder waste primarily consisted of CH(4) (27%) and N(2) (71%), without CO(2), indicating that the gas composition was governed by chemical reactions in combination with anaerobic microbial reactions. The gas generated also contained different fluorocarbons (up to 27 μg L(-1)). The presence of HCFC-21 and HCFC-31 indicated that anaerobic degradation of CFC-11 occurred in the landfill cell, as neither of these compounds has been produced for industrial applications. This study demonstrates that a landfill cell containing shredder waste has a potential for attenuating CFC-11 released from polyurethane (PUR) insulation foam in the cell via aerobic and anaerobic biodegradation processes. In deeper, anaerobic zones of the cell, reductive dechlorination of CFCs to HCFCs was evident, while in the shallow, oxic zones, there was a high potential for biooxidation of both methane and lesser chlorinated fluorocarbons. These findings correlated well with both laboratory results (presented in a companion paper) and surface emission measurements that, with the exception from a few hot spots, indicated that surface emissions were negative or below detection. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Spraylon fluorocarbon encapsulation for silicon solar cell arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A development program was performed for evaluating, modifying, and optimizing the Lockheed formulated liquid transparent filmforming Spraylon fluorocarbon protective coating for silicon solar cells and modules. The program objectives were designed to meet the requirements of the low-cost automated solar cell array fabrication process. As part of the study, a computer program was used to establish the limits of the safe working stress in the coated silicon solar cell array system under severe thermal shock.

  18. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    PubMed

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. Copyright © 2015. Published by Elsevier B.V.

  19. The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough Al alloy surfaces

    NASA Astrophysics Data System (ADS)

    Saifaldeen, Zubayda S.; Khedir, Khedir R.; Camci, Merve T.; Ucar, Ahmet; Suzer, Sefik; Karabacak, Tansel

    2016-08-01

    Rough structures with re-entrant property and their subsequent surface energy reduction with long-chain fluorocarbon oligomers are both critical in developing superamphiphobic (SAP, i.e. both super hydrophobic and superoleophobic) surfaces. However, morphology of the low-surface energy layer on a rough re-entrant substrate can strongly depend on the fluorocarbon oligomers used. In this study, the effect of polar end of different kinds of long-chain fluorocarbon oligomers in promoting a self-assembled monolayer with close packed molecules and robust adhesion on multi-scale rough Al alloy surfaces was investigated. Hierarchical Al alloy surfaces with microgrooves and nanograss structures were developed by a simple combination of one-directional mechanical sanding and post treatment in boiling de-ionized water (DIW). Three types of long-chain fluorocarbon oligomers of 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (PFDTS), 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (PFDCS), and perfluorooctanoic acid (PFOA) were chemically vaporized onto these rough Al alloy surfaces. The PFDCS exhibited the lowest surface free energy of less than 10 mN/m. The contact angle and sliding angle measurements for water, ethylene glycol, and peanut oil verified the SAP property of hierarchical rough Al alloy surfaces treated with alkylsilane oligomers (PFDTS, PFDCS). However, the hierarchical surfaces treated with fluorocarbon oligomer with polar acidic tail (PFOA) showed highly amphiphobic properties but could not reach the threshold for SAP. Chemical stability of the hierarchical Al alloy surfaces treated with the fluorocarbon oligomers was tested under the harsh conditions of ultra-sonication in acetone and annealing at high temperature after different treatment times. Contact angle measurements revealed the robustness of the alkylsilane oligomers and deterioration of the PFOA coating particularly for low surface tension liquids. The robust adhesion and close-packing of the alkylsilane

  20. Release and fate of fluorocarbons in a shredder residue landfill cell: 1. Laboratory experiments.

    PubMed

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal-containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to use laboratory experiments to estimate fluorocarbon release and attenuation processes in a monofill shredder residue (SR) landfill cell. Waste from the open SR landfill cell at the AV Miljø landfill in Denmark was sampled at three locations. The waste contained 1-3% metal and a relatively low fraction of rigid polyurethane (PUR) foam particles. The PUR waste contained less blowing agent (CFC-11) than predicted from a release model. However, CFC-11 was steadily released in an aerobic bench scale experiment. Anaerobic waste incubation bench tests showed that SRSR produced significant methane (CH(4)), but at rates that were in the low end of the range observed for municipal solid waste. Aerobic and anaerobic batch experiments showed that processes in SRSR potentially can attenuate the fluorocarbons released from the SRSR itself: CFC-11 is degraded under anaerobic conditions with the formation of degradation products, which are being degraded under CH(4) oxidation conditions prevailing in the upper layers of the SR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The efficacy of fluorocarbon, surfactant, and their combination for improving acute lung injury induced by intratracheal acidified infant formula.

    PubMed

    Nishina, Kahoru; Mikawa, Katsuya; Takao, Yumiko; Obara, Hidefumi

    2005-04-01

    We conducted the current study to compare the efficacy of partial liquid ventilation (PLV), pulmonary surfactant (PSF), and their combination in ameliorating the acidified infant-formula-induced acute lung injury (ALI). In the Part I study, 42 rabbits receiving volume-controlled ventilation with positive end-expiratory pressure 10 cm H(2)O were randomly divided into 6 groups (groups noninjuryI, gas ventilation [GVi], PLVi, PSFi, PLVi-->PSFi, and PSFi-->PLVi). ALI was induced by intratracheal acidified infant formula (2 mL/kg, pH 1.8). Group GVi received neither PLV nor PSF therapy. Groups PLV and PSF received intratracheal fluorocarbon 15 mL/kg or surfactant 100 mg/kg, respectively, 30 min after acidified infant formula. Groups PLVi-->PSFi and PSFi-->PLVi received both treatments at 30-min intervals. In Part II, 42 rabbits (in 6 groups) undergoing pressure-controlled ventilation received the same drug therapies as in Part I. The lungs were excised to assess biochemical and histological damage 150 min after induction of ALI. In Parts I and II, PSF, fluorocarbon, and their combination attenuated lung leukosequestration and edema and superoxide production of neutrophils, consequently improving oxygenation, lung mechanics, and pathological changes. Independent of ventilation mode, PSF followed by fluorocarbon provided the most beneficial effects and fluorocarbon followed by PSF produced the least efficacy.

  2. Vapor pressures of new fluorocarbons

    NASA Astrophysics Data System (ADS)

    Kubota, H.; Yamashita, T.; Tanaka, Y.; Makita, T.

    1989-05-01

    The vapor pressures of four fluorocarbons have been measured at the following temperature ranges: R123 (2,2-dichloro-l,l,l-trifluoroethane), 273 457 K; R123a (1,2-dichloro-1,1,2-trifluoroethane), 303 458 K; R134a (1,1,1,2-tetrafluoroethane), 253 373 K; and R132b (l,2-dichloro-l,l-difluoroethane), 273 398 K. Determinations of the vapor pressure were carried out by a constant-volume apparatus with an uncertainty of less than 1.0%. The vapor pressures of R123 and R123a are very similar to those of R11 over the whole experimental temperature range, but the vapor pressures of R134a and R132b differ somewhat from those of R12 and R113, respectively, as the temperature increases. The numerical vapor pressure data can be fitted by an empirical equation using the Chebyshev polynomial with a mean deviation of less than 0.3 %.

  3. Vapor pressures of new fluorocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, H.; Yamashita, T.; Tanaka, Y.

    1989-05-01

    The vapor pressures of four fluorocarbons have been measured at the following temperature ranges: R123 (2,2-dichloro-1,1,1-trifluoroethane), 273-457 K; R123a (1,2-dichloro-1,1,2-trifluoroethane), 303-458 K; R134a (1,1,1,2-tetrafluoroethane), 253-373 K; and R132b (1,2-dichloro-1,1-difluoroethane), 273-398 K. Determinations of the vapor pressure were carried out by a constant-volume apparatus with an uncertainty of less than 1.0%. The vapor pressures of R123 and R123a are very similar to those of R11 over the whole experimental temperature range, but the vapor pressures of R134a and R132b differ somewhat from those of R12 and R113, respectively, as the temperature increases. The numerical vapor pressure data can be fitted bymore » an empirical equation using the Chebyshev polynomial with a mean deviation of less than 0.3%.« less

  4. Electron Attachment to C2 Fluorocarbon Radicals at High Temperature (Postprint)

    DTIC Science & Technology

    2016-01-28

    Vehicles Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 8. PERFORMING ORGANIZATION REPORT NUMBER AFRL -RV-PS-TP-2015-0014 9...cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVBXT/Dr. Raymond Bemish 1 cy Approved for public release; distribution... AFRL -RV-PS- TP-2015-0014 AFRL -RV-PS- TP-2015-0014 ELECTRON ATTACHMENT TO C2 FLUOROCARBON RADICALS AT HIGH TEMPERATURE (POSTPRINT) Nicholas S

  5. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  6. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  7. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  8. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  9. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  10. Selective Plasma Deposition of Fluorocarbon Films on SAMs

    NASA Technical Reports Server (NTRS)

    Crain, Mark M., III; Walsh, Kevin M.; Cohn, Robert W.

    2006-01-01

    A dry plasma process has been demonstrated to be useful for the selective modification of self-assembled monolayers (SAMs) of alkanethiolates. These SAMs are used, during the fabrication of semiconductor electronic devices, as etch masks on gold layers that are destined to be patterned and incorporated into the devices. The selective modification involves the formation of fluorocarbon films that render the SAMs more effective in protecting the masked areas of the gold against etching by a potassium iodide (KI) solution. This modification can be utilized, not only in the fabrication of single electronic devices but also in the fabrication of integrated circuits, microelectromechanical systems, and circuit boards. In the steps that precede the dry plasma process, a silicon mold in the desired pattern is fabricated by standard photolithographic techniques. A stamp is then made by casting polydimethylsiloxane (commonly known as silicone rubber) in the mold. The stamp is coated with an alkanethiol solution, then the stamp is pressed on the gold layer of a device to be fabricated in order to deposit the alkanethiol to form an alkanethiolate SAM in the desired pattern (see figure). Next, the workpiece is exposed to a radio-frequency plasma generated from a mixture of CF4 and H2 gases. After this plasma treatment, the SAM is found to be modified, while the exposed areas of gold remain unchanged. This dry plasma process offers the potential for forming masks superior to those formed in a prior wet etching process. Among the advantages over the wet etching process are greater selectivity, fewer pin holes in the masks, and less nonuniformity of the masks. The fluorocarbon films formed in this way may also be useful as intermediate layers for subsequent fabrication steps and as dielectric layers to be incorporated into finished products.

  11. Adhesion and proliferation of fibroblasts on RF plasma-deposited nanostructured fluorocarbon coatings: evidence of FAK activation.

    PubMed

    Rosso, Francesco; Marino, Gerardo; Muscariello, Livio; Cafiero, Gennaro; Favia, Pietro; D'Aloia, Erica; d'Agostino, Riccardo; Barbarisi, Alfonso

    2006-06-01

    We used combined plasma-deposition process to deposit smooth and nanostructured fluorocarbon coatings on polyethylenethereftalate (PET) substrates, to obtain surfaces with identical chemical composition and different roughness, and investigate the effect of surface nanostructures on adhesion and proliferation of 3T3 Swiss Albino Mouse fibroblasts. Untreated PET and polystyrene (PS) were used as controls for cell culture. We have found that the statistically significant increase of cell proliferation rate and FAK (a nonreceptor tyrosine kinase) activation detected on ROUGH fluorocarbon surfaces is due to the presence of nanostructures. Changes in cytoskeletal organization and phospho FAK (tyr 397) localization were evident after 60 min on cells adhering to ROUGH surfaces. This change was characterized by the formation of actin stress fibers along lamellar membrane protrusion instead of usual focal contacts. Also the morphology of the adhering fibroblasts (60 min) adhering on ROUGH surfaces was found quite different compared to cells adhering on smooth ones. Copyright 2006 Wiley-Liss, Inc.

  12. Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid.

    PubMed

    Li, Jiehua; Zhang, Yi; Yang, Jian; Tan, Hong; Li, Jianshu; Fu, Qiang

    2013-05-01

    To improve hemocompatibility of biomedical polyurethanes (PUs), a series of new fluorinated phospholipid end-capped polyurethanes (FPCPUs) as blending PU additives were designed and synthesized using diphenyl methane diisocyanate and 1,4-butanediol as hard segment, poly(tetramethylene glycol), polypropylene glycol, polycarbonate diols, and polyethylene glycol as soft segments, respectively, aminofunctionalized hybrid hydrocarbon/fluorocarbon double-chain phospholipid as end-capper. The bulk structures and surface properties of the obtained FPCPUs were fully characterized by (1)H NMR, Fourier transform infrared, gel permeation chromatography, X-ray photoelectron spectroscopy, differential scanning calorimetry, atomic force microscopy, and water contact angle measurement. It was found that the phosphatidylcholine groups could enrich on the surfaces and subsurfaces with the help of the fluorocarbon chains and self-assemble into mimic biomembrane on these polymer surfaces. These surfaces could effectively suppress fibrinogen adsorption, as evaluated by enzyme-linked immunosorbent assay method. Our work indicates that the FPCPUs should be one of the most potential modified additives for enhancing hemocompatibility of traditional medical PUs. Copyright © 2012 Wiley Periodicals, Inc.

  13. Health effects among refrigeration repair workers exposed to fluorocarbons.

    PubMed Central

    Campbell, D D; Lockey, J E; Petajan, J; Gunter, B J; Rom, W N

    1986-01-01

    Refrigeration repair workers may be intermittently exposed to fluorocarbons and their thermal decomposition products. A case of peripheral neuropathy (distal axonopathy) in a commercial refrigeration repairman prompted an epidemiological investigation of the health of refrigeration repair workers. No additional cases of peripheral neuropathy were identified among the 27 refrigeration repair workers studied. A reference group of 14 non-refrigeration repair workers was also studied. No differences were noted between groups for the ulnar (motor and sensory), median (motor and sensory), peroneal, sural, or tibial nerve conduction velocities. Refrigeration repair workers reported palpitations and lightheadedness significantly more often than workers in the reference group. No clinical neurological or electroneurophysiological abnormalities were detected in eight refrigeration repair workers followed up for three years during continuous employment. PMID:3004555

  14. One-step synthesis, wettability and foaming properties of high-performance non-ionic hydro-fluorocarbon hybrid surfactants

    NASA Astrophysics Data System (ADS)

    Peng, Ying-ying; Lu, Feng; Tong, Qing-Xiao

    2018-03-01

    In this work, a series of non-ionic hydro-fluorocarbon hybrid surfactants (C9F19CONH(CH2)3N(CmH2m+1)2, abbreviated as C9F19AM (m = 1), C9F19AE (m = 2) and C9F19AB (m = 4) were easily synthesized by one-step reaction and characterized by 1HNMR, 19FNMR and MS spectroscopy. Unlike conventional non-ionic surfactants (most hydrophilic units consisted of hydroxy or ether groups), their hydrophilic groups were composed of amide group, an eco-friendly unit. The surface activity, wettability, thermal stability and foaming performance were investigated. The results showed that the C9F19AE (C9F19CONH(CH2)3N[CH2CH3]2) had superior surface and interface activities, which could reduce the surface tension of water down to 15.37 mN/m and the interfacial tension (cyclohexane/water/surfactants) to 5.8 mN/m with a low cmc (critical micelle concentration) of 0.12 mmol/L. Through the calculation of Amin (the minimum area occupied per-surfactant molecule), we speculated this higher surface activity was related to the compatibility between hydrocarbon and fluorocarbon chains. When used as wetting and foaming agents, the C9F19AE also outperformed great advantages over conventional non-ionic fluorocarbon and hydrocarbon surfactants, which could decrease the contact angle of water on PTFE plate from 107.7° to 3.6°, and increase the foam integrated value F to 536 500 ± 3066.5 mL s. Moreover, the decomposition temperature (Td) of C9F19AE could reach up to 173 °C. This work demonstrates a valuable strategy to develop a kind of high-efficiency foaming agent via facile synthesis.

  15. Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya

    2016-02-08

    Two mesoporous fluorinated metal–organic frameworks (MOFs) were synthesized from extensively fluorinated tritopic carboxylate- and tetrazolate-based ligands. The tetrazolate-based framework MOFF-5 has an accessible surface area of 2445 m 2g -1, the highest among fluorinated MOFs. Crystals of MOFF-5 adsorb hydrocarbons, fluorocarbons, and chlorofluorocarbons (CFCs)—the latter two being ozone-depleting substances and potent greenhouse species—with weight capacities of up to 225%. The material exhibits an apparent preference for the adsorption of non-spherical molecules, binding unusually low amounts of both tetrafluoromethane and sulfur hexafluoride.

  16. Application of cyclic fluorocarbon/argon discharges to device patterning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik, E-mail: dmetzler@umd.edu; Uppireddi, Kishore; Bruce, Robert L.

    2016-01-15

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less

  17. Application of cyclic fluorocarbon/argon discharges to device patterning

    DOE PAGES

    Metzler, Dominik; Uppiredi, Kishore; Bruce, Robert L.; ...

    2015-11-13

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this study, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with thismore » work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.« less

  18. Spatially selective formation of hydrocarbon, fluorocarbon, and hydroxyl-terminated monolayers on a microelectrode array.

    PubMed

    Cook, Kevin M; Nissley, Daniel A; Ferguson, Gregory S

    2013-06-11

    A protection-deprotection strategy, using gold oxide as a passivating layer, was used to direct the self-assembly of monolayers (SAMs) selectively at individual gold microelectrodes in an array. This approach allowed the formation of hydroxyl-terminated monolayers, without side reactions, in addition to hydrocarbon and fluorocarbon SAMs. Fluorescence microscopy was used to visualize selective dewetting of hydrophobic monolayers by an aqueous dye solution, and spatially resolved X-ray photoelectron spectroscopy was used to demonstrate a lack of cross-contamination on neighboring microelectrodes in the array.

  19. Ethylene-propylene-diene monomer (EPDM) and fluorocarbon (FKM) elastomers in the geothermal environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwood, H.J.

    1983-07-01

    Thermal and hydrolytic processes that are likely to occur when hydrocarbon and fluorocarbon elastomers are subjected to geothermal conditions are discussed. Polyhydrocarbon backbones have good chemical resistance, but many cross-links present in cured polyhydrocarbons can be hydrolyzed under geothermal conditions. Perfluorinated elastomers have excellent thermal and hydrolytic stability, although they are potentially susceptible to hydrolytic degradation. The cross-links present in cured perfluorocarbon elastomers are probably also susceptible to hydrolysis under severe conditions. It seems that improvements can be made in geothermal seals if they can be cured by processes that yield chemically stable cross-links.

  20. Assessment of effects on vegetation of degradation products from alternative fluorocarbons

    NASA Technical Reports Server (NTRS)

    Mccune, D. C.; Weinstein, L. H.

    1990-01-01

    Concern with the effects of fluorides on plants has been devoted to that resulting from dry deposition (mainly with reference to gaseous HF and secondarily with particulate forms). The occurrence of precipitation as rain or mist and the presence of dew or free water on the foliage has mainly been considered with respect to their effects on the accumulation of air-borne fluoride and not with fluoride in wet deposition. That is, precipitation has been viewed primarily with respect to its facilitation of the solution and subsequent absorption of deposits by the foliar tissues or its elution of deposited fluoride from foliage. Accordingly, our evaluation of inorganic fluoride from fluorocarbon degradation rests upon a comparison with what is known about the effects of industrial emissions and what could be considered the natural condition.

  1. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  2. Highly selective SiO2 etching over Si3N4 using a cyclic process with BCl3 and fluorocarbon gas chemistries

    NASA Astrophysics Data System (ADS)

    Matsui, Miyako; Kuwahara, Kenichi

    2018-06-01

    A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.

  3. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes.

    PubMed

    Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A

    1999-06-01

    This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.

  4. Sliding and rolling behavior of water droplets on an ordered nanoball matrix fluorocarbon polymer layer under simulated weather conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Xieqiang; Wan, Jie; Han, Haoxu; Wang, Yiping; Li, Kang; Wang, Qingjun

    2018-09-01

    Ordered nanoball matrix fluorocarbon polymer layers were produced with two different fluorocarbon polymers on an anodized aluminum oxide (AAO) surface. These treated surfaces each exhibited hydrophobicity or superhydrophobicity. The dynamic behavior of a droplet sliding down these surfaces was captured by high-speed photography under simulated weather conditions including at room temperature (25 °C) and low temperature (5 °C) with various relative humidities (30%-80%). By analyzing the trajectory of a marker in the captured video frame-by-frame, we distinguished the slipping and rolling behaviors and analyzed the internal fluidity by calculating the ratio of these two motions. Both the pore diameters of the substrate matrix and the environmental conditions play a dominant role in the resultant sliding acceleration of a water droplet. At room temperature (25 °C) and 30% relative humidity, the sliding acceleration of the droplet on the fluoropolymer layer decreased by 0.5 m·s-2 -0.6 m·s-2 as the pore diameters of the underlying AAO substrates increased. The sliding acceleration underwent a 25%-50% decrease under extreme environmental conditions (5 °C and 80% RH). These phenomena proved that a wetting transition from the Cassie-Baxter model to the Wenzel model can partially occur under various weather conditions.

  5. Reverse water-in-fluorocarbon emulsions for use in pressurized metered-dose inhalers containing hydrofluoroalkane propellants.

    PubMed

    Butz, N; Porté, C; Courrier, H; Krafft, M P; Vandamme, Th F

    2002-05-15

    Pulmonary administration of drugs has demonstrated numerous advantages in the treatment of pulmonary diseases due to direct targeting to the respiratory tract. It enables avoiding the first pass effect, reduces the amount of drugs administered, targets drugs to specific sites and reduces their side effects. Reverse water-in-fluorocarbon (FC) emulsions are potential drug delivery systems for pulmonary administration using pressurized metered-dose inhalers (pMDI). The external phase of these emulsions consists of perfluorooctyl bromide (PFOB, perflubron), whereas their internal phase contains the drugs solubilized or dispersed in water. These emulsions are stabilized by a perfluoroalkylated dimorpholinophosphate (F8H11DMP), i.e. a fluorinated surfactant. This study demonstrates the possibility of delivering a reverse fluorocarbon emulsion via the pulmonary route using a CFC-free pMDI. Two hydrofluoroalkanes (HFAs) (Solkane(R) 134a and Solkane(R) 227) were used as propellants, and various solution (or emulsion)/propellant ratios (1/3, 1/2, 2/3, 1/1, 3/2, 3/1 v/v) were investigated. The insolubility of water (with or without the fluorinated surfactant F8H11DMP) in both HFA 227 and HFA 134a was demonstrated. PFOB and the reverse emulsion were totally soluble or dispersible in all proportions in both propellants. This study demonstrated also that the reverse FC emulsion can be successfully used to deliver caffeine in a homogeneous and reproducible way. The mean diameter of the emulsion water droplets in the pressured canister was investigated immediately after packaging and after 1 week of storage at room temperature. Best results were obtained with emulsion/propellant ratios comprised between 2/3 and 3/2, and with HFA 227 as propellant.

  6. Review of ultraviolet absorption cross sections of a series of alternative fluorocarbons

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1990-01-01

    Solar photolysis is likely to contribute to the stratospheric destruction of those alternative fluorocarbons (HFC's) which have two or more chlorine atoms bonded to the same carbon atom. Two of the eight HFC's considered here fall into this category, namely HFC-123 and HFC141b. For these two species there is good agreement among the various measurements of the ultraviolet cross sections in the wavelength region which is important for atmospheric photodissociation, that is, around 200 nm. There is also good agreement for HFC-124, HFC-22 and HFC-142b. These are the three species which contain one chlorine atom per molecule. The agreement in the measurements is poor for the other species, i.e., those that do not contain chlorine, except in so far as to corroborate that solar photolysis should be negligible relative to destruction by hydroxyl radicals.

  7. Tube radial distribution phenomenon with a two-phase separation solution of a fluorocarbon and hydrocarbon organic solvent mixture in a capillary tube and metal compounds separation.

    PubMed

    Kitaguchi, Koichi; Hanamura, Naoya; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2014-01-01

    A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced phase-separation solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was clearly observed through fluorescence images of the dye, perylene, dissolved in the mixed solution. The homogeneous mixed solution (single phase) changed to a heterogeneous solution (two phases) with inner tetradecafluorohexane and outer hexane phases in the tube under laminar flow conditions, generating the dynamic liquid-liquid interface. We also tried to apply TRDP to a separation technique for metal compounds. A model analyte mixture, copper(II) and hematin, was separated through the capillary tube, and detected with a chemiluminescence detector in this order within 4 min.

  8. Temperature dependence of acoustic impedance for specific fluorocarbon liquids

    NASA Astrophysics Data System (ADS)

    Marsh, Jon N.; Hall, Christopher S.; Wickline, Samuel A.; Lanza, Gregory M.

    2002-12-01

    Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 °C and 45 °C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278+/-1.5 cm/s-°C) and lowest for perfluorodichlorooctane (-222+/-0.9 cm/s-°C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.

  9. Development of molecular based optical techniques for thermometry and velocimetry for fluorocarbon media

    NASA Astrophysics Data System (ADS)

    Pouya, Shahram; Blanchard, Gary; Koochesfahani, Manoochehr

    2016-11-01

    Fluorocarbon solvents are very stable inert fluids with unique physical properties that make them attractive compounds as refrigerant and several medical applications such as contrast enhanced ultrasound imaging. Since they do not mix with typical organic solvents or water, most luminescent (fluorescent or phosphorescent) probes cannot be used as tracers for optical diagnostic techniques. Perfluoropentane, a compound from this family, is used as a simulant fluid by NASA for two-phase heat transfer/mixing experiments under micro-gravity condition due to its low boiling temperature. Here we study the feasibility of employing non-intrusive optical methods for measurements of temperature and/or velocity within Perfluoropentane as the working fluid. Preliminary results of temperature and velocity measurement using Laser Induced Fluorescence and Molecular Tagging Velocimetry are presented. This work was supported by NASA Grant Number NNX16AD52A.

  10. Size, Shape, and Lateral Correlation of Highly Uniform, Mesoscopic, Self-Assembled Domains of Fluorocarbon-Hydrocarbon Diblocks at the Air/Water Interface: A GISAXS Study.

    PubMed

    Veschgini, Mariam; Abuillan, Wasim; Inoue, Shigeto; Yamamoto, Akihisa; Mielke, Salomé; Liu, Xianhe; Konovalov, Oleg; Krafft, Marie Pierre; Tanaka, Motomu

    2017-10-06

    The shape and size of self-assembled mesoscopic surface domains of fluorocarbon-hydrocarbon (FnHm) diblocks and the lateral correlation between these domains were quantitatively determined from grazing incidence small-angle X-ray scattering (GISAXS). The full calculation of structure and form factors unravels the influence of fluorocarbon and hydrocarbon block lengths on the diameter and height of the domains, and provides the inter-domain correlation length. The diameter of the domains, as determined from the form factor analysis, exhibits a monotonic increase in response to the systematic lengthening of each block, which can be attributed to the increase in van der Waals attraction between molecules. The pair correlation function in real space calculated from the structure factor implies that the inter-domain correlation can reach a distance that is over 25 times larger than the domain's size. The full calculation of the GISAXS signals introduced here opens a potential towards the hierarchical design of mesoscale domains of self-assembled small organic molecules, covering several orders of magnitude in space. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Comparative study of plasma-deposited fluorocarbon coatings on different substrates

    NASA Astrophysics Data System (ADS)

    Farsari, E.; Kostopoulou, M.; Amanatides, E.; Mataras, D.; Rapakoulias, D. E.

    2011-05-01

    The deposition of hydrophobic fluorocarbon coatings from C2F6 and C2F6-H2 rf discharges on different substrates was examined. Polyester textile, glass and two different ceramic compounds were used as substrates. The effect of the total gas pressure, the rf power dissipation and the deposition time on the hydrophobic character of the samples was investigated. Films deposited on polyester textiles at low pressure (0.03 mbar) and power consumption (16 mW cm-2) using pure C2F6 presented the highest water contact angles (~150°). On the other hand, the addition of hydrogen was necessary in order to deposit stable hydrophobic coatings on glass and ceramic substrates. Coatings deposited on glass at intermediate deposition rates (~100 Å min-1) and pressures presented the highest angles (~105°). Concerning the heavy clay ceramics, samples treated in low-pressure (0.05 mbar) and low-power (16 mW cm-2) discharges showed the highest contact angles. The deposition time was found to play an important role in the hydrophobicity and long-term behaviour of porous and rough substrates.

  12. Investigations of the environmental acceptability of fluorocarbon alternatives to chlorofluorocarbons.

    PubMed Central

    McFarland, M

    1992-01-01

    Chlorofluorocarbons (CFCs) are currently used in systems for preservation of perishable foods and medical supplies, increasing worker productivity and consumer comfort, conserving energy and increasing product reliability. As use of CFCs is phased out due to concerns of ozone depletion, a variety of new chemicals and technologies will be needed to serve these needs. In choosing alternatives, industry must balance concerns over safety and environmental acceptability and still meet the preformance characteristics of the current technology, the only viable alternatives meeting the safety, performance, and environmental requirements for the remaining 40% of demand are fluorocarbons, hydrochlorofluorocarbons (HCFs), and hydrofluorocarbons (HFCs). HCFCs and HFCs possess many of the desirable properties of the CFCs, but because of the, hydrogen, they results in shorter atmospheric lifetimes compared to CFCs and reduces their potential to contribute to stratospheric ozone depletion or global warming; HFCs do not contain chlorine and have no potential to destroy ozone. This paper provides an overview of challenges faced by industry, regulators, and society in general in continuing to meet societal needs and consumer demands while reducing risk to the enviroment without compromising consumer or worker safety. PMID:11607257

  13. Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex.

    PubMed

    Nomura, Y; Fujii, F; Sato, C; Nemoto, M; Tamura, M

    2000-02-01

    . Zieglgansberger, The intrinsic optical signal evoked by chiasm stimulation in the rat suprachiasmatic nuclei exhibits GABAergic day-night variation, Eur. J. Neurosci. 8 (1996) 319-328] [3] [9] [13] [24]. A spectral fitting method with three components is used for the analysis of intrinsic optical signal [M. Nemoto, Y. Nomura, C. Sato, M. Tamura, K. Houkin, I. Koyanagi, H. Abe, Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: dynamic changes in hemoglobin concentration and oxygenation, J. Cereb. Blood Flow Metab. 19 (1999) 246-259] [17]. In order to validate the analysis, we need the knowledge on contribution of signal resulted from hemoglobin to total intrinsic optical signal. The exchange transfusion with fluorocarbon has the advantage that can change the spectral contribution of hemoglobin [M. Ferrari, M.A. Williams, D.A. Wilson, N.V. Thakor, R.J. Traystman, D.F. Hanley, Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood-fluorocarbon exchange transfusion, Am. J. Physiol. 269 (1995) H417-H424; A.L. Sylvia, C.A. Piantadosi, O(2) dependence of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats, J. Cereb. Blood Flow Metab. 8 (1988) 163-172] [6] [23]. Here we describe a new method of the reduction of hemoglobin signal from somatosensory evoked optical intrinsic signal in rat cortex by the combination of exchange transfusion with fluorocarbon and imaging system of thinned skull cranial window. The method allows for the study of the synaptically evoked changes in light scattering as well as fluorescence of calcium indicator or voltage-sensitive dye without absorption of hemoglobin.

  14. Beam Simulation Studies of Plasma-Surface Interactions in Fluorocarbon Etching of Silicon and Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    Gray, David C.

    1992-01-01

    A molecular beam apparatus has been constructed which allows the synthesis of dominant species fluxes to a wafer surface during fluorocarbon plasma etching. These species include atomic F as the primary etchant, CF _2 as a potential polymer forming precursor, and Ar^{+} or CF _{rm x}^{+} type ions. Ionic and neutral fluxes employed are within an order of magnitude of those typical of fluorocarbon plasmas and are well characterized through the use of in -situ probes. Etching yields and product distributions have been measured through the use of in-situ laser interferometry and line-of-sight mass spectrometry. XPS studies of etched surfaces were performed to assess surface chemical bonding states and average surface stoichiometry. A useful design guide was developed which allows optimal design of straight -tube molecular beam dosers in the collisionally-opaque regime. Ion-enhanced surface reaction kinetics have been studied as a function of the independently variable fluxes of free radicals and ions, as well as ion energy and substrate temperature. We have investigated the role of Ar ^{+} ions in enhancing the chemistries of F and CF_2 separately, and in combination on undoped silicon and silicon dioxide surfaces. We have employed both reactive and inert ions in the energy range most relevant to plasma etching processes, 20-500 eV, through the use of Kaufman and ECR type ion sources. The effect of increasing ion energy on the etching of fluorine saturated silicon and silicon dioxide surfaces was quantified through extensions of available low energy physical sputtering theory. Simple "site"-occupation models were developed for the quantification of the ion-enhanced fluorine etching kinetics in these systems. These models are suitable for use in topography evolution simulators (e.g. SAMPLE) for the predictive modeling of profile evolution in non-depositing fluorine-based plasmas such as NF_3 and SF_6. (Copies available exclusively from MIT Libraries, Rm. 14

  15. The water-hydrophobic interface: neutral and charged solute adsorption at fluorocarbon and hydrocarbon self-assembled monolayers (SAMs).

    PubMed

    Hopkins, Adam J; Richmond, Geraldine L

    2013-03-01

    Adsorption of small molecular solutes in an aqueous solution to a soft hydrophobic surface is a topic relevant to many fields. In biological and industrial systems, the interfacial environment is often complex, containing an array of salts and organic compounds in the solution phase. Additionally, the surface itself can have a complex structure that can interact in unpredictable ways with small solutes in its vicinity. In this work, we studied model adsorption processes on hydrocarbon and fluorocarbon self-assembled monolayers by using vibrational sum frequency spectroscopy, with methanol and butylammonium chloride as adsorbates. The results indicate that differences in surface functionality have a significant impact on the organization of adsorbed organic species at hydrophobic surfaces.

  16. Angular dependence of etch rates in the etching of poly-Si and fluorocarbon polymer using SF6, C4F8, and O2 plasmas

    NASA Astrophysics Data System (ADS)

    Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo

    2004-05-01

    The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF6/poly-Si, a SF6/fluorocarbon polymer, an O2/fluorocarbon polymer, and a C4F8/Si. In the case of SF6/poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O2/polymer decreased and eventually reached much lower values than the cosine values at angles between 30° and 70° when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF6/polymer showed a weak dependence on the process variables. In the case of C4F8/Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed. .

  17. Electrowetting on plasma-deposited fluorocarbon hydrophobic films for biofluid transport in microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayiati, P.; Tserepi, A.; Petrou, P. S.

    2007-05-15

    The present work focuses on the plasma deposition of fluorocarbon (FC) films on surfaces and the electrostatic control of their wettability (electrowetting). Such films can be employed for actuation of fluid transport in microfluidic devices, when deposited over patterned electrodes. Here, the deposition was performed using C{sub 4}F{sub 8} and the plasma parameters that permit the creation of films with optimized properties desirable for electrowetting were established. The wettability of the plasma-deposited surfaces was characterized by means of contact angle measurements (in the static and dynamic mode). The thickness of the deposited films was probed in situ by means ofmore » spectroscopic ellipsometry, while the surface roughness was provided by atomic force microscopy. These plasma-deposited FC films in combination with silicon nitride, a material of high dielectric constant, were used to create a dielectric structure that requires reduced voltages for successful electrowetting. Electrowetting experiments using protein solutions were conducted on such optimized dielectric structures and were compared with similar structures bearing commercial spin-coated Teflon registered amorphous fluoropolymer (AF) film as the hydrophobic top layer. Our results show that plasma-deposited FC films have desirable electrowetting behavior and minimal protein adsorption, a requirement for successful transport of biological solutions in 'digital' microfluidics.« less

  18. Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.

    Rate coefficients and product branching fractions for electron attachment and for reaction with Ar{sup +} are measured over the temperature range 300–585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF{sub 3}CHF, CHF{sub 2}CF{sub 2}, and CF{sub 3}CHFCF{sub 2}), as well as their five closed-shell precursors (1-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}Br, 1-HC{sub 3}F{sub 6}I, 2-HC{sub 3}F{sub 6}Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt–Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield C{sub n}F{submore » m−1}{sup −} anions, with only a minor branching to F{sup −} product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC{sub 2}F{sub 4}Br, which is ∼10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar{sup +} proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions.« less

  19. Effect of nonsinusoidal bias waveforms on ion energy distributions and fluorocarbon plasma etch selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Ankur; Kushner, Mark J.; Iowa State University, Department of Electrical and Computer Engineering, 104 Marston Hall, Ames, Iowa 50011-2151

    2005-09-15

    The distributions of ion energies incident on the wafer significantly influence feature profiles and selectivity during plasma etching. Control of ion energies is typically obtained by varying the amplitude or frequency of a radio frequency sinusoidal bias voltage applied to the substrate. The resulting ion energy distribution (IED), though, is generally broad. Controlling the width and shape of the IED can potentially improve etch selectivity by distinguishing between threshold energies of surface processes. In this article, control of the IED was computationally investigated by applying a tailored, nonsinusoidal bias waveform to the substrate of an inductively coupled plasma. The waveformmore » we investigated, a quasi-dc negative bias having a short positive pulse each cycle, produced a narrow IED whose width was controllable based on the length of the positive spike and frequency. We found that the selectivity between etching Si and SiO{sub 2} in fluorocarbon plasmas could be controlled by adjusting the width and energy of the IED. Control of the energy of a narrow IED enables etching recipes that transition between speed and selectivity without change of gas mixture.« less

  20. Feature Profile Evolution of SiO2 Trenches In Fluorocarbon Plasmas

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arunachalam, Valli; Rauf, Shahid; Coronell, Dan; Carroll, Carol W. (Technical Monitor)

    1999-01-01

    Etching of silicon microstructures for semiconductor manufacturing in chlorine plasmas has been well characterized. The etching proceeds in a two-part process, where the chlorine neutrals passivate the Si surface and then the ions etch away SiClx. However, etching in more complicated gas mixtures and materials, such as etching of SiO2 in Ar/C4F8, requires knowledge of the ion and neutral distribution functions as a function of angle and velocity, in addition to modeling the gas surface reactions. In order to address these needs, we have developed and integrated a suite of models to simulate the etching process from the plasma reactor level to the feature profile evolution level. This arrangement allows for a better understanding, control, and prediction of the influence of equipment level process parameters on feature profile evolution. We are currently using the HPEM (Hybrid Plasma Equipment Model) and PCMCM (Plasma Chemistry Monte Carlo Model) to generate plasma properties and ion and neutral distribution functions for argon/fluorocarbon discharges in a GEC Reference Cell. These quantities are then input to the feature scale model, Simulation of Profile Evolution by Level Sets (SPELS). A surface chemistry model is used to determine the interaction of the incoming species with the substrate material and simulate the evolution of the trench profile. The impact of change of gas pressure and inductive power on the relative flux of CFx and F to the wafer, the etch and polymerization rates, and feature profiles will be examined. Comparisons to experimental profiles will also be presented.

  1. Synthesis, crystal structure and optical properties of a new fluorocarbonate with an interesting sandwich-like structure.

    PubMed

    Tang, Changcheng; Jiang, Xingxing; Guo, Shu; Xia, Mingjun; Liu, Lijuan; Wang, Xiaoyang; Lin, Zheshuai; Chen, Chuangtian

    2018-05-08

    A new fluorocarbonate, Na3Zn2(CO3)3F, was synthesized using a subcritical hydrothermal method. Na3Zn2(CO3)3F crystallizes in the space group C2/c with a sandwich-like framework in which the stacked [Zn(CO3)]∞ layers are connected with one another by bridging F atoms and [CO3] groups alternately. Interestingly, each Zn atom is surrounded by one F atom and four O atoms, forming a distorted [ZnO4F] trigonal bipyramid, which is observed for the first time in the carbonate system. Na3Zn2(CO3)3F has high transparency in a wide spectral region ranging from UV to mid IR with a short ultraviolet absorption edge (∼213 nm). First-principles calculations revealed that Na3Zn2(CO3)3F possesses a large birefringence (Δn = 0.11, λ = 589 nm), which is mainly contributed by the coplanar arrangement of [CO3] groups in the ab plane. Na3Zn2(CO3)3F might find applications as a UV birefringence crystal.

  2. Atmospheric degradation mechanisms of hydrogen containing chlorofluorocarbons (HCFC) and fluorocarbons (HFC)

    NASA Technical Reports Server (NTRS)

    Zellner, Reinhard

    1990-01-01

    The current knowledge of atmospheric degradation of hydrogen containing chlorofluorocarbons (HCFC 22 (CHClF2), HCFC 123 (CHCl2CF3), HCFC 124 (CHClFCF3), HCFC 141b (CFCl2CH3), HCFC 142b (CF2ClCH3)) and fluorocarbons (HFC 125 (CHF2CF3), HFC 134a (CH2FCF3), HFC 152a (CHF2CH3)) is assessed. Except for the initiation reaction by OH radicals, there are virtually no experimental data available concerning the subsequent oxidative breakdown of these molecules. However, from an analogy to the degradation mechanisms of simple alkanes, some useful guidelines as to the expected intermediates and final products can be derived. A noteable exception from this analogy, however, appears for the oxi-radicals. Here, halogen substitution induces new reaction types (C-Cl and C-C bond ruptures) which are unknown to the unsubstituted analogues and which modify the nature of the expected carbonyl products. Based on an evaluation of these processes using estimated bond strength data, the following simplified rules with regards to the chlorine content of the HCFC's may be deduced: (1) HCFC's containing one chlorine atom such as 22 and 142b seem to release their chlorine content essentially instantaneous with the initial attack on the parent by OH radicals, and for HCFC 124, such release is apparently prevented; (2) HCFC's such as 123 and 141b with two chlorine atoms are expected to release only one of these instantaneously; and the second chlorine atom may be stored in potentially long-lived carbonyl compounds such as CF3CClO or CClFO.

  3. Self-lubricating layer consist of polytetrafluoroethylene micropowders and fluorocarbon acrylate resin formation on surface of geotextile

    NASA Astrophysics Data System (ADS)

    Long, Xiaoyun; He, Lifen; Zhang, Yan; Ge, Mingqiao

    2018-04-01

    In this study, the self-lubricating layer consist of polytetrafluoroethylene (PTFE) micropowders and two types fluorocarbon acrylate resin were formed on the surface of geotextile, to improves the evenness and decreases the frictional angle value of geotextile surface. The surface and cross section morphology of geotextile were examined by scanning electron microscopy (SEM). It was determined that composite resin emulsion was evenly coated on the surface of geotextile, to form a even and complete self-lubricating layer, and it was strongly combined with the geotextile due to formation of the transition layer. The tensile fracture stress and strain values of samples were evaluated by mechanical properties measurement, the tensile fracture stress of the untreated and treated sample was approximately 5329 kN/m and 5452 kN/m while the elongation at the yield of them was approximately 85% to 83.9%, respectively. In addition, the frictional angle values of municipal solid waste (MSW)/geotextile interface was measured by the tilt table test, the values of untreated sample was 28.1° and 24.2° under the dry and moist condition, the values of treated sample was 16.2° and 9.8°, respectively.

  4. Evaluation of the acute cardiac and central nervous system effects of the fluorocarbon trifluoromethane in baboons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, C.A.; Goldberg, D.A.; Ewing, J.R.

    1994-12-31

    The gaseous fluorocarbon trifluoromethane has recently been investigated for its potential as an in vivo gaseous indicator for nuclear magnetic resonance studies of brain perfusion. Trifluoromethane may also have significant value as a replacement for chlorofluorocarbon fire retardants. Because of possible species-specific cardiotoxic and anesthetic properties, the toxicological evaluation of trifluoromethane in primates (Papio anubis) is necessary prior to its evaluation in humans. We report the acute cardiac and central nervous system effects of trifluoromethane in eight anesthetized baboons. A dose-response effect was established for respiratory rate, electroencephalogram, and cardiac sinus rate, which exhibited a stepwise decrease from 10% trifluoromethane.more » No spontaneous arrhythmias were noted, and arterial blood pressure remained unchanged at any inspired level. Intravenous epinephrine infusions (1 {mu}g/kg) induced transient cardiac arrhythmia in 1 animal only at 70% FC-23 (v/v) trifluoromethane. Trifluoromethane appears to induce mild dose-related physiological changes at inspired levels of 30% or more, indicative of an anesthetic effect. These data suggest that trifluoromethane may be safe to use in humans, without significant adverse acute effects, at an inspired level of 30%. 23 refs., 3 figs., 3 tabs.« less

  5. Denticity and Mobility of the Carbonate Groups in AMCO 3 F Fluorocarbonates: A Study on KMnCO 3 F and High Temperature KCaCO 3 F Polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rousse, Gwenaelle; Ahouari, Hania; Pomjakushin, Vladimir

    We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ~320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed tomore » two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly “monodentate”, forming one short (2.14 Å) and one long (3.01 Å) Mn–O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.« less

  6. Deposition of single and layered amorphous fluorocarbon films by C8F18 PECVD

    NASA Astrophysics Data System (ADS)

    Yamauchi, Tatsuya; Mizuno, Kouichiro; Sugawara, Hirotake

    2008-10-01

    Amorphous fluorocarbon films were deposited by plasma-enhanced chemical vapor deposition (PECVD) using C8F18 in closed system at C8F18 pressures 0.1--0.3 Torr, deposition times 1--30 min and plasma powers 20--200 W@. The layered films were composed by repeated PECVD processes. We compared `two-layered' and `intermittently deposited' films, which were made by the PECVD, respectively, with and without renewal of the gas after the deposition of the first layer. The interlayer boundary was observed in the layered films, and that of the intermittently deposited films showed a tendency to be clearer when the deposition time until the interruption of the PECVD was shorter. The film thickness increased linearly in the beginning of the PECVD and it turned down after 10--15 min, that was similar between the single and intermittently deposited films. It was considered that large precursors made at a low decomposition degree of C8F18 contributed to the film deposition in the early phase and that the downturn was due to the development of the C8F18 decomposition. This explanation on the deposition mechanism agrees qualitatively with our experimental data of pressure change and optical emission spectra during the deposition. This work is supported by Grant-in-Aid from Japan Society for the Promotion of Science.

  7. Electron impact ionization cross section studies of C2Fx (x = 1 - 6) and C3Fx (x = 1 - 8) fluorocarbon species

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Song, Mi-Young; Karwasz, Grzegorz P.; Yoon, Jung-Sik

    2017-05-01

    The total ionization cross section for C2Fx (x = 1 - 6) and C3Fx (x = 1 - 8) fluorocarbon species are studied with the Binary-Encounter Bethe (BEB) model using various orbital parameters calculated from restricted/unrestricted Hartree-Fock (RHF/UHF) and Density Functional Theory (DFT). All the targets were optimized for their minimal structures and energies with several ab-initio methods with the aug-cc-pVTZ basis set. Among them, the present results with RHF/UHF orbital energies showed good agreement with the experimental results for stable targets C2F6, C2F4, C3F6 and C3F8. The results with the DFT (ωB97X/ωB97X-D) showed a reasonable agreement with the recent calculation of Bull et al. [J.N. Bull, M. Bart, C. Vallance, P.W. Harland, Phys. Rev. A 88, 062710 (2013)] for C2F6, C3F6 and C3F8 targets. The ionization cross section for C2F, C2F2, C2F3, C3F, C3F2, C3F3, C3F4, C3F5 and C3F7 were computed for the first time in the present study. We have also computed the vertical ionization potentials and polarizability for all the targets and compared them with other experimental and theoretical values. A good agreement is found between the present and the previous results. The calculated polarizability in turn is used to study the correlation with maximum ionization cross section and in general a good correlation is found among them, confirming the consistency and reliability of the present data. The cross section data reported in this article are very important for plasma modeling especially related to fluorocarbon plasmas. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  8. GPU based 3D feature profile simulation of high-aspect ratio contact hole etch process under fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Chun, Poo-Reum; Lee, Se-Ah; Yook, Yeong-Geun; Choi, Kwang-Sung; Cho, Deog-Geun; Yu, Dong-Hun; Chang, Won-Seok; Kwon, Deuk-Chul; Im, Yeon-Ho

    2013-09-01

    Although plasma etch profile simulation has been attracted much interest for developing reliable plasma etching, there still exist big gaps between current research status and predictable modeling due to the inherent complexity of plasma process. As an effort to address this issue, we present 3D feature profile simulation coupled with well-defined plasma-surface kinetic model for silicon dioxide etching process under fluorocarbon plasmas. To capture the realistic plasma surface reaction behaviors, a polymer layer based surface kinetic model was proposed to consider the simultaneous polymer deposition and oxide etching. Finally, the realistic plasma surface model was used for calculation of speed function for 3D topology simulation, which consists of multiple level set based moving algorithm, and ballistic transport module. In addition, the time consumable computations in the ballistic transport calculation were improved drastically by GPU based numerical computation, leading to the real time computation. Finally, we demonstrated that the surface kinetic model could be coupled successfully for 3D etch profile simulations in high-aspect ratio contact hole plasma etching.

  9. RMS roughness-independent tuning of surface wettability by tailoring silver nanoparticles with a fluorocarbon plasma polymer.

    PubMed

    Choukourov, A; Kylián, O; Petr, M; Vaidulych, M; Nikitin, D; Hanuš, J; Artemenko, A; Shelemin, A; Gordeev, I; Kolská, Z; Solař, P; Khalakhan, I; Ryabov, A; Májek, J; Slavínská, D; Biederman, H

    2017-02-16

    A layer of 14 nm-sized Ag nanoparticles undergoes complex transformation when overcoated by thin films of a fluorocarbon plasma polymer. Two regimes of surface evolution are identified, both with invariable RMS roughness. In the early regime, the plasma polymer penetrates between and beneath the nanoparticles, raising them above the substrate and maintaining the multivalued character of the surface roughness. The growth (β) and the dynamic (1/z) exponents are close to zero and the interface bears the features of self-affinity. The presence of inter-particle voids leads to heterogeneous wetting with an apparent water contact angle θ a = 135°. The multivalued nanotopography results in two possible positions for the water droplet meniscus, yet strong water adhesion indicates that the meniscus is located at the lower part of the spherical nanofeatures. In the late regime, the inter-particle voids become filled and the interface acquires a single valued character. The plasma polymer proceeds to grow on the thus-roughened surface whereas the nanoparticles keep emerging away from the substrate. The RMS roughness remains invariable and lateral correlations propagate with 1/z = 0.27. The surface features multiaffinity which is given by different evolution of length scales associated with the nanoparticles and with the plasma polymer. The wettability turns to the homogeneous wetting state.

  10. Formation of wormlike aggregates of fluorocarbon-hydrocarbon hybrid surfactant by Langmuir-Blodgett transfer and alignment of gold nanoparticles.

    PubMed

    Kondo, Yukishige; Fukuoka, Hiroshi; Nakano, Shuichi; Hayashi, Kohei; Tsukagoshi, Tatsuya; Matsumoto, Mutsuyoshi; Yoshino, Norio

    2007-05-22

    A novel anionic fluorocarbon-hydrocarbon hybrid surfactant (SS-Hyb-Na+) with a disulfide group has been synthesized from 11-bromo-1-undecanal and perfluorohexylethyl iodide via three steps. The Langmuir-Blodgett (LB) transfer of the 1:100 (mol/mol) mixed monolayer of SS-Hyb-Na+ and stearyl alcohol (C18OH) formed on an aqueous solution containing a cationic polymer, poly(diallyldimethylammonium chloride) (PDDA+Cl-) onto a hydrophobic silicon wafer yields the formation of wormlike aggregates consisting of SS-Hyb-/PDDA+ polyion complexes. It is found that the aggregates align along the withdrawal direction of the wafer substrate. When the wafer on which the wormlike aggregates exist is immersed into the dispersion of gold nanoparticles (Au NPs) prepared by the citrate reduction method, Au NPs align along the wormlike structures. Even though the surface of the wafer is placed either vertical or parallel to the monolayer compression direction during the LB transfer, the one-dimensional (1D) array of Au NPs is observed along the withdrawal direction of the wafer. This indicates that the wormlike aggregates of SS-Hyb-/PDDA+ complexes are aligned during the LB transfer, and the aligned aggregates behave as a scaffold in the 1D array of Au NPs.

  11. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    PubMed

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of exposures to fluorocarbon 113 in a horizontal and a vertical laminar airflow clean room.

    PubMed

    Bloom, T F; Egeland, G M

    1999-01-01

    Exposures to 1,1,2-trichloro-1,2,2-trifluoroethane or fluorocarbon (FC) 113 were evaluated in a horizontal laminar airflow (HLAF) clean room and a vertical laminar airflow (VLAF) clean room. A full period consecutive samples measurement strategy was employed. Data were used to calculate 8-hour time-weighted averages (8-TWA) for major work groups and to characterize exposures associated with specific cleaning tasks. The MIRAN 1B infrared analyzer was used to estimate peak concentrations. In the HLAF clean room, 8-TWAs ranged from 193 to 439 ppm; in the VLAF clean room, 8-TWAs ranged from 110 to 935 ppm. These levels were below the current Occupational Safety and Health Administration permissible exposure limit and the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit for FC 113 of 1000 ppm. Short-term sample concentrations ranged from 104 ppm (inspection) to 1080 ppm (assembly) in the HLAF clean room and 51 ppm (packaging)-3380 ppm (flushing) in the VLAF clean room. In the VLAF clean room, several short-term concentrations measured during the flushing task--1421 ppm and 2522 ppm--were above the NIOSH short-term exposure limit (STEL) of 1250 ppm. These data suggest the possibility that the STEL may be exceeded for tasks involving direct work with liquid FC 113. Peak exposure levels may be reduced by modification of worker position in the HLAF clean room and by use of open wire tables in the VLAF clean room.

  13. Plasma-deposited fluorocarbon polymer films on titanium for preventing cell adhesion: a surface finishing for temporarily used orthopaedic implants

    NASA Astrophysics Data System (ADS)

    Finke, B.; Testrich, H.; Rebl, H.; Walschus, U.; Schlosser, M.; Zietz, C.; Staehlke, S.; Nebe, J. B.; Weltmann, K. D.; Meichsner, J.; Polak, M.

    2016-06-01

    The design of a titanium implant surface should ideally support its later application in clinical use. Temporarily used implants have to fulfil requirements different from permanent implants: they should ensure the mechanical stabilization of the bone stock but in trauma surgery they should not be integrated into the bone because they will be removed after fracture healing. Finishing of the implant surface by a plasma-fluorocarbon-polymer (PFP) coating is a possible approach for preventing cell adhesion of osteoblasts. Two different low pressure gas-discharge plasma processes, microwave (MW 2.45 GHz) and capacitively coupled radio frequency (RF 13.56 MHz) plasma, were applied for the deposition of the PFP film using a mixture of the precursor octafluoropropane (C3F8) and hydrogen (H2). The thin films were characterized by x-ray photoelectron spectroscopy, Fourier transform infrared reflection absorption spectroscopy, and water contact angle measurements. Cell culture experiments show that cell adhesion and spreading of MG-63 osteoblasts were clearly reduced or nonexistent on these surfaces, also after 24 h of storage in the cell culture medium. In vivo data demonstrated that the local inflammatory tissue response for the PFP films deposited in MW and RF plasma were comparable to uncoated controls.

  14. Tuning fluorocarbon adsorption in new isoreticular porous coordination frameworks for heat transformation applications† †Electronic supplementary information (ESI) available: Experimental section, PXRD patterns, crystallographic tables and characterization details, and X-ray crystallographic files in CIF format. CCDC 1031873 and 1031874. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4sc03985h Click here for additional data file. Click here for additional data file.

    PubMed Central

    Lin, Rui-Biao; Li, Tai-Yang; Zhou, Hao-Long; He, Chun-Ting; Chen, Xiao-Ming

    2015-01-01

    Adsorption heat transformation is one of the most energy-efficient technologies, which relies much on the type and performance of the adsorbent–adsorbate pair. Here, we report adsorption behaviors of a typical fluorocarbon R22 (CHClF2) in a new series of isoreticular porous coordination polymers [Zn4O(bpz)2(ldc)], in which the typical Zn4O clusters are connected by hydrophobic 3,3′,5,5′-tetramethyl-4,4′-bipyrazolate (bpz2–) and different linear dicarboxylates (ldc2–) to form non-interpenetrated pcu networks with variable pore sizes, shapes, and volumes. Fluorocarbon sorption measurements of these materials revealed high R22 uptakes of 0.73–0.97 g g–1 (0.62–0.65 g cm–3) at 298 K and 1 bar and working capacities of 0.41–0.72 g g–1 (0.35–0.47 g cm–3) between 273 and 313 K at about 0.13, 0.11 and 0.52 bar, respectively, as well as very large diffusion coefficients of 5.1–7.3 × 10–7 cm2 s–1. Noteworthily, the R22 sorption performance can be dramatically improved by subtle modification of the pore size and shape, demonstrating porous coordination polymer–fluorocarbon as a promising adsorbent–adsorbate pair for heat transformation applications. PMID:29308161

  15. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    PubMed

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  16. The environmental history and probable future of fluorocarbon-11

    NASA Astrophysics Data System (ADS)

    Khalil, M. A. K.; Rasmussen, R. A.

    1993-12-01

    The atmospheric concentration of fluorocarbon 11 (F-11) has increased steadily since it was first put into commercial use in the late 1930s and early 1940s. The observed trends, however, have two periods of dramatic declines. The first occurred around 1974, when trends started falling from their all time high of 13.8 pptv/yr down to around 7.8 pptv/yr (1 pptv = 10-12 parts by volume) in 1982. This decline occurred at first, probably, because of market conditions and later because of the ban in the United States on inessential uses of F-11, particularly in aerosol spray cans. In the meantime, other uses of F-11, such as blowing foams, increased, causing an increasing trend once again until around 1987, when the atmospheric trends reached 11 pptv/yr (measured 1986-1988, inclusive). After this time, however, the trends have fallen dramatically and are now only 4.6 pptv/yr (measured 1990-1992) and even lower in the middle northern latitudes (about 2 pptv/yr). The recent decline of trend is attributed to the effect of the Montreal Protocol and subsequent agreements that are designed to ban worldwide production before the turn of this century. The atmospheric trends reflect estimated emissions, which reached highest values in 1974 (340-355 Gg/yr; 1 Gg = 109g) and again in 1988 (314-380 Gg/yr). The observed concentrations and trends agree extremely well with those calculated from independent estimates of emissions from the various sources. Atmospheric concentrations of F-11 are calculated from a mass balance theory involving seven reservoirs and their interactions. Three of the reservoirs are at the Earth's surface arising from the uses of F-11 (quick-release applications such as open cell foams and aerosols, nonhermetically sealed refrigeration, and rigid polyurethane foams). We estimate that of the 9150 Gg of F-11 that have been produced throughout its history, at present about 1040 Gg are tied up in rigid foams (90 Gg and 24 Gg are tied up in refrigeration and quick

  17. Effect of Fluorocarbon and Hydrocarbon Chain Lengths in Hybrid Surfactants for Supercritical CO2.

    PubMed

    Sagisaka, Masanobu; Ono, Shinji; James, Craig; Yoshizawa, Atsushi; Mohamed, Azmi; Guittard, Frédéric; Rogers, Sarah E; Heenan, Richard K; Yan, Ci; Eastoe, Julian

    2015-07-14

    Hybrid surfactants containing both fluorocarbon (FC) and hydrocarbon (HC) chains have recently been shown to solubilize water and form elongated reversed micelles in supercritical CO2. To clarify the most effective FC and HC chain lengths, the aggregation behavior and interfacial properties of hybrid surfactants FCm-HCn (FC length m/HC length n = 4/2, 4/4, 6/2, 6/4, 6/5, 6/6, and 6/8) were examined in W/CO2 mixtures as functions of pressure, temperature, and water-to-surfactant molar ratio (W0). The solubilizing power of hybrid surfactants for W/CO2 microemulsions was strongly affected by not only the FC length but also by that of the HC. Although the surfactants having short FC and/or HC tails (namely, m/n = 4/2, 4/4, and 6/2) did not dissolve in supercritical CO2 (even at ∼17 mM, ≤400 bar, temperature ≤ 75 °C, and W0 = 0-40), the other hybrid surfactants were able to yield transparent single-phase W/CO2 mixtures identified as microemulsions. The solubilizing power of FC6-HCm surfactants reached a maximum (W0 ∼ 80 at 45 °C and 350 bar) with a hydrocarbon length, m, of 4. The W0 value of 80 is the highest for a HC-FC hybrid surfactant, matching the highest value reported for a FC surfactant which contained more FC groups. High-pressure small-angle neutron scattering measurements from FCm-HCn/D2O/CO2 microemulsions were consistent with growth of the microemulsion droplets with increasing W0. In addition, not only spherical reversed micelles but also nonspherical assemblies (rodlike or ellipsoidal) were found for the systems with FC6-HCn (n = 4-6). At fixed surfactant concentration and W0 (17 mM and W0 = 20), the longest reversed micelles were obtained for FC6-HC6 where a mean aspect ratio of 6.3 was calculated for the aqueous cores.

  18. Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO2.

    PubMed

    Sagisaka, Masanobu; Ono, Shinji; James, Craig; Yoshizawa, Atsushi; Mohamed, Azmi; Guittard, Frédéric; Enick, Robert M; Rogers, Sarah E; Czajka, Adam; Hill, Christopher; Eastoe, Julian

    2018-08-01

    Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO 2 . To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO 2 (W/CO 2 ) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W 0 ) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO 2 microemulsions were found to increase in size with increasing W 0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO 2 microemulsion droplets increased linearly with W 0 , and finally reached ∼39 Å and ∼78 Å at W 0  = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO 2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO 2 interfaces, and so play important roles for tuning the W/CO 2 interfacial curvature. The super-efficient W/CO 2 -type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives

  19. Development of Improved LOX-Compatible Laminated Gasket Composite

    DTIC Science & Technology

    1966-08-01

    Braided Teflon 2. Bleached fluorocarbon felt 3. Teflon and asbestos fibers 4. Teflon and ceramic fibers 5. Teflon and glass fibers 6. Viton A and asbestos 7...fluorinated ethylene- propylene (Teflon FEP), polychlorotrifluoroethylene films (Aclar - Kel F), and fluorocarbon elastomers (Viton A - Fluorel, etc...2nd 10th CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE FILLED FLUOROCARBON GLASS FILLED TEFLON FLUOROCARBON LAMINATE ELASTOMER Figure 21

  20. Ameliorating effects of fluorocarbon emulsion on sickle red blood cell-induced obstruction in an ex vivo vasculature.

    PubMed

    Kaul, D K; Liu, X; Nagel, R L

    2001-11-15

    In sickle cell (SS) vaso-occlusion, the culminating event is blockage of blood vessels by sickled red blood cells (SS RBCs). As shown in animal models, SS RBC-induced vaso-occlusion is often partial, allowing for a residual flow, hence oxygen delivery to partially occluded vessels could reduce vaso-occlusion. The efficacy of an oxygenated perflubron-based fluorocarbon emulsion (PFE) was tested for its anti-vaso-occlusive effects in the ex vivo mesocecum vasculature of the rat. Microvascular obstruction was induced by the infusion of deoxygenated SS RBCs into ex vivo preparations with or without pretreatment with platelet-activating factor (PAF). PAF induced enhanced SS RBC-endothelium interactions, leading to greater vaso-occlusion. Microvascular blockage resulted in increased peripheral resistance units (PRU). Deoxygenated SS RBCs caused a persistent 1.5-fold PRU increase in untreated preparations and approximately a 2-fold PRU increase in PAF-treated preparations. The greater PRU in PAF-treated preparations was caused by widespread adhesion and postcapillary blockage. Oxygenated PFE, but not deoxygenated PFE, resulted in PRU decreases to baseline values in both groups of experiments (with or without PAF). The PRU decrease caused by oxygenated PFE infusion was caused by unsickling of SS RBCs in partially occluded vessels, with no antiadhesive effect on already adherent SS RBCs as assessed by intravital microscopy. PFE had no effect on vascular tone. The efficacy of PFE appears to result from its greater capacity to dissolve oxygen (10-fold higher than plasma). The dislodgement of trapped SS RBCs and an increase in wall shear rates will help reverse the partial obstruction. Thus, oxygenated PFE is capable of reducing SS RBC-induced vaso-occlusion, and further development of this approach is advisable.

  1. Process for the separation of components from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1973-10-01

    A process for the removal, from gaseous mixtures of a desired component selected from oxygen, iodine, methyl iodide, and lower oxides of carbon, nitrogen, and sulfur is described. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatmospheric pressure to preferentially absorb the desired component in the fluorocarbon. Unabsorbed constituents of the gaseous mixture are withdrawn from the absorption zone. Liquid fluorocarbon enriched in the desired component is withdrawn separately from the zone, following which the desired component is recovered from the fluorocarbon absorbent. (Official Gazette)

  2. The effects of changing deposition conditions on the similarity of sputter-deposited fluorocarbon thin films to bulk PTFE

    NASA Astrophysics Data System (ADS)

    Zandona, Philip

    Solid lubrication of space-borne mechanical components is essential to their survival and the continued human exploration of space. Recent discoveries have shown that PTFE when blended with alumina nanofillers exhibits greatly improved physical performance properties, with wear rates being reduced by several orders of magnitude. The bulk processes used to produce the PTFE-alumina blends are limiting. Co-sputter deposition of PTFE and a filler material overcomes several of these limitations by enabling the reduction of particle size to the atomic level and also by allowing for the even coating of the solid lubricant on relatively large areas and components. The goal of this study was to establish a baseline performance of the sputtered PTFE films as compared to the bulk material, and to establish deposition conditions that would result in the most bulk-like film possible. In order to coax change in the structure of the sputtered films, sputtering power and deposition temperature were increased independently. Further, post-deposition annealing was applied to half of the deposited film in an attempt to affect change in the film structure. Complications in the characterization process due to increasing film thickness were also examined. Bulk-like metrics for characterization processes the included Fourier transform infrared spectroscopy (FTIR), X-ray spectroscopy (XPS), nanoindentation via atomic force microscopy, and contact angle of water on surface measurements were established. The results of the study revealed that increasing sputtering power and deposition temperature resulted in an increase in the similarity between the fluorocarbon films and the bulk PTFE, at a cost of affecting the potential of the film thicknesses, either by affecting the deposition process directly, or by decreasing the longevity of the sputtering targets.

  3. Reciprocating down-hole sand pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhle, J.L.

    1987-04-28

    This patent describes the invention of a continuously-operated reciprocating down-hole sand pump comprising: a steel polished plunger pipe that strokes back and forth within a steel honed pump barrel, and is equipped with a self-lubricating fluorocarbon V-ring system that is pressure-actuated during compression strokes; the self-lubricating fluorocarbon V-ring system also is self-actuated by means of coil springs to provide wiping action to the polished plunger pipe during suction strokes; the self-lubricating fluorocarbons V-ring system also self-adjusts by means of coil springs located adjacent the fluorocarbon V-ring so as to automatically compensate for V-ring wear; and the self-lubricating fluorocarbon V-ring systemmore » also is designed in such a manner so as to eliminate voids and discourage the extrusion of V-rings in high temperature and high-pressure applications.« less

  4. Emergency and Continuous Exposure Limits for Selected Airborne Contaminants. Volume 2

    DTIC Science & Technology

    1984-10-01

    21, fluorocarbon 113, fluorocarbon 114, isopropyl alcohol, phosgene, sodium hydroxide, sulfur dioxide, vinylidene chloride . xylene. b. Identlflers/Open...fluorocarbon 114, isopropyl alcohol, phosgene, sodium hydroxide, sulfur dioxide, vinylidene chloride , xylene. c. COSATI Field/Group 1I. Availability Statement...Hydroxide 87 Sulfur Dioxide 95 Vinylidene Chloride 103 Xylene 113 -" , 0°. •. .. : V.•. ., , • .’’-.’ .’.’ INTRODUCTION The National Research Council’s

  5. Recovery of purified helium or hydrogen from gas mixtures

    DOEpatents

    Merriman, J.R.; Pashley, J.H.; Stephenson, M.J.; Dunthorn, D.I.

    1974-01-15

    A process is described for the removal of helium or hydrogen from gaseous mixtures also containing contaminants. The gaseous mixture is contacted with a liquid fluorocarbon in an absorption zone maintained at superatomspheric pressure to preferentially absorb the contaminants in the fluorocarbon. Unabsorbed gas enriched in hydrogen or helium is withdrawn from the absorption zone as product. Liquid fluorocarbon enriched in contaminants is withdrawn separately from the absorption zone. (10 claims)

  6. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.

    PubMed

    Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

    2012-06-26

    We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by

  7. Fluorocarbon assisted atomic layer etching of SiO 2 and Si using cyclic Ar/C 4F 8 and Ar/CHF 3 plasma

    DOE PAGES

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...

    2015-11-11

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  8. Thermochemical Properties Enthalpy, Entropy, and Heat Capacity of C1-C4 Fluorinated Hydrocarbons: Fluorocarbon Group Additivity.

    PubMed

    Wang, Heng; Castillo, Álvaro; Bozzelli, Joseph W

    2015-07-23

    Enthalpies of formation for 14 C2–C4 fluorinated hydrocarbons were calculated with nine popular ab initio and density functional theory methods: B3LYP, CBS-QB3, CBS-APNO, M06, M06-2X, ωB97X, G4, G4(MP2)-6X, and W1U via several series of isodesmic reactions. The recommended ideal gas phase ΔHf298° (kcal mol(–1)) values calculated in this study are the following: −65.4 for CH3CH2F; −70.2 for CH3CH2CH2F; −75.3 for CH3CHFCH3; −75.2 for CH3CH2CH2CH2F; −80.3 for CH3CHFCH2CH3; −108.1 for CH2F2; −120.9 for CH3CHF2; −125.8 for CH3CH2CHF2; −133.3 for CH3CF2CH3; −166.7 for CHF3; −180.5 for CH3CF3; −185.5 for CH3CH2CF3; −223.2 for CF4; and −85.8 for (CH3)3CF. Entropies (S298° in cal mol(–1) K(–1)) were estimated using B3LYP/6-31+G(d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S298°, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curve. Thermochemical properties for the fluorinated carbon groups C/C/F/H2, C/C2/F/H, C/C/F2/H, C/C2/F2, and C/C/F3 were derived from the above target fluorocarbons. Previously published enthalpies and groups for 1,2-difluoroethane, 1,1,2-trifluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2-pentafluoroethane, 2-fluoro-2-methylpropane that were previously determined via work reaction schemes are revised using updated reference species values. Standard deviations are compared for the calculation methods.

  9. Development of a special purpose spacecraft coating, phase 4

    NASA Technical Reports Server (NTRS)

    Gillman, H. D.

    1980-01-01

    Coating formulations based on a fluorocarbon resin were evaluated for use on spacecraft exteriors. Formulations modified with an acrylic resin were found to have excellent offgassing properties. A much less expensive process for increasing to solid content of the fluorocarbon latex was developed.

  10. Polymeric and composite materials for use in systems utilizing hot, flowing geothermal brine. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorensen, L.E.; Walkup, C.M.

    1978-04-13

    Further progress is reported on a continuing experimental program designed to select high-performance polymeric materials for use in geothermal power plants. In field tests 12 nozzles, 27 wear plates, and 2 types of polymer lined pipe were tested. Nozzles made of Teflons TFE and PFA, Tefzel, Ryton PPS and H-Resin/carbon cloth were little changed except for some scaling. The fluorocarbons scaled least rapidly. All blade type wear plates eroded, those based on Tefzel, PPQ, and PPS the least. Fluorocarbon lined pipes were little affected by exposure. In laboratory tests samples were heated at 250 and 300/sup 0/C in brine. Severalmore » materials including fluorocarbon and unhydrolyzable aromatic or cross-linked aliphatic, thermally stable polymers survived for periods up to 1300 h. In erosion tests, coatings based on epoxy resins and a fluorocarbon were most resistant; good adhesion was required.« less

  11. Amorphous microcellular polytetrafluoroethylene foam film

    NASA Astrophysics Data System (ADS)

    Tang, Chongzheng

    1991-11-01

    We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.

  12. Method of bonding diamonds in a matrix and articles thus produced

    DOEpatents

    Taylor, G.W.

    1981-01-27

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  13. Utilization of oxygen difluoride for syntheses of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Toy, M. S. (Inventor)

    1976-01-01

    The reaction oxygen difluoride, OF2, with ethylenically unsaturated fluorocarbon compounds is examined. Depending upon the fluorocarbon material and reaction conditions, OF2 can chain extend fluoropolyenes, convert functional perfluorovinyl groups to acyl fluoride and/or epoxide groups, and act as a monomer for an addition type copolymerization with diolefins.

  14. Flexible Polymer/Metal/Polymer and Polymer/Metal/Inorganic Trilayer Transparent Conducting Thin Film Heaters with Highly Hydrophobic Surface.

    PubMed

    Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin

    2017-09-27

    Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq -1 , sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiN x structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.

  15. Development of an all-metal thick film cost effective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.; Parker, J.

    1982-01-01

    Electrodes made with pastes produced under the previous contract were analyzed and compared with raw materials. A needle-like structure observed on the electroded solar cell was identified as eutectic copper-silicon, a phase considered to benefit the electrical and metallurgical properties of the contact. Electrodes made from copper fluorocarbon and copper silver fluoride also contained this phase but had poor adhesion. A liquid medium, intended to provide transport during carbon fluoride decomposition was incorporated into the paste resulting in better adhesion. The product survived preliminary environmental tests. A 2 cm by 2 cm solar cell made with fluorocarbon activated copper electrodes and gave 7% AMI efficiency (without AR coating). Both silver fluoride and fluorocarbon screened paste electrodes can be produced for approximately $0.04 per watt.

  16. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.

    Bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 degrees C, and properties in the wetted and dried states were measured. Exposure to bio-oilmore » produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  17. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  18. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE PAGES

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; ...

    2016-07-12

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  19. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    PubMed

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  20. Alternatives To Cadmium Plated Military Connectors

    DTIC Science & Technology

    2011-08-30

    from Feb 2011 Asets Defense conference  Amphenol Aerospace Operations report. 9/21/2011 10 Chromate finish  Hexavalent chrome was targeted by DOD...Fluorocarbon Zinc-Nickel Pure Dense Aluminum  Zinc-Nickel and Aluminum currently contain hexavalent chromate. Nickel-Fluorocarbon requires no...to lack of available drop in replacements, but this will change as alternatives become available.  Trivalent chrome and other non- chrome

  1. Volcanic gases in the april 1979 soufriere eruption.

    PubMed

    Cronn, D R; Nutmagul, W

    1982-06-04

    Six gas samples from the 17 April 1979 Soufriere eruption plume were analyzed for carbonyl sulfide, carbon disulfide, carbon monoxide, carbon dioxide, methane, nitrous oxide, fluorocarbon-11, fluorocarbon-12, methyl chloroform, and carbon tetrachloride. Only carbon monoxide, carbon dioxide, carbonyl sulfide, and carbon disulfide were found to have increased mixing ratios as compared with those in clean tropospheric air, but the increases were not sufficient to contribute greatly to the global budgets of these four components.

  2. Measurement of liquid film in microchannels using a laser focus displacement meter

    NASA Astrophysics Data System (ADS)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi; Ishii, Mamoru

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 μm in thickness in the slug and annular flow regimes.

  3. Characterizing Fluorocarbon Assisted Atomic Layer Etching of Si Using Cyclic Ar/C 4F 8 and Ar/CHF 3 Plasma

    DOE PAGES

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...

    2016-09-08

    With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a

  4. Characterizing fluorocarbon assisted atomic layer etching of Si using cyclic Ar/C4F8 and Ar/CHF3 plasma

    NASA Astrophysics Data System (ADS)

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A.; Oehrlein, Gottlieb S.

    2017-02-01

    With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C4F8 and CHF3) and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J. Vac. Sci. Technol., A 32, 020603 (2014) and D. Metzler et al., J. Vac. Sci. Technol., A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO2 and Si but is limited with regard to control over material etching selectivity. Ion energy over the 20-30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF3 has a lower FC deposition yield for both SiO2 and Si and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F8. The thickness of deposited FC layers using CHF3 is found to be greater for Si than for SiO2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen

  5. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity

    NASA Technical Reports Server (NTRS)

    Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon

    1990-01-01

    Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.

  6. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    PubMed

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  7. Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound.

    PubMed

    Blum, Nicholas T; Yildirim, Adem; Chattaraj, Rajarshi; Goodwin, Andrew P

    2017-01-01

    This work reports that when PEG-lipid-shelled microbubbles with fluorocarbon interior (C 4 F 10 , C 5 F 12 , or C 6 F 14 ) are subjected to ultrasound pulses, they produce metastable, fluid-filled nanoparticles that can be re-imaged upon administration of HIFU. The nanoparticles produced by destruction of the microbubbles (MBNPs) are of 150 nm average diameter and can be re-imaged for up to an hour after creation for C 4 F 10 , and for at least one day for C 5 F 12 . The active species were found to be fluid (gas or liquid) filled nanoparticles rather than lipid debris. The acoustic droplet vaporization threshold of the nanoparticles was found to vary with the vapor pressure of the encapsulated fluorocarbon, and integrated image brightness was found to increase dramatically when the temperature was raised above the normal boiling point of the fluorocarbon. Finally, the vaporization threshold decreases in serum as compared to buffer, and administration of HIFU to the nanoparticles caused breast cancer cells to completely detach from their culture substrate. This work demonstrates a new functionality of microbubbles that could serve as a platform technology for ultrasound-based theranostics.

  8. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... *Ethylene-Methacrylic Acid Copolymers *Ethylene-Vinyl Acetate Copolymers *Fatty Acid Resins *Fluorocarbon..., Acrylates (Latex) *PVC Copolymers, Ethylene-Vinyl Chloride *Rosin Derivative Resins *Rosin Modified Resins...

  9. Fluorination of silicone rubber by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Fielding, Jennifer Chase

    Plasma polymerized fluorocarbon (PPFC) films were deposited onto various silicone rubber substrates, including O-rings, to decrease oil uptake. Depositions were performed using a radio frequency (rf)-powered plasma reactor and various fluorocarbon monomers, such as C2F6, C2F 5H, C3F6, and 1H,1H,2H-perfluoro-1-dodecene. PPFC films which were most promising for inhibiting oil uptake were deposited with 1H,1H,2H-perfluoro-1-dodecene, and were composed predominantly of perfluoromethylene (CF2) species. These films displayed low critical surface energies (as low as 2.7 mJ/m2), and high contact angles with oil (84°), which were correlated with the amount of CF2 species present in the film. For the films with the highest degree of CF2 (up to 67%), CF2 chains may have been oriented slightly perpendicular to the substrate and terminated by CF3 species. Adhesion of the PPFC films directly to silicone rubber was found to be poor. However, when a plasma polymerized hydrocarbon interlayer was deposited on the silicone rubber prior to the fluorocarbon films, adhesion was excellent. O-rings coated with multilayer fluorocarbon films showed 2.6% oil uptake after soaking in oil for 100 hrs at 100°C. Due to variability in data, and the low quality of the industrial grade silicone rubber, the oil uptake mechanism was determined to be from oil flowing through flaws in the film due to defects within the substrate, not from generalized diffusion through the film. This mechanism was confirmed using higher quality silicone rubber, which showed little or no oil diffusion. Therefore, this film may perform well as an oil-repelling barrier when deposited on a high quality silicone rubber.

  10. Scientific Assessment of Stratospheric Ozone: 1989, volume 2. Appendix: AFEAS Report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The results are presented of the Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), which was organized to evaluate the potential effects on the environment of alternate compounds targeted to replace fully halogenated chlorofluorocarbons (CFCs). All relevant current scientific information to determine the environmental acceptability of the alternative fluorocarbons. Special emphasis was placed on: the potential of the compounds to affect stratospheric ozone; their potential to affect tropospheric ozone; their potential to contribute to model calculated global warming; the atmospheric degradation mechanisms of the compounds, in order to identify their products; and the potential environmental effects of the decomposition products. The alternative compounds to be studied were hydrofluorocarbons (HFCs) with one or two carbon atoms and one or more each of fluorine and hydrogen.

  11. 21 CFR 177.1380 - Fluorocarbon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resin pellets, when extracted with 100 milliliters of distilled water at reflux temperature for 8 hours... distilled water at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.003 percent... milliliters of n-heptane at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.01...

  12. 21 CFR 177.1380 - Fluorocarbon resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... resin pellets, when extracted with 100 milliliters of distilled water at reflux temperature for 8 hours... distilled water at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.003 percent... milliliters of n-heptane at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.01...

  13. 21 CFR 177.1380 - Fluorocarbon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resin pellets, when extracted with 100 milliliters of distilled water at reflux temperature for 8 hours... distilled water at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.003 percent... milliliters of n-heptane at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.01...

  14. 21 CFR 177.1380 - Fluorocarbon resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pellets, when extracted with 100 milliliters of distilled water at reflux temperature for 8 hours, shall... distilled water at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.003 percent... milliliters of n-heptane at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.01...

  15. 21 CFR 177.1380 - Fluorocarbon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... resin pellets, when extracted with 100 milliliters of distilled water at reflux temperature for 8 hours... distilled water at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.003 percent... milliliters of n-heptane at reflux temperature for 8 hours, shall yield total extractives not to exceed 0.01...

  16. Durable Fluorocarbon-Based Coatings for Aircraft

    DTIC Science & Technology

    2000-11-01

    synthesized two novel monomers, 2-fluoro-2- perfluorooctyl - 1,3-propanediol and 2-fluoro-2- perfluoro (2-ethylhexyl)-1,3-propanediol, and demonstrated that...propanediols, two branched perfluoroalkyl methanols, perfluoro -1H,1H-2-ethylhexanol (pefluoro-1-ethylpentyl methanol) and perfluoro - 1H,1H-2,2...malonates. Reduction of the perfluorinated malonates gave the perfluoroalkyl -branched 1,3-propanediols. R-OH + HBr R-Br cat. O O OCH 2CH3 OCH 2CH3 + O O

  17. Earth's Endangered Ozone

    ERIC Educational Resources Information Center

    Panofsky, Hans A.

    1978-01-01

    Included are (1) a discussion of ozone chemistry; (2) the effects of nitrogen fertilizers, fluorocarbons, and high level aircraft on the ozone layer; and (3) the possible results of a decreasing ozone layer. (MR)

  18. A facile method of fabricating mechanical durable anti-icing coatings based on CeO2 microparticles

    NASA Astrophysics Data System (ADS)

    Wang, Pengren; Peng, Chaoyi; Wu, Binrui; Yuan, Zhiqing; Yang, Fubiao; Zeng, Jingcheng

    2015-07-01

    Compromising between hydrophobicity and mechanical durability may be a feasible approach to fabricating usable anti-icing coatings. This work improves the contact angle of current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps relatively high mechanical durability. CeO2 microparticles and diluent were mixed with fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy composite substrates. The proportion of CeO2 microparticles and diluent influences the contact angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the surface of the coatings.

  19. Toxic alveolitis after inhalation of a water repellent.

    PubMed

    Epping, Guido; Van Baarlen, Joop; Van Der Valk, Paul D L P M

    2011-12-01

    Inhalation of fluorocarbon polymers can cause pulmonary toxicity. Although multiple cases of lung injury have been reported, cellular characterization of the associated alveolitis occurring acutely after inhalation is limited. We report the case of a previously healthy woman who presented at our Emergency Department with an acute pneumonitis following inhalation of a fluorocarbon polymer-based rain-proofing spray. Bronchoalveolar lavage (BAL) performed shortly after the presentation showed an elevated total cell count, with a high proportion of neutrophils (58%) and eosinophils (9%). In addition, a lipid stain (Oil-Red-O-stain) showed a high level of lipid laden macrophages, a marker that could reflect a direct toxic effect of the spray on alveolar cells. The patient made a full recovery after four days of in-hospital observation with supportive care.

  20. SUMMARY REVIEW OF HEALTH EFFECTS ASSOCIATED WITH HYDROGEN FLUORIDE AND RELATED COMPOUNDS: HEALTH ISSUE ASSESSMENT

    EPA Science Inventory

    The major natural sources of airborne hydrogen fluoride (HF) are volcanic activity, ocean spray, and crustal weathering of fluoride-containing rocks. Anthropogenic sources include emissions from industrial operations such as aluminum and fluorocarbon production, and uranium proce...

  1. Detection of Chamber Conditioning Through Optical Emission and Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, Meyya

    2001-01-01

    During oxide etch processes, buildup of fluorocarbon residues on reactor sidewalls can cause run-to-run drift and will necessitate some time for conditioning and seasoning of the reactor. Though diagnostics can be applied to study and understand these phenomena, many of them are not practical for use in an industrial reactor. For instance, measurements of ion fluxes and energy by mass spectrometry show that the buildup of insulating fluorocarbon films on the reactor surface will cause a shift in both ion energy and current in an argon plasma. However, such a device cannot be easily integrated into a processing system. The shift in ion energy and flux will be accompanied by an increase in the capacitance of the plasma sheath. The shift in sheath capacitance can be easily measured by a common commercially available impedance probe placed on the inductive coil. A buildup of film on the chamber wall is expected to affect the production of fluorocarbon radicals, and thus the presence of such species in the optical emission spectrum of the plasma can be monitored as well. These two techniques are employed on a GEC (Gaseous Electronics Conference) Reference Cell to assess the validity of optical emission and impedance monitoring as a metric of chamber conditioning. These techniques are applied to experimental runs with CHF3 and CHF3/O2/Ar plasmas, with intermediate monitoring of pure argon plasmas as a reference case for chamber conditions.

  2. The Effect of Column and Eluent Fluorination on the Retention and Separation of non-Fluorinated Amino Acids and Proteins by HPLC

    PubMed Central

    Joyner, Katherine; Wang, Weizhen; Yu, Yihua Bruce

    2011-01-01

    The effect of column and eluent fluorination on the retention and separation of non-fluorinated amino acids and proteins in HPLC is investigated. A side-by-side comparison of fluorocarbon column and eluents (F-column and F-eluents) with their hydrocarbon counterparts (H-column and H-eluents) in the separation of a group of 33 analytes, including 30 amino acids and 3 proteins, is conducted. The H-column and the F-column contain the n-C8H17 group and n-C8F17 group, respectively, in their stationary phases. The H-eluents include ethanol (EtOH) and isopropanol (ISP) while the F-eluents include trifluoroethanol (TFE) and hexafluorosopropanol (HFIP). The 2 columns and 4 eluents generated 8 (column, eluent) pairs that produce 264 retention time data points for the 33 analytes. A statistical analysis of the retention time data reveals that although the H-column is better than the F-column in analyte separation and H-eluents are better than F-eluents in analyte retention, the more critical factor is the proper pairing of column with eluent. Among the conditions explored in this project, optimal retention and separation is achieved when the fluorocarbon column is paired with ethanol, even though TFE is the most polar one among the 4 eluents. This result shows fluorocarbon columns have much potential in chromatographic analysis and separation of non-fluorinated amino acids and proteins. PMID:21318121

  3. Hydrophobic Tail Length, Degree of Fluorination and Headgroup Stereochemistry are Determinants of the Biocompatibility of (Fluorinated) Carbohydrate Surfactants

    PubMed Central

    Li, Xueshu; Turánek, Jaroslav; Knötigová, Pavlína; Kudláčková, Hana; Mašek, Josef; Parkin, Sean; Rankin, Stephen E; Knutson, Barbara L; Lehmler, Hans-Joachim

    2009-01-01

    A series of hydrocarbon and fluorocarbon carbohydrate surfactants with different headgroups (i.e., gluco-, galacto- and maltopyranoside) and (fluorinated) alkyl tails (i.e., C7 and C14 to C19) was synthesized to investigate trends in their cytotoxicity and haemolytic activity, and how surfactant-lipid interactions of selected surfactants contribute to these two measures of biocompatibility. All surfactants displayed low cytotoxicity (EC50 = 25 to > 250 μM) and low haemolytic activity (EC50 = 0.2 to > 3.3 mM), with headgroup structure, tail length and degree of fluorination being important structural determinants for both endpoints. The EC50 values of hydrocarbon and fluorocarbon glucopyranoside surfactants displayed a “cut-off” effect (i.e., a maximum with respect to the chain length). According to steady-state fluorescence anisotropy studies, short chain (C7) surfactants partitioned less readily into model membranes, which explains their low cytotoxicity and haemolytic activity. Interestingly, galactopyranosides were less toxic compared to glucopyranosides with the same hydrophobic tail. Although both surfactant types only differ in the stereochemistry of the 4-OH group, hexadecyl gluco- and galactopyranoside surfactants had similar apparent membrane partition coefficients, but differed in their overall effect on the phase behaviour of DPPC model membranes, as assessed using steady-state fluorescence anisotropy studies. These observations suggest that highly selective surfactant-lipid interactions may be responsible for the differential cytotoxicity and, possible, haemolytic activity of hydrocarbon and fluorocarbon carbohydrate surfactants intended for a variety of pharmaceutical and biomedical applications. PMID:19481909

  4. Hazardous Waste Cleanup: Solvey Specialty Polymers USA, L.L.C. in Thorofare, New Jersey

    EPA Pesticide Factsheets

    The site is located at 10 Leonard Lane, in Thorofare (West Deptford Township), New Jersey, in a mostly industrial setting surrounded by a rural residential area. Pennwalt began operations in the 1970s manufacturing fluorocarbons but the operations ceased

  5. Search for plutonium-244 tracks in mountain pass bastnaesite

    USGS Publications Warehouse

    Fleischer, R.L.; Naeser, C.W.

    1972-01-01

    WE have found that bastnaesite, a rare earth fluorocarbonate, from the Precambrian Mountain Pass deposit has an apparent Cretaceous fission track age, and hence does not reveal any anomalous fission tracks due to 244Pu. ?? 1972 Nature Publishing Group.

  6. Long-lasting solid-polymer electrolytic hygrometer

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.

    1978-01-01

    Device consists of hollow tube node of oxidation-resistant sulfonated fluorocarbon polymer. Tube absorbs moisture from air passing across inner and outer surfaces, causing change in polymer conductance. Change is related to change in water content in gas sample.

  7. Thermally resistant polymers for fuel tank sealants

    NASA Technical Reports Server (NTRS)

    Webster, J. A.

    1972-01-01

    Conversion of fluorocarbon dicarboxylic acid to intermediates whose terminal functional groups permit polymerization is discussed. Resulting polymers are used as fuel tank sealers for jet fuels at elevated temperatures. Stability and fuel resistance of the prototype polymers is explained.

  8. Hybrid Fluorosilicones for Aircraft Fuel Tank Sealants. Part 4. Synthesis of Fluorocarbon and Fluorocarbon Ether Hybrid Fluorosilicone Polymers.

    DTIC Science & Technology

    1974-05-01

    onine n oviro id i ncesay (Coidntiu d onac evesesie fluoroether SECURITY CLASIICAIO OFstuei THISer wAGE sythsie,and uRred) research~~~~~~~~ amle wer...i I. ." r;. . - 7 7 7 SECTION Table of Contents (Continued)Page b. Preparation of CHa-CH(CFa)aO(CFa),O( CFt )CH-CH* ............ 27 c. Preparation of...Photolysis of I(CFg)aO(CPs)nO(CFm)aI/Hg/ CFt .................. 32 6. Reaction of I(CFR)&O(CF,).O(CFa)s1 with Hg ..................... 33 a. 280 0C

  9. Flame-resistant textiles

    NASA Technical Reports Server (NTRS)

    Fogg, L. C.; Stringham, R. S.; Toy, M. S.

    1980-01-01

    Flame resistance treatment for acid resistant polyamide fibers involving photoaddition of fluorocarbons to surface has been scaled up to treat 10 yards of commercial width (41 in.) fabric. Process may be applicable to other low cost polyamides, polyesters, and textiles.

  10. Comparative description of PFAA developmental toxicity: An update

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of fluorocarbons consisting of a perfluorinated carbon tail (typically 4-12 carbons in length) and an acidic functional moiety, usually carboxylate or sulfonate. These compounds have excellent surface tension reducing properties and h...

  11. RETENTION OF HALOCARBONS ON A HEXAFLUOROPROPYLENE EPOXIDE-MODIFIED GRAPHITIZED CARBON BLACK - IV. PROPANE- BASED COMPOUNDS

    EPA Science Inventory

    The retention characteristics of 25 propane-based bromofluorocarbon, chlorocarbon, chlorofluorocarbon, and fluorocarbon fluids have been studied as a function of temperature on a stationary phase consisting of a 5% (m/m) coating of a low-molecular-mass polymer of hexafluoropropyl...

  12. 40 CFR Appendix Vii to Part 261 - Basis for Listing Hazardous Waste

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tetrachloroethylene, methylene chloride trichloroethylene, 1,1,1-trichloroethane, carbon tetrachloride, chlorinated fluorocarbons. F002 Tetrachloroethylene, methylene chloride, trichloroethylene, 1,1,1-trichloroethane, 1,1,2...-dichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, trichloroethylene, 1,1,1,2...

  13. 77 FR 54933 - Government-Owned Inventions, Available for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Manufacture, Copoly(imide Oxetane)s Containing Pendant Fluorocarbon Moieties, Oligomers and Processes Therefor...; NASA Case No.: LAR-17895-1: Physiologically Modulating Videogames or Simulations Which Use Motion... Crimped Connector; NASA Case No.: LAR-18006-1: Process and Apparatus for Nondestructive Evaluation of the...

  14. Combined Molecular Dynamics, Atoms in Molecules, and IR Studies of the Bulk Monofluoroethanol and Bulk Ethanol To Understand the Role of Organic Fluorine in the Hydrogen Bond Network.

    PubMed

    Biswas, Biswajit; Mondal, Saptarsi; Singh, Prashant Chandra

    2017-02-16

    The presence of the fluorocarbon group in fluorinated alcohols makes them an important class of molecules that have diverse applications in the field of separation techniques, synthetic chemistry, polymer industry, and biology. In this paper, we have performed the density function theory calculation along with atom in molecule analysis, molecular dynamics simulation, and IR measurements of bulk monofluoroethanol (MFE) and compared them with the data for bulk ethanol (ETH) to understand the effect of the fluorocarbon group in the structure and the hydrogen bond network of bulk MFE. It has been found that the intramolecular O-H···F hydrogen bond is almost absent in bulk MFE. Molecular dynamics simulation and density function theory calculation along with atom in molecule analysis clearly depict that in the case of bulk MFE, a significant amount of intermolecular O-H···F and C-H···F hydrogen bonds are present along with the intermolecular O-H···O hydrogen bond. The presence of intermolecular O-H···F and C-H···F hydrogen bonds causes the difference in the IR spectrum of bulk MFE as compared to bulk ETH. This study clearly depicts that the organic fluorine (fluorocarbon) of MFE acts as a hydrogen bond acceptor and plays a significant role in the structure and hydrogen bond network of bulk MFE through the formation of weak O-H···F as well C-H···F hydrogen bonds, which may be one of the important reasons behind the unique behavior of the fluoroethanols.

  15. Rayleigh scattering measurements of several fluorocarbon gases.

    PubMed

    Zadoo, Serena; Thompson, Jonathan E

    2011-11-01

    Integrating nephelometers are commonly used to monitor airborne particulate matter. However, they must be calibrated prior to use. The Rayleigh scattering coefficients (b(RS), Mm(-1)), scattering cross sections (σ(RS), cm(2)), and Rayleigh multipliers for tetrafluoromethane (R-14), sulfur hexafluoride, pentafluoroethane (HFC-125), hexafluoropropene (HFC-216), 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227ea), and octafluorocyclobutane (C-318) are reported from measurements made using a Radiance Research M903 integrating nephelometer operating at λ = 530 nm and calibration with gases of known scattering constants. Rayleigh multipliers (±90% conf. int.) were found to be 2.6 ± 0.5, 6.60 ± 0.07, 7.5 ± 1, 14.8 ± 0.9, 15.6 ± 0.5, and 22.3 ± 0.8 times that of air, respectively. To the best of our knowledge, these are the first reported values for R-14, HFC-216, HFC-125, and C-318. Experimental accuracy is supported through measurements of values for SF(6) and HFC-227ea which agree to within 3% of previous literature reports. In addition to documenting fundamental Rayleigh scattering data for the first time, the information presented within will find use for calibration of optical scattering sensors such as integrating nephelometers.

  16. Synthesis and Chemistry of Novel Cyclic Fluorocarbons

    DTIC Science & Technology

    1993-05-27

    Perfluorosemibulvalene " Part II. "Synthesis and Studies of Perfluorobenzene Oxide / Perfluorooxepin ", 199 Correa, R.A., "Synthesis of Highly Fluorinated Bicyclo... Perfluorotmne . In the course of attempts to develop a more practical synthesis of the perfluorotropylium ion (21) than our original route, we found a new...34, J. Org. Chem. 1991,56, 157-60. 8. Takenaka, N.E.; Lemal, D.M. "The Perfluorobenzene Oxide/ Perfluorooxepin System" in Synthetic Fluorine Chemistry

  17. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... contactors employed in the separation cascade can be liquid-liquid exchange columns (such as pulsed columns.... Plastic, plastic-lined (including use of fluorocarbon polymers) and/or glass-lined columns and piping are therefore used. (1) Liquid-liquid exchange columns. Countercurrent liquid-liquid exchange columns having...

  18. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... contactors employed in the separation cascade can be liquid-liquid exchange columns (such as pulsed columns.... Plastic, plastic-lined (including use of fluorocarbon polymers) and/or glass-lined columns and piping are therefore used. (1) Liquid-liquid exchange columns. Countercurrent liquid-liquid exchange columns having...

  19. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... contactors employed in the separation cascade can be liquid-liquid exchange columns (such as pulsed columns.... Plastic, plastic-lined (including use of fluorocarbon polymers) and/or glass-lined columns and piping are therefore used. (1) Liquid-liquid exchange columns. Countercurrent liquid-liquid exchange columns having...

  20. Seal Materials Compatible with the Electroplating Solvent Used in Constellation-X Mirrors

    NASA Technical Reports Server (NTRS)

    Pei, Xiong-Skiba

    1999-01-01

    The existing gasket seals used in electroplating of the Constellation-X mirrors are difficult to assemble, and the current seal material is hydrophobic and too thick. The combination of the above problems result in: 1) non-uniform plating; 2) defect sites such as pits on the mirror edges; 3) "bear claws" on the edges of the mandrels and mirrors causing difficulties in shell-mirror separations; and 4) leakage of the plating solution past the seals into the mandrel causing chemical etching of the mandrel interior. This paper reports the results of this summer study in searching for alternate seal materials chemically compatible with the electroplating solvent. Fifteen common elastomeric rubber seal materials made-by Parker Seals were investigated including butyl, ethylene propylene, fluorosilicone, nitrile, Viton fluorocarbon, and silicone. Test results showed that Viton fluorocarbon compounds as a group were superior to the other tested compounds for chemical compatibility with the plating bath.

  1. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.

    1977-01-01

    The potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project were studied to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Materials for study were chosen on the basis of existing knowledge of generic chemical types having high resistance to environmental weathering. The materials varied from rubbers to thermoplastics and presented a broad range of mechanical properties and processing requirements. Basic physical and optical properties were measured on the polymers and were redetermined after exposure to indoor artificial accelerated aging conditions covering four time periods. Strengths and weaknesses of the various materials were revealed and data was accumulated for the development of predictive methodologies. To date, silicone rubbers, fluorocarbons, and acrylic polymers appear to have the most promising combination of characteristics. The fluorocarbons may be used only as films, however, because of their high cost.

  2. Evaluations of candidate encapsulation designs and materials for low-cost silicon photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Carmichael, D. C.; Sliemers, F. A.; Brockway, M. C.; Bunk, A. R.; Nance, G. P.

    1978-01-01

    Three encapsulation designs for silicon photovoltaic arrays based on cells with silk-screened Ag metallization have been evaluated: transparent polymeric coatings over cells laminated between two films or sheets of polymeric materials; cells adhesively bonded to a glass cover with a polymer pottant and a glass or other substrate component. Silicone and acrylic coatings were assessed, together with acrylic sheet, 0.635 mm fiberglass-reinforced polyester sheet, 0.102 mm polycarbonate/acrylic dual-layer film, 0.127 mm fluorocarbon film, soda-lime glass, borosilicate glass, low-iron glass, and several adhesives. The encapsulation materials were characterized by light transmittance measurements, determination of moisture barrier properties and bond strengths, and by the performance of cells before and after encapsulation. Silicon and acrylic coatings provided inadequate protection. Acrylic and fluorocarbon films displayed good weatherability and acceptable optical transmittance. Borosilicate, low-iron and soda-lime-float glasses were found to be acceptable candidate encapsulants for most environments.

  3. Effect of surface treatments on physicomechanical, stain-resist, and UV protection properties of wool fabrics

    NASA Astrophysics Data System (ADS)

    Hassan, Mohammad M.; Leighs, Samuel J.

    2017-10-01

    The surface of wool fabrics is frequently modified to make them shrink-resistant, water repellent and also to improve their handle properties. In this work, we investigated the effect of common surface modification treatments on fabric stain-resistance, hydrophilicity and UV absorption performance. The surface of wool fabrics was modified by chlorination and also by reacting the chlorinated wool fabrics with a polyamide, a fibre-reactive amino-functional siloxane and a fluorocarbon polymer. The surface of the various treated fabrics was characterised by ATR-FTIR, contact angle measurement and scanning electron microscopy. The effect of surface modification on the tensile strength, surface hydrophilicity, stain-resistance, and UV absorption capacity of the fabric was investigated. It was found that all the treatments except the treatment with the amino-functional siloxane polymer slightly improved the tensile strength of the fabric. The chlorination treatment and the treatment with the polyamide resin made the fabric hydrophilic, and fluorocarbon and silicone resin treatment made the fabric hydrophobic.

  4. Thermal stability of electron-irradiated poly(tetrafluoroethylene) - X-ray photoelectron and mass spectroscopic study

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  5. X-ray photoelectron and mass spectroscopic study of electron irradiation and thermal stability of polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  6. Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes.

    PubMed

    Song, Jinsuk; Han, Oc Hee; Han, Songi

    2015-03-16

    Nafion, the most widely used polymer for electrolyte membranes (PEMs) in fuel cells, consists of a fluorocarbon backbone and acidic groups that, upon hydration, swell to form percolated channels through which water and ions diffuse. Although the effects of the channel structures and the acidic groups on water/ion transport have been studied before, the surface chemistry or the spatially heterogeneous diffusivity across water channels has never been shown to directly influence water/ion transport. By the use of molecular spin probes that are selectively partitioned into heterogeneous regions of the PEM and Overhauser dynamic nuclear polarization relaxometry, this study reveals that both water and proton diffusivity are significantly faster near the fluorocarbon and the acidic groups lining the water channels than within the water channels. The concept that surface chemistry at the (sub)nanometer scale dictates water and proton diffusivity invokes a new design principle for PEMs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Demonstrating a Lack of Reactivity Using a Teflon-Coated Pan.

    ERIC Educational Resources Information Center

    Richmond, Thomas G.

    1995-01-01

    Illustrates the chemical resistance of polytetrafluoroethene to mineral acids using an ordinary Teflon-coated frying pan. The demonstration can also be used to lead to a discussion of the long lifetimes of fluorocarbons and chlorofluorocarbons in the atmosphere and their roles in the breakdown of the ozone layer. (AIM)

  8. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  9. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  10. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  11. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  12. 46 CFR 77.30-10 - Stowage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-contained breathing apparatus Self-contained breathing apparatus for refrigeration 1 Flame safety lamps... 100 2 1 1 1 Required only on vessels equipped with any refrigeration unit using ammonia to refrigerate any space with a volume of more than 20 cubic feet or with any refrigeration unit using fluorocarbons...

  13. The Great Spray Can Debate.

    ERIC Educational Resources Information Center

    Bassow, Herb

    This booklet, designed to be used in high school classrooms, concerns the technological, economic, and political contexts of the fluorocarbon-ozone depletion controversy. The curriculum is divided into three phases: the scientific dimension, which is a pure science analysis using lab-classroom tools and methodologies; the philosophical dimension,…

  14. 16 CFR 423.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Dryclean means a commercial process by which soil is removed from products or specimens in a machine which uses any common organic solvent (e.g. petroleum, perchlorethylene, fluorocarbon). The process may also... by which soil is removed from products in a specially designed machine using water, detergent or soap...

  15. 16 CFR 423.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Dryclean means a commercial process by which soil is removed from products or specimens in a machine which uses any common organic solvent (e.g. petroleum, perchlorethylene, fluorocarbon). The process may also... by which soil is removed from products in a specially designed machine using water, detergent or soap...

  16. 16 CFR 423.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Dryclean means a commercial process by which soil is removed from products or specimens in a machine which uses any common organic solvent (e.g. petroleum, perchlorethylene, fluorocarbon). The process may also... by which soil is removed from products in a specially designed machine using water, detergent or soap...

  17. 16 CFR 423.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Dryclean means a commercial process by which soil is removed from products or specimens in a machine which uses any common organic solvent (e.g. petroleum, perchlorethylene, fluorocarbon). The process may also... by which soil is removed from products in a specially designed machine using water, detergent or soap...

  18. 16 CFR 423.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Dryclean means a commercial process by which soil is removed from products or specimens in a machine which uses any common organic solvent (e.g. petroleum, perchlorethylene, fluorocarbon). The process may also... by which soil is removed from products in a specially designed machine using water, detergent or soap...

  19. Development of methods for skin barrier peeling tests.

    PubMed

    Omura, Yuko; Kazuharu, Seki; Kenji, Oishi

    2006-01-01

    We sought to develop a more effective method to evaluate the adhesive properties of skin barriers. The experimental design used was based on 3 principles: partial control, randomization, and repetition. Using these principles, the 180-degree peeling tests were conducted as specified in a standardized methodology (JIS Z0297) to the extent possible. However, the use of a stainless steel plate as a proxy for skin barrier application may result in the stretching and breaking of the skin barrier, making it impossible to obtain suitable measurements. Tests were conducted in constant temperature/ humidity chambers using a Tensilon Automatic Elongation Tester, where a sample was fixed on the side of a sample immobilization device, a sturdy metal (aluminum) box from which the air in the box was drawn off with a vacuum pump. A fluorocarbon polymer film was applied to the adhesive surface of a sample skin barrier. The film was peeled off in the volte-face (180-degree) direction in order to measure adhesive strengths. The films exhibit such properties as (a) ease of removal from the adhesive surface, (b) no resistance to a 180-degree fold back due to the thinness and flexibility of the material, and (c) tolerance of elongation. The adhesive properties of skin barriers were measured by peeling the fluorocarbon polymers in a 180-degree direction. Twelve specimen skin barrier products were selected for measurement, providing results with satisfactory reproducibility. Results based on the conventional stainless steel plate-based testing method acted as a control. The newly developed testing method enables chronological measurement results for skin barriers applied to fluorocarbon polymer films after 24 hours, 48 hours, and longer period.

  20. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  1. Electronic modules easily separated from heat sink

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Metal heat sink and electronic modules bonded to a thermal bridge can be easily cleaved for removal of the modules for replacement or repair. A thin film of grease between a fluorocarbon polymer film on the metal heat sink and an adhesive film on the modules acts as the cleavage plane.

  2. 21 CFR 173.342 - Chlorofluorocarbon 113 and perfluorohexane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chlorofluorocarbon 113 and perfluorohexane. 173.342... HUMAN CONSUMPTION Specific Usage Additives § 173.342 Chlorofluorocarbon 113 and perfluorohexane. A..., also known as fluorocarbon 113, CFC 113 and FC 113) and 1 percent perfluorohexane (CAS Reg. No. 355-42...

  3. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  4. Aggregation, adsorption, and surface properties of multiply end-functionalized polystyrenes.

    PubMed

    Ansari, Imtiyaz A; Clarke, Nigel; Hutchings, Lian R; Pillay-Narrainen, Amilcar; Terry, Ann E; Thompson, Richard L; Webster, John R P

    2007-04-10

    The properties of polystyrene blends containing deuteriopolystyrene, multiply end-functionalized with C8F17 fluorocarbon groups, are strikingly analogous to those of surfactants in solution. These materials, denoted FxdPSy, where x is the number of fluorocarbon groups and y is the molecular weight of the dPS chain in kg/mol, were blended with unfunctionalized polystyrene, hPS. Nuclear reaction analysis experiments show that FxdPSy polymers adsorb spontaneously to solution and blend surfaces, resulting in a reduction in surface energy inferred from contact angle analysis. Aggregation of functionalized polymers in the bulk was found to be sensitive to FxdPSy structure and closely related to surface properties. At low concentrations, the functionalized polymers are freely dispersed in the hPS matrix, and in this range, the surface excess concentration grows sharply with increasing bulk concentration. At higher concentrations, surface excess concentrations and contact angles reach a plateau, small-angle neutron scattering data indicate small micellar aggregates of six to seven F2dPS10 polymer chains and much larger aggregates of F4dPS10. Whereas F2dPS10 aggregates are miscible with the hPS matrix, F4dPS10 forms a separate phase of multilamellar vesicles. Using neutron reflectometry (NR), we found that the extent of the adsorbed layer was approximately half the lamellar spacing of the multilamellar vesicles. NR data were fitted using an error function profile to describe the concentration profile of the adsorbed layer, and reasonable agreement was found with concentration profiles predicted by the SCFT model. The thermodynamic sticking energy of the fluorocarbon-functionalized polymer chains to the blend surface increases from 5.3kBT for x = 2 to 6.6kBT for x = 4 but appears to be somewhat dependent upon the blend concentration.

  5. 21 CFR 173.342 - Chlorofluorocarbon 113 and perfluorohexane.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Chlorofluorocarbon 113 and perfluorohexane. 173... perfluorohexane. A mixture of 99 percent chlorofluorocarbon 113 (1,1,2-trichloro-1,2,2-trifluoroethane) (CAS Reg. No. 76-13-1, also known as fluorocarbon 113, CFC 113 and FC 113) and 1 percent perfluorohexane (CAS...

  6. 21 CFR 173.342 - Chlorofluorocarbon 113 and perfluorohexane.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Chlorofluorocarbon 113 and perfluorohexane. 173... perfluorohexane. A mixture of 99 percent chlorofluorocarbon 113 (1,1,2-trichloro-1,2,2-trifluoroethane) (CAS Reg. No. 76-13-1, also known as fluorocarbon 113, CFC 113 and FC 113) and 1 percent perfluorohexane (CAS...

  7. 21 CFR 173.342 - Chlorofluorocarbon 113 and perfluorohexane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Chlorofluorocarbon 113 and perfluorohexane. 173... perfluorohexane. A mixture of 99 percent chlorofluorocarbon 113 (1,1,2-trichloro-1,2,2-trifluoroethane) (CAS Reg. No. 76-13-1, also known as fluorocarbon 113, CFC 113 and FC 113) and 1 percent perfluorohexane (CAS...

  8. Design and chemical synthesis of iodine-containing molecules for application to solar-pumped I* lasers

    NASA Technical Reports Server (NTRS)

    Shiner, C. S.

    1986-01-01

    The design and chemical synthesis of new media for solar pumped iodine molecule lasers are explored. In an effort to prepare an iodo fluorocarbon compound absorbing strongly at 300 nm or above, the synthesis of perfluoro allylic iodides was investigated. These compounds furnish especially stable allylic radicals upon photodissociation. The desired red shift is anticipated in the absorption maximum could correlate with increasing radical stability. This expectation was based upon the analysis, previously reported, of the structures and absorption maxima of compounds studied earlier. A previously unknown substance was prepared, a prototypical target molecule, perfluoro-3-iodocyclopent-1-ene. It was obtained by reaction of perfluorocyclopentene with sulfur trioxide under the influence of antimony pentafluoride catalyst, followed by treatment of the resulting allylic fluorosulfonate with sodium iodide in sulfoland solvent. Preliminary data indicate that the absorption maximum for the iodo fluorocarbon is not shifted significantly to longer wavelength. It is not certain whether this result reflects an unexpected influence of the cyclic structure upon the position of the absorption maximum.

  9. Fluorinated microemulsions: A study of the phase behavior and structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoNostro, P.; Choi, S.M.; Chen, S.H.

    1999-06-24

    Fluorinated surfactants have been studied for their peculiar property to form micellar aggregates in water and oils (hydrocarbons or fluorocarbons) and to produce stable microemulsions. Because of their capacity to dissolve large amounts of gases (such as oxygen and carbon dioxide) and for their characteristic physicochemical properties, fluorocarbons have been tested for specific medical purposes, and their microemulsions are among the most promising candidates for the production of suitable blood substitutes and other biocompatible fluids. The authors have synthesized a new partially fluorinated nonionic surfactant, namely, F(CF{sub 2}){sub 7}-CO-(OCH{sub 2}CH{sub 2}){sub 7.2}OCH{sub 3} (I), that forms stable microemulsions with watermore » and perfluorocarbons such as perfluorooctane (PFO). In this paper the authors describe for the first time the phase behaviors of perfluorooctanoic acid (PFOA) in water/PFH and in water/PFO, and that of ester I in water/PFO. Small-angle neutron-scattering (SANS) experiments provide a detailed description of the microstructure of the H{sub 2}O/PFO/PFOA ternary system.« less

  10. Inorganic Reactants for Synthesis of Novel Fluorocarbon Derivatives.

    DTIC Science & Technology

    1980-05-13

    n d I , e it . ~ ’, 𔃾 ’ ,4 ; S ISh n iShecJFres e In( n hem . .1 ’~ ]Q P I) R...8217, Andio I) I. N R , ~ ’ ,1 1. Ab an Jrl~ %t NI re,’s.k an 1A1 I I P . z n 1)~~r. p sde ar. n d ok 441 (3 U Guld. I R ndcr,.on.I f 𔃿 "ne anem ’AH . (h" b...1) 0u;::ers.’saand i )r 4 So . 89 2X41ma andh’ Che. .I 4h1s.Iog(hm 2.2d 3A N U~. A40 P :k’aea ’ N Sude . 𔃾 1Non.IRAdro id\\ o,4ogCe Rak, A P

  11. Spectroscopic identification of CHCℓF2 (F-22) in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Bonomo, F. S.; Murcray, F. H.; Murcray, D. G.

    1981-09-01

    Infrared atmospheric spectra were obtained at ˜0.02 cm-1 resolution during a balloon flight made on 3/23/81. These spectra show an absorption feature near 829 cm-1 which we identify as due to CHCℓF2 (Fluorocarbon 22). A preliminary estimate from the sunset spectra shows approximately 100 pptv F-22 near 15 km.

  12. Development of an all-metal thick-film cost-effective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1981-01-01

    Screened electrodes made from fluorocarbon activated copper paste and silver fluoride activated copper paste, tape adhesion and scratch tests were studied. Experiments were conducted with variations in past parameters, firing conditions, including gas ambients, furnace furniture, silicon surface and others. A liquid medium intended to provide transport during the carbon fluoride decomposition, is incorporated in the paste.

  13. New method of dual media fermentation can produced quality methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaseen, D.A.

    The production of high quality methane by anaerobic digestion of organic wastes can be achieved by the use of a water substrate nutrient media plus an inert media to absorb surplus organic acid and carbon dioxide. Two types of media are available: polyorganosiloxanes and fluorocarbons. The physical characteristics which make these types suitable are tabulated. (JSR)

  14. Liquid breathing - Prevention of pulmonary arterial-venous shunting during acceleration.

    NASA Technical Reports Server (NTRS)

    Sass, D. J.; Ritman, E. L.; Caskey, P. E.; Banchero, N.; Wood, E. H.

    1972-01-01

    Dependent pulmonary atelectasis, arterial-venous shunting, and downward displacement of the heart caused by the gravitational-inertial force environment were prevented in dogs breathing oxygenated liquid fluorocarbon in a whole-body water-immersion respirator. Partial closure of the major airways during part of the expiratory phase of liquid respiration was a significant problem initially but was minimized in subsequent studies.

  15. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    NASA Technical Reports Server (NTRS)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  16. Advances and challenges in the field of plasma polymer nanoparticles.

    PubMed

    Choukourov, Andrei; Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.

  17. Eliminating dependence of hole depth on aspect ratio by forming ammonium bromide during plasma etching of deep holes in silicon nitride and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito

    2018-06-01

    The reaction mechanism during etching to fabricate deep holes in SiN/SiO2 stacks by using a HBr/N2/fluorocarbon-based gas plasma was investigated. To etch SiN and SiO2 films simultaneously, HBr/fluorocarbon gas mixture ratio was controlled to achieve etching selectivity closest to one. Deep holes were formed in the SiN/SiO2 stacks by one-step etching at several temperatures. The surface composition of the cross section of the holes was analyzed by time-of-flight secondary-ion mass spectrometry. It was found that bromine ions (considered to be derived from NH4Br) were detected throughout the holes in the case of low-temperature etching. It was also found that the dependence of hole depth on aspect ratio decreases as temperature decreases, and it becomes significantly weaker at a substrate temperature of 20 °C. It is therefore concluded that the formation of NH4Br supplies the SiN/SiO2 etchant to the bottom of the holes. Such a finding will make it possible to alleviate the decrease in etching rate due to a high aspect ratio.

  18. Atomic Oxygen Effects on Seal Leakage

    NASA Technical Reports Server (NTRS)

    Christensen, John R.; Underwood, Steve D.; Kamenetzky, Rachel R.; Vaughn, Jason A.

    1999-01-01

    Common Berthing Mechanism (CBM provides the structural interface between separate International Space Station (ISS) elements, such as the Laboratory and Node modules. The CBM consists of an active and a passive half that join together with structural bolts. The seal at this interface is the CBM-to-CBM molded seal. The CBM-to-CBM interface is assembled on orbit, thus the seals can be exposed to the space environment for up to 65 hours. Atomic Oxygen/Vacuum Ultraviolet radiation (AO/VUV) in space is a potential hazard to the seals. Testing was conducted to determine the effect on leakage of the CBM-to-CBM seal material exposed to AO/VUV. The sealing materials were S383 silicone and V835 fluorocarbon material. Control samples, which were not exposed to the AO/VUV environment, were used to ensure that ff any changes in leakage occurred, they could be attributed to the AO/VUV exposure. After exposure to the AO/VUV environment the leakage increase was dramatic for the fluorocarbon. This testing was a major contributing factor in selecting silicone as the CBM-to-CBM seal material.

  19. Mesoscale simulations of confined Nafion thin films.

    PubMed

    Vanya, P; Sharman, J; Elliott, J A

    2017-12-07

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  20. Mesoscale simulations of confined Nafion thin films

    NASA Astrophysics Data System (ADS)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  1. Fuel and Fuel System Materials Compatibility Test Program for A JP-8+100 Fuel Additive. Volume 1: Thermal Stability Additive Package BetzDearborn Spec Aid(Registered) 8Q462

    DTIC Science & Technology

    2001-10-01

    SAE Rings, Sealing, Butadiene-Acrylonitrile ( NBR ), Rubber Fuel and Low Temperature Resistant 60 - 70 MIL-R-83248C Rubber , Fluorocarbon...KAPTON/TEFLON (COMPOSITE) WIRE I.I.10 34 VI. REFERENCE DOCUMENTS Non-Metallics MIL-HDBK-149B Military Standardization Hand Book Rubber ...ASTM D-1414 Standard Test Methods for Rubber O-Rings ASTM D-412 Type II Standard Test Methods for Vulcanized Rubber and Thermoplastic

  2. O-Ring Installation for Underwater Components and Applications

    DTIC Science & Technology

    1982-04-15

    cure is effected and the heat source removed. AGING -- To undergo changes in physical properties with age or lapse of time. AIR CHECKS -- Surface...the use of heat and pressure, resulting in greatly increased strength and elasticity of rubber -like materials. VULCANIZING AGENT -- A material that...Cross Section Dia -- Diameter EP, EPM, EPDM -- Ethylene-Propylene Rubber F or ’F -- Degrees Fahrenheit FED -- Federal Specification FPM -- Fluorocarbon

  3. Fuel cell ion-exchange membrane investigation

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1972-01-01

    The present deficiencies in the fluorocarbon sulfonic acid membrane used as the solid polymer electrolyte in the H2/O2 fuel cell are studied. Considered are: Adhesives selection, elastomeric formulations, scavenger exploration, and membrane characterization. The significant data are interpreted and recommendations are given for both short and long range further investigations in two of the four major areas: membrane adhesives and membrane stabilization.

  4. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  5. Advances and challenges in the field of plasma polymer nanoparticles

    PubMed Central

    Pleskunov, Pavel; Nikitin, Daniil; Titov, Valerii; Shelemin, Artem; Vaidulych, Mykhailo; Kuzminova, Anna; Solař, Pavel; Hanuš, Jan; Kousal, Jaroslav; Kylián, Ondřej; Slavínská, Danka; Biederman, Hynek

    2017-01-01

    This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces. PMID:29046847

  6. International research into chlorofluorocarbon (CFC) alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marseille, T.J.; Shankle, D.L.; Thurman, A.G.

    1992-05-01

    Selected researchers from 21 countries were queried through questionnaires about their current and planned research activities. The results of the survey show that the majority of research being conducted by the respondents is devoted to investigating the hydrogenated fluorocarbon HFC-134a as a replacement for CFC-12 in refrigeration applications. The main issue with this alternative is identifying compatible lubricants that do not reduce its effectiveness.

  7. Advanced Reconnaissance System Component Reliability Study

    DTIC Science & Technology

    1956-07-31

    dielectrics. Gaseous dielectrics such as sulphur hexafluoride and ’ fluorocarbons at two to three atmospheres. Fluorinated liquid dielectrics. 3) The...limits. (2) determine compatibility with varnish treatments, (3) compatibility in a complete insulation system. Mechanical and thermal limits of...of a varnish to have good • adhersion, provide an element of flexibility and be chemically compatible with’the wire it is impregnating.. Factors of

  8. Survival of Adhering Cortical Neurons on Polyethylenimine Micropatterns

    DTIC Science & Technology

    2001-10-25

    1 SURVIVAL OF ADHERING CORTICAL NEURONS ON POLYETHYLENIMINE MICROPATTERNS T. G. Ruardij, M. H. Goedbloed, W. L. C. Rutten Faculty of Electrical...FC)-layer and coated with neuron-adhesive polyethylenimine (PEI). Results showed that the survival of neural tissue was geometry- independent after 1...4 and 8 days but was favored on 150 µm wells after 15 days. Key words - Cortical neurons, patterning, adhesion, polyethylenimine , fluorocarbon

  9. Characterization and Application of a Planar Radio - Inductively-Coupled Plasma Source for the Production of Barrier Coatings.

    NASA Astrophysics Data System (ADS)

    Mahoney, Leonard Joseph

    A planar radio-frequency (rf) inductively-coupled plasma (ICP) source is used to produce fluorocarbon discharges (CF_4/Ar) to fluorinate the surface of high-density polyethylene (HDPE). Using this system, concurrent studies of discharge characteristics, permeation properties of treated polymers and polymer surface characteristics are conducted to advance the use of plasma-fluorinated polymer surfaces as a barrier layer for automotive applications. Langmuir probes are used to determine spatial distribution of charged-particle and space-potential characteristics in Ar and CF_4/Ar discharges and to show the influence of the spatial distribution of the heating regions and the reactor boundaries on the discharge uniformity. Langmuir probes are also used to identify rf anisotropic drift motion of electrons in the heating regions of the source and transient high-energy electron features in pulsed discharges. These latter features allow pulsed ICP sources to be operated at low time-averaged powers that are necessary to treat thermally sensitive polymers. Fourier Transform Infrared (FITR) spectroscopy is used to measure the dissociation of fluorocarbon gases and to explore differences between pulsed- and continuous -power operation. Dissociation levels of CF_4 (50-85%) using pulsed-power operation are as high as that for continuous operation, even though the net time -averaged power is far less with pulsed operation. The result suggests that pulsed fluorocarbon discharges possess high concentrations of chemically-active species needed for rapid surface fluorination. A gravimetric permeation cup method is used to measure the permeation rate of test fuels through HDPE membranes, and electron spectroscopy for chemical analysis (ESCA) studies are performed to determine the stoichiometry and thickness of the barrier layer. From these studies we find that a 50-70 A thick, polar, fluoro-hydrocarbon over layer reduces the permeation of isooctane/toluene/methanol mixtures by a

  10. Synthesis and Solution Properties of Adamantane Containing Quaternary Ammonium Salt-type Cationic Surfactants: Hydrocarbon-based, Fluorocarbonbased and Bola-type.

    PubMed

    Yoshimura, Tomokazu; Okada, Mari; Matsuoka, Keisuke

    2016-10-01

    Quaternary ammonium salt-type cationic surfactants with an adamantyl group (hydrocarbon-type; C n AdAB, fluorocarbon-type; C m F C 3 AdAB, bola-type; Ad-s-Ad, where n, m and s represent hydrocarbon chain lengths of 8-16, fluorocarbon chain lengths of 4-8, and spacer chain length of 10-12) were synthesized via quaternization of N, N-dimethylaminoadamantane and n-alkyl bromide or 1, n-dibromoalkane. Conductivity and surface tension were measured to characterize the solution properties of the synthesized adamantyl group-containing cationic surfactants. In addition, the effects of hydrocarbon and fluorocarbon chain lengths and spacer chain length between headgroups on the measured properties were evaluated by comparison with those of conventional cationic surfactants. The critical micelle concentration (CMC) of C n AdAB and Ad-s-Ad was 2/5 of that for the corresponding conventional surfactants C n TAB and bola-type surfactants with similar number of carbons in the alkyl or alkylene chain; this was because of the increased hydrophobicity due to the adamantyl group. A linear relationship between the logarithm of CMC and the hydrocarbon chain length for C n AdAB was observed, as well as for C n TAB. The slope of the linear correlation for both surfactants was almost the same, indicating that the adamantyl group does not affect the CMC with variations in the hydrocarbon chain length. Similar to conventional surfactants C n TAB, the hydrocarbon-type C n AdAB is highly efficient in reducing the surface tension of water, despite the large occupied area per molecule resulting from the relatively bulky structure of the adamantane skeleton. On the other hand, the bola-type Ad-s-Ad resulted in increased surface tension compared to C n AdAB, indicating that the curved chain between adamantyl groups leads to poor adsorption and orientation at the air-water interface.

  11. Attenuation of fluorocarbons released from foam insulation in landfills.

    PubMed

    Scheutz, Charlotte; Dote, Yutaka; Fredenslund, Anders M; Mosbaek, Hans; Kjeldsen, Peter

    2007-11-15

    Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) have been used as blowing agents (BAs) for foam insulation in home appliances and building materials, which after the end of their useful life are disposed of in landfills. The objective of this project was to evaluate the potential for degradation of BAs in landfills, and to develop a landfill model, which could simulate the fate of BAs in landfills. The investigation was performed by use of anaerobic microcosm studies using different types of organic waste and anaerobic digested sludge as inoculum. The BAs studied were CFC-11, CFC-12, HCFC-141b, HFC-134a, and HFC-245fa. Experiments considering the fate of some of the expected degradations products of CFC-11 and CFC-12 were included like HCFC-21, HCFC-22, HCFC-31, HCFC-32, and HFC-41. Degradation of all studied CFCs and HCFCs was observed regardless the type of waste used. In general, the degradation followed first-order kinetics. CFC-11 was rapidly degraded from 590 microg L(-1) to less than 5 microg L(-1) within 15-20 days. The degradation pattern indicated a sequential production of HCFC-21, HCFC-31, and HFC-41. However, the production of degradation products did not correlate with a stoichiometric removal of CFC-11 indicating that other degradation products were produced. HCFC-21 and HCFC-31 were further degraded whereas no further degradation of HFC-41 was observed. The degradation rate coefficient was directly correlated with the number of chlorine atoms attached to the carbon. The highest degradation rate coefficient was obtained for CFC-11, whereas lower rates were seen for HCFC-21 and HCFC-31. Equivalent results were obtained for CFC-12. HCFC-141b was also degraded with rates comparable to HCFC-21 and CFC-12. Anaerobic degradation of the studied HFCs was not observed in any of the experiments within a run time of up to 200 days. The obtained degradation rate coefficients were used as input for an extended version of an existing landfill fate model incorporating a time dependent BA release from co-disposed foam insulation waste. Predictions with the model indicate that the emission of foam released BAs may be strongly attenuated by microbial degradation reactions. Sensitivity analysis suggests that there is a need for determination of degradation rates under more field realistic scenarios.

  12. Fluorocarbon-based single-layer resist for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Song, Ki-Yong; Yoon, Kwang-Sub; Choi, Sang-Jun; Woo, Sang-Gyun; Han, Woo-Sung; Lee, Jae-Jun; Lee, Sang-Kyun; Noh, Chang-Ho; Honda, Kenji

    2002-07-01

    We have designed and synthesized a number of unique polymer systems composed of acrylate and styrene even though it had moderate transparency. Our first model of 157nm photoresist was based on a (alpha) trifluoromethylacrylate and styrene bearing a pendent hexafluoroisopropanol with pentafluoroisopropyl t-butyl carbonate (PFITBC) as the transparent enhancer and acid labile compound. PFITBC was obtained from perfluorinated enolate with di-t-butyl carbonate with high yield. All of the absorbance of our system ranged over 3.0~3.4micrometers -1 for base resin, which corresponded to a resist thickness of 110~125 nm at the optical density of 0.4. We have formulated several resists based on these polymers and these formulations have shown high resolution and contrast at 248 nm. We were able to obtain 240nm 1:1 image when exposed at 248 nm by a Nikon stepper with 0.45NA. To overcome the weak etch resistance with thin thickness film, we investigated the vapor phase silylation treatment (SILYAL) in which the treated pattern was more persistent against the O2 plasma and turned to smoother surface. DMSMDA with Bi(DMA)MS of 30-40 wt% showed not only good control resist flow but also the improvement of line-edge roughness. Our results suggested that a facile approach to fluorine incorporated resin with SILYAL process can accelerate the 157nm lithography.

  13. Elastomers for Service as Seals for Engine Lubricants and Hydraulic Fluids

    DTIC Science & Technology

    1976-02-01

    mm NBR PNF psi - fluorocarbon rubber - hour per degrees Fahrenheit - inch-pound per cubic inch - minute per degrees Fahrenheit - milliliter...millimeter - nitrile-butadiene rubber - polyffluoroalkoxy)phosphazene - pounds per square inch t I (1 MAT-75-78 <V ■ >«..*, njf:~-. I...I I I I I I r i. L I I 1 ! «WJBDXNB PA« BUNUfOT FIIMID BACKGROUND Nitrile-butadiene robber ( NBR ) O-nngs have had an accept

  14. The Effect of Switch-Loading Fuels on Fuel-Wetted Elastomers

    DTIC Science & Technology

    2007-01-10

    material and age of the material”. In summing up past experience, the bulletin stated that “the common denominator is expected to be nitrile rubber ...The expert also noted that “most, if not all manufacturers, responded by eliminating nitrile rubber seals and replacing them with fluorocarbon...materials identified as from the Acrylonitrile- 4 Viton is a name trademarked by DuPont Performance Elastomers L.L.C. Butadiene family (nitrile, NBR

  15. FP-180 Water Motor AFFF Proportioner First Article Procedure and Evaluation

    DTIC Science & Technology

    1989-07-20

    concentrates. The first fluorocarbon-based Aqueous Film Forming Foam ( AFFF ) concentrate fully suitable for use with ocean water was FC -195, which had a...Fil E W Y. . Naval Research Laboratory Washington, DC 20375-500 NRL Memorandum Report 6507 FP-180 Water Motor AFFF Proportioner First Article...NUMBERS PROGRAM :PROJECT TASK WORK UNIT ELEMENT NO NO NO ACCESSION NO 11 TITLE (Include Security Classification) FP-180 Water Motor AFFF Proportioner

  16. Survivability of a Propellant Fire Inside a Simulated Military Vehicle Crew Compartment: Part 1 - Baseline Study

    DTIC Science & Technology

    2013-06-01

    representative of those used in particular armoured military vehicles, were considered in this study: a top zone propelling charge module (TCM), an...representative of that used in the trial The layout of the hull of a representative armoured vehicle that was simulated in the trial is depicted in...AFESS) are almost universally employed in armoured vehicle crew compartments. Typically the fire suppressant used is a fluorocarbon- based chemical. As

  17. Antisoiling Coatings for Solar-Energy Devices

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Willis, P.

    1986-01-01

    Fluorocarbons resist formation of adherent deposits. Promising coating materials reduce soiling of solar photovoltaic modules and possibly solar thermal collectors. Contaminating layers of various degrees of adherence form on surfaces of devices, partially blocking incident solar energy, reducing output power. Loose soil deposits during dry periods but washed off by rain. New coatings help prevent formation of more-adherent, chemically and physically bonded layers rain alone cannot wash away.

  18. JPRS Report, Science & Technology, Europe

    DTIC Science & Technology

    1992-11-30

    embryos before they are implanted in the uterus. Its development could also give us a better grasp of the physiopatholog- ical mechanisms involved...more or less 10 different kinds of plastics," says PSA’s Corinne Desnost. "Poly- methyl methylacrylate ( PMMA ) is used in the optical components of...refrigerators using the toxicologically controver- sial fluorocarbon R 143a, which is favored by the inter- national chemical industry. "Good

  19. Design for Corrosion Control of Aviation Fuel Storage and Distribution Systems

    DTIC Science & Technology

    1975-06-01

    may be painted, or oiled. The paint usually used is an asphalt varnish applied in one coat in accor- dance with Federal Specification TT-V-51A...Fluorocarbon plastics -- Plastics based on resins made by the polymeri- zation of monomers composed of fluorine and carbon only. Film thickness -- Depth...natural or synthetic, contained in varnishes , lacquers and paints; the film former. -- A solid, semisolid, or pseudosolid organic material which has an

  20. Microfluidic chambers using fluid walls for cell biology.

    PubMed

    Soitu, Cristian; Feuerborn, Alexander; Tan, Ann Na; Walker, Henry; Walsh, Pat A; Castrejón-Pita, Alfonso A; Cook, Peter R; Walsh, Edmond J

    2018-06-12

    Many proofs of concept have demonstrated the potential of microfluidics in cell biology. However, the technology remains inaccessible to many biologists, as it often requires complex manufacturing facilities (such as soft lithography) and uses materials foreign to cell biology (such as polydimethylsiloxane). Here, we present a method for creating microfluidic environments by simply reshaping fluids on a substrate. For applications in cell biology, we use cell media on a virgin Petri dish overlaid with an immiscible fluorocarbon. A hydrophobic/fluorophilic stylus then reshapes the media into any pattern by creating liquid walls of fluorocarbon. Microfluidic arrangements suitable for cell culture are made in minutes using materials familiar to biologists. The versatility of the method is demonstrated by creating analogs of a common platform in cell biology, the microtiter plate. Using this vehicle, we demonstrate many manipulations required for cell culture and downstream analysis, including feeding, replating, cloning, cryopreservation, lysis plus RT-PCR, transfection plus genome editing, and fixation plus immunolabeling (when fluid walls are reconfigured during use). We also show that mammalian cells grow and respond to stimuli normally, and worm eggs develop into adults. This simple approach provides biologists with an entrée into microfluidics. Copyright © 2018 the Author(s). Published by PNAS.

  1. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition.

    PubMed

    Li, Lester; Breedveld, Victor; Hess, Dennis W

    2012-09-26

    In this work, we present a method to render stainless steel surfaces superhydrophobic while maintaining their corrosion resistance. Creation of surface roughness on 304 and 316 grade stainless steels was performed using a hydrofluoric acid bath. New insight into the etch process is developed through a detailed analysis of the chemical and physical changes that occur on the stainless steel surfaces. As a result of intergranular corrosion, along with metallic oxide and fluoride redeposition, surface roughness was generated on the nano- and microscales. Differences in alloy composition between 304 and 316 grades of stainless steel led to variations in etch rate and different levels of surface roughness for similar etch times. After fluorocarbon film deposition to lower the surface energy, etched samples of 304 and 316 stainless steel displayed maximum static water contact angles of 159.9 and 146.6°, respectively. However, etching in HF also caused both grades of stainless steel to be susceptible to corrosion. By passivating the HF-etched samples in a nitric acid bath, the corrosion resistant properties of stainless steels were recovered. When a three step process was used, consisting of etching, passivation and fluorocarbon deposition, 304 and 316 stainless steel samples exhibited maximum contact angles of 157.3 and 134.9°, respectively, while maintaining corrosion resistance.

  2. Possible atmospheric lifetimes and chemical reaction mechanisms for selected HCFCs, HFCs, CH3CCl3, and their degradation products against dissolution and/or degradation in seawater and cloudwater

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Chameides, W. L.

    1990-01-01

    For a wide variety of atmospheric species including CO2, HNO3, and SO2, dissolution in seawater or cloudwater followed by hydrolysis or chemical reaction represents a primary pathway for removal from the atmosphere. In order to determine if this mechanism can also remove significant amounts of atmospheric chlorofluorocarbons (HCFC's), fluorocarbons (HFC's), and their degradation products, an investigation was undertaken as part of the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS). In this investigation, the rates at which CHCl2CF3 (HCFC-123), CCl2FCH3 (HCFC-141b), CClF2CH3 (HCFC-142b), CHClF2 (HCFC-22), CHClFCF3 (HCFC-124) CH2FCF3 (HFC-134a) CHF2CH3 (HFC-152a), CHF2CF3 (HFC-125), and CH3CCl3 can be dissolved in the oceans and in cloudwater were estimated from the species' thermodynamic and chemical properties using simple mathematical formulations to simulate the transfer of gases from the atmosphere to the ocean or cloudwater. The ability of cloudwater and rainwater to remove gas phase degradation products of these compounds was also considered as was the aqueous phase chemistry of the degradation products. The results of this investigation are described.

  3. Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Willis, P. B.

    1984-01-01

    Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.

  4. Interfacial bioconjugation on emulsion droplet for biosensors.

    PubMed

    Zhang, Qifan; Scigliano, Anita; Biver, Tarita; Pucci, Andrea; Swager, Timothy M

    2018-04-13

    Interfacial bioconjugation methods are developed for intact liquid emulsion droplets. Complex emulsion droplets having internal hydrocarbon and fluorocarbon immiscible structured phases maintain a dynamic interface for controlled interfacial reactivity. The internal morphological change after binding to biomolecules is readily visualized and detected by light transmission, which provides a platform for the formation of inexpensive and portable bio-sensing assays for enzymes, antibodies, nucleic acids and carbohydrates. Copyright © 2018. Published by Elsevier Ltd.

  5. Development of an all-metal thick film cost effective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.; Parker, J.

    1983-01-01

    Improved thick film solar cell contacts for the high volume production of low cost silicon solar arrays are needed. All metal screenable pastes made from economical base metals and suitable for application to low to high conductivity silicon were examined. Silver fluoride containing copper pastes and fluorocarbon containing copper pastes were discussed. The effect of hydrogen on the adhesion of metals to silicon was investigated. A cost analysis of various paste materials is provided.

  6. Cardiotoxicity of Freon among refrigeration services workers: comparative cross-sectional study

    PubMed Central

    2009-01-01

    Background Freon includes a number of gaseous, colorless chlorofluorocarbons. Although freon is generally considered to be a fluorocarbon of relatively low toxicity; significantly detrimental effects may occur upon over exposure. The purpose of the present study is to investigate whether occupational exposure to fluorocarbons can induce arterial hypertension, myocardial ischemia, cardiac arrhythmias, elevated levels of plasma lipids and renal dysfunction. Methods This comparative cross-sectional study was conducted at the cardiology clinic of the Suez Canal Authority Hospital (Egypt). The study included 23 apparently healthy male workers at the refrigeration services workshop who were exposed to fluorocarbons (FC 12 and FC 22) and 23 likewise apparently healthy male workers (unexposed), the control group. All the participants were interviewed using a pre-composed questionnaire and were subjected to a clinical examination and relevant laboratory investigations. Results There were no significant statistical differences between the groups studied regarding symptoms suggesting arterial hypertension and renal affection, although a significantly higher percentage of the studied refrigeration services workers had symptoms of arrhythmias. None of the workers had symptoms suggesting coronary artery disease. Clinical examination revealed that the refrigeration services workers had a significantly higher mean pulse rate compared to the controls, though no significant statistical differences were found in arterial blood pressure measurements between the two study groups. Exercise stress testing of the workers studied revealed normal heart reaction to the increased need for oxygen, while sinus tachycardia was detected in all the participants. The results of Holter monitoring revealed significant differences within subject and group regarding the number of abnormal beats detected throughout the day of monitoring (p < 0.001). There were no significant differences detected in the

  7. Synthesis of new high performance lubricants and solid lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagow, Richard J.

    1993-04-08

    In our second year of funding we began the testing phase of a number of new classes of lubricants. Three different testing collaborations have already begun and a fourth one is In the works with Dr. Stephen Hsu of the National Institute of Standards and Technology. Dr. Hsu also plans to test some of the same materials for us that Shell Development is studying. With Dr. Bill Jones of NASA, we are studying the effects of branching an high temperature lubricant properties in perfluoropolyethers, Initially Bill Jones is comparing the lubrication and physical properties of perfluorotetraglyme and the following twomore » spherical perfluoropolyethers, Note that one contains a fluorocarbon chain and the other one contains a fluorocarbon ether chain. The synthesis of these was reported in the last progress report. With Professor Patricia Thiel of Iowa State University, we are working on studies of perfluoromethylene oxide ethers and have prepared a series of four of these polyethers to study in collaboration with her research group. These perfluoromethylene oxide ethers have the best low temperature properties of any known lubricants. Thiel's group is studying their interactions with metals under extreme conditions. Thirdly, we have also begun an Interaction with W. August Birke of Shell Development Company in Houston for whom we have already prepared samples of the chlorine-substituted fluorocarbon polyether lubricants whose structures appear on page 54 of our research proposal. Each of these four structures is thought to have potential as lubricant additives to motor oils. We also have underway syntheses of other fluorine-containing branched ether lubricants. These new materials which are also promising as antifriction additives for motor oils appear ahead of the perfluoro additives as Appendix I to the progress report. Additionally for Birke and Shell Development we have at their request prepared the novel compound perfluoro salicylic acid. This synthesis was

  8. Effect of electron beam irradiation on the properties of crosslinked rubbers

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; Bhowmick, Anil K.

    2000-05-01

    Influence of electron beam (EB) irradiation on the mechanical and dynamic mechanical properties of crosslinked fluorocarbon (FKM) rubber, natural rubber (NR), ethylene propylene diene monomer (EPDM) rubber and nitrile rubber (NBR) has been investigated. The modulus, gel fraction, glass transition temperature ( Tg) and storage modulus increased, while the elongation at the break and the loss tangent (tan δ) Tg decreased. FKM and NBR vulcanizates have been shown to have EB radiation resistance up to 1500 kGy.

  9. Fluorspar

    USGS Publications Warehouse

    Miller, M.

    1996-01-01

    The U.S. consumed about 525 kt of fluorspar in 1995, with more than 70 percent being used for the production of hydrofluoric acid. Fluorspar is also used for the production of aluminum and steel. About 558 kt of fluorspar was imported in 1995, with a further 186 kt made available from the National Defense Stockpile. The market in the U.S. is expected to grow as increasing use is made of fluorocarbons to replace chlorofluorocarbons.

  10. Glycosyl-Nucleolipids as new bioinspired amphiphiles.

    PubMed

    Latxague, Laurent; Patwa, Amit; Amigues, Eric; Barthélémy, Philippe

    2013-09-30

    Four new Glycosyl-NucleoLipid (GNL) analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry) indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower glim) compared to the first generation of GNFs.

  11. REFINING FLUORINATED COMPOUNDS

    DOEpatents

    Linch, A.L.

    1963-01-01

    This invention relates to the method of refining a liquid perfluorinated hydrocarbon oil containing fluorocarbons from 12 to 28 carbon atoms per molecule by distilling between 150 deg C and 300 deg C at 10 mm Hg absolute pressure. The perfluorinated oil is washed with a chlorinated lower aliphatic hydrocarbon, which mairtains a separate liquid phase when mixed with the oil. Impurities detrimental to the stability of the oil are extracted by the chlorinated lower aliphatic hydrocarbon. (AEC)

  12. Surface Wetting-Driven Separation of Surfactant-Stabilized Water-Oil Emulsions.

    PubMed

    Zhang, Qian; Li, Lei; Li, Yanxiang; Cao, Lixia; Yang, Chuanfang

    2018-05-15

    Four fluorocarbon polymers including polytetrafluoroethylene and polyvinylidene fluoride were coated on a stainless steel felt to separate emulsified water droplets from ultralow sulfur diesel (ULSD) fuels. The original fuel treated with clay to remove additives was additized again with four known surfactants including pentaerythrityoleate, (octadecadienoic acid) dipolymer, (octadecadienoic acid) tripolymer, and monoolein individually. The different surfactants adsorbed on the fuel-water interface reduce the interfacial intension with different intensities. The separation efficiency at various surfactant concentrations was used to evaluate the coalescence effect exerted by these coatings. It was found the separation was both surfactant- and coating-dependent. A fluoro-polyurethane coating (FC1) stood out to counteract the adverse effect of all the surfactants. Solid free energy was then measured using acid-base and Kaelble-Uy adhesion theories for all the coatings, but its correlation with coalescence was not found at all. Coating aging in surfactant-additized fuel on the coating's water wettability was also examined to better understand how historical wetting affects separation. A tumbled model for fluorocarbons was identified that well-explained the continuous decline of the water contact angle on the FC1 coating in fuel. Subject to the challenge of the foreign environment, the fluoroalkyl chains of the polymer tilt to expose the carbonyl groups underneath, resulting in favored coalescence separation in the presence of surfactants.

  13. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  14. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  15. Corrosion Chemistry in Inhibited HDA.

    DTIC Science & Technology

    1980-11-30

    mg HF. 200 B.1 Teflon PFA Reactor 201 (xviii) .. .. - i LIST OF MICROGRAPHS Micrograph Follows Page 4.1 A1/HDA x 1,000 80 4.2 A1/0.4 Wt % PF5 x 2,000...Ethylene Propylene copolymer Teflon PTFE Polytetrafluoroethylene Teflon PFA Perfluoroalkoxy fluorocarbon resin Spectroscopy IR (ir) Infra-red UV...fluoroplastic apparatus (to avoid any possible contamination by the reaction products of HF with glass). Iron powder (0.3g) was placed in a PFA screw-cap

  16. Hemodynamic effects of aerosol propellants. I. Cardiac depression in the dog.

    PubMed

    Simaan, J A; Aviado, D M

    1975-11-01

    The inhalation of fluorocarbons caused a depression of myocardial contractility, aortic hypotension, a decrease in cardiac output and an increase in pulmonary vascular resistance. The minimal concentrations that elicited these changes are as follows: 1% trichlorofluoromethane (FC11); 2.5% dichlorotetrafluoroethane (FC114); and 10% dichlorodifluoromethane (FC12). Inhalation of 20% octafluorocyclobutane (FC318) and difluoroethane (FC152a) did not influence these hemodynamic parameters. As in previous comparisons, the most widely used aerosol propellants are potentially cardiotoxic in the anesthetized dog.

  17. The effect of the rigidity of perfluoropolyether surfactant on its behavior at the water/supercritical carbon dioxide interface.

    PubMed

    Lu, Lanyuan; Berkowitz, Max L

    2005-11-24

    We performed a series of molecular dynamics simulations to study the PFPE (perfluoropolyether) and PE (polyether) surfactant monolayers at the water/supercritical carbon dioxide interface. Molecular differences between fluorocarbon surfactant PFPE and its hydrocarbon analogue PE were analyzed. We observed that values of intramolecular bonded interaction parameters which are related to chain rigidity determine the monolayer surface pressure. We show that "good" and "bad" properties of PFPE/PE surfactants are connected to conformational entropy. These results are consistent with our previous micellar simulations.

  18. Uptake of trifluoroacetate by Pinus ponderosa via atmospheric pathway

    NASA Astrophysics Data System (ADS)

    Benesch, J. A.; Gustin, M. S.

    Trifluoroacetate (TFA, CF 3COO -), a break down product of hydro(chloro)-fluorocarbons (HFC/HCFCs), has been suggested to contribute to forest decline syndrome. To investigate the possible effects, Pinus ponderosa was exposed to TFA applied as mist (150 and 10,000 ng l -1) to foliar surfaces. Needles accumulated TFA as a function of concentration and time. However, no adverse physiological responses, as plant morphology, photosynthetic and conductance rates, were observed at the TFA concentrations used in this study.

  19. Synthesis of New Inorganic and Organometallic Materials.

    DTIC Science & Technology

    1981-04-23

    15. 16. & 17 . Distribution Statement Approved for public release; distribution unlimited. 18. Supplementary, Note’s’ 19. Key Words .. t rganometallic...CarbametallIaboranes 12 2. Activation of Acetylenes and Olefins by Metal Complexes 16 (a) Nickel 16 (b) Molybdenum 17 (c) Platinum 24 3. Fluorocarbon...Figure 9).3 - CO / Pt -. . . Pt 4Ph ’ / C-Fe C C C0 0 oc-( I C- Co FIGURE 9. Possible mode for conversion C’,p - h 3 of the anion into the metal

  20. Novel fluorohydrocarbons

    NASA Technical Reports Server (NTRS)

    Scherer, Kirby V. (Inventor)

    1979-01-01

    Novel fluorohydrocarbons include a fluoroalkyl unit terminating in a tertiary carbon atom which is directly linked to an aliphatic moiety of the compound. The compounds contain at least 9 carbon atoms and usually no more than 13 carbon atoms. The compounds are synthesized by addition of a fluoride atom to the tertiary carbon atom of a fluorocarbon material to form a carbanion followed by alkylation of the carbanion. The fluorohydrocarbons will find use as blood substitutes or as electronic fluids.

  1. A Durable Airfield Marking System.

    DTIC Science & Technology

    1985-06-01

    Resin is Mixed with the Black Curing Agent to Form the Epoxy Adhesive ..... ........... 17 14 The Gray Adhesive (White Resin Mixed with Black Curing...rubber 100 0 Polyester (peroxide-catalyzed) 100 0 Urethane 100 0 Epoxy polyamide 100 0 Acrylic latex (TT-P-1952) 100 0 Thermoplastic Tapes Type 1 100 0...suzmarrizes cost data co1parisons for traffic marking tapes, CAS tiles, fluorocarbon composites (Teflon ),and acrylic latex paint TT-P-1952. 8 -p °’. TABLE 2

  2. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    NASA Astrophysics Data System (ADS)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  3. Electron induced ionization of plasma processing gases: C4F x (x  =  1–8) and the isomers of C4F6 and C4F8

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Song, Mi-Young

    2018-04-01

    The total ionization cross section (Q ion) for C4F x (x  =  1–8) fluorocarbons and the isomers of C4F6 and C4F8 molecules are calculated from ionization threshold to 5 keV using the binary-encounter bethe method. The targets are fully optimized using the Hartree–Fock (HF) method and density function theory (DFT) for their minimum energy structure and orbital parameters. The present Q ion with HF parameters showed good agreement with the experimental data for 1,3-C4F6, 2-C4F6, 2-C4F8 and 1-C4F8. On the other hand, the Q ion with DFT parameters are in good accordance with the recent theoretical results for 1,3-C4F6 and 2-C4F6. The Q ion for c-C4F8 showed much variation among the various results. The isomer effect in Q ion is negligible for the isomers of C4F6 and C4F8 molecules. The calculation of Q ion for C4F, C4F2, C4F3, C4F4, C4F5, c-C4F6, C4F7 and iso-C4F8 is a maiden attempt. The present cross section data are important quantities for low temperature plasma modeling especially related to the fluorocarbon plasmas.

  4. Interlaboratory comparison of fluorocarbons-11, -12, methylchloroform and nitrous oxide measurements

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1981-01-01

    Measurements conducted by 19 participating laboratories were considered in the reported interlaboratory comparison study. The results show that there is considerable disagreement among laboratories regarding the absolute concentrations of all four trace gases (CCl3F, CCl2F2, H3CCl3, N2O). The magnitude of this disagreement is discussed. Laboratories in Group II showed considerable disagreement among themselves. Their results were scattered within large intervals of concentration. Laboratories in Group I (using common standards) were in excellent (+ or - 5%) agreement among themselves. A systematic disagreement was noted between Groups I and II laboratories. Generally, the mean values of concentrations determined from the measurements of Group II laboratories were lower than the mean values reported by Group I laboratories.

  5. ULTRASONIC CLEANING AS A REPLACEMENT FOR A CHLORO- FLUOROCARBON-BASED SYSTEM

    EPA Science Inventory

    This report describes the technical and economic evaluation of the replacement of a vapor degreasing system with an ultrasonic cleaning system to clean stainless steel components. Heated inorganic water-based cleaning fluid was utilized in lieu of a chlorofluorocarbon (CFC, freon...

  6. Preparation, characterization, physical testing and performance of fluorocarbon membranes and separators

    NASA Technical Reports Server (NTRS)

    Lagow, R. J.; Dumitru, E. T.

    1982-01-01

    The direct fluorination method of converting carefully selected hydrocarbon substrates to fluorinated membranes was successfully applied to produce promising, novel membranes for electrochemical devices. A family of polymer blends was identified which permits wide latitude in the concentration of both crosslinks and carboxyl groups in hydrocarbon membranes. These membranes were successfully fluorinated and are potentially competitive with commercial membranes in performance, and potentially much cheaper in price.

  7. Electron attachment to C{sub 2} fluorocarbon radicals at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuman, Nicholas S.; Miller, Thomas M.; Viggiano, Albert A., E-mail: afrl.rvborgmailbox@kirtland.af.mil

    Thermal electron attachment to the radical species C{sub 2}F{sub 3} and C{sub 2}F{sub 5} has been studied over the temperature range 300–890 K using the Variable Electron and Neutral Density Attachment Mass Spectrometry technique. Both radicals exclusively undergo dissociative attachment to yield F{sup −}. The rate constant for C{sub 2}F{sub 5} shows little dependence over the temperature range, remaining ∼4 × 10{sup −9} cm{sup 3} s{sup −1}. The rate constant for C{sub 2}F{sub 3} attachment rises steeply with temperature from 3 × 10{sup −11} cm{sup 3} s{sup −1} at 300 K to 1 × 10{sup −9} cm{sup 3} s{sup −1} at 890 K.more » The behaviors of both species at high temperature are in agreement with extrapolations previously made from data below 600 K using a recently developed kinetic modeling approach. Measurements were also made on C{sub 2}F{sub 3}Br and C{sub 2}F{sub 5}Br (used in this work as precursors to the radicals) over the same temperature range, and, for C{sub 2}F{sub 5}Br as a function of electron temperature. The attachment rate constants to both species rise with temperature following Arrhenius behavior. The attachment rate constant to C{sub 2}F{sub 5}Br falls with increasing electron temperature, in agreement with the kinetic modeling. The current data fall in line with past predictions of the kinetic modeling approach, again showing the utility of this simplified approach.« less

  8. Double emulsions based on silicone-fluorocarbon-water and their skin penetration.

    PubMed

    Mahrhauser, Denise-Silvia; Fischer, Claudia; Valenta, Claudia

    2016-02-10

    Double emulsions have significant potential in pharmacy and cosmetics due to the feasibility of combining incompatible substances in one product and the protection of sensitive compounds by incorporating them into their innermost phase. However, a major drawback of double emulsions is their thermodynamic instability and their strong tendency to coalesce. In the present study, the physicochemical stability, the skin permeation and the skin penetration potential of modified semi-solid double emulsions was investigated. The double emulsions were prepared of the cosmetically applied perfluoropolyethers Fomblin HC/04 or Fomblin HC-OH, silicone, carbomer and water. Measurement of the droplet size and examination of the microscopic images confirmed their physicochemical stability over the observation period of eight weeks. Franz-type diffusion cell experiments revealed no increase in curcumin permeation due to the employed perfluoropolyethers compared to the respective control formulations. The formulations used as control were O/W macroemulsions with or without a Polysorbate 80/Sorbitane monooleate 80 surfactant combination. Likewise, tape stripping studies showed no penetration enhancing effect of the employed perfluoropolyethers which is desirable as both perfluoropolyethers are commonly applied components in human personal-care products. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. An assessment of potential impact of alternative fluorocarbons on tropospheric ozone

    NASA Technical Reports Server (NTRS)

    Niki, Hiromi

    1990-01-01

    While the chlorofuorocarbons (CFCs) such as CFC-11 (CFCl3) and CFC-12 (CF2Cl2) are chemically inert in the troposphere, the hydrogen-containing halocarbons being considered as their replacements can, to a large extent, be removed in the troposphere by the HO radical. These alternative halocarbons include the hydrochlorofluorocarbons (HCFCs) 123 (CF3CHCl2), 141b (CFCl2CH3), 142b (CF2ClCH3), 22 (CHF2Cl), and 124 (CF3CHFCl) and the hydrofluorocarbons (HCFs) 134a (CF3CH2F), 152a (CHF2CH3) and 125 (CF3CHF2). Listed are the rate constants (k) for the HO radical reaction of these compounds and their estimated chemical lifetimes in the troposphere. In this table, values of the lifetimes of these selected HCFCs and HCFs are seen to vary by more than a factor of more than ten ranging from 1.6 years for HFC 152a and HCFC 125 to as long as 28 years for HFC 125. Clearly, from the standpoint of avoiding or minimizing impact on stratospheric O3, those halocarbons with short tropospheric lifetimes are the desirable alternates. However, potential environmental consequences of their degradation in the troposphere should be assessed and taken into account in the selection process.

  10. Selective protection of poly(tetra-fluoroethylene) from effects of chemical etching

    DOEpatents

    Martinez, Robert J.; Rye, Robert R.

    1991-01-01

    A photolithographic method for treating an article formed of polymeric material comprises subjecting portions of a surface of the polymeric article to ionizing radiation; and then subjecting the surface to chemical etching. The ionizing radiation treatment according to the present invention minimizes the effect of the subseuent chemical etching treatment. Thus, selective protection from the effects of chemical etching can be easily provided. The present invention has particular applicability to articles formed of fluorocarbons, such as PTFE. The ionizing radiation employed in the method may comprise Mg(k.alpha.) X-rays or lower-energy electrons.

  11. Optical Diagnostics in the Gaseous Electronics Conference Reference Cell

    PubMed Central

    Hebner, G. A.; Greenberg, K. E.

    1995-01-01

    A number of laser-induced fluorescence and absorption spectroscopy studies have been conducted using Gaseous Electronics Conference Reference Cells. Laser-induced fluorescence has been used to measure hydrogen atom densities, to measure argon metastable spatial profiles, to determine the sheath electric field, and to infer the electron density and temperature. Absorption spectroscopy, using lamp sources and diode lasers, has been used to measure metastable atom densities in helium and argon discharges and fluorocarbon densities in silicon etching discharges. The experimental techniques and sample results of these investigations are reviewed. PMID:29151748

  12. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.

  13. High-throughput microcoil NMR of compound libraries using zero-dispersion segmented flow analysis.

    PubMed

    Kautz, Roger A; Goetzinger, Wolfgang K; Karger, Barry L

    2005-01-01

    An automated system for loading samples into a microcoil NMR probe has been developed using segmented flow analysis. This approach enhanced 2-fold the throughput of the published direct injection and flow injection methods, improved sample utilization 3-fold, and was applicable to high-field NMR facilities with long transfer lines between the sample handler and NMR magnet. Sample volumes of 2 microL (10-30 mM, approximately 10 microg) were drawn from a 96-well microtiter plate by a sample handler, then pumped to a 0.5-microL microcoil NMR probe as a queue of closely spaced "plugs" separated by an immiscible fluorocarbon fluid. Individual sample plugs were detected by their NMR signal and automatically positioned for stopped-flow data acquisition. The sample in the NMR coil could be changed within 35 s by advancing the queue. The fluorocarbon liquid wetted the wall of the Teflon transfer line, preventing the DMSO samples from contacting the capillary wall and thus reducing sample losses to below 5% after passage through the 3-m transfer line. With a wash plug of solvent between samples, sample-to-sample carryover was <1%. Significantly, the samples did not disperse into the carrier liquid during loading or during acquisitions of several days for trace analysis. For automated high-throughput analysis using a 16-second acquisition time, spectra were recorded at a rate of 1.5 min/sample and total deuterated solvent consumption was <0.5 mL (1 US dollar) per 96-well plate.

  14. Highly hydrothermally stable microporous silica membranes for hydrogen separation.

    PubMed

    Wei, Qi; Wang, Fei; Nie, Zuo-Ren; Song, Chun-Lin; Wang, Yan-Li; Li, Qun-Yan

    2008-08-07

    Fluorocarbon-modified silica membranes were deposited on gamma-Al2O3/alpha-Al2O3 supports by the sol-gel technique for hydrogen separation. The hydrophobic property, pore structure, gas transport and separation performance, and hydrothermal stability of the modified membranes were investigated. It is observed that the water contact angle increases from 27.2+/-1.5 degrees for the pure silica membranes to 115.0+/-1.2 degrees for the modified ones with a (trifluoropropyl)triethoxysilane (TFPTES)/tetraethyl orthosilicate (TEOS) molar ratio of 0.6. The modified membranes preserve a microporous structure with a micropore volume of 0.14 cm3/g and a pore size of approximately 0.5 nm. A single gas permeation of H2 and CO2 through the modified membranes presents small positive apparent thermal activation energies, indicating a dominant microporous membrane transport. At 200 degrees C, a single H2 permeance of 3.1x10(-6) mol m(-2) s(-1) Pa(-1) and a H2/CO2 permselectivity of 15.2 were obtained after proper correction for the support resistance and the contribution from the defects. In the gas mixture measurement, the H2 permeance and the H2/CO2 separation factor almost remain constant at 200 degrees C with a water vapor pressure of 1.2x10(4) Pa for at least 220 h, indicating that the modified membranes are hydrothermally stable, benefiting from the integrity of the microporous structure due to the fluorocarbon modification.

  15. Vibrational spectroscopy in the ophthalmological field

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Monti, P.; Simoni, R.

    1991-05-01

    Some applications of vibrational (Raman and FT/IR) spectroscopy to the study of biocompatibility in the ophthalmological field are described. The structure arid elastic properties of a new hydrophobic fluorocarbon copolymer (FCC) are presented. Bacterial adhesion on its surface is also considered. The structure arid properties of soft contact lenses based on poly2--hydroxyethylmethacrylate (PHEMA) and polyvinylpyrrolidone (PVP) are discussed in relation to their recent use as intrastromal implants. The preliminary results dealing with a study on protein deposits on soft contact lenses in presence of a collyrium limiting the formation of such deposits are also reported. 1.

  16. Low-cost encapsulation materials for terrestrial solar cell modules

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Baum, B.; Willis, P.

    1979-01-01

    The paper presents the findings of material surveys intended to identify low cost materials which could be functional as encapsulants (by 1986) for terrestrial solar cell modules. Economic analyses have indicated that in order to meet the low cost goal of $2.70 per sq m, some or all of the following material technologies must be developed or advanced: (1) UV screening outer covers; (2) elastomeric acrylics; (3) weatherproofing and waterproofing of structural wood and paper products; (4) transparent UV stabilizers for the UV-sensitive transparent pottants; and (5) cost-effective utilization of silicone and fluorocarbon materials.

  17. Methods for study of cardiovascular adaptation of small laboratory animals during exposure to altered gravity. [hypothermia for cardiovascular control and cancer therapy

    NASA Technical Reports Server (NTRS)

    Popovic, V.

    1973-01-01

    Several new techniques are reported for studying cardiovascular circulation in small laboratory animals kept in metabolic chambers. Chronical cannulation, miniaturized membrane type heart-lung machines, a prototype walking chamber, and a fluorocarbon immersion method to simulate weightlessness are outlined. Differential hypothermia work on rat cancers provides localized embedding of radionuclides and other chemotherapeutical agents in tumors and increases at the same time blood circulation through the warmed tumor as compared to the rest of the cold body. Some successful clinical applications of combined chemotherapy and differential hypothermia in skin cancer, mammary tumors, and brain gliomas are described.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian; Vemuri, Rama S.; Estevez, Luis

    Metal–organic frameworks (MOFs) are found to be promising sorbents for adsorption cooling applications. Using organic ligands with 1, 2, and 3 phenylene rings, we construct moisture-stable Ni-MOF-74 members with adjustable pore apertures. These pore-engineered materials exhibit excellent sorption capabilities towards water and fluorocarbons. The adsorption patterns for these materials differ significantly and are attributed to variances in the hydrophobic/hydrophilic pore character, associated with differences in pore size. Complementary ex situ characterizations and in situ FTIR spectra are deployed to understand the correlations between the mechanisms of gas loadings and the pore environment of the MOFs.

  19. Nanotexturing of polystyrene surface in fluorocarbon plasmas: from sticky to slippery superhydrophobicity.

    PubMed

    Mundo, Rosa Di; Palumbo, Fabio; d'Agostino, Riccardo

    2008-05-06

    In this work plasma etching processes have been studied to roughen and fluorinate polystyrene surface as an easy method to achieve a superhydrophobic slippery character. Radiofrequency discharges have been fed with CF(4)/O(2) mixtures and the effect of the O(2):CF(4) ratio, the input power, and the treatment duration have been investigated in terms of wettability, with focus on sliding performances. For this purpose, surface morphological variations, evaluated by means of scanning electron microscopy and atomic force microscopy, together with the chemical assessment by X-ray photoelectron spectroscopy, have been correlated with water contact angle hysteresis and volume resolved sliding angle measurements. Results indicate that by increasing the height and decreasing the density of the structures formed by etching, within a tailored range, a transition from sticky to slippery superhydrophobicity occurs. A short treatment time (5 min) is sufficient to obtain such an effect, provided that a high power input is utilized. Optimized surfaces show a unaltered transparency to visible light according to the low roughness produced.

  20. Atmospheric-pressure plasma jet system for silicon etching without fluorocarbon gas feed

    NASA Astrophysics Data System (ADS)

    Ohtsu, Yasunori; Nagamatsu, Kenta

    2018-01-01

    We developed an atmospheric-pressure plasma jet (APPJ) system with a tungsten rod electrode coated with C2F4 particles of approximately 0.3 µm diameter for the surface treatment of a silicon wafer. The APPJ was generated by dielectric barrier discharge with a driving frequency of 22 kHz using a He gas flow. The characteristics of the APPJ were examined under various experimental conditions. The plasma jet length increased proportionally to the electric field. It was found that the treatment area of the silicon wafer was approximately 1 mm in diameter. By atomic force microscopy analysis, minute irregularities with a maximum length of about 600 nm and part of a ring-shaped trench were observed. A Si etching rate of approximately 400 nm/min was attained at a low power of 6 W and a He flow rate of 1 L/min without introducing molecular gas including F atoms.

  1. Role of Acentric Displacements on the Crystal Structure and Second-Harmonic Generating Properties of RbPbCO3F and CsPbCO3F

    PubMed Central

    2015-01-01

    Two lead fluorocarbonates, RbPbCO3F and CsPbCO3F, were synthesized and characterized. The materials were synthesized through solvothermal and conventional solid-state techniques. RbPbCO3F and CsPbCO3F were structurally characterized by single-crystal X-ray diffraction and exhibit three-dimensional (3D) crystal structures consisting of corner-shared PbO6F2 polyhedra. For RbPbCO3F, infrared and ultraviolet–visible spectroscopy and thermogravimetric and differential thermal analysis measurements were performed. RbPbCO3F is a new noncentrosymmetric material and crystallizes in the achiral and nonpolar space group P6̅m2 (crystal class 6̅m2). Powder second-harmonic generation (SHG) measurements on RbPbCO3F and CsPbCO3F using 1064 nm radiation revealed an SHG efficiency of approximately 250 and 300 × α-SiO2, respectively. Charge constants d33 of approximately 72 and 94 pm/V were obtained for RbPbCO3F and CsPbCO3F, respectively, through converse piezoelectric measurements. Electronic structure calculations indicate that the nonlinear optical response originates from the distorted PbO6F2 polyhedra, because of the even–odd parity mixing of the O 2p states with the nearly spherically symmetric 6s electrons of Pb2+. The degree of inversion symmetry breaking is quantified using a mode-polarization vector analysis and is correlated with cation size mismatch, from which it is possible to deduce the acentric properties of 3D alkali-metal fluorocarbonates. PMID:24867361

  2. From the speed of sound to the speed of light: Ultrasonic Cherenkov refractometry

    NASA Astrophysics Data System (ADS)

    Hallewell, G. D.

    2017-12-01

    Despite its success in the SLD CRID at the SLAC Linear Collider, ultrasonic measurement of Cherenkov radiator refractive index has been less fully exploited in more recent Cherenkov detectors employing gaseous radiators. This is surprising, since it is ideally suited to monitoring hydrostatic variations in refractive index as well as its evolution during the replacement of a light radiator passivation gas (e.g. N2, CO2) with a heavier fluorocarbon (e.g. C4F10[CF4]; mol. wt. 188[88]). The technique exploits the dependence of sound velocity on the molar concentrations of the two components at known temperature and pressure. The SLD barrel CRID used an 87%C5F12/13%N2 blend, mixed before injection into the radiator vessel: blend control based on ultrasonic mixture analysis maintained the β=1 Cherenkov ring angle to a long term variation better than ±0.3%, with refractivity monitored ultrasonically at multiple points within the radiator vessel. Recent advances using microcontroller-based electronics have led to ultrasonic instruments capable of simultaneously measuring gas flow and binary mixture composition in the fluorocarbon evaporative cooling systems of the ATLAS Inner Detector. Sound transit times are measured with multi-MHz transit time clocks in opposite directions in flowing gas for simultaneous measurement of flow rate and sound velocity. Gas composition is evaluated in real-time by comparison with a sound velocity/composition database. Such instruments could be incorporated into new and upgraded gas Cherenkov detectors for radiator gas mixture (and corresponding refractive index) measurement to a precision better than 10-3. They have other applications in binary gas analysis - including in Xenon-based anaesthesia. These possibilities are discussed.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, M.A.K.; Rasmussen, R.A.

    Many trace gases are increasing in the earth's armosphere and may couase global environmental changes in the future. Consequently there has been growing interest in the cycles of the long-lived gases that are likely to contribute the most to global change. At present there are four such gases: methane (CH{sub 4}), nitrous oxide (N{sub 2}0), trichlorofluoromethane (CCl{sub 3}F,F-11), and dichlorodifluoromethane (CCl{sub 2}F{sub 2},F-12). Methane and N{sub 2}O are involved mostly in adding to the greenhouse effect with some role in the stratospheric ozone cycle, and the two main fluorocarbons (F-11 and F-12) are involved in the depletion of the ozonemore » layer with some role in global warming. This paper is about the patterns of these trace gases near regions of global scale pollution. Our purpose is to provide a synthesis of observations from diverse environments and ecosystems of the world and to provide readers with intuitive connections between sources and concentrations. We will consider four types of regions: rice fields in CHina that are a major source of methane, urban areas of the United States and China that are sources of fluorocarbons and other gases, rivers and surrounding wetlands, specifically the Yangtze in China and the Amazon in Brazil, and finally the environment of Boola Boola National Forest in Australia populated by many speices of termites that are a source of methane to the atmosphere. Eventually these patterns can be translated into estimeates of fluxes from the various sources of global pollution.« less

  4. Lower blastocyst quality after conventional vs. Piezo ICSI in the horse reflects delayed sperm component remodeling and oocyte activation.

    PubMed

    Salgado, R M; Brom-de-Luna, J G; Resende, H L; Canesin, H S; Hinrichs, Katrin

    2018-04-10

    The aim of this study was to evaluate the differential effects of conventional and Piezo-driven ICSI on blastocyst development, and on sperm component remodeling and oocyte activation, in an equine model. In vitro-matured equine oocytes underwent conventional (Conv) or Piezo ICSI, the latter utilizing fluorocarbon ballast. Blastocyst development was compared between treatments to validate the model. Then, oocytes were fixed at 0, 6, or 18 h after injection, and stained for the sperm tail, acrosome, oocyte cortical granules, and chromatin. These parameters were compared between injection techniques and between sham-injected and sperm-injected oocytes among time periods. Blastocyst rates were 39 and 40%. The nucleus number was lower, and the nuclear fragmentation rate was higher, in blastocysts produced by Conv. Cortical granule loss started at 0H after both sperm and sham injection. The acrosome was present at 0H in both ICSI treatments, and persisted to 18H in significantly more Conv than Piezo oocytes (72 vs. 21%). Sperm head area was unchanged at 6H in Conv but significantly increased at this time in Piezo; correspondingly, at 6H significantly more Conv than Piezo oocytes remained at MII (80 vs. 9.5%). Sham injection did not induce significant meiotic resumption. These data show that Piezo ICSI is associated with more rapid sperm component remodeling and oocyte meiotic resumption after sperm injection than is conventional ICSI, and with higher embryo quality at the blastocyst stage. This suggests that there is value in exploring the Piezo technique, utilized with a non-toxic fluorocarbon ballast, for use in clinical human ICSI.

  5. Treatment of White Phosphorus and Other Chemical Burn Injuries at One Burn Center Over a 51-year Period

    DTIC Science & Technology

    2004-01-01

    cellulose or lauryl sulfate , avoidance of copper- sulfate soaked pads, and use of prompt water or saline rinse following application [19–22,24]. These...0 1 1 Diesel 0 0 1 1 Oven cleaner 0 0 5 5 JP4 fuel 0 0 1 1 Phenol 0 2 2 4 Fluorocarbon 0 2 1 3 Paint thinner 0 1 0 1 Triethylene gycol 0 1 0 1 Sodium ...ammonia 6.8 3.7 Hydrochloric acid 5.6 3.1 Sulfuric acid 4.7 6.5 Polychlorinated biphenyls 2.8 23 Toluene 2.4 1.4 Sodium hydroxide 1.9 2.6 Nitric acid 1.5

  6. Factors affecting the sticking of insects on modified aircraft wings

    NASA Technical Reports Server (NTRS)

    Yi, O.; Chan, R.; Eiss, N. S.; Pingali, U.; Wightman, J. P.

    1988-01-01

    The adhesion of insects to aircraft wings is studied. Insects were collected in road tests in past studies and a large experimental error was introduced caused by the variability of insect flux. The presence of such errors has been detected by studying the insect distribution across an aluminum-strip covered half-cylinder mounted on the top of a car. After a nonuniform insect distribution (insect flux) was found from three road tests, a new arrangement of samples was developed. The feasibility of coating aircraft wing surfaces with polymers to reduce the number of insects sticking onto the surfaces was studied using fluorocarbon elastomers, styrene butadiene rubbers, and Teflon.

  7. Installation Restoration Program. Phase II. Confirmation/Quantification. Stage I for MacDill Air Force Base, Florida.

    DTIC Science & Technology

    1984-09-01

    a .4 0) V U) co >- 194 .> ~ Ŕ & .4a 0: -0W 4 Cc %0 4 o 1.C " 0 $ 4 4 0 )ON c400 .,4 W 44 V c W0r c 114-4 CU G% * cW 0 5140 U Go44J 0... 4 .8 45 a co...contamination may be attributable -- to the use of aqueous film forming foam ( AFFF ) in fire training at these areas. AFFF is a fluorocarbon surfactant with a...8217’ >.*.* chemical oxygen demand (COD) of 40,000 mg/l. Data are not ," available on the hazardous or toxic properties of AFFF and its - degradation

  8. Research progress of nano self - cleaning anti-fouling coatings

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhao, Y. J.; Teng, J. L.; Wang, J. H.; Wu, L. S.; Zheng, Y. L.

    2018-01-01

    There are many methods of evaluating the performance of nano self-cleaning anti-fouling coatings, such as carbon blacking method, coating reflection coefficient method, glass microbead method, film method, contact angle and rolling angle method, organic degradation method, and the application of performance evaluation method in self-cleaning antifouling coating. For the more, the types of nano self-cleaning anti-fouling coatings based on aqueous media was described, such as photocatalytic self-cleaning coatings, silicone coatings, organic fluorine coatings, fluorosilicone coatings, fluorocarbon coatings, polysilazane self-cleaning coatings. The research and application of different kinds of nano self-cleaning antifouling coatings are anlysised, and the latest research results are summed.

  9. Nonenzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.

    PubMed

    Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong

    2018-05-25

    We report a nonenzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multipotential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produces a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condition, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wristband is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a smartphone app via Bluetooth.

  10. In situ data collection and structure refinement from microcapillary protein crystallization

    PubMed Central

    Yadav, Maneesh K.; Gerdts, Cory J.; Sanishvili, Ruslan; Smith, Ward W.; Roach, L. Spencer; Ismagilov, Rustem F.; Kuhn, Peter; Stevens, Raymond C.

    2007-01-01

    In situ X-ray data collection has the potential to eliminate the challenging task of mounting and cryocooling often fragile protein crystals, reducing a major bottleneck in the structure determination process. An apparatus used to grow protein crystals in capillaries and to compare the background X-ray scattering of the components, including thin-walled glass capillaries against Teflon, and various fluorocarbon oils against each other, is described. Using thaumatin as a test case at 1.8 Å resolution, this study demonstrates that high-resolution electron density maps and refined models can be obtained from in situ diffraction of crystals grown in microcapillaries. PMID:17468785

  11. Elastohydrodynamic film thickness model for heavily loaded contacts

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1973-01-01

    An empirical elastohydrodynamic (EHD) film thickness formula for predicting the minimum film thickness occurring within heavily loaded contacts (maximum Hertz stresses above 150,000 psi) was developed. The formula was based upon X-ray film thickness measurements made with synthetic paraffinic, fluorocarbon, Type II ester and polyphenyl ether fluids covering a wide range of test conditions. Comparisons were made between predictions from an isothermal EHD theory and the test data. The deduced relationship was found to adequately reflect the high-load dependence exhibited by the measured data. The effects of contact geometry, material and lubricant properties on the form of the empirical model are also discussed.

  12. Viscoelastic properties of elastomeric materials for O-ring applications

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1989-01-01

    Redesign of the Space Shuttle Solid Rocket Booster necessitated re-evaluation of the material used in the field joint O-ring seals. This research project was established to determine the viscoelastic characteristics of five candidate materials. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results of this study are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.

  13. The 1980 stratospheric-tropospheric exchange experiment

    NASA Technical Reports Server (NTRS)

    Margozzi, A. P. (Editor)

    1983-01-01

    Data are presented from the Stratospheric-Tropospheric Water Vapor Exchange Experiment. Measurements were made during 11 flights of the NASA U-2 aircraft which provided data from horizontal traverser and samplings in and about the tops of extensive cirrus-anvil clouds produced by overshooting cumulus turrets. Aircraft measurements were made of water vapor, ozone, ambient and cloud top temperature, fluorocarbons, nitrous oxide, nitric acid, aerosols, and ice crystal populations. Balloonsondes were flown about twice daily providing data on ozone, wind fields, pressure and temperature to altitudes near 30 km. Satellite photography provided detailed cloud and cloud top temperature information. Descriptions of individual experiments and detailed compilations of all results are provided.

  14. Short- and long-term releases of fluorocarbons from disposal of polyurethane foam waste.

    PubMed

    Kjeldsen, Peter; Scheutz, Charlotte

    2003-11-01

    Several halocarbons having very high global warming or ozone depletion potentials have been used as a blowing agent (BA) for insulation foam in home appliances, such as refrigerators and freezers. Many appliances are shredded after the end of their useful life. Release experiments carried out in the laboratory on insulation foam blown with the blowing agents CFC-11, HCFC-141b, HCF-134fa, and HFC-245fa revealed that not all blowing agents are released during a 6-week period following the shredding process. The experiments confirmed the hypothesis that the release could be divided into three segments: By shredding foam panels, a proportion of the closed cells is either split or damaged to a degree allowing for a sudden release of the contained atmosphere in the cell (the instantaneous release). Cells adjacent to the cut surface may be only slightly damaged by tiny cracks or holes allowing a relative slow release of the BA to the surroundings (the short-term release). A significant portion of the cells in the foam particle will be unaffected and only allows release governed by slow diffusion through the PUR cell wall (the long-term release). The magnitude of the releases is for all three types highly dependent on how fine the foam is shredded. The residual blowing agent remaining after the 6-week period may be very slowly released if the integrity of the foam particles with respect to diffusion properties is kept after disposal of the foam waste on landfills. It is shown by setting up a national model simulating the BA releases following decommissioning of used domestic refrigerators/freezers in the United States that the release patterns are highly dependent on how the appliances are shredded.

  15. Stress-Induced Cracking of Fluorocarbon Rubber MTL-0002 After Exposure to DS-2

    DTIC Science & Technology

    1993-09-01

    be employed. Future Work Due to the presence of amine additives in the new SG grade automobile engine oils (13,32,33), and the increasing use of...34gasohol" fuels (gasoline and alcohol) (34), the rub- 4b ber industry has recently become concerned that hoses and seals in automobile engine environments...Materials Technology Laboratory, July 1989. 24. BARTH, E. I erhalten i’oon Pol’invliidenfluorid (PVDF) gegen Natronlauge. Kunststoffe . v. 72, 1982. p. 300

  16. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, R.; Battistin, M.; Berry, S.

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixturemore » ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)« less

  17. An On-Line Acoustic Fluorocarbon Coolant Mixture Analyzer for the ATLAS Silicon Tracker

    NASA Astrophysics Data System (ADS)

    Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.

    2012-10-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoropropane (C3F8) evaporative cooling fluid to a composite fluid with a probable 10-20% admixture of hexafluoroethane (C2F6). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C3F8/C2F6 mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound `chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C3F8/C2F6 flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semi-conductor manufacture and anesthetic gas mixtures.

  18. Neuroprotective effects of perflurocarbon (oxycyte) after contusive spinal cord injury.

    PubMed

    Yacoub, Adly; Hajec, Marygrace C; Stanger, Richard; Wan, Wen; Young, Harold; Mathern, Bruce E

    2014-02-01

    Spinal cord injury (SCI) often results in irreversible and permanent neurological deficits and long-term disability. Vasospasm, hemorrhage, and loss of microvessels create an ischemic environment at the site of contusive or compressive SCI and initiate the secondary injury cascades leading to progressive tissue damage and severely decreased functional outcome. Although the initial mechanical destructive events cannot be reversed, secondary injury damage occurs over several hours to weeks, a time frame during which therapeutic intervention could be achieved. One essential component of secondary injury cascade is the reduction in spinal cord blood flow with resultant decrease in oxygen delivery. Our group has recently shown that administration of fluorocarbon (Oxycyte) significantly increased parenchymal tissue oxygen levels during the usual postinjury hypoxic phase, and fluorocarbon has been shown to be effective in stroke and head injury. In the current study, we assessed the beneficial effects of Oxycyte after a moderate-to-severe contusion SCI was simulated in adult Long-Evans hooded rats. Histopathology and immunohistochemical analysis showed that the administration of 5 mL/kg of Oxycyte perfluorocarbon (60% emulsion) after SCI dramatically reduced destruction of spinal cord anatomy and resulted in a marked decrease of lesion area, less cell death, and greater white matter sparing at 7 and 42 days postinjury. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining showed a significant reduced number of apoptotic cells in Oxycyte-treated animals, compared to the saline group. Collectively, these results demonstrate the potential neuroprotective effect of Oxycyte treatment after SCI, and its beneficial effects may be, in part, a result of reducing apoptotic cell death and tissue sparing. Further studies to determine the most efficacious Oxycyte dose and its mechanisms of protection are warranted.

  19. Refrigeration and air-conditioning technology workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, P. J.; Counce, D. M.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before themore » year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.« less

  20. Decomposed Fragment Identification in C_8F_18 RF Plasma for a-C:F Film Production

    NASA Astrophysics Data System (ADS)

    Sakai, Yosuke; Tazawa, Shota; Bratescu, Maria; Suda, Yoshiyuki; Sugawara, Hirotake

    2004-09-01

    Amorphous fluorocarbon polymer (a-C:F) film shows excellent insulation properties such as low dielectric constant (<2.5), high dielectric strength (>2 MV/cm), low surface energy, and chemical inertness. Therefore, we have studied this film for a purpose of an additional insulator to enhance the breakdown voltage in an alternative to a SF6 gas insulation system. The films are prepared using a C_8F_18 vapor RF plasma. When per-fluorocarbon, such as C_8F_18 as source gases, then the deposition rate becomes roughly two orders of magnitude higher than that obtained from conventional low molecular-weight source monomers (CF_4, C_2F_6, C_3F_6, and C_4F_8) [1]. The breakdown voltage (V_s) of N_2, Ar and He gases between the a-C:F film coated Al sphere-sphere electrodes for a gas pressure (p) times gap length (d), pd=0.1-100 Torr¥cm, was studied as well. Then, Vs between the a-C:F film coated electrodes was a several times higher than that between the Al electrodes in the present pd range[2]. In this work, the decomposed species of C_8F_18 in the plasma were identified using emission spectra from the plasma and Quadra-pole mass spectrograph, and the reason why the high deposition rate was obtained was discussed. The physical and chemical properties of a-C:F film was analyzed. [1] C.P.Lungu, et.al., Jpn. J. Appl. Phys. 38 (12B) L1544 - L1546 (1999) [2] C.Biloiu, et.al., Jpn. J. Appl. Phys. 42 (2B) L 201- L203 (2003) Work supported by Grant-in-Aid for Scientific Research (B), JSPS.

  1. Controlling nonspecific protein adsorption in a plug-based microfluidic system by controlling interfacial chemistry using fluorous-phase surfactants.

    PubMed

    Roach, L Spencer; Song, Helen; Ismagilov, Rustem F

    2005-02-01

    Control of surface chemistry and protein adsorption is important for using microfluidic devices for biochemical analysis and high-throughput screening assays. This paper describes the control of protein adsorption at the liquid-liquid interface in a plug-based microfluidic system. The microfluidic system uses multiphase flows of immiscible fluorous and aqueous fluids to form plugs, which are aqueous droplets that are completely surrounded by fluorocarbon oil and do not come into direct contact with the hydrophobic surface of the microchannel. Protein adsorption at the aqueous-fluorous interface was controlled by using surfactants that were soluble in fluorocarbon oil but insoluble in aqueous solutions. Three perfluorinated alkane surfactants capped with different functional groups were used: a carboxylic acid, an alcohol, and a triethylene glycol group that was synthesized from commercially available materials. Using complementary methods of analysis, adsorption was characterized for several proteins (bovine serum albumin (BSA) and fibrinogen), including enzymes (ribonuclease A (RNase A) and alkaline phosphatase). These complementary methods involved characterizing adsorption in microliter-sized droplets by drop tensiometry and in nanoliter plugs by fluorescence microscopy and kinetic measurements of enzyme catalysis. The oligoethylene glycol-capped surfactant prevented protein adsorption in all cases. Adsorption of proteins to the carboxylic acid-capped surfactant in nanoliter plugs could be described by using the Langmuir model and tensiometry results for microliter drops. The microfluidic system was fabricated using rapid prototyping in poly(dimethylsiloxane) (PDMS). Black PDMS microfluidic devices, fabricated by curing a suspension of charcoal in PDMS, were used to measure the changes in fluorescence intensity more sensitively. This system will be useful for microfluidic bioassays, enzymatic kinetics, and protein crystallization, because it does not require

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trofanenko, J.; Williams-Jones, A. E.; Simandl, G. J.

    The Wicheeda carbonatite is a deformed plug or sill that hosts relatively high grade light rare earth elements (LREE) mineralization in the British Columbia alkaline province. It was emplaced within metasedimentary rocks belonging to the Kechika Group, which have been altered to potassic fenite near the intrusion and sodic fenite at greater distances from it. The intrusion comprises a ferroan dolomite carbonatite core, which passes gradationally outward into calcite carbonatite. The potentially economic REE mineralization is hosted by the dolomite carbonatite. We recognized three types of dolomite. Dolomite constitutes the bulk of the dolomite carbonatite, dolomite replaced dolomite near veinsmore » and vugs, and dolomite occurs in veins and vugs together with the REE mineralization. Carbon and oxygen isotope ratios indicate that the calcite carbonatite crystallized from a magma of mantle origin, that dolomite is of primary igneous origin, that dolomite has a largely igneous signature with a small hydrothermal component, and that dolomite is of hydrothermal origin. Furthermore, the REE minerals comprise REE fluorocarbonates, ancylite-(Ce), and monazite-(Ce). In addition to dolomite, they occur with barite, molybdenite, pyrite, and thorite. Minor concentrations of niobium are present as magmatic pyrochlore in the calcite carbonatite. model is proposed in which crystallization of calcite carbonatite preceded that of dolomite carbonatite. During crystallization of the latter, an aqueous-carbonic fluid was exsolved, which mobilized the REE as chloride complexes into vugs and fractures in the dolomite carbonatite, where they precipitated mainly in response to the increase in pH that accompanied fluid-rock interaction and, in the case of the REE fluorocarbonates, decreasing temperature. These fluids altered the host metasedimentary rock to potassic fenite adjacent to the carbonatite and, distal to it, they mixed with formational waters to produce sodic fenite.« less

  3. The Nature and Origin of the REE Mineralization in the Wicheeda Carbonatite, British Columbia, Canada

    DOE PAGES

    Trofanenko, J.; Williams-Jones, A. E.; Simandl, G. J.; ...

    2016-01-01

    The Wicheeda carbonatite is a deformed plug or sill that hosts relatively high grade light rare earth elements (LREE) mineralization in the British Columbia alkaline province. It was emplaced within metasedimentary rocks belonging to the Kechika Group, which have been altered to potassic fenite near the intrusion and sodic fenite at greater distances from it. The intrusion comprises a ferroan dolomite carbonatite core, which passes gradationally outward into calcite carbonatite. The potentially economic REE mineralization is hosted by the dolomite carbonatite. We recognized three types of dolomite. Dolomite constitutes the bulk of the dolomite carbonatite, dolomite replaced dolomite near veinsmore » and vugs, and dolomite occurs in veins and vugs together with the REE mineralization. Carbon and oxygen isotope ratios indicate that the calcite carbonatite crystallized from a magma of mantle origin, that dolomite is of primary igneous origin, that dolomite has a largely igneous signature with a small hydrothermal component, and that dolomite is of hydrothermal origin. Furthermore, the REE minerals comprise REE fluorocarbonates, ancylite-(Ce), and monazite-(Ce). In addition to dolomite, they occur with barite, molybdenite, pyrite, and thorite. Minor concentrations of niobium are present as magmatic pyrochlore in the calcite carbonatite. model is proposed in which crystallization of calcite carbonatite preceded that of dolomite carbonatite. During crystallization of the latter, an aqueous-carbonic fluid was exsolved, which mobilized the REE as chloride complexes into vugs and fractures in the dolomite carbonatite, where they precipitated mainly in response to the increase in pH that accompanied fluid-rock interaction and, in the case of the REE fluorocarbonates, decreasing temperature. These fluids altered the host metasedimentary rock to potassic fenite adjacent to the carbonatite and, distal to it, they mixed with formational waters to produce sodic fenite.« less

  4. Development of inspection techniques for quantitatively measuring surface contamination on SRM hardware

    NASA Technical Reports Server (NTRS)

    Law, R. D.

    1989-01-01

    A contaminant is any material or substance which is potentially undesirable or which may adversely affect any part, component, or assembly. Contamination control of SRM hardware surfaces is a serious concern, for both Thiokol and NASA, with particular concern for contaminants which may adversely affect bonding surfaces. The purpose of this study is to develop laboratory analytical techniques which will make it possible to certify the cleanliness of any designated surface, with special focus on particulates (dust, dirt, lint, etc.), oils (hydrocarbons, silicones, plasticizers, etc.), and greases (HD-2, fluorocarbon grease, etc.). The hardware surfaces of concern will include D6AC steel, aluminum alloys, anodized aluminum alloys, glass/phenolic, carbon/phenolic, NBR/asbestos-silica, and EPDM rubber.

  5. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  6. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  7. More vertical etch profile using a Faraday cage in plasma etching

    NASA Astrophysics Data System (ADS)

    Cho, Byeong-Ok; Hwang, Sung-Wook; Ryu, Jung-Hyun; Moon, Sang Heup

    1999-05-01

    Scanning electron microscope images of sidewalls obtained by plasma etching of an SiO2 film with and without a Faraday cage have been compared. When the substrate film is etched in the Faraday cage, faceting is effectively suppressed and the etch profile becomes more vertical regardless of the process conditions. This is because the electric potential in the cage is nearly uniform and therefore distortion of the electric field at the convex corner of a microfeature is prevented. The most vertical etch profile is obtained when the cage is used in fluorocarbon plasmas, where faceting is further suppressed due to the decrease in the chemical sputtering yield and the increase in the radical/ion flux on the substrate.

  8. Laboratory Studies of Chemical and Photochemical Processes Relevant to Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1996-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HOx and NOx species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences.

  9. Long-lifetime thin-film encapsulated organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Wong, F. L.; Fung, M. K.; Tao, S. L.; Lai, S. L.; Tsang, W. M.; Kong, K. H.; Choy, W. M.; Lee, C. S.; Lee, S. T.

    2008-07-01

    Multiple fluorocarbon (CFx) and silicon nitride (Si3N4) bilayers were applied as encapsulation cap on glass-based organic light-emitting diodes (OLEDs). When CFx/Si3N4 bilayers were deposited onto the OLED structure, the devices showed performance worse than one without any encapsulation. The adverse effects were attributed to the damage caused by reaction species during the thin-film deposition processes. To solve this problem, a CuPc interlayer was found to provide effective protection to the OLED structure. With a structure of CuPc/(CFx/Si3N4)×5, the encapsulated device showed an operation lifetime over 8000 h (higher than 80% of that achieved with a conventional metal encapsulation).

  10. Channel electron multiplier compatibility with Viton and Apiezon-L vacuum grease

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Baldonado, J. R.; Bame, S. J.; Barraclough, B. L.

    1987-12-01

    Clean Viton and Viton coated with Apiezon-L vacuum grease were tested for their noncontaminating compatibility with channel electron multipliers (CEMs). The test setup and procedure were the same as those used previously in conjunction with CEM compatibility tests of certain epoxies, solder, and fluorocarbon polymer materials useful for construction of spaceflight sensors. While some CEM gain degradation was noted during exposure to Viton and Apiezon-L, the present tests indicate that, at least over instrument lifetimes of about 2 x 10 to the 12th counts, these materials should be suitable for (1) preflight space sensor testing systems, (2) hermetic seals for CEM-based space sensors, and (3) terrestrial CEM-based instrumentation.

  11. Development of a special purpose spacecraft interior coating, phase 1

    NASA Technical Reports Server (NTRS)

    Bartoszek, E. J.; Nannelli, P.

    1975-01-01

    Coating formulations were developed consisting of latex blends of fluorocarbon polymers, acrylic resins, stabilizers, modifiers, other additives, and a variety of inorganic pigments. Suitable latex primers were also developed from an acrylic latex base. The formulations dried to touch in about one hour and were fully dry in about twenty-four hours under normal room temperature and humidity conditions. The resulting coatings displayed good optical and mechanical properties, including excellent bonding to (pre-treated) substrates. In addition, the preferred compositions were found to be self-extinguishing when applied to nonflammable substrates and could meet the offgassing requirements specified by NASA for the intended application. Improvements are needed in abrasion resistance and hardness.

  12. Cathodic electrocatalyst layer for electrochemical generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Tennakoon, Charles L. K. (Inventor); Singh, Waheguru Pal (Inventor); Rhodes, Christopher P. (Inventor); Anderson, Kelvin C. (Inventor)

    2011-01-01

    A cathodic gas diffusion electrode for the electrochemical production of aqueous hydrogen peroxide solutions. The cathodic gas diffusion electrode comprises an electrically conductive gas diffusion substrate and a cathodic electrocatalyst layer supported on the gas diffusion substrate. A novel cathodic electrocatalyst layer comprises a cathodic electrocatalyst, a substantially water-insoluble quaternary ammonium compound, a fluorocarbon polymer hydrophobic agent and binder, and a perfluoronated sulphonic acid polymer. An electrochemical cell using the novel cathodic electrocatalyst layer has been shown to produce an aqueous solution having between 8 and 14 weight percent hydrogen peroxide. Furthermore, such electrochemical cells have shown stable production of hydrogen peroxide solutions over 1000 hours of operation including numerous system shutdowns.

  13. Influence of melt mixer on injection molding of thermoset elastomers

    NASA Astrophysics Data System (ADS)

    Rochman, Arif; Zahra, Keith

    2016-10-01

    One of the drawbacks in injection molding is that the plasticizing screw is short such that polymers having high concentrations of additives, such as thermoset elastomers, might not mix homogeneously within the short period of time during the plasticizing stage. In this study, various melt mixers inside the nozzle chamber, together forming a mixing nozzle, were developed. Three different materials were investigated, namely nitrile butadiene rubber (NBR), ethylene propylene-diene monomer (EPDM) and fluorocarbon (FKM). The use of these melt mixers resulted in better homogeneity and properties of the molded parts despite a curing time reduction of 10 s. This was due to the increase in mixing and shearing introduced a higher rate of crosslinking formation in the molded parts.

  14. Avoiding Steric Congestion in Dendrimer Growth through Proportionate Branching. A Twist on da Vinci's Rule of Tree Branching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Xuyi; Taraban, Marc B.; Hyland, Laura L.

    2012-10-05

    In making defect-free macromolecules, the challenge occurs during chemical synthesis. This challenge is especially pronounced in dendrimer synthesis where exponential growth quickly leads to steric congestion. To overcome this difficulty, proportionate branching in dendrimer growth is proposed. In proportionate branching, both the number and the length of branches increase exponentially but in opposite directions to mimic tree growth. The effectiveness of this strategy is demonstrated through the synthesis of a fluorocarbon dendron containing 243 chemically identical fluorine atoms with a MW of 9082 Da. Monodispersity is confirmed by nuclear magnetic resonance spectroscopy, mass spectrometry, and small-angle X-ray scattering. Moreover, growingmore » different parts proportionately, as nature does, could be a general strategy to achieve defect-free synthesis of macromolecules.« less

  15. PFC Decontamination of a Metal Surface and the Recycling of a Spent PFC Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, C.H.; Won, H.J.; Oh, W.Z.

    2006-07-01

    PFC (per-fluorocarbon) ultrasonic decontamination behavior of loosely contaminated metal specimens such as a plate, pipe, welding and a crevice specimen in a mixed solution of PFC and an anionic surfactant was investigated. Perfluoroheptane (C{sub 7}F{sub 16}) was used as a PFC ultrasonic media. The contaminants were completely removed for almost all of the tested specimens except for the longest pipe length specimen. For the 6-cm long specimen, 98.5 % of the contaminants were removed. For the recycling of the PFC solution, a distillation test for the spent PFC solution was also performed. The results show that 97.5 % of themore » PFC was recycled without a loss of the decontamination efficiency. (authors)« less

  16. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    NASA Astrophysics Data System (ADS)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  17. Ionic cleaning after wave solder and before conformal coat

    NASA Astrophysics Data System (ADS)

    Nguygen, Tochau N.; Sutherland, Thomas H.

    An account is given of efforts made by a military electronics manufacturer to upgrade product reliability in response to the printed writing board (PWB) ionic cleanliness requirements recently set out in MIL-P-28809 Rev. A. These requirements had to be met both after wave soldering, involving the immediate removal of ionically active RA flux, and immediately before conformal coating, in order to remove the less active RMA flux and bonding contaminants. Attention is given to the results of a test program which compared the effectiveness with which five different solvents and two (batch and conveyorized vapor degreasing) cleaning methods cleaned representative PWBs containing many components. Alcohol-containing fluorocarbon blends were adequate, but the most densely packed PWBs required a supplemental water rinse.

  18. The 1977 intertropical convergence zone experiment

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G. (Editor); Page, W. A. (Editor); Margozzi, A. P. (Editor)

    1979-01-01

    Data are presented from the 1977 Intertropical Convergence Zone (ITCZ) Experiment conducted in the Panama Canal Zone in July 1977. Measurements were made daily over a 16-day period when the ITCZ moved across the Canal Zone. Two aircraft (Learjet and U-2) flew daily and provided data from horizontal traverses at several altitudes to 21.3 km of ozone, temperature, pressure, water vapor, aerosols, fluorocarbons, methane, nitrous oxide, nitric oxide, and nitric acid. Balloonsondes flown four times per day provided data on ozone, wind fields, pressure, temperature, and humidities to altitudes near 30 km. Rocketsondes provided daily data to altitudes near 69 km. Satellite photography provided detailed cloud information. Descriptions of individual experiments and detailed compilations of all results are provided.

  19. Pulsed Plasma Thruster Plume Study: Symmetry and Impact on Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Arrington, Lynn A.; Marrese, Colleen M.; Blandino, John J.

    2000-01-01

    Twenty-four witness plates were positioned on perpendicular arrays near a breadboard Pulsed Plasma Thruster (PPT) to collect plume constituents for analysis. Over one million shots were fired during the experiment at 43 J using fluorocarbon polymer propellant. The asymmetry of the film deposition on the witness plates was investigated with mass and thickness measurements and correlated with off-axis thrust vector measurements. The composition of the films was determined. The transmittance and reflectance of the films were measured and the absorption coefficients were calculated in the wavelength range from 350 to 1200 mn. These data were applied to calculate the loss in signal intensity through the films, which will impact the visibility of spaceborne interferometer systems positioned by these thrusters.

  20. Surfactants at the Design Limit.

    PubMed

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  1. Creation of fluorocarbon barriers on surfaces of starch-based products through cold plasma treatment

    NASA Astrophysics Data System (ADS)

    Han, Yousoo

    Two kinds of starch foam trays (starch and aspen-starch foam trays) were produced using a lab model baking machine. Surfaces of the trays were treated with CF4 and SF6 plasma to create fluorine-rich layers on the surfaces, which might show strong water resistance. The plasma parameters, such like RF power, gas pressure and reaction time, were varied to evaluate the effects of each parameter on fluorination of surfaces. The atomic concentrations of fluorine, oxygen and carbon on samples' surfaces were earned from ESCA (electron spectroscopy for chemical analysis) and contact angles of sample surfaces were measured for hydrophobicity. For water resistance of plasma treated surfaces, liquid water uptake and water vapor uptake test were performed. Also, equilibrium moisture contents of unmodified and plasma treated samples were measured to evaluate biodegradability of plasma treated samples. Fluorine-rich barriers were created on sample surfaces treated with CF 4 and SF6 plasma. The fluorine atomic concentrations of treated sample surfaces were ranged from 34.4% to 64.4% (CF4 treatment) and 43.6% to 57.9% (SF6 treatment). It was found at both plasma gases that plasma parameters affected total fluorine concentration and carbon-peak shapes in ESCA surveys, which imply different distributions of mono- or multi-fluoro carbon's contents. In various reaction times, it was found that total fluorine contents were decreased after a critical point as the reaction time was prolonged, which may imply that a dominant mechanism has been changed from deposition or functionalization to etching. Oxygen atomic concentration was decreased at sample surfaces treated by both plasmas. In the case of SF6 plasma, it was proved that the removal of oxygen surely occurred because there was no addition of sulfur species. Plasma treated sample surfaces had high contact angles with distilled water up to 150° and the high values of angles have been kept constant up to for 15 minutes. Fluorine-rich barriers created by plasma showed lower water liquid and vapor permeability than untreated surfaces did. Plasma treated samples had similar moisture contents with untreated samples at all relative humidity tested. AFM and SEM images were taken for sample surfaces' morphology and topography.

  2. Investigation of fluorocarbon blowing agents in insulating polymer foams by 19F NMR imaging.

    PubMed

    Fyfe, C A; Mei, Z; Grondey, H

    1996-01-01

    Currently, there is no reliable and readily accessible technique with which the distribution and diffusion of blowing agents in rigid insulating foams can be detected and monitored. In this paper, we demonstrate that 19F NMR microscopic imaging together with 19F solid-state MAS NMR spectroscopy is ideally suited for such measurements and yield quantitatively reliable information that will be critical to the development and fabrication of optimized insulating materials with alternative blowing agents. Polystyrene (PS) and polyurethane (PU) foam samples were investigated with the objective of determining quantitatively the amount of blowing agents in the gaseous phase and dissolved in the polymer phase, and to determine and monitor the distribution of the blowing agents in aged foams as a function of time and temperature. The concentrations of the gaseous blowing agents in the cells and dissolved in the solid were simultaneously and quantitatively measured by 19F MAS NMR spectroscopy. An unfaced 1-yr-old PS foam filled with CH3CF2Cl has about 13% of total HCFCs dissolved in the solid; while there is about 24% of HCFCs in the solid of a faced 3-mos-old PU foam filled with CH3CCl2F. The data from 19F NMR imaging demonstrate that the distributions of the blowing agents in an aged foam are quite uniform around the center part (2 cm away from any edge) of a foam board; however, a gradient in blowing agent concentration was found as a function of distance from the initial factory cut edge. The effective diffusion coefficients of the blowing agents can be directly calculated from the imaging data. Quantitative diffusion constants and activation barriers were determined. Additionally, a foam treated with a second blowing agent was monitored with chemical shift selective imaging and the diffusion of the second gas into the foam and the out-diffusion of the original gas were determined.

  3. The Nolans Bore rare-earth element-phosphorus-uranium mineral system: geology, origin and post-depositional modifications

    NASA Astrophysics Data System (ADS)

    Huston, David L.; Maas, Roland; Cross, Andrew; Hussey, Kelvin J.; Mernagh, Terrence P.; Fraser, Geoff; Champion, David C.

    2016-08-01

    Nolans Bore is a rare-earth element (REE)-U-P fluorapatite vein deposit hosted mostly by the ~1805 Ma Boothby Orthogneiss in the Aileron Province, Northern Territory, Australia. The fluorapatite veins are complex, with two stages: (1) massive to granular fluorapatite with inclusions of REE silicates, phosphates and (fluoro)carbonates, and (2) calcite-allanite with accessory REE-bearing phosphate and (fluoro)carbonate minerals that vein and brecciate the earlier stage. The veins are locally accompanied by narrow skarn-like (garnet-diopside-amphibole) wall rock alteration zones. SHRIMP Th-Pb analyses of allanite yielded an age of 1525 ± 18 Ma, interpreted as the minimum age of mineralisation. The maximum age is provided by a ~1550 Ma SHRIMP U-Pb age for a pegmatite that predates the fluorapatite veins. Other isotopic systems yielded ages from ~1443 to ~345 Ma, implying significant post-depositional isotopic disturbance. Calculation of initial ɛNd and 87Sr/86Sr at 1525 Ma and stable isotope data are consistent with an enriched mantle or lower crust source, although post-depositional disturbance is likely. Processes leading to formation of Nolans Bore began with north-dipping subduction along the south margin of the Aileron Province at 1820-1750 Ma, producing a metasomatised, volatile-rich, lithospheric mantle wedge. About 200 million years later, near the end of the Chewings Orogeny, this reservoir and/or the lower crust sourced alkaline low-degree partial melts which passed into the mid- and upper-crust. Fluids derived from these melts, which may have included phosphatic melts, eventually deposited the Nolans Bore fluorapatite veins due to fluid-rock interaction, cooling, depressurisation and/or fluid mixing. Owing to its size and high concentration of Th (2500 ppm), in situ radiogenic heating caused significant recrystallisation and isotopic resetting. The system finally cooled below 300 °C at ~370 Ma, possibly in response to unroofing during the Alice Springs

  4. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems

    NASA Astrophysics Data System (ADS)

    Chalk, Steven G.; Miller, James F.

    Reducing or eliminating the dependency on petroleum of transportation systems is a major element of US energy research activities. Batteries are a key enabling technology for the development of clean, fuel-efficient vehicles and are key to making today's hybrid electric vehicles a success. Fuel cells are the key enabling technology for a future hydrogen economy and have the potential to revolutionize the way we power our nations, offering cleaner, more efficient alternatives to today's technology. Additionally fuel cells are significantly more energy efficient than combustion-based power generation technologies. Fuel cells are projected to have energy efficiency twice that of internal combustion engines. However before fuel cells can realize their potential, significant challenges remain. The two most important are cost and durability for both automotive and stationary applications. Recent electrocatalyst developments have shown that Pt alloy catalysts have increased activity and greater durability than Pt catalysts. The durability of conventional fluorocarbon membranes is improving, and hydrocarbon-based membranes have also shown promise of equaling the performance of fluorocarbon membranes at lower cost. Recent announcements have also provided indications that fuel cells can start from freezing conditions without significant deterioration. Hydrogen storage systems for vehicles are inadequate to meet customer driving range expectations (>300 miles or 500 km) without intrusion into vehicle cargo or passenger space. The United States Department of Energy has established three centers of Excellence for hydrogen storage materials development. The centers are focused on complex metal hydrides that can be regenerated onboard a vehicle, chemical hydrides that require off-board reprocessing, and carbon-based storage materials. Recent developments have shown progress toward the 2010 DOE targets. In addition DOE has established an independent storage material testing center

  5. Elucidation of atomic scale mechanisms for polytetrafluoroethylene tribology using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Barry, Peter R.

    Polytetrafluoroethylene (PTFE) is a polymer that has been widely exploited commercially as a result of its low friction, 'non-stick' properties. The polymer has found usage as 'non-stick,' chemically resistant coatings for bearings, valves, rollers and pipe linings with applications in industries ranging from food and chemical processing to construction, automotive and aerospace. The major drawback of PTFE in low friction applications involves its excessive wear rate. For decades, scientists and engineers have sought to improve the polymer's wear resistance while maintaining its low sliding friction by reinforcing the polymer matrix with a host of filler materials ranging from fibril to particulate. In this study, a different approach is taken in which the atomic scale phenomena between two crystalline PTFE surfaces in sliding contact are examined. The goal is to obtain atomic-level insights into PTFE's low friction and high wear rate to aid in the designing of effective polymer based tribological composites for extreme condition applications. To accomplish this, several tribological conditions were varied. These included sliding direction of the two polymer surfaces with respect to their chain alignment, sliding velocity, degree of crystalline phase rigidity, interfacial contact pressure, sample temperature and the presence of fluorocarbon fluids between the two crystalline PTFE surfaces. From these studies, it was found that crystalline PTFE-PTFE sliding demonstrates friction anisotropy. Low friction and molecular wear was observed when sliding in the direction of the chain alignment with high friction and wear behavior dominating when sliding in a direction perpendicular to the chain alignment. For the range of cross-link density (average linear density of 6.2 to 11.1 A) and sliding rate (5 m/s to 20 m/s) explored, a significant change in friction behavior or wear mechanisms was not observed. Under conditions of increased normal load or low temperature however

  6. Multi-functional Textiles for Military Applications

    NASA Astrophysics Data System (ADS)

    Malshe, Priyadarshini

    The objective of this research was to develop the standard rip-stop weave military uniform fabric made of 50/50 nylon/cotton (NyCo) to achieve a repellent front surface and an antibacterial bulk for protection from chemical-biological warfare agents. Diallyldimethylammonium chloride (DADMAC), a quaternary ammonium salt monomer was graft polymerized on NyCo fabric to impart antimicrobial capability using atmospheric pressure glow discharge plasma. Plasma was used to induce free radical chain polymerization of the DADMAC monomer to introduce a graft polymerized network on the fabric with durable antimicrobial properties. Pentaerythritol tertraacrylate was used as a cross-linking agent to obtain a highly cross-linked, durable polymer network. The presence of polyDADMAC on the fabric surface was confirmed using acid dye staining, SEM, and TOF-SIMS. Antibacterial performance was evaluated using standard AATCC test method 100 for both gram positive and gram negative bacteria. Results showed 99.9% reduction in the bacterial activities of K. pneumoniae and S. aureus. To achieve repellency on NyCo front surface, an environmentally benign C6 fluorocarbon monomer, 2-(perfluorohexyl) ethyl acrylate was graft polymerized using plasma on the front surface of the NyCo fabric which was already grafted with polyDADMAC for anti-microbial properties. The surface was characterized by IR spectroscopy and XPS. The presence of fluorine on the surface was mapped and confirmed by TOF-SIMS. SEM images showed a uniform layer of fluorocarbon polymer on the fiber surface. High water contact angle of 144° was obtained on the surface. The surface also achieved a high AATCC Test Method 193 rating of 9 and AATCC Test Method 118 rating of 5, indicating that the surface could repel a fluid with surface tension as low as 24 dynes/cm. Appropriate experimental designs and statistical modeling of data helped identify the experimental space and optimal factor combinations for best response. The study

  7. Solvent organization around the perfluoro group of coumarin 153 governs its photophysical properties: An experimental and simulation study of coumarin dyes in ethanol as well as fluorinated ethanol solvents.

    PubMed

    Mondal, Saptarsi; Halder, Ritaban; Biswas, Biswajit; Jana, Biman; Singh, Prashant Chandra

    2016-05-14

    The self-aggregation property of the perfluoro group containing molecules makes it important in the research fields of biology and polymer and organic synthesis. In the quest of understanding the role of the perfluoro group on the photophysical properties of perfluoro-containing molecules in biologically important fluoroethanol solvents, we have applied photophysical as well as molecular dynamics simulation techniques to explore the properties of perfluoro groups containing molecule coumarin-153 (C153) in ethanol (ETH), monofluoroethanol (MFE), difluoroethanol (DFE), and trifluoroethanol (TFE) and compared them with the molecules without perfluoro moiety, namely coumarin-6H (C6H) and coumarin-480 (C480). In contrast to C6H and C480, the excited state lifetime of C153 in fluorinated ETHs is not monotonic. The excited state lifetime of C153 decreases in MFE and DFE as compared to ETH, whereas in TFE, it increases as compared to MFE and DFE. Molecular dynamics simulation reveals that the carbon terminal away from the OH group of fluorinated ETHs has a preferential orientation near the perfluoro (CF3) group of C153. In MFE and DFE, the CF3 group of C153 prefers to have a CF2-F⋯H -(CHF) type of electrostatic interaction over CF2-F⋯F -(CH2) kind of dispersion interaction which increases the rate of nonradiative decay, probably due to the electrostatic nature of the CF2-F⋯H -(CHF) hydrogen bond. On the other hand, in TFE, C-F⋯ F-C type of dispersion interaction, also known as fluorous interaction, takes place between the CF3 groups of C153 and TFE which decreases the rate of nonradiative rate as compared to MFE and DFE, leading to the increased lifetime of C153 in TFE. Photophysical and MD simulation studies clearly depict that the structural organization of solvents and their interaction with the fluorocarbon group are crucial factors for the photophysical behavior of the fluorocarbon containing molecules.

  8. Solvent organization around the perfluoro group of coumarin 153 governs its photophysical properties: An experimental and simulation study of coumarin dyes in ethanol as well as fluorinated ethanol solvents

    NASA Astrophysics Data System (ADS)

    Mondal, Saptarsi; Halder, Ritaban; Biswas, Biswajit; Jana, Biman; Singh, Prashant Chandra

    2016-05-01

    The self-aggregation property of the perfluoro group containing molecules makes it important in the research fields of biology and polymer and organic synthesis. In the quest of understanding the role of the perfluoro group on the photophysical properties of perfluoro-containing molecules in biologically important fluoroethanol solvents, we have applied photophysical as well as molecular dynamics simulation techniques to explore the properties of perfluoro groups containing molecule coumarin-153 (C153) in ethanol (ETH), monofluoroethanol (MFE), difluoroethanol (DFE), and trifluoroethanol (TFE) and compared them with the molecules without perfluoro moiety, namely coumarin-6H (C6H) and coumarin-480 (C480). In contrast to C6H and C480, the excited state lifetime of C153 in fluorinated ETHs is not monotonic. The excited state lifetime of C153 decreases in MFE and DFE as compared to ETH, whereas in TFE, it increases as compared to MFE and DFE. Molecular dynamics simulation reveals that the carbon terminal away from the OH group of fluorinated ETHs has a preferential orientation near the perfluoro (CF3) group of C153. In MFE and DFE, the CF3 group of C153 prefers to have a CF2—F⋯H —(CHF) type of electrostatic interaction over CF2—F⋯F —(CH2) kind of dispersion interaction which increases the rate of nonradiative decay, probably due to the electrostatic nature of the CF2—F⋯H —(CHF) hydrogen bond. On the other hand, in TFE, C—F⋯ F—C type of dispersion interaction, also known as fluorous interaction, takes place between the CF3 groups of C153 and TFE which decreases the rate of nonradiative rate as compared to MFE and DFE, leading to the increased lifetime of C153 in TFE. Photophysical and MD simulation studies clearly depict that the structural organization of solvents and their interaction with the fluorocarbon group are crucial factors for the photophysical behavior of the fluorocarbon containing molecules.

  9. Versatile Coating

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A radome at Logan Airport and a large parabolic antenna at the Wang Building in Massachusetts are protected from weather, corrosion and ultraviolet radiation by a coating, specially designed for antennas and radomes, known as CRC Weathertite 6000. The CRC 6000 line that emerged from Boyd Coatings Research Co., Inc. is a solid dispersion of fluorocarbon polymer and polyurethane that yields a tough, durable film with superior ultraviolet resistance and the ability to repel water and ice over a long term. Additionally, it provides resistance to corrosion, abrasion, chemical attacks and impacts. Material can be used on a variety of substrates, such as fiberglass, wood, plastic and concrete in addition to steel and aluminum. In addition Boyd Coatings sees CRC 6000 applicability as an anti-icing system coated on the leading edge of aircraft wings.

  10. Development and evaluation of elastomeric materials for geothermal applications

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Kalfayan, S. H.; Reilly, W. W.; Ingham, J. D.

    1978-01-01

    A material for a casing packer for service for 24 hours in a geothermal environment was developed by synthesis of new elastomers and formulation of available materials. Formulation included use of commercial elastomer gumstocks and also crosslinking of plastic (high Tg) materials. Fibrous reinforcement of fluorocarbon rubbers was emphasized. Organic fiber reinforcement did not increase hot properties significantly. Glass fiber reinforcement gave significant increase in tensile properties. Elongation was reduced, and the glass-reinforced composition examined so far did not hold up well in the geothermal environment. Colloidal asbestos fibers were also investigated. A few experiments with polyphenyl ether gave material with low tensile and high compression set. Available high styrene SBR compositions were studied. Work to date suggests that new synthetic polymers will be required for service in geothermal environments.

  11. Reconfigurable and responsive droplet-based compound micro-lenses

    PubMed Central

    Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias

    2017-01-01

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505

  12. Metal Surface Decontamination by the PFC Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui-Jun Won; Gye-Nam Kim; Wang-Kyu Choi

    2006-07-01

    PFC (per-fluorocarbon) spray decontamination equipment was fabricated and its decontamination behavior was investigated. Europium oxide powder was mixed with the isotope solution which contains Co-60 and Cs-137. The different shape of metal specimens artificially contaminated with europium oxide powder was used as the surrogate contaminants. Before and after the application of the PFC spray decontamination method, the radioactivity of the metal specimens was measured by MCA. The decontamination factors were in the range from 9.6 to 62.4. The spent PFC solution was recycled by distillation. Before and after distillation, the turbidity of PFC solution was also measured. From the testmore » results, it was found that more than 98% of the PFC solution could be recycled by a distillation. (authors)« less

  13. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, John

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making themore » global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.« less

  14. Reconfigurable and responsive droplet-based compound micro-lenses.

    PubMed

    Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias

    2017-03-07

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.

  15. Tetraperchlorate of methane

    NASA Technical Reports Server (NTRS)

    Schack, C. J.

    1972-01-01

    The preparation of the tetraperchlorate of methane (TPM) was attempted. Displacement of halogen from carbon tetrahalides was accomplished with either CCl4 or CBr4 using the halogen perchlorates, ClOClO3, and BOClO3. Although the displacement process was successful, the generated carbon perchlorate intermediates were not isolated. Instead, these species decomposed to COCl2, CO2, and Cl2O7. The vigorous displacement reaction that often occurred required moderation. Fluorocarbon solvents and chlorine perchlorate were successfully tested for compatibility, permitting their use in these synthetic reactions. While the sought for moderating effect was obtained, the net result of the displacement of halogen from CX sub 4 substrates was the same as before. Thus only CO2, COCl2, and Cl2O7 were isolated.

  16. Correlating ion energies and CF{sub 2} surface production during fluorocarbon plasma processing of silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ina T.; Zhou Jie; Fisher, Ellen R.

    2006-07-01

    Ion energy distribution (IED) measurements are reported for ions in the plasma molecular beam source of the imaging of radicals interacting with surfaces (IRIS) apparatus. The IEDs and relative intensities of nascent ions in C{sub 3}F{sub 8} and C{sub 4}F{sub 8} plasma molecular beams were measured using a Hiden PSM003 mass spectrometer mounted on the IRIS main chamber. The IEDs are complex and multimodal, with mean ion energies ranging from 29 to 92 eV. Integrated IEDs provided relative ion intensities as a function of applied rf power and source pressure. Generally, higher applied rf powers and lower source pressures resultedmore » in increased ion intensities and mean ion energies. Most significantly, a comparison to CF{sub 2} surface interaction measurements previously made in our laboratories reveals that mean ion energies are directly and linearly correlated to CF{sub 2} surface production in these systems.« less

  17. Study on Separation of Structural Isomer with Magneto-Archimedes method

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Mori, T.; Akiyama, Y.; Mishima, F.; Nishijima, S.

    2017-09-01

    Organic compounds are refined by separating their structural isomers, however each separation method has some problems. For example, distillation consumes large energy. In order to solve these problems, new separation method is needed. Considering organic compounds are diamagnetic, we focused on magneto-Archimedes method. With this method, particle mixture dispersed in a paramagnetic medium can be separated in a magnetic field due to the difference of the density and magnetic susceptibility of the particles. In this study, we succeeded in separating isomers of phthalic acid as an example of structural isomer using MnCl2 solution as the paramagnetic medium. In order to use magneto-Archimedes method for separating materials for food or medicine, we proposed harmless medium using oxygen and fluorocarbon instead of MnCl2 aqueous solution. As a result, the possibility of separating every structural isomer was shown.

  18. Effects of tacky mat contamination on bond degradation for Chemlok/liner and NBR/liner bonds

    NASA Technical Reports Server (NTRS)

    Padilla, A. M.

    1989-01-01

    Tacky mats are placed by the rubber lay-up areas for the solid rocket motor segments. These mats dust off the shoes prior to entering the platform where the lay-up work is performed. The possibility exists that a tacky mat could be touched with gloved hands prior to handling the uncured nitride butadiene rubber (NBR). Tests were run to determine if NBR were accidentally touched would there be any degradation of the liner/NBR bond. The tacky mats were judged solely on the basis of bond degradation caused by either direct or indirect contamination. Test results all indicate that there was no notable NBR/Chemlok or liner/NBR bond degradation on samples that came into contact with the tacky mat material. Testing procedures are described. The tacky mat adhesive composition does not contain fluorocarbons or release agents that would affect bonding.

  19. Manufacture and quality control of interconnecting wire hardnesses, Volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A standard is presented for manufacture, installation, and quality control of eight types of interconnecting wire harnesses. The processes, process controls, and inspection and test requirements reflected are based on acknowledgment of harness design requirements, acknowledgment of harness installation requirements, identification of the various parts, materials, etc., utilized in harness manufacture, and formulation of a typical manufacturing flow diagram for identification of each manufacturing and quality control process, operation, inspection, and test. The document covers interconnecting wire harnesses defined in the design standard, including type 1, enclosed in fluorocarbon elastomer convolute, tubing; type 2, enclosed in TFE convolute tubing lines with fiberglass braid; type 3, enclosed in TFE convolute tubing; and type 5, combination of types 3 and 4. Knowledge gained through experience on the Saturn 5 program coupled with recent advances in techniques, materials, and processes was incorporated.

  20. Development of Ciprofloxacin-loaded contact lenses using fluorous chemistry

    PubMed Central

    Zhu, Zhiling; Li, Siheng; McDermott, Alison M.

    2017-01-01

    In this work, we developed a simple method to load drugs into commercially available contact lenses utilizing fluorous chemistry. We demonstrated this method using model compounds including fluorous-tagged fluorescein and antibiotic ciprofloxacin. We showed that fluorous interactions facilitated the loading of model molecules into fluorocarbon-containing contact lenses, and that the release profiles exhibited sustained release. Contact lenses loaded with fluorous-tagged ciprofloxacin exhibited antimicrobial activity against Pseudomonas aeruginosa in vitro, while no cytotoxicity towards human corneal epithelial cells was observed. To mimic the tear turnover, we designed a porcine eye infection model under flow conditions. Significantly, the modified lenses also exhibited antimicrobial efficacy against Pseudomonas aeruginosa in the ex vivo infection model. Overall, utilizing fluorous chemistry, we can construct a drug delivery system that exhibits high drug loading capacity, sustained drug release, and robust biological activity. PMID:28188995

  1. Control of internal and external short circuits in lithium batteries using a composite thermal switch

    NASA Technical Reports Server (NTRS)

    Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz

    1991-01-01

    A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.

  2. Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions

    NASA Astrophysics Data System (ADS)

    Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze

    2015-03-01

    In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.

  3. An e.s.c.a. study of atomic oxygen interactions with phosphazene-coated polyimide films

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.; Finney, Lorie

    1991-01-01

    Metallic as well as most nonmetallic materials experience oxidation and mass loss via surface erosion in low earth orbit as shown in previous Space Shuttle flights. This study is an evaluation of select polyphosphazene polymers and their resistance to atomic oxygen attack. Electron spectroscopy for chemical analysis examinations of the surfaces of polyphosphazene coatings were monitored for microstructural changes induced during exposures to atomic oxygen. Sample exposures in oxygen plasmas and O(3P) beam were compared as to their effect on surface compositional changes in the polyphosphazene coating. High resolution line scans revealed rearrangements in the polymer backbone and scissioning reactions involving fluorocarbon units of long chain fluoroalkoxy pendant groups. Atom percents and peak areas of all species provided a detailed profile of the microstructural changes induced in phosphazene polymers as a result of exposures to atomic oxygen.

  4. Design and prototype studies of the TOTEM Roman pot detectors

    NASA Astrophysics Data System (ADS)

    Oriunno, Marco; Battistin, Michele; David, Eric; Guglielmini, Paolo; Joram, Christian; Radermacher, Ernst; Ruggiero, Gennaro; Wu, Jihao; Vacek, Vaclav; Vins, Vaclav

    2007-10-01

    The Roman pots of the TOTEM experiment at LHC will be equipped with edgeless silicon micro-strip detectors. A detector package consists of 10 detector planes cooled at -15C in vacuum. The detector resolution is 20 μm, the overall alignment precision has to be better than 30 μm. The detector planes are composed of a kapton hybrid glued on a substrate made of low expansion alloy, CE07 with 70% Si and 30% Al. An evaporative cooling system based on the fluorocarbon C3F8 with oil-free compressors has been adopted. The throttling of the fluid is done locally through capillaries. A thermo-mechanical prototype has been assembled. The results fully match the requirements and the expectations of calculations. They show a low thermal gradient on the cards and a uniform temperature distribution over the 10 planes.

  5. Influences of different parameters on the microstructure of magnetic-field-induced self-assembled film

    NASA Astrophysics Data System (ADS)

    Dan, X.; Yang, J. J.

    2016-07-01

    Self-assembled films with needle-like microarrays were fabricated using a mixture of cobalt and fluorocarbon resin under a magnetic field. The various influences of magnetic powder content, viscosity and size distribution on the structure of the self-assembled films were investigated. The self-assembled film morphologies were characterized by stereomicroscope and scanning electron microscopy. Experimental results indicate that an increase in magnetic powder content results in greater unit height and diameter, and that a reduction in viscosity results in increasing array density and decreasing unit width. Additionally, particles with narrow size distribution were able to attain more regular microarray structures. The structural alterations were closely related to numerous effects such as van der Waals forces, dipole-dipole interactions, and external-dipole interactions. The self-assembled film demonstrated magnetic anisotropy, as identified by vibrating sample magnetometry (VSM).

  6. Neutron Radiography of Fluid Flow for Geothermal Energy Research

    NASA Astrophysics Data System (ADS)

    Bingham, P.; Polsky, Y.; Anovitz, L.; Carmichael, J.; Bilheux, H.; Jacobsen, D.; Hussey, D.

    Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the ;particles; and imaging with 10 ms exposures.

  7. Crystallization process of zircon and fergusonite during hydrothermal alteration in Nechalacho REE deposit, Thor Lake, Canada

    NASA Astrophysics Data System (ADS)

    Hoshino, M.; Watanabe, Y.; Murakami, H.; Kon, Y.; Tsunematsu, M.

    2012-04-01

    The core samples of two drill holes, which penetrate sub-horizontal mineralized horizons at Nechalacho REE deposit in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify magmatic and hydrothermal processes that enriched HFSE (e.g. Zr, Nb, Y and REE). Zircon is the most common REE minerals in Nechalacho REE deposit. The zircon is divided into five types as follows: Type-1 zircon occurs as single grain in phlogopite and the chondrite-normalized REE pattern is characterized by a steeply-rising slope from the LREE to the HREE with a positive Ce-anomaly and negative Eu-anomaly. This chemical characteristic is similar to that of igneous zircon. Type-2 zircon consists of HREE-rich magmatic porous core and LREE-Nb-F-rich hydrothermal rim. This type zircon is mostly included in phlogopite and fluorite, and occasionally in microcline. Type-3 zircon is characterized by euhedral to anhedral crystal, occurring in a complex intergrowth with REE fluorocarbonates. Type-3 zircons have high contents of REE, Nb and fluorine. Type-4 zircon consists of porous-core and -rim zones, but their chemical compositions are similar to each other. This type zircon is a subhedral crystal rimmed by fergusonite. Type-5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircons are filled by fergusonite. Type-4 and -5 zircons show low REE and Nb contents. Occurrences of these five types of zircon are different according to the depth and degree of the alteration by hydrothermal solutions rich in F- and CO3 of the two drill holes, which permit a model for evolution of the zircon crystallization in Nechalacho REE deposit as follows: (1) type-1 (single magmatic zircon) is formed in miaskitic syenite. (2) LREE-Nb-F-rich hydrothermal zircon formed around HREE-rich magmatic zircon (type-2 zircon); (3) type-3 zircon crystallized thorough F and CO3-rich hydrothermal alteration of type-2 zircon which formed the complex

  8. Post-Flight Analysis of Selected Fluorocarbon and Other Thin Film Polymer Specimens Flown on MISSE-5

    NASA Technical Reports Server (NTRS)

    DeGroh, Kim; Finckenor, Miria; Minton, Tim; Brunsvold, Amy; Pippin, Gary

    2007-01-01

    Twenty thin film specimens were flown on M1SSE-5 as a cooperative effort between several organizations. This presentation will report results of initial inspections and post-flight measurements of the optical properties and recession of these materials due to the approx.13 month exposure period on the exterior of the International Space Station. These specimens were located on the "anti-solar" side of the MISSE-5 container and received a low number of Equivalent Sun Hours of solar UV exposure. Profilometry and/or ATF measurements will be conducted to determine thickness changes and atomic oxygen-induced recession rates Six of the specimens were covered with thin Kapton films, 0.1 and 0.3 mil in thickness. The 0.1 mil Kapton was almost completely eroded, suggesting that the atomic oxygen fluence is <8 x 10(exp 19) atoms/sq cm, similar to levels experienced during Space Shuttle materials experiments in the 1980's and 1990's. A comparison of results from MISSE-5 and Space Shuttle experiments will be included for those materials common to both the short and long-term exposures.

  9. Synthesis and biological screening by novel hybrid fluorocarbon hydrocarbon compounds for use as artificial blood substitutes

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Scherer, K.; Toronto, A.; Lawson, D.; Terranova, T.; Yavrouian, A.; Astle, L.; Harvey, S.; Kaaelble, D. H.

    1979-01-01

    A series of hybrid fluorochemicals of general structure R(1)R(2)R(3)CR(4) was prepared where the R(i)'s (i=1,2,3) is a saturated fluoroalkyl group of formula C sub N F sub 2n+1, and R(4) is an alkyl group C sub n H sub 2n+1 or a related moiety containing amino, ether, or ester functions but no CF bonds. Compounds of this class containing approximately eight to twenty carbons total have physical properties suitable for use as the oxygen carrying phase of fluorochemical emulsion artificial blood. The chemical synthesis, and physical and biological testing of pure single isomers of the proposed artificial blood candidate compounds are included. Significant results are given.

  10. Fluorocarbons as oxygen carriers. II. An NMR study of partially or totally fluorinated alkanes and alkenes

    NASA Astrophysics Data System (ADS)

    Ali Hamza, M'Hamed; Serratrice, Guy; Stébé, Marie-José; Delpuech, Jean-Jacques

    Highly fluorinated compounds of the general type R FR H or R FR H'R F, with R F: n-C nF 2 n+1 n = 6, 7, or 8; R H: C 2H 5, CHCH 2, n-C 8H 17; R H': CHCH, CH 2CH 2, are studied either as pure degassed liquids or as solvents of oxygen, using 13C relaxation times T 1 measurements in each case. Comparison of the relaxation data for the degassed liquids with those relative to the analogous n-alkanes provides evidence for slower internal segmental motions in the perfluoroalkyl chains. This rate decrease is shown to arise mainly from purely inertial effects and not from increased rotational potential barriers, thus suggesting similar flexibilities of both hydrocarbon and perfluorocarbon chains. Solubilities of oxygen (in mole fractions) are higher in fluoroalkanes than in previously studied hexafluorobenzene (J-J. Delpuech, M. A. Hamza, G. Serratrice, and M. J. Stebe, J. Chem. Phys.70, 2680 (1979)). Relaxation data are expressed by the variation rates qx of relaxation rates T1-1 per mole fraction of dissolved oxygen. Values of qx. roughly decrease with the total length of the aliphatic chains, and from the ends of the center of each chain, except for C 6F 13CHCHC 6F 13. These results are not consistent with specific attractive oxygen-fluorine forces, the major factor for solubility being the liquid structure of the solvent, mainly determined by the shape of molecules, according to Chandler's viewpoint.

  11. Synthesis and characterization of self-assembled monolayers on gold generated from partially fluorinated alkanethiols and aliphatic dithiocarboxylic acids

    NASA Astrophysics Data System (ADS)

    Colorado, Ramon, Jr.

    The formation of novel self-assembled monolayers (SAMs) on gold from the adsorption of four distinct series of partially fluorinated alkanethiols (PFAs) and one series of chelating aliphatic dithiocarboxylic acids (ADTCAs) is reported. The SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The results for the PFA SAMs provided evidence for both the importance of oriented surface dipoles in influencing interfacial wettabilities and the significance of the degree of fluorination of the PFAs in determining the dispersive interfacial energies of the films. In addition, a series of PFA SAMs was used to demonstrate that the attenuation lengths of photoelectrons in fluorocarbon films are indistinguishable from those in hydrocarbon films. The results for the ADTCA SAMs demonstrated that the use of a chelating headgroup induces structural changes within the monolayers that influence the interfacial properties of the films.

  12. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  13. Tuned alexandrite laser for dentistry

    NASA Astrophysics Data System (ADS)

    Sulc, Jan; Jelinkova, Helena; Dostalova, Tatjana; Miyagi, Mitsunobu

    1999-12-01

    A tunable solid state laser system has been developed emitting visible light in the region from 710 to 775 nm, which can be used for medical applications. The laser head of this system is composed of alexandrite crystal rod, two dielectric mirrors, and a tuning element. The maximum reached output energy in the free running multimode regime was 400 mJ with the pulse duration of 70 micrometers . The output laser radiation was guided via a multimode quartz fiber or via a special fluorocarbon polymer-coated silver hollow glass waveguide. At first, this radiation with laser fluency of 2.5 J/cm2 was used for the ablation of dental calculus. Next, the laser radiation propagation in the root canal and its effect on bacteria was proved. The dissipated energy measurement was made inside and outside the tooth. Hence, the alexandrite laser could be useful for medical applications in dentistry.

  14. Mass analysis of neutral particles and ions released during electrical breakdowns on spacecraft surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1983-01-01

    A specialized spectrometer was designed and developed to measure the mass and velocity distributions of neutral particles (molecules and molecular clusters) released from metal-backed Teflon and Kapton films. Promising results were obtained with an insulation breakdown initiation system based on a moveable contact touching the insulated surfaces. A variable energy, high voltage pulse is applied to the contact. The resulting surface damage sites can be made similar in size and shape to those produced by a high voltage electron beam system operating at similar discharge energies. The point discharge apparatus was used for final development of several high speed recording systems and for measurements of the composition of the materials given off by the discharge. Results with this apparatus show evolution of large amounts of fluorocarbon fragments from discharge through Teflon FEP, while discharges through Kapton produce mainly very light hydrocarbon fragments at masses below about 80 a.m.u.

  15. Synthesis of Mikto-Arm Star Peptide Conjugates.

    PubMed

    Koo, Jin Mo; Su, Hao; Lin, Yi-An; Cui, Honggang

    2018-01-01

    Mikto-arm star peptide conjugates are an emerging class of self-assembling peptide-based structural units that contain three or more auxiliary segments of different chemical compositions and/or functionalities. This group of molecules exhibit interesting self-assembly behavior in solution due to their chemically asymmetric topology. Here we describe the detailed procedure for synthesis of an ABC Mikto-arm star peptide conjugate in which two immiscible entities (a saturated hydrocarbon and a hydrophobic and lipophobic fluorocarbon) are conjugated onto a short β-sheet forming peptide sequence, GNNQQNY, derived from the Sup35 prion, through a lysine junction. Automated and manual Fmoc-solid phase synthesis techniques are used to synthesize the Mikto-arm star peptide conjugates, followed by HPLC purification. We envision that this set of protocols can afford a versatile platform to synthesize a new class of peptidic building units for diverse applications.

  16. Comparison of Hyperthermal Ground Laboratory Atomic Oxygen Erosion Yields With Those in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Dill, Grace C.; Loftus, Ryan J.; deGroh, Kim K.; Miller, Sharon K.

    2013-01-01

    The atomic oxygen erosion yields of 26 materials (all polymers except for pyrolytic graphite) were measured in two directed hyperthermal radio frequency (RF) plasma ashers operating at 30 or 35 kHz with air. The hyperthermal asher results were compared with thermal energy asher results and low Earth orbital (LEO) results from the Materials International Space Station Experiment 2 and 7 (MISSE 2 and 7) flight experiments. The hyperthermal testing was conducted to a significant portion of the atomic oxygen fluence similar polymers were exposed to during the MISSE 2 and 7 missions. Comparison of the hyperthermal asher prediction of LEO erosion yields with thermal energy asher erosion yields indicates that except for the fluorocarbon polymers of PTFE and FEP, the hyperthermal energy ashers are a much more reliable predictor of LEO erosion yield than thermal energy asher testing, by a factor of four.

  17. Solar silicon via improved and expanded metallurgical silicon technology

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.; Dosaj, V. D.; Mccormick, J. R.

    1977-01-01

    A completed preliminary survey of silica sources indicates that sufficient quantities of high-purity quartz are available in the U.S. and Canada to meet goals. Supply can easily meet demand for this little-sought commodity. Charcoal, as a reductant for silica, can be purified to a sufficient level by high-temperature fluorocarbon treatment and vacuum processing. High-temperature treatment causes partial graphitization which can lead to difficulty in smelting. Smelting of Arkansas quartz and purified charcoal produced kilogram quantities of silicon having impurity levels generally much lower than in MG-Si. Half of the goal was met of increasing the boron resistivity from 0.03 ohm-cm in metallurgical silicon to 0.3 ohm-cm in solar silicon. A cost analysis of the solidification process indicate $3.50-7.25/kg Si for the Czochralski-type process and $1.50-4.25/kg Si for the Bridgman-type technique.

  18. Study of toxicological evaluation of fire suppressants and extinguishers

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The application of fluorocarbons as possible candidates for fire extinguishers and/or suppressants in confined spaces (such as spacecraft, aircraft, or submarines) was investigated, with special emphasis on their safety to man since they would be inhaled on an almost continuous basis. Short-term exposure experiments, using various animal species, were devised to look at specific parameters in order to determine which of the candidate compounds were sufficiently non-toxic to warrant long-term investigations. The following physiologic criteria were examined; tissue distribution, fluoride concentration, effect on mitochondria, microsomes, liposomes, and liver cell nuclei, erythrocyte fragility, clinical chemistry values, hematology, pathology, cardiac sensitization, behavioral effects. Various rodent species were used for initial investigations, with non-human primate exposures for Freon 116 which was warranted for negative results on rodents. Various types of exposure chambers were used, including closed dynamic chambers allowing for a recirculating atmosphere.

  19. A search for the prewetting line. [in binary liquid system at vapor-liquid interface

    NASA Technical Reports Server (NTRS)

    Schmidt, J. W.; Moldover, M. R.

    1986-01-01

    This paper describes efforts to locate the prewetting line in a binary liquid system (isopropanol-perfluoromethylcyclohexane) at the vapor-liquid interface. Tight upper bounds were placed on the temperature separation (0.2 K) between the prewetting line and the line of bulk liquid phase separation. The prewetting line in systems at equilibrium was not detected. Experimental signatures indicative of the prewetting line occurred only in nonequilibrium situations. Several theories predict that the adsorption of one of the components (the fluorocarbon, in this case) at the liquid-vapor interface should increase abruptly, at a temperature sightly above the temperature at which the mixture separates into two liquid phases. A regular solution calculation indicates that this prewetting line should have been easily detectable with the instruments used in this experiment. Significant features of the experiment are: (1) low-gradient thermostatting, (2) in situ stirring, (3) precision ellipsometry from the vapor-liquid interface, (4) high resolution differential index of refraction measurements using a novel cell design, and (5) computer control.

  20. Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique

    NASA Astrophysics Data System (ADS)

    Yin, Jiali; Mei, May Lei; Li, Quanli; Xia, Rong; Zhang, Zhihong; Chu, Chun Hung

    2016-05-01

    We aimed to create a slippery liquid-infused enamel surface with antibiofouling property to prevent dental biofilm/plaque formation. First, a micro/nanoporous enamel surface was obtained by 37% phosphoric acid etching. The surface was then functionalized by hydrophobic low-surface energy heptadecafluoro-1,1,2,2-tetra- hydrodecyltrichlorosilane. Subsequent infusion of fluorocarbon lubricants (Fluorinert FC-70) into the polyfluoroalkyl-silanized rough surface resulted in an enamel surface with slippery liquid-infused porous surface (SLIPS). The results of water contact angle measurement, diffuse-reflectance Fourier transform infrared spectroscopy, and atomic force microscope confirmed that the SLIPS was successfully constructed on the enamel surface. The antibiofouling property of the SLIPS was evaluated by the adsorption of salivary protein of mucin and Streptococcus mutans in vitro, as well as dental biofilm formation using a rabbit model in vivo. The results showed that the SLIPS on the enamel surface significantly inhibited mucin adhesion and S. mutans biofilm formation in vitro, and inhibited dental plaque formation in vivo.

  1. The evolution of spatial ordering of oil drops fast spreading on a water surface

    PubMed Central

    Yamamoto, Daigo; Nakajima, Chika; Shioi, Akihisa; Krafft, Marie Pierre; Yoshikawa, Kenichi

    2015-01-01

    The design of dynamically self-assembled systems is of high interest in science and technology. Here, we report a unique cascade in the self-ordering of droplets accompanied by a dewetting transition. The dynamic self-emergent droplets are observed when a thin liquid layer of an immiscible fluorocarbon oil (perfluorooctyl bromide, PFOB) is placed on a water surface. Due to the gradual evaporation of PFOB, a circular PFOB-free domain appears as a result of a local dewetting transition. A circular pearling structure is generated at the rim with the growth of the dewetting hole. As the next stage, linear arrays of droplets are generated in a radial manner from the centre of the hole. These one-dimensional arrangements then evolve into two-dimensional hexagonal arrays of microdroplets through collective rhythmical shrinking/expanding motions. The emergence of such dynamic patterns is discussed in terms of the nonlinear kinetics of the dewetting transition under thermodynamically dissipative conditions. PMID:25998157

  2. Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers.

    PubMed

    Li, Guangyong; Hong, Guo; Dong, Dapeng; Song, Wenhui; Zhang, Xuetong

    2018-06-14

    Wearable devices and systems demand multifunctional units with intelligent and integrative functions. Smart fibers with response to external stimuli, such as electrical, thermal, and photonic signals, etc., as well as offering energy storage/conversion are essential units for wearable electronics, but still remain great challenges. Herein, flexible, strong, and self-cleaning graphene-aerogel composite fibers, with tunable functions of thermal conversion and storage under multistimuli, are fabricated. The fibers made from porous graphene aerogel/organic phase-change materials coated with hydrophobic fluorocarbon resin render a wide range of phase transition temperature and enthalpy (0-186 J g -1 ). The strong and compliant fibers are twisted into yarn and woven into fabrics, showing a self-clean superhydrophobic surface and excellent multiple responsive properties to external stimuli (electron/photon/thermal) together with reversible energy storage and conversion. Such aerogel-directed smart fibers promise for broad applications in the next-generation of wearable systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reactive ion etching effects on carbon-doped Ge2Sb2Te5 phase change material in CF4/Ar plasma

    NASA Astrophysics Data System (ADS)

    Shen, Lanlan; Song, Sannian; Song, Zhitang; Li, Le; Guo, Tianqi; Liu, Bo; Wu, Liangcai; Cheng, Yan; Feng, Songlin

    2016-10-01

    Recently, carbon-doped Ge2Sb2Te5 (CGST) has been proved to be a high promising material for future phase change memory technology. In this article, reactive ion etching (RIE) of phase change material CGST films is studied using CF4/Ar gas mixture. The effects on gas-mixing ratio, RF power, gas pressure on the etch rate, etch profile and roughness of the CGST film are investigated. Conventional phase change material Ge2Sb2Te5 (GST) films are simultaneously studied for comparison. Compared with GST film, 10 % more CF4 is needed for high etch rate and 10% less CF4 for good anisotropy of CGST due to more fluorocarbon polymer deposition during CF4 etching. The trends of etch rates and roughness of CGST with varying RF power and chamber pressure are similar with those of GST. Furthermore, the etch rate of CGST are more easily to be saturated when higher RF power is applied.

  4. Suppression of evaporation of hydrocarbon liquids and fuels by films containing aqueous film forming foam (AFFF) concentrate FC-196. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, J.T.; Burnett, J.C.

    1974-12-31

    Suppression of evaporation of hydrocarbon liquids and fuels by aqueous film containing a fluorocarbon surfactant has been examined as a function of film thickness, time, and hydrocarbon type. The hydrocarbon liquids included the homologous series of n-alkanes from pentane to dodecane, aromatic compounds, motor and aviation gasolines and jet fuels JP-4 and JP-5, and Navy distillate fuel. The surfactant solution used to form the films was a 6 percent solution of aqueous film forming foam (AFFF) concentrate FC-196. Films of the surfactant solution, ranging in thickness from 5 to 100 micrometers, were placed on the surface of the hydrocarbon liquidmore » to test the ability of the film to suppress evaporation over a 1-hr period. Results indicated that for the n-alkanes and the hydrocarbon fuels a certain critical thickness of surfactant solution was required for optimum vapor suppression. In comparison with the n-alkanes, it was considerably more difficult to suppress evaporation of the aromatic compounds. (GRA)« less

  5. A Roof for the Lions' House

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Fans of the National Football League s Detroit Lions don't worry about game day weather. Their magnificent new Pontiac Stadium has a domed, air-supported, fabric roof that admits light but protects the playing field and patrons from the elements. The 80,000-seat Silverdome is the world s largest fabric-covered structure-and aerospace technology played an important part in its construction. The key to economical construction of the Silverdome--and many other types of buildings--is a spinoff of fiber glass Beta yarn coated with Teflon TFE fluorocarbon resin. The big advance it offers is permanency.The team of DuPont, Chemical Fabrics and Birdair have collaborated on a number of fabric structures. Some are supported by air pressure, others by cables alone. Most of the structures are in the recreational category. With conventional construction costs still on the upswing, you're likely to see a great many more permanent facilities enclosed by the aerospace spinoff fabric.

  6. Integration of transmissible organic electronic devices for sensor application

    NASA Astrophysics Data System (ADS)

    Tam, Hoi Lam; Wang, Xizu; Zhu, Furong

    2013-09-01

    A high performance proximity sensor that integrates a front semitransparent organic photodiode (OPD) and an organic light-emitting diode (OLED) is demonstrated. A 0.3-nm-thick plasma-polymerized fluorocarbon film (CFX)-modified thin silver interlayer, serving simultaneously as a semitransparent cathode for the OPD and an anode for OLED, is used to vertically connect the functional organic electronic components. A microcavity OLED is formed between a semitransparent Ag/CFX interlayer and the rear Al cathode enhancing the forward electroluminescence emission in the integrated device. The semitransparent-OPD/OLED stack is designed using an optical admittance analysis method. In the integrated sensor, the front semitransparent OPD component enables a high transmission of light emitted by the integrated OLED unit and a high absorption when light is reflected from objects, thereby to increase the signal/noise ratio. The design and fabrication flexibility of an integrated semitransparent-OPD/OLED device also has cost benefit, making it possible for application in organic proximity sensors.

  7. Inspection of small multi-layered plastic tubing during extrusion, using low-energy X-ray beams

    NASA Astrophysics Data System (ADS)

    Armentrout, C.; Basinger, T.; Beyer, J.; Colesa, B.; Olsztyn, P.; Smith, K.; Strandberg, C.; Sullivan, D.; Thomson, J.

    1999-02-01

    The automotive industry uses nylon tubing with a thin ETFE (ethylene-tetrafluroethylene) inner layer to carry fuel from the tank to the engine. This fluorocarbon inner barrier layer is important to reduce the migration of hydrocarbons into the environment. Pilot Industries has developed a series of real-time inspection stations for dimensional measurements and flaw detection during the extrusion of this tubing. These stations are named LERA TM (low-energy radioscopic analysis), use a low energy X-ray source, a special high-resolution image converter and intensifier (ICI) stage, image capture hardware, a personal computer, and software that was specially designed to meet this task. Each LERA TM station operates up to 20 h a day, 6 days a week and nearly every week of the year. The tubing walls are 1-2 mm thick and the outer layer is nylon and the inner 0.2 mm thick layer is ethylene-tetrafluroethylene.

  8. SiO2 Hole Etching Using Perfluorocarbon Alternative Gas with Small Global Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Ooka, Masahiro; Yokoyama, Shin

    2004-06-01

    The etching of contact holes of 0.1 μm size in SiO2 is achieved using, for the first time, cyclic (c-)C5F8 with a small greenhouse effect in the pulse-modulated inductively coupled plasma. The shape of the cross section of the contact hole is as good as that etched using conventional c-C4F8. It is confirmed that Kr mixing instead of Ar in the plasma does not change the etching characteristics, although lowering of the electron temperature is expected which reduces the plasma-induced damage. Pulse modulation of the plasma is found to improve the etching selectivity of SiO2 with respect to Si. Langmuir probe measurement of the plasma suggests that the improvement of the etching selectivity is due to the deposition of fluorocarbon film triggered by lowering of the electron temperature when the off time of the radio frequency (rf) power is extended.

  9. Apparatus and method for atmospheric pressure reactive atom plasma processing for shaping of damage free surfaces

    DOEpatents

    Carr,; Jeffrey, W [Livermore, CA

    2009-03-31

    Fabrication apparatus and methods are disclosed for shaping and finishing difficult materials with no subsurface damage. The apparatus and methods use an atmospheric pressure mixed gas plasma discharge as a sub-aperture polisher of, for example, fused silica and single crystal silicon, silicon carbide and other materials. In one example, workpiece material is removed at the atomic level through reaction with fluorine atoms. In this example, these reactive species are produced by a noble gas plasma from trace constituent fluorocarbons or other fluorine containing gases added to the host argon matrix. The products of the reaction are gas phase compounds that flow from the surface of the workpiece, exposing fresh material to the etchant without condensation and redeposition on the newly created surface. The discharge provides a stable and predictable distribution of reactive species permitting the generation of a predetermined surface by translating the plasma across the workpiece along a calculated path.

  10. The use of atmospheric measurements to constrain model predictions of ozone change from chlorine perturbations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.

    1987-01-01

    Atmospheric photochemistry models have been used to predict the sensitivity of the ozone layer to various perturbations. These same models also predict concentrations of chemical species in the present day atmosphere which can be compared to observations. Model results for both present day values and sensitivity to perturbation depend upon input data for reaction rates, photodissociation rates, and boundary conditions. A method of combining the results of a Monte Carlo uncertainty analysis with the existing set of present atmospheric species measurements is developed. The method is used to examine the range of values for the sensitivity of ozone to chlorine perturbations that is possible within the currently accepted ranges for input data. It is found that model runs which predict ozone column losses much greater than 10 percent as a result of present fluorocarbon fluxes produce concentrations and column amounts in the present atmosphere which are inconsistent with the measurements for ClO, HCl, NO, NO2, and HNO3.

  11. The importance of the Montreal Protocol in protecting climate.

    PubMed

    Velders, Guus J M; Andersen, Stephen O; Daniel, John S; Fahey, David W; McFarland, Mack

    2007-03-20

    The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer is a landmark agreement that has successfully reduced the global production, consumption, and emissions of ozone-depleting substances (ODSs). ODSs are also greenhouse gases that contribute to the radiative forcing of climate change. Using historical ODSs emissions and scenarios of potential emissions, we show that the ODS contribution to radiative forcing most likely would have been much larger if the ODS link to stratospheric ozone depletion had not been recognized in 1974 and followed by a series of regulations. The climate protection already achieved by the Montreal Protocol alone is far larger than the reduction target of the first commitment period of the Kyoto Protocol. Additional climate benefits that are significant compared with the Kyoto Protocol reduction target could be achieved by actions under the Montreal Protocol, by managing the emissions of substitute fluorocarbon gases and/or implementing alternative gases with lower global warming potentials.

  12. The importance of the Montreal Protocol in protecting climate

    PubMed Central

    Velders, Guus J. M.; Andersen, Stephen O.; Daniel, John S.; Fahey, David W.; McFarland, Mack

    2007-01-01

    The 1987 Montreal Protocol on Substances that Deplete the Ozone Layer is a landmark agreement that has successfully reduced the global production, consumption, and emissions of ozone-depleting substances (ODSs). ODSs are also greenhouse gases that contribute to the radiative forcing of climate change. Using historical ODSs emissions and scenarios of potential emissions, we show that the ODS contribution to radiative forcing most likely would have been much larger if the ODS link to stratospheric ozone depletion had not been recognized in 1974 and followed by a series of regulations. The climate protection already achieved by the Montreal Protocol alone is far larger than the reduction target of the first commitment period of the Kyoto Protocol. Additional climate benefits that are significant compared with the Kyoto Protocol reduction target could be achieved by actions under the Montreal Protocol, by managing the emissions of substitute fluorocarbon gases and/or implementing alternative gases with lower global warming potentials. PMID:17360370

  13. Extraction studies. Final report, May 6, 1996--September 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    During the first week of this effort, an Alpkem RFA-300 4-channel automated chemical analyzer was transferred to the basement of building 42 at TA-46 for the purpose of performing extraction studies. Initially, this instrumentation was applied to soil samples known to contain DNA. Using the SFA (Segmented Flow Analysis) technique, several fluidic systems were evaluated to perform on-line filtration of several varieties of soil obtained from Cheryl Kuske and Kaysie Banton (TA-43, Bldg. 1). Progress reports were issued monthly beginning May 15, 1996. Early in 1997 there was a shift from the conventional 2-phase system (aqueous + air) to amore » 3-phase system (oil + aqueous + air) to drastically reduce sample size and reagent consumption. Computer animation was recorded on videotape for presentations. The time remaining on the subcontract was devoted to setting up existing equipment to incorporate the 3rd phase (a special fluorocarbon oil obtained from DuPont).« less

  14. Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhang, Xiaoxing; Chen, Dachang; Xiao, Song; Tang, Ju

    2018-06-01

    CF4 and COF2 are the two main decomposition products of fluorocarbon gas insulating medium. We explored the gas sensing properties of Ni-MoS2 to CF4 and COF2 based on the density functional theory calculations. The adsorption energy, charge transfer, density of states and electron density difference have been discussed. It was found that the interaction between COF2 molecule and Ni-MoS2 is strong, and the adsorption energy is 0.723 eV. Ni-MoS2 acts as the electron donor and transfers some electrons to COF2 molecule during the interaction. The adsorption energy of CF4 on Ni-MoS2 is lower than that of COF2, and the interaction between them belongs to physical adsorption. Ni-MoS2 has the potential to be used as a gas sensor for COF2 detection using in the field of gas insulated switchgear on-line monitoring.

  15. The effects of specified chemical meals on food intake.

    PubMed

    Koopmans, H S; Maggio, C A

    1978-10-01

    Rats received intragastric infusions of various specified chemical meals and were subsequently tested for a reduction in food intake. A second experiment, using a novel technique, tested for conditioned aversion to the meal infusions. The nonnutritive substances, kaolin clay and emulsified fluorocarbon, had no significant effect on food intake. Infusions of 1 M glucose and 1 M sorbitol reduced feeding behavior, but the 1 M sorbitol infusion also produced a conditioned aversion to flavored pellets paired with the sorbitol infusion, showing that the reduced feeding could have been caused by discomfort. Infusion of a high-fat meal consisting of emulsified triolein mixed with small amounts of sugar and protein or the rat's normal liquid diet, Nutrament, also reduced food intake, and both infusions failed to produce a conditioned aversion. The use of specified meals to understand the chemical basis of satiety requires a sensitive behavioral test to establish that the meal does not cause discomfort or other nonspecific effects.

  16. Duty cycle dependent chemical structure and wettability of RF pulsed plasma copolymers of acrylic acid and octafluorocyclobutane

    NASA Astrophysics Data System (ADS)

    Muzammil, I.; Li, Y. P.; Li, X. Y.; Lei, M. K.

    2018-04-01

    Octafluorocyclobutane and acrylic acid (C4F8-co-AA) plasma copolymer coatings are deposited using a pulsed wave (PW) radio frequency (RF) plasma on low density polyethylene (LDPE). The influence of duty cycle in pulsed process with the monomer feed rate on the surface chemistry and wettability of C4F8-co-AA plasma polymer coatings is studied. The concentration of the carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion. The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer feed rates.

  17. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    NASA Technical Reports Server (NTRS)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  18. STUDIES OF HALOGENATED HYDROCARBONS. PART 1 - STABILITY OF FLUOROCARBONS IN AIR OVER HOPCALITE CATALYST OR STAINLESS STEEL

    DTIC Science & Technology

    A study was made of the catalytic decomposition of a number of fluorine-containing halogenated hydrocarbons in air, using Hopcalite catalyst in a... Hopcalite catalyst had no significant effect on the rate of decomposition of the chlorofluorocarbons. Sulfur hexafluoride in air was stable over Hopcalite ...as those of nuclear submarines. Where they are needed, as in refrigeration systems, it is recommended that R-114, R-14, or R-12 be used since they show the greatest resistance to Hopcalite -catalyzed decomposition.

  19. Tropospheric reactions of the haloalkyl radicals formed from hydroxyl radical reaction with a series of alternative fluorocarbons

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger

    1990-01-01

    In the present assessment, the hydrogen containing halocarbons being considered as alternatives to the the presently used chlorofluorocarbons are the hydrochlorofluorocarbons (HCFCs) 123 (CF3CHCl2), 141b (CFCl2CH3), 142b (CF2ClCH3), 22 (CHF2Cl) and 124 (CF3CHFCl) and the hydrofluorocarbons (HFCs) 134a (CF3CH2F), 152a (CHF2CH3) and 125 (CF3CHF2). All of these HCFCs and HFCs will react with the hydroxyl (OH) radical in the troposphere, giving rise to haloalkyl radicals which then undergo a complex series of reactions in the troposphere. These reactions of the haloalkyl radicals formed from the initial OH radical reactions with the HCFCs and HFCs under tropospheric conditions are the focus here.

  20. Synthesis of hybrid inorganic/organic nitric oxide-releasing silica nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Carpenter, Alexis Wells

    Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to <7 days. An alternative strategy for increasing NO release duration involved directly stabilizing the N-diazeniumdiolate using O2-protecting groups. O2-Methoxymethyl 1-(4-(3-(trimethoxysilyl)propyl))piperazin-1-yl)diazen-1-ium-1,2-diolate (MOM-Pip/NO) was grafted onto mesoporous silica nanoparticles to yield scaffolds with an NO payload of 2.5 μmol NO/mg and an NO release half-life of 23 d. Doping the MOM-Pip/NO-modified particles into resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered

  1. REE mobility during the alteration of Carbonatite and their economic potential.

    NASA Astrophysics Data System (ADS)

    Marien, Christian; Dijkstra, Arjan; Wilkins, Colin

    2016-04-01

    The supply risk of Rare Earth Elements is an unpredictable economic factor for the future application and development of modern technology for the EU. Therefore a better understanding of REE mobilisation during hydrothermal alteration of Carbonatites is essential for a safer supply of REE in general. The hydrothermal alteration of Carbonatite within the Fen Complex (Norway) forms a fine grained red hematized rock type, called Rødbergite, which is partially enriched in REE. The variation of REE within the Rødbergite is poorly understood and problematic for any future REE exploitation from Rødbergite. A genetic model of the formation of Rødbergite will provide more information about the economic potential of Rødbergite. The gradual transformation of carbonatite to Rødbergite is not easily observable due to sparse outcrop in the Fen Complex. A fresh road cut near the Bjørndallen farm (Fen Complex) provides a unique insight to the progressive hydrothermal alteration from carbonatite to Rødbergite and is therefore crucial for a genetic model of the formation of Rødbergite. 14 Samples were taken along the profile. The mineralogical, geochemical and textural characterization of the samples using the SEM as well as major-, trace- and isotopic elemental data revealed the breakdown of the primary minerals due to the infiltration of an oxidizing fluid along grain boundaries. The primary REE-minerals in unaltered Carbonatite are REE fluorocarbonates. With the increasing alteration to Rødbergite REE fluorocarbonates are progressively replaced by hematite. In contrast, monazite - a REE-phosphate - is the dominant REE mineral species in the Rødbergite. A transitional Rødbergite sample shows apatite aggregates with a strong preferential concentration of monazite along the rim of the apatite aggregates. This observation provides strong evidence for the solution of REE in the primary rock (carbonatite) by fluids and later precipitation of REE along phosphate bearing

  2. Spectral separation of gaseous fluorocarbon mixtures and measurement of diffusion constants by 19F gas phase DOSY NMR.

    PubMed

    Marchione, Alexander A; McCord, Elizabeth F

    2009-11-01

    Diffusion-ordered (DOSY) NMR techniques have for the first time been applied to the spectral separation of mixtures of fluorinated gases by diffusion rates. A mixture of linear perfluoroalkanes from methane to hexane was readily separated at 25 degrees C in an ordinary experimental setup with standard DOSY pulse sequences. Partial separation of variously fluorinated ethanes was also achieved. The constants of self-diffusion of a set of pure perfluoroalkanes were obtained at pressures from 0.25 to 1.34 atm and temperatures from 20 to 122 degrees C. Under all conditions there was agreement within 20% of experimental self-diffusion constant D and values calculated by the semiempirical Fuller method.

  3. Gas-phase reactivity of lanthanide cations with fluorocarbons: C-F versus C-H and C-C bond activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornehl, H.H.; Hornung, G.; Schwarz, H.

    1996-10-16

    The gas-phase reactivity of the fluorinated hydrocarbons CF{sub 4}, CHF{sub 3}, CH{sub 3}F, C{sub 2}F{sub 6}, 1,1-C{sub 2}H{sub 4}F{sub 2}, and C{sub 6}F{sub 6} with the lanthanide cations Ce{sup +}, Pr{sup +}, Sm{sup +}, Ho{sup +}, Tm{sup +}, and Yb{sup +} and the reactivity of C{sub 6}H{sub 5}F with all lanthanide cations Ln{sup +} (Ln = La-Lu, with the exception of Pm{sup +}) have been examined by Fourier-transform ion cyclotron resonance mass spectrometry. The perfluorinated compounds tetrafluoromethane and hexafluoroethane as well as trifluoromethane do not react with any lanthanide cation. Selective activation of the strong C-F bonds in fluoromethane, 1,1-difluoroethane,more » hexafluorobenzene, and fluorobenzene appears as a general reaction scheme along the 4f row. Experimental evidence is given for a `harpoon`-like mechanism for the F atom abstraction process which operates via an initial electron transfer from the lanthanide cation to the fluorinated substrate in the encounter complex Ln{sup +}RF. The most reactive lanthanides La{sup +}, Ce{sup +}, Gd{sup +}, and Tb{sup +} and also the formal closed-shell species Lu{sup +} exhibit additional C-H and C-C bond activation pathways in the reaction with fluorobenzene, namely dehydrohalogenation as well as loss of a neutral acetylene molecule. In the case of Tm{sup +} and Yb{sup +} the formation of neutral LnF{sub 3} is observed in a multistep process via C-C coupling and charge transfer. 17 refs., 2 figs., 2 tabs.« less

  4. Is there any chlorine monoxide in the stratosphere?

    NASA Technical Reports Server (NTRS)

    Rogers, J. D.; Mumma, M. J.; Kostiuk, T.; Deming, D.; Hillman, J. J.; Faris, J.; Zipoy, D.

    1982-01-01

    A ground based search for the 856.50137/cm R(9.5) and for the 859.76765 R(12.5) transitions of stratospheric (Cl-35)O was made in the solar absorption mode using an infrared heterodyne spectrometer. Lines due to stratospheric HNO3 and tropospheric OCS were detected, at about 0.3% absorption levels. The expected lines of ClO in this same region were not detected, even though the optical depth of the ClO lines should be on the order of 0.2% using currently accepted ClO abundances. These infrared measurements suggest that stratospheric ClO is at least a factor of 7 less abundant than is indicated by indirect in situ fluorescence measurements, and the upper limit of 2.4x10 to the 13th power molecules/sq cm to the integrated column density of ClO is a factor of over 4 less than is indicted by microwave measurements. Results imply that the release of fluorocarbon precursors of ClO may be significantly less important for the destruction of stratospheric ozone than was previously thought.

  5. Scalable synthesis of palladium icosahedra in plug reactors for the production of oxygen reduction reaction catalysts

    DOE PAGES

    Wang, Helan; Niu, Guangda; Zhou, Ming; ...

    2016-03-10

    We have synthesized Pd icosahedra with uniform, controllable sizes in plug reactors separated by air. The oxygen contained in the air segments not only contributed to the generation of a reductant from diethylene glycol in situ, but also oxidized elemental Pd back to the ionic form by oxidative etching and thus slowed down the reduction kinetics. Compared to droplet reactors involving silicone oil or fluorocarbon, the use of air as a carrier phase could reduce the production cost by avoiding additional procedures for the separation of products from the oil. The average diameters of the Pd icosahedra could be readilymore » controlled in the range of 12–20 nm. The Pd icosahedra were further employed as seeds for the production of Pd@Pt 2–3L core-shell icosahedra, which could serve as a catalyst toward the oxygen reduction reaction with greatly enhanced activity. As a result, we believe that the plug reactors could be extended to other types of noble-metal nanocrystals for their scale-up production.« less

  6. One-step fabrication of nickel nanocones by electrodeposition using CaCl2·2H2O as capping reagent

    NASA Astrophysics Data System (ADS)

    Lee, Jae Min; Jung, Kyung Kuk; Lee, Sung Ho; Ko, Jong Soo

    2016-04-01

    In this research, a method for the fabrication of nickel nanocones through the addition of CaCl2·2H2O to an electrodeposition solution was proposed. When electrodeposition was performed after CaCl2·2H2O addition, precipitation of the Ni ions onto the (2 0 0) crystal face was suppressed and anisotropic growth of the nickel electrodeposited structures was promoted. Sharper nanocones were produced with increasing concentration of CaCl2·2H2O added to the solution. Moreover, when temperature of the electrodeposition solutions approached 60 °C, the apex angle of the nanostructures decreased. In addition, the nanocones produced were applied to superhydrophobic surface modification using a plasma-polymerized fluorocarbon (PPFC) coating. When the solution temperature was maintained at 60 °C and the concentration of the added CaCl2·2H2O was 1.2 M or higher, the fabricated samples showed superhydrophobic surface properties. The proposed nickel nanocone formation method can be applied to various industrial fields that require metal nanocones, including superhydrophobic surface modification.

  7. 2H,3H-decafluoropentane-based nanodroplets: new perspectives for oxygen delivery to hypoxic cutaneous tissues.

    PubMed

    Prato, Mauro; Magnetto, Chiara; Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues.

  8. 2H,3H-Decafluoropentane-Based Nanodroplets: New Perspectives for Oxygen Delivery to Hypoxic Cutaneous Tissues

    PubMed Central

    Jose, Jithin; Khadjavi, Amina; Cavallo, Federica; Quaglino, Elena; Panariti, Alice; Rivolta, Ilaria; Benintende, Emilio; Varetto, Gianfranco; Argenziano, Monica; Troia, Adriano; Cavalli, Roberta; Guiot, Caterina

    2015-01-01

    Perfluoropentane (PFP)-based oxygen-loaded nanobubbles (OLNBs) were previously proposed as adjuvant therapeutic tools for pathologies of different etiology sharing hypoxia as a common feature, including cancer, infection, and autoimmunity. Here we introduce a new platform of oxygen nanocarriers, based on 2H,3H-decafluoropentane (DFP) as core fluorocarbon. These new nanocarriers have been named oxygen-loaded nanodroplets (OLNDs) since DFP is liquid at body temperature, unlike gaseous PFP. Dextran-shelled OLNDs, available either in liquid or gel formulations, display spherical morphology, ~600 nm diameters, anionic charge, good oxygen carrying capacity, and no toxic effects on human keratinocytes after cell internalization. In vitro OLNDs result more effective in releasing oxygen to hypoxic environments than former OLNBs, as demonstrated by analysis through oxymetry. In vivo, OLNDs effectively enhance oxy-hemoglobin levels, as emerged from investigation by photoacoustic imaging. Interestingly, ultrasound (US) treatment further improves transdermal oxygen release from OLNDs. Taken together, these data suggest that US-activated, DFP-based OLNDs might be innovative, suitable and cost-effective devices to topically treat hypoxia-associated pathologies of the cutaneous tissues. PMID:25781463

  9. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  10. Plasma deposited stability enhancement coating for amorphous ketoprofen.

    PubMed

    Bosselmann, Stephanie; Owens, Donald E; Kennedy, Rachel L; Herpin, Matthew J; Williams, Robert O

    2011-05-01

    A hydrophobic fluorocarbon coating deposited onto amorphous ketoprofen via pulsed plasma-enhanced chemical vapor deposition (PPECVD) significantly prolonged the onset of recrystallization compared to uncoated drug. Rapid freezing (RF) employed to produce amorphous ketoprofen was followed by PPECVD of perfluorohexane. The effect of coating thickness on the recrystallization and dissolution behavior of ketoprofen was investigated. Samples were stored in open containers at 40°C and 75% relative humidity, and the onset of recrystallization was monitored by DSC. An increase in coating thickness provided enhanced stability against recrystallization for up to 6 months at accelerated storage conditions (longest time of observation) when compared to three days for uncoated ketoprofen. Results from XPS analysis demonstrated that an increase in coating thickness was associated with improved surface coverage thus enabling superior protection. Dissolution testing showed that at least 80% of ketoprofen was released in buffer pH 6.8 from all coated samples. Overall, an increase in coating thickness resulted in a more complete drug release due to decreased adhesion of the coating to the substrate. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. The Zero Boil-Off Tank Experiment Contributions to the Development of Cryogenic Fluid Management

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad

    2015-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale ISS experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the current status of the ZBOT experiment as it approaches its flight to installation on the International Space Station, how its findings can be scaled to larger and more ambitious cryogenic fluid management experiments, as well as ideas for follow-on investigations using ZBOT like hardware to study other aspects of cryogenic fluid management.

  12. Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks.

    PubMed

    Wang, Hao; Lustig, William P; Li, Jing

    2018-03-13

    Toxic and hazardous chemical species are ubiquitous, predominantly emitted by anthropogenic activities, and pose serious risks to human health and the environment. Thus, the sensing and subsequent capture of these chemicals, especially in the gas or vapor phase, are of extreme importance. To this end, metal-organic frameworks have attracted significant interest, as their high porosity and wide tunability make them ideal for both applications. These tailorable framework materials are particularly promising for the specific sensing and capture of targeted chemicals, as they can be designed to fit a diverse range of required conditions. This review will discuss the advantages of metal-organic frameworks in the sensing and capture of harmful gases and vapors, as well as principles and strategies guiding the design of these materials. Recent progress in the luminescent detection of aromatic and aliphatic volatile organic compounds, toxic gases, and chemical warfare agents will be summarized, and the adsorptive removal of fluorocarbons/chlorofluorocarbons, volatile radioactive species, toxic industrial gases and chemical warfare agents will be discussed.

  13. Mass spectra of neutral particles released during electrical breakdown of thin polymer films

    NASA Technical Reports Server (NTRS)

    Kendall, B. R. F.

    1985-01-01

    A special type of time-of-flight mass spectrometer triggered from the breakdown event was developed to study the composition of the neutral particle flux released during the electrical breakdown of polymer films problem. Charge is fed onto a metal-backed polymer surface by a movable smooth platinum contact. A slowly increasing potential from a high-impedance source is applied to the contact until breakdown occurs. The breakdown characteristics is made similar to those produced by an electron beam charging system operating at similar potentials. The apparatus showed that intense instantaneous fluxes of neutral particles are released from the sites of breakdown events. For Teflon FEP films of 50 and 75 microns thickness the material released consists almost entirely of fluorocarbon fragments, some of them having masses greater than 350 atomic mass units amu, while the material released from a 50 micron Kapton film consists mainly of light hydrocarbons with masses at or below 44 amu, with additional carbon monoxide and carbon dioxide. The apparatus is modified to allow electron beam charging of the samples.

  14. Etching radical controlled gas chopped deep reactive ion etching

    DOEpatents

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  15. Regulation of adhesion behavior of murine macrophage using supported lipid membranes displaying tunable mannose domains

    NASA Astrophysics Data System (ADS)

    Kaindl, T.; Oelke, J.; Pasc, A.; Kaufmann, S.; Konovalov, O. V.; Funari, S. S.; Engel, U.; Wixforth, A.; Tanaka, M.

    2010-07-01

    Highly uniform, strongly correlated domains of synthetically designed lipids can be incorporated into supported lipid membranes. The systematic characterization of membranes displaying a variety of domains revealed that the equilibrium size of domains significantly depends on the length of fluorocarbon chains, which can be quantitatively interpreted within the framework of an equivalent dipole model. A mono-dispersive, narrow size distribution of the domains enables us to treat the inter-domain correlations as two-dimensional colloidal crystallization and calculate the potentials of mean force. The obtained results demonstrated that both size and inter-domain correlation can precisely be controlled by the molecular structures. By coupling α-D-mannose to lipid head groups, we studied the adhesion behavior of the murine macrophage (J774A.1) on supported membranes. Specific adhesion and spreading of macrophages showed a clear dependence on the density of functional lipids. The obtained results suggest that such synthetic lipid domains can be used as a defined platform to study how cells sense the size and distribution of functional molecules during adhesion and spreading.

  16. Failure analysis of the lithium battery: A study of the header deposit on the cell top and diffusion within the electrode glass seal using nuclear microanalysis and FFTIR spectroscopy

    NASA Technical Reports Server (NTRS)

    Hassan, Razi A.

    1991-01-01

    The Solid Rocket Booster Range Safety System (SRBRSS) uses a lithium/poly-carbon monofluoride primary battery as a source of electrical power. After cell fabrication and activation, some battery cells have shown self discharge. One possible source of this cell discharge has been suggested to be the formation and growth of a conducting crystallized chemical compound across the glass bead insulator, electrically shorting the glass bead to the casing. This laboratory has begun an analysis of this compound, the glass seal holding the cathode into place, and the cell electrolyte, using Fast Fourier Transform Infrared (FFTIR) Analysis, Rutherford Backscattering Spectroscopy (RBS), and Nuclear Reaction Microanalysis. Preliminary measurements have confirmed the existence of lithium, nitrogen, fluorine, and oxygen on a reddish-brown deposit covering parts of the glass seal holding the positive electrode in place. Cells using Li metal electrodes, have many advantages over conventional primary batteries. One principal disadvantage of using Li batteries on a commercial basis would be the environmental impact of the fluorocarbon material. Another would be the relatively high expense of (CF)n.

  17. Design and Properties Prediction of AMCO3F by First-Principles Calculations.

    PubMed

    Tian, Meng; Gao, Yurui; Ouyang, Chuying; Wang, Zhaoxiang; Chen, Liquan

    2017-04-19

    Computer simulation accelerates the rate of identification and application of new materials. To search for new materials to meet the increasing demands of secondary batteries with higher energy density, the properties of some transition-metal fluorocarbonates ([CO 3 F] 3- ) were simulated in this work as cathode materials for Li- and Na-ion batteries based on first-principles calculations. These materials were designed by substituting the K + ions in KCuCO 3 F with Li + or Na + ions and the Cu 2+ ions with transition-metal ions such as Fe 2+ , Co 2+ , Ni 2+ , and Mn 2+ ions, respectively. The phase stability, electronic conductivity, ionic diffusion, and electrochemical potential of these materials were calculated by first-principles calculations. After taking comprehensive consideration of the kinetic and thermodynamic properties, LiCoCO 3 F and LiFeCO 3 F are believed to be promising novel cathode materials in all of the calculated AMCO 3 F (A = Li and Na; M = Fe, Mn, Co, and Ni). These results will help the design and discovery of new materials for secondary batteries.

  18. Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions

    PubMed Central

    Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz

    2014-01-01

    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217

  19. Monodisperse Polyethylene Glycol Diacrylate Hydrogel Microsphere Formation by Oxygen-Controlled Photopolymerization in a Microfluidic Device

    PubMed Central

    Krutkramelis, K.; Xia, B.; Oakey, J.

    2016-01-01

    PEG-based hydrogels have become widely used as drug delivery and tissue scaffolding materials. Common among PEG hydrogel-forming polymers are photopolymerizable acrylates such as polyethylene glycol diacrylate (PEGDA). Microfluidics and microfabrication technologies have recently enabled the miniaturization of PEGDA structures, thus enabling many possible applications for nano- and micro- structured hydrogels. The presence of oxygen, however, dramatically inhibits the photopolymerization of PEGDA, which in turn frustrates hydrogel formation in environments of persistently high oxygen concentration. Using PEGDA that has been emulsified in fluorocarbon oil via microfluidic flow focusing within polydimethylsiloxane (PDMS) devices, we show that polymerization is completely inhibited below critical droplet diameters. By developing an integrated model incorporating reaction kinetics and oxygen diffusion, we demonstrate that the critical droplet diameter is largely determined by the oxygen transport rate, which is dictated by the oxygen saturation concentration of the continuous oil phase. To overcome this fundamental limitation, we present a nitrogen micro-jacketed microfluidic device to reduce oxygen within the droplet, enabling the continuous on-chip photopolymerization of microscale PEGDA particles. PMID:26987384

  20. Efficient, environmentally acceptable method for waterproofing insulation material

    NASA Technical Reports Server (NTRS)

    Blohowiak, Kay Y. (Inventor); Krienke, Kenneth A. (Inventor); Olli, Larry K. (Inventor); Newquist, Charles W. (Inventor)

    2000-01-01

    A process of waterproofing alumina-rich or silica-rich fibrous thermal insulation material, the process including the steps of: (a) providing an alumina-rich or a silica-rich fibrous material; (b) providing a waterproofing solution including: (1) a carrier solvent selected from the group consisting of aliphatic alcohols having from 1C to 6C, water, and mixtures thereof; and (2) an alkoxysilane defined by the formula R.sub.4-x -Si-(O-R').sub.x where x is 1-3 and R is selected from the group consisting of alkyl groups having from 1C to 10C, hydrogen, or fluorocarbon groups having from 1F to 15F; and where O-R' is an alkoxy group having from 1C to 5C, or a mixture of alkoxysilanes defined by the above formula R.sub.4-x -Si-(O-R').sub.x ; and optionally (3) modifiers including acids, such as acetic acid or nitric acid, or bases, such as ammonium hydroxide, RNH.sub.2, R.sub.2 NH, or R.sub.3 N, or MOH, where R is selected from the group consisting of alkyl groups having from 1C to 10C or hydrogen, and where M=Na, Li, or K; (c) contacting the fibrous material with the waterproofing solution for a sufficient amount of time to waterproof the fibrous material; and (d) curing the coated fibrous material to render it sufficiently waterproof. A chemical solution for waterproofing alumina-rich or silica-rich fibrous thermal insulation materials, the solution including: (a) a carrier solvent selected from the group consisting of aliphatic alcohols having from 1C to 6C, water, and mixtures thereof; and (b) an alkoxysilane defined by the formula R.sub.4-x -Si-(O-R').sub.x where x is 1-3 and R is selected from the group consisting of alkyl groups having from 1C to 10C, hydrogen, or fluorocarbon groups having from 1F to 15F; and where O-R' is an alkoxy group having from 1C to 5C, or a mixture of alkoxysilanes defined by the above formula R.sub.4-x -Si-(O-R').sub.x ; and optionally (c) modifiers including acids, such as acetic acid or nitric acid, or bases, such as ammonium hydroxide

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Yunpeng; Sawin, Herbert H.

    The impact of etching kinetics and etching chemistries on surface roughening was investigated by etching thermal silicon dioxide and low-k dielectric coral materials in C{sub 4}F{sub 8}/Ar plasma beams in an inductive coupled plasma beam reactor. The etching kinetics, especially the angular etching yield curves, were measured by changing the plasma pressure and the feed gas composition which influence the effective neutral-to-ion flux ratio during etching. At low neutral-to-ion flux ratios, the angular etching yield curves are sputteringlike, with a peak around 60 deg. -70 deg. off-normal angles; the surface at grazing ion incidence angles becomes roughened due to ionmore » scattering related ion-channeling effects. At high neutral-to-ion flux ratios, ion enhanced etching dominates and surface roughening at grazing angles is mainly caused by the local fluorocarbon deposition induced micromasking mechanism. Interestingly, the etched surfaces at grazing angles remain smooth for both films at intermediate neutral-to-ion flux ratio regime. Furthermore, the oxygen addition broadens the region over which the etching without roughening can be performed.« less

  2. Plasma-Induced, Self-Masking, One-Step Approach to an Ultrabroadband Antireflective and Superhydrophilic Subwavelength Nanostructured Fused Silica Surface.

    PubMed

    Ye, Xin; Shao, Ting; Sun, Laixi; Wu, Jingjun; Wang, Fengrui; He, Junhui; Jiang, Xiaodong; Wu, Wei-Dong; Zheng, Wanguo

    2018-04-25

    In this work, antireflective and superhydrophilic subwavelength nanostructured fused silica surfaces have been created by one-step, self-masking reactive ion etching (RIE). Bare fused silica substrates with no mask were placed in a RIE vacuum chamber, and then nanoscale fluorocarbon masks and subwavelength nanostructures (SWSs) automatically formed on these substrate after the appropriate RIE plasma process. The mechanism of plasma-induced self-masking SWS has been proposed in this paper. Plasma parameter effects on the morphology of SWS have been investigated to achieve perfect nanocone-like SWS for excellent antireflection, including process time, reactive gas, and pressure of the chamber. Optical properties, i.e., antireflection and optical scattering, were simulated by the finite difference time domain (FDTD) method. Calculated data agree well with the experiment results. The optimized SWS show ultrabroadband antireflective property (up to 99% from 500 to 1360 nm). An excellent improvement of transmission was achieved for the deep-ultraviolet (DUV) range. The proposed low-cost, highly efficient, and maskless method was applied to achieve ultrabroadband antireflective and superhydrophilic SWSs on a 100 mm optical window, which promises great potential for applications in the automotive industry, goggles, and optical devices.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Confer, L.; Kramer, K.L.

    A condensing type heat exchanger operating at Henkel Corporation's plant in Kankakee, IL, has enabled the plant to save $400,000 in energy costs within the first 22 months of operation, recouping the initial capital investment for the unit within that time frame. The heat exchanger enables the plant to accomplish what historically was considered taboo - to cool boiler stack gas down to 130/sup 0/F, below the dew point, and thus recover both sensible and latent heat from the gas. Traditionally, moisture could not be squeezed out of stack gas below the recommended temperature of 250/sup 0/F because the stackmore » gas close to the heat exchanger tubes would approach the dew point, condense and attack metal surfaces. The condensing type heat exchanger can withstand corrosive conditions, however, because all wetted surfaces on the flue side of the shell and copper-nickel tube design are protected with an extruded Teflon fluorocarbon resin covering (not coating). The waste heat recovery system was installed over a two-month period in 1985. Performance has been above expectations with greater energy savings than originally projected. The amount of operator attention required is minimal.« less

  4. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    PubMed

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The effect of fluoroalkylsilanes on tribological properties and wettability of Si-DLC coatings

    NASA Astrophysics Data System (ADS)

    Bystrzycka, E.; Prowizor, M.; Piwoński, I.; Kisielewska, A.; Batory, D.; Jędrzejczak, A.; Dudek, M.; Kozłowski, W.; Cichomski, M.

    2018-03-01

    Silicon-containing diamond-like carbon (Si-DLC) coatings were prepared on silicon wafers by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) method using methane/hexamethyl-disiloxane atmosphere. Herein, we report that Si-DLC coatings can be effectively modified by fluoroalkylsilanes which results in significant enhancement of frictional and wettability properties. Two types of fluoroalkylsilanes differing in the length of fluorocarbon chains were deposited on Si-DLC coatings with the use of Vapor Phase Deposition (VPD) method. The chemical composition of Si-DLC coatings and effectiveness of modification with fluoroalkylsilanes were confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and x-ray Photoelectron Spectroscopy (XPS). Frictional properties in microscale were investigated with the use of ball-on-flat apparatus operating at millinewton (mN) load range. It was found that the presence of silicon enhances the chemisorption of fluoroalkylsilanes on Si-DLC coatings by creating adsorption anchoring centers. In consequence, a decrease of adhesion and an increase of hydrophobicity along with a decrease of coefficient of friction were observed. Experimental results indicate, that tribological properties are correlated with dispersive and acid-base components of the surface free energy as well as with the work of adhesion.

  6. The Zero Boil-Off Tank Experiment Ground Testing and Verification of Fluid and Thermal Performance

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Kassemi, Mohammad; Kahwaji, Michel; Kieckhafer, Alexander

    2016-01-01

    The Zero Boil-Off Technology (ZBOT) Experiment involves performing a small scale International Space Station (ISS) experiment to study tank pressurization and pressure control in microgravity. The ZBOT experiment consists of a vacuum jacketed test tank filled with an inert fluorocarbon simulant liquid. Heaters and thermo-electric coolers are used in conjunction with an axial jet mixer flow loop to study a range of thermal conditions within the tank. The objective is to provide a high quality database of low gravity fluid motions and thermal transients which will be used to validate Computational Fluid Dynamic (CFD) modeling. This CFD can then be used in turn to predict behavior in larger systems with cryogens. This paper will discuss the work that has been done to demonstrate that the ZBOT experiment is capable of performing the functions required to produce a meaningful and accurate results, prior to its launch to the International Space Station. Main systems discussed are expected to include the thermal control system, the optical imaging system, and the tank filling system.This work is sponsored by NASAs Human Exploration Mission Directorates Physical Sciences Research program.

  7. Creation of wettability contrast patterns on metallic surfaces via pen drawn masks

    NASA Astrophysics Data System (ADS)

    Choi, Won Tae; Yang, Xiaolong; Breedveld, Victor; Hess, Dennis W.

    2017-12-01

    Micropatterned surfaces with wettability contrast have attracted considerable attention due to potential applications in 2D microfluidics, bioassays, and water harvesting. A simple method to develop wettability contrast patterns on metallic surfaces by using a commercial marker is described. A marker-drawn ink pattern on a copper surface displays chemical resistance to an aqueous solution of sodium bicarbonate and ammonium persulfate, thereby enabling selective nanowire growth in areas where ink is absent. Subsequent ink removal by an organic solvent followed by fluorocarbon film deposition yields a stable hydrophobic/super-hydrophobic patterned copper surface. Using this approach, hydrophobic dot and line patterns were constructed. The adhesion force of water droplets to the dots was controlled by adjusting pattern size, thus enabling controlled droplet transfer between two surfaces. Anisotropy of water droplet adhesion to line patterns can serve as a basis for directional control of water droplet motion. This general approach has also been employed to generate wettability contrast on aluminum surfaces, thereby demonstrating versatility. Due to its simplicity, low cost, and virtual independence of solid surface material, ink marker pens can be employed to create wettability patterns for a variety of applications, in fields as diverse as biomedicine and energy.

  8. Investigation of a sterilization system using active oxygen species generated by ultraviolet irradiation.

    PubMed

    Yoshino, Kiyoshi; Matsumoto, Hiroyuki; Iwasaki, Tatsuyuki; Kinoshita, Shinobu; Noda, Kazutoshi; Oya, Kei; Iwamori, Satoru

    2015-01-01

    We have been investigating an advanced sterilization system that employs active oxygen species (AOS). We designed the sterilization equipment, including an evacuation system, which generates AOS from pure oxygen gas using ultraviolet irradiation, in order to study the conditions necessary for sterilization in the system's chamber. Using Geobachillus stearothermophilus spores (10(6) CFU) in a sterile bag as a biological indicator (BI) in the chamber of the AOS sterilization apparatus, we examined the viability of the BI as a function of exposure time, assessing the role of the decompression level in the sterilization performance. We found that the survival curves showed exponential reduction, and that the decompression level did not exert a significant influence on the survival curve. Subsequently, we investigated the sterilization effect as influenced by the spatial and environmental temperature variation throughout the chamber, and found that the sterilization effect varied with position, due to the varying environmental temperature in the respective areas. We confirmed that temperature is one of the most important factors influencing sterilization in the chamber, and estimated the temperature effect on the distribution of atomic oxygen concentration, using the quartz crystal microbalance (QCM) method with fluorocarbon thin film prepared by radio frequency sputtering.

  9. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  10. ZEP520A cold-development technique and tool for ultimate resolution to fabricate 1Xnm bit pattern EB master mold for nano-imprinting lithography for HDD/BPM development

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hideo; Iyama, Hiromasa

    2012-06-01

    Poor solvent developers are effective for resolution enhancement on a polymer-type EB resist such as ZEP520A. Another way is to utilize "cold-development" technique which was accomplished by a dip-development technique usually. We then designed and successfully built a single-wafer spin-development tool for the cold-development down to -10degC in order to dissolve difficulties of the dip-development. The cold-development certainly helped improve ZEP520A resolution and hole CD size uniformity, and achieved 35nm pitch BPM patterns with the standard developer ZED-N50, but not 25nm pitch yet. By employing a poor solvent mixture of iso-Propyl Alcohol (IPA) and Fluoro-Carbon (FC), 25nm pitch BPM patterns were accomplished. However, the cold-development showed almost no improvement on the IPA/FC mixture developer solvent. This paper describes cold-development technique and a tool, as well as its results, for ZEP520A resolution enhancement to fabricate 1Xnm bits (holes) for EB master-mold for Nano-Imprinting Lithography for 1Tbit/inch2 and 25nm pitch Bit Patterned Media development.

  11. Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte.

    PubMed

    Jiang, Lihua; Wang, Qingsong; Sun, Jinhua

    2018-06-05

    LiNi x Co y Mn z O 2 (NCM) cathode material with high energy density is one of the best choices for power batteries. But the safety issue also becomes more prominent with higher nickel content. The improvement of thermal stability by material modification is often complex and limited. In this study, a composite safety electrolyte additive consisting of perfluoro-2-methyl-3-pentanone, N, N-Dimethylacetamide (and fluorocarbon surfactant is proved to be effective and simple in improving the thermal stability of NCM materials. Electrochemical compatibility of composite safety electrolyte with various NCM materials is investigated. Uniform interface film, lower impedance and polarization for NCM (622) cycled in composite safety electrolyte are proved to be the main reasons to ensure good cycle performance. Homemade pouch cells (NCM (622)/C) are used to verify the effectiveness for practical application, accelerating rate calorimeter and nail penetration test shows a slower temperature rise and delay of thermal runaway. For heating experiment, no fire appears for pouch cell with composite safety electrolyte. Thus, this composite safety electrolyte is effective to improve the safety of lithium ion batteries with NCM materials.(. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Conformational and orientational order and disorder in solid polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Sprik, Michiel; Rothlisberger, Ursula; Klein, Michael L.

    The low pressure phase diagram of solid polytetrafluoroethylene (PTFE/Teflon) has been investigated using constant temperature-constant pressure molecular dynamics techniques and a new all-atom potential model for fluorocarbons. The simulation was started in an ordered low temperature phase in which the molecules are parallel and have a helical conformation with a pitch of uniform magnitude and sign (chirality). In accordance with experiment, a transition to an orientationally disordered state is observed upon heating. The coherent helical winding of CF2 groups also disappears abruptly at the transition but short helical segments remain and become equally distributed between left and right chirality with increasing temperature. The orientational and conformational disorder is accompanied by translational diffusion along the chain direction. At a still higher temperature melting sets in. On cooling, the disordered solid phase is recovered and its structure is shown to be identical to that generated on heating. On further cooling, a spontaneous ordering transition is observed but the system fails to recover a uniform helical ground state. Instead, the high pressure ordered monoclinic all- trans (alkane-like) structure is obtained: an observation that indicates a deficiency in the potential model.

  13. Calibration and Sequence Development Status for the Sample Analysis at Mars Investigation on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.

    2012-01-01

    such as amino acids, nucleobases, and carboxylic acids into compounds that are sufficiently volatile to transmit through the GC columns. The remaining 6 cups contain calibrants. SAM FM Calibration Overview: The SAM FM calibration in the Mars chamber employed a variety of pure gases, gas mixtures, and solid materials. Isotope calibration runs for the TLS utilized 13C enriched C02 standards and 0 enriched CH4. A variety of fluorocarbon compounds that spanned the entire mass range of the QMS as well as C3-C6 hydrocarbons were utilized for calibration of the GCMS. Solid samples consisting of a mixture of calcite, melanterite, and inert silica glass either doped or not with fluorocarbons were introduced into the SAM FM cups through the SAM inlet funnel/tube system.

  14. Anisotropic Copoly(Imide Oxetane) Coatings and Articles of Manufacture, Copoly(Imide Oxetane)s Containing Pendant Fluorocarbon Moieties, Oligomers and Processes Therefor

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J. (Inventor); Siochi, Emilie J. (Inventor); Smith, Joseph G. (Inventor); Connell, John W. (Inventor)

    2017-01-01

    Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s that migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.

  15. Study on the bactericidal performance of graphene/TiO2 composite photocatalyst in the coating of PEVE

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyu; Zhou, Feng; Zhan, Su; Tian, Yu; He, Qiuchen

    2018-02-01

    Marine fouling organisms attachment can bring serious damage to ships and marine facilities. Thus, we modified the hydrophobic fluorocarbon resin coating (PEVE) which was widely used in marine hulls. In this study, graphene/TiO2 nanocomposite photocatalysts have been taken as the raw material of the modification to prepare the composite coatings with anti-fouling performance through a sample method. The results of our experiment demonstrate that when the mass ratio of rGO to TiO2 is 1:100, the composite coating exhibits the best antibacterial property. This coating could kill the vast majority of the bacteria which attached to its surface after one hour of exposure to ultraviolet light, and this sterilization performance is much higher than pure PEVE and TiO2/PEVE coatings. In this composite system, graphene plays an important role in enhancing the coatings performance. For one thing, the heterojunction formed by graphene and TiO2 can effectively increase the hydroxyl radical yields of TiO2. For another, the conjugated structure of graphene can effectively reduce the phenomenon of hydrophobicity reduction which is caused by the addition of TiO2 and then decrease the risk of hull corrosion availably.

  16. Advanced thermal batteries

    NASA Astrophysics Data System (ADS)

    Ryan, D. M.

    1980-03-01

    The feasibility of building thermal batteries with cells composed of an anode of LiAl alloy, a cathode of a heavy metal chloride, and a NaAlCl4 electrolyte has been demonstrated. During the further investigation of this system some interesting problems have developed and had to be studied. The particle size growth of the catholyte developed into a major storage problem. MoCl5 was found to form a volatile catholyte which is not suited for thermal battery use. As a result of this problem other catholyte materials were experimented with. CuCl2 is the most successful alternate to MoCl5. Some alternate binder materials have been investigated: kaolin clay, Illinois Mineral Amorphous Silica, and magnesia. Some alternate electrolytes have been investigated including NaAlCl4 (containing 52 m/o AlCl3), LiAlCl4 and KCl-LiCl. This work indicates that each material has unique properties which lend themselves to a particular application. Among the alternate cathode materials experimented with are CrCl3, a number of heavy metal oxides, fluorocarbon, TiS2, TiS3, and sulfur. Some alternate process investigated have been freon blending, adding materials to the anode, cell and battery desiccation and filling batteries with an inert atmosphere.

  17. Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis.

    PubMed

    Shemesh, Jonathan; Ben Arye, Tom; Avesar, Jonathan; Kang, Joo H; Fine, Amir; Super, Michael; Meller, Amit; Ingber, Donald E; Levenberg, Shulamit

    2014-08-05

    Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required.

  18. Exploring the Parameters Controlling the Crystallinity-Conductivity Correlation of PFSA Ionomers

    NASA Astrophysics Data System (ADS)

    Kusoglu, Ahmet; Shi, Shouwen; Weber, Adam

    Perfluorosulfonic-acid (PFSA) ionomers are the most commonly used solid-electrolyte in electrochemical energy devices because of their remarkable conductivity and chemical/mechanical stability, with the latter imparted by their semi-crystalline fluorocarbon backbone. PFSAs owe this unique combination of transport/stability functionalities to their phase-separated morphology of conductive hydrophilic ionic domains and the non-conductive hydrophobic backbone, which are connected via pendant chains. Thus, phase-separation is governed by fractions of backbone and ionic groups, which is controlled by the equivalent weight (EW). Therefore, EW, along with the pendant chain chemistry, directly impact the conductive vs non-conductive regions, and consequently the interrelation between transport and stability. Driven by the need to achieve higher conductivities without disrupting the crystallinity, various pendant-chain chemistries have been developed. In this talk, we will report the results of a systematic investigation on hydration, conductivity, mechanical properties and crystallinity of various types and EWs of PFSA ionomers to (i) develop a structure/property map, and (ii) identify the key parameters controlling morphology and properties. It will be discussed how the pendant-chain and backbone lengths affect the conductivity and crystallinity, respectively. Lastly, the data set will be analyzed to explore universal structure/property relationships for PFSAs.

  19. Study and development of a cryogenic heat exchanger for life support systems

    NASA Technical Reports Server (NTRS)

    Soliman, M. M.

    1973-01-01

    A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.

  20. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.

    PubMed

    Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E

    2012-05-15

    Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

  1. Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy.

    PubMed

    Tabatabaei, Mohammadali; Wallace, Gregory Q; Caetano, Fabiana A; Gillies, Elizabeth R; Ferguson, Stephen S G; Lagugné-Labarthet, François

    2016-01-01

    The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (C 4 F 8 ) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.

  2. Preparation of hierarchical porous Zn-salt particles and their superhydrophobic performance

    NASA Astrophysics Data System (ADS)

    Gao, Dahai; Jia, Mengqiu

    2015-12-01

    Superhydrophobic surfaces arranged by hierarchical porous particles were prepared using modified hydrothermal routes under the effect of sodium citrate. Two particle samples were generated in the medium of hexamethylenetetramine (P1) and urea (P2), respectively. X-ray diffraction, scanning electron microscope, and transmission electron microscope were adopted for the investigation, and results revealed that the P1 and P2 particles are porous microspheres with crosslinked extremely thin (10-30 nm) sheet crystals composed of Zn5(OH)8Ac2·2H2O and Zn5(CO3)2(OH)6, respectively. The prepared particles were treated with a fluoroethylene vinyl ether derivative and studied using Fourier transform infrared spectroscopy and energy-dispersive X-ray spectrometer. Results showed that the hierarchical surfaces of these particles were combined with low-wettable fluorocarbon layers. Moreover, the fabricated surface composed of the prepared hierarchical particles displayed considerably high contact angles, indicating great superhydrophobicity for the products. The wetting behavior of the particles was analyzed with a theoretical wetting model in comparison with that of chestnut-like ZnO products obtained through a conventional hydrothermal route. Correspondingly, this study provided evidence that high roughness surface plays a great role in superhydrophobic behavior.

  3. Rational strategy for the atmospheric icing prevention based on chemically functionalized carbon soot coatings

    NASA Astrophysics Data System (ADS)

    Esmeryan, Karekin D.; Bressler, Ashton H.; Castano, Carlos E.; Fergusson, Christian P.; Mohammadi, Reza

    2016-12-01

    Although the superhydrophobic surfaces are preferable for passive anti-icing systems, as they provide water shedding before initiation of ice nucleation, their practical usage is still under debate. This is so, as the superhydrophobic materials are not necessarily icephobic and most of the synthesis techniques are characterized with low fabrication scalability. Here, we describe a rational strategy for the atmospheric icing prevention, based on chemically functionalized carbon soot, suitable for large-scale fabrication of superhydrophobic coatings that exhibit and retain icephobicity in harsh operational conditions. This is achieved through a secondary treatment with ethanol and aqueous fluorocarbon solution, which improves the coating's mechanical strength without altering its water repellency. Subsequent experimental analyses on the impact dynamics of icy water droplets on soot coated aluminum and steel sheets show that these surfaces remain icephobic in condensate environments and substrate temperatures down to -35 °C. Furthermore, the soot's icephobicity and non-wettability are retained in multiple icing/de-icing cycles and upon compressed air scavenging, spinning and water jetting with impact velocity of ∼25 m/s. Finally, on frosted soot surfaces, the droplets freeze in a spherical shape and are entirely detached by adding small amount of thermal energy, indicating lower ice adhesion compared to the uncoated metal substrates.

  4. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    NASA Astrophysics Data System (ADS)

    Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.

    2012-12-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

  5. Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis

    PubMed Central

    Shemesh, Jonathan; Ben Arye, Tom; Avesar, Jonathan; Kang, Joo H.; Fine, Amir; Super, Michael; Meller, Amit; Ingber, Donald E.; Levenberg, Shulamit

    2014-01-01

    Microfluidic water-in-oil droplets that serve as separate, chemically isolated compartments can be applied for single-cell analysis; however, to investigate encapsulated cells effectively over prolonged time periods, an array of droplets must remain stationary on a versatile substrate for optimal cell compatibility. We present here a platform of unique geometry and substrate versatility that generates a stationary nanodroplet array by using wells branching off a main microfluidic channel. These droplets are confined by multiple sides of a nanowell and are in direct contact with a biocompatible substrate of choice. The device is operated by a unique and reversed loading procedure that eliminates the need for fine pressure control or external tubing. Fluorocarbon oil isolates the droplets and provides soluble oxygen for the cells. By using this approach, the metabolic activity of single adherent cells was monitored continuously over time, and the concentration of viable pathogens in blood-derived samples was determined directly by measuring the number of colony-formed droplets. The method is simple to operate, requires a few microliters of reagent volume, is portable, is reusable, and allows for cell retrieval. This technology may be particularly useful for multiplexed assays for which prolonged and simultaneous visual inspection of many isolated single adherent or nonadherent cells is required. PMID:25053808

  6. Fluorine-Rich Planetary Environments as Possible Habitats for Life

    PubMed Central

    Budisa, Nediljko; Kubyshkin, Vladimir; Schulze-Makuch, Dirk

    2014-01-01

    In polar aprotic organic solvents, fluorine might be an element of choice for life that uses selected fluorinated building blocks as monomers of choice for self-assembling of its catalytic polymers. Organofluorine compounds are extremely rare in the chemistry of life as we know it. Biomolecules, when fluorinated such as peptides or proteins, exhibit a “fluorous effect”, i.e., they are fluorophilic (neither hydrophilic nor lipophilic). Such polymers, capable of creating self-sorting assemblies, resist denaturation by organic solvents by exclusion of fluorocarbon side chains from the organic phase. Fluorous cores consist of a compact interior, which is shielded from the surrounding solvent. Thus, we can anticipate that fluorine-containing “teflon”-like or “non-sticking” building blocks might be monomers of choice for the synthesis of organized polymeric structures in fluorine-rich planetary environments. Although no fluorine-rich planetary environment is known, theoretical considerations might help us to define chemistries that might support life in such environments. For example, one scenario is that all molecular oxygen may be used up by oxidation reactions on a planetary surface and fluorine gas could be released from F-rich magma later in the history of a planetary body to result in a fluorine-rich planetary environment. PMID:25370378

  7. Membrane treatment of Aqueous Film Forming Foam (AFFF) wastes for recovery of its active ingredients. Final report, Mar 79-Sep 80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chian, E.S.K.; Wu, T.P.; Rowland, R.W.

    1980-10-01

    Ultrafiltration (UF) and Reverse Osmosis (RO) treatment of Aqueous Film Forming Foam (AFFF) solutions was investigated to determine the feasibility of employing membrane processes to separate and recover AFFF active ingredients for reuse. Studies were performed on both 6% AFFF in tap-water solutions and on actual wastewaters spiked with 3% or 6% AFFF. The AFFF materials used in this study consisted of Ansul, 3M FC-206, and 3M FC-780. Membrane employed for these studies included Abcor HFD, HFF, HFJ, and HFK tubular ultrafiltration (UF) membranes and a DuPont B-10 reverse osmosis (RO) module. Parameters monitored to represent AFFF ingredients were TOC,more » dissolved solids, surfactants, and % glycol. An attempt was also made to determine fluorocarbons as fluoride. Membrane fluxes were also determined. Results of this study demonstrate the feasibility of employing UF-RO processes to separate and recover the AFFF active ingredients for reuse. Approximately 75% recovery of the AFFF active ingredients as represented by the foam test was attained. An economic analysis of the membrane treatment processes indicates that it is extremely favorable in recovering the AFFF wastewater for reuse. Pilot-scale studies are, however, necessary to fully establish the process feasibilities and economics of the AFFF recovery system.« less

  8. Alternating SiCl4/O2 passivation steps with SF6 etch steps for silicon deep etching

    NASA Astrophysics Data System (ADS)

    Duluard, C. Y.; Ranson, P.; Pichon, L. E.; Pereira, J.; Oubensaid, E. H.; Lefaucheux, P.; Puech, M.; Dussart, R.

    2011-06-01

    Deep etching of silicon has been investigated in an inductively coupled plasma etch reactor using short SiCl4/O2 plasma steps to passivate the sidewalls of the etched structures. A study was first carried out to define the appropriate parameters to create, at a substrate temperature of -20 °C, a passivation layer by SiCl4/O2 plasma that resists lateral chemical etching in SF6 plasma. The most efficient passivation layer was obtained for a SiCl4/O2 gas flow ratio of 2:1, a pressure of 1 Pa and a source power of 1000 W. Ex situ analyses on a film deposited with these parameters show that it is very rich in oxygen. Silicon etching processes that alternate SF6 plasma etch steps with SiCl4/O2 plasma passivation steps were then developed. Preliminary tests in pulsed-mode conditions have enabled etch rates greater than 2 µm min-1 with selectivities higher than 220. These results show that it is possible to develop a silicon deep etching process at substrate temperatures around -20 °C that uses low SiCl4 and O2 gas flows instead of conventional fluorocarbon gases for sidewall protection.

  9. Simple fabrication of antireflective silicon subwavelength structure with self-cleaning properties.

    PubMed

    Kim, Bo-Soon; Ju, Won-Ki; Lee, Min-Woo; Lee, Cheon; Lee, Seung-Gol; Beom-Hoan, O

    2013-05-01

    A subwavelength structure (SWS) was formed via a simple chemical wet etching using a gold (Au) catalyst. Single nano-sized Au particles were fabricated by metallic self-aggregation. The deposition and thermal annealing of the thin metallic film were carried out. Thermal annealing of a thin metallic film enables the creation of metal nano particles by isolating them from each other by means of the self-aggregation of the metal. After annealing, the samples were soaked in an aqueous etching solution of hydrofluoric acid and hydrogen peroxide. When silicon (Si) was etched for 2 minutes using the Au nano particles, the reflectance was decreased almost 0% over the entire wavelength range from 300 to 1300 nm due to its deep and steeply double tapered structure. When given varying incident angle degrees from 30 degrees to 60 degrees, the reflectance was also maintained at less than 3%. Following this, the etched silicon was treated with a plasma-polymerized fluorocarbon (PPFC) film of about 5 nm using an ICP reactor for surface modification. The result of this surface treatment, the contact angle increased significantly from 27.5 degrees to 139.3 degrees. The surface modification was successful and maintained almost 0% reflectance because of the thin film deposition.

  10. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.

    PubMed

    Mumm, Florian; van Helvoort, Antonius T J; Sikorski, Pawel

    2009-09-22

    Droplet-based microfluidic systems are an expansion of the lab on a chip concept toward flexible, reconfigurable setups based on the modification and analysis of individual droplets. Superhydrophobic surfaces are one suitable candidate for the realization of droplet-based microfluidic systems as the high mobility of aqueous liquids on such surfaces offers possibilities to use novel or more efficient approaches to droplet movement. Here, copper-based superhydrophobic surfaces were produced either by the etching of polycrystalline copper samples along the grain boundaries using etchants common in the microelectronics industry, by electrodeposition of copper films with subsequent nanowire decoration based on thermal oxidization, or by a combination of both. The surfaces could be easily hydrophobized with thiol-modified fluorocarbons, after which the produced surfaces showed a water contact angle as high as 171 degrees +/- 2 degrees . As copper was chosen as the base material, established patterning techniques adopted from printed circuit board fabrication could be used to fabricate macrostructures on the surfaces with the intention to confine the droplets and, thus, to reduce the system's sensitivity to tilting and vibrations. A simple droplet-based microfluidic chip with inlets, outlets, sample storage, and mixing areas was produced. Wire guidance, a relatively new actuation method applicable to aqueous liquids on superhydrophobic surfaces, was applied to move the droplets.

  11. Laboratory studies of chemical and photochemical processes relevant to stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Zahniser, Mark S.; Nelson, David D.; Worsnop, Douglas R.; Kolb, Charles E.

    1994-01-01

    The purpose of this project is to reduce the uncertainty in several key gas-phase kinetic processes which impact our understanding of stratospheric ozone. The main emphasis of this work is on measuring rate coefficients and product channels for reactions of HO(sub x) and NO(sub x) species in the temperature range 200 K to 240 K relevant to the lower stratosphere. Other areas of study have included infrared spectroscopic studies of the HO2 radical, measurements of OH radical reactions with alternative fluorocarbons, and determination of the vapor pressures of nitric acid hydrates under stratospheric conditions. The results of these studies will improve models of stratospheric ozone chemistry and predictions of perturbations due to human influences. In this annual report, we focus on our recent accomplishments in the quantitative spectroscopy of the HO2 radical. This report details the measurements of the broadening coefficients for the v(sub 2) vibrational band. Further measurements of the vapor pressures of nitric acid hydrates relevant to the polar stratospheric cloud formation indicate the importance of metastable crystalline phases of H2SO4, HNO3, and H2O. Large particles produced from these metastable phases may provide a removal mechanism for HNO3 in the polar stratosphere.

  12. Quantum cascade laser based monitoring of CF{sub 2} radical concentration as a diagnostic tool of dielectric etching plasma processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hübner, M.; Lang, N.; Röpcke, J.

    2015-01-19

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less

  13. Oxygen anion (O- ) and hydroxide anion (HO- ) reactivity with a series of old and new refrigerants.

    PubMed

    Le Vot, Clotilde; Lemaire, Joël; Pernot, Pascal; Heninger, Michel; Mestdagh, Hélène; Louarn, Essyllt

    2018-04-01

    The reactivity of a series of commonly used halogenated compounds (trihalomethanes, chlorofluorocarbon, hydrochlorofluorocarbon, fluorocarbons, and hydrofluoroolefin) with hydroxide and oxygen anion is studied in a compact Fourier transform ion cyclotron resonance. O - is formed by dissociative electron attachment to N 2 O and HO - by a further ion-molecule reaction with ammonia. Kinetic experiments are performed by increasing duration of introduction of the studied molecule at a constant pressure. Hydroxide anion reactions mainly proceed by proton transfer for all the acidic compounds. However, nucleophilic substitution is observed for chlorinated and brominated compounds. For fluorinated compounds, a specific elimination of a neutral fluorinated alkene is observed in our results in parallel with the proton transfer reaction. Oxygen anion reacts rapidly and extensively with all compounds. Main reaction channels result from nucleophilic substitution, proton transfer, and formal H 2 + transfer. We highlight the importance of transfer processes (atom or ion) in the intermediate ion-neutral complex, explaining part of the observed reactivity and formed ions. In this paper, we present the first reactivity study of anions with HFO 1234yf. Finally, the potential of O - and HO - as chemical ionization reagents for trace analysis is discussed. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Inorganic Bi/In thermal resist as a high-etch-ratio patterning layer for CF4/CHF3/O2 plasma etch

    NASA Astrophysics Data System (ADS)

    Tu, Yuqiang; Chapman, Glenn H.; Peng, Jun

    2004-05-01

    Bimetallic thin films containing indium and with low eutectic points, such as Bi/In, have been found to form highly sensitive thermal resists. They can be exposed by lasers with a wide range of wavelengths and be developed by diluted RCA2 solutions. The exposed bimetallic resist Bi/In can work as an etch masking layer for alkaline-based (KOH, TMAH and EDP) "wet" Si anisotropic etching. Current research shows that it can also act as a patterning and masking layer for Si and SiO2 plasma "dry" etch using CF4/CHF3. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In, indicating that laser exposure is an oxidation process. Experiment result shows that single metal Indium film and bilayer Sn/In exhibit thermal resist characteristics but at higher exposure levels. They can be developed in diluted RCA2 solution and used as etch mask layers for Si anisotropic etch and plasma etch.

  15. Substrate and chain length dependencies of the thermal behavior of [CF3(CF2)m(CH2)nCOO]2Cd single monolayers investigated by infrared reflection absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ren, Yanzhi; Asanuma, Morito; Iimura, Ken-ichi; Kato, Teiji

    2001-01-01

    Temperature-variable grazing incidence reflection absorption (GIR) spectra were recorded for the single monolayer of [CF3(CF2)m(CH2)nCOO)]2Cd [(m,n)=(7,10), (7,16), (7,22), (5,22), and (3,22)], transferred from aqueous Cd2+ subphase to gold- and aluminum-evaporated glass substrates. The spectra reveal that these monolayers have better thermal stability on Al substrates than on Au. An "interaction band" is identified at 1484˜1480 cm-1, due to the νs(COO-) mode of carboxylate headgroups in ionic bonding with the Al surface. It is found that both the van der Waals interaction between the trans zig-zag hydrocarbon chains and the overlapping interaction between the fluorocarbon helixes are responsible for the systematic variation of the monolayer thermal behavior with (m,n). The thermal behavior of a single monolayer of cadmium stearate, serving as a model system, has been investigated to further confirm the spectral interpretation about the partially fluorinated monolayer. In addition, temperature-dependent friction measurements show that the single monolayers of (m,n)=(7,16), (7,22), (5,22), and (3,22) are potential molecular lubricants that can be used in the range of 25˜140 °C.

  16. A Roof for the Lion's House

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Fans of the National Football League's Detroit Lions don't worry about gameday weather. Their magnificent new Pontiac Stadium has a domed, air-supported, fabric roof that admits light but protects the playing field and patrons from the elements. The 80,000-seat "Silverdome" is the world's largest fabric-covered structure-and aerospace technology played an important part in its construction. The key to economical construction of the Silverdome-and many other types of buildings-is a spinoff of fiber glass Beta yarn coated with Teflon TFE fluorocarbon resin. The big advance it offers is permanency. Fabric structures-tents, for example have been around since the earliest years of human civilization. But their coverings-hides, canvas and more recently plastics-were considered temporary; though tough, these fabrics were subject to weather deterioration. Teflon TFE-coated Beta Fiberglas is virtually impervious to the effects of weather and sunlight and it won't stretch, shrink, mildew or rot, thus has exceptional longevity; it is also very strong, lightweight, flame resistant and requires no periodic cleaning, because dirt will not stick to the surface of Teflon TFE. And to top all that, it costs only 30 to 40 percent as much as conventional roofing.

  17. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-01

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  18. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, throughmore » the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.« less

  19. Tuned alexandrite laser for dentistry

    NASA Astrophysics Data System (ADS)

    Sulc, Jan; Jelinkova, Helena; Dostalova, Tatjana; Miyagi, Mitsunobu

    2000-04-01

    For medical applications tunable solid state laser system emitting a visible light in a region from 710 to 775 nm was developed. Laser head of this system was composed of alexandrite crystal rod (4 mm in diameter, 90 mm of length), two dielectric mirrors and tuning element (dispersing prism or thin-film polarizer). For Q-switching, three different optics shutters were proved: a saturable NC-dye or LiF crystal, LiNbO3 Pockels cell, and rotating prism. Maximum output energy in free-running and Q-switching regime was 400 mJ and 70 mJ, respectively. The pulse duration was 70 microsecond(s) in the free-running and 45 - 250 ns in Q-switching regime. The output free running laser radiation was guided via a multimode quartz fiber (1 m of length, core diameter 600 micrometers ) or via a special fluorocarbon polymer-coated silver hollow glass waveguide (0.62 m of length, inner diameter 1 mm). At first, this radiation with a laser fluence of 2.5 J/cm2 was used for an ablation of a dental calculus. Next, the laser radiation propagation in a root canal and its effect on bacteria was proved. The dissipated energy measurement was made inside and outside of the tooth. From the results follow that the alexandrite laser could be useful for medical applications.

  20. Molecular dynamics study of di-CF4 based reverse micelles in supercritical CO2.

    PubMed

    Liu, Bing; Tang, Xinpeng; Fang, Wenjing; Li, Xiaoqi; Zhang, Jun; Zhang, Zhiliang; Shen, Yue; Yan, Youguo; Sun, Xiaoli; He, Jianying

    2016-10-26

    Reverse micelles (RMs) in supercritical CO 2 (scCO 2 ) are promising alternatives for organic solvents, especially when both polar and non-polar components are involved. Fluorinated surfactants, particularly double-chain fluorocarbon surfactants, are able to form well-structured RMs in scCO 2 . The inherent self-assembly mechanisms of surfactants in scCO 2 are still subject to discussion. In this study, molecular dynamics simulations are performed to investigate the self-aggregation behavior of di-CF4 based RMs in scCO 2 , and stable and spherical RMs are formed. The dynamics process and the self-assembly structure in the RMs reveal a three-step mechanism to form the RMs, that is, small RMs, rod-like RMs and fusion of the rod-like RMs. Hydrogen-bonds between headgroups and water molecules, and salt bridges linking Na + ions, headgroups and water molecules enhance the interfacial packing efficiency of the surfactant. The results show that di-CF4 molecules have a high surfactant coverage at the RM interface, implying a high CO 2 -philicity. This mainly results from bending of the short chain (C-COO-CH 2 -(CF2) 3 -CF3) due to the flexible carboxyl group. The microscopic insight provided in this study is helpful in understanding surfactant self-assembly phenomena and designing new CO 2 -philic surfactants.

  1. In situ CF3 Detection in Low Pressure Inductive Discharges by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.

  2. Surface Phenomena During Plasma-Assisted Atomic Layer Etching of SiO2.

    PubMed

    Gasvoda, Ryan J; van de Steeg, Alex W; Bhowmick, Ranadeep; Hudson, Eric A; Agarwal, Sumit

    2017-09-13

    Surface phenomena during atomic layer etching (ALE) of SiO 2 were studied during sequential half-cycles of plasma-assisted fluorocarbon (CF x ) film deposition and Ar plasma activation of the CF x film using in situ surface infrared spectroscopy and ellipsometry. Infrared spectra of the surface after the CF x deposition half-cycle from a C 4 F 8 /Ar plasma show that an atomically thin mixing layer is formed between the deposited CF x layer and the underlying SiO 2 film. Etching during the Ar plasma cycle is activated by Ar + bombardment of the CF x layer, which results in the simultaneous removal of surface CF x and the underlying SiO 2 film. The interfacial mixing layer in ALE is atomically thin due to the low ion energy during CF x deposition, which combined with an ultrathin CF x layer ensures an etch rate of a few monolayers per cycle. In situ ellipsometry shows that for a ∼4 Å thick CF x film, ∼3-4 Å of SiO 2 was etched per cycle. However, during the Ar plasma half-cycle, etching proceeds beyond complete removal of the surface CF x layer as F-containing radicals are slowly released into the plasma from the reactor walls. Buildup of CF x on reactor walls leads to a gradual increase in the etch per cycle.

  3. Structures and properties of fluorinated amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Huang, K. P.; Lin, P.; Shih, H. C.

    2004-07-01

    Fluorinated amorphous carbon (a-C:F) films were deposited by radio frequency bias assisted microwave plasma electron cyclotron resonance chemical vapor deposition with tetrafluoromethane (CF4) and acetylene (C2H2) as precursors. The deposition process was performed at two flow ratios R=0.90 and R=0.97, where R=CF4/(CF4+C2H2). The samples were annealed at 300 °C for 30 min. in a N2 atmosphere. Both Fourier transform infrared and electron spectroscopy for chemical analyzer were used to characterize the a-C:F film chemical bond and fluorine concentration, respectively. A high resolution electron energy loss spectrometer was applied to detect the electronic structure. The higher CF4 flow ratio (R=0.97) produced more sp3 linear structure, and it made the a-C:F film smoother and softer. A lifetime of around 0.34 μs and an energy gap of ˜2.75 eV were observed in both the as-deposited and after annealing conditions. The short carriers lifetime in the a-C:F film made the photoluminescence peak blueshift. The annealing changed both the structure and composition of the a-C:F film. The type of fluorocarbon bond and electronic structure characterized the mechanical and physical properties of a-C:F film.

  4. Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control.

    PubMed

    Yuan, Jian-Jun; Kimitsuka, Nobuo; Jin, Ren-Hua

    2013-04-24

    The synthesis of polysilsesquioxanes coating with controllable one-dimensional nanostructure on substrates remains a major long-term challenge by conventional solution-phase method. The hydrolytic polycondensation of organosilanes in solution normally produces a mixture of incomplete cages, ladderlike, and network structures, resulting in the poor control of the formation of specific nanostructure. This paper describes a simple aqueous process to synthesize nanofilament-based coatings of polysilsesquioxanes possessing various organo-functional groups (for example, thiol, methyl, phenyl, vinyl, and epoxy). We utilized a self-assembled nanostructured polyamine layer as a biomimetically catalytic scaffold/template to direct the formation of one-dimensional nanofilament of polysilsesquioxanes by temporally and spatially controlled hydrolytic polycondensation of organosilane. The surface nanostructure and morphology of polysilsesquioxane coating could be modulated by changing hydrolysis and condensation reaction conditions, and the orientation of nanofilaments of polysilsesquioxanes on substrates could be controlled by simply adjusting the self-assembly conditions of polyamine layer. The nanostructure and polyamine@polysilsesquioxane hybrid composition of nanofilament-based coatings were examined by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The template role of nanostructured polyamine layer for the formation of polysilsesquioxane nanofilament was confirmed by combining thin film X-ray diffraction (XRD) and XPS measurements. Moreover, these nanotextured coatings with various organo-functional groups could be changed into superhydrophobic surfaces after surface modification with fluorocarbon molecule.

  5. Er:YAG and alexandrite laser radiation propagation in the root canal and its effect on bacteria

    NASA Astrophysics Data System (ADS)

    Jelinkova, Helena; Dostalova, Tatjana; Duskova, Jana; Miyagi, Mitsunobu; Shoji, Shigeru; Sulc, Jan; Nemec, Michal

    1999-05-01

    The goal of the study was to verify differences between the alexandrite and Er:YAG laser energy distribution in the root canal and in the surrounding dentin and bone tissues. For the experiment, two lasers were prepared: the Er:YAG laser (λ=2.94 μm) with a delivery system fluorocarbon polymer-coated silver hollow glass waveguide ended by a special sapphire tip and the alexandrite laser (λ=0.75 μm) with a silicon fiber. The Er:YAG laser was operated in a free-running mode, the length of the generated pulses was 250 μsec and the output energy ranged from 100 to 350 mJ. The pulse length of the free- running alexandrite laser was 70 μsec and the output energy was ranged from 80 up to 200 mJ. For the experiment prepared root canals of molars were used. It was ascertained that the radiation of the alexandrite laser passes through the root canal and hits the surrounding tissue. Nocardia asteroids, Filaments, Micrococcus albus, Lactobacillus sp and Streptococcus sanguis colonies were treated by the Er:YAG or alexandrite laser radiation. The surface was checked by scanning electron microscopy. From the result it follows that the Er:YAG laser destroyed microbial colonies but the differences is in the depth of the affected area.

  6. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    NASA Technical Reports Server (NTRS)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  7. Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO2 using cyclic Ar/C4F8 plasma

    PubMed Central

    Kawakami, Masatoshi; Metzler, Dominik; Li, Chen; Oehrlein, Gottlieb S.

    2016-01-01

    The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO2 using a steady-state Ar plasma, periodic injection of a defined number of C4F8 molecules, and synchronized plasma-based Ar+ ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change in the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C4F8 injection. The C4F8 and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number. PMID:27375342

  8. Influence of fluorocarbon and hydrocarbon acyl groups at the surface of bovine carbonic anhydrase II on the kinetics of denaturation by sodium dodecyl sulfate.

    PubMed

    Lee, Andrew; Mirica, Katherine A; Whitesides, George M

    2011-02-10

    This paper examines the influence of acylation of the Lys-ε-NH(3)(+) groups of bovine carbonic anhydrase (BCA, EC 4.2.1.1) to Lys-ε-NHCOR (R = -CH(3), -CH(2)CH(3), and -CH(CH(3))(2), -CF(3)) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rates of denaturation (k(Ac,n)) of each series of acylated derivatives depended on the number of acylations (n). Plots of log k(Ac,n) vs n followed U-shaped curves. Within each series of derivatives, rates of denaturation decreased as n increased to ∼7; this decrease was compatible with increasingly unfavorable electrostatic interactions between SDS and protein. In this range of n, rates of denaturation also depended on the choice of the acyl group as n increased to ∼7, in a manner compatible with favorable hydrophobic interactions between SDS and the -NHCOR groups. As n increased in the range 7 < n < 14, however, rates of denaturation stayed approximately constant; analysis suggested that these rates were compatible with an increasingly important contribution to denaturation that depended both on the net negative charge of the protein and on the hydrophobicity of the R group. The mechanism of denaturation thus seems to change with the extent of acylation of the protein. For derivatives with the same net electrostatic charge, rates of denaturation increased with the acyl group (by a factor of ∼3 for n ∼ 14) in the order CH(3)CONH- < CH(3)CH(2)CONH- < (CH(3))(2)CHCONH- < CF(3)CONH-. These results suggested that the hydrophobicity of CF(3)CONH- is slightly greater (by a factor of <2) than that of RHCONH- with similar surface area.

  9. ESCA study of several fluorocarbon polymers exposed to atomic oxygen in low earth orbit or within or downstream from a radio-frequency oxygen plasma

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore; Cormia, Robert D.

    1989-01-01

    The ESCA (electron spectroscopy for chemical analysis) spectra of films of Tedlar, tetrafluoroethylene-hexafluoropropylene copolymer (in the form of a Teflon FEP coating on Kapton H, i.e., Kapton F), and polytetrafluoroethylene (Teflon or Teflon TFE), exposed to atomic oxygen O(3P) either in LEO on the STS-8 Space Shuttle or within or downstream from a radio-frequency oxygen plasma, were compared. The major difference in surface chemistry of Tedlar induced by the various exposures to O(3P) was a much larger uptake of oxygen when etched either in or out of the glow of an O2 plasma than when etched in LEO. In contrast, Kapton F exhibited very little surface oxidation during any of the three different exposures to O(3P), while Teflon was scarcely oxidized.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik; Li, Chen; Engelmann, Sebastian

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C 4F 8 ALE based on steady-state Ar plasma in conjunction with periodic, precise C 4F 8 injection and synchronized plasma-based low energy Ar + ion bombardment has been established for SiO 2. 1 In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF 3 as a precursor is examined and compared to C 4F 8. CHF 3 is shown to enablemore » selective SiO 2/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and X-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. As a result, plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shu-Xia; Zhang, Yu-Ru; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp

    A hybrid model is used to investigate the fragmentation of C{sub 4}F{sub 8} inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C{sub x}F{sub y} (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C{sub 4}F{sub 8} inductively coupled plasma source,more » as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C{sub 4}F{sub 8} reaction set used in the model. The C{sub 4}F{sub 8} plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.« less

  12. Nonflammable, Nonaqueous, Low Atmospheric Impact, High Performance Cleaning Solvents

    NASA Technical Reports Server (NTRS)

    Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    For many years, chlorofluorocarbon (CFC) and chlorocarbon solvents have played an important part in aerospace operations. These solvents found extensive use as cleaning and analysis (EPA) solvents in precision and critical cleaning. However, CFCs and chlorocarbon solvents have deleterious effects on the ozone layer, are relatively strong greenhouse gases, and some are suspect or known carcinogens. Because of their ozone-depletion potential (ODP), the Montreal Protocol and its amendments, as well as other environmental regulations, have resulted in the phaseout of CFC-113 and 1,1,1-trichloroethane (TCA). Although alternatives have been recommended, they do not perform as well as the original solvents. In addition, some analyses, such as the infrared analysis of extracted hydrocarbons, cannot be performed with the substitute solvents that contain C-H bonds. CFC-113 solvent has been used for many critical aerospace applications. CFC-113, also known as Freon (registered) TF, has been used extensively in NASA's cleaning facilities for precision and critical cleaning, in particular the final rinsing in Class 100 areas, with gas chromatography analysis of rinse residue. While some cleaning can be accomplished by other processes, there are certain critical applications where CFC-113 or a similar solvent is highly cost-effective and ensures safety. Oxygen system components are one example where a solvent compatible with oxygen and capable of removing fluorocarbon grease is needed. Electronic components and precision mechanical components can also be damaged by aggressive cleaning solvents.

  13. Mechanism of cytotoxic action of perfluorinated acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleszczynski, Konrad; Skladanowski, Andrzej C.

    Perfluorinated (aliphatic) acids (PFAs) and congeners have many applications in various industrial fields and household for decades. Years later they have been detected in wildlife and this has spurred interest in environmental occurrence as well as influencing living organisms. PFAs were established as peroxisome proliferators and hepatocarcinogens. Amphipatic structure suggests that they may alter cell membrane potential (mb{delta}{psi}) and/or induce changes in cytosolic pH (pHi). The aim of this study was to examine the correlation between changes of above parameters and PFAs structure (CF{sub 6}-CF{sub 12}) in human colon carcinoma HCT116 cells. mb{delta}{psi} and pHi were measured by flow cytometrymore » using fluorescence polarization of the plasma membrane probe 3,3'-dipentyloxacarbocyanine (DiOC{sub 5}(3)) and fluorescein diacetate (FDA), respectively. Dose- and time-dependent manner analysis revealed relatively fast depolarization of plasma membrane and acidification of cytosol both positively correlated with fluorocarbon chain length. mb{delta}{psi} depletion after 4 h of incubation reached 8.01% and 30.08% for 50 {mu}M PFOA and 50 {mu}M PFDoDA, respectively. Prolonged treatment (72 h) led to dramatic dissipation of membrane potential up to 21.65% and 51.29% and strong acidification to pHi level at 6.92 and 6.03 at the presence of above compounds, respectively. The data demonstrate that PFAs can alter plasma membrane protonotrophy with the mode dependent on the compound hydrophobicity.« less

  14. Discrete elements for 3D microfluidics.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  15. Examination of fluorination effect on physical properties of saturated long-chain alcohols by DSC and Langmuir monolayer.

    PubMed

    Nakahara, Hiromichi; Nakamura, Shohei; Okahashi, Yoshinori; Kitaguchi, Daisuke; Kawabata, Noritake; Sakamoto, Seiichi; Shibata, Osamu

    2013-02-01

    Partially fluorinated long-chain alcohols have been newly synthesized from a radical reaction, which is followed by a reductive reaction. The fluorinated alcohols have been investigated by differential scanning calorimetry (DSC) and compression isotherms in a Langmuir monolayer state. Their melting points increase with an increase in chain length due to elongation of methylene groups. However, the melting points for the alcohols containing shorter fluorinated moieties are lower than those for the typical hydrogenated fatty alcohols. Using the Langmuir monolayer technique, surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms of monolayers of the fluorinated alcohols have been measured in the temperature range from 281.2 to 303.2K. In addition, a compressibility modulus (Cs(-1)) is calculated from the π-A isotherms. Four kinds of the alcohol monolayers show a phase transition (π(eq)) from a disordered to an ordered state upon lateral compression. The π(eq) values increase linearly with increasing temperatures. A slope of π(eq) against temperature for the alcohols with shorter fluorocarbons is unexpectedly larger than that for the corresponding fatty alcohols. Generally, fluorinated amphiphiles have a greater thermal stability (or resistance), which is a characteristic of highly fluorinated or perfluorinated compounds. Herein, however, the alcohols containing perfluorobutylated and perfluorohexylated chains show the irregular thermal behavior in both the solid and monolayer states. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Modeling Surface Water Transport in the Central Pacific Ocean With 129I Records From Coral Skeletons

    NASA Astrophysics Data System (ADS)

    Beck, W.; Biddulph, D. L.; Russell, J. L.; Burr, G. S.; Jull, T. J.; Correge, T.; Roeder, B.

    2008-12-01

    129I occurs naturally in extremely low abundance via cosmic ray interactions in the atmosphere as well as by spontaneous fission of uranium. Oceanic concentrations of 129I have risen by several orders of magnitude during the last half century largely from environmental pollution coming from several point-source nuclear fuel reprocessing plants. In the Pacific basin, much of the increase has apparently come from the Hanford Nuclear reprocessing plant in the United States, with iodine primarily arriving via the Columbia River. Coral skeletons preserve records of 129I concentration of the surface waters from which they were deposited, yielding records with annual resolution or better. We will present three such records from different locations in the Pacific Ocean: the Solomon Islands, Easter Island and Clipperton Atoll. For this study, drill cores from living massive coral skeletons of the species Porites Lobata were collected from these sites. 129I/127I values were measured using accelerator mass spectrometry (AMS) at the University of Arizona with an NEC 3 MV Pelletron accelerator. Results from the analysis of the corals will be compared to the distribution of other mixed-layer tracers (chloro-fluorocarbons and tritium) collected during the World Ocean Circulation Experiment cruises conducted between 1990 and 2002. The 129I/127I records observed in these corals will also be compared to tracer transit time calculations determined from a 20th century simulation of the GFDL coupled-climate passive-tracer model.

  17. Phospholipid Capped Mesoporous Nanoparticles for Targeted High Intensity Focused Ultrasound Ablation.

    PubMed

    Yildirim, Adem; Chattaraj, Rajarshi; Blum, Nicholas T; Shi, Dennis; Kumar, Kaushlendra; Goodwin, Andrew P

    2017-09-01

    The mechanical effects of cavitation can be effective for therapy but difficult to control, thus potentially leading to off-target side effects in patients. While administration of ultrasound active agents such as fluorocarbon microbubbles and nanodroplets can locally enhance the effects of high intensity focused ultrasound (HIFU), it has been challenging to prepare ultrasound active agents that are small and stable enough to accumulate in tumors and internalize into cancer cells. Here, this paper reports the synthesis of 100 nm nanoparticle ultrasound agents based on phospholipid-coated, mesoporous, hydrophobically functionalized silica nanoparticles that can internalize into cancer cells and remain acoustically active. The ultrasound agents produce bubbles when subjected to short HIFU pulses (≈6 µs) with peak negative pressure as low as ≈7 MPa and at particle concentrations down to 12.5 µg mL -1 (7 × 10 9 particles mL -1 ). Importantly, ultrasound agents are effectively uptaken by cancer cells without cytotoxic effects, but HIFU insonation causes destruction of the cells by the acoustically generated bubbles, as demonstrated by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and lactate dehydrogenase assays and flow cytometry. Finally, it is showed that the HIFU dose required to effectively eliminate cancer cells in the presence of ultrasound agents causes only a small temperature increase of ≈3.5 °C. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effects of feedstock availability on the negative ion behavior in a C{sub 4}F{sub 8} inductively coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shu-Xia; Research group PLASMANT, Dept. Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp; Gao, Fei

    2015-07-21

    In this paper, the negative ion behavior in a C{sub 4}F{sub 8} inductively coupled plasma (ICP) is investigated using a hybrid model. The model predicts a non-monotonic variation of the total negative ion density with power at low pressure (10–30 mTorr), and this trend agrees well with experiments that were carried out in many fluorocarbon (fc) ICP sources, like C{sub 2}F{sub 6}, CHF{sub 3}, and C{sub 4}F{sub 8}. This behavior is explained by the availability of feedstock C{sub 4}F{sub 8} gas as a source of the negative ions, as well as by the presence of low energy electrons due tomore » vibrational excitation at low power. The maximum of the negative ion density shifts to low power values upon decreasing pressure, because of the more pronounced depletion of C{sub 4}F{sub 8} molecules, and at high pressure (∼50 mTorr), the anion density continuously increases with power, which is similar to fc CCP sources. Furthermore, the negative ion composition is identified in this paper. Our work demonstrates that for a clear understanding of the negative ion behavior in radio frequency C{sub 4}F{sub 8} plasma sources, one needs to take into account many factors, like the attachment characteristics, the anion composition, the spatial profiles, and the reactor configuration. Finally, a detailed comparison of our simulation results with experiments is conducted.« less

  19. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  20. Climate change and air pollution jointly creating nightmare for tourism industry.

    PubMed

    Sajjad, Faiza; Noreen, Umara; Zaman, Khalid

    2014-11-01

    The objective of the study is to examine the long-run and causal relationship between climate change (i.e., greenhouse gas emissions, hydrofluorocarbons, per fluorocarbons, and sulfur hexafluoride), air pollution (i.e., methane emissions, nitrous oxide emissions, and carbon dioxide emissions), and tourism development indicators (i.e., international tourism receipts, international tourism expenditures, natural resource depletion, and net forest depletion) in the World's largest regions. The aggregate data is used for robust analysis in the South Asia, the Middle East and North Africa, sub-Saharan Africa, and East Asia and the Pacific regions, over a period of 1975-2012. The results show that climatic factors and air pollution have a negative impact on tourism indicators in the form of deforestation and natural resource depletion. The impact is evident, as we have seen the systematic eroding of tourism industry, due to severe changes in climate and increasing strain of air pollution. There are several channels of cause-effect relationship between the climatic factors, air pollution, and tourism indicators in the World's region. The study confirms the unidirectional, bidirectional, and causality independent relationship between climatic factors, air pollution, and tourism indicators in the World. It is conclusive that tourism industry is facing all time bigger challenges of reduce investment, less resources, and minor importance from the government agencies because of the two broad challenges, i.e., climate change and air pollution, putting them in a dismal state.

  1. Synthesis, Structure, and Selective Gas Adsorption of a Single-Crystalline Zirconium Based Microporous Metal–Organic Framework

    DOE PAGES

    Wang, Hao; Wang, Qining; Teat, Simon J.; ...

    2017-02-15

    Porous metal-organic framework (MOF) materials with high thermal and water stability are desirable for various adsorption based applications. Early transition metal based MOFs such as those built on zirconium metal have been well recognized for their excellent stability toward heat and/or moisture. However, the difficulty growing large single crystals makes their structural characterization challenging. Herein we report a porous Zr-MOF, [Zr 6O 4(OH) 4(cca) 6] (Zr-cca), which is assembled from zirconium and 4-carboxycinnamic acid (H 2cca) under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that the structure of Zr-cca is isoreticular to the prototype zirconium based MOF, UiO-66. Zr-ccamore » shows permanent porosity upon removal of solvent molecules initially residing inside the pores, with a BET surface area of 1178 m 2/g. As expected, it exhibits good thermal stability (stable up to 400 °C) and high resistance to acidity over a wide pH range. Evaluation of its gas adsorption performance on various hydrocarbons and fluorocarbons indicates that it preferentially adsorbs C 3 and C 4 hydrocarbons over C 2 analogues. At 30°C Zr-cca takes up more than 50 wt % of perfluorohexane and the adsorption-desorption process is fully recyclable. We have compared this material with UiO-66 and studied the underlying reasons for the difference in their adsorption performance toward perfluorohexane.« less

  2. Enhancement of discharge performance of Li/CF x cell by thermal treatment of CF x cathode material

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng S.; Foster, Donald; Read, Jeffrey

    In this work we demonstrate that the thermal treatment of CF x cathode material just below the decomposition temperature can enhance discharge performance of Li/CF x cells. The performance enhancement becomes more effective when heating a mixture of CF x and citric acid (CA) since CA serves as an extra carbon source. Discharge experiments show that the thermal treatment not only reduces initial voltage delay, but also raises discharge voltage. Whereas the measurement of powder impedance indicates the thermal treatment does not increase electronic conductivity of CF x material. Based on these facts, we propose that the thermal treatment results in a limited decomposition of CF x, which yields a subfluorinated carbon (CF x- δ), instead of a highly conductive carbon. In the case of CF x/AC mixture, the AC provides extra carbon that reacts with F 2 and fluorocarbon radicals generated by the thermal decomposition of CF x to form subfluorinated carbon. The process of thermal treatment is studied by thermogravimetric analysis and X-ray diffraction, and the effect of treatment conditions such as heating temperature, heating time and CF x/CA ratio on the discharge performance of CF x cathode is discussed. As an example, a Li/CF x cell using CF x treated with CA at 500 °C under nitrogen for 2 h achieved theretical specific capacity when being discharged at C/5. Impedance analysis indicates that the enhanced performance is attributed to a significant reduction in the cell reaction resistance.

  3. Microfluidic Isoelectric Focusing of Amyloid Beta Peptides Followed by Micropillar-Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry.

    PubMed

    Mikkonen, Saara; Jacksén, Johan; Roeraade, Johan; Thormann, Wolfgang; Emmer, Åsa

    2016-10-18

    A novel method for preconcentration and purification of the Alzheimer's disease related amyloid beta (Aβ) peptides by isoelectric focusing (IEF) in 75 nL microchannels combined with their analysis by micropillar-matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) is presented. A semiopen chip-based setup, consisting of open microchannels covered by a lid of a liquid fluorocarbon, was used. IEF was performed in a mixture of four small and chemically well-defined amphoteric carriers, glutamic acid, aspartyl-histidine (Asp-His), cycloserine (cSer), and arginine, which provided a stepwise pH gradient tailored for focusing of the C-terminal Aβ peptides with a pI of 5.3 in the boundary between cSer and Asp-His. Information about the focusing dynamics and location of the foci of Aβ peptides and other compounds was obtained using computer simulation and by performing MALDI-MS analysis directly from the open microchannel. With the established configuration, detection was performed by direct sampling of a nanoliter volume containing the focused Aβ peptides from the microchannel, followed by deposition of this volume onto a chip with micropillar MALDI targets. In addition to purification, IEF preconcentration provides at least a 10-fold increase of the MALDI-MS-signal. After immunoprecipitation and concentration of the eluate in the microchannel, IEF-micropillar-MALDI-MS is demonstrated to be a suitable platform for detection of Aβ peptides in human cerebrospinal fluid as well as in blood plasma.

  4. CF4 plasma treatment of poly(dimethylsiloxane): effect of fillers and its application to high-aspect-ratio UV embossing.

    PubMed

    Yan, Y H; Chan-Park, M B; Yue, C Y

    2005-09-13

    Surface modification of poly(dimethylsiloxane) (PDMS) was carried out via CF4 plasma treatment. The test PDMS used contains significant amounts of quartz and silica fillers, while the control material is the same PDMS with quartz removed by centrifugation. Fluorination accompanied with roughening was produced on both PDMS surfaces. With short plasma times (15 min or less), a macromolecular fluorocarbon layer was formed on the PDMS surfaces because of the dominant fluorination, leading to significant increase in F concentration, decrease of surface energy, and some roughening. With intermediate plasma times (15-30 min), dynamic balance between fluorination and ablation was achieved, leading to a plateau of the surface roughness, fluorine content, and [F-Si]/[F-C] ratio. At our longest investigated plasma time of 45 min, the plasma ablated the fluorinated covering layer on the PDMS surfaces, leading to significant increase in roughness and [F-Si]/[F-C] ratio and decrease of surface F concentration. The effect of additional quartz in the test PDMS on surface F concentration, [F-Si]/[F-C] ratio, and roughness was dramatic only when ablation was significant (i.e., 45 min). The obtained Teflon-like surface displays long-term stability as opposed to hydrophobic recovery of other plasma-treated PDMS surfaces to increase hydrophilicity. On the basis of the optimized plasma treatment time of 15 min, a microstructured PDMS mold was plasma treated and successfully used for multiple high-aspect-ratio (about 8) UV embossing of nonpolar polypropylene glycol diacrylate (PPGDA) resin.

  5. Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1

    NASA Technical Reports Server (NTRS)

    Rebells, Clarence A.

    1988-01-01

    This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.

  6. Multiple-orifice liquid injection into hypersonic airstreams and applications to ram C-3 flight

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.

    1972-01-01

    Experimental data are presented for the oblique injection of water and three electrophilic liquids (fluorocarbon compounds) through multiple-orifice nozzles from a flat plate and the sides of a hemisphere-cone (0.375 scale of RAM C spacecraft) into hypersonic airstreams. The nozzle patterns included single and multiple orifices, single rows of nozzles, and duplicates of the RAM C-III nozzles. The flat-plate tests were made at Mach 8. Total pressure was varied from 3.45 MN/m2 to 10.34 MN/m2, Reynolds number was varied form 9,840,000 per meter to 19,700,000 per meter, and liquid injection pressure was varied from 0.69 MN/m2 to 3.5 MN/m2. The hemisphere-cone tests were made at Mach 7.3. Total pressure was varied from 1.38 MN/m2, to 6.89 MN/m2, Reynolds number was varied from 3,540,000 per meter to 17,700,000 per meter, and liquid-injection pressure was varied from 0.34 MN/m2 to 4.14 MN/m2. Photographs of the tests and plots of liquid-penetration and spray cross-section area are presented. Maximum penetration was found to vary as the square root of the dynamic-pressure ratio and the square root of the total injection nozzle area. Spray cross-section area was linear with maximum penetration. The test results are used to compute injection parameters for the RAM C-3 flight injection experiment.

  7. Fluoropolymer Films Deposited by Argon Ion-Beam Sputtering of Polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Banks, Bruce A.; Kliss, Mark (Technical Monitor)

    1998-01-01

    The FT-IR, XPS and UV spectra of fluoropolymer films (SPTFE-I) deposited by argon ion-beam sputtering of polytetrafluoroethylene (PTFE) were obtained and compared with prior corresponding spectra of fluoropolymer films (SPTFE-P) deposited by argon rf plasma sputtering of PTFE. Although the F/C ratios for SPTFE-I and -P (1.63 and 1.51) were similar, their structures were quite different in that there was a much higher concentration of CF2 groups in SPTFE-I than in SPTFE-P, ca. 61 and 33% of the total carbon contents, respectively. The FT-IR spectra reflect that difference, that for SPTFE-I showing a distinct doublet at 1210 and 1150 per centimeter while that for SPTFE-P presents a broad, featureless band at ca. 1250 per centimeter. The absorbance of the 1210-per centimeter band in SPTFE-I was proportional to the thickness of the film, in the range of 50-400 nanometers. The SPTFE-I was more transparent in the UV than SPTFE-P at comparable thickness. The mechanism for SPTFE-I formation likely involves "chopping off" of oligomeric segments of PTFE as an accompaniment to "plasma" polymerization of TFE monomer or other fluorocarbon fragments generated in situ from PTFE on impact with energetic Ar ions. Data are presented for SPTFE-I deposits and the associated Ar(+) bombarded PTFE targets where a fresh target was used for each run or a single target was used for a sequence of runs.

  8. Degradation and crosslinking of perfluoroalkyl polyethers under X-ray irradiation in ultrahigh vacuum

    NASA Technical Reports Server (NTRS)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    Degradation of three types of commercially available perfluoroalkyl polyethers (PFPE)-Demnum S200, Fomblin Z25, and Krytox 16256-by X-ray irradiation was studied by using X-ray photoemission spectroscopy (XPS) and a mass spectrometer under ultra-high-vacuum conditions. The carbons in the polymers were characterized by chemical shifts of Cls binding energies. Gaseous products containing COF2 and low-molecular-weight fluorocarbons were formed. From Fomblin Z25, which has acetal linkages (-OCF2O-), a large quantity of COF2 gas was evolved. Liquid products became tacky after a long irradiation time, and some did not dissolve in Freon. High-pressure liquid chromatography (HPLC) showed that molecular weight distribution became broader and that higher molecular weight polymers were formed from Demnum and Krytox. We concluded from these results that degradation and cross-linking took place simultaneously. Demnum crosslinked more easily than the other fluids. The time dependence of both XPS spectra of Cls and mass spectra showed that C-O-bonded carbons in PFPE'S were removed faster than other carbons. There was no substrate effect on the degradation reaction because the first-order rate constants calculated from the change of gaseous products were similar when stainless steel (440C) and gold-coated surfaces were used. Metal fluorides were formed on stainless steel during the reaction. A mechanism for the degradation of PFPE'S is discussed on the basis of their molecular structures.

  9. Nuclear magnetic resonance at the picomole level of a DNA adduct.

    PubMed

    Kautz, Roger; Wang, Poguang; Giese, Roger W

    2013-10-21

    We investigate the limit of detection for obtaining NMR data of a DNA adduct using modern microscale NMR instrumentation, once the adduct has been isolated at the picomole level. Eighty nanograms (130 pmol) of a DNA adduct standard, N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene 5'-monophosphate (AAF-dGMP), in 1.5 μL of D₂O with 10% methanol-d₄, in a vial, was completely picked up as a droplet suspended in a fluorocarbon liquid and loaded efficiently into a microcoil probe. This work demonstrates a practical manual method of droplet microfluidic sample loading, previously demonstrated using automated equipment, which provides a severalfold advantage over conventional flow injection. Eliminating dilution during injection and confining the sample to the observed volume produce the full theoretical mass sensitivity of a microcoil, comparable to that of a microcryo probe. With 80 ng, an NMR spectrum acquired over 40 h showed all of the resonances seen in a standard spectrum of AAF-dGMP, with a signal-to-noise ratio of at least 10, despite broadening due to previously noted effects of conformational exchange. Even with this broadening to 5 Hz, a two-dimensional total correlation spectroscopy spectrum was acquired on 1.6 μg in 18 h. This work helps to define the utility of NMR in combination with other analytical methods for the structural characterization of a small amount of a DNA adduct.

  10. Langmuir Probe Measurements in an Inductively Coupled Ar/CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Technological advancement in the microelectronics industry requires an understanding of the physical and chemical processes occurring in plasmas of fluorocarbon gases, such as carbon tetrafluoride (CF4) which is commonly used as an etchant, and their mixtures to optimize various operating parameters. In this paper we report data on electron number density (ne), electron temperature'(Te), electron energy distribution function (EEDF), mean electron energy, ion number density (ni), and plasma potential (Vp) measured by using Langmuir probe in an inductively coupled 13.56 MHz radio frequency plasmas generated in 50%Ar:50%CF4 mixture in the GEC cell. The probe data were recorded at various radial positions providing radial profiles of these plasma parameters at 10-50 mTorr pressures and 200 W and 300 W of RF power. Present measurements indicate that the electron and ion number densities increase with increase in pressure and power. Whereas the plasma potential and electron temperature decrease with increase in pressure, and they weakly depend on RF power. The radial profiles exhibit that the electron and ion number densities and the plasma potential peak at the center of the plasma with an exponential fall away from it, while the electron temperature has a minimum at the center and it increases steadily towards the electrode edge. The EEDFs have a characteristic drop near the low energy end at all pressures and pressures and their shapes represent non-Maxwellian plasma and exhibit more like Druyvesteyn energy distribution.v

  11. The influence of repellent coatings on surface free energy of glass plate and cotton fabric

    NASA Astrophysics Data System (ADS)

    Černe, Lidija; Simončič, Barbara; Željko, Matjaž

    2008-08-01

    The aim of this research was to determine the influence of chemical finishes on the surface properties of glass plate, considered as a model homogeneous smooth surface and cotton fabric as a non-ideal heterogeneous rough surface. Microscopic slides and 100% cotton fabric in plain weave were coated with fluorocarbon polymers (FCP), paraffin waxes with zirconium salts (PWZ), methylolmelamine derivatives (MMD), polysiloxanes with side alkyldimethylammonium groups (PSAAC) and aminofunctional polysiloxanes (AFPS). From the goniometer contact angle measurements of different liquids, the surface free energy of the coated glass plates was calculated according to approaches by Owens-Wendt-Kaelble, Wu, van Oss-Chaudhury-Good, and Li-Neumann-Kwok. The results showed that all the coatings decreased the surface free energy of the substrate, which was also influenced by the liquid combination and the theoretical approach used. In spite of the fact that the liquid contact angles were much higher on the coated fabric samples than on glass plates and resulted in the lower values of work of adhesion, a very good correlation between the coatings deposited on both substrates was obtained. The presence of repellent coatings FCP, PWZ and MMD converted the solid surface from polar to highly apolar by masking the functional groups of glass and cellulose. PSAAC and AFPS coatings did not decrease the solid surface free energy to such an extent as the former three coatings due to their monopolar character.

  12. Study of PECVD films containing flourine and carbon and diamond like carbon films for ultra low dielectric constant interlayer dielectric applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Nandini Ganapathy

    precursors. Pre and post-anneal structural properties of the deposited thin film were studied using laser excitation of 633 nm in a Jobin Yvon Labram high-resolution micro-Raman spectrometer. The film was further characterized using AFM, FTIR, XRD, goniometry and electrical testing. Average film roughness as measured by AFM was less than 1 nm, the k-value was 2.5, and the contact angle with water was 42°. Lastly, layered dielectric films comprising of Diamond like Carbon (DLC) and Amorphous Fluorocarbon (a:C-F) were generated using three different stack configurations and subsequently evaluated. Seven unique process conditions generated promising stacks with k-values between 1.69 and 1.95. Of these, only one film exhibited very low shrinkage rates acceptable for semiconductor device processing. Annealed a:C-F films with DLC top coat are similar in bonding structure to as deposited FC films proving that DLC deposition significantly modified the bonding structure of the underlying annealed a:C-F film. Stacks comprised of a:C-F films with higher oxygen content, deposited using high FRRs exhibited both macro and microbuckling to a larger degree and extent. Film integrity was preserved by annealing the Fluorocarbon component or by providing a DLC base coat.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen; Gupta, Rahul; Pallem, Venkateswara

    The authors report a systematic study aimed at evaluating the impact of molecular structure parameters of hydrofluorocarbon (HFC) precursors on plasma deposition of fluorocarbon (FC) films and etching performance of a representative ultra-low-k material, along with amorphous carbon. The precursor gases studied included fluorocarbon and hydrofluorocarbon gases whose molecular weights and chemical structures were systematically varied. Gases with three different degrees of unsaturation (DU) were examined. Trifluoromethane (CHF{sub 3}) is the only fully saturated gas that was tested. The gases with a DU value of one are 3,3,3-trifluoropropene (C{sub 3}H{sub 3}F{sub 3}), hexafluoropropene (C{sub 3}F{sub 6}), 1,1,3,3,3-pentafluoro-1-propene (C{sub 3}HF{sub 5}),more » (E)-1,2,3,3,3-pentafluoropropene (C{sub 3}HF{sub 5} isomer), heptafluoropropyl trifluorovinyl ether (C{sub 5}F{sub 10}O), octafluorocyclobutane (C{sub 4}F{sub 8}), and octafluoro-2-butene (C{sub 4}F{sub 8} isomer). The gases with a DU value of two includes hexafluoro-1,3-butadiene (C{sub 4}F{sub 6}), hexafluoro-2-butyne (C{sub 4}F{sub 6} isomer), octafluorocyclopentene (C{sub 5}F{sub 8}), and decafluorocyclohexene (C{sub 6}F{sub 10}). The work was performed in a dual frequency capacitively coupled plasma reactor. Real-time characterization of deposition and etching was performed using in situ ellipsometry, and optical emission spectroscopy was used for characterization of CF{sub 2} radicals in the gas phase. The chemical composition of the deposited FC films was examined by x-ray photoelectron spectroscopy. The authors found that the CF{sub 2} fraction, defined as the number of CF{sub 2} groups in a precursor molecule divided by the total number of carbon atoms in the molecule, determines the CF{sub 2} optical emission intensity of the plasma. CF{sub 2} optical emission, however, is not the dominant factor that determines HFC film deposition rates. Rather, HFC film deposition rates are determined by the

  14. The Influence of Fluorocarbon and Hydrocarbon Acyl Groups at the Surface of Bovine Carbonic Anhydrase II on the Kinetics of Denaturation by Sodium Dodecyl Sulfate

    PubMed Central

    Lee, Andrew; Mirica, Katherine A.; Whitesides, George M.

    2011-01-01

    This paper examines the influence of acylation of the Lys-ε-NH3+ groups of bovine carbonic anhydrase (BCA, E.C. 4.2.1.1) to Lys-ε-NHCOR (R = -CH3, -CH2CH3, and -CH(CH3)2, -CF3) on the rate of denaturation of this protein in buffer containing sodium dodecyl sulfate (SDS). Analysis of the rates suggested separate effects due to electrostatic charge and hydrophobic interactions. Rates of denaturation (kAc,n) of each series of acylated derivatives depended on the number of acylations (n). Plots of log kAc,n vs. n followed U-shaped curves. Within each series of derivatives, rates of denaturation decreased as n increased to ~7; this decrease was compatible with increasingly unfavorable electrostatic interactions between SDS and protein. In this range of n, rates of denaturation also depended on the choice of the acyl group as n increased to ~7, in a manner compatible with favorable hydrophobic interactions between SDS and the -NHCOR groups. As n increased in the range 7 < n < 14 however, rates of denaturation stayed approximately constant; analysis suggested these rates were compatible with an increasingly important contribution to denaturation that depended both on the net negative charge of the protein and on the hydrophobicity of the R group. The mechanism of denaturation thus seems to change with the extent of acylation of the protein. For derivatives with the same net electrostatic charge, rates of denaturation increased with the acyl group (by a factor of ~3 for n ~ 14) in the order CH3CONH- < CH3CH2CONH- < (CH3)2CHCONH- < CF3CONH-. These results suggested that the hydrophobicity of CF3CONH- is slightly greater (by a factor of < 2) than that of RHCONH- similar in surface area. PMID:21182314

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu; Li, Chen

    The need for atomic layer etching (ALE) is steadily increasing as smaller critical dimensions and pitches are required in device patterning. A flux-control based cyclic Ar/C{sub 4}F{sub 8} ALE based on steady-state Ar plasma in conjunction with periodic, precise C{sub 4}F{sub 8} injection and synchronized plasma-based low energy Ar{sup +} ion bombardment has been established for SiO{sub 2} [Metzler et al., J. Vac. Sci. Technol. A 32, 020603 (2014)]. In this work, the cyclic process is further characterized and extended to ALE of silicon under similar process conditions. The use of CHF{sub 3} as a precursor is examined and comparedmore » to C{sub 4}F{sub 8}. CHF{sub 3} is shown to enable selective SiO{sub 2}/Si etching using a fluorocarbon (FC) film build up. Other critical process parameters investigated are the FC film thickness deposited per cycle, the ion energy, and the etch step length. Etching behavior and mechanisms are studied using in situ real time ellipsometry and x-ray photoelectron spectroscopy. Silicon ALE shows less self-limitation than silicon oxide due to higher physical sputtering rates for the maximum ion energies used in this work, ranged from 20 to 30 eV. The surface chemistry is found to contain fluorinated silicon oxide during the etching of silicon. Plasma parameters during ALE are studied using a Langmuir probe and establish the impact of precursor addition on plasma properties.« less

  16. NASA Tech Briefs, January 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Semiautonomous Avionics-and-Sensors System for a UAV; Biomimetic/Optical Sensors for Detecting Bacterial Species; System Would Detect Foreign-Object Damage in Turbofan Engine; Detection of Water Hazards for Autonomous Robotic Vehicles; Fuel Cells Utilizing Oxygen From Air at Low Pressures; Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS; Spontaneous-Desorption Ionizer for a TOF-MS; Equipment for On-Wafer Testing From 220 to 325 GHz; Computing Isentropic Flow Properties of Air/R-134a Mixtures; Java Mission Evaluation Workstation System; Using a Quadtree Algorithm To Assess Line of Sight; Software for Automated Generation of Cartesian Meshes; Optics Program Modified for Multithreaded Parallel Computing; Programs for Testing Processor-in-Memory Computing Systems; PVM Enhancement for Beowulf Multiple-Processor Nodes; Ion-Exclusion Chromatography for Analyzing Organics in Water; Selective Plasma Deposition of Fluorocarbon Films on SAMs; Water-Based Pressure-Sensitive Paints; System Finds Horizontal Location of Center of Gravity; Predicting Tail Buffet Loads of a Fighter Airplane; Water Containment Systems for Testing High-Speed Flywheels; Vapor-Compression Heat Pumps for Operation Aboard Spacecraft; Multistage Electrophoretic Separators; Recovering Residual Xenon Propellant for an Ion Propulsion System; Automated Solvent Seaming of Large Polyimide Membranes; Manufacturing Precise, Lightweight Paraboloidal Mirrors; Analysis of Membrane Lipids of Airborne Micro-Organisms; Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms; Dual-Laser-Pulse Ignition; Enhanced-Contrast Viewing of White-Hot Objects in Furnaces; Electrically Tunable Terahertz Quantum-Cascade Lasers; Few-Mode Whispering-Gallery-Mode Resonators; Conflict-Aware Scheduling Algorithm; and Real-Time Diagnosis of Faults Using a Bank of Kalman Filters.

  17. Oil-in-oil emulsions stabilised solely by solid particles.

    PubMed

    Binks, Bernard P; Tyowua, Andrew T

    2016-01-21

    A brief review of the stabilisation of emulsions of two immiscible oils is given. We then describe the use of fumed silica particles coated with either hydrocarbon or fluorocarbon groups in acting as sole stabilisers of emulsions of various vegetable oils with linear silicone oils (PDMS) of different viscosity. Transitional phase inversion of emulsions, containing equal volumes of the two oils, from silicone-in-vegetable (S/V) to vegetable-in-silicone (V/S) occurs upon increasing the hydrophobicity of the particles. Close to inversion, emulsions are stable to coalescence and gravity-induced separation for at least one year. Increasing the viscosity of the silicone oil enables stable S/V emulsions to be prepared even with relatively hydrophilic particles. Predictions of emulsion type from calculated contact angles of a silica particle at the oil-oil interface are in agreement with experiment provided a small polar contribution to the surface energy of the oils is included. We also show that stable multiple emulsions of V/S/V can be prepared in a two-step procedure using two particle types of different hydrophobicity. At fixed particle concentration, catastrophic phase inversion of emulsions from V/S to S/V can be effected by increasing the volume fraction of vegetable oil. Finally, in the case of sunflower oil + 20 cS PDMS, the study is extended to particles other than silica which differ in chemical type, particle size and particle shape. Consistent with the above findings, we find that only sufficiently hydrophobic particles (clay, zinc oxide, silicone, calcium carbonate) can act as efficient V/S emulsion stabilisers.

  18. Sorption of Perfluorochemicals to Matrices Relevant to Sites Impacted by Aqueous Film-Forming Foam

    NASA Astrophysics Data System (ADS)

    Sepulvado, J.; Higgins, C.

    2011-12-01

    Perfluorochemicals are a class of emerging contaminants consisting of fluorinated surfactants that are chemically and thermally stable and which contain a fluorocarbon tail that is both hydro- and oleophobic. Because of these unique properties, PFCs have a wide variety of uses including food paper packaging products, stain repellants, nonstick coatings, and aqueous film-forming foams (AFFF). At fire-training facilities, repeated application of AFFF is used to extinguish hydrocarbon fuel fires ignited for training purposes. The presence of perfluochemicals (PFCs) in groundwater as a result of repeated AFFF application at these facilities has been documented. Due to factors such as the recent push towards regulation of PFCs in drinking water, concerns have arisen about the fate of these compounds in the subsurface. Groundwater plumes containing PFC subclasses such as perfluorocarboxylic acids (PFCAs), perfluoroalkylsulfonates (PFAS), and fluorotelomer sulfonates (FtSs) in the μg/L to mg/L range have been detected. These plumes also may contain co-contaminants such as hydrocarbon fuel components and chlorinated solvents, some of which may exist as nonaqueous phase liquids (NAPL). This study examined the sorption of PFCs to soil and aquifer material across the concentration range applicable to AFFF-impacted sites (μg/L - mg/L) and looked at the impact of co-contaminants, including NAPL, on PFC sorption. PFC sorption was variable and indicated that similar to previous work on PFC sorption to sediment, subsurface PFC transport will depend on factors such as the sorbent organic carbon content, PFC subclass, solution chemistry, and PFC chain length.

  19. Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Cantrell, Gidget

    1994-01-01

    Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.

  20. Fracture and damage evolution of fluorinated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. N.; Rae, P.; Orler, E. B.

    2004-01-01

    Fluoropolymers are often semi-crystalline in nature, with their linear chains forming complicated phases near room temperature and ambient pressure. The most widely used fluorocarbon polymer for engineering applications is polytetrafluoroethylene (PTFE), due to its extremely low coefficient of friction, outstanding resistance to corrosion, and excellent electrical properties. The phase structure of PTFE is complex with four well-characterized crystalline phases (three observed at atmospheric pressure) and substantial molecular motion well below the melting point. The first-order transition at 19 C between phases II and IV is an unraveling in the helical conformation. Further rotational disordering and untwisting of the helices occursmore » above 30 C giving way to phase I. The mechanical behavior, including fracture and damage evolution, of PTFE depends on the chain and segment motions dictated by crystalline phase microstructure. The presence of three unique phases at ambient pressure near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a preliminary study of fracture and damage evolution in PTFE with the effects of temperature-induced phase on fracture mechanisms. The quasi-static fracture of PTFE in the atmospheric pressure regime, over a range of temperatures, was found to be strongly phase dependent: phase II exhibits brittle-fracture, phase IV displays ductile-fracture with crazing and some stable crack growth, and plastic flow dominates phase 1. The bulk failure properties are correlated to failure mechanisms through fractography of the fracture surfaces (optical microscopy and scanning electron microscopy (SEM)).« less

  1. In situ measurement of the bonded film thickness of Z-Tetraol lubricant on magnetic recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Lei; Li Feng

    2010-10-15

    Currently, the bonded film thickness of perfluoropolyether lubricant on top of magnetic recording media is measured by a two-step process. First, the media disk has to be rinsed thoroughly using a fluorocarbon solvent (for instance, Vetrel) to remove the mobile lubricant. Second, the thickness of the remaining lubricant on the media surface which is regarded as the bonded lubricant thickness is then measured either by Fourier transform infrared spectroscopy (FTIR) or electron spectroscopy for chemical analysis. As the total lubricant thickness approaches single molecular dimension ({approx}10 A), current methods face tremendous challenge on the accuracy and sensitivity of the measurement.more » We studied the spectral characteristics responding to the lubricant bonding with the carbon overcoat by the time-of-flight secondary ion mass spectra and proposed to use the peak area ratio (C{sub 3}H{sub 2}F/C{sub 3}H{sub 5}O and C{sub 4}H{sub 10}O/C{sub 3}H{sub 6}O{sub 2}) to characterize the bonded Z-Tetraol lubricant that produces a direct bonded lubricant thickness measurement without the need to remove the mobile lubricant with a solvent. After taking the background signal of disks prior to bonding by UV irradiation into account, this method becomes independent of the total lubricant thickness as well as shows good correlation linearity (R{sup 2{approx}}87%) with the current FTIR method for the ratio of C{sub 4}H{sub 10}O/C{sub 3}H{sub 6}O{sub 2}.« less

  2. Study on Colloid Vibration Current in Aqueous Solution of Binary Surfactant Mixtures: Effects of Counterions and Hydrophobic Chains.

    PubMed

    Takata, Youichi; Hyono, Atsushi; Ohshima, Hiroyuki

    2016-11-01

    In order to elucidate an electroacoustic phenomenon of mixed micelles in an aqueous solution, we measured the colloid vibration current (CVI) in aqueous solutions of binary surfactant mixtures. Based on the thermodynamic treatment of critical micelle concentration (cmc) values determined by conductivity measurements, it was expected that dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium chloride (DTAC) molecules would mix ideally in the micelle. However, the micelle composition as evaluated from the CVI measurement, based on the linear dependence of the CVI value on the micelle composition, differed from the aforementioned ideality. Considering these observations, we concluded that the CVI measurement was more sensitive to the counterion distribution near the micelle surface, whereas the thermodynamically determined micelle composition included the counterions more loosely bound in the diffuse double layer due to the electroneutrality condition included in its assumption. On the other hand, the phase diagram illustrating micelle formation in the lithium dodecyl sulfate (LiDS) - lithium perfluorooctane sulfonate (LiFOS) mixture system showed a heteroazeotropic point arising from the stronger interactions between homologous surfactants than between heterologous ones. Although the concentration dependence of CVI values was expected to drastically change at a heteroazeotropic point due to the enormous variation in the density of the micelle core, the results showed a monotonous change, which suggests that the density of the micelle core varies continuously. By taking the partial molar volume of fluorocarbon compounds in the hydrocarbon compounds into account, the density of the micelle core was affected by the size of the micelle as well as its constituents.

  3. Geochemistry of rare earth elements within waste rocks from the Montviel carbonatite deposit, Québec, Canada.

    PubMed

    Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Pelletier, Mia

    2018-04-01

    Several rare earth element (REE) mine projects around the world are currently at the feasibility stage. Unfortunately, few studies have evaluated the contamination potential of REE and their effects on the environment. In this project, the waste rocks from the carbonatites within the Montviel proterozoic alkaline intrusion (near Lebel-sur-Quévillon, Quebec, Canada) are assessed in this research. The mineralization is mainly constituted by light REE (LREE) fluorocarbonates (qaqarssukite-Ce, kukharenkoite-Ce), LREE carbonates (burbankite, Sr-Ba-Ca-REE, barytocalcite, strontianite, Ba-REE-carbonates), and phosphates (apatite, monazite). The gangue minerals are biotites, chlorite, albite, ankerite, siderite, and calcite. The SEM-EDS analyses show that (i) the majority of REE are associated with the fine fraction (< 106 μm), (ii) REE are mainly associated with carbonates, (iii) all analyzed minerals preferably contain LREE (La, Ce, Pr, Nd, Sm, Eu), (iv) the sum of LREE in each analyzed mineral varies between ~ 3 and 10 wt%, (v) the heavy REE (HREE) identified are Gd and Yb at < 0.4 wt%, and (vi) three groups of carbonate minerals were observed containing variable concentrations of Ca, Na, and F. Furthermore, the mineralogical composition of REE-bearing minerals, REE mobility, and REE speciation was investigated. The leachability and geochemical behavior of these REE-bearing mine wastes were tested using normalized kinetic testing (humidity cells). Leachate results displayed higher LREE concentrations, with decreasing shale-normalized patterns. Thermodynamical equilibrium calculations suggest that the precipitation of secondary REE minerals may control the REE mobility.

  4. Low-k SiOCH Film Etching Process and Its Diagnostics Employing Ar/C5F10O/N2 Plasma

    NASA Astrophysics Data System (ADS)

    Nagai, Mikio; Hayashi, Takayuki; Hori, Masaru; Okamoto, Hidekazu

    2006-09-01

    We proposed an environmental harmonic etching gas of C5F10O (CF3CF2CF2OCFCF2), and demonstrated the etching of low-k SiOCH films employing a dual-frequency capacitively coupled etching system. Dissociative ionization cross sections for the electron impact ionizations of C5F10O and c-C4F8 gases have been measured by quadrupole mass spectroscopy (QMS). The dissociative ionization cross section of CF3+ from C5F10O gas was much higher than those of other ionic species, and 10 times higher than that of CF3+ from C4F8 gas. CF3+ is effective for increasing the etching rate of SiO2. As a result, the etching rate of SiOCH films using Ar/C5F10O/N2 plasma was about 1000 nm/min, which is much higher than that using Ar/C4F8/N2 plasma. The behaviours of fluorocarbon radicals in Ar/C5F10O/N2 plasma, which were measured by infrared diode laser absorption spectroscopy, were similar to those in Ar/C4F8/N2 plasma. The densities of CF and CF3 radicals were markedly decreased with increasing N2 flow rate. Etching rate was controlled by N2 flow rate. A vertical profile of SiOCH with a high etching rate and less microloading was realized using Ar/C5F10O/N2 plasma chemistry.

  5. Effect of plasma treatments on the steam-sour gas resistance and lubricity of elastomers. [Rubbers used: copoly(ethene-propene); copoly(1,1-difluoroethane-hexafluoropropene); copoly(2-propenenitrile-1,3 butadiene); plasma polymerized tetrafluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, C. Jr.; Bieg, K.W.; Cuthrell, R.E.

    1982-03-01

    Elastomers are widely used in drilling and logging applications as static seals such as casing packers and dynamic seals such as o-rings for drill bits. Static seals often fail in service because of thermochemical degradation due to the combined effects of steam and sour gas at elevated temperatures that are characteristic of deep wells. Dynamic seals frequently fail because of abrasive wear that occurs even at the low temperatures that prevail in shallow wells. We have shown that improved steam-sour gas resistance of a fully formulated ethylene-propylene rubber at elevated temperatures can be achieved by coating the rubber with amore » thin film of plasma polymerized tetrafluoroethylene. Thus, no change in the mechanical properties of the coated rubber was observed after exposure to steam and sour gas at 275/sup 0/C for 48 h. In contrast, the shear modulus of the upcoated rubber increased by 96% after the same exposure. While the effectiveness of the fluorocarbon coating decreased at longer exposure times, short-term protection of elastomers could be beneficial in certain logging operations. It was also found that the coefficient of friction of a nitrile rubber (Buna N) was reduced by 20% after treatment with a carbon tetrafluoride plasma. This enhanced lubricity could lead to better wear characteristics in conventional drill bits where the seal is in contact with a moving metal surface. The surfaces of the plasma treated elastomers were characterized by water contact angle, scanning electron microscopy, and electron spectroscopy for chemical analysis.« less

  6. Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: Evidence from yearly and seasonal monitoring in Daling River Basin, China.

    PubMed

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Zhu, Zhaoyun; Li, Qifeng; Meng, Jing; Su, Hongqiao; Johnson, Andrew C; Sweetman, Andrew J

    2016-11-01

    Short chain perfluoroalkyl acids (PFAAs) have been developed since 2002 by the major manufacturers to replace the conventional C8 and higher homologues, with much of the world production shifted to China in recent years. In this study, we conducted a continuous monitoring program over the period 2011-2014 with seasonal monitoring in 2013 for PFAAs emitted from two rapidly developing fluorochemical industry parks located in the Daling River Basin, Northern China. The trend of PFAA contamination was identified, dominated by perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA), with the maximum concentrations of 3.78 μg/L, 3.70 μg/L, and 1.95 μg/L, respectively. Seasonal monitoring uncovered the occasional emission of perfluorooctane sulfonic acid (PFOS). Construction trends of new facilities and associated manufacturing capacity of the main products were also analyzed to assess correlations with PFAA emissions. An assessment of the data over the period 2011-2014 found a positive correlation with fluorocarbon alcohol (FCA) production and emission of PFAAs. Groundwater and tap water around the main source indicated that the dominant PFAAs had different diffusion behaviors. PFBS levels were higher in surface water, while PFBA was dominant in groundwater and tap water, with PFOA levels being higher in downstream groundwater. Considering the continuous expansion and development of fluorochemical industry in the Daling River Basin, this study will provide abundant information on the effectiveness of risk assessment and management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis of Quercetin-imprinted Polymer Spherical Particles with Improved Ability to Capture Quercetin Analogues.

    PubMed

    Pardo, Antonelle; Josse, Thomas; Mespouille, Laetitia; Blankert, Bertrand; Dubois, Philippe; Duez, Pierre

    2017-07-01

    Molecularly imprinted polymers (MIPs) are composed of specific cavities able to selectively recognise a template molecule. Used as chromatographic sorbents, MIPs may not trap related structures due to the high rigidity of their cross-linking. To improve the capture of quercetin analogues by modulating the synthesis strategy for a quercetin-imprinted polymer (Qu MIP). An additional comonomer bearing a short oligoethylene glycol (OEG) unit was used to prepare a Qu MIP that was compared to a traditional one formulated in a similar fashion, but without the OEG-comonomer. The Qu MIPs were prepared in bead form through fluorocarbon suspension polymerisation. After solid phase extraction (SPE) assessment of their imprinted cavities, the MIPs were evaluated by HPLC for their recognition properties towards quercetin and other polyphenols, including flavonoids, phenolic acids and curcumin. The Qu MIPs were finally SPE-tested on a white onion extract. The incorporation of OEG units modulated the selectivity of the Qu MIP by improving the recognition of quercetin related structures (12-61% increase in the imprinting effect for distant analogues). It also allowed limiting or suppressing non-specific hydrophobic interactions (decrease of about 10% in the rate of quercetin retention on the non-imprinted polymer). The SPE application of the MIP to a white onion extract indicates its interest for the selective extraction of quercetin and its analogues. The OEG-modified Qu MIP appears to be an attractive tool to discover new drug candidates from natural sources by extracting, amongst interfering compounds, structural analogues of quercetin. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Cold-development tool and technique for the ultimate resolution of ZEP520A to fabricate an EB master mold for nano-imprint lithography for 1Tbit/inch2 BPM development

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hideo; Iyama, Hiromasa; Kagatsume, Takeshi; Watanabe, Tsuyoshi

    2012-11-01

    Cold-development is well-known for resolution enhancement on ZEP520A. Dipping a wafer in a developer solvent chilled by a freezer, such a typical method had been employed. But, it is obvious that the dip-development method has several inferiorities such as developer temperature instability, temperature inconsistency between developer and a wafer, water-condensation on drying. We then built a single wafer spin-develop tool, and established a process sequence, to solve those difficulties. And, we tried to see their effect down to -10degC over various developers. In specific, we tried to make hole patterns in hexagonal closest packing in 40nm, 35nm, 30nm, 25nm pitch, and examined holes pattern quality and resolution limit by varying setting temperature from room temperature to -10degC in the cold-development, as well as varying developer chemistry from the standard developer ZED N-50 (n-amyl acetate, 100%) to MiBK and IPA mixture which was a rinsing solvent mixture originally. We also examined the other developer (poor solvent mixture) we designed, N-50 and fluorocarbon (FC) mixture, MiBK and FC mixture, and IPA+FC mixture. This paper describes cold-development tool and technique, and its results down to minus (-) 10degC, for ZEP520A resolution enhancement to obtain 1Xnm bits (holes) in 25nm pitch to fabricate an EB master mold for Nano-Imprinting Lithography for 1Tbit/in2 bit patterned media (BPM) in HDD development and production.

  9. Evaluation of HFC 245ca and HFC 236ea as foam blowing agents

    NASA Technical Reports Server (NTRS)

    Sharpe, Jon; Macarthur, Doug; Kollie, Tom; Graves, Ron; Liu, Matthew; Hendriks, Robert V.

    1995-01-01

    Hydrochlorofluorocarbon (HCFC) 141b has been selected as the interim blowing agent for use in urethane insulations on NASA's Space Shuttle External Tank. Due to the expected limited commercial lifetime of this material, research efforts at the NASA Thermal Protection Systems Materials Research Laboratory at the Marshall Space Flight Center are now being devoted to the identification and development of alternatives with zero ozone depletion potential. Physical blowing agents identified to date have included hydrocarbons, fluorocarbons, hydrofluoroethers, and more predominantly, hydrofluorocarbons (HFCs). The majority of the HFC evaluations in industry have focused on the more readily available, low boiling candidates such as HFC 134a. Higher boiling HFC candidates that could be handled at ambient conditions and use current processing equipment would be more desirable. This paper will describe results from a research program of two such candidate HFC's performed as a cooperative effort between Martin Marietta Manned Space Systems, the U.S. Environmental Protection Agency, and Oak Ridge National Laboratories. The purpose of this effort was to perform a cursory evaluation of the developmental HFC's 245ca and 236ea as blowing agents in urethane based insulations. These two materials were selected from screening tests of 37 C2, C3, and C4 isomers based on physical properties, atmospheric lifetime, flammability, estimated toxicity, difficulty of synthesis, suitability for dual use as a refrigerant, and other factors. Solubility of the two materials in typical foam components was tested, pour foaming trials were performed, and preliminary data were gathered regarding foam insulation performance.

  10. Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO{sub 2} using cyclic Ar/C{sub 4}F{sub 8} plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Masatoshi; Metzler, Dominik; Oehrlein, Gottlieb S., E-mail: oehrlein@umd.edu

    2016-07-15

    The authors studied the effect of the temperature and chemical state of the chamber wall on process performance for atomic layer etching of SiO{sub 2} using a steady-state Ar plasma, periodic injection of a defined number of C{sub 4}F{sub 8} molecules, and synchronized plasma-based Ar{sup +} ion bombardment. To evaluate these effects, the authors measured the quartz coupling window temperature. The plasma gas phase chemistry was characterized using optical emission spectroscopy. It was found that although the thickness of the polymer film deposited in each cycle is constant, the etching behavior changed, which is likely related to a change inmore » the plasma gas phase chemistry. The authors found that the main gas phase changes occur after C{sub 4}F{sub 8} injection. The C{sub 4}F{sub 8} and the quartz window react and generate SiF and CO. The emission intensity changes with wall surface state and temperature. Therefore, changes in the plasma gas species generation can lead to a shift in etching performance during processing. During initial cycles, minimal etching is observed, while etching gradually increases with cycle number.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokkoris, George; Boudouvis, Andreas G.; Gogolides, Evangelos

    An integrated framework for the neutral flux calculation inside trenches and holes during plasma etching is described, and a comparison between the two types of structure in a number of applications is presented. First, a detailed and functional set of equations for the neutral and ion flux calculations inside long trenches and holes with cylindrical symmetry is explicitly formulated. This set is based on early works [T. S. Cale and G. B. Raupp, J. Vac. Sci. Technol. B 8, 1242 (1990); V. K. Singh et al., J. Vac. Sci. Technol. B 10, 1091 (1992)], and includes new equations for themore » case of holes with cylindrical symmetry. Second, a method for the solution of the respective numerical task, i.e., one or a set of linear or nonlinear integral equations, is described. This method includes a coupling algorithm with a surface chemistry model and resolves the singularity problem of the integral equations. Third, the fluxes inside trenches and holes are compared. The flux from reemission is the major portion of the local flux at the bottom of both types of structure. The framework is applied in SiO{sub 2} etching by fluorocarbon plasmas to predict the increased intensity of reactive ion etching lag in SiO{sub 2} holes compared to trenches. It is also applied in deep Si etching: By calculating the flux of F atoms at the bottom of very high aspect ratio (up to 150) Si trenches and holes during the gas chopping process, the aspect ratio at which the flux of F atoms is eliminated and etching practically stops is estimated.« less

  12. Polymer-Oxygen Compatibility Testing: Effect of Oxygen Aging on Ignition and Combustion Properties

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Haas, Jon P.; Wilson, D. Bruce; Fries, Joseph (Technical Monitor)

    2000-01-01

    The oxygen compatibility of six polymers used in oxygen service was evaluated after exposure for 48 hours to oxygen pressures ranging from 350 to 6200 kPa (50 to 900 psia), and temperatures ranging from 50 to 250 C (122 to 302 F). Three elastomers were tested: CR rubber (C873-70), FKM fluorocarbon rubber (Viton A), and MPQ silicone rubber (MIL-ZZ-765, Class 2); and three thermoplastics were tested: polyhexamethylene adipamide (Zytel 42), polytetrafluoroethylene (Teflon TFE), and polychlorotrifluoroethylene (Neoflon CTFE M400H). Post-aging changes in mass, dimensions, tensile strength, elongation at break, and durometer hardness were determined. Also, the compression set was determined for the three elastomers. Results show that the properties under investigation were more sensitive to oxygen pressure at low to moderate temperatures, and more sensitive to temperature at low to moderate oxygen pressures. Inspection of the results also suggested that both chain scissioning and cross-linking processes were operative, consistent with heterogeneous oxidation. Attempts are underway to verify conclusively the occurrence of heterogeneous oxidation using a simple modulus profiling technique. Finally, the effect of aging at 620 kpa (90 psia) and 121 C (250 F) on ignition and combustion resistance was determined. As expected, aged polymers were less ignitable and combustible (had higher AlTs and lower heats of combustion). Special attention was given to Neoflon CTFE. More specifically, the effect of process history (compression versus extrusion molding) and percent crystallinity (quick- versus slow-quenched) on the AIT, heat of combustion, and impact sensitivity of Neoflon CTFE was investigated. Results show the AIT, heat of combustion, and impact sensitivity to be essentially independent of Neoflon CTFE process history and structure.

  13. Atomic Precision Plasma Processing - Modeling Investigations

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2016-09-01

    Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.

  14. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 01: Optimization of an organic field effect transistor for radiation dosimetry measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syme, Alasdair

    2016-08-15

    Purpose: To use Monte Carlo simulations to optimize the design of an organic field effect transistor (OFET) to maximize water-equivalence across the diagnostic and therapeutic photon energy ranges. Methods: DOSXYZnrc was used to simulate transport of mono-energetic photon beams through OFETs. Dose was scored in the dielectric region of devices and used for evaluating the response of the device relative to water. Two designs were considered: 1. a bottom-gate device on a substrate of polyethylene terephthalate (PET) with an aluminum gate, a dielectric layer of either PMMA or CYTOP (a fluorocarbon) and an organic semiconductor (pentacene). 2. a symmetric bilayermore » design was employed in which two polymer layers (PET and CYTOP) were deposited both below the gate and above the semiconductor to improve water-equivalence and reduce directional dependence. The relative thickness of the layers was optimized to maximize water-equivalence. Results: Without the bilayer, water-equivalence was diminished relative to OFETs with the symmetric bilayer at low photon energies (below 80 keV). The bilayer’s composition was designed to have one layer with an effective atomic number larger than that of water and the other with an effective atomic number lower than that of water. For the particular materials used in this study, a PET layer 0.1mm thick coupled with a CYTOP layer of 900 nm provided a device with a water-equivalence within 3% between 20 keV and 5 MeV. Conclusions: organic electronic devices hold tremendous potential as water-equivalent dosimeters that could be used in a wide range of applications without recalibration.« less

  15. On-Chip Titration of an Anticoagulant Argatroban and Determination of the Clotting Time within Whole Blood or Plasma Using a Plug-Based Microfluidic System

    PubMed Central

    Song, Helen; Li, Hung-Wing; Munson, Matthew S.; Van Ha, Thuong G.; Ismagilov, Rustem F.

    2006-01-01

    This paper describes extending plug-based microfluidics to handling complex biological fluids such as blood, solving the problem of injecting additional reagents into plugs, and applying this system to measuring of clotting time in small volumes of whole blood and plasma. Plugs are droplets transported through microchannels by fluorocarbon fluids. A plug-based microfluidic system was developed to titrate an anticoagulant (argatroban) into blood samples and to measure the clotting time using the activated partial thromboplastin time (APTT) test. To carry out these experiments, the following techniques were developed for a plug-based system: (i) using Teflon AF coating on the microchannel wall to enable formation of plugs containing blood and transport of the solid fibrin clots within plugs, (ii) using a hydrophilic glass capillary to enable reliable merging of a reagent from an aqueous stream into plugs, (iii) using bright-field microscopy to detect the formation of a fibrin clot within plugs and using fluorescent microscopy to detect the production of thrombin using a fluorogenic substrate, and (iv) titration of argatroban (0–1.5 μg/mL) into plugs and measurement of the resulting APTTs at room temperature (23 °C) and physiological temperature (37 °C). APTT measurements were conducted with normal pooled plasma (platelet-poor plasma) and with donor’s blood samples (both whole blood and platelet-rich plasma). APTT values and APTT ratios measured by the plug-based microfluidic device were compared to the results from a clinical laboratory at 37 °C. APTT obtained from the on-chip assay were about double those from the clinical laboratory but the APTT ratios from these two methods agreed well with each other. PMID:16841902

  16. Thermal activation of superheated lipid-coated perfluorocarbon drops.

    PubMed

    Mountford, Paul A; Thomas, Alec N; Borden, Mark A

    2015-04-28

    This study explored the thermal conditions necessary for the vaporization of superheated perfluorocarbon nanodrops. Droplets C3F8 and C4F10 coated with a homologous series of saturated diacylphosphatidylcholines were formed by condensation of 4 μm diameter microbubbles. These drops were stable at room temperature and atmospheric pressure, but they vaporized back into microbubbles at higher temperatures. The vaporization transition was measured as a function of temperature by laser light extinction. We found that C3F8 and C4F10 drops experienced 90% vaporization at 40 and 75 °C, respectively, near the theoretical superheat limits (80-90% of the critical temperature). We therefore conclude that the metastabilty of these phase-change agents arises not from the droplet Laplace pressure altering the boiling point, as previously reported, but from the metastability of the pure superheated fluid to homogeneous nucleation. The rate of C4F10 drop vaporization was quantified at temperatures ranging from 55 to 75 °C, and an apparent activation energy barrier was calculated from an Arrhenius plot. Interestingly, the activation energy increased linearly with acyl chain length from C14 to C20, indicating that lipid interchain cohesion plays an important role in suppressing the vaporization rate. The vaporized drops (microbubbles) were found to be unstable to dissolution at high temperatures, particularly for C14 and C16. However, proper choice of the fluorocarbon and lipid species provided a nanoemulsion that could undergo at least ten reversible condensation/vaporization cycles. The vaporization properties presented in this study may facilitate the engineering of tunable phase-shift particles for diagnostic imaging, targeted drug delivery, tissue ablation, and other applications.

  17. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    PubMed

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  18. Cleanliness verification process at Martin Marietta Astronautics

    NASA Astrophysics Data System (ADS)

    King, Elizabeth A.; Giordano, Thomas J.

    1994-06-01

    The Montreal Protocol and the 1990 Clean Air Act Amendments mandate CFC-113, other chlorinated fluorocarbons (CFC's) and 1,1,1-Trichloroethane (TCA) be banned from production after December 31, 1995. In response to increasing pressures, the Air Force has formulated policy that prohibits purchase of these solvents for Air Force use after April 1, 1994. In response to the Air Force policy, Martin Marietta Astronautics is in the process of eliminating all CFC's and TCA from use at the Engineering Propulsion Laboratory (EPL), located on Air Force property PJKS. Gross and precision cleaning operations are currently performed on spacecraft components at EPL. The final step of the operation is a rinse with a solvent, typically CFC-113. This solvent is then analyzed for nonvolatile residue (NVR), particle count and total filterable solids (TFS) to determine cleanliness of the parts. The CFC-113 used in this process must be replaced in response to the above policies. Martin Marietta Astronautics, under contract to the Air Force, is currently evaluating and testing alternatives for a cleanliness verification solvent. Completion of test is scheduled for May, 1994. Evaluation of the alternative solvents follows a three step approach. This first is initial testing of solvents picked from literature searches and analysis. The second step is detailed testing of the top candidates from the initial test phase. The final step is implementation and validation of the chosen alternative(s). Testing will include contaminant removal, nonvolatile residue, material compatibility and propellant compatibility. Typical materials and contaminants will be tested with a wide range of solvents. Final results of the three steps will be presented as well as the implementation plan for solvent replacement.

  19. Seventy-two hours hypothermic intestinal preservation study using a new perfluorocarbon emulsion.

    PubMed

    DeRoover, A; Krafft, M P; Deby-Dupont, G; Riess, J; Jacquet, N; Lamy, M; Meurisse, M; D'Silva, M

    2001-05-01

    We investigated the effect of a perfluorocarbon emulsion (FC) added to the University of Wisconsin (UW) solution on hypothermic (4 degrees C, 12-72h) preservation of rat small bowel grafts. The FC was 90%w/v perfluorooctylbromide, 2%w/v egg yolk phospholipids and 1.4%w/v mixed fluorocarbon-hydrocarbon molecular dowels. Four groups were defined: [1] UW flush and UW storage; [2] UW flush and FC storage; [3] flush with FC diluted 2 times with UW (FU) and FU storage; [4] FU flush and storage in oxygenated FU. Preservation was estimated with a histological score based on villus epithelium adhesion, on villus sloughing and on crypt cell adhesion to the basal membrane. Antioxidant potential was estimated by measurement of total thiol functions (SH) and activities of glutathione-peroxidase (GSH-P), superoxide dismutase (SOD) and catalase. FC in flush improved preservation during the first 24h (p<0.01). Storage in FC appeared superior to UW for the first 24h (p<0.01). Oxygenation (100% O2) of the storage medium yielded superior results at 12h and 24h (p<0.01 and p<0.001 versus group [1] respectively). After 72h, SOD and catalase activities increased in groups [3] and [4], and SOD decreased in group [1] (p<0.05). SH progressively decreased in group [1] (p<0.05) and GSH-P increased at 24 and 48h in groups [3] and [4] (p<0.01). The increase of O2 in the perfusion flush or storage medium ameliorated the preservation status and protected the antioxidant potential of the small bowel.

  20. Bi/In thermal resist for both Si anisotropic wet etching and Si/SiO2 plasma etching

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Tu, Yuqiang; Peng, Jun

    2004-01-01

    Bi/In thermal resist is a bilayer structure of Bi over In films which can be exposed by laser with a wide range of wavelengths and can be developed by diluted RCA2 solutions. Current research shows bimetallic resist can work as etch masking layer for both dry plasma etching and wet anisotropic etching. It can act as both patterning and masking layers for Si and SiO2 with plasma "dry" etch using CF4/CHF3. The etching condition is CF4 flow rate 50 sccm, pressure 150 mTorr, and RF power 100 - 600W. The profile of etched structures can be tuned by adding CHF3 and other gases such as Ar, and by changing the CF4/CHF3 ratio. Depending on the fluorocarbon plasma etching recipe the etch rate of laser exposed Bi/In can be as low as 0.1 nm/min, 500 times lower than organic photoresists. O2 plasma ashing has little etching effect on exposed Bi/In. Bi/In also creates etch masking layers for alkaline-based (KOH, TMAH and EDP) "wet" anisotropic bulk Si etch without the need of SiO2 masking steps. The laser exposed Bi/In etches two times more slowly than SiO2. Experiment result shows that single metal Indium film exhibits thermal resist characteristics but at twice the exposure levels. It can be developed in diluted RCA2 solution and used as an etch mask layer for Si anisotropic etch. X-ray diffraction analysis shows that laser exposure causes both Bi and In single film to oxidize. In film may become amorphous when exposed to high laser power.

  1. Real-time plasma control in a dual-frequency, confined plasma etcher

    NASA Astrophysics Data System (ADS)

    Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.

    2008-04-01

    The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.

  2. Simple Check Valves for Microfluidic Devices

    NASA Technical Reports Server (NTRS)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  3. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    PubMed Central

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-01-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of

  4. Thermal and Chemical Characterization of Non-Metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.

    2002-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR. The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected realtime, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  5. Thermal and Chemical Characterization of Non-metallic Materials Using Coupled Thermogravimetric Analysis and Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Huff, Timothy L.; Griffin, Dennis E. (Technical Monitor)

    2001-01-01

    Thermogravimetric analysis (TGA) is widely employed in the thermal characterization of non-metallic materials, yielding valuable information on decomposition characteristics of a sample over a wide temperature range. However, a potential wealth of chemical information is lost during the process, with the evolving gases generated during thermal decomposition escaping through the exhaust line. Fourier Transform-Infrared spectroscopy (FT-IR) is a powerful analytical technique for determining many chemical constituents while in any material state, in this application, the gas phase. By linking these two techniques, evolving gases generated during the TGA process are directed into an appropriately equipped infrared spectrometer for chemical speciation. Consequently, both thermal decomposition and chemical characterization of a material may be obtained in a single sample run. In practice, a heated transfer line is employed to connect the two instruments while a purge gas stream directs the evolving gases into the FT-IR, The purge gas can be either high purity air or an inert gas such as nitrogen to allow oxidative and pyrolytic processes to be examined, respectively. The FT-IR data is collected real-time, allowing continuous monitoring of chemical compositional changes over the course of thermal decomposition. Using this coupled technique, an array of diverse materials has been examined, including composites, plastics, rubber, fiberglass epoxy resins, polycarbonates, silicones, lubricants and fluorocarbon materials. The benefit of combining these two methodologies is of particular importance in the aerospace community, where newly developing materials have little available data with which to refer. By providing both thermal and chemical data simultaneously, a more definitive and comprehensive characterization of the material is possible. Additionally, this procedure has been found to be a viable screening technique for certain materials, with the generated data useful in

  6. Structure and Properties of Azobenzene Thin-Films

    NASA Astrophysics Data System (ADS)

    Allen, R. A.

    1987-09-01

    Available from UMI in association with The British Library. A number of monomer and polymer materials, all containing the azobenzene group, have been deposited as Langmuir-Blodgett (LB) multilayers and their structures and physical properties studied. LB films of two monomeric materials exhibited liquid crystal phase changes that were investigated by optical microscopy and X-ray diffraction. Multilayers built up from one of the materials exhibited a phase change upon aging and this demonstrated that the LB technique had produced a structure that was not the equilibrium state. A monomer material possessing a fluorocarbon chain was found to initially deposit as an LB film in a Z-type manner, but changed to Y-type deposition with increasing multilayer thickness. A correlation was observed between this behaviour and the surface potential changes that were brought about when deposition took place on an aluminium substrate. The feasibility of building up alternating multilayers of monomer and polymer materials was demonstrated. Combining these two classes of material in the same LB film may confer on it the mechanical durability of the polymers and the highly ordered structure and potentially interesting physical properties of the monomer. The structures developed here may prove to have high second harmonic generation capabilities. Polymer materials were built up into relatively thick Y-type LB multilayers and studied by X-ray diffraction. Only poorly defined layered structures were found. Polymer materials were also cast into thin films from the melt and from solution. One of the compounds developed a high degree of anisotropy in its structure after exposure to linearly polarised white light. A birefringence of up to Deltan = 0.21 was measured. In contrast, LB films formed from the same material could not be ordered in the same manner and this appeared to result from the very close packing that takes place in such structures.

  7. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration

    USGS Publications Warehouse

    Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.

    2017-01-01

    Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2 pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.

  8. Dynamically reconfigurable complex emulsions via tunable interfacial tensions.

    PubMed

    Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M

    2015-02-26

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with

  9. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    NASA Astrophysics Data System (ADS)

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-02-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with

  10. Surface contamination analysis technology team overview

    NASA Astrophysics Data System (ADS)

    Burns, H. Dewitt, Jr.

    1996-11-01

    number of substrate materials contaminated with hydrocarbons, silicones, and fluorocarbons. Discussion will also include standards development for instrument calibration and testing.

  11. The self-assembly structure and the CO2-philicity of a hybrid surfactant in supercritical CO2: effects of hydrocarbon chain length.

    PubMed

    Wang, Muhan; Fang, Timing; Wang, Pan; Tang, Xinpeng; Sun, Baojiang; Zhang, Jun; Liu, Bing

    2016-10-04

    Hybrid surfactants containing both fluorocarbon (FC) and hydrocarbon (HC) chains, as effective CO 2 -philic surfactants, could improve the solubility of polar substances in supercritical CO 2 . Varying the length of the HC of hybrid surfactants is an effective way to improve the CO 2 -philicity. In this paper, we have investigated the effects of the HC length on the self-assembly process and the CO 2 -philicity of hybrid surfactants (F7Hn, n = 1, 4, 7 and 10) in water/CO 2 mixtures using molecular dynamics simulations. It is found that the self-assembly time of F7Hn exhibits a maximum when the length of the HC is equal to that of the FC (F7H7). In this case, the investigation of H-bonds between the water core and CO 2 phase shows that F7H7 has the strongest CO 2 -philicity because it has the best ability to separate water and CO 2 . To explain the origin of the differences in separation ability, the analysis of the structures of the reverse micelles shows that there are two competing mechanisms with a shortening HC. Firstly, the volume of F7Hn is reduced, which thus decreases the separation ability. Moreover, this also leads to the curved conformation of the FC. As a result, the separation ability is enhanced. These two mechanisms are balanced in F7H7, which has the best ability to separate water and CO 2 . Our simulation results demonstrate that the increased volume and the curved conformation of the hybrid surfactant tail could enhance the CO 2 -philicity in F7Hn surfactants. It is expected that this work will provide valuable information for the design of CO 2 -philic surfactants.

  12. A cool approach to reducing electrode-induced trauma: Localized therapeutic hypothermia conserves residual hearing in cochlear implantation.

    PubMed

    Tamames, Ilmar; King, Curtis; Bas, Esperanza; Dietrich, W Dalton; Telischi, Fred; Rajguru, Suhrud M

    2016-09-01

    The trauma caused during cochlear implant insertion can lead to cell death and a loss of residual hair cells in the cochlea. Various therapeutic approaches have been studied to prevent cochlear implant-induced residual hearing loss with limited success. In the present study, we show the efficacy of mild to moderate therapeutic hypothermia of 4 to 6 °C applied to the cochlea in reducing residual hearing loss associated with the electrode insertion trauma. Rats were randomly distributed in three groups: control contralateral cochleae, normothermic implanted cochleae and hypothermic implanted cochleae. Localized hypothermia was delivered to the middle turn of the cochlea for 20 min before and after implantation using a custom-designed probe perfused with cooled fluorocarbon. Auditory brainstem responses (ABRs) were recorded to assess the hearing function prior to and post-cochlear implantation at various time points up to 30 days. At the conclusion of the trials, inner ears were harvested for histology and cell count. The approach was extended to cadaver temporal bones to study the potential surgical approach and efficacy of our device. In this case, the hypothermia probe was placed next to the round window niche via the facial recess or a myringotomy. A significant loss of residual hearing was observed in the normothermic implant group. Comparatively, the residual hearing in the cochleae receiving therapeutic hypothermia was significantly conserved. Histology confirmed a significant loss of outer hair cells in normothermic cochleae receiving the surgical trauma when compared to the hypothermia treated group. In human temporal bones, a controlled and effective cooling of the cochlea was achieved using our approach. Collectively, these results suggest that therapeutic hypothermia during cochlear implantation may reduce traumatic effects of electrode insertion and improve conservation of residual hearing. Copyright © 2016 The Authors. Published by Elsevier B.V. All

  13. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  14. Archer John Porter Martin CBE 1 March 1910 - 28 July 2002.

    PubMed

    Lovelock, James

    2004-01-01

    We judge the worth of a scientist by the benefits he or she brings to science and society; by this measure Archer Martin was outstanding, and rightfully his contribution was recognized with a Nobel Prize. Scientific instruments and instrumental methods now come almost entirely from commercial sources and we take them for granted and often have little idea how they work. Archer Martin was of a different time when scientists would often devise their own new instruments, which usually they fully understood, and then they would use them to explore the world. The chromatographic methods and instruments Martin devised were at least as crucial in the genesis and development of molecular biology as were those from X-ray crystallography. Liquid partition chromatography, especially in its two-dimensional paper form, revealed the amino acid composition of proteins and the nucleic acid composition of DNA and RNA with a rapid and elegant facility. Gas chromatography (GC) enabled the accurate and rapid analysis of lips, which previously had been painfully slow and little more than a greasy sticky confusion of beaker chemistry. Martin's instruments enabled progress in the sciences ranging from geophysics to biology , and without im we might have waited decades before another equivalent genius appeared. More than this, the environmental awareness that Rachel Carson gave us would never had solidified as it did without the evidence of global change measured by GC. This instrumental method provided accurate evidence about the ubiquity of pesticides and pollutants and later made us aware of the growing accumulation in the atmosphere of chlorinated fluorocarbons, nitrous oxide and other ozone-depleting chemicals. If all this were not enough to glorify Martin's partition chromatography, there is the undoubted fact that its simplicity, economy and exquisite resolving power transformed the chemical industry and made possible so many of the conveniences we now take for granted.

  15. A survey of analytical methods employed for monitoring of Advanced Oxidation/Reduction Processes for decomposition of selected perfluorinated environmental pollutants.

    PubMed

    Trojanowicz, Marek; Bobrowski, Krzysztof; Szostek, Bogdan; Bojanowska-Czajka, Anna; Szreder, Tomasz; Bartoszewicz, Iwona; Kulisa, Krzysztof

    2018-01-15

    The monitoring of Advanced Oxidation/Reduction Processes (AO/RPs) for the evaluation of the yield and mechanisms of decomposition of perfluorinated compounds (PFCs) is often a more difficult task than their determination in the environmental, biological or food samples with complex matrices. This is mostly due to the formation of hundreds, or even thousands, of both intermediate and final products. The considered AO/RPs, involving free radical reactions, include photolytic and photocatalytic processes, Fenton reactions, sonolysis, ozonation, application of ionizing radiation and several wet oxidation processes. The main attention is paid to the most commonly occurring PFCs in the environment, namely PFOA and PFOS. The most powerful and widely exploited method for this purpose is without a doubt LC/MS/MS, which allows the identification and trace quantitation of all species with detectability and resolution power depending on the particular instrumental configurations. The GC/MS is often employed for the monitoring of volatile fluorocarbons, confirming the formation of radicals in the processes of C‒C and C‒S bonds cleavage. For the direct monitoring of radicals participating in the reactions of PFCs decomposition, the molecular spectrophotometry is employed, especially electron paramagnetic resonance (EPR). The UV/Vis spectrophotometry as a detection method is of special importance in the evaluation of kinetics of radical reactions with the use of pulse radiolysis methods. The most commonly employed for the determination of the yield of mineralization of PFCs is ion-chromatography, but there is also potentiometry with ion-selective electrode and the measurements of general parameters such as Total Organic Carbon and Total Organic Fluoride. The presented review is based on about 100 original papers published in both analytical and environmental journals. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of an all-metal thick film cost effective metallization system for solar cells. Final report, May 1980-January 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, B.; Parker, J.

    1983-12-01

    Properties of copper pastes did not reproduce earlier results in rheology and metallurgy. Electrodes made with pastes produced under the previous contract were analyzed and raw material characteristics were compared. A needle-like structure was observed on the earlier electroded solar cells, and was identified as eutectic copper-silicon. Experiments were conducted with variations in paste parameters, firing conditions, including gas ambients, furnace furniture, silicon surface and others to improve performance characteristics. Improved adhesion with copper pastes containing silver fluoride, as well as those containing fluorocarbon powder was obtained. Front contact experiments were done with silver fluoride activated pastes on bare silicon,more » silicon oxide and silicon nitride coated silicon wafers. Adhesion of pastes with AgF on silicon nitride coated wafers was good, but indications were that all cells were shunted and the conclusion was that these systems were unsuitable for front contacts. Experiments with aluminum back surfaces and screened contacts to that surface were begun. Low temperature firing tended to result in S shaped IV curves. This was attributed to a barrier formed at the silicon-copper interface. A cooperative experiment was initiated on the effect of heat-treatments in various atmospheres on the hydrogen profile of silicon surfaces. Contact theory was explored to determine the role of various parameters on tunneling and contact resistance. Data confirm that the presence of eutectic Al-Si additions are beneficial for low contact resistance and fill factors in back contacts. Copper pastes with different silver fluoride additions were utilized as front contacts at two temperatures. Data shows various degrees of shunting. Finally, an experiment was run with carbon monoxide gas used as the reducing ambient during firing.« less

  17. Inertial cavitation initiated by polytetrafluoroethylene nanoparticles under pulsed ultrasound stimulation.

    PubMed

    Jin, Qiaofeng; Kang, Shih-Tsung; Chang, Yuan-Chih; Zheng, Hairong; Yeh, Chih-Kuang

    2016-09-01

    Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. In vivo mapping of tumor oxygen consumption using (19)F MRI relaxometry.

    PubMed

    Diepart, Caroline; Magat, Julie; Jordan, Bénédicte F; Gallez, Bernard

    2011-06-01

    Recently, we have developed a new electron paramagnetic resonance (EPR) protocol in order to estimate tissue oxygen consumption in vivo. Because it is crucial to probe the heterogeneity of response in tumors, the aim of this study was to apply our protocol, together with (19)F MRI relaxometry, to the mapping of the oxygen consumption in tumors. The protocol includes the continuous measurement of tumor po(2) during the following respiratory challenge: (i) basal values during air breathing; (ii) increasing po(2) values during carbogen breathing until saturation of tissue with oxygen; (iii) switching back to air breathing. We have demonstrated previously using EPR oximetry that the kinetics of return to the basal value after oxygen saturation are mainly governed by tissue oxygen consumption. This challenge was applied in hyperthyroid mice (generated by chronic treatment with L-thyroxine) and control mice, as hyperthyroidism is known to dramatically affect the oxygen consumption rate of tumor cells. Our recently developed snapshot inversion recovery MRI fluorocarbon oximetry technique allowed the po(2) return kinetics to be measured with a high temporal resolution. The kinetic constants (i.e. oxygen consumption rates) were higher for tumors from hyperthyroid mice than from control mice, data that are consistent with our previous EPR study. The corresponding histograms of the (19)F MRI data showed that the kinetic constants displayed a shift to the right for the hyperthyroid group, indicating a higher oxygen consumption in these tumors. The color maps showed a large heterogeneity in terms of oxygen consumption rate within a tumor. In conclusion, (19)F MRI relaxometry allows the noninvasive mapping of the oxygen consumption in tumors. The ability to assess the heterogeneity of tumor response is critical in order to identify potential tumor regions that might be resistant to treatment and therefore produce a poor response to therapy. Copyright © 2010 John Wiley & Sons

  19. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  20. 3D magnetohydrodynamic modelling of a dc low-current plasma arc batch reactor at very high pressure in helium

    NASA Astrophysics Data System (ADS)

    Lebouvier, A.; Iwarere, S. A.; Ramjugernath, D.; Fulcheri, L.

    2013-04-01

    This paper deals with a three-dimensional (3D) time-dependent magnetohydrodynamic (MHD) model under peculiar conditions of very high pressures (from 2 MPa up to 10 MPa) and low currents (<1 A). Studies on plasma arc working under these unusual conditions remain almost unexplored because of the technical and technological challenges to develop a reactor able to sustain a plasma at very high pressures. The combined effect of plasma reactivity and high pressure would probably open the way towards new promising applications in various fields: chemistry, lightning, materials or nanomaterial synthesis. A MHD model helps one to understand the complex and coupled phenomena surrounding the plasma which cannot be understood by simply experimentation. The model also provides data which are difficult to directly determine experimentally. The model simulates an experimental-based batch reactor working with helium. The particular reactor in question was used to investigate the Fischer-Tropsch application, fluorocarbon production and CO2 retro-conversion. However, as a first approach in terms of MHD, the model considers the case for helium as a non-reactive working gas. After a detailed presentation of the model, a reference case has been fully analysed (P = 8 MPa, I = 0.35 A) in terms of physical properties. The results show a bending of the arc and displacement of the anodic arc root towards the top of the reactor, due to the combined effects of convection, gravity and electromagnetic forces. A parametric study on the pressure (2-10 MPa) and current (0.25-0.4 A) was then investigated. The operating pressure does not show an influence on the contraction of the arc but higher pressures involve a higher natural convection in the reactor, driven by the density gradients between the cold and hot gas.

  1. Chemical compatibility screening test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) amore » mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.« less

  2. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.

    1997-08-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less

  3. Effects of simulant mixed waste on EPDM and butyl rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1997-11-01

    The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; andmore » (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.« less

  4. A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.

    Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less

  5. A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry

    DOE PAGES

    Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.; ...

    2017-02-24

    Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less

  6. Non-Ideal Compressible Fluid Dynamics: A Challenge for Theory

    NASA Astrophysics Data System (ADS)

    Kluwick, A.

    2017-03-01

    The possibility that compression as well as rarefaction shocks may form in single phase vapours was envisaged first by Bethe (1942). However calculations based on the Van der Waals equation of state indicated that the latter type of shock is possible only if the specific heat at constant volume cv divided by the universal gas constant R is larger than about 17.5 which he considered too large to be satisfied by real fluids. This conclusion was contested by Thompson (1971) who showed that the type of shock capable of forming in arbitrary fluids is determined by the sign of the thermodynamic quantity to which he referred to as fundamental derivative of gas dynamics. Here v, p, s and c denote the specific volume, the pressure, the entropy and the speed of sound. Thompson and co-workers also showed that the required condition for the existence of rarefaction shocks, that Γ may take on negative values, is indeed satisfied for a number of hydrocarbon and fluorocarbon vapours. This finding spawned a burst of theoretical studies elaborating on the unusual and often counterintuitive behaviour of shocks with rarefaction shocks present. These produced both results of theoretical character but also results suggesting the practical importance of Non-Ideal Compressible Fluid Dynamics in general. The present paper addresses some of the challenges encountered in connection with the theoretical treatment of the associated flow behaviour. Weakly nonlinear acoustic waves of finite amplitude serve as a starting point. Here mixed rather than strictly positive nonlinearity generates a wealth of phenomena not possible in perfect gases. Examples of steady flows where these non-classical effects play a decisive role (and which may be useful also for future experimental work) are quasi one-dimensional nozzle flows and transonic two-dimensional flows past corners. The study of viscous effects concentrates on laminar flows of boundary layer type. Here non-classical phenomena are caused by the

  7. Development and Implementation of Discrete Polymeric Microstructural Cues for Applications in Cardiac Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Pinney, James Richardson

    Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. Despite care in the acute setting of MI, subsequent development of scar tissue and a lack of treatments for this maladaptive response lead to a poor prognosis. This has increased burdens on the cost of healthcare due to chronic disability. Here a novel therapeutic strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructural cues to attenuate the fibrotic response and improve functional outcomes is presented. Additionally, applications of integrated chemical functionalizations into discrete, micro-scale polymer structures are discussed in the realm of tissue engineering in order to impart enhancements in in vivo localization, three-dimensional manipulation and drug delivery. Polymeric microstructures, termed "microrods" and "microcubes", were fabricated using photolithographic techniques and studied in three-dimensional culture models of the fibrotic environment and by direct injection into the infarct zone of adult Sprague-Dawley rats. In vitro gene expression and functional and histological results were analyzed, showing a dose-dependent down-regulation fibrotic indicators and improvement in cardiac function. Furthermore, iron oxide nanoparticles and functionalized fluorocarbons were incorporated into the polymeric microdevices to promote in situ visualization by magnetic resonance imaging as well as to facilitate the manipulation and alignment of microstructural cues in a tissue-realistic environment. Lastly, successful encapsulation of native MGF peptide within microrods is demonstrated with release over two weeks as a proof of concept in the ability to locally deliver myogenic or supportive pharmacotherapeutics to the injured myocardium. This work demonstrates the efficacy and versatility of discrete microtopographical cues to attenuate the fibrotic response after MI and suggests a novel

  8. Influence of alkane and perfluorocarbon vapors on adsorbed surface layers and spread insoluble monolayers of surfactants, proteins and lipids.

    PubMed

    Fainerman, V B; Aksenenko, E V; Miller, R

    2017-06-01

    The influence of hexane vapor in the air atmosphere on the surface tension of water and solutions of C 10 EO 8 , C n TAB and proteins are presented. For dry air, a fast and strong decrease of surface tension of water was observed. In humid air, the process is slower and the surface tension higher. There are differences between the results obtained by the maximum bubble pressure, pendant drop and emerging bubble methods, which are discussed in terms of depletion and initial surface load. The surface tension of aqueous solutions of β-сasein (BCS), β-lactoglobulin (BLG) and human serum albumin (HSA) at the interfaces with air and air-saturated hexane vapor were measured. The results indicate that the equilibrium surface tension in the hexane vapor atmosphere is considerably lower (at 13-20mN/m) as compared to the values at the interface with pure air. A reorientation model is proposed assuming several states of adsorbed molecules with different molar area values. The newly developed theoretical model is used to describe the effect of alkane vapor in the gas phase on the surface tension. This model assumes that the first layer is composed of surfactant (or protein) molecules mixed with alkane, and the second layer is formed by alkane molecules only. The processing of the experimental data for the equilibrium surface tension for the C 10 EO 8 and BCS solutions results in a perfect agreement between the observed and calculated values. The co-adsorption mechanism of dipalmitoyl phosphatidyl choline (DPPC) and the fluorocarbon molecules leads to remarkable differences in the surface pressure term of cohesion Π coh . This in turn leads to a very efficient fluidization of the monolayer. It was found that the adsorption equilibrium constant for dioctanoyl phosphatidyl choline is increased in the presence of perfluorohexane, and the intermolecular interaction of the components is strong. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer.

    PubMed

    Zhao, Ranran; Liang, Xiaolong; Zhao, Bo; Chen, Min; Liu, Renfa; Sun, Sujuan; Yue, Xiuli; Wang, Shumin

    2018-05-03

    To improve the non-invasive therapeutic efficacy for ER positive breast cancer (ER+ BC), we fabricated a multifunctional FOXA1 loaded porphyrin microbubble to combine photodynamic therapy (PDT) and gene therapy of FOXA1 knockdown (KD) with ultrasound targeted microbubble destruction (UTMD) technology under the guidance of contrast enhanced ultrasound (CEUS). Cationic porphyrin microbubbles (CpMBs) were firstly fabricated from a porphyrin grafted lipid with two cationic amino groups (PGL-NH2) and fluorocarbon inert gas of C 3 F 8 . Porphyrin group in the CpMBs monolayer could be used as a photosensitizer for PDT, while amino groups could adsorb siRNA through electrostatic interaction for FOXA1 KD, which could inhibit the proliferation of estrogen-dependent ER+ BC. This system showed high photosensitizer and gene loading content. Moreover, CpMBs/siRNA can be converted into nanoparticles with low-frequency pulsed ultrasound (LFUS) exposure, which increase the transfection efficiency of siRNA (∼4 fold) and the porphyrin uptake (∼8 fold) in MCF-7 (a human breast cancer cell line, ER+) by sonoporation effect. In vivo, UTMD was performed under the guidance of CEUS, and the fluorescence intensity of CpMBs/siRNA at the tumour site reached a peak value at 6 h after injection and it was retained in the following 24 h. Furthermore, there was no tumour recurrence during the observation period (21 days) in the group of PDT combined with FXOA1 KD. Compared to the PDT or FOXA1 KD alone group, the combination of these two methods was much more efficient in inhibiting ER+ breast cancer, showing a good synergistic effect. CpMBs/siRNA combined with UTMD dramatically increased the local accumulation of porphyrin and siRNA through ultrasound-induced sonoporation effect under the guidance of CEUS, showing excellent therapeutic effect for estrogen-dependent ER+ breast cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Flexural properties of denture base polymers reinforced with a glass cloth-urethane polymer composite.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2004-10-01

    A newly designed light-cured reinforcement made from urethanemethacrylate oligomer and woven glass cloth has orthotropic anisotropy. This is produced for incorporation into the outermost position under the greatest tension in denture base resins. In this study, the flexural properties of self-, heat-, and light-curing reinforced resins were determined. The silanized glass cloth was soaked in urethanemethacrylate oligomer containing camphorquinone and 2-(dimethylamino)ethylmethacrylate. It was sandwiched between two pieces of polyethylene film and pressed to form a reinforcement sheet 0.3 mm in thickness, which was light-cured and prepared using four different surface conditions: with or without the polyethylene film and with or without a bonding agent. The reinforcement sheet was fixed in a fluorocarbon resin mold 3 mm in thickness, which was filled with self-, heat-, or light-curing resin and cured. The cured laminated plate was cut for flexural testing (40 x 7 x 3 mm3). A three-point flexural test was carried out at a crosshead speed of 2 mm/min and a span length of 30 mm. In this study, the glass fiber content was measured at percentages by weight because it was not possible to determine accurately the volume of the various polymers. The baseline flexural strengths of the self-, heat-, and light-curing resins were 76.2, 68.6, and 55.6 MPa, respectively, and these values were increased to 271.7, 216.4, and 266.5 MPa by the reinforcement sheet. The baseline flexural moduli of self-, heat-, and light-curing resins were 2.0, 2.4, and 2.1 GPa, respectively. These values were increased to 7.2, 5.1, and 6.6 GPa by the reinforcement sheet. SEM photographs revealed good impregnation of the glass fiber within the polymer matrix. The differences in the flexural strengths and flexural moduli of the control and reinforced specimens were significant (p < 0.01).

  11. Investigating Low Temperature Properties of Rubber Seals - 13020

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaunich, M.; Wolff, D.; Stark, W.

    To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glassmore » transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable

  12. Interactive stereo electron microscopy enhanced with virtual reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E.Wes; Bastacky, S.Jacob; Schwartz, Kenneth S.

    2001-12-17

    An analytical system is presented that is used to take measurements of objects perceived in stereo image pairs obtained from a scanning electron microscope (SEM). Our system operates by presenting a single stereo view that contains stereo image data obtained from the SEM, along with geometric representations of two types of virtual measurement instruments, a ''protractor'' and a ''caliper''. The measurements obtained from this system are an integral part of a medical study evaluating surfactant, a liquid coating the inner surface of the lung which makes possible the process of breathing. Measurements of the curvature and contact angle of submicronmore » diameter droplets of a fluorocarbon deposited on the surface of airways are performed in order to determine surface tension of the air/liquid interface. This approach has been extended to a microscopic level from the techniques of traditional surface science by measuring submicrometer rather than millimeter diameter droplets, as well as the lengths and curvature of cilia responsible for movement of the surfactant, the airway's protective liquid blanket. An earlier implementation of this approach for taking angle measurements from objects perceived in stereo image pairs using a virtual protractor is extended in this paper to include distance measurements and to use a unified view model. The system is built around a unified view model that is derived from microscope-specific parameters, such as focal length, visible area and magnification. The unified view model ensures that the underlying view models and resultant binocular parallax cues are consistent between synthetic and acquired imagery. When the view models are consistent, it is possible to take measurements of features that are not constrained to lie within the projection plane. The system is first calibrated using non-clinical data of known size and resolution. Using the SEM, stereo image pairs of grids and spheres of known resolution are created to

  13. New Class of Amphiphiles Designed for Use in Water-in-Supercritical CO2 Microemulsions.

    PubMed

    Sagisaka, Masanobu; Ogiwara, Shunsuke; Ono, Shinji; James, Craig; Yoshizawa, Atsushi; Mohamed, Azmi; Rogers, Sarah E; Heenan, Richard K; Yan, Ci; Peach, Jocelyn Alice; Eastoe, Julian

    2016-11-29

    Water-in-supercritical CO 2 microemulsions formed using the hybrid F-H surfactant sodium 1-oxo-1-[4-(perfluorohexyl)phenyl]hexane-2-sulfonate, FC6-HC4, have recently been shown to have the highest water-solubilizing power ever reported. FC6-HC4 demonstrated the ability to outperform not only other surfactants but also other FCm-HCn analogues containing different fluorocarbon and hydrocarbon chain lengths (Sagisaka, M. et al. Langmuir 2015, 31, 7479-7487). With the aim of clarifying the key structural features of this surfactant, this study examined the phase behavior and water/supercritical CO 2 aggregate formation of 1-oxo-1-[4-(perfluorohexyl)phenyl]hexane (Nohead FC6-HC4), which is an FC6-HC4 analogue but now, interestingly, without the sulfonate headgroup. Surprisingly, Nohead FC6-HC4, which would not normally be identified as a classic surfactant, yielded transparent single-phase W/CO 2 microemulsions with polar cores able to solubilize a water-soluble dye, even at pressures and temperatures so low as to approach the critical point of CO 2 (e.g., ∼100 bar at 35 °C). High-pressure small-angle scattering (SANS) measurements revealed the transparent phases to consist of ellipsoidal nanodroplets of water. The morphology of these droplets was shown to be dependent on the pressure, Nohead FC6-HC4 concentration, and water-to-surfactant molar ratio. Despite having almost the same structure as Nohead FC6-HC4, analogues containing both shorter and longer hydrocarbons were unable to form W/CO 2 microemulsion droplets. This shows the importance of the role of the hydrocarbon chain in the stabilization of W/CO 2 microemulsions. A detailed examination of the mechanism of Nohead FC6-HC4 adsorption onto the water surface suggests that the hexanoyl group protrudes into the aqueous core, allowing for association between the carbonyl group and water.

  14. Green Solvents for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Surma, Jan; Hintze, Paul

    2013-01-01

    Aerospace machinery used in liquid oxygen (LOX) fuel systems must be precision cleaned to achieve a very low level of non-volatile residue (< 1 mg0.1 m2), especially flammable residue. Traditionally chlorofluorocarbons (CFCs) have been used in the precision cleaning of LOX systems, specifically CFC 113 (C2Cl3F3). CFCs have been known to cause the depletion of ozone and in 1987, were banned by the Montreal Protocol due to health, safety and environmental concerns. This has now led to the development of new processes in the precision cleaning of aerospace components. An ideal solvent-replacement is non-flammable, environmentally benign, non-corrosive, inexpensive, effective and evaporates completely, leaving no residue. Highlighted is a green precision cleaning process, which is contaminant removal using supercritical carbon dioxide as the environmentally benign solvent. In this process, the contaminant is dissolved in carbon dioxide, and the parts are recovered at the end of the cleaning process completely dry and ready for use. Typical contaminants of aerospace components include hydrocarbon greases, hydraulic fluids, silicone fluids and greases, fluorocarbon fluids and greases and fingerprint oil. Metallic aerospace components range from small nuts and bolts to much larger parts, such as butterfly valves 18 in diameter. A fluorinated grease, Krytox, is investigated as a model contaminant in these preliminary studies, and aluminum coupons are employed as a model aerospace component. Preliminary studies are presented in which the experimental parameters are optimized for removal of Krytox from aluminum coupons in a stirred-batch process. The experimental conditions investigated are temperature, pressure, exposure time and impeller speed. Temperatures of 308 - 423 K, pressures in the range of 8.3 - 41.4 MPa, exposure times between 5 - 60 min and impeller speeds of 0 - 1000 rpm were investigated. Preliminary results showed up to 86 cleaning efficiency with the

  15. A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry.

    PubMed

    Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R C; Stack, Andrew G; Riman, Richard; Anderko, Andre; Navrotsky, Alexandra; Bryantsev, Vyacheslav S

    2017-03-15

    Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J. Phys. Chem. C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. In this work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [101[combining macron]0] > [101[combining macron]1] > [101[combining macron]2] > [0001] > [112[combining macron]2] > [101[combining macron]4] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce 3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Due to similar water adsorption energies on bastnäsite [101[combining macron]1] and calcite [101[combining macron]4] surfaces, the design of collector molecules that selectively bind to

  16. Altered combustion characteristics of metallized energetics due to stable secondary material inclusion

    NASA Astrophysics Data System (ADS)

    Terry, Brandon C.

    Though metals and metalloids have been widely considered as reactive fuels, the ability to tune their ignition and combustion characteristics remains challenging. One means to accomplish this may be through low-level inclusion of secondary materials into the metallized fuel. While there are several potential methods to stably introduce secondary inclusion materials, this work focuses on the use of mechanical activation (MA) and metal alloys. Recent work has shown that low-level inclusion of fluoropolymers into aluminum particles can have a substantial effect on their combustion characteristics. The reflected shock ignition of mechanically activated aluminum/polytetrafluoroethylene (MA Al/PTFE) is compared to a physical mixture (PM) of Al/PTFE, neat spherical aluminum, and flake aluminum. It was found that the powders with higher specific surface areas ignited faster than the spherical particles of the same size, and had ignition delay times comparable to agglomerates of aluminum particles that were two orders of magnitude smaller in size. Flake aluminum powder had the same ignition delay as MA Al/PTFE, indicating that any initial aluminum/fluoropolymer reactions did not yield an earlier onset of aluminum oxidation. However, MA Al/PTFE did have a shorter total burn time. The PM of Al/PTFE powder had a shorter ignition delay than neat spherical aluminum due to the rapid decomposition of PTFE into reactive fluorocarbon compounds, but the subsequent fluorocarbon reactions also created a secondary luminosity profile that significantly increased the total burn time of the system. The explosive shock ignition of aluminum and aluminum-silicon eutectic alloy compacts was evaluated with and without polymer inclusions. A statistical analysis was completed, investigating the effects of: detonation train orientation (into or not into a hard surface); the high explosive driver; whether the metal/polymer system is mechanically activated; particle size; particle morphology

  17. Disparity of Chlorine to Fluorine Concentration Ratios Between Thermal Waters and Rocks of Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    McConville, E. G.; Szymanski, M. E.; Hurwitz, S.; Lowenstern, J. B.; Hayden, L. A.

    2016-12-01

    Low chlorine to fluorine concentration ratios (Cl/F) of 0.5 by weight are observed in Yellowstone rhyolites within glass inclusions and erupted rhyolitic glass. In contrast, Yellowstone thermal waters have Cl/F of >10 and Cl/F of waters at Norris Geyser Basin can exceed 100. Similar Cl/F have been observed in other volcanic hydrothermal systems (e.g., Lassen, Long Valley Caldera). The goal of this study is to identify fluorine-bearing minerals that could remove a substantial amount of F from the hydrothermal fluids within the Yellowstone caldera and in the Norris Geyser Basin near the northern margin of the caldera. We used a scanning electron microscope (SEM) to study thin sections from core samples obtained during research drilling by the USGS in the 1960s. The Y-2 well (Lower Geyser Basin) penetrated mostly Plateau Rhyolites ( 0.15 Ma) and Y-7 and Y-8 wells (Upper Geyser Basin) penetrated glacial sandstones and conglomerates, underlain by the Biscuit Basin flow ( 0.5 Ma). The thin sections from Y-12 in the Norris Geyser Basin are all from the Lava Creek Tuff. Fluorine-bearing minerals are found in all drill cores. Fluorite is present in Y-2 at a depth of 153 m, in Y-7 at 65m, and in Y-12 at 276 m. Fluoroapatite first appears in the Biscuit Basin flow at 60 m in Y-7 and 59 m in Y-8. Rare earth fluorocarbonates, such as bastnaesite (Ce,La,Y)CO3F and/or parisite Ca(Ce,La)2(CO3)3F2, are predominantly found in Y-12 at depths >276 m. Our estimated abundances of these fluorine-bearing minerals are at least 2 orders of magnitude less than required to substantially affect the Cl/F ratio in thermal waters. Fluorine-bearing minerals may be more abundant at greater depth. Another possible explanation is that the fluorite is too fine-grained to be identified by SEM. Finally, the high Cl/F in thermal waters could be explained by the ascent of Cl-rich fluid from a cooling magma body or from older crustal rocks that underlie the caldera.

  18. Climate Change, Air Pollution, and the Economics of Health Impacts

    NASA Astrophysics Data System (ADS)

    Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.

    2003-12-01

    Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to

  19. Paradigm shifts in plasma processing and application of fundamental kinetics to problems targeting 5 nm technology device technology

    NASA Astrophysics Data System (ADS)

    Chen, Lee

    2016-09-01

    It is often said that semiconductor technology is approaching the end of scaling. While fundamental device limits do approach, plasma etching has been doing the heavy lifting to supplement the basic limits in lithography. RF plasmas, pulsing in many forms, diffusion plasmas are but a few of the important developments over the last 20 years that have succeeded in the seemingly impossible tasks. The commonality of these plasmas is being self-consistent: their near-Boltzmann EEDf maintains ionization with its tail while providing charge-balance with its Te . To control the plasma chemistry is to control its EEDf; the entanglement of ionization with charge-balance in self-consistent plasmas places a constraint on the decoupling of plasma chemistry from ionization. Example like DC/RF parallel-plate hybridizes stochastic heating with DC-cathode injected e- -beam. While such arrangement offers some level of decoupling, it raised more questions than what it helped answered along the lines of beam-plasma instabilities, bounce-resonance ionization, etc. Pure e- -beam plasmas could be a drastic departure from the self-consistent plasmas. Examples like the NRL e- -beam system and the more recent TEL NEP (Nonambipolar e- Plasma) show strong decoupling of Te from ionization but it is almost certain, many more questions lurk: the functions connecting collisional relaxation with instabilities, the channels causing the dissociation of large fluorocarbons (controlling the ion-to- radical ratio), the production of the damaging deep UV in e- -beam plasmas, etc., and the list goes on. IADf is one factor on feature-profile and IEDf determines the surgical surface-excitation governing the selectivity, and both functions have Ti as the origin; what controls the e- -beam plasmas' Ti ? RF-bias has served well in applications requiring energetic excitation but, are there ways to improve the IEDf tightness? What are the adverse side-effects of ``improved IEDf''? Decades ago an infant RF

  20. Electron impact elastic and excitation cross-sections of the isomers of C4F6 molecule for plasma modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Song, Mi-Young; Baluja, K. L.; Choi, Heechol; Yoon, Jung-Sik

    2018-06-01

    related to fluorocarbon plasma.