Sample records for fluvial systems variations

  1. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    PubMed

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  2. Unsteady Landscapes: Climatic and Tectonic Controls on Fluvial Terrace Formation

    NASA Astrophysics Data System (ADS)

    Clubb, F. J.; Mudd, S. M.

    2017-12-01

    Fluvial terraces are common landforms throughout mountainous regions which represent abandoned remnants of active river systems and their floodplains. The formation of these landforms points to a fundamental unsteadiness in the incision rate of the fluvial network, providing important information on channel response to climatic, tectonic, and base-level forcing, sediment storage and dynamics within mountainous systems, and the relative importance of lateral and vertical incision rates. In his 1877 Report on the Geology of the Henry Mountains, G.K. Gilbert suggested that strath terraces may form due to climatically-driven increase in sediment supply, causing armouring of the channel bed and hindering vertical incision. An alternative hypothesis suggests that strath terraces may be preserved through progressive tectonic uplift or base-level fall. These different formation mechanisms should result in varying distribution of terrace elevations along channels: if terraces are formed through climate-driven variations in sediment supply, we might expect that terrace elevations would be random, whereas progressive fluvial incision should result in a series of terraces with a systematic elevation pattern. Here we test alternative hypotheses for strath terrace formation using a new method for objectively and rapidly identifying terrace surfaces from digital elevation models (DEMs) over large spatial scales. Our new method identifies fluvial terraces using their gradient and elevation compared to the modern channel, thresholds of which are statistically calculated from the DEM and do not need to be set manually by the user. We use this method to extract fluvial terraces for every major river along the coast of California, and quantify their distribution and elevation along the fluvial long profile. Our results show that there is no systematic pattern in terrace elevations despite a well-constrained spatial variation in uplift rates, suggesting that terraces in this region do not reflect the influence of regional tectonics, and may instead be the formed through climatic variations or autogenic fluvial processes.

  3. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  4. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection.

    PubMed

    Zhang, Lixun; Zhao, Bo; Xu, Gang; Guan, Yuntao

    2018-09-01

    Globally, fluvial heavy metal (HM) pollution has recently become an increasingly severe problem. However, few studies have investigated the variational characteristics of fluvial HMs after rain over long periods (≥1 year). The Dakan River in Xili Reservoir watershed (China) was selected as a case study to investigate pollution levels, influencing factors, and sources of HMs under different rainfall conditions during 2015 and 2016. Fluvial HMs showed evident spatiotemporal variations attributable to the coupled effects of pollution generation and rainfall diffusion. Fluvial HM concentrations were significantly associated with rainfall characteristics (e.g., rainfall intensity, rainfall amount, and antecedent dry period) and river flow, which influenced the generation and the transmission of fluvial HMs in various ways. Moreover, this interrelationship depended considerably on the HM type and particle size distribution. Mn, Pb, Cr, and Ni were major contributors to high values of the comprehensive pollution index; therefore, they should be afforded special attention. Additionally, quantitative source apportionment of fluvial HMs was conducted by combining principal component analysis with multiple linear regression and chemical mass balance models to obtain comprehensive source profiles. Finally, an environment-friendly control strategy coupling "source elimination" and "transport barriers" was proposed for aquatic environment protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Antecedent rivers and early rifting: a case study from the Plio-Pleistocene Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Malartre, Fabrice

    2016-04-01

    Models of early rifting present syn-rift sedimentation as the direct response to the development of normal fault systems where footwall-derived drainage supplies alluvial to lacustrine sediments into hangingwall depocentres. These models often include antecedent rivers, diverted into active depocentres and with little impact on facies distributions. However, antecedent rivers can supply a high volume of sediment from the onset of rifting. What are the interactions between major antecedent rivers and a growing normal fault system? What are the implications for alluvial stratigraphy and facies distributions in early rifts? These questions are investigated by studying a Plio-Pleistocene fluvial succession on the southern margin of the Corinth rift (Greece). In the northern Peloponnese, early syn-rift deposits are preserved in a series of uplifted E-W normal fault blocks (10-15 km long, 3-7 km wide). Detailed sedimentary logging and high resolution mapping of the syn-rift succession (400 to 1300 m thick) define the architecture of the early rift alluvial system. Magnetostratigraphy and biostratigraphic markers are used to date and correlate the fluvial succession within and between fault blocks. The age of the succession is between 4.0 and 1.8 Ma. We present a new tectonostratigraphic model for early rift basins based on our reconstructions. The early rift depositional system was established across a series of narrow normal fault blocks. Palaeocurrent data show that the alluvial basin was supplied by one major sediment entry point. A low sinuosity braided river system flowed over 15 to 30 km to the NE. Facies evolved downstream from coarse conglomerates to fined-grained fluvial deposits. Other minor sediment entry points supply linked and isolated depocentres. The main river system terminated eastward where it built stacked small deltas into a shallow lake (5 to 15 m deep) that occupied the central Corinth rift. The main fluvial axis remained constant and controlled facies distribution throughout the early rift evolution. We show that the length scale of fluvial facies transitions is greater than and therefore not related to fault spacing. First order facies variations instead occur at the scale of the full antecedent fluvial system. Strike-parallel subsidence variations in individual fault blocks represent a second order controlling factor on stratigraphic architecture. As depocentres enlarged through time, sediments progressively filled palaeorelief, and formed a continuous alluvial plain above active faults. There was limited creation of footwall relief and thus no significant consequent drainage system developed. Here, instead of being diverted toward subsiding zones, the drainage system overfilled the whole rift from the onset of faulting. Moreover, the zones of maximum subsidence on individual faults are aligned across strike parallel to the persistent fluvial axis. This implies that long-term sediment loading influenced the growth of normal faults. We conclude that a major antecedent drainage system inherited from the Hellenide mountain belt supplied high volumes of coarse sediment from the onset of faulting in the western Corinth rift (around 4 Ma). These observations demonstrate that antecedent drainage systems can be important in the tectono-sedimentary evolution of rift basins.

  6. Highly Seasonal and Perennial Fluvial Facies: Implications for Climatic Control on the Douglas Creek and Parachute Creek Members, Green River Formation, Southeastern Uinta Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gall, Ryan D.

    The early to middle Eocene Green River Formation consists of continental strata deposited in Laramide ponded basins in Utah, Colorado, and Wyoming. This study (1) documents fluvial and lacustrine strata from the Douglas Creek and Parachute Creek Members of the middle Green River Formation, southeastern Uinta Basin, Utah, and (2) uses new interpretations of the link between climate and fluvial sedimentary expression to interpret the terrestrial evolution of early Eocene climate. The stratigraphy was analyzed via outcrops along a 10 km transect in Main Canyon on the Tavaputs Plateau, and is divided into three distinct, stratigraphically separated depositional settings: (1) the lowermost Interval 1 is dominated by amalgamated sandstone channels that contain 70-100% upper flow regime sedimentary structures. The channels are interpreted to represent fluvial deposits controlled by a highly seasonal climate, where most deposition was limited to seasonal flooding events. (2) Interval 2 is dominated by alternating siliciclastic and carbonate lacustrine deposits, interpreted as local pulsed fluvial siliciclastic input into shallow Lake Uinta, and periods of fluvial quiescence represented by littoral carbonate deposition. (3) The uppermost Interval 3 is dominated by erosively-based, trough cross bedded sandstone channels interbedded with littoral lacustrine and deltaic deposits. The Interval 3 sandstone channels are interpreted as perennial fluvial deposits with relatively little variation in annual discharge, akin to modern humid-temperate fluvial systems. The stratigraphic transition from seasonally-controlled (Interval 1) to perennial (Interval 3) fluvial deposits is interpreted to represent a fundamental shift in Eocene climate, from the peak hyperthermal regime of the Early Eocene Climatic Optimum (EECO) to a more stable post-EECO climate.

  7. An Investigation of Amphitheater-Headed Canyon Distribution, Morphology Variation, and Longitudinal Profile Controls in Escalante and Tarantula Mesa, Utah.

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Whipple, K. X.

    2014-12-01

    Amphitheater-headed canyons are primarily distinguished from typical fluvial channels by their abrupt headwall terminations. A key goal in the study of river canyons is to establish a reliable link between form and formation processes. This is of particular significance for Mars, where, if such links can be established, amphitheater-headed canyons could be used to determine ancient erosion mechanisms and, by inference, climate conditions. Type examples in arid regions on Earth, such as in Escalante River, Utah, previously have been interpreted as products of groundwater seepage erosion. We investigate amphitheater-headed canyons in Escalante and Tarantula Mesa where variations in canyon head morphology may hold clues for the relative roles of rock properties and fluvial and groundwater processes. In lower Escalante, amphitheaters are only present where canyons have breached the Navajo Sandstone - Kayenta Formation contact. In some canyons, amphitheater development appears to have been inhibited by an abundance of coarse bedload. In Tarantula Mesa, canyons have a variety of headwalls, from amphitheaters to stepped knickzones. Headwall morphology distribution is directly related to the spatially variable presence of knickpoint-forming, fine-grained interbeds within cliff-forming sandstones. Amphitheaters only form where the sandstone unit is undisrupted by these interbeds. Finally, most canyons in Escalante and Tarantula Mesa, regardless of substrate lithology, amphitheater presence, or groundwater spring intensity, are well described by a slope-area power law relationship with regionally constant concavity and normalized steepness indices. This suggests that all channels here are subject to the same erosion rates, independent of groundwater weathering intensity. Thus: 1) variations in canyon headwall form do not necessary relate to differences in fluvial history, 2) stratigraphic variations are clearly of importance in sedimentary canyon systems, and 3) although groundwater seepage weathering is clearly active in many canyons in Utah and may be responsible for amphitheater development, fluvial forces appear to be the dominant erosive force responsible for shaping stream profiles.

  8. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: Evidence from 3D seismic data

    NASA Astrophysics Data System (ADS)

    Zhuo, Haiteng; Wang, Yingmin; Shi, Hesheng; He, Min; Chen, Weitao; Li, Hua; Wang, Ying; Yan, Weiyao

    2015-12-01

    Multiple successions of buried fluvial channel systems were identified in the Quaternary section of the mid-shelf region of the northern South China Sea, providing a new case study for understanding the interplay between sea level variations and climate change. Using three commercial 3D seismic surveys, accompanied by several 2D lines and a few shallow boreholes, the sequence stratigraphy, seismic geomorphology and stratal architecture of these fluvial channels were carefully investigated. Based on their origin, dimensions, planform geometries and infill architectures, six classes of channel systems, from Class 1 to Class 6, were recognized within five sequences of Quaternary section (SQ1 to SQ5). Three types of fluvial systems among them are incised in their nature, including the trunk incised valleys (Class 1), medium incised valleys (Class 2) and incised tributaries (Class 3). The other three types are unincised, which comprise the trunk channels (Class 4), lateral migrating channels (Class 5) and the stable channels (Class 6). The trunk channels and/or the major valleys that contain braided channels at their base are hypothesized to be a product of deposition from the "big rivers" that have puzzled the sedimentologists for the last decade, providing evidence for the existence of such rivers in the ancient record. Absolute age dates from a few shallow boreholes indicate that the landscapes that were associated with these fluvial systems changed significantly near the completion of the mid-Pleistocene climate transition (MPT), which approximately corresponds to horizon SB2 with an age of ∼0.6 Ma BP. Below SB2, the Early Pleistocene sequence (SQ1) is dominated by a range of different types of unincised fluvial systems. Evidence of incised valleys is absent in SQ1. In contrast, extensive fluvial incision occurred in the successions above horizon SB2 (within SQ2-SQ5). Although recent studies call for increased incision being a product of climate-controlled increase in river discharge, the down-dip location of our study area suggests that relative sea level change was the most important control of the evolution of fluvial systems. However, it is acknowledged that climate change was also important through its role in regulating glacio-eustasy. We speculate that the small amplitude and periodicity of sea level cycles before and during the MPT were not sufficient to fully expose the shelf and cause extensive fluvial incisions. Completion of the MPT as well as the onset of 100 ky climate cycles at ∼0.6 Ma, during which the duration of cycles and magnitude of sea level change both increased, are considered to be triggering event for extensive development of incised fluvial systems. In addition to the eustatically driven causes of enhanced incision, the intensification of the East Asia monsoon at 0.9 Ma and 0.6 Ma driven by the episodic uplift of the Tibetan Plateau may have also significantly enhanced the amplitude of sea level falls and thus the fluvial incisions of the northern shelf of the South China Sea.

  9. Overview of the influence of syn-sedimentary tectonics and palaeo-fluvial systems on coal seam and sand body characteristics in the Westphalian C strata, Campine Basin, Belgium

    USGS Publications Warehouse

    Dreesen, Roland; Bossiroy, Dominique; Dusar, Michiel; Flores, R.M.; Verkaeren, Paul; Whateley, M. K. G.; Spears, D.A.

    1995-01-01

    The Westphalian C strata found in the northeastern part of the former Belgian coal district (Campine Basin), which is part of an extensive northwest European paralic coal basin, are considered. The thickness and lateral continuity of the Westphalian C coal seams vary considerably stratigraphically and areally. Sedimentological facies analysis of borehole cores indicates that the deposition of Westphalian C coal-bearing strata was controlled by fluvial depositional systems whose architectures were ruled by local subsidence rates. The local subsidence rates may be related to major faults, which were intermittently reactivated during deposition. Lateral changes in coal seam groups are also reflected by marked variations of their seismic signatures. Westphalian C fluvial depositional systems include moderate to low sinuosity braided and anastomosed river systems. Stable tectonic conditions on upthrown, fault-bounded platforms favoured deposition by braided rivers and the associated development of relatively thick, laterally continuous coal seams in raised mires. In contrast, rapidly subsiding downthrown fault blocks favoured aggradation, probably by anastomosed rivers and the development of relatively thin, highly discontinuous coal seams in topogenous mires.

  10. Tidal Simulations of an Incised-Valley Fluvial System with a Physics-Based Geologic Model

    NASA Astrophysics Data System (ADS)

    Ghayour, K.; Sun, T.

    2012-12-01

    Physics-based geologic modeling approaches use fluid flow in conjunction with sediment transport and deposition models to devise evolutionary geologic models that focus on underlying physical processes and attempt to resolve them at pertinent spatial and temporal scales. Physics-based models are particularly useful when the evolution of a depositional system is driven by the interplay of autogenic processes and their response to allogenic controls. This interplay can potentially create complex reservoir architectures with high permeability sedimentary bodies bounded by a hierarchy of shales that can effectively impede flow in the subsurface. The complex stratigraphy of tide-influenced fluvial systems is an example of such co-existing and interacting environments of deposition. The focus of this talk is a novel formulation of boundary conditions for hydrodynamics-driven models of sedimentary systems. In tidal simulations, a time-accurate boundary treatment is essential for proper imposition of tidal forcing and fluvial inlet conditions where the flow may be reversed at times within a tidal cycle. As such, the boundary treatment at the inlet has to accommodate for a smooth transition from inflow to outflow and vice-versa without creating numerical artifacts. Our numerical experimentations showed that boundary condition treatments based on a local (frozen) one-dimensional approach along the boundary normal which does not account for the variation of flow quantities in the tangential direction often lead to unsatisfactory results corrupted by numerical artifacts. In this talk, we propose a new boundary treatment that retains all spatial and temporal terms in the model and as such is capable to account for nonlinearities and sharp variations of model variables near boundaries. The proposed approach borrows heavily from the idea set forth by J. Sesterhenn1 for compressible Navier-Stokes equations. The methodology is successfully applied to a tide-influenced incised valley fluvial system and the resulting stratigraphy is shown and discussed for different tide amplitudes. 1 Sesterhenn, J.: "A characteristic-type formulation of the Navier-Stokes equations for high-order upwind schemes", Computers & Fluids 30 (1) 37-67, 2001.;

  11. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Xingxing; Sun, Youbin; Vandenberghe, Jef; Li, Ying; An, Zhisheng

    2018-06-01

    Sedimentary sequences that developed on river terraces have been widely investigated to reconstruct high-resolution palaeoclimatic changes since the last deglaciation. However, frequent changes in sedimentary facies make palaeoenvironmental interpretation of grain-size variations relatively complicated. In this paper, we employed multiple grain-size parameters to discriminate the sedimentary characteristics of aeolian and fluvial facies in the Dadiwan (DDW) section on the western Chinese Loess Plateau. We found that wind and fluvial dynamics have quite different impacts on the grain-size compositions, with distinctive imprints on the distribution pattern. By using a lognormal distribution fitting approach, two major grain-size components sensitive to aeolian and fluvial processes, respectively, were distinguished from the grain-size compositions of the DDW terrace deposits. The fine grain-size component (GSC2) represents mixing of long-distance aeolian and short-distance fluvial inputs, whilst the coarse grain-size component (GSC3) is mainly transported by wind from short-distance sources. Thus GSC3 can be used to infer the wind intensity. Grain-size variations reveal that the wind intensity experienced a stepwise shift from large-amplitude variations during the last deglaciation to small-amplitude oscillations in the Holocene, corresponding well to climate changes from regional to global context.

  12. Assessing the role of detrital zircon sorting on provenance interpretations in an ancient fluvial system using paleohydraulics - Permian Cutler Group, Paradox Basin, Utah and Colorado

    NASA Astrophysics Data System (ADS)

    Findlay, C. P., III; Ewing, R. C.; Perez, N. D.

    2017-12-01

    Detrital zircon age signatures used in provenance studies are assumed to be representative of entire catchments from which the sediment was derived, but the extent to which hydraulic sorting can bias provenance interpretations is poorly constrained. Sediment and mineral sorting occurs with changes in hydraulic conditions driven by both allogenic and autogenic processes. Zircon is sorted from less dense minerals due to the difference in density, and any age dependence on zircon size could potentially bias provenance interpretations. In this study, a coupled paleohydraulic and geochemical provenance approach is used to identify changes in paleohydraulic conditions and relate them to spatial variations in provenance signatures from samples collected along an approximately time-correlative source-to-sink pathway in the Permian Cutler Group of the Paradox Basin. Samples proximal to the uplift have a paleoflow direction to the southwest. In the medial basin, paleocurrent direction indicates salt movement caused fluvial pathways divert to the north and northwest on the flanks of anticlines. Channel depth, flow velocity, and discharge calculations were derived from field measurements of grain size and dune and bar cross-stratification indicate that competency of the fluvial system decreased from proximal to the medial basin by up to a factor of 12. Based upon the paleohydraulic calculations, zircon size fractionation would occur along the transect such that the larger zircons are removed from the system prior to reaching the medial basin. Analysis of the size and age distribution of zircons from the proximal and distal fluvial system of the Cutler Group tests if this hydraulic sorting affects the expected Uncompahgre Uplift age distribution.

  13. A meeting of the waters: interdisciplinary challenges and opportunities in tidal rivers

    USGS Publications Warehouse

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Fagherazzi, Sergio

    2012-01-01

    At the interface of estuarine tides and freshwater rivers lie wetland and aquatic ecosystems, which experience dramatic effects of sea level rise. There, nontidal channels and riparian floodplains are transforming into tidal ecosystems, and tidal freshwater ecosystems are receiving increasing salinity. These river-floodplain systems have both fluvial characteristics, including meandering channels and expansive floodplain forests, and estuarine characteristics, including tides and intertidal wetlands [see Barendregt et al., 2009; Conner et al., 2007, and references therein]. Because tidal rivers lie at the disciplinary divide between fluvial and estuarine science, a knowledge gap has developed in scientists' understanding of the geomorphic and biogeochemical response of these environments to sea level rise, climate change, and anthropogenically driven variations in watershed exports.

  14. Fluctuations in fluvial style in the Wasatch Formation, Piceance Basin, Colorado: Climatic, tectonic, or sediment driven

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadon, G.C.; Lorenz, J.C.; Lafrenier, L.

    1996-01-01

    The Molina Member of the Wasatch Formation is a primary objective for light gas sandstone production. The G-Sandstone unit of the Molina produces an average of 200 MCFGPD. The chert-rich sandstones and conglomerates of the Molina Member, which are exposed in two subparallel belts on the western and eastern sides of the basin, are strikingly different from the remainder of the Wasatch formation. The underlying Atwell Gulch Member and overlying Shire Member are composed of floodplain mudstones with well developed paleosols and rare, lenticular channel sandstones. Both units are interpreted as anastomosed fluvial deposits. The Molina Member, which varies frommore » 32-118 m thick and in places contains clasts >0.2 m, is more difficult to interpret. Different portions of individual sections contain significant proportions of parallel laminated sandstones up to 5 m thick and several hundred meters wide. These parallel laminated sandstones are most common to the north along the western outcrop bell. They are interbedded with sandstones and conglomerates that are typical of a braided fluvial deposit. The contact between the two fluvial styles is sharp but conformable. The Molina Member therefore represents a perturbation in fluvial style from suspended-load to bedload and back to suspended-load over a restricted time interval. This may be the product of a change in climate, i.e., a change in rainfall amount or timing in the source area, source rock, e.g., the unroofing of a Jurassic eolian sandstone, or an increase in the depositional slope due to uplift. The return to a mud-dominated depositional system in the Shire Member argues for either climatic or source-rock variations as the primary control of the fluvial style.« less

  15. Fluctuations in fluvial style in the Wasatch Formation, Piceance Basin, Colorado: Climatic, tectonic, or sediment driven?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadon, G.C.; Lorenz, J.C.; Lafrenier, L.

    1996-12-31

    The Molina Member of the Wasatch Formation is a primary objective for light gas sandstone production. The G-Sandstone unit of the Molina produces an average of 200 MCFGPD. The chert-rich sandstones and conglomerates of the Molina Member, which are exposed in two subparallel belts on the western and eastern sides of the basin, are strikingly different from the remainder of the Wasatch formation. The underlying Atwell Gulch Member and overlying Shire Member are composed of floodplain mudstones with well developed paleosols and rare, lenticular channel sandstones. Both units are interpreted as anastomosed fluvial deposits. The Molina Member, which varies frommore » 32-118 m thick and in places contains clasts >0.2 m, is more difficult to interpret. Different portions of individual sections contain significant proportions of parallel laminated sandstones up to 5 m thick and several hundred meters wide. These parallel laminated sandstones are most common to the north along the western outcrop bell. They are interbedded with sandstones and conglomerates that are typical of a braided fluvial deposit. The contact between the two fluvial styles is sharp but conformable. The Molina Member therefore represents a perturbation in fluvial style from suspended-load to bedload and back to suspended-load over a restricted time interval. This may be the product of a change in climate, i.e., a change in rainfall amount or timing in the source area, source rock, e.g., the unroofing of a Jurassic eolian sandstone, or an increase in the depositional slope due to uplift. The return to a mud-dominated depositional system in the Shire Member argues for either climatic or source-rock variations as the primary control of the fluvial style.« less

  16. Milankovitch cyclicity in the paleotropical, fluvial, Late Triassic age strata recovered by the Colorado Plateau Coring Project (CPCP)

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Mundil, R.; Kent, D.; Rasmussen, C.

    2017-12-01

    Two questions addressed by the CPCP are: 1) is Milankovitch-paced climate cyclicity recorded in the fluvial Late Triassic age Chinle Formation ( 227-202 Ma); and 2) do geochronological data from the Chinle support the Newark-Hartford astrochronological polarity time scale (1) (APTS). To these ends we examined the upper 157 m (stratigraphic thickness) of Petrified Forest National Park core 1A (Owl Rock, Petrified Forest, and upper Sonsela members), consisting mostly of massive red paleosols and less important fluvial sandstones. A linear age model tied to new U-Pb zircon CA ID-TIMS dates from core 1A, consistent with published data from outcrop (2), yields a duration of about 5 Myr for this interval. Magnetic susceptibility variations, interpreted as reflecting penecontemporaneous soil and sandstone redox conditions, show a clear 12 m cycle corresponding to a 400 kyr cycle based on Fourier analysis in both core and hole. Similar cyclicity is apparent in spectrophotometric data, largely reflecting hematite variability. Weak, higher frequency cycles are present consistent with 100 kyr variability. There is no interpretable 20 kyr signal. Such cyclicity is not an anticipated direct effect of Milankvitch insolation variations, but must reflect non-linear integration of variability that changes dramatically at the eccentricity-scale, brought about by the sedimentary and climate systems. Our results support a direct 405 kyr-level correlation between the fluvial medial Chinle and lacustrine Newark Basin section (middle Passaic Formation), consistent with new and published (3) paleomagnetic polarity stratigraphy from the Chinle, showing that the Milankovitch eccentricity cycles are recorded in lower accumulation rate fluvial systems. Our results also independently support the continuity of the Newark Basin section and corroborate the Newark-Hartford APTS, not allowing for a multi-million year hiatus in the Passaic Formation, as has been asserted (4). We anticipate further testing our hypothesis by integrating additional results from U-Pb zircon geochronology and rock magnetic analyses of core and outcrop of the Chinle Formation. 1 Kent+ 2017 Earth Sci Rev 166:153-180; 2 Ramezani+ 2011 GSA Bull 123:2142-2159; 3 Steiner & Lucas 2000 JGR 105:25,791-25,808; 4 Tanner & Lucas 2015 Stratigraphy 12:47-65.

  17. Two decades of numerical modelling to understand long term fluvial archives: Advances and future perspectives

    NASA Astrophysics Data System (ADS)

    Veldkamp, A.; Baartman, J. E. M.; Coulthard, T. J.; Maddy, D.; Schoorl, J. M.; Storms, J. E. A.; Temme, A. J. A. M.; van Balen, R.; van De Wiel, M. J.; van Gorp, W.; Viveen, W.; Westaway, R.; Whittaker, A. C.

    2017-06-01

    The development and application of numerical models to investigate fluvial sedimentary archives has increased during the last decades resulting in a sustained growth in the number of scientific publications with keywords, 'fluvial models', 'fluvial process models' and 'fluvial numerical models'. In this context we compile and review the current contributions of numerical modelling to the understanding of fluvial archives. In particular, recent advances, current limitations, previous unexpected results and future perspectives are all discussed. Numerical modelling efforts have demonstrated that fluvial systems can display non-linear behaviour with often unexpected dynamics causing significant delay, amplification, attenuation or blurring of externally controlled signals in their simulated record. Numerical simulations have also demonstrated that fluvial records can be generated by intrinsic dynamics without any change in external controls. Many other model applications demonstrate that fluvial archives, specifically of large fluvial systems, can be convincingly simulated as a function of the interplay of (palaeo) landscape properties and extrinsic climate, base level and crustal controls. All discussed models can, after some calibration, produce believable matches with real world systems suggesting that equifinality - where a given end state can be reached through many different pathways starting from different initial conditions and physical assumptions - plays an important role in fluvial records and their modelling. The overall future challenge lies in the development of new methodologies for a more independent validation of system dynamics and research strategies that allow the separation of intrinsic and extrinsic record signals using combined fieldwork and modelling.

  18. Fluvial erosion as a mechanism for crater modification on Titan

    USGS Publications Warehouse

    Neish, Catherine D.; Molaro, J. L.; Lora, J. M.; Howard, A.D.; Kirk, Randolph L.; Schenk, P.; Bray, V.J.; Lorenz, R.D.

    2016-01-01

    There are few identifiable impact craters on Titan, especially in the polar regions. One explanation for this observation is that the craters are being destroyed through fluvial processes, such as weathering, mass wasting, fluvial incision and deposition. In this work, we use a landscape evolution model to determine whether or not this is a viable mechanism for crater destruction on Titan. We find that fluvial degradation can modify craters to the point where they would be unrecognizable by an orbiting spacecraft such as Cassini, given enough time and a large enough erosion rate. A difference in the erosion rate between the equator and the poles of a factor of a few could explain the latitudinal variation in Titan’s crater population. Fluvial erosion also removes central peaks and fills in central pits, possibly explaining their infrequent occurrence in Titan craters. Although many craters on Titan appear to be modified by aeolian infilling, fluvial modification is necessary to explain the observed impact crater morphologies. Thus, it is an important secondary modification process even in Titan’s drier equatorial regions.

  19. Basin evolution during the transition from continental rifting to subduction: Evidence from the lithofacies and modal petrology of the Jurassic Latady Group, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Willan, Robert C. R.; Hunter, Morag A.

    2005-12-01

    The Jurassic Latady Basin (southern Antarctic Peninsula) developed in a broad rift zone associated with the early stages of Gondwana extension. Early Jurassic sedimentation (˜185 Ma) occurred in small, isolated terrestrial to lacustrine rift basins in the present-day northwest and west and became shallow marine by the early Middle Jurassic. Quantitative modal analysis reveals a high proportion of mature, quartzose sandstone derived from cratonic and quartzose recycled-orogen provenances, most likely in the direction of the Ellsworth-Whitmore Mountains in the Gondwana interior. Sandstones with a more volcanolithic provenance probably represent an influx of sands from a Permian volcanic source in West Antarctica. The Early Jurassic Latady sequence contains abundant volcanic quartz and rhyodacite grains, locally derived from the nearby ignimbrites of the rift-related Mount Poster Formation (˜185 Ma). Between the Middle and Late Jurassic (?160-150 Ma), there was a dramatic change throughout the Latady Basin to higher-energy conditions with marked lateral facies variations. Sandstones contain abundant fresh volcanic detritus and plot in the transitional arc field. Their source was a nearby, active continental margin arc, but there is no outcrop of arc material on the Antarctic Peninsula from this time. A possible source area is preserved on the Thurston Island block to the southwest. However, some fluvial systems still had access to areas of uplifted metamorphic/plutonic basement and quartzose, cratonic sources. Evidence of mixing of fluvial systems from different provenances and the lack of mixing of other fluvial systems suggest a complex topography of variably uplifted fault blocks with fluvial systems constrained in narrow valleys. The change from continental rift- to arc-related sources illustrates the shift from plume- (continental provenances) to continental margin arc-dominated tectonics. Thermal relaxation in the Late Jurassic led to the final phase of deposition in anoxic, deep-water conditions in a sediment-starved marine basin stretching from Ellsworth northward into southern South America.

  20. Lacustrine-fluvial interactions in Australia's Riverine Plains

    NASA Astrophysics Data System (ADS)

    Kemp, Justine; Pietsch, Timothy; Gontz, Allen; Olley, Jon

    2017-06-01

    Climatic forcing of fluvial systems has been a pre-occupation of geomorphological studies in Australia since the 1940s. In the Riverine Plain, southeastern Australia, the stable tectonic setting and absence of glaciation have combined to produce sediment loads that are amongst the lowest in the world. Surficial sediments and landforms exceed 140,000 yr in age, and geomorphological change recorded in the fluvial, fluvio-lacustrine and aeolian features have provided a well-studied record of Quaternary environmental change over the last glacial cycle. The region includes the Willandra Lakes, whose distinctive lunette lakes preserve a history of water-level variations and ecological change that is the cornerstone of Australian Quaternary chronostratigraphy. The lunette sediments also contain an ancient record of human occupation that includes the earliest human fossils yet found on the Australian continent. To date, the lake-level and palaeochannel records in the Lachlan-Willandra system have not been fully integrated, making it difficult to establish the regional significance of hydrological change. Here, we compare the Willandra Lakes environmental record with the morphology and location of fluvial systems in the lower Lachlan. An ancient channel belt of the Lachlan, Willandra Creek, acted as the main feeder channel to Willandra Lakes before channel avulsion caused the lakes to dry out in the late Pleistocene. Electromagnetic surveys, geomorphological and sedimentary evidence are used to reconstruct the evolution of the first new channel belt following the avulsion. Single grain optical dating of floodplain sediments indicates that sedimentation in the new Middle Billabong Palaeochannel had commenced before 18.4 ± 1.1 ka. A second avulsion shifted its upper reaches to the location of the present Lachlan River by 16.2 ± 0.9 ka. The timing of these events is consistent with palaeohydrological records reconstructed from Willandra Lakes and with the record of palaeochannels on the Lachlan River upstream. Willandra Lakes shows high inflows during the Last Glacial Maximum (∼22 ka), but their subsequent drying between 20.5 ka and 19 ka was caused by river avulsion rather than regional aridity. This case study highlights the benefits of combining fluvial with lacustrine archives to build complementary records of hydrological change in lowland riverine plains.

  1. Climatic, eustatic, and tectnoic controls on Quarternary deposits and landforms, Red Sea coast, Egypt

    NASA Technical Reports Server (NTRS)

    Arvidson, Raymond; Becker, Richard; Shanabrook, Amy; Luo, Wei; Sturchio, Neil; Sultan, Mohamed; Lofty, Zakaria; Mahmood, Abdel Moneim; El Alfy, Zeinhom

    1994-01-01

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from sterophotogrammetric analysis of SPOT data, and field observations document that a approximately 10-km wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cutting through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with corraline limestone deposits Further, three distinct coral terraces are evident along the coatline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parametrized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quarternary to negligible values at present. Coralline limestones formed furing eustatic highstands when alluvium was trapped uspstream and wadis filled with debris. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., approximately 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes.

  2. Climatic, eustatic, and tectonic controls on Quaternary deposits and landforms, Red Sea coast, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvidson, R.; Becker, R.; Shanabrook, A.

    1994-06-10

    The degree to which local climatic variations, eustatic sea level fluctuations, and tectonic uplift have influenced the development of Quaternary marine and fluvial landforms and deposits along the Red Sea coast, Eastern Desert, Egypt was investigated using a combination of remote sensing and field data, age determinations of corals, and numerical simulations. False color composites generated from Landsat Thematic Mapper and SPOT image data, digital elevation models derived from stereophotogrammetric analysis of SPOT data, and field observations document that a {approximately}10-km-wide swath inland from the coast is covered in many places with coalescing alluvial fans of Quaternary age. Wadis cuttingmore » through the fans exhibit several pairs of fluvial terraces, and wadi walls expose alluvium interbedded with coralline limestone deposits. Further, three distinct coral terraces are evident along the coastline. Climatic, eustatic, and tectonic uplift controls on the overall system were simulated using a cellular automata algorithm with the following characteristics: (1) uplift as a function of position and time, as defined by the elevations and ages of corals; (2) climatic variations driven by insolation changes associated with Milankovitch cycles; (3) sea level fluctuations based on U/Th ages of coral terraces and eustatic data; and (4) parameterized fluvial erosion and deposition. Results imply that the fans and coralline limestones were generated in a setting in which the tectonic uplift rate decreased over the Quaternary to negligible values at present. During lowstands, wadis cut into sedimentary deposits; coupled with continuing uplift, fans were dissected, leaving remnant surfaces, and wadi-related terraces were generated by down cutting. Only landforms from the past three to four eustatic sea level cycles (i.e., {approximately} 300 to 400 kyr) are likely to have survived erosion and deposition associated with fluvial processes. 33 refs., 18 figs., 2 tabs.« less

  3. Facies architecture and high resolution sequence stratigraphy of an aeolian, fluvial and shallow marine system in the Pennsylvanian Piauí Formation, Parnaíba Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Vieira, Lucas Valadares; Scherer, Claiton Marlon dos Santos

    2017-07-01

    The Pennsylvanian Piauí Formation records the deposition of aeolian, fluvial and shallow marine systems accumulated in the cratonic sag Parnaíba basin. Characterization of the facies associations and sequence stratigraphic framework was done by detailed description and logging of outcrops. Six facies associations were recognized: aeolian dunes and interdunes, aeolian sandsheets, fluvial channels, tidally-influenced fluvial channels, shoreface and shoreface-shelf transition. Through correlation of stratigraphic surfaces, the facies associations were organized in system tracts, which formed eight high frequency depositional sequences, bounded by subaerial unconformities. These sequences are composed of a lowstand system tract (LST), that is aeolian-dominated or fluvial-dominated, a transgressive system tract (TST) that is formed by tidally-influenced fluvial channels and/or shoreface and shoreface-shelf transition deposits with retrogradational stacking, and a highstand system tract (HST), which is formed by shoreface-shelf transition and shoreface deposits with progradational stacking. Two low frequency cycles were determined by observing the stacking of the high frequency cycles. The Lower Sequence is characterized by aeolian deposits of the LST and an aggradational base followed by a progressive transgression, defining a general TST. The Upper Sequence is characterized by fluvial deposits and interfluve pedogenesis concurring with the aeolian deposits of the LST and records a subtle regression followed by transgression. The main control on sedimentation in the Piauí Formation was glacioeustasy, which was responsible for the changes in relative sea level. Even though, climate changes were associated with glacioeustatic phases and influenced the aeolian and fluvial deposition.

  4. Divergent evolution in fluviokarst landscapes of central Kentucky

    USGS Publications Warehouse

    Phillips, J.D.; Martin, L.L.; Nordberg, V.G.; Andrews, W.A.

    2004-01-01

    Central Kentucky is characterized by a mixture of karst and fluvial features, typically manifested as mosaic of karst-rich/ channel-poor (KRCP) and channel-rich/karst-poor (CRKP) environments. At the regional scale the location and distribution of KRCP and CRKP areas are not always systematically related to structural, lithological, topographic, or other controls. This study examines the relationship of KRCP and CRKP zones along the Kentucky River gorge area, where rapid incision in the last 1??5 million years has lowered local base levels and modified slopes on the edge of the inner bluegrass plateau. At the scale of detailed field mapping on foot within a 4 km2 area, the development of karst and fluvial features is controlled by highly localized structural and topographic constraints, and can be related to slope changes associated with retreat of the Kentucky River gorge escarpment. A conceptual model of karst/fluvial transitions is presented, which suggests that minor, localized variations are sufficient to trigger a karst-fluvial or fluvial-karst switch when critical slope thresholds are crossed. ?? 2004 John Wiley and Sons, Ltd.

  5. Ground-based thermography of fluvial systems at low and high discharge reveals potential complex thermal heterogeneity driven by flow variation and bioroughness

    USGS Publications Warehouse

    Cardenas, M.B.; Harvey, J.W.; Packman, A.I.; Scott, D.T.

    2008-01-01

    Temperature is a primary physical and biogeochemical variable in aquatic systems. Field-based measurement of temperature at discrete sampling points has revealed temperature variability in fluvial systems, but traditional techniques do not readily allow for synoptic sampling schemes that can address temperature-related questions with broad, yet detailed, coverage. We present results of thermal infrared imaging at different stream discharge (base flow and peak flood) conditions using a handheld IR camera. Remotely sensed temperatures compare well with those measured with a digital thermometer. The thermal images show that periphyton, wood, and sandbars induce significant thermal heterogeneity during low stages. Moreover, the images indicate temperature variability within the periphyton community and within the partially submerged bars. The thermal heterogeneity was diminished during flood inundation, when the areas of more slowly moving water to the side of the stream differed in their temperature. The results have consequences for thermally sensitive hydroelogical processes and implications for models of those processes, especially those that assume an effective stream temperature. Copyright ?? 2008 John Wiley & Sons, Ltd.

  6. Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode

    NASA Astrophysics Data System (ADS)

    Link, Paul Karl; Fanning, C. Mark; Beranek, Luke P.

    2005-12-01

    Detrital-zircon age-spectra effectively define provenance in Holocene and Neogene fluvial sands from the Snake River system of the northern Rockies, U.S.A. SHRIMP U-Pb dates have been measured for forty-six samples (about 2700 zircon grains) of fluvial and aeolian sediment. The detrital-zircon age distributions are repeatable and demonstrate predictable longitudinal variation. By lumping multiple samples to attain populations of several hundred grains, we recognize distinctive, provenance-defining zircon-age distributions or "barcodes," for fluvial sedimentary systems of several scales, within the upper and middle Snake River system. Our detrital-zircon studies effectively define the geochronology of the northern Rocky Mountains. The composite detrital-zircon grain distribution of the middle Snake River consists of major populations of Neogene, Eocene, and Cretaceous magmatic grains plus intermediate and small grain populations of multiply recycled Grenville (˜950 to 1300 Ma) grains and Yavapai-Mazatzal province grains (˜1600 to 1800 Ma) recycled through the upper Belt Supergroup and Cretaceous sandstones. A wide range of older Paleoproterozoic and Archean grains are also present. The best-case scenario for using detrital-zircon populations to isolate provenance is when there is a point-source pluton with known age, that is only found in one location or drainage. We find three such zircon age-populations in fluvial sediments downstream from the point-source plutons: Ordovician in the southern Beaverhead Mountains, Jurassic in northern Nevada, and Oligocene in the Albion Mountains core complex of southern Idaho. Large detrital-zircon age-populations derived from regionally well-defined, magmatic or recycled sedimentary, sources also serve to delimit the provenance of Neogene fluvial systems. In the Snake River system, defining populations include those derived from Cretaceous Atlanta lobe of the Idaho batholith (80 to 100 Ma), Eocene Challis Volcanic Group and associated plutons (˜45 to 52 Ma), and Neogene rhyolitic Yellowstone-Snake River Plain volcanics (˜0 to 17 Ma). For first-order drainage basins containing these zircon-rich source terranes, or containing a point-source pluton, a 60-grain random sample is sufficient to define the dominant provenance. The most difficult age-distributions to analyze are those that contain multiple small zircon age-populations and no defining large populations. Examples of these include streams draining the Proterozoic and Paleozoic Cordilleran miogeocline in eastern Idaho and Pleistocene loess on the Snake River Plain. For such systems, large sample bases of hundreds of grains, plus the use of statistical methods, may be necessary to distinguish detrital-zircon age-spectra.

  7. Tri-Variate Relationships among Vegetation, Soil, and Topography along Gradients of Fluvial Biogeomorphic Succession

    PubMed Central

    Kim, Daehyun; Kupfer, John A.

    2016-01-01

    This research investigated how the strength of vegetation–soil–topography couplings varied along a gradient of biogeomorphic succession in two distinct fluvial systems: a forested river floodplain and a coastal salt marsh creek. The strength of couplings was quantified as tri-variance, which was calculated by correlating three singular axes, one each extracted using three-block partial least squares from vegetation, soil, and topography data blocks. Within each system, tri-variance was examined at low-, mid-, and high-elevation sites, which represented early-, intermediate-, and late-successional phases, respectively, and corresponded to differences in ongoing disturbance frequency and intensity. Both systems exhibited clearly increasing tri-variance from the early- to late-successional stages. The lowest-lying sites underwent frequent and intense hydrogeomorphic forcings that dynamically reworked soil substrates, restructured surface landforms, and controlled the colonization of plant species. Such conditions led vegetation, soil, and topography to show discrete, stochastic, and individualistic behaviors over space and time, resulting in a loose coupling among the three ecosystem components. In the highest-elevation sites, in contrast, disturbances that might disrupt the existing biotic–abiotic relationships were less common. Hence, ecological succession, soil-forming processes, and landform evolution occurred in tight conjunction with one another over a prolonged period, thereby strengthening couplings among them; namely, the three behaved in unity over space and time. We propose that the recurrence interval of physical disturbance is important to—and potentially serves as an indicator of—the intensity and mechanisms of vegetation–soil–topography feedbacks in fluvial biogeomorphic systems. PMID:27649497

  8. Distribution of palaeosols and deposits in the temporal evolution of a semiarid fluvial distributary system (Bauru Group, Upper Cretaceous, SE Brazil)

    NASA Astrophysics Data System (ADS)

    Basilici, Giorgio; Bo, Patrick Führ Dal'; de Oliveira, Emerson Ferreira

    2016-07-01

    The stratigraphic and sedimentological knowledge of the Bauru Group (Upper Cretaceous, SE Brazil) is still generally insufficient and controversial. A sedimentological and palaeopedological study allowed to interpret the south-eastern portion of the Bauru Group according to the model of a fluvial distributary system. This work has two objectives: (1) to include palaeosols in the interpretation of a fluvial distributary system and (2) to give detailed information on the sedimentological and stratigraphic features of the SE portion of the Bauru Group in order to support biostratigraphical, taphonomic and palaeoecological studies. In the south-eastern portion of the Bauru Group, three genetic stratigraphic units were described and interpreted, here informally called lower, intermediate and upper units. The lower unit is constituted of muddy sandstone salt flat deposits and sandstone sheet deltas deposits and is interpreted as a basinal part of a fluvial distributary system. The intermediate unit is formed of very fine to fine-grained sandstone-filled ribbon channel and sandy sheet-shaped beds, suggesting a distal or medial portion of a fluvial distributary system. The upper unit does not match with the present models of the fluvial distributary system because mostly constituted of moderately developed, well-drained, medium- to fine-grained sandstone palaeosols, which testify pauses of sedimentation to the order of 104 years. Preserved features of sedimentary structures suggest that the parent material was formed by occasional catastrophic unconfined flows. This unit may represent the most distal portion of a fluvial distributary system generated by retrogradation of the alluvial system due to aridification of the climate. The upper unit may be interpreted also as proximal portion of fluvial distributary system if considering the coarser-grained and the well-drained palaeosols. However, the absence of channel deposits makes this interpretation unconvincing.

  9. Observations of Near-Bed Deposition and Resuspension Processes at the Fluvial-Tidal Transition Using High Resolution Adcp, Adv, and Lisst

    NASA Astrophysics Data System (ADS)

    Haught, D. R.; Stumpner, P.

    2012-12-01

    Processes that determine deposition and resuspension of sediment in fluvial and tidal systems are complicated and difficult to predict because of turbulence-sediment interaction. In fluvial systems net sediment deposition rates near the bed are determined by shear stresses that occur when turbulence interacts with the bed and the entrained sediment above. In tidal systems, processes are driven primarily by the confounding factors of slack water and reversing flow. In this study we investigate near-bed sediment fluxes, settling velocities and sediment size distributions during a change from a fluvial signal to a tidal signal. In order to examine these processes a high resolution, high frequency ADCP, ADV, water quality sonde and LISST data were collocated at the fluvial-tidal transition in the Sacramento River at Freeport, CA. Data were collected at 15-30 minute increments for a month`. Data were dissevered into fluvial and tidal components. Acoustic backscatterence was used as a surrogate to sediment concentration and sediment flux () was calculated from the turbulence properties. Settling velocities were computed from the diffusion-advection equation assuming equilibrium of settling and re-suspension fluxes. Particle density was back-calculated from median particle diameter and calculated settling velocities (Reynolds number<0.5) using Stokes' law. Preliminary results suggest that during peak fluvial discharge that the diffusion-advection gives poor estimates of settling velocities as inferred from particle densities above 3500 kg/m3. During the transition from fluvial to tidal signal and throughout the tidal signal particle densities range from 2650 kg/m3 to 1000 kg/m3, suggesting that settling velocities were accurately estimated. Thus the equilibrium assumption appears poor during high fluvial discharge and reasonable during low fluvial discharge when tidal signal is dominant.

  10. Pollutant fates in fluvial systems: on need of individual approach to each case study

    NASA Astrophysics Data System (ADS)

    Matys Grygar, Tomas; Elznicova, Jitka; Novakova, Tereza

    2015-04-01

    To outline the pollutant fates in fluvial systems it is necessary to combine two main kinds of knowledge: sedimentation and erosion patterns of each individual river with spatio-temporal resolution higher than in most fluvial geomorphology/sedimentology studies and timing and way how the pollutants have entered the fluvial system. Most of these aspects are commonly neglected in environmental geochemistry, a domain to which pollution studies apparently belong. In fact, only when these two main components are established (at least in a qualitative manner), we can start reading (interpretation) of the fluvial sedimentary archives, e.g., decipher the way how the primary pollution signal has been distorted during passing through the fluvial system. We conducted empirical studies on Czech rivers impacted by pollution (by risk elements). We learnt how individual (site-specific) are the main processes responsible for the primary pollution input, spread through each fluvial system and inevitable secondary pollution ("lagged pollution improvement signal"). We will discuss main features of the story on pollutant fates in three different fluvial systems, which have not been impacted by "hard" river engineering and still undergo natural fluvial processes: 1. the Ohre (the Eger) impacted by production of Hg and its compounds, historical mining of Pb and more recent U ore processing, 2. the Ploucnice impacted by U mining, and 3. the Litavka, impacted by Pb-Zn(-Sb) mining and smelting. The Ohre is specific by most pollution having been temporarily deposited in an active channel, only minor reworking of older fluvial deposits diluting pollution during downstream transport, and pollution archives existing practically only in the form of lateral accretion deposits. The deposits of archive value are rare and can be revealed by detailed study of historical maps and well-planned field analysis, best using portable analytical instruments (XRF). The Ploucnice is specific by only transient deposition in a channel belt and subsequent secondary pollution via physical mobilisation, most pollution storing in the floodplain in a surprisingly heterogeneous manner - in hotspots with a size comparable to fragments of abandoned channels (from a few to few tens of metres). The hotspots are hence best revealed by well-designed field analysis using portable instruments (gamma spectrometry or XRF). The Litavka is specific because most pollution is in its floodplain in the form of anthropogenic alluvium, a very thick vertical accretion body of "artificial" material added to the river system in the amount exceeding its normal transport capacity. That situation favours secondary pollution by chemical mobilisation of pollutants under low river discharges revealed by geochemical analysis. Our case studies show that simple "rules" such as continuous decay of pollutant concentrations downstream from the pollution source, existence of a continuous blanket of polluted overbank fines in floodplain, simple change of the pollution extent with growing distance from the river channel and as a consequence of extreme floods, or simple recipes such as low-density sampling to trace point pollution sources are too simplistic to be applicable in real polluted fluvial systems. Each river system represents a nearly unique combination of individual geomorphic processes, and each pollution has been specific by the mode how it entered the fluvial system. We will not offer "magic tools" in our contribution. In literature we can find all pieces we need for the jigsaw puzzle - pollutants fates in fluvial systems. The question is why so rarely researchers put them together. We would like to encourage them to do so.

  11. Detrital zircon microtextures and U-PB geochronology of Upper Jurassic to Paleocene strata in the distal North American Cordillera foreland basin

    NASA Astrophysics Data System (ADS)

    Finzel, E. S.

    2017-07-01

    Detrital zircon surface microtextures, geochronologic U-Pb data, and tectonic subsidence analysis from Upper Jurassic to Paleocene strata in the Black Hills of South Dakota reveal provenance variations in the distal portion of the Cordillera foreland basin in response to tectonic events along the outboard margin of western North America. During Late Jurassic to Early Cretaceous time, nonmarine strata record initially low rates of tectonic subsidence that facilitated widespread recycling of older foreland basin strata in eolian and fluvial systems that dispersed sediment to the northeast, with minimal sediment derived from the thrust belt. By middle Cretaceous time, marine inundation reflects increased subsidence rates coincident with a change to eastern sediment sources. Lowstand Albian fluvial systems in the Black Hills may have been linked to fluvial systems upstream in the midcontinent and downstream in the Bighorn Basin in Wyoming. During latest Cretaceous time, tectonic uplift in the study area reflects dynamic processes related to Laramide low-angle subduction that, relative to other basins to the west, was more influential due to the greater distance from the thrust load. Provenance data from Maastrichtian and lower Paleocene strata indicate a change back to western sources that included the Idaho-Montana batholith and exhumed Belt Supergroup. This study provides a significant contribution to the growing database that is refining the tectonics and continental-scale sediment dispersal patterns in North America during Late Jurassic-early Paleocene time. In addition, it demonstrates the merit of using detrital zircon grain shape and surface microtextures to aid in provenance interpretations.

  12. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    PubMed

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P < 0.1) with observed variations in tropical-cyclone climatology, and that a substantial portion (32 per cent) of the suspended sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  13. Heterogeneity in a Suburban River Network: Understanding the Impact of Fluvial Wetlands on Dissolved Oxygen and Metabolism in Headwater Streams

    NASA Astrophysics Data System (ADS)

    Cain, J. S.; Wollheim, W. M.; Sheehan, K.; Lightbody, A.

    2014-12-01

    Low dissolved oxygen content in rivers threatens fish populations, aquatic organisms, and the health of entire ecosystems. River systems with high fluvial wetland abundance and organic matter, may result in high metabolism that in conjunction with low re-aeration rates, lead to low oxygen conditions. Increasing abundance of beaver ponds in many areas may exacerbate this phenomenon. This research aims to understand the impact of fluvial wetlands, including beaver ponds, on dissolved oxygen (D.O.) and metabolism throughout the headwaters of the Ipswich R. watershed, MA, USA. In several fluvial wetland dominated systems, we measured diel D.O. and metabolism in the upstream inflow, the surface water transient storage zones of fluvial wetland sidepools, and at the outflow to understand how the wetlands modify dissolved oxygen. D.O. was also measured longitudinally along entire surface water flow paths (x-y km long) to determine how low levels of D.O. propagate downstream. Nutrient samples were also collected to understand how their behavior was related to D.O. behavior. Results show that D.O. in fluvial wetlands has large swings with periods of very low D.O. at night. D.O. swings were also seen in downstream outflow, though lagged and somewhat attenuated. Flow conditions affect the level of inundation and the subsequent effects of fluvial wetlands on main channel D.O.. Understanding the D.O. behavior throughout river systems has important implications for the ability of river systems to remove anthropogenic nitrogen.

  14. Stratigraphic architecture of a fluvial-lacustrine basin-fill succession at Desolation Canyon, Uinta Basin, Utah: Reference to Walthers’ Law and implications for the petroleum industry

    USGS Publications Warehouse

    Ford, Grace L.; David R. Pyles,; Dechesne, Marieke

    2016-01-01

    Two large-scale (member-scale) upward patterns are noted: Waltherian, and non-Waltherian. The upward successions in Waltherian progressions record progradation or retrogradation of a linked fluvial-lacustrine system across the area; whereas the upward successions in non-Waltherian progressions record large-scale changes in the depositional system that are not related to progradation or retrogradation of the ancient lacustrine shoreline. Four Waltherian progressions are noted: 1) the Flagstaff Limestone to lower Wasatch Formation member records the upward transition from lacustrine to fluvial—or shallowing-upward succession; 2) the upper Wasatch to Uteland Butte records the upward transition from fluvial to lacustrine—or a deepening upward succession; 3) the Uteland Butte to Renegade Tongue records the upward transition from lacustrine to fluvial—a shallowing-upward succession; and 4) the Renegade Tongue to Mahogany oil shale interval records the upward transition from fluvial to lacustrine—a deepening upward succession. The two non-Waltherian progressions in the study area are: 1) the lower to middle Wasatch, which records the abrupt shift from low to high net-sand content fluvial system, and 2) the middle to upper Wasatch, which records the abrupt shift from high to intermediate net-sand content fluvial system.

  15. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios.

    PubMed

    Mouri, Goro

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity appears to vary exponentially, this phenomenon has an impact on the management of social capital, such as drinking water services. Prediction of the impacts of future climate change on fluvial wash-load sediment is crucial for effective environmental planning and the management of social capital to adapt to the next century. We demonstrate that simulations comprise an ensemble of factors, including multiple physical configurations, associated with the wash-load component for the whole of Japan. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Model Projections of Future Fluvial Sediment Delivery to Major Deltas Under Environmental Change

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Dunn, F.; Nicholls, R. J.; Cohen, S.; Zarfl, C.

    2017-12-01

    Deltas are important hot spots for climate change impacts on which over half a billion people live worldwide. Most of the world's deltas are sinking as a result of natural and anthropogenic subsidence and due to eustatic sea level rise. The ability to predict rates of delta aggradation is therefore critical to assessments of the extent to which sedimentation can potentially offset sea level rise, but our ability to make such predictions is severely hindered by a lack of insight into future trends of the fluvial sediment load supplied to their deltas by feeder watersheds. To address this gap we investigate fluvial sediment fluxes under future environmental change for a selection (47) of the world's major river deltas. Specifically, we employed the numerical model WBMsed to project future variations in mean annual fluvial sediment loads under a range of environmental change scenarios that account for changes in climate, socio-economics and dam construction. Our projections indicate a clear decrease (by 34 to 41% on average, depending on the specific scenario) in future fluvial sediment supply to most of the 47 deltas. These reductions in sediment delivery are driven primarily by anthropogenic disturbances, with reservoir construction being the most influential factor globally. Our results indicate the importance of developing new management strategies for reservoir construction and operation.

  17. Toward a new system approach of complexity in geomorphology

    NASA Astrophysics Data System (ADS)

    Masson, E.

    2012-04-01

    Since three decades the conceptual vision of catchment and fluvial geomorphology is strongly based on the "fluvial system" (S. A. Schumm, 1977) and the "river continuum system" (R. L. Vannote et al., 1980) concepts that can be embedded in a classical physical "four dimensions system" (C. Amoros and G.-E. Petts, 1993). Catchment and network properties, sediment and water budgets and their time-space variations are playing a major role in this geomorpho-ecological approach of hydro-geomorphosystems in which human impacts are often considered as negative externalities. The European Water Framework Directive (i.e. WFD, Directive 2000/60/EC) and its objective of good environmental status is addressing the question of fluvial/catchment/landscape geomorphology and its integration into IWRM in such a sustainable way that deeply brings back society and social sciences into the water system analysis. The DPSIR methodology can be seen as an attempt to cope with the analysis of unsustainable consequences of society's water-sediment-landscape uses, environmental pressures and their consequences on complex fluvial dynamics. Although more and more scientific fields are engaged in this WFD objective there's still a lack of a global theory that could integrate geomorphology into the multi-disciplinary brainstorming discussion about sustainable use of water resources. Our proposition is to promote and discuss a trans-disciplinary approach of catchments and fluvial networks in which concepts can be broadly shared across scientific communities. The objective is to define a framework for thinking and analyzing geomorphological issues within a whole "Environmental and Social System" (i.e. ESS, E. Masson 2010) with a common set of concepts and "meta-concepts" that could be declined and adapted in any scientific field for any purpose connected with geomorphology. We assume that geomorphological research can benefit from a six dynamic dimensions system approach based on structures, functions, connections, phases, topologies and adaptations. By combining these six dimensions one can easily understand that geomorphological features and dynamics are then considered as very complex systems in which hierarchies, information, discontinuities, openness, resilience and self-organized responses are fundamental properties emerging among many others (E. Masson 2010). This conceptual approach is consistent with many other scientific concepts used in ecological sciences (S-E. Jorgensen et al. 2007, C-S. Holling and al. 2002, I. Prigogine 1997, W-M. Elsasser 1987…) but also in human sciences (A. Dauphiné 2003, Ch.P.Péguy 2001, P. Bourdieu 1987, U. Beck 1986, J. Tricart 1968, C. Levy-Strauss 1958…), in physics (P. Bak, 1996, K-R. Popper 1982, I. Prigogine 1955…) and obviously into systemic science (E. Morin 1977, J-L. Moigne 1977, L. Von Bertalanffy 1968). Our contribution is then an encouraging attempt to expand the frontier of geomorphological theory with a new trans-disciplinary approach that deals with the huge complexity of hydrosystems considered as a whole Environmental and Social System.

  18. The evolution of a colluvial hollow to a fluvial channel with periodic steps following two transformational disturbances: A wildfire and a historic flood

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; McGuire, L. A.; Ebel, B. A.; Tucker, G. E.

    2018-05-01

    The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wildfire overland flow events. Three years after the fire, a record rainstorm produced regional flooding and generated sufficient fluvial erosion and sorting to produce a fluvial channel with periodically spaced steps. An analysis of the step spacing shows that after the flood, newly formed steps retained a similar spacing to the topographic roughness spacing in the original colluvial hollow (prior to channelization). This suggests that despite a distinct change in channel form roughness and bedform morphology, the endogenous roughness periodicity was conserved. Variations in sediment erodibility helped to create the emergent steps as the largest particles (>D84) remained immobile, becoming step features, and downstream soil was easily winnowed away.

  19. The evolution of a colluvial hollow to a fluvial channel with periodic steps following two transformational disturbances: A wildfire and a historic flood

    USGS Publications Warehouse

    Rengers, Francis K.; McGuire, Luke; Ebel, Brian A.; Tucker, G. E.

    2018-01-01

    The transition of a colluvial hollow to a fluvial channel with discrete steps was observed after two landscape-scale disturbances. The first disturbance, a high-severity wildfire, changed the catchment hydrology to favor overland flow, which incised a colluvial hollow, creating a channel in the same location. This incised channel became armored with cobbles and boulders following repeated post-wildfire overland flow events. Three years after the fire, a record rainstorm produced regional flooding and generated sufficient fluvial erosion and sorting to produce a fluvial channel with periodically spaced steps. An analysis of the step spacing shows that after the flood, newly formed steps retained a similar spacing to the topographic roughness spacing in the original colluvial hollow (prior to channelization). This suggests that despite a distinct change in channel form roughness and bedform morphology, the endogenous roughness periodicity was conserved. Variations in sediment erodibility helped to create the emergent steps as the largest particles ( >D84) remained immobile, becoming step features, and downstream soil was easily winnowed away.

  20. Quantitative Characterisation and Analysis of Siliciclastic Fluvial Depositional Systems Using 3D Digital Outcrop Models

    NASA Astrophysics Data System (ADS)

    Burnham, Brian Scott

    Outcrop analogue studies of fluvial sedimentary systems are often undertaken to identify spatial and temporal characteristics (e.g. stacking patterns, lateral continuity, lithofacies proportions). However, the lateral extent typically exceeds that of the exposure, and/or the true width and thickness are not apparent. Accurate characterisation of fluvial sand bodies is integral for accurate identification and subsequent modelling of aquifer and hydrocarbon reservoir architecture. The studies presented in this thesis utilise techniques that integrate lidar, highresolution photography and differential geospatial measurements, to create accurate three-dimensional (3D) digital outcrop models (DOMs) of continuous 3D and laterally extensive 2D outcrop exposures. The sedimentary architecture of outcrops in the medial portion of a large Distributive Fluvial System (DFS) (Huesca fluvial fan) in the Ebro Basin, north-east Spain, and in the fluvio-deltaic succession of the Breathitt Group in the eastern Appalachian Basin, USA, are evaluated using traditional sedimentological and digital outcrop analytical techniques. The major sand bodies in the study areas are quantitatively analysed to accurately characterise spatial and temporal changes in sand body architecture, from two different outcrop exposure types and scales. Several stochastic reservoir simulations were created to approximate fluvial sand body lithological component and connectivity within the medial portion of the Huesca DFS. Results demonstrate a workflow and current methodology adaptation of digital outcrop techniques required for each study to approximate true geobody widths, thickness and characterise architectural patterns (internal and external) of major fluvial sand bodies interpreted as products of DFSs in the Huesca fluvial fan, and both palaeovalleys and progradational DFSs in the Pikeville and Hyden Formations in the Breathitt Group. The results suggest key geostatistical metrics, which are translatable across any fluvial system that can be used to analyse 3D digital outcrop data, and identify spatial attributes of sand bodies to identify their genetic origin and lithological component within fluvial reservoir systems, and the rock record. 3D quantitative analysis of major sand bodies have allowed more accurate width vs. thickness relationships within the La Serreta area, showing a vertical increase in width and channel-fill facies, and demonstrates a 22% increase of in-channel facies from previous interpretations. Additionally, identification of deposits that are products of a nodal avulsion event have been characterised and are interpreted to be the cause for the increase in width and channel-fill facies. Furthermore, analysis of the Pikeville and Hyden Fms contain sand bodies of stacked distributaries and palaeovalleys, as previously interpreted, and demonstrates that a 3D spatial approach to determine basin-wide architectural trends is integral to identifying the genetic origin, and preservation potential of sand bodies of both palaeovalleys and distributive fluvial systems. The resultant geostatistics assimilated in the thesis demonstrates the efficacy of integrated lidar studies of outcrop analogues, and provide empirical relationships which can be applied to subsurface analogues for reservoir model development and the distribution of both DFS and palaeovalley depositional systems in the rock record.

  1. Morphometric convergence between Proterozoic and post-vegetation rivers

    PubMed Central

    Ielpi, Alessandro; Rainbird, Robert H.; Ventra, Dario; Ghinassi, Massimiliano

    2017-01-01

    Proterozoic rivers flowed through barren landscapes, and lacked interactions with macroscopic organisms. It is widely held that, in the absence of vegetation, fluvial systems featured barely entrenched channels that promptly widened over floodplains during floods. This hypothesis has never been tested because of an enduring lack of Precambrian fluvial-channel morphometric data. Here we show, through remote sensing and outcrop sedimentology, that deep rivers were developed in the Proterozoic, and that morphometric parameters for large fluvial channels might have remained within a narrow range over almost 2 billion years. Our data set comprises fluvial-channel forms deposited a few tens to thousands of kilometres from their headwaters, likely the record of basin- to craton-scale systems. Large Proterozoic channel forms present width:thickness ranges matching those of Phanerozoic counterparts, suggesting closer parallels between their fluvial dynamics. This outcome may better inform analyses of extraterrestrial planetary surfaces and related comparisons with pre-vegetation Earth landscapes. PMID:28548109

  2. Morphometric convergence between Proterozoic and post-vegetation rivers.

    PubMed

    Ielpi, Alessandro; Rainbird, Robert H; Ventra, Dario; Ghinassi, Massimiliano

    2017-05-26

    Proterozoic rivers flowed through barren landscapes, and lacked interactions with macroscopic organisms. It is widely held that, in the absence of vegetation, fluvial systems featured barely entrenched channels that promptly widened over floodplains during floods. This hypothesis has never been tested because of an enduring lack of Precambrian fluvial-channel morphometric data. Here we show, through remote sensing and outcrop sedimentology, that deep rivers were developed in the Proterozoic, and that morphometric parameters for large fluvial channels might have remained within a narrow range over almost 2 billion years. Our data set comprises fluvial-channel forms deposited a few tens to thousands of kilometres from their headwaters, likely the record of basin- to craton-scale systems. Large Proterozoic channel forms present width:thickness ranges matching those of Phanerozoic counterparts, suggesting closer parallels between their fluvial dynamics. This outcome may better inform analyses of extraterrestrial planetary surfaces and related comparisons with pre-vegetation Earth landscapes.

  3. Hydrodynamic and sedimentological controls governing formation of fluvial levees

    NASA Astrophysics Data System (ADS)

    Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.

    2017-12-01

    Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.

  4. Recognition of strong seasonality and climatic cyclicity in an ancient, fluvially dominated, tidally influenced point bar: Middle McMurray Formation, Lower Steepbank River, north-eastern Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Jablonski, Bryce V. J.; Dalrymple, Robert W.

    2016-04-01

    Inclined heterolithic stratification in the Lower Cretaceous McMurray Formation, exposed along the Steepbank River in north-eastern Alberta, Canada, accumulated on point bars of a 30 to 40 m deep continental-scale river in the fluvial-marine transition. This inclined heterolithic stratification consists of two alternating lithologies, sand and fine-grained beds. Sand beds were deposited rapidly by unidirectional currents and contain little or no bioturbation. Fine-grained beds contain rare tidal structures, and are intensely bioturbated by low-diversity ichnofossil assemblages. The alternations between the sand and fine-grained beds are probably caused by strong variations in fluvial discharge; that are believed to be seasonal (probably annual) in duration. The sand beds accumulated during river floods, under fluvially dominated conditions when the water was fresh, whereas the fine-grained beds accumulated during the late stages of the river flood and deposition continued under tidally influenced brackish-water conditions during times of low-river flow (i.e. the interflood periods). These changes reflect the annual migration in the positions of the tidal and salinity limits within the fluvial-marine transition that result from changes in river discharge. Sand and fine-grained beds are cyclically organized in the studied outcrops forming metre-scale cycles. A single metre-scale cycle is defined by a sharp base, an upward decrease in sand-bed thickness and upward increases in the preservation of fine-grained beds and the intensity of bioturbation. Metre-scale cycles are interpreted to be the product of a longer term (decadal) cyclicity in fluvial discharge, probably caused by fluctuations in ocean or solar dynamics. The volumetric dominance of river-flood deposits within the succession suggests that accumulation occurred in a relatively landward position within the fluvial-marine transition. This study shows that careful observation can reveal much about the interplay of processes within the fluvial-marine transition, which in turn provides a powerful tool for determining the palaeo-environmental location of a deposit within the fluvial-marine transition.

  5. Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2 1.9 Ga Waterberg Group, South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Bumby, Adam J.; Brümer, Jacobus J.; van der Neut, Markus

    2006-08-01

    Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean-Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06-1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories. Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450-489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to a combination of major global-scale tectono-thermal and atmospheric-palaeoclimatic events, a simpler explanation of these apparently enigmatic palaeoslope values may be pertinent. Of the two possible palaeohydrological formulae for calculating palaeoslope, one provides results close to typical fluvial gradients; the other formula relies on preserved channel-width data. We suggest that the latter will not be reliable due to problematic preservation of original channel-widths within an active braided fluvial system. We thus find no unequivocal support for a unique fluvial style for the Precambrian, beyond that generally accepted for that period and discussed briefly in the first paragraph.

  6. Variations in sediment texture on the northern Monterey Bay National Marine Sanctuary continental shelf

    USGS Publications Warehouse

    Edwards, B.D.

    2002-01-01

    The storm-protected continental shelf of Monterey Bay, part of the Monterey Bay National Marine Sanctuary, north-central California, is subject to abundant, episodic sediment input from fluvial sources. North of Monterey Bay, conditions of reduced sediment supply combined with the exposed nature of the shelf provide an effective laboratory for studying the contrasting effects of storm- versus fluvial-dominated conditions on modern sedimentation. Textural analyses performed on surface sediment samples collected from more than 380 box cores and MultiCores??? document the existence of a clearly defined mud belt occupying the mid-shelf throughout the region. Inshore sands combined with these mid-shelf muds represent deposits from modern sedimentation processes. In Monterey Bay, where episodic fluvial input from winter storms dominates sedimentation, the mid-shelf mud belt extends across the shelf to the shelf break. North of Monterey Bay, where sediment loads are reduced and both oceanographic and storm processes dominate, the mid-shelf mud belt is bordered by relict sediments occupying the outer shelf. In the study area, mass accumulation rates established by radiochemical studies support the contention that storm-induced along-shelf processes result in northward transport of sediment within the mud belt. The continuity of transport, however, is interrupted by topographic highs which are barriers or inhibitors to sediment transport created by wrench-style tectonics associated with the San Andreas fault system.

  7. The Water Level and Transport Regimes of the Lower Columbia River

    NASA Astrophysics Data System (ADS)

    Jay, D. A.

    2011-12-01

    Tidal rivers are vital, spatially extensive conduits of material from land to sea. Yet the tidal-fluvial regime remains poorly understood relative to the bordering fluvial and estuarine/coastal regimes with which it interacts. The 235km-long Lower Columbia River (LCR) consists of five zones defined by topographic constrictions: a 5km-long ocean-entrance, the lower estuary (15km), an energy-minimum (67km), the tidal river (142km), and a landslide zone (5km). Buoyant plume lift-off occurs within the entrance zone, which is dominated by tidal and wave energy. The lower estuary is strongly tidally, amplifies the semidiurnal tide, and has highly variable salinity intrusion. Tidal and fluvial influences are balanced in the wide energy-minimum, into which salinity intrudes during low-flow periods. It has a turbidity maximum and a dissipation minimum at its lower end, but a water-level variance minimum at its landward end. The tidal river shows a large increase in the ratio of fluvial-to-tidal energy in the landward direction and strong seasonal variations in tidal properties. Because tidal monthly water level variations are large, low waters are higher on spring than neap tides. The steep landslide zone has only weak tides and is the site of the most seaward hydropower dam. Like many dammed systems, the LCR has pseudo-tides: daily and weakly hydropower peaking waves that propagate seaward. Tidal constituent ratios vary in the alongchannel direction due to frictional non-linearities, the changing balance of dissipation vs. propagation, and power peaking. Long-term changes to the system have occurred due to climate change and direct human manipulation. Flood control, hydropower regulation, and diversion have reduced peak flows, total load and sand transport by ~45, 50 and 80%, respectively, causing a blue-shift in the flow and water level power spectra. Overbank flows have been largely eliminated through a redundant combination of diking and flow regulation. Export of sand to the ocean now occurs mainly through dredging, though fine sediment export may be higher than natural levels. Reduced sediment input and navigational development have reduced water levels in the upper tidal river by ~0.4/1.5m during low/high flow periods, impacting both navigation and shallow-water habitat availability. Tidal amplitudes have increased due both to increased coastal tides and reduced friction. This exacerbates difficulties with low-waters during fall neap tides. Climate-induced changes have so far had much less influence on system properties than human modifications. At present, regional sea level (RSL) rise and tectonic change are in balance, yielding no net sea level rise.

  8. Editorial for Journal of Hydrology: Regional Studies

    USGS Publications Warehouse

    Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.

    2014-01-01

    Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.

  9. Storm and tide influenced depositional architecture of the Pliocene-Pleistocene Chad Formation, Chad Basin (Bornu Sub-basin) NE Nigeria: A mixed fluvial, deltaic, shoreface and lacustrine complex

    NASA Astrophysics Data System (ADS)

    Shettima, Bukar; Kyari, Aji Maina; Aji, Mallam Musa; Adams, Fatimoh Dupe

    2018-07-01

    Lithofacies analyses of the upper part of the Chad Formation (Bama Ridge Complex) in the Bornu Sub-basin of the Chad Basin indicated four facies associations; fluvial, deltaic, shoreface and lacustrine sequences. The fluvial sequences are composed of fining upward cycles with successive occurrence of planar crossbedded sandstone facies displaying unimodal paleocurrent system and rare mudstone facies typical of braided river system. The deltaic succession consists of both fining and coarsening upwards cycles with the former depicting fluvial setting of an upper delta plain while the later suggestive of mouth-bar sequences. The setting displays a polymodal current system of fluvial, waves, storms and tides that were primarily induced by complex interactions of seiches and lunar tides. Similar current systems devoid of fluvial patterns were reflected in the coarsening upward packages of the shoreface sequences. Lacustrine succession composed of thick bioturbated mudstone facies generally defines the base of these coarsening upward profiles, giving a fluvio-lacustrine geomorphic relief where complex interaction developed the deltaic and shoreface facies along its shorelines. Clay mineral fractions of the formation are dominantly kaolinitic, indicating a predominantly humid tropical-subtropical climatic condition during their deposition. This climatic regime falls within the African humid period of the early-mid Holocene that led to the third lacustrine transgression of the Lake Mega-Chad, whereas the subordinate smectite mineralization points to aridification that characterizes most of the post humid period to recent.

  10. Quantifying the seasonal variations in fluvial and eolian sources of terrigenous material to Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Elmore, Aurora C.; Thunell, Robert C.; Styles, Richard; Black, David; Murray, Richard W.; Martinez, Nahysa; Astor, Yrene

    2009-02-01

    The varved sediments that accumulate in the Cariaco Basin provide a detailed archive of the region's climatic history, including a record of the quantity of fluvial and wind-transported material. In this study, we examine the sedimentological characteristics (clay mineralogy and grain size) of both surface sediments and sinking lithogenic material collected from sediment trap samples over a three-year period from 1997 to 2000. Data from biweekly sediment trap samples show a tri-modal particle size distribution, with prominent peaks at 2, 22 and 80 μm, indicating sediment contributions from both eolian and fluvial sources. The clay mineralogy of the water column samples collected from 1997 to 1999 also shows distinctive characteristics of eolian and fluvial material. An examination of surface sediment samples from the Cariaco Basin indicates that the Unare River is the main source of riverine sediments to the eastern sub-basin. By combining these sedimentological proxies, we estimate that ˜10% of the terrigenous material delivered to the Cariaco Basin is eolian, while ˜90% is fluvial. This represents an annual dust accumulation rate of ˜0.59 mg/cm 2/yr. Since aerosols are closely linked to climate variability, the ability to quantify paleo-dust fluxes using sedimentological characteristics will be a useful tool for future paleoclimate studies looking at sub-Saharan aridity and latitudinal migration of the Intertropical Convergence Zone.

  11. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    PubMed

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.

  12. Climate-induced fluvial dynamics in tropical Africa around the last glacial maximum?

    NASA Astrophysics Data System (ADS)

    Sangen, Mark; Neumann, Katharina; Eisenberg, Joachim

    2011-11-01

    The alluvia of the Ntem, Nyong and Sanaga fluvial systems in southern Cameroon recorded repeated fluvial activity fluctuations during the Late Pleistocene, including the last glacial maximum (LGM), the beginning of the African Humid Period and the northern hemispheric Bølling-Allerød. We applied a multi-proxy approach on alluvial stratigraphies dated between 22.4 and 13.0 cal ka BP, including remote sensing, sedimentological and morphogenetic methods, phytoliths, sponge spicules, 14C and δ 13C data. A distinct NE-SW gradient of landscape and fluvial dynamics around the LGM can be drawn, with evidence for the persistence of extended fluvial rainforest refuges only in the Ntem catchment. The Sanaga and Nyong catchment areas were characterized by frequent channel migrations, floodplain reorganization and unstable vegetation subject to fire, including grasslands, woodlands, and gallery forests with bamboo thickets. In spite of increasing rainfall after 16.4 cal ka BP, persisting landscape instability played the major role for fluvial system dynamics, floodplain transformations and vegetation development until 13.0 cal ka BP, before a general landscape stabilization and rainforest expansion set in at the beginning of the Holocene.

  13. Recent (1999-2003) Canadian research on contemporary processes of river erosion and sedimentation, and river mechanics

    NASA Astrophysics Data System (ADS)

    de Boer, D. H.; Hassan, M. A.; MacVicar, B.; Stone, M.

    2005-01-01

    Contributions by Canadian fluvial geomorphologists between 1999 and 2003 are discussed under four major themes: sediment yield and sediment dynamics of large rivers; cohesive sediment transport; turbulent flow structure and sediment transport; and bed material transport and channel morphology. The paper concludes with a section on recent technical advances. During the review period, substantial progress has been made in investigating the details of fluvial processes at relatively small scales. Examples of this emphasis are the studies of flow structure, turbulence characteristics and bedload transport, which continue to form central themes in fluvial research in Canada. Translating the knowledge of small-scale, process-related research to an understanding of the behaviour of large-scale fluvial systems, however, continues to be a formidable challenge. Models play a prominent role in elucidating the link between small-scale processes and large-scale fluvial geomorphology, and, as a result, a number of papers describing models and modelling results have been published during the review period. In addition, a number of investigators are now approaching the problem by directly investigating changes in the system of interest at larger scales, e.g. a channel reach over tens of years, and attempting to infer what processes may have led to the result. It is to be expected that these complementary approaches will contribute to an increased understanding of fluvial systems at a variety of spatial and temporal scales. Copyright

  14. Sedimentology, sequence-stratigraphy, and geochemical variations in the Mesoproterozoic Nonesuch Formation, northern Wisconsin, USA

    USGS Publications Warehouse

    Kingsbury Stewart, Esther; Mauk, Jeffrey L.

    2017-01-01

    We use core descriptions and portable X-ray fluorescence analyses to identify lithofacies and stratigraphic surfaces for the Mesoproterozoic Nonesuch Formation within the Ashland syncline, Wisconsin. We group lithofacies into facies associations and construct a sequence stratigraphic framework based on lithofacies stacking and stratigraphic surfaces. The fluvial-alluvial facies association (upper Copper Harbor Conglomerate) is overlain across a transgressive surface by the fluctuating-profundal facies association (lower Nonesuch Formation). The fluctuating-profundal facies association comprises a retrogradational sequence set overlain across a maximum flooding surface by an aggradational-progradational sequence set comprising fluctuating-profundal, fluvial-lacustrine, and fluvial-alluvial facies associations (middle Nonesuch through lower Freda Formations). Lithogeochemistry supports sedimentologic and stratigraphic interpretations. Fe/S molar ratios reflect the oxidation state of the lithofacies; values are most depleted above the maximum flooding surface where lithofacies are chemically reduced and are greatest in the chemically oxidized lithofacies. Si/Al and Zr/Al molar ratios reflect the relative abundance of detrital heavy minerals vs. clay minerals; greater values correlate with larger grain size. Vertical facies association stacking records depositional environments that evolved from fluvial and alluvial, to balanced-fill lake, to overfilled lake, and returning to fluvial and alluvial. Elsewhere in the basin, where accommodation was greatest, some volume of fluvial-lacustrine facies is likely present below the transgressive stratigraphic surface. This succession of continental and lake-basin types indicates a predominant tectonic driver of basin evolution. Lithofacies distribution and geochemistry indicate deposition within an asymmetric half-graben bounded on the east by a west-dipping growth fault. While facies assemblages are lacustrine and continental, periodic marine incursions are probable, especially across maximum transgressive surfaces.We demonstrate a sequence-stratigraphic approach may be applied to fine-grained Precambrian sediments using traditional rock description and supporting lithogeochemistry. Identification of a characteristic lithofacies succession in Mesoproterozoic sediments demonstrates fundamental controls commonly interpreted for Phanerozoic lake systems may be extended into the Precambrian. These controls result in a predictable association of lithofacies, with distinct physical, biological, and geochemical properties. This has regional significance for carbon sequestration and the distribution of mineral and hydrocarbon resources and broader significance for addressing Mesoproterozoic paleogeographic reconstructions and questions related to the evolution of terrestrial life.

  15. Geomorphological assessment of sediment contamination in an urban stream system

    USGS Publications Warehouse

    Rhoads, B.L.; Cahill, R.A.

    1999-01-01

    Little is known about the influence of fluvial-geomorphological features on the dispersal of sediment-related contaminants in urban drainage systems. This study investigates the relation between reach-scale geomorphological conditions and network-scale patterns of trace-element concentrations in a partially urbanized stream system in East-Central Illinois, USA Robust statistical analysis of bulk sediment samples reveals levels of Cr, Cu, Pb, Ni, and Zn exceed contamination thresholds in the portion of the watershed in close proximity to potential sources of pollution-in this case storm-sewer outfalls. Although trace-element concentrations decrease rapidly downstream from these sources, substantial local variability in metal levels exists within contaminated reaches. This local variability is related to reach-scale variation in fluvial-geomorphic conditions, which in turn produces variation in the degree of sorting and organic-matter content of bed material. Metal concentrations at contaminated sites also exhibit considerable variability over time. Analytical tests on specific size fractions of material collected at a highly contaminated site indicate that Cr and Ni are concentrated in the 0.063 to 0.250 mm fraction of the sediment. This fraction also has elevated concentration of Zr. SEM analysis shows that the fine sand fraction contains shards of stainless steel within a matrix of zircon sand, an industrial material associated with a nearby alloy casting operation. Samples of suspended load and bedload at the contaminated site also have elevated amounts of trace metals, but concentrations of Ni and Cr in the bedload are less than concentrations in the bed material, suggesting that these trace elements are relatively immobile. Off the other hand, amounts of CU and Zn in the bedload exceed concentrations in the bed material, implying that these trace metals are preferentially mobilized during transport events.

  16. Pleistocene lake outburst floods and fan formation along the eastern Sierra Nevada, California: implications for the interpretation of intermontane lacustrine records

    NASA Astrophysics Data System (ADS)

    Benn, Douglas I.; Owen, Lewis A.; Finkel, Robert C.; Clemmens, Samuel

    2006-11-01

    Variations in the rock flour fraction in intermontane lacustrine sediments have the potential to provide more complete records of glacier fluctuations than moraine sequences, which are subject to erosional censoring. Construction of glacial chronologies from such records relies on the assumption that rock flour concentration is a simple function of glacier extent. However, other factors may influence the delivery of glacigenic sediments to intermontane lakes, including paraglacial adjustment of slope and fluvial systems to deglaciation, variations in precipitation and snowmelt, and lake outburst floods. We have investigated the processes and chronology of sediment transport on the Tuttle and Lone Pine alluvial fans in the eastern Sierra Nevada, California, USA, to elucidate the links between former glacier systems located upstream and the long sedimentary record from Owens Lake located downstream. Aggradation of both fans reflects sedimentation by three contrasting process regimes: (1) high magnitude, catastrophic floods, (2) fluvial or glacifluvial river systems, and (3) debris flows and other slope processes. Flood deposits are represented by multiple boulder beds exposed in section, and extensive networks of large palaeochannels and boulder deposits on both fan surfaces. Palaeohydrological analysis implies peak discharges in the order of 10 3-10 4 m 3 s -1, most probably as the result of catastrophic drainage of ice-, moraine-, and landslide-dammed lakes. Cosmogenic radionuclide surface exposure dating shows that at least three flood events are represented on each fan, at 9-13, 16-18 and 32-44 ka (Tuttle Fan); and at ˜23-32, ˜80-86 ka, and a poorly constrained older event (Lone Pine Fan). Gravels and sands exposed in both fans represent fluvial and/or glacifluvial sediment transport from the Sierra Nevada into Owens Valley, and show that river systems incised and reworked older sediment stored in the fans. We argue that millennial-scale peaks in rock flour abundance in the Owens Lake core reflect (1) fluctuations in primary subglacial erosion in the catchments in response to glacier advance-retreat cycles; (2) short-lived pulses of sediment delivered directly by catastrophic flood events; and (3) sediment released from storage in alluvial fans by fluvial and glacifluvial incision and reworking. As a result of this complexity the coarse sediment peaks in lake deposits may not simply reflect periods of increased glaciation, but likely also reflect changes in sediment storage and flux controlled by paraglacial processes. Current dating evidence is inadequate to allow precise correlation of individual flood or incision events with the Owens Lake rock flour record, although given the widespread occurrence of flood deposits in fans along the eastern margins of the Sierra Nevada, it is clear that fan deposition and incision played a very important role in modulating the delivery of glacigenic sediment to Owens Lake.

  17. Facies heterogeneity, pay continuity, and infill potential in barrier-island, fluvial, and submarine fan reservoirs: examples from the Texas Gulf Coast and Midland basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W.A.; Tyler, N.

    1989-03-01

    Three reservoirs representing different depositional environments - barrier island (West Ranch field, south-central Texas), fluvial (La Gloria field, south Texas), and submarine fan (Spraberry trend, Midland basin) - illustrate variations in reservoir continuity. Pay continuity methods based on facies geometry and variations in permeability and thickness between wells can quantify reservoir heterogeneity in each of these examples. Although barrier-island reservoirs are relatively homogeneous, West Ranch field contains wide (1000-5000 ft or 300-1500 m) dip-parallel belts of lenticular inlet-fill facies that disrupt reservoir continuity in the main barrier-core facies. Other reservoir compartments in West Ranch field are in flood-tidal delta depositsmore » partly encased in lagoonal mudstones updip of the barrier core. Fluvial reservoirs have a higher degree of internal complexity than barrier-island reservoirs. In La Gloria field, reservoirs exhibit significant heterogeneity in the form of numerous sandstone stringers bounded vertically and laterally by thin mudstone layers. Successful infill wells in La Gloria field contact partly drained reservoir compartments in splay deposits that pinch out laterally into flood-plain mudstones. Recompletions in vertically isolated sandstone stringers in La Gloria field contact other reservoir compartments. Submarine fan deposits are extremely heterogeneous and may have the greatest potential for infill drilling to tap isolated compartments in clastic reservoirs. The Spraberry trend contains thin discontinuous reservoir sandstones deposited in complex mid-fan channels. Although facies relationships in Spraberry reservoirs are similar to those in fluvial reservoirs in La Gloria field, individual pay stringers are thinner and more completely encased in low-permeability mudstone facies.« less

  18. Long-term variations of the riverine input of potentially toxic dissolved elements and the impacts on their distribution in Jiaozhou Bay, China.

    PubMed

    Wang, Changyou; Guo, Jinqiang; Liang, Shengkang; Wang, Yunfei; Yang, Yanqun; Wang, Xiulin

    2018-03-01

    The concentrations of the potentially toxic dissolved elements (PTEs) As, Hg, Cr, Pb, Cd, and Cu in the main rivers into Jiaozhou Bay (JZB) during 1981-2006 were measured, and the impact of the fluvial PTE fluxes on their distributions in the bay was investigated. The overall average concentration in the rivers into JZB ranged from 8.8 to 39.6 μg L -1 for As, 10.1 to 632.6 ng L -1 for Hg, 4.1 to 3003.6 μg L -1 for Cr, 8.5 to 141.9 μg L -1 for Pb, 1.1 to 34.2 μg L -1 for Cd, and 13.2 to 1042.8 μg L -1 for Cu. The interannual average concentration variations of the PTEs in these rivers were enormous, with maximum differences of 41-21,680 times, while their relative seasonal changes were far smaller with maximum differences of 3-12 times. The total annual fluvial fluxes for As, Hg, and Cr into JZB exhibited the inverse "U" pattern, while those for Pb and Cd showed the "N" pattern. As a whole, the total annual Cu flux presented a growing tendency from 1998 to 2006. In general, the changing trends of the PTE concentrations in JZB were similar to those of their annual fluxes from the rivers, indicating a great impact of their fluvial fluxes on their distributions in JZB. The annual concentration of Cd in the bay almost remained constant and differed from the fluvial flux of Cd. The diversified pattern of the environmental Kuznets curve (EKC) represented China's approach to industrialization as "improving while developing."

  19. Mapping of Titan: Results from the first Titan radar passes

    USGS Publications Warehouse

    Stofan, E.R.; Lunine, J.I.; Lopes, R.; Paganelli, F.; Lorenz, R.D.; Wood, C.A.; Kirk, R.; Wall, S.; Elachi, C.; Soderblom, L.A.; Ostro, S.; Janssen, M.; Radebaugh, J.; Wye, L.; Zebker, H.; Anderson, Y.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    The first two swaths collected by Cassini's Titan Radar Mapper were obtained in October of 2004 (Ta) and February of 2005 (T3). The Ta swath provides evidence for cryovolcanic processes, the possible occurrence of fluvial channels and lakes, and some tectonic activity. The T3 swath has extensive areas of dunes and two large impact craters. We interpret the brightness variations in much of the swaths to result from roughness variations caused by fracturing and erosion of Titan's icy surface, with additional contributions from a combination of volume scattering and compositional variations. Despite the small amount of Titan mapped to date, the significant differences between the terrains of the two swaths suggest that Titan is geologically complex. The overall scarcity of impact craters provides evidence that the surface imaged to date is relatively young, with resurfacing by cryovolcanism, fluvial erosion, aeolian erosion, and likely atmospheric deposition of materials. Future radar swaths will help to further define the nature of and extent to which internal and external processes have shaped Titan's surface. ?? 2006 Elsevier Inc. All rights reserved.

  20. Evaluation of the sounding rod method for sampling coarse riverbed sediments in non-wadeable streams and rivers

    EPA Science Inventory

    The substrate of fluvial systems is regularly characterized as part of a larger physical habitat assessment. Beyond contributing to a basic scientific understanding of fluvial systems, these measures are instrumental in meeting the regulatory responsibilities of bioassessment and...

  1. Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework

    NASA Astrophysics Data System (ADS)

    Gilvear, David J.

    1999-12-01

    River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and geophysical techniques; dovetailing engineering approaches to the study of river channels which emphasize reach-scale flow resistance, shear stresses, and material strength with catchment scale geomorphic approaches, empirical predictions, bed and bank processes, landform evolution, and magnitude-frequency concepts; producing accepted river channel typologies; fundamental research aimed at producing more reliable deterministic equations for prediction of bed and bank stability and bedload transport; and collaboration with aquatic biologists to determine the role and importance of geomorphologically and hydraulically defined habitats.

  2. Human-induced changes in animal populations and distributions, and the subsequent effects on fluvial systems

    NASA Astrophysics Data System (ADS)

    Butler, David R.

    2006-09-01

    Humans have profoundly altered hydrological pathways and fluvial systems through their near-extirpation of native populations of animal species that strongly influenced hydrology and removal of surface sediment, and through the introduction of now-feral populations of animals that bring to bear a suite of different geomorphic effects on the fluvial system. In the category of effects of extirpation, examples are offered through an examination of the geomorphic effects and former spatial extent of beavers, bison, prairie dogs, and grizzly bears. Beavers entrapped hundreds of billions of cubic meters of sediment in North American stream systems prior to European contact. Individual bison wallows, that numbered in the range of 100 million wallows, each displaced up to 23 m 3 of sediment. Burrowing by prairie dogs displaced more than 5000 kg and possibly up to 67,500 kg of sediment per hectare. In the category of feral populations, the roles of feral rabbits, burros and horses, and pigs are highlighted. Much work remains to adequately quantify the geomorphic effects animals have on fluvial systems, but the influence is undeniable.

  3. Glaciolacustrine deposits formed in an ice-dammed tributary valley in the south-central Pyrenees: New evidence for late Pleistocene climate

    NASA Astrophysics Data System (ADS)

    Sancho, Carlos; Arenas, Concha; Pardo, Gonzalo; Peña-Monné, José Luis; Rhodes, Edward J.; Bartolomé, Miguel; García-Ruiz, José M.; Martí-Bono, Carlos

    2018-04-01

    Combined geomorphic features, stratigraphic characteristics and sedimentologic interpretation, coupled with optically stimulated luminescence (OSL) dates, of a glacio-fluvio-lacustrine sequence (Linás de Broto, northern Spain) provide new information to understand the palaeoenvironmental significance of dynamics of glacier systems in the south-central Pyrenees during the Last Glacial Cycle (≈130 ka to 14 ka). The Linás de Broto depositional system consisted of a proglacial lake fed primarily by meltwater streams emanating from the small Sorrosal glacier and dammed by a lateral moraine of the Ara trunk glacier. The resulting glacio-fluvio-lacustrine sequence, around 55 m thick, is divided into five lithological units consisting of braided fluvial (gravel deposits), lake margin (gravel and sand deltaic deposits) and distal lake (silt and clay laminites) facies associations. Evolution of the depositional environment reflects three phases of progradation of a high-energy braided fluvial system separated by two phases of rapid expansion of the lake. Fluvial progradation occurred during short periods of ice melting. Lake expansion concurred with ice-dam growth of the trunk glacier. The first lake expansion occurred over a time range between 55 ± 9 ka and 49 ± 11 ka, and is consistent with the age of the Viu lateral moraine (49 ± 8 ka), which marks the maximum areal extent of the Ara glacier during the Last Glacial Cycle. These dates confirm that the maximum areal extent of the glacier occurred during Marine Isotope Stages 4 and 3 in the south-central Pyrenees, thus before the Last Glacial Maximum. The evolution of the Linás de Broto depositional system during this maximum glacier extent was modulated by climate oscillations in the northern Iberian Peninsula, probably related to latitudinal shifts of the atmospheric circulation in the southern North-Atlantic Ocean, and variations in summer insolation intensity.

  4. Fluvial-aeolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert

    USGS Publications Warehouse

    East, Amy E.; Clift, Peter D.; Carter, Andrew; Alizai, Anwar; VanLaningham, Sam

    2015-01-01

    Sediment production and its subsequent preservation in the marine stratigraphic record offshore of large rivers are linked by complex sediment-transfer systems. To interpret the stratigraphic record it is critical to understand how environmental signals transfer from sedimentary source regions to depositional sinks, and in particular to understand the role of buffering in obscuring climatic or tectonic signals. In dryland regions, signal buffering can include sediment cycling through linked fluvial and eolian systems. We investigate sediment-routing connectivity between the Indus River and the Thar Desert, where fluvial and eolian systems exchanged sediment over large spatial scales (hundreds of kilometers). Summer monsoon winds recycle sediment from the lower Indus River and delta northeastward, i.e., downwind and upstream, into the desert. Far-field eolian recycling of Indus sediment is important enough to control sediment provenance at the downwind end of the desert substantially, although the proportion of Indus sediment of various ages varies regionally within the desert; dune sands in the northwestern Thar Desert resemble the Late Holocene–Recent Indus delta, requiring short transport and reworking times. On smaller spatial scales (1–10 m) along fluvial channels in the northern Thar Desert, there is also stratigraphic evidence of fluvial and eolian sediment reworking from local rivers. In terms of sediment volume, we estimate that the Thar Desert could be a more substantial sedimentary store than all other known buffer regions in the Indus basin combined. Thus, since the mid-Holocene, when the desert expanded as the summer monsoon rainfall decreased, fluvial-eolian recycling has been an important but little recognized process buffering sediment flux to the ocean. Similar fluvial-eolian connectivity likely also affects sediment routing and signal transfer in other dryland regions globally.

  5. Synthesizing the scientific foundation for ordinary high water mark delineation in fluvial systems

    EPA Science Inventory

    For more than 100 years, the ordinary high water mark (OHWM) has been used to define water boundaries in a number of contexts in the United States. This Special Report summarizes the scientific literature pertaining to the indicators used to identify the OHWM in fluvial systems, ...

  6. Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events

    NASA Astrophysics Data System (ADS)

    Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid

    2017-06-01

    Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo-centre for fluvial sediments is instead located in the southern Argana Valley, possibly the Souss Basin. To effectively source the reservoir sandstones found in the Meskala Field, a more local provenance area has hence to be envisaged. Despite this, the direct comparison of the genetic evolution of sedimentary sequences in the Argana Valley and Essaouira Basin shows a similar progression from dominantly arid ephemeral depositional environments to humid perennial sedimentation, returning to prominent arid conditions. This suggests climatic control in both regions, where an enhanced humid signal drives perennial fluvial flow in otherwise arid dominated sequences. On a regional scale, this is suggested to record the impact of strong Triassic pluvial events previously recognised in other basins along the Central Atlantic margin during the Carnian to Norian periods.

  7. Analytically based forward and inverse models of fluvial landscape evolution during temporally continuous climatic and tectonic variations

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Petit, Carole

    2017-04-01

    Fluvial channels respond to changing tectonic and climatic conditions by adjusting their patterns of erosion and relief. It is therefore expected that by examining these patterns, we can infer the tectonic and climatic conditions that shaped the channels. However, the potential interference between climatic and tectonic signals complicates this inference. Within the framework of the stream power model that describes incision rate of mountainous bedrock rivers, climate variability has two effects: it influences the erosive power of the river, causing local slope change, and it changes the fluvial response time that controls the rate at which tectonically and climatically induced slope breaks are communicated upstream. Because of this dual role, the fluvial response time during continuous climate change has so far been elusive, which hinders our understanding of environmental signal propagation and preservation in the fluvial topography. An analytic solution of the stream power model during general tectonic and climatic histories gives rise to a new definition of the fluvial response time. The analytic solution offers accurate predictions for landscape evolution that are hard to achieve with classical numerical schemes and thus can be used to validate and evaluate the accuracy of numerical landscape evolution models. The analytic solution together with the new definition of the fluvial response time allow inferring either the tectonic history or the climatic history from river long profiles by using simple linear inversion schemes. Analytic study of landscape evolution during periodic climate change reveals that high frequency (10-100 kyr) climatic oscillations with respect to the response time, such as Milankovitch cycles, are not expected to leave significant fingerprints in the upstream reaches of fluvial channels. Linear inversion schemes are applied to the Tinee river tributaries in the southern French Alps, where tributary long profiles are used to recover the incision rate history of the Tinee main trunk. Inversion results show periodic, high incision rate pulses, which are correlated with interglacial episodes. Similar incision rate histories are recovered for the past 100 kyr when assuming constant climatic conditions or periodic climatic oscillations, in agreement with theoretical predictions.

  8. River history.

    PubMed

    Vita-Finzi, Claudio

    2012-05-13

    During the last half century, advances in geomorphology-abetted by conceptual and technical developments in geophysics, geochemistry, remote sensing, geodesy, computing and ecology-have enhanced the potential value of fluvial history for reconstructing erosional and depositional sequences on the Earth and on Mars and for evaluating climatic and tectonic changes, the impact of fluvial processes on human settlement and health, and the problems faced in managing unstable fluvial systems. This journal is © 2012 The Royal Society

  9. Acoustic and Seismic Fields of Hydraulic Jumps at Varying Froude Numbers

    NASA Astrophysics Data System (ADS)

    Ronan, Timothy J.; Lees, Jonathan M.; Mikesell, T. Dylan; Anderson, Jacob F.; Johnson, Jeffrey B.

    2017-10-01

    Mechanisms that produce seismic and acoustic wavefields near rivers are poorly understood because of a lack of observations relating temporally dependent river conditions to the near-river seismoacoustic fields. This controlled study at the Harry W. Morrison Dam (HWMD) on the Boise River, Idaho, explores how temporal variation in fluvial systems affects surrounding acoustic and seismic fields. Adjusting the configuration of the HWMD changed the river bathymetry and therefore the form of the standing wave below the dam. The HWMD was adjusted to generate four distinct wave regimes that were parameterized through their dimensionless Froude numbers (Fr) and observations of the ambient seismic and acoustic wavefields at the study site. To generate detectable and coherent signals, a standing wave must exceed a threshold Fr value of 1.7, where a nonbreaking undular jump turns into a breaking weak hydraulic jump. Hydrodynamic processes may partially control the spectral content of the seismic and acoustic energies. Furthermore, spectra related to reproducible wave conditions can be used to calibrate and verify fluvial seismic and acoustic models.

  10. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the unconformity during a phase of tectonic quiescence, and show a fining-upward depositional trend. This trend was generated by a progressive decrease in sediment supply stemming out from upstream migration of the knickpoints developed during the embanking of the axial system.

  11. Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian-Permian lower Cutler beds, Utah, USA

    NASA Astrophysics Data System (ADS)

    Wakefield, Oliver J. W.; Mountney, Nigel P.

    2013-12-01

    The Pennsylvanian to Permian lower Cutler beds collectively form the lowermost stratigraphic unit of the Cutler Group in the Paradox Basin, southeast Utah. The lower Cutler beds represent a tripartite succession comprising lithofacies assemblages of aeolian, fluvial and shallow-marine origin, in near equal proportion. The succession results from a series of transgressive-regressive cycles, driven by repeated episodes of climatic variation and linked changes in relative sea-level. Relative sea-level changes created a number of incised-valleys, each forming through fluvial incision during lowered base-level. Aeolian dominance during periods of relative sea-level lowstand aids incised-valley identification as the erosive bounding surface juxtaposes incised-valley infill against stacked aeolian faces. Relative sea-level rises resulted in back-flooding of the incised-valleys and their infill via shallow-marine and estuarine processes. Back-flooded valleys generated marine embayments within which additional local accommodation was exploited. Back-filling is characterised by a distinctive suite of lithofacies arranged into a lowermost, basal fill of fluvial channel and floodplain architectural elements, passing upwards into barform elements with indicators of tidal influence, including inclined heterolithic strata and reactivation surfaces. The incised-valley fills are capped by laterally extensive and continuous marine limestone elements that record the drowning of the valleys and, ultimately, flooding and accumulation across surrounding interfluves (transgressive surface). Limestone elements are characterised by an open-marine fauna and represent the preserved expression of maximum transgression.

  12. Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin

    NASA Astrophysics Data System (ADS)

    Guo, Benhong; Liu, Shanpin; Peng, Tingjiang; Ma, Zhenhua; Feng, Zhantao; Li, Meng; Li, Xiaomiao; Li, Jijun; Song, Chunhui; Zhao, Zhijun; Pan, Baotian; Stockli, Daniel F.; Nie, Junsheng

    2018-02-01

    The fluvial archives in the upper-reach Yellow River basins provide important information about drainage history of the northeastern Tibetan Plateau (TP) associated with geomorphologic evolution and climate change. However, the Pliocene fluvial strata within this region have not been studied in detail, hence limiting the understanding of the late Cenozoic development of regional fluvial systems. In this paper, we present the results of a study of the geochronology, sedimentology, and provenance of the fluvial sequence of the Wuquan Formation in the Lanzhou Basin in the northeastern TP. Magnetostratigraphic and cosmogenic nuclide burial ages indicate that the Wuquan Formation was deposited during 3.6-2.2 Ma. Furthermore, sedimentary facies, gravel composition, paleocurrent data, and detrital zircon Usbnd Pb age spectra reveal that the fluvial sequence resembles the terraces of the Yellow River in terms of source area, flow direction, and depositional environment. Our results indicate that a paleo-drainage system flowing out of the northeastern TP was established by ca. 3.6 Ma and that the upstream parts of the Yellow River must have developed subsequently from this paleo-drainage system. The late Pliocene drainage system fits well with the dramatic uplift of the northeastern TP, an intensified Asian summer monsoon, and global increase in erosion rates, which may reflect interactions between geomorphic evolution, tectonic deformation, and climate change.

  13. Drainage capture and discharge variations driven by glaciation in the Southern Alps, New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann V. Rowan; Mitchell A. Plummer; Simon H. Brocklehurst

    Sediment flux in proglacial fluvial settings is primarily controlled by discharge, which usually varies predictably over a glacial–interglacial cycle. However, glaciers can flow against the topographic gradient to cross drainage divides, reshaping fluvial drainage networks and dramatically altering discharge. In turn, these variations in discharge will be recorded by proglacial stratigraphy. Glacial-drainage capture often occurs in alpine environments where ice caps straddle range divides, and more subtly where shallow drainage divides cross valley floors. We investigate discharge variations resulting from glacial-drainage capture over the past 40 k.y. for the adjacent Ashburton, Rangitata, and Rakaia basins in the Southern Alps, Newmore » Zealand. Although glacial-drainage capture has previously been inferred in the range, our numerical glacier model provides the first quantitative demonstration that this process drives larger variations in discharge for a longer duration than those that occur due to climate change alone. During the Last Glacial Maximum, the effective drainage area of the Ashburton catchment increased to 160% of the interglacial value with drainage capture, driving an increase in discharge exceeding that resulting from glacier recession. Glacial-drainage capture is distinct from traditional (base level–driven) drainage capture and is often unrecognized in proglacial deposits, complicating interpretation of the sedimentary record of climate change.« less

  14. Fluvial system response to Late Devensian (Weichselian) aridity, Baston, Lincolnshire, England

    NASA Astrophysics Data System (ADS)

    Briant, Rebecca M.; Coope, G. Russell; Preece, Richard C.; Keen, David H.; Boreham, Steve; Griffiths, Huw I.; Seddon, Mary B.; Gibbard, Philip L.

    2004-07-01

    Little is known about the impact of Late Devensian (Weichselian) aridity on lowland British landscapes, largely because they lack the widespread coversand deposits of the adjacent continent. The concentration of large interformational ice-wedge casts in the upper part of many Devensian fluvial sequences suggests that fluvial activity may have decreased considerably during this time. The development of optically stimulated luminescence (OSL) dating enables this period of ice-wedge cast formation to be constrained for the first time in eastern England, where a marked horizon of ice-wedge casts is found between two distinctive dateable facies associations. Contrasts between this horizon and adjacent sediments show clear changes in environment and fluvial system behaviour in response to changing water supply, in line with palaeontological evidence. In addition to providing chronological control on the period of ice-wedge formation, the study shows good agreement of the radiocarbon and OSL dating techniques during the Middle and Late Devensian, with direct comparison of these techniques beyond 15 000 yr for the first time in Britain. It is suggested that aridity during the Late Devensian forced a significant decrease in fluvial activity compared with preceding and following periods, initiating a system with low peak flows and widespread permafrost development. Copyright

  15. Sedimentary Processes on Earth, Mars, Titan, and Venus

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Hayes, A. G.; Lamb, M. P.; McLennan, S. M.

    The production, transport and deposition of sediment occur to varying degrees on Earth, Mars, Venus, and Titan. These sedimentary processes are significantly influenced by climate that affects production of sediment in source regions (weathering), and the mode by which that sediment is transported (wind vs. water). Other, more geological, factors determine where sediments are deposited (topography and tectonics). Fluvial and marine processes dominate Earth both today and in its geologic past, aeolian processes dominate modern Mars although in its past fluvial processes also were important, Venus knows only aeolian processes, and Titan shows evidence of both fluvial and aeolian processes. Earth and Mars also feature vast deposits of sedimentary rocks, spanning billions of years of planetary history. These ancient rocks preserve the long-term record of the evolution of surface environments, including variations in climate state. On Mars, sedimentary rocks record the transition from wetter, neutral-pH weathering, to brine-dominated low-pH weathering, to its dry current state.

  16. Fluvial response to climate variations and anthropogenic perturbations for the Ebro River, Spain in the last 4,000 years.

    PubMed

    Xing, Fei; Kettner, Albert J; Ashton, Andrew; Giosan, Liviu; Ibáñez, Carles; Kaplan, Jed O

    2014-03-01

    Fluvial sediment discharge can vary in response to climate changes and human activities, which in return influences human settlements and ecosystems through coastline progradation and retreat. To understand the mechanisms controlling the variations of fluvial water and sediment discharge for the Ebro drainage basin, Spain, we apply a hydrological model HydroTrend. Comparison of model results with a 47-year observational record (AD 1953-1999) suggests that the model adequately captures annual average water discharge (simulated 408 m(3)s(-1) versus observed 425 m(3)s(-1)) and sediment load (simulated 0.3 Mt yr(-1) versus observed 0.28 ± 0.04 Mt yr(-1)) for the Ebro basin. A long-term (4000-year) simulation, driven by paleoclimate and anthropogenic land cover change scenarios, indicates that water discharge is controlled by the changes in precipitation, which has a high annual variability but no long-term trend. Modeled suspended sediment load, however, has an increasing trend over time, which is closely related to anthropogenic land cover variations with no significant correlation to climatic changes. The simulation suggests that 4,000 years ago the annual sediment load to the ocean was 30.5 Mt yr(-1), which increased over time to 47.2 Mt yr(-1) (AD 1860-1960). In the second half of the 20th century, the emplacement of large dams resulted in a dramatic decrease in suspended sediment discharge, eventually reducing the flux to the ocean by more than 99% (mean value changes from 38.1 Mt yr(-1) to 0.3 Mt yr(-1)). Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Calculation of paleohydraulic parameters of a fluvial system under spatially variable subsidence, of the Ericson sandstone, South western Wyoming

    NASA Astrophysics Data System (ADS)

    Snyder, H.; Leva-Lopez, J.

    2017-12-01

    During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.

  18. Fluvial geomorphology on Earth-like planetary surfaces: A review.

    PubMed

    Baker, Victor R; Hamilton, Christopher W; Burr, Devon M; Gulick, Virginia C; Komatsu, Goro; Luo, Wei; Rice, James W; Rodriguez, J A P

    2015-09-15

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.

  19. The Subglacial Drainage Patterns of Devon Island, Canada

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.; Osinski, G. R.

    2016-12-01

    Meltwater drainage patterns incised underneath ice masses can appear strikingly similar to fluvially dissected landscapes. We introduce a landscape evolution model to describe the longitudinal profiles of subglacial meltwater channels (tunnel valleys).We propose a way to identify them from topography data and imagery on the basis of the vertical scale of undulations compared to the total elevation gain. We test the model with field data from tunnel valleys exposed in Devon Island, NU, Canada. We use field measurements of longitudinal profiles, photogrammetry and 3D LIDAR to establish a quantitative comparison of tunnel valleys and fluvial channels. Tunnel valleys are oriented parallel to former ice flow lines and are characterized by undulating longitudinal profiles. We use these features to identify quantitatively tunnel valleys in central Devon Island (figure 1). We ground truth our observations with imagery of tunnel valleys appearing at the edges of the actively retreating ice cap. Longitudinal profiles show undulations with amplitudes up to 14m over a total elevation gain of 20m and with wavelengths comparable to the channel width. These "overdeepenings" are not observed in any fluvial channels in the area and are consistent with expectations of flow driven by variations in ice thickness. Our identification scheme rigorously distinguishes fluvial and subglacial dissected landscapes.

  20. Regional Big Injun (Price/Pocono) subsurface stratigraphy of West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, A.C.; Zou, Xiangdong

    1992-01-01

    The lower Big Injun (Lower Mississippian) is the oil reservoir of the Granny Creek and Rock Creek fields and consists of multiple sandstones that were deposited in different fluvial-deltaic depositional environments. These multiple sandstones became amalgamated and now appear as a widespread blanket sandstone as a result of ancient cut and fill processes associated with river-channel sedimentation. The regional study of this Price Formation subsurface equivalent considers the continuity and thickness variations of the composite sandstones of the Big Injun mainly within western West Virginia. The major fluvial drainage system apparently flowed southward through Ohio (much of it later erodedmore » by the pre-Pottsville unconformity) during Big Injun time (and earlier) and part of the system was diverted into southwestern West Virginia as vertically stacked channel and river-mouth bar deposits (Rock Creek field). This ancient Ontario River system apparently drained a huge area including the northern craton as well as the orogenic belt. The emerging West Virginia Dome probably sourced the sediment transported by small rivers developing southwestward prograding deltas across Clay County (Granny Creek field). Sedimentation was affected by differential subsidence in the basin. Paleovalley fill was considered for areas with vertically stacked sandstones, but evidence for their origin is not convincing. Oil-reservoir sandstones are classified as dip-trending river channel (D1) and deltaic shoreline (D2) deposits.« less

  1. Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment.

    PubMed

    Doig, Lorne E; Carr, Meghan K; Meissner, Anna G N; Jardine, Tim D; Jones, Paul D; Bharadwaj, Lalita; Lindenschmidt, Karl-Erich

    2017-11-01

    Across the circumpolar world, intensive anthropogenic activities in the southern reaches of many large, northward-flowing rivers can cause sediment contamination in the downstream depositional environment. The influence of ice cover on concentrations of inorganic contaminants in bed sediment (i.e., sediment quality) is unknown in these rivers, where winter is the dominant season. A geomorphic response unit approach was used to select hydraulically diverse sampling sites across a northern test-case system, the Slave River and delta (Northwest Territories, Canada). Surface sediment samples (top 1 cm) were collected from 6 predefined geomorphic response units (12 sites) to assess the relationships between bed sediment physicochemistry (particle size distribution and total organic carbon content) and trace element content (mercury and 18 other trace elements) during open-water conditions. A subset of sites was resampled under-ice to assess the influence of season on these relationships and on total trace element content. Concentrations of the majority of trace elements were strongly correlated with percent fines and proxies for grain size (aluminum and iron), with similar trace element grain size/grain size proxy relationships between seasons. However, finer materials were deposited under ice with associated increases in sediment total organic carbon content and the concentrations of most trace elements investigated. The geomorphic response unit approach was effective at identifying diverse hydrological environments for sampling prior to field operations. Our data demonstrate the need for under-ice sampling to confirm year-round consistency in trace element-geochemical relationships in fluvial systems and to define the upper extremes of these relationships. Whether contaminated or not, under-ice bed sediment can represent a "worst-case" scenario in terms of trace element concentrations and exposure for sediment-associated organisms in northern fluvial systems. Environ Toxicol Chem 2017;36:2916-2924. © 2017 SETAC. © 2017 SETAC.

  2. Quantitative reconstruction of cross-sectional dimensions and hydrological parameters of gravelly fluvial channels developed in a forearc basin setting under a temperate climatic condition, central Japan

    NASA Astrophysics Data System (ADS)

    Shibata, Kenichiro; Adhiperdana, Billy G.; Ito, Makoto

    2018-01-01

    Reconstructions of the dimensions and hydrological features of ancient fluvial channels, such as bankfull depth, bankfull width, and water discharges, have used empirical equations developed from compiled data-sets, mainly from modern meandering rivers, in various tectonic and climatic settings. However, the application of the proposed empirical equations to an ancient fluvial succession should be carefully examined with respect to the tectonic and climatic settings of the objective deposits. In this study, we developed empirical relationships among the mean bankfull channel depth, bankfull channel depth, drainage area, bankfull channel width, mean discharge, and bankfull discharge using data from 24 observation sites of modern gravelly rivers in the Kanto region, central Japan. Some of the equations among these parameters are different from those proposed by previous studies. The discrepancies are considered to reflect tectonic and climatic settings of the present river systems, which are characterized by relatively steeper valley slope, active supply of volcaniclastic sediments, and seasonal precipitation in the Kanto region. The empirical relationships derived from the present study can be applied to modern and ancient gravelly fluvial channels with multiple and alternate bars, developed in convergent margin settings under a temperate climatic condition. The developed empirical equations were applied to a transgressive gravelly fluvial succession of the Paleogene Iwaki Formation, Northeast Japan as a case study. Stratigraphic thicknesses of bar deposits were used for estimation of the bankfull channel depth. In addition, some other geomorphological and hydrological parameters were calculated using the empirical equations developed by the present study. The results indicate that the Iwaki Formation fluvial deposits were formed by a fluvial system that was represented by the dimensions and discharges of channels similar to those of the middle to lower reaches of the modern Kuji River, northern Kanto region. In addition, no distinct temporal changes in paleochannel dimensions and discharges were observed in an overall transgressive Iwaki Formation fluvial system. This implies that a rise in relative sea level did not affect the paleochannel dimensions within a sequence stratigraphic framework.

  3. Fluvial landscapes - human societies interactions during the last 2000 years: the Middle Loire River and its embanking since the Middle Ages (France)

    NASA Astrophysics Data System (ADS)

    Castanet, Cyril; Carcaud, Nathalie

    2015-04-01

    This research deals with the study of fluvial landscapes, heavily and precociously transformed by societies (fluvial anthroposystems). It aims to characterize i), fluvial responses to climate, environmental and anthropogenic changes ii), history of hydraulical constructions relative to rivers iii), history of fluvial origin risks and their management - (Program: AGES Ancient Geomorphological EvolutionS of the Loire River hydrosystem). The Middle Loire River valley in the Val d'Orléans was strongly and precociously occupied, particularly during historical periods. Hydrosedimentary flows are there irregular. The river dykes were built during the Middle Ages (dykes named turcies) and the Modern Period, but ages and localizations of the oldest dykes were not precisely known. A systemic and multi-scaled approach aimed to characterize i), palaeo-hydrographical, -hydrological and -hydraulical evolutions of the Loire River, fluvial risks (palaeo-hazards and -vulnerabilities) and their management. It is based on an integrated approach, in and out archaeological sites: morpho-stratigraphy, sedimentology, geophysics, geochemistry, geomatics, geochronology, archaeology. Spatio-temporal variability of fluvial hazards is characterized. A model of the Loire River fluvial activity is developed: multicentennial scale variability, with higher fluvial activity episodes during the Gallo-Roman period, IX-XIth centuries and LIA. Fluvial patterns changes are indentified. Settlement dynamics and hydraulical constructions of the valley are specified. We establish the ages and localizations of the oldest discovered dikes of the Middle Loire River: after the Late Antiquity and before the end of the Early Middle Ages (2 dated dykes), between Bou and Orléans cities. During historical periods, we suggest 2 main thresholds concerning socio-environmental interactions: the first one during the Early Middle Ages (turcies: small scattered dykes), the second during the Modern Period (levees: high quasi-continuous dykes).

  4. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; hide

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and requires only short-lived, transient flows.

  5. Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars

    PubMed Central

    Cousins, Claire

    2015-01-01

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing. PMID:25692905

  6. Landscape Evolution of Titan

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey

    2012-01-01

    Titan may have acquired its massive atmosphere relatively recently in solar system history. The warming sun may have been key to generating Titan's atmosphere over time, starting from a thin atmosphere with condensed surface volatiles like Triton, with increased luminosity releasing methane, and then large amounts of nitrogen (perhaps suddenly), into the atmosphere. This thick atmosphere, initially with much more methane than at present, resulted in global fluvial erosion that has over time retreated towards the poles with the removal of methane from the atmosphere. Basement rock, as manifested by bright, rough, ridges, scarps, crenulated blocks, or aligned massifs, mostly appears within 30 degrees of the equator. This landscape was intensely eroded by fluvial processes as evidenced by numerous valley systems, fan-like depositional features and regularly-spaced ridges (crenulated terrain). Much of this bedrock landscape, however, is mantled by dunes, suggesting that fluvial erosion no longer dominates in equatorial regions. High midlatitude regions on Titan exhibit dissected sedimentary plains at a number of localities, suggesting deposition (perhaps by sediment eroded from equatorial regions) followed by erosion. The polar regions are mainly dominated by deposits of fluvial and lacustrine sediment. Fluvial processes are active in polar areas as evidenced by alkane lakes and occasional cloud cover.

  7. Volcanogenic fluvial-lacustrine environments in iceland and their utility for identifying past habitability on Mars.

    PubMed

    Cousins, Claire

    2015-02-16

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing.

  8. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    NASA Astrophysics Data System (ADS)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but frequent changes in the magnitude and frequency of floods and periods of overbank flooding. This high-frequency signal is absent in landforms and deposits from the glacial period. Glacial vs. interglacial contrasts in process and stratigraphic results are the rule in most large unglaciated fluvial systems. 70-80 percent or more of any 100 kyr glacial-interglacial cycle is characterized by significant ice volume, cooler temperatures, mid-shelf or lower sea-level positions, and cooler-smaller ocean basins. A glacial-period process regime is therefore the norm, and an interglacial regime like that of the late Holocene is relatively unique and non-representative. Large unglaciated midlatitude fluvial systems may be in long-term equilibrium with a glacial-period environment, with long profiles graded to glacial-period sea-level positions, so fluvial systems respond to major changes in climate, discharge regimes, and sediment loads, but they appear to have been relatively insensitive to higher-frequency changes. Short interglacials like the Holocene are, by comparison, periods of abnormally high sea levels and relatively low-amplitude climate changes, but fluvial systems appear to exhibit a greatly increased sensitivity to subtle changes in discharge regimes that produce frequent periods of disequilibrium.

  9. Secular bathymetric variations of the North Channel in the Changjiang (Yangtze) Estuary, China, 1880-2013: Causes and effects

    NASA Astrophysics Data System (ADS)

    Mei, Xuefei; Dai, Zhijun; Wei, Wen; Li, Weihua; Wang, Jie; Sheng, Hao

    2018-02-01

    As the interface between the fluvial upland system and the open coast, global estuaries are facing serious challenges owing to various anthropogenic activities, especially to the Changjiang Estuary. Since the establishment of the Three Gorges Dam (TGD), currently the world's largest hydraulic structure, and certain other local hydraulic engineering structures, the Changjiang Estuary has experienced severe bathymetric variations. It is urgent to analyze the estuarine morphological response to the basin-wide disturbance to enable a better management of estuarine environments. North Channel (NC), the largest anabranched estuary in the Changjiang Estuary, is the focus of this study. Based on the analysis of bathymetric data between 1880 and 2013 and related hydrological data, we developed the first study on the centennial bathymetric variations of the NC. It is found that the bathymetric changes of NC include two main modes, with the first mode representing 64% of the NC variability, which indicates observable deposition in the mouth bar and its outer side area (lower reach); the second mode representing 11% of the NC variability, which further demonstrates channel deepening along the inner side of the mouth bar (upper reach) during 1970-2013. Further, recent erosion observed along the inner side of the mouth bar is caused by riverine sediment decrease, especially in relation to TGD induced sediment trapping since 2003, while the deposition along the lower reach since 2003 can be explained by the landward sediment transport because of flood-tide force strengthen under the joint action of TGD induced seasonal flood discharge decrease and land reclamation induced lower reach narrowing. Generally, the upper and lower NC reach are respectively dominated by fluvial and tidal discharge, however, episodic extreme floods can completely alter the channel morphology by smoothing the entire channel. The results presented herein for the NC enrich our understanding of bathymetric variations of the Changjiang Estuary in response to human activities, which can be well applied to other estuaries subject to similar interferences.

  10. Downstream variation in bankfull width of wadeable streams across the conterminous United States

    EPA Science Inventory

    Bankfull channel width is a fundamental measure of stream size and a key parameter of interest for many applications in hydrology, fluvial geomorphology, and stream ecology. We developed downstream hydraulic geometry relationships for bankfull channel width w as a function of dra...

  11. Fluvial geomorphology on Earth-like planetary surfaces: A review

    PubMed Central

    Baker, Victor R.; Hamilton, Christopher W.; Burr, Devon M.; Gulick, Virginia C.; Komatsu, Goro; Luo, Wei; Rice, James W.; Rodriguez, J.A.P.

    2017-01-01

    Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn’s moon Titan). In other cases, as on Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry. PMID:29176917

  12. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Gugliotta, Marcello; Saito, Yoshiki; Nguyen, Van Lap; Ta, Thi Kim Oanh; Nakashima, Rei; Tamura, Toru; Uehara, Katsuto; Katsuki, Kota; Yamamoto, Seiichiro

    2017-09-01

    The fluvial to marine transition zone (FMTZ) is the area of coastal rivers in which sedimentation is controlled by the interaction of fluvial and marine processes. This study examines the FMTZ of the Mekong River delta, along a total channel length of 660 km. Methods consist of collection and analysis of channel bed sediment samples, measurements of channel morphological parameters, and recognition of mangrove, molluscan, and diatom species. The process regime, salinity, morphological, and sedimentary trends recognized were used to define two main tracts for this FMTZ: an upstream, fluvial-dominated tract and a downstream, tide-dominated tract. In more detail, they allow the identification of four subzones, from upstream to downstream: 1) fluvial-dominated, tide-affected; 2) fluvial-dominated, tide-influenced; 3) tide-dominated, fluvial-influenced; and 4) tide-dominated, fluvial-affected. Tide-induced water-level changes affect the entire study area and extend into Cambodia. Measured salinity intrusion extends 15 km upstream of the river mouth during wet season, and 50 km during dry season. Brackish water species of mangroves, mollusks, and diatoms, however, occur landward of these limits, suggesting that highly diluted brackish water may reach 160 km upstream of the river mouth during the dry season. In the fluvial-dominated tract, channels are sinuous and show a seaward-deepening trend, whereas width is relatively constant. In the tide-dominated tract, channels are straight, and show seaward-widening and seaward-shallowing trends. Natural levees are present in the fluvial-dominated, tide-affected subzone, but are replaced by mangroves elsewhere along the FMTZ. In the fluvial-dominated tract, mud content is low, sand grain size fines seaward, and gravelly sand and sand are the dominant facies. In the tide-dominated tract, mud content is high, sand grain size is constant, recycled sand is common, and tidal rhythmites are the dominant facies. Mud pebbles are common in sediments throughout a large part of the FMTZ. These trends characterizing the FMTZ of the Mekong River delta seem to be present in other systems and likely represent a general FMTZ pattern. Nonetheless, minor differences may be observed between different types of systems, or because of differences in local conditions. The comprehensive description of trends and their mutual relationships along the FMTZ presented herein provides critical information that can form the basis of a general conceptual model and can help to better understand these complex zones.

  13. Evaluating process origins of sand-dominated fluvial stratigraphy

    NASA Astrophysics Data System (ADS)

    Chamberlin, E.; Hajek, E. A.

    2015-12-01

    Sand-dominated fluvial stratigraphy is often interpreted as indicating times of relatively slow subsidence because of the assumption that fine sediment (silt and clay) is reworked or bypassed during periods of low accommodation. However, sand-dominated successions may instead represent proximal, coarse-grained reaches of paleo-river basins and/or fluvial systems with a sandy sediment supply. Differentiating between these cases is critical for accurately interpreting mass-extraction profiles, basin-subsidence rates, and paleo-river avulsion and migration behavior from ancient fluvial deposits. We explore the degree to which sand-rich accumulations reflect supply-driven progradation or accommodation-limited reworking, by re-evaluating the Castlegate Sandstone (Utah, USA) and the upper Williams Fork Formation (Colorado, USA) - two Upper Cretaceous sandy fluvial deposits previously interpreted as having formed during periods of relatively low accommodation. Both units comprise amalgamated channel and bar deposits with minor intra-channel and overbank mudstones. To constrain relative reworking, we quantify the preservation of bar deposits in each unit using detailed facies and channel-deposit mapping, and compare bar-deposit preservation to expected preservation statistics generated with object-based models spanning a range of boundary conditions. To estimate the grain-size distribution of paleo-sediment input, we leverage results of experimental work that shows both bed-material deposits and accumulations on the downstream side of bars ("interbar fines") sample suspended and wash loads of active flows. We measure grain-size distributions of bar deposits and interbar fines to reconstruct the relative sandiness of paleo-sediment supplies for both systems. By using these novel approaches to test whether sand-rich fluvial deposits reflect river systems with accommodation-limited reworking and/or particularly sand-rich sediment loads, we can gain insight into large-scale downstream-fining and mass-extraction trends in basins with limited exposure.

  14. Seasonal variations in composite riverbank stability in the Lower Jingjiang Reach, China

    NASA Astrophysics Data System (ADS)

    Xia, Junqiang; Zong, Quanli; Deng, Shanshan; Xu, Quanxi; Lu, Jinyou

    2014-11-01

    Bank erosion is a key process in a fluvial system in the context of river dynamics and geomorphology. Since the operation of the Three Gorges Project (TGP), the Lower Jingjiang Reach (LJR) below the dam has experienced continuous channel degradation, with the phenomenon of bank erosion occurring frequently in local reaches. Therefore it is necessary to quantitatively investigate seasonal variations in the stability of composite riverbanks along the reach in order to better understand the fluvial processes in the reach. Laboratory tests were conducted for the sampled soils at six riverbanks during a field survey, with various bank soil properties being presented for the first time. These test results show that: the cohesive bank soils are relatively loose due to the high water contents of 28.5-40.0% and the low dry densities of 1.31-1.47 tonnes/m3; and the cohesion or angle of internal friction generally decreases with an increase in water content of the cohesive soil. Based on the measured cross-sectional profiles and interpolated hydrological data, the near-bank hydrodynamic conditions and soil parameters of two typical composite riverbanks were then determined during the 2007 hydrological year. An improved method was proposed for calculating the stability at the mode of cantilever failure for the overhanging block of a composite riverbank, and the stability degrees of these two riverbanks were calculated at different stages. These results reveal that: (i) the incipient velocity of the non-cohesive lower bank had a magnitude of 0.4 m/s, less than the mean near-bank velocity of about 1.0 m/s, which led to intensive basal erosion especially during the flood season; (ii) the cohesive upper bank before failure had sufficient strength to resist direct fluvial erosion, but the failed soil mass deposited in the near-bank zone was disintegrated easily with the submerged immersion and was then transported downstream by fluvial entrainment; (iii) the degree of bank stability was relatively lower during the flood season, caused by the integrated effects of a process of severe basal erosion and a lower unit weight of 8.6 kN/m3 for the submerged soil; and (iv) the degree of bank stability was lowest at the recession stage, which was caused by the vanishing of the hydrostatic confining pressure and the larger unit weight of 18.0 kN/m3 for the saturated cohesive soil, because of a rapid drawdown in the in-channel water levels with the TGP operation.

  15. Unmanned aerial monitoring of fluvial changes in the vicinity of selected gauges of the Local System for Flood Monitoring in Klodzko County, SW Poland

    NASA Astrophysics Data System (ADS)

    Jeziorska, Justyna; Witek, Matylda; Niedzielski, Tomasz

    2013-04-01

    Only high resolution spatial data enable precise measurements of various morphometric characteristics of river channels and ensure meaningful effects of research into fluvial changes. Using ground-based measurement tools is time-consuming and expensive. Traditional photogrammetry often does not reach a desired resolution, and the technology is cost effective only for the large-area coverage. The present research introduces potentials of UAV (Unmanned Aerial Vehicle) for monitoring fluvial changes. Observations were carried out with the ultralight UAV swinglet CAM produced by senseFly. This lightweight (0,5 kg), small (wingspan: 80 cm) aircraft allowed frequent (with approximately monthly sampling resolution) and low-cost missions. Three hydrologic gauges, the surroundings of which were the target of series of photos taken by camera placed in airplane frame, belong to the Local System for Flood Monitoring in Kłodzko County (SW Poland). The only way of obtaining reliable results is an appropriate image rectification, in order to measure morphometric characteristics of terrain, free of geometrical deformations induced by the topographical relief, the tilt of the camera axis and the distortion of the optics. Commercially available software for the production of digital orthophotos and digital surface models (DSMs) from a range of uncalibrated oblique and vertical aerial images was successfully used to achieve this aim. As a result of completing the above procedure 9 orthophotos were generated (one for each of 3 study areas during 3 missions). For extraction of terrain parameters, a DSM was produced as a result of bundle block adjustment. Both products reached ultra-high resolution of 4cm/px. Various fluvial forms were classified and recognized, and a few time series of maps from each study area were compared in order to detect potential changes within the fluvial system. We inferred on the origins of the short-term responses of fluvial systems, and such an inference was feasible due to the analysis of metrological and hydrological data recorded by the Local System for Flood Monitoring in Kłodzko County. Orthophotos and DSMs, generated from imagery obtained by UAV, show high accuracy of results and are suitable for measuring fluvial changes. This approach moves beyond current restrictions of traditional data collecting, due to its unprecedented spatial and temporal resolution and low cost of application.

  16. Sedimentological reservoir characteristics of the Paleocene fluvial/lacustrine Yabus Sandstone, Melut Basin, Sudan

    NASA Astrophysics Data System (ADS)

    Mahgoub, M. I.; Padmanabhan, E.; Abdullatif, O. M.

    2016-11-01

    Melut Basin in Sudan is regionally linked to the Mesozoic-Cenozoic Central and Western African Rift System (CWARS). The Paleocene Yabus Formation is the main oil producing reservoir in the basin. It is dominated by channel sandstone and shales deposited in fluvial/lacustrine environment during the third phase of rifting in the basin. Different scales of sedimentological heterogeneities influenced reservoir quality and architecture. The cores and well logs analyses revealed seven lithofacies representing fluvial, deltaic and lacustrine depositional environments. The sandstone is medium to coarse-grained, poorly to moderately-sorted and sub-angular to sub-rounded, arkosic-subarkosic to sublitharenite. On the basin scale, the Yabus Formation showed variation in sandstone bodies, thickness, geometry and architecture. On macro-scale, reservoir quality varies vertically and laterally within Yabus Sandstone where it shows progressive fining upward tendencies with different degrees of connectivity. The lower part of the reservoir showed well-connected and amalgamated sandstone bodies, the middle to the upper parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenetic changes such as compaction, cementation, alteration, dissolution and kaolinite clays pore fill and coat all have significantly reduced the reservoir porosity and permeability. The estimated porosity in Yabus Formation ranges from 2 to 20% with an average of 12%; while permeability varies from 200 to 500 mD and up to 1 Darcy. The understanding of different scales of sedimentological reservoir heterogeneities might contribute to better reservoir quality prediction, architecture, consequently enhancing development and productivity.

  17. A fluvial record of the mid-Holocene rapid climatic changes in the middle Rhone valley (Espeluche-Lalo, France) and of their impact on Late Mesolithic and Early Neolithic societies

    NASA Astrophysics Data System (ADS)

    Berger, Jean-François; Delhon, Claire; Magnin, Frédéric; Bonté, Sandrine; Peyric, Dominique; Thiébault, Stéphanie; Guilbert, Raphaele; Beeching, Alain

    2016-03-01

    This multi-proxy study of a small floodplain in the Rhone catchment area, at the northern edge of the Mediterranean morphoclimatic system, provides valuable information concerning the impact of mid-Holocene climate variability (8.5-7.0 ka) and the effects of two rapid climatic changes (8.2 and 7.7/7.1 ka) on an alluvial plain, its basin and the first farming societies of the Rhone valley. Around 7.7/7.1 ka, the combined effects of (1) a strong rate of change in insolation and (2) variations in solar activity amplified marine and atmospheric circulation in the north-west Atlantic (Bond event 5b), which imply continental hydrological, soil and vegetation changes in the small catchment area. For this period, strong fluctuations in the plant cover ratio have been identified, related to a regime of sustained and regular fires, as well as abundant erosion of the hill slopes and frequent fluvial metamorphoses which led to braiding of the watercourse in this floodplain. There are few data available to evaluate the impact of natural events on prehistoric communities. This continental archive offers clear multi-proxy data for discussion of these aspects, having 4 cultural layers interbedded in the fluvial sequence (1 Late Mesolithic, 3 Cardial/Epicardial). Earlier data indicate the difficulty in recognizing such cultural features in the low alluvial plains of southern France during the Mesolithic/Early Neolithic transition, which should lead to caution when developing settlement models for this period.

  18. The potential of hydrodynamic analysis for the interpretation of Martian fluvial activities

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Schumann, Guy; Neal, Jeffrey; Lin, Shih-Yuan

    2014-05-01

    After liquid water was identified as the agent of ancient Martian fluvial activities, the valley and channels on the Martian surface were investigated by a number of remote sensing and in-situ measurements. In particular, the stereo DTMs and ortho images from various successful orbital sensors are being effectively used to trace the origin and consequences of Martian hydrological channels. For instance, to analyze the Martian fluvial activities more quantitatively using the topographic products, Burr et al. (2003) employed 1D hydrodynamic models such as HEC-RAS together with the topography by MOLA to derive water flow estimates for the Athabasca Valles area on Mars [1]. Where extensive floodplain flows or detailed 2D bathymetry for the river channel exist, it may be more accurate to simulate flows in two dimensions, especially if the direction of flow is unclear a priori. Thus in this study we demonstrated a quantitative modeling method utilizing multi-resolution Martian DTMs, constructed in line with Kim and Muller's (2009) [2] approach, and an advanced hydraulics model LISFLOOD-FP (Bates et al., 2010) [3], which simulates in-channel dynamic wave behavior by solving for 2D shallow water equations without advection. Martian gravitation and manning constants were adjusted in the hydraulic model and the inflow values were iteratively refined from the outputs of the coarser to the finer model. Then we chose the target areas among Martian fluvial geomorphologies and tested the effectiveness of high resolution hydraulic modeling to retrieve the characteristics of fluvial systems. Test sites were established in the Athabasca Valles, Bahram Vallis, and Naktong Vallis respectively. Since those sites are proposed to be originated by different fluvial mechanisms, it is expected that the outputs from hydraulics modeling will provide important clues about the evolution of each fluvial system. Hydraulics modeling in the test areas with terrestrial simulation parameters was also conducted to explore the different characteristics of two planets' fluvial activities. Ultimately, this study proved the effectiveness of multi-resolution modeling using 150-1.2m DTMs and 2D hydraulics to study the Martian fluvial system. In future study, we will elaborate the hydrodynamic model to investigate the sediment transformation mechanism in Martian fluvial activities using hydrodynamic properties such as flow speed. References: [1] Burr, D.M. (2003).Hydraulic modelling of Athabasca Vallis, Mars. Hydrological Sciences Journal, 48(4), 655-664. [2] Kim, J.R. & Muller, J-P.,(2009).Multi resolution topographic data extraction from Martian stereo imagery.Planetary and Space Science. 57, 2095-2112. [3] Bates, P.D., Horritt, M.S., & Fewtrell, T.J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1), 33-45.

  19. Modern Pearl River Delta and Permian Huainan coalfield, China: A comparative sedimentary facies study

    USGS Publications Warehouse

    Suping, P.; Flores, R.M.

    1996-01-01

    Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.

  20. Hyporheic exchange in mountain rivers I: Mechanics and environmental effects

    Treesearch

    Daniele Tonina; John M. Buffington

    2009-01-01

    Hyporheic exchange is the mixing of surface and shallow subsurface water through porous sediment surrounding a river and is driven by spatial and temporal variations in channel characteristics (streambed pressure, bed mobility, alluvial volume and hydraulic conductivity). The significance of hyporheic exchange in linking fluvial geomorphology, groundwater, and riverine...

  1. Suspended sediment behavior in a coastal dry-summer subtropical catchment: Effects of hydrologic preconditions

    EPA Science Inventory

    Variation in fluvial suspended sediment–discharge behavior is generally thought to be the product of changes in processes governing the delivery of sediment and water to the channel. The objective of this study was to infer sediment supply dynamics from the response of suspended ...

  2. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  3. Quaternary Morphodynamics of Fluvial Dispersal Systems Revealed: The Fly River, PNG, and the Sunda Shelf, SE Asia, simulated with the Massively Parallel GPU-based Model 'GULLEM'

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.; Lauer, J. W.; Darby, S. E.; Best, J.; Dietrich, W. E.

    2015-12-01

    During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Modelling these processes would illuminate system morphodynamics, fluxes, and 'complexity' in response to base level change, yet such problems are computationally formidable. Environmental systems are characterized by strong interconnectivity, yet traditional supercomputers have slow inter-node communication -- whereas rapidly advancing Graphics Processing Unit (GPU) technology offers vastly higher (>100x) bandwidths. GULLEM (GpU-accelerated Lowland Landscape Evolution Model) employs massively parallel code to simulate coupled fluvial-landscape evolution for complex lowland river systems over large temporal and spatial scales. GULLEM models the accommodation space carved/infilled by representing a range of geomorphic processes, including: river & tributary incision within a multi-directional flow regime, non-linear diffusion, glacial-isostatic flexure, hydraulic geometry, tectonic deformation, sediment production, transport & deposition, and full 3D tracking of all resulting stratigraphy. Model results concur with the Holocene dynamics of the Fly River, PNG -- as documented with dated cores, sonar imaging of floodbasin stratigraphy, and the observations of topographic remnants from LGM conditions. Other supporting research was conducted along the Mekong River, the largest fluvial system of the Sunda Shelf. These and other field data provide tantalizing empirical glimpses into the lowland landscapes of large rivers during glacial-interglacial transitions, observations that can be explored with this powerful numerical model. GULLEM affords estimates for the timing and flux budgets within the Fly and Sunda Systems, illustrating complex internal system responses to the external forcing of sea level and climate. Furthermore, GULLEM can be applied to most ANY fluvial system to explore processes across a wide range of temporal and spatial scales. The presentation will provide insights (& many animations) illustrating river morphodynamics & resulting landscapes formed as a result of sea level oscillations. [Image: The incised 3.2e6 km^2 Sundaland domain @ 431ka

  4. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    USGS Publications Warehouse

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries, and occur within large, coast-oblique trending depressions (paleo-estuaries). Style 1 is dominated by fluvial through estuary-mouth depositional systems (Seismic Facies 1-4). Style 2 sequence preservation, represented by Sequences III and II, is dominantly an inner shelf and shoreface succession with a seaward-thickening tabular wedge geometry that does not exceed 15 m in thickness. These shoreface and inner shelf depositional systems of the upper transgressive systems tract (Seismic Facies 9) and highstand systems tract (Seismic Facies 7 and 11) are not associated with paleo-estuaries. Style 3 sequence preservation is represented by Sequence 1, the Holocene Sequence. It consists of lower transgressive systems tract fluvial-estuarine, lagoonal, and tidal-inlet fill deposits (Seismic Facies 1-6, and 8) overlain by upper transgressive systems tract shelf and shoreface sands (Seismic Facies 9). Style 3 has a crenulated wedge geometry, and is thickest beneath and seaward of the modern Chesapeake Bay mouth. It thins northward and landward onto Late Pleistocene interfluvial highs on the basinward side of the southern Delmarva Peninsula.

  5. Evolution of fluvial styles in the Eocene Wasatch Formation, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Warwick, Peter D.; Flores, Romeo M.; Ethridge, Frank G.; Flores, Romeo M.

    1987-01-01

    Vertical and lateral facies changes in the lower part of the Eocene Wasatch Formation in the Powder River Basin, Wyoming represent an evolution of fluvial systems that varied from meandering to anastomosing. The meandering facies in the lower part of the study interval formed in a series of broad meanderbelts in a northnorthwestflowing system. Upon abandonment this meanderbelt facies served as a topographic high on which a raised or ombrotrophic Felix peat swamp developed. Peat accumulated until compaction permitted encroachment of crevasse splays from an adjoining transitional facies which consists of deposits of a slightly sinuous fluvial system. Crevasse splays eventually prograded over the peat swamp that was partly covered by lakes. Bifurcation, reunification, and transformation of crevasse channels into major conduits produced an anastomosing system that was characterized by diverging and converging channels separated by floodbasins drowned by lakes and partly covered swamps.

  6. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Claudia J; Mcdonald, Eric; Sancho, Carlos

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-}more » 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.« less

  7. Combined fluvial and pluvial urban flood hazard analysis: concept development and application to Can Tho city, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Martínez Trepat, Oriol; Nghia Hung, Nguyen; Thi Chinh, Do; Merz, Bruno; Viet Dung, Nguyen

    2016-04-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either a fluvial or pluvial flood hazard, studies of a combined fluvial and pluvial flood hazard are hardly available. Thus this study aims to analyse a fluvial and a pluvial flood hazard individually, but also to develop a method for the analysis of a combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as an example. In this tropical environment the annual monsoon triggered floods of the Mekong River, which can coincide with heavy local convective precipitation events, causing both fluvial and pluvial flooding at the same time. The fluvial flood hazard was estimated with a copula-based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. The pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data and a stochastic rainstorm generator. Inundation for all flood scenarios was simulated by a 2-dimensional hydrodynamic model implemented on a Graphics Processing Unit (GPU) for time-efficient flood propagation modelling. The combined fluvial-pluvial flood scenarios were derived by adding rainstorms to the fluvial flood events during the highest fluvial water levels. The probabilities of occurrence of the combined events were determined assuming independence of the two flood types and taking the seasonality and probability of coincidence into account. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation taking into account the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and their usage in flood risk management are outlined.

  8. Transport of particle-associated elements in two agriculture-dominated boreal river systems.

    PubMed

    Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn

    2013-09-01

    Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Applicability of Complexity Theory to Martian Fluvial Systems: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Rosenshein, E. B.

    2003-01-01

    In the last 15 years, terrestrial geomorphology has been revolutionized by the theories of chaotic systems, fractals, self-organization, and selforganized criticality. Except for the application of fractal theory to the analysis of lava flows and rampart craters on Mars, these theories have not yet been applied to problems of Martian landscape evolution. These complexity theories are elucidated below, along with the methods used to relate these theories to the realities of Martian fluvial systems.

  10. Tectonostratigraphic history of the Neogene Maimará basin, Northwest Argentina

    NASA Astrophysics Data System (ADS)

    Galli, Claudia I.; Coira, Beatriz L.; Alonso, Ricardo N.; Iglesia Llanos, María P.; Prezzi, Claudia B.; Kay, Suzanne Mahlburg

    2016-12-01

    This paper presents the tectonostratigraphic evolution of the Maimará Basin and explores the relationship between the clastic sediments and pyroclastic deposits in the basin and the evolution of the adjacent orogeny and magmatic arc. The sedimentary facies in this part of the basin include, in ascending order, an ephemeral fluvial system, a deep braided fluvial system and a medial to distal ephemeral fluvial system. We interpret that Maimará Formation accumulated in a basin that has developed two stages of accumulation. Stage 1 extended from 7 to 6.4 Ma and included accelerated tectonic uplift in the source areas, and it corresponds to the ephemeral fluvial system deposits. Stage 2, which extended from 6.4 to 4.8 Ma, corresponds to a tectonically quiescent period and included the development of the deep braided fluvial system deposits. The contact between the Maimará and Tilcara formations is always characterized by a regional unconformity and, in the study area, also shows pronounced erosion. Rare earth element and other chemical characteristics of the tuff intervals in the Maimará Formation fall into two distinct groups suggesting the tuffs were erupted from two distinct late Miocene source regions. The first and most abundant group has characteristics that best match tuffs erupted from the Guacha, Pacana and Pastos Grandes calderas, which are located 200 and 230 km west of the study area at 22º-23º30‧S latitude. The members the second group are chemically most similar to the Merihuaca Ignimbrite from the Cerro Galán caldera 290 km south-southwest of the studied section. The distinctive geochemical characteristics are excellent tools to reconstruct the stratigraphic evolution of the Neogene Maimará basin from 6.4 to 4.8 Ma.

  11. Fluvial-Deltaic Strata as a High-Resolution Recorder of Fold Growth and Fault Slip

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Kodama, K. P.; Pazzaglia, F. P.

    2008-12-01

    Fluvial-deltaic systems characterize the depositional record of most wedge-top and foreland basins, where the synorogenic stratigraphy responds to interactions between sediment supply driven by tectonic uplift, climate modulated sea level change and erosion rate variability, and fold growth patterns driven by unsteady fault slip. We integrate kinematic models of fault-related folds with growth strata and fluvial terrace records to determine incremental rates of shortening, rock uplift, limb tilting, and fault slip with 104-105 year temporal resolution in the Pyrenees and Apennines. At Pico del Aguila anticline, a transverse dècollement fold along the south Pyrenean mountain front, formation-scale synorogenic deposition and clastic facies patterns in prodeltaic and slope facies reflect tectonic forcing of sediment supply, sea level variability controlling delta front position, and climate modulated changes in terrestrial runoff. Growth geometries record a pinned anticline and migrating syncline hinges during folding above the emerging Guarga thrust sheet. Lithologic and anhysteretic remanent magnetization (ARM) data series from the Eocene Arguis Fm. show cyclicity at Milankovitch frequencies allowing detailed reconstruction of unsteady fold growth. Multiple variations in limb tilting rates from <8° to 28°/my over 7my are attributed to unsteady fault slip along the roof ramp and basal dècollement. Along the northern Apennine mountain front, the age and geometry of strath terraces preserved across the Salsomaggiore anticline records the Pleistocene-Recent kinematics of the underlying fault-propagation fold as occurring with a fixed anticline hinge, a rolling syncline hinge, and along-strike variations in uplift and forelimb tilting. The uplifted intersection of terrace deposits documents syncline axial surface migration and underlying fault-tip propagation at a rate of ~1.4 cm/yr since the Middle Pleistocene. Because this record of fault slip coincides with the well-known large amplitude oscillations in global climate that contribute to the filling and deformation of the Po foreland, we hypothesize that climatically-modulated surface processes are reflected in the observed rates of fault slip and fold growth.

  12. Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf

    NASA Astrophysics Data System (ADS)

    Bischoff, Juliane; Sparkes, Robert B.; Doğrul Selver, Ayça; Spencer, Robert G. M.; Gustafsson, Örjan; Semiletov, Igor P.; Dudarev, Oleg V.; Wagner, Dirk; Rivkina, Elizaveta; van Dongen, Bart E.; Talbot, Helen M.

    2016-09-01

    The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk δ13C measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R'soil ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R'soil displays a negative linear correlation with bulk δ13C measurements (r2 = -0.73, p = < 0.001). When compared to the GDGT-based OC proxy, the branched and isoprenoid tetraether (BIT) index, a decoupled (non-linear) behaviour on the shelf was observed, particularly in the Buor-Khaya Bay, where the R'soil shows limited variation, whereas the BIT index shows a rapid decline moving away from the Lena River outflow channels. This reflects a balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion, whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R'soil of 0.5 for the Lena Delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further east showed higher values (0.6-0.85). Although R'soil correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete, with variations between the different East Siberian Arctic regions potentially reflecting differences in environmental conditions (e.g. temperature, pH), but other physiological controls on microbial bacteriohopanepolyol (BHP) production under psychrophilic conditions are as yet unknown.

  13. Mixed fluvial systems of Messak Sandstone, a deposit of Nubian lithofacies, southwestern Libya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.

    1987-05-01

    The Messak Sandstone is a coarse to pebbly, tabular cross-bedded, Lower Cretaceous deposit of the widespread Nubian lithofacies. It was deposited at the northern edge of the Murzuq basin in southwestern Libya. Although the sedimentary record is predominantly one of braided fluvial systems, a common subfacies within the formation is interpreted to record the passage of straight-crested sand waves across laterally migrating point bars in sinuous rivers, similar to the pattern documented by Singh and Kumar on the modern Ganga and Yamuna Rivers. Because the sand waves were larger on the lower parts of the point bars, lateral migration createdmore » diagnostic thinning-upward, unidirectional cosets of tabular cross-beds as well as fining-upward, grain-size trends. Common, thick, interbedded claystones, deposited in associated paludal and lacustrine environments, and high variance in cross-bed dispersion patterns also suggest the local presence of sinuous fluvial systems within the overall braided regime. The Messak Sandstone contains some of the features that led Harms et al to propose an unconventional low-sinuosity fluvial environment for the Nubian lithofacies in Egypt, and the continuously high water levels of this model may explain channel-scale clay drapes and overturned cross-beds in the Messak. However, most of the Messak characteristics are incompatible with the low-sinuosity model, suggesting instead that the fluvial channels in the Murzuq basin alternated between braided and high-sinuosity patterns.« less

  14. Surficial geological tools in fluvial geomorphology: Chapter 2

    USGS Publications Warehouse

    Jacobson, Robert B.; O'Connor, James E.; Oguchi, Takashi

    2016-01-01

    Increasingly, environmental scientists are being asked to develop an understanding of how rivers and streams have been altered by environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored, and how they will respond to future environmental change. These questions present substantive challenges to the discipline of fluvial geomorphology, especially since decades of geomorphologic research have demonstrated the general complexity of fluvial systems. It follows from the concept of complex response that synoptic and short-term historical views of rivers will often give misleading understanding of future behavior. Nevertheless, broadly trained geomorphologists can address questions involving complex natural systems by drawing from a tool box that commonly includes the principles and methods of geology, hydrology, hydraulics, engineering, and ecology.

  15. Combined fluvial and pluvial urban flood hazard analysis: method development and application to Can Tho City, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.

    2015-08-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.

  16. On the Application of an Enthalpy Method to the Evolution of Fluvial Deltas Under Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Lorenzo-Trueba, J.; Voller, V. R.

    2017-12-01

    Fluvial deltas are composites of two primary sedimentary environments: a depositional fluvial region and an offshore region. The fluvial region is defined by two geomorphic moving boundaries: an alluvial-bedrock transition (ABT), which separates the sediment prism from the non-erodible bedrock basement, and the shoreline (SH), where the delta meets the ocean. The trajectories of these boundaries in time and space define the evolution of the shape of the sedimentary prism, and are often used as stratigraphic indicators, particularly in seismic studies, of changes in relative sea level and the identification of stratigraphic sequences. In order to better understand the relative role of sea-level variations, tectonics, and sediment supply on the evolution of these boundaries, we develop a forward stratigraphic model that captures the dynamic behavior of the fluvial surface and treats the SH and ABT as moving boundaries (i.e., internal boundaries whose location must be determined as part of the solution to the overall morphological evolution problem). This forward model extends a numerical technique from heat transfer (i.e., enthalpy method), previously applied to the evolution of sedimentary basins, to account for sea-level changes. The mathematics of the approach are verified by comparing predictions from the numerical model with both existing and newly developed closed form analytical solutions. Model results support previous work, which suggests that the migration of the ABT can respond very differently to the sea-level signal. This response depends on factors such as sediment supply and delta length, which can vary greatly between basins. These results can have important implications for the reconstruction of past sea-level changes from the stratigraphic record of sedimentary basins.

  17. Geomorphology and soil survey

    Treesearch

    Laura A. Murray; Bob Eppinette; John H. Thorp

    2000-01-01

    The Coosawhatchie River, through erosion and downcutting, carved a fluvial valley through the Wicomico and Pamlico marine terraces during the late Pleistocene-Holocene period. The floodplain is relatively small and immature compared to the major river systems of the South Carolina Lower Coastal Plain. Consequently, the classic geomorphic features of a larger fluvial...

  18. Using Mars's Sulfur Cycle to Constrain the Duration and Timing of Fluvial Processes

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.

    2002-01-01

    Sulfur exists in high abundances at diverse locations on Mars. This work uses knowledge of the Martian sulfate system to discriminate between leading hypotheses and discusses the implications for duration and timing of fluvial processes. Additional information is contained in the original extended abstract.

  19. The Importance of Actualistic Source-to-Sink Sand Provenance Studies in Illuminating the Nature of Ancient Fluvial Systems From the Deep-Marine Clastic Successions They Sourced

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Parra, J. G.; Dawson, S.

    2006-12-01

    Successions of gravity-flow deposits in deep-marine fan systems have the potential to record the evolution of their fluvial source region as well as specific tectonic, climatic, eustatic and anthropogenic events. Deciphering these signals involves the description and quantification of key sediment attributes such as fan volume, the rate of sediment accumulation, the frequency of depositional events, sediment texture, and sediment composition. Sediment composition/provenance provides insight into the nature of the fluvial source, including drainage basin geology and drainage development. For example, Marsaglia et al. (1995) demonstrated a connection between source river lengthening owing to eustatic change and sand composition in Quaternary turbidite successions of the Santa Barbara Basin at Ocean Drilling Program (ODP) Site 893. In contrast, longer-term compositional trends recognized in the Mesozoic to Cenozoic rift-to-drift successions cored by various ODP legs on the North Atlantic margins are more likely associated with continental margin drainage development and fluvial system evolution (Marsaglia et al., in press). These two connections between sink and source were made possible by well-documented petrologic data sets for both modern onshore fluvial systems and older offshore deep-marine successions, but in each case different workers collected the onshore and offshore data sets. In the Waipaoa River Sedimentary System of North Island, New Zealand we have taken a different, more holistic approach, with a limited and linked group of researchers and sample data base covering the complete system. The study area is an active forearc margin characterized by uplifted and deformed sedimentary successions and periodic input of arc-derived ash. Recently, the modern onshore system has been thoroughly documented via studies of the petrology of outcropping Mesozoic to Cenozoic units, fluvial terrace deposits, and modern fluvial sediments (e.g., James et al., in press). Now we are building on that data set and moving from source-to-sink to trace sandy sediment through the system out onto the shelf and slope where it has been encountered in shallow cores. Lessons learned onshore, such as a distinct compositional dependence on grain size and the relationships of bedrock geology to certain sand grain types, also apply to these offshore core samples. Many of the sandy intervals are largely composed of reworked tephra from Taupo eruptions, whereas quartz and feldspar dominate finer sand samples. Lithic-dominated sands are less common and coarser grained. Isolated greywacke gravel clasts indicate that at some point coarse sediment "leaked" into the basin from the south. The volumetric importance of this extrabasinal input can be assessed by looking at the types and proportions of lithic fragments within the finer sand fraction.

  20. Mars: Noachian hydrology by its statistics and topology

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.

    1993-01-01

    Discrimination between fluvial features generated by surface drainage and subsurface aquifer discharges will provide clues to the understanding of early Mars' climatic history. Our approach is to define the process of formation of the oldest fluvial valleys by statistical and topological analyses. Formation of fluvial valley systems reached its highest statistical concentration during the Noachian Period. Nevertheless, they are a scarce phenomenom in Martian history, localized on the craterized upland, and subject to latitudinal distribution. They occur sparsely on Noachian geological units with a weak distribution density, and appear in reduced isolated surface (around 5 x 10(exp 3)(sq km)), filled by short streams (100-300 km length). Topological analysis of the internal organization of 71 surveyed Noachian fluvial valley networks also provides information on the mechanisms of formation.

  1. Quarternary evolution of fluvial systems in the northern Rio Grande rift: Implications for vertical crustal uplift and rift tectonics. Final report, October 1, 1988--September 30, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, C.D.; Wells, S.G.

    1994-09-01

    We propose to establish the late Cenozoic history of incision of the Rio Grande in the northern rift and to relate the variations of drainage incision to vertical uplift and rift tectonics. Our objectives are to establish the nature and timing of Rio Grande gorge development across the boundary between the Espanola/Taos-San Luis basins using isotopic and varnish cation ratio dating, establishing isochrons along gorge walls and isoleths of incision rates throughout the gorge, and documenting spatial and temporal variations in the isopleth data that might reflect deformation resulting from crustal uplift. The results of this study will be significantmore » because the derived isochrons and incision rates can be used to date periods and to document the areal extent of vertical crustal uplift which may reflect asthenospheric and lithospheric interactions beneath the rift.« less

  2. Sedimentology of the fluvial and fluvio-marine facies of the Bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalifa, M. A.; Catuneanu, O.

    2008-05-01

    The Lower Cenomanian Bahariya Formation in the Bahariya Oasis, Western Desert, Egypt, was deposited under two coeval environmental conditions. A fully fluvial system occurs in the southern portion of the Bahariya Oasis, including depositional products of meandering and braided streams, and a coeval fluvio-marine setting is dominant to the north. These deposits are organized into four unconformity-bounded depositional sequences, whose architecture is shaped by a complex system of incised valleys. The fluvial portion of the lower two depositional sequences is dominated by low-energy, meandering systems with a tabular geometry, dominated by overbank facies. The fluvial deposits of the upper two sequences represent the product of sedimentation within braided streams, and consist mainly of amalgamated channel-fills. The braided fluvial systems form the fill of incised valleys whose orientation follows a southeast-northwest trending direction, and which truncate the underlying sequences. Four sedimentary facies have been identified within the braided-channel systems, namely thin-laminated sandstones (Sh), cross-bedded sandstones (Sp, St), massive ferruginous sandstones (Sm) and variegated mudstones (Fm). The exposed off-channel overbank facies of the meandering systems include floodplain (Fm) and crevasse splay (Sl) facies. The fluvio-marine depositional systems consist of interbedded floodplain, coastal and shallow-marine deposits. The floodplain facies include fine-grained sandstones (Sf), laminated siltstones (Stf) and mudstones (Mf) that show fining-upward cycles. The coastal to shallow-marine facies consist primarily of mudstones (Mc) and glauconitic sandstones (Gc) organized vertically in coarsening-upward prograding cyclothems topped by thin crusts of ferricrete (Fc). The four depositional sequences are present across the Bahariya Oasis, albeit with varying degrees of preservation related to post-depositional erosion associated with the formation of sequence boundaries. These unconformities may be overlain by braided-stream channel sandstones at the base of incised valleys, or marked by ferricrete paleosols (lithofacies Fc) in the interfluve areas.

  3. Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  4. Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.

    PubMed

    Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry

    2014-11-01

    We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.

  5. Assessing the Control of Preservational Environment on Taphonomic and Ecological Patterns in an Oligocene Mammal Fauna from Badlands National Park, South Dakota.

    PubMed

    Wilson, Paige K; Moore, Jason R

    2016-01-01

    Comparisons of paleofaunas from different facies are often hampered by the uncertainty in the variation of taphonomic processes biasing the paleoecological parameters of interest. By examining the taphonomic patterns exhibited by different facies in the same stratigraphic interval and area, it is possible to quantify this variation, and assess inter-facies comparability. The fossil assemblages preserved in Badlands National Park (BNP), South Dakota, have long been a rich source for mammalian faunas of the White River Group. To investigate the influence of the variation of taphonomic bias with lithology whilst controlling for the influence of changes in patterns of taphonomic modification with time, taphonomic and paleoecological data were collected from four mammal-dominated fossil assemblages (two siltstone hosted and two sandstone hosted) from a narrow stratigraphic interval within the Oligocene Poleslide Member of the Brule Formation, in the Palmer Creek Unit of BNP. Previous work in the region confirmed that the two major lithologies represent primarily aeolian- and primarily fluvial-dominated depositional environments, respectively. A suite of quantifiable taphonomic and ecological variables was recorded for each of the more than 800 vertebrate specimens studied here (857 specimens were studied in the field, 9 specimens were collected and are reposited at BNP). Distinctly different patterns of taphonomic biasing were observed between the aeolian and fluvial samples, albeit with some variability between all four sites. Fluvial samples were more heavily weathered and abraded, but also contained fewer large taxa and fewer tooth-bearing elements. No quantifiable paleofaunal differences in generic richness or evenness were observed between the respective facies. This suggests that while large vertebrate taxonomic composition in the region did vary with paleodepositional environment, there is no evidence of confounding variation in faunal structure, and therefore differences between the assemblages are attributed to differing preservational environments producing a taphonomic overprint on the assemblages. The lack of apparent taphonomic bias on paleofaunal structure suggests that such paleoecological data can be compared throughout the Poleslide Member, irrespective of lithology.

  6. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift successionmore » is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.« less

  7. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1-5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  8. Energy, time, and channel evolution in catastrophically disturbed fluvial systems

    USGS Publications Warehouse

    Simon, A.

    1992-01-01

    Specific energy is shown to decrease nonlinearly with time during channel evolution and provides a measure of reductions in available energy at the channel bed. Data from two sites show convergence towards a minimum specific energy with time. Time-dependent reductions in specific energy at a point act in concert with minimization of the rate of energy dissipation over a reach during channel evolution as the fluvial systems adjust to a new equilibrium.

  9. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Poeppl, Ronald E.; Keesstra, Saskia D.; Maroulis, Jerry

    2017-01-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to the coupling relationships between them. To better understand system complexity and system response to changing inputs, "connectivity thinking" has become an important recent paradigm within various disciplines including ecology, hydrology and geomorphology. With the presented conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Geomorphic response of fluvial systems to human disturbance is shown to be determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  10. Uplift history of the Sila Massif, southern Italy, deciphered from cosmogenic 10Be erosion rates and river longitudinal profile analysis

    USGS Publications Warehouse

    Olivetti, Valerio; Cyr, Andrew J.; Molin, Paola; Faccenna, Claudio; Granger, Darryl E.

    2012-01-01

    The Sila Massif in the Calabrian Arc (southern Italy) is a key site to study the response of a landscape to rock uplift. Here an uplift rate of ∼1 mm/yr has imparted a deep imprint on the Sila landscape recorded by a high-standing low-relief surface on top of the massif, deeply incised fluvial valleys along its flanks, and flights of marine terraces in the coastal belt. In this framework, we combined river longitudinal profile analysis with hillslope erosion rates calculated by 10Be content in modern fluvial sediments to reconstruct the long-term uplift history of the massif. Cosmogenic data show a large variation in erosion rates, marking two main domains. The samples collected in the high-standing low-relief surface atop Sila provide low erosion rates (from 0.09 ± 0.01 to 0.13 ± 0.01 mm/yr). Conversely, high values of erosion rate (up to 0.92 ± 0.08 mm/yr) characterize the incised fluvial valleys on the massif flanks. The analyzed river profiles exhibit a wide range of shapes diverging from the commonly accepted equilibrium concave-up form. Generally, the studied river profiles show two or, more frequently, three concave-up segments bounded by knickpoints and characterized by different values of concavity and steepness indices. The wide variation in cosmogenic erosion rates and the non-equilibrated river profiles indicate that the Sila landscape is in a transient state of disequilibrium in response to a strong and unsteady uplift not yet counterbalanced by erosion.

  11. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    NASA Astrophysics Data System (ADS)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  12. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.

    2015-12-01

    The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.

  13. Strong feedbacks between hillslope sediment production and channel incision by saltation-abrasion

    NASA Astrophysics Data System (ADS)

    Lundbek Egholm, David; Faurschou Knudsen, Mads; Sandiford, Mike

    2013-04-01

    While it is well understood that rivers erode mountain ranges by incising the bedrock and by transporting sediments away from the ranges, the basic physical mechanisms that drive long-term bedrock erosion and control the lifespan of mountain ranges remain uncertain. A particularly challenging paradox is reconciling the dichotomy associated with the high incision rates observed in active mountain belts, and the long-term (108 years) preservation of significant topographic reliefs in inactive orogenic belts (e.g. von Blankenburg, 2005). We have performed three-dimensional computational experiments with a landscape evolution model that couples bedrock landslides and sediment flux-dependent river erosion by saltation-abrasion (Sklar & Dietrich, 2004). The coupled model experiments show strong feedbacks between the channel erosion and the hillslope delivery of sediments. The feedbacks point to hillslope sediment production rate as the main control on channel erosion rates where saltation-abrasion dominates over other fluvial erosion processes. Our models results thus highlight the importance of hillslope sediment production controlled by climate and tectonic activity for scaling erosion rates in fluvial systems. Because of variations in landslide frequency, the feedbacks make tectonic activity a primary driver of fluvial erosion and help clarifying the long-standing paradox associated with the persistence of significant relief in old orogenic belts, up to several hundred-million-years after tectonic activity has effectively ceased. References F. von Blankenburg. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462-479 (2005). L. S. Sklar, W. E. Dietrich. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 40, W06301 (2004).

  14. Studies of oceanic, atmospheric, cryospheric, and fluvial processes through spectral analysis of seismic noise

    NASA Astrophysics Data System (ADS)

    Anthony, Robert Ernest

    During the past decade, there has been rapidly growing interest in using the naturally occurring seismic noise field to study oceanic, atmospheric, and surface processes. As many seismic noise sources, are non-impulsive and vary over a broad range of time scales (e.g., minutes to decades), they are commonly analyzed using spectral analysis or other hybrid time-frequency domain methods. The PQLX community data analysis program, and the recently released Noise Tool Kit that I co-developed with Incorporated Research Institutions for Seismology's Data Management Center are used here to characterize seismic noise for a variety of environmental targets across a broad range of frequencies. The first two chapters of the dissertation place a strong emphasis on analysis of environmental microseism signals, which occur between 1-25 s period and are dominated by seismic surface waves excited by multiple ocean-solid Earth energy transfer processes. I move away from microseisms in Chapter 3 to investigate the generally higher frequency seismic signals (> 0.33 Hz) generated by fluvial systems. In Chapter 1, I analyze recently collected, broadband data from temporary and permanent Antarctic stations to quantitatively assess background seismic noise levels across the continent between 2007-2012, including substantial previously unsampled sections of the Antarctic continental interior. I characterize three-component noise levels between 0.15-150 s using moving window probability density function-derived metrics and analyze seismic noise levels in multiple frequency bands to examine different noise sources. These metrics reveal and quantify patterns of significant seasonal and geographic noise variations across the continent, including the strong effects of seasonal sea ice variation on the microseism, at a new level of resolution. Thorough analysis of the seismic noise environment and its relation to instrumentation and siting techniques in the Polar Regions facilitates new science opportunities and the optimization of deployment strategies for future seismological research in the Polar Regions, and in mountain glacier systems. Chapter 2 details the analysis of 23 years of microseism observations on the Antarctic Peninsula to investigate wave-sea ice interactions and assess the influence of the Southern Annular Mode (SAM) on storm activity and wave state in the Drake Passage. The lack of landmasses, climatological low pressure, and strong circumpolar westerly winds between latitudes of 50°S to 65°S produce exceptional Southern Ocean storm-driven wave conditions. This combination makes the Antarctic Peninsula one of Earth's most notable regions of high amplitude wave activity and one of the planet's strongest sources of ocean-swell driven microseism noise in both the primary (direct wave-coastal region interactions) and secondary (direct ocean floor forcing due to interacting wave trains) period bands. Microseism observations are examined from 1993-2015 from long running seismographs located at Palmer Station (PMSA), on the west coast of the Antarctic Peninsula, and from the sub-Antarctic East Falkland Island (EFI). These records provide a spatially integrative measure of Southern Ocean amplitudes and of the degree of coupling between ocean waves and the solid earth with and without the presence of sea ice (which can reduce wave coupling with the continental shelf). A spatiotemporal correlation-based approach illuminates how the distribution of sea ice influences seasonal primary and secondary microseism power. I characterize primary and secondary microseism power due to variations in sea ice, and find that primary microseism energy is both more sensitive to sea ice and more capable of propagating across ocean basins than secondary microseism energy. During positive phases of the SAM, sea ice is reduced in the Bellingshausen Sea and overall storm activity in the Drake Passage increases, resulting in strongly increased microseism power levels. The field of fluvial seismology has emerged during the past decade, with seismic recordings near fluvial systems showing potential for a continuous, inexpensive, and non-invasive method of measuring flow and, in some cases, bed-load transport, in streams and rivers. In Chapter 3, I extend this research to the South Fork of the Cache la Poudre River in Northern Colorado where I deployed a small seismoaccoustic array while simultaneous measurements of discharge, suspended sediment concentrations, and precipitation were obtained. By placing seismometers within unprecedented proximity to the channel ( 1 m, and during some time periods submerged), I found a broad range of frequencies excited by discharge, including novel, low-frequency (< 1 Hz) signals. After calibrating horizontal seismic power with flow rates over the course of a rainstorm event for individual sensors, I show that horizontal seismogram power in the 0.33-2 Hz band can be used to accurately invert for fluvial discharge with simple regressions, once a site is properly calibrated to a traditional hydrograph. These signals likely arise from local sensor tilt as the seismometer is directly forced by channel flow and show promise for augmenting seismic monitoring of fluvial systems by introducing a technique to estimate discharge rates from outside the channel with easily deployed noninvasive instrumentation.

  15. Eemian and post-Eemian fluvial dynamics in the Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Zielhofer, Christoph; Faust, Dominik

    2018-07-01

    Mountain regions such as the Lesser Caucasus are a focus of ongoing environmental changes. To understand their future evolution, information about their former geomorphic and environmental dynamics is required. The former fluvial dynamics derived from fluvial sediment archives can offer such insights. However, the fluvial dynamics of the Lesser Caucasus since the Eemian interglacial have not been systematically investigated so far. Thus, we have studied late Pleistocene and Holocene sediments of several rivers originating from the central Lesser Caucasus. The studied rivers show a mostly coherent record of fluvial dynamics: Minor aggradation occurred during early Marine Isotope Stage (MIS) 5, incision during late MIS 5 or early MIS 4, intensive silty aggradation at least during late MIS 3, incision during early MIS 2, coarse-grained aggradation probably during some millenia until ca. 19 ka, and aggradation ca. 14-13 ka. Following incision around the Pleistocene/Holocene transition, aggradation resumed around 6.0, 3.4 - 2.0 and 0.5 - 0.15 cal. ka BP. Generally, periods of aggradation, incision and stability could be linked with regional climatic or anthropogenic influences on regional landscape stability and water availability. The fluvial dynamics of the central Lesser Caucasus mostly differed even between neighbouring regions, and only in cases of significant hemispheric climatic fluctuations as around 20 ka, during the Pleistocene/Holocene transition or the Little Ice Age, were similar over-regional fluvial patterns observed. This demonstrates the individual character of river systems especially in mountain regions such as the southern Caucasus with strong geoecological gradients. Thus, to understand the former landscape dynamics of mountain landscapes, investigations of fluvial sediment archives on a regional to sub-regional scale are necessary.

  16. Facies architecture and paleohydrology of a synrift succession in the Early Cretaceous Choyr Basin, southeastern Mongolia

    USGS Publications Warehouse

    Ito, M.; Matsukawa, M.; Saito, T.; Nichols, D.J.

    2006-01-01

    The Choyr Basin is one of several Early Cretaceous rift basins in southwestern Mongolia that developed in specific regions between north-south trending fold-and-thrust belts. The eastern margin of the basin is defined by high-angle normal and/or strike-slip faults that trend north-to-south and northeast-to-southwest and by the overall geometry of the basin, which is interpreted to be a half graben. The sedimentary succession of the Choyr Basin documents one of the various types of tectono-sedimentary processes that were active in the rift basins of East Asia during Early Cretaceous time. The sedimentary infill of the Choyr Basin is newly defined as the Khalzan Uul and Khuren Dukh formations based on detailed mapping of lateral and vertical variations in component lithofacies assemblages. These two formations are heterotopic deposits and constitute a third-order fluvio-lacustrine sequence that can be divided into transgressive and highstand systems tracts. The lower part of the transgressive systems tract (TST) is characterized by sandy alluvial-fan and braided-river systems on the hanging wall along the western basin margin, and by a gravelly alluvial-fan system on the footwall along the eastern basin margin. The alluvial-fan and braided-river deposits along the western basin margin are fossiliferous and are interpreted to have developed in association with a perennial fluvial system. In contrast, alluvial-fan deposits along the eastern basin margin do not contain any distinct faunas or floras and are interpreted to have been influenced by a high-discharge ephemeral fluvial system associated with fluctuations in wetting and drying paleohydrologic processes. The lower part of the TST deposit fines upward to siltstone-dominated flood-plain and ephemeral-lake deposits that constitute the upper part of the TST and the lower part of the highstand systems tract (HST). These mudstone deposits eventually reduced the topographic irregularities typical of the early stage of synrift basin development, with an associated decrease in topographic-slope gradients. Finally, a high-sinuosity meandering river system drained to the south during the late highstand stage in response to the northward migration of the depocenter. The upper HST deposits are also fossiliferous and are interpreted to have been influenced by a perennial fluvial system, although the average annual discharge of this system was probably less than 5 percent of that involved in the formation of the lower TST deposits along the western basin margin. ?? 2006 Elsevier Ltd. All rights reserved.

  17. Sediment source apportionment in Laurel Hill Creek, PA, using Bayesian chemical mass balance and isotope fingerprinting

    USGS Publications Warehouse

    Stewart, Heather; Massoudieh, Arash; Gellis, Allen C.

    2015-01-01

    A Bayesian chemical mass balance (CMB) approach was used to assess the contribution of potential sources for fluvial samples from Laurel Hill Creek in southwest Pennsylvania. The Bayesian approach provides joint probability density functions of the sources' contributions considering the uncertainties due to source and fluvial sample heterogeneity and measurement error. Both elemental profiles of sources and fluvial samples and 13C and 15N isotopes were used for source apportionment. The sources considered include stream bank erosion, forest, roads and agriculture (pasture and cropland). Agriculture was found to have the largest contribution, followed by stream bank erosion. Also, road erosion was found to have a significant contribution in three of the samples collected during lower-intensity rain events. The source apportionment was performed with and without isotopes. The results were largely consistent; however, the use of isotopes was found to slightly increase the uncertainty in most of the cases. The correlation analysis between the contributions of sources shows strong correlations between stream bank and agriculture, whereas roads and forest seem to be less correlated to other sources. Thus, the method was better able to estimate road and forest contributions independently. The hypothesis that the contributions of sources are not seasonally changing was tested by assuming that all ten fluvial samples had the same source contributions. This hypothesis was rejected, demonstrating a significant seasonal variation in the sources of sediments in the stream.

  18. Aptian sedimentation in the Recôncavo-Tucano-Jatobá Rift System and its tectonic and paleogeographic significance

    NASA Astrophysics Data System (ADS)

    Freitas, Bernardo T.; Almeida, Renato P.; Carrera, Simone C.; Figueiredo, Felipe T.; Turra, Bruno B.; Varejão, Filipe G.; Assine, Mario L.

    2017-12-01

    This study, based on detailed sedimentologic and stratigraphic analysis of the Aptian succession preserved in the Recôncavo-Tucano-Jatobá Rift System (RTJ), present new elements for biostratigraphic correlation and paleogeographic reconstruction in the mid-Cretaceous South Atlantic realm, supporting novel interpretations on the tectonic and sedimentary evolution related to the W-Gondwana breakup. The Aptian sedimentary succession in the RTJ has been referred to as Marizal Formation, and interpreted as post-rift deposits. Detailed sedimentologic and stratigraphic studies of these deposits enabled the recognition and individualization of two distinctive sedimentary units that can be traced in the entire RTJ. These units are here described and named Banzaê and Cícero Dantas members of the Marizal Formation. Their contact is locally marked by the fossiliferous successions of the here proposed Amargosa Bed, lying at the top of the Banzaê Member. Both members of the Marizal Formation record large river systems captured by the Tucano Basin with the local development of eolian dune fields and fault-bounded alluvial fans. The Amargosa Bed represents a regional-scale base level change preserved between the Aptian fluvial successions along the RTJ. Hence, the studied sedimentary record presents important implications for the timing and direction of marine ingressions affecting NE-Brazil interior basins during the Aptian. A remarkable contrast in preserved fluvial architecture between the Banzaê Member, characterized by connected channel bodies, and the Cícero Dantas Member, characterized by isolated channel bodies within overbank fines, is here reported. The main interpreted control for the observed contrast in fluvial stratigraphy is sedimentary yield variation. The interval is also subject to the interpretation of a regional shift in the mechanism responsible for the subsidence of the basins formed during the Cretaceous break-up of the Central South Atlantic. This view is challenged by our results which reveal that basin forming extension continued throughout the Aptian. As a conclusion, the detailed stratigraphy of the Marizal Formation forward alternative geodynamic interpretations for the Aptian successions in northeastern Brazil, bringing new elements to the mid-Cretaceous biogeographical, paleogeographical and tectonic reconstructions of western Gondwana.

  19. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  20. Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA

    USGS Publications Warehouse

    Flores, R.M.

    1993-01-01

    Previous investigations have not well defined the controls on the development of minable coals in fluvial environments. This study was undertaken to provide a clearer understanding of these controls, particularly in of the lower Tertiary coal-bearing deposits of the Raton and Powder River basins in the Rocky Mountain region of the United States. In this region, large amounts of coals accumulated in swamps formed in the flow-through fluvial systems that infilled these intermontane basins. Extrabasinal and intrabasinal tectonism partly controlled the stratigraphic and facies distributions of minable coal deposits. The regional accumulation of coals was favored by the rapid basin subsidence coupled with minimal uplift of the source area. During these events, coals developed in swamps associated with anastomosed and meandering fluvial systems and alluvial fans. The extensive and high rate of sediment input from these fluvial systems promoted the formation of ombrotrophic, raised swamps, which produced low ash and anomalously thick coals. The petrology and palynology of these coals, and the paleobotany of the associated sediments, suggest that ombrotrophic, raised swamps were common in the Powder River Basin, where the climate during the early Tertiary was paratropical. The paleoecology of these swamps is identical to that of the modern ombrotrophic, raised swamps of the Baram and Mahakam Rivers of Borneo. ?? 1993.

  1. Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales, and rates of exchange

    Treesearch

    John M. Buffington; Daniele Tonina

    2009-01-01

    We propose that the mechanisms driving hyporheic exchange vary systematically with different channel morphologies and associated fluvial processes that occur in mountain basins, providing a framework for examining physical controls on hyporheic environments and their spatial variation across the landscape. Furthermore, the spatial distribution of hyporheic environments...

  2. Middle Holocene Organic Carbon and Biomarker Records from the South Yellow Sea: Relationship to the East Asian Monsoon

    NASA Astrophysics Data System (ADS)

    Zou, Liang; Hu, Bangqi; Li, Jun; Dou, Yanguang; Xie, Luhua; Dong, Liang

    2018-03-01

    The East Asian monsoon system influences the sedimentation and transport of organic matter in East Asian marginal seas that is derived from both terrestrial and marine sources. In this study, we determined organic carbon (OC) isotope values, concentrations of marine biomarkers, and levels of OC and total nitrogen (TN) in core YSC-1 from the central South Yellow Sea (SYS). Our objectives were to trace the sources of OC and variations in palaeoproductivity since the middle Holocene, and their relationships with the East Asian monsoon system. The relative contributions of terrestrial versus marine organic matter in core sediments were estimated using a two-end-member mixing model of OC isotopes. Results show that marine organic matter has been the main sediment constituent since the middle Holocene. The variation of terrestrial organic carbon concentration (OCter) is similar to the EASM history. However, the variation of marine organic carbon concentration (OCmar) is opposite to that of the EASM curve, suggesting OCmar is distinctly influenced by terrestrial material input. Inputs of terrestrial nutrients into the SYS occur in the form of fluvial and aeolian dust, while concentrations of nutrients in surface water are derived mainly from bottom water via the Yellow Sea circulation system, which is controlled by the East Asian winter monsoon (EAWM). Variations in palaeoproductivity represented by marine organic matter and biomarker records are, in general, consistent with the recent EAWM intensity studies, thus, compared with EASM, EAWM may play the main role to control the marine productivity variations in the SYS.

  3. Maja Valles, Mars: A Multi-Source Fluvio-Volcanic Outflow Channel System

    NASA Astrophysics Data System (ADS)

    Keske, A.; Christensen, P. R.

    2017-12-01

    The resemblance of martian outflow channels to the channeled scablands of the Pacific Northwest has led to general consensus that they were eroded by large-scale flooding. However, the observation that many of these channels are coated in lava issuing from the same source as the water source has motivated the alternative hypothesis that the channels were carved by fluid, turbulent lava. Maja Valles is a circum-Chryse outflow channel whose origin was placed in the late Hesperian by Baker and Kochel (1979), with more recent studies of crater density variations suggesting that its formation history involved multiple resurfacing events (Chapman et al., 2003). In this study, we have found that while Maja Valles indeed host a suite of standard fluvial landforms, its northern portion is thinly coated with lava that has buried much of the older channel landforms and overprinted them with effusive flow features, such as polygons and bathtub rings. Adjacent to crater pedestals and streamlined islands are patches of dark, relatively pristine material pooled in local topographic lows that we have interpreted as ponds of lava remaining from one or more fluid lava flows that flooded the channel system and subsequently drained, leaving marks of the local lava high stand. Despite the presence of fluvial landforms throughout the valles, lava flow features exist in the northern reaches of the system alone, 500-1200 km from the channels' source. The flows can instead be traced to a collection of vents in Lunae Plaum, west of the valles. In previously studied fluvio-volcanic outflow systems, such as Athabasca Valles, the sources of the volcanic activity and fluvial activity have been indistinguishable. In contrast, Maja Valles features numerous fluvio-volcanic landforms bearing similarity to those identified in other channel systems, yet the source of its lava flows is distinct from the source of its channels. Furthermore, in the absence of any channels between the source of the lava flows and their intersection with the channels of Maja Valles, it is clear that the lava flows did not achieve the turbulence necessary to thermomechanically erode large channels, despite indications that they were very fluid. These findings weaken arguments that lava erosion has played a major role in the formation of martian outflow channels in general.

  4. Gold-bearing fluvial and associated tidal marine sediments of Proterozoic age in the Mporokoso Basin, northern Zambia

    NASA Astrophysics Data System (ADS)

    Andrews-Speed, C. P.

    1986-07-01

    The structurally defined Mporokoso Basin contains up to 5000 m of continental and marine clastic sediments and minor silicic volcanics which together form the Mporokoso Group. These rocks overlie unconformably a basement of silicic-intermediate igneous rocks and accumulated within the interval 1830-1130 Ma. This sedimentological study was restricted to the eastern end of the basin and was part of an assessment of the potential for palaeoplacer gold in the Mporokoso Group. At the base of the Mporokoso Group, the Mbala Formation consists of 1000-1500 m of purple sandstones and conglomerates deposited in a braided-stream system overlain by 500-1000 m of mature quartz arenites deposited in a tidal marine setting. A general coarsening-upward trend exists within the fluvial sediments. Sandy, distal braided-stream facies passes upwards into more proximal conglomeratic facies. In proximal sections, poorly sorted conglomerates form the top of the coarsening-up sequence which is 500-700 m thick. The overlying fluvial sediments fine upwards. The tidal marine sandstones at the top of the Mbala Formation resulted from reworking of fluvial sediments during a marine transgression. Well-exposed sections with fluvial conglomerates were studied in detail. Individual conglomerate bodies form sheets extending for hundreds of metres downstream and at least one hundred metres across stream, with little sign of deep scouring or channelling. They are generally matrix-supported. The whole fluvial sequence is characterised by a paucity of mud or silt. These conglomerates were deposited by large velocity, sheet flows of water which transported a bed-load of pebbles and sand. Most fine material settling out from suspension was eroded by the next flow. The great lateral and vertical extent and the uniformity of the fluvial sediments suggest that the sediments accumulated over an unconfined alluvial plain and that the tectonic evolution of the source area was relatively continuous and not episodic. These features are characteristic of other Proterozoic fluvial sequences. There are no distinctly channelised fluvial conglomerates nor angular unconformities within the fluvial sequence, both of which would have been potential sites for economic gold concentrations. Reworking of the fluvial sands during the marine transgression may have concentrated gold locally within the marine sandstones.

  5. Interpreting Field-based Observations of Complex Fluvial System Behavior through Theory and Numerical Models: Examples from the Ganges-Brahmaputra-Meghna Delta

    NASA Astrophysics Data System (ADS)

    Sincavage, R.; Goodbred, S. L., Jr.; Pickering, J.; Diamond, M. S.; Paola, C.; Liang, M.

    2016-12-01

    Field observations of depositional systems using outcrop, borehole, and geophysical data stimulate ideas regarding process-based creation of the sedimentary record. Theory and numerical modeling provide insight into the often perplexing nature of these systems by isolating the processes responsible for the observed response. An extensive dataset of physical and chemical sediment properties from field data in the Ganges-Brahmaputra-Meghna Delta (GBMD) indicate the presence of complex, multi-dimensional fluvial system behaviors. Paleodischarges during the last lowstand were insufficient to generate paleovalley geometries and transport boulder-sized basal gravel as observed in densely-spaced (3-5 km) borehole data and a 255 km long fluvial multichannel seismic survey. Instead, uniform flow-derived flood heights and Shields-derived flow velocities based on measured field observations support the conclusion that previously documented megafloods conveyed through the Tsangpo Gorge created the antecedent topography upon which the Holocene sediment dispersal system has since evolved. In the fault-bounded Sylhet Basin east of the main valley system, borehole data reveal three principal mid-Holocene sediment delivery pathways; two that terminate in the basin interior and exhibit rapid mass extraction, and one located along the western margin of Sylhet Basin that serves to bypass the basin interior to downstream depocenters. In spite of topographically favorable conditions and enhanced subsidence rates for delivery into the basin, the fluvial system has favored the bypass-dominated pathway, leaving the central basin perennially underfilled. A "hydrologic barrier" effect from seasonally high monsoon-lake levels has been proposed as a mechanism that precludes sediment delivery to Sylhet Basin. However, numerical models with varying lake level heights indicate that the presence or absence of a seasonal lake has little effect on channel path selection. Rather, it appears that pre-existing topography, such as the megaflood-related scours, are a first order control on sediment routing patterns within Sylhet Basin. Applying observational data to numerical models and theory have helped us gain insight into complex fluvial system behavior in this high discharge, tectonically-influenced delta.

  6. Reply to the discussion of Pinter et al. on ‘Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California’ by Schumann et al. (2016)

    USGS Publications Warehouse

    Schumann, R. Randall; Pigati, Jeffrey S.

    2017-01-01

    We appreciate the thoughtful discussion offered by Pinter et al. (2017) because it gives us an opportunity to elucidate some of the main points of our study, address some apparent misinterpretations, and recapitulate one of our conclusions. Pinter et al.’s discussion emphasizes and reinforces some of the important concepts we presented but also raises questions regarding specific aspects of our study, including that: (1) base level is the dominant control on fluvial system change on Santa Rosa Island (SRI); (2) post-Last Glacial Maximum (LGM) fluvial aggradation on SRI occurred at uniform rates; and (3) the transition from aggradation to incision on SRI occurred during the last 500 to ≤150 years.

  7. Reply to the discussion of Pinter et al. on 'Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California' by Schumann et al. (2016)

    NASA Astrophysics Data System (ADS)

    Schumann, R. Randall; Pigati, Jeffrey S.

    2018-01-01

    We appreciate the thoughtful discussion offered by Pinter et al. (2017) because it gives us an opportunity to elucidate some of the main points of our study, address some apparent misinterpretations, and recapitulate one of our conclusions. Pinter et al.'s discussion emphasizes and reinforces some of the important concepts we presented but also raises questions regarding specific aspects of our study, including that: (1) base level is the dominant control on fluvial system change on Santa Rosa Island (SRI); (2) post-Last Glacial Maximum (LGM) fluvial aggradation on SRI occurred at uniform rates; and (3) the transition from aggradation to incision on SRI occurred during the last 500 to ≤ 150 years.

  8. The geologic history of Margaritifer basin, Mars

    USGS Publications Warehouse

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  9. The geologic history of Margaritifer basin, Mars

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Kraft, M. D.; Edwards, C. S.; Christensen, P. R.

    2016-03-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  10. Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars

    NASA Astrophysics Data System (ADS)

    Salese, Francesco; Di Achille, Gaetano; Neesemann, Adrian; Ori, Gian Gabriele; Hauber, Ernst

    2016-02-01

    Moa Valles is a well-preserved, likely Amazonian (younger than 2 Ga old), paleodrainage system that is nearly 300 km long and carved into ancient highland terrains west of Idaeus Fossae. The fluvial system apparently originated from fluidized ejecta blankets, and it consists of a series of dam breach paleolakes with associated fan-shaped sedimentary deposits. The paleolakes are interconnected and drain eastward into Liberta crater, forming a complex and multilobate deltaic deposit exhibiting a well-developed channelized distributary pattern with evidence of switching on the delta plain. A breach area, consisting of three spillover channels, is present in the eastern part of the crater rim. These channels connect the Liberta crater to the eastward portion of the valley system, continuing toward Moa Valles with a complex pattern of anabranching channels that is more than 180 km long. Based on hydrological calculations of infilling and spillover discharges of the Liberta crater lake, the formation of the whole fluvial system is compatible with short to medium (<1000 year) timescales, although the length and morphology of the observed fluvial-lacustrine features suggest long-term periods of activity based on terrestrial analogs. Water for the 300 km long fluvial system may have been primarily sourced by the melting of shallow ice due to the thermal anomaly produced by impact craters. The occurrence of relatively recent (likely Amazonian) hydrological activity, which could have been primarily supported by groundwater replenishment, supports the hypothesis that hydrological activity could have been possible after the Noachian-Hesperian boundary, which is commonly considered as the onset epoch of the present cold-dry climate.

  11. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry

    2017-04-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  12. An isotopic study of a fluvial-lacustrine sequence: The Plio-Pleistocene koobi fora sequence, East Africa

    USGS Publications Warehouse

    Cerling, T.E.; Bowman, J.R.; O'Neil, J.R.

    1988-01-01

    Stable isotopic analyses of Plio-Pleistocene and modern sediments in the fluvial-lacustrine system occupying the Turkana Basin, East Africa provide constraints on the paleoenvironmental and diagenetic histories of the Pliocene through the Recent sediments in the basin. The ??13C values for carbonates in lacustrine sediments range from -15 to +22??? relative to PDB, depending on the varying proportions of CO2 from the atmospheric reservoir and from various metabolic sources. The ??18O values of carbonates in lacustrine sediments indicate that the isotopic composition of paleolake water varied by over 10??? from the Pliocene to the present. The ??13C values for pedogenic carbonates record paleoccologic variations and suggest that C4 plants did not become well established in the preserved depositional parts of the basin until about 1.8 myr ago. The ??18O values pedogenic carbonates suggest a range of over 10??? for the isotopic composition of soil water during this interval. They also suggest a period of major climatic instability from about 3.4 to 3.1 myr and at about 1.8 myr. Together, the ??13C and ??18O values of pedogenic carbonates indicate that the present conditions are as arid and hot as any that had prevailed during deposition of these Plio-Pleistocene sediments. ?? 1988.

  13. New insights from DEM's into form, process and causality in Distributive Fluvial Systems

    NASA Astrophysics Data System (ADS)

    Scuderi, Louis; Weissmann, Gary; Hartley, Adrian; Kindilien, Peter

    2014-05-01

    Recent developments in platforms and sensors, as well as advances in our ability to access these rich data sources in near real time presents geoscientists with both opportunities and problems. We currently record raster and point cloud data about the physical world at unprecedented rates with extremely high spatial and spectral resolution. Yet the ability to extract scientifically useful knowledge from such immense data sets has lagged considerably. The interrelated fields of database creation, data mining and modern geostatistics all focus on such interdisciplinary data analysis problems. In recent years these fields have made great advances in analyzing the complex real-world data such as that captured in Digital Elevation Models (DEM's) and satellite imagery and by LIDAR and other geospatially referenced data sets. However, even considering the vast increase in the use of these data sets in the past decade these methods have enjoyed only a relatively modest penetration into the geosciences when compared to data analysis in other scientific disciplines. In part, a great deal of the current research weakness is due to the lack of a unifying conceptual approach and the failure to appreciate the value of highly structured and synthesized compilations of data, organized in user-friendly formats. We report on the application of these new technologies and database approaches to global scale parameterization of Distributive Fluvial Systems (DFS) within continental sedimentary basins and illustrate the value of well-constructed databases and tool-rich analysis environments for understanding form, process and causality in these systems. We analyzed the characteristics of aggradational fluvial systems in more than 700 modern continental sedimentary basins and the links between DFS within these systems and their contributing drainage basins. Our studies show that in sedimentary basins, distributive fluvial and alluvial systems dominate the depositional environment. Consequently, we have found that studies of modern tributary drainage systems in degradational settings are likely insufficient for understanding the geomorphology expressed within these basins and ultimately for understanding the basin-scale architecture of dominantly distributive fluvial deposits preserved in the rock record.

  14. Architectural features of the Kayenta formation (Lower Jurassic), Colorado Plateau, USA: relationship to salt tectonics in the Paradox Basin

    NASA Astrophysics Data System (ADS)

    Bromley, Michael H.

    1991-09-01

    Fluvial sandstones of the Kayenta Formation were analyzed using architectural element analysis. Paleocurrent trends, the distribution of lacustrine facies and local silcrete development indicate that synsedimentary movement of evaporites in the underlying Paradox Basin created an unstable basin floor beneath the Kayenta fluvial system. This instability resulted in deflection of fluvial axes, local basin development and local areas of interrupted fluvial deposition with eolian dunes. Paleocurrent trends in the Kayenta system reflect periodic interruptions of southwesterly flow. Salt migrating laterally out of a rim syncline into an adjacent salt anticline resulted in a rim syncline of slight topographic relief. The resulting basin was probably rapidly filled, allowing the resumption of southwesterly flow. Differential movement of salt (incipient solution collapse features (?)) resulted in the formation of small centripetal basins in which playa mudstones formed. A laterally extensive resistant ledge underlies a horizontal surface, suggestive of deflation to the water table of an exposed section of valley fill. A channel scour in the top of one of these surfaces has margins much steeper ( > 60°) than the angle of repose for unconsolidated sand. Early cementation of the exposed floodplain could account for this resistance.

  15. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  16. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    USGS Publications Warehouse

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  17. Environmental Dynamics of Dissolved Black Carbon in the Amazon River

    NASA Astrophysics Data System (ADS)

    Roebuck, J. A., Jr.; Gonsior, M.; Enrich-Prast, A.; Jaffe, R.

    2016-02-01

    Dissolve black carbon (DBC) is an important component in the global carbon cycle and constitutes a significant portion of dissolved organic carbon (DOC) in aquatic systems. While global fluxes of DBC may be well understood, little is known about systematic processing of this carbon pool in fluvial systems. Similar to DOC, DBC composition may change as it moves throughout a river continuum before it is eventually deposited into the ocean. This is especially important for large river systems that are major sources of DOC to the ocean and may have significant impacts on ocean biogeochemistry and carbon cycling. To better understand variations in DBC dynamics throughout a large fluvial system, DBC was quantified using the benzene polycarboxylic acid method (BPCA) in three major tributaries of the Amazon River, each with varying biogeochemical characteristics. Principal component analysis of the BPCA abundances was used to assess the DBC compositional differences between sampling locations. In some rivers, light availability appeared to influence both DBC quantity and quality. Higher concentrations of DBC characterized by a larger, more aromatic DBC pool was found in the Rio Negro, a black water river with high levels of chromophoric dissolved organic matter and low light penetration. In the Rio Tapajós, a clear water river with higher light penetration, lower DBC concentrations characterized by higher abundances of the less polycondensed DBC pool provided evidence of photodecomposition under such conditions. The Rio Madeira, characterized as a white water river with high suspended sediment yields and high mineral/clay content, had the lowest DBC concentrations and the least polycondensed DBC content, suggesting a preferential adsorption of the more highly polycondensed DBC components onto clay particles.

  18. Implications of sedimentological studies for environmental pollution assessment and management: Examples from fluvial systems in North Queensland and Western Australia

    NASA Astrophysics Data System (ADS)

    Eyre, Bradley; McConchie, David

    1993-05-01

    Sedimentology is of increasing importance in environmental research, particularly environmental pollution studies, where past trends in environmental processes need to be combined with data on present conditions to predict likely future changes—the past and present as a key to the future. Two examples are used to illustrate the role of sedimentology in assessing the influence of major processes on the transport, accumulation, deposition and modification of contaminants in fluvial/estuarine systems and in developing environmental management plans. Example 1 shows that when assessing nutrient behaviour in fluvial/estuarine depositional settings, it is important to examine the partitioning of phosphorus between grain size fractions to evaluate the sedimentological processes which control the dispersion and trapping of these contaminants. Example 2 shows that in studies of anthropogenic metal inputs to modern depositional settings, lateral and stratigraphic trends in sediment texture and mineralogy should be examined, in addition to trends in metal loads and evaluation of the prevailing physical, chemical and biological processes that may influence metal mobility and dispersion. Clearly, basic sedimentological data should form part of any assessment of potentially contaminated sites and part of investigations into the dispersion and trapping of contaminants in fluvial systems. These data are also required for rational environmental management to ensure that planning decisions are compatible with natural environmental constraints.

  19. Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars

    USGS Publications Warehouse

    Mangold, Nicolas; Forni, Olivier; Dromart, G.; Stack, K.M.; Wiens, Roger C.; Gasnault, Olivier; Sumner, Dawn Y.; Nachon, Marion; Meslin, Pierre-Yves; Anderson, Ryan B.; Barraclough, Bruce; Bell, J.F.; Berger, G.; Blaney, D.L.; Bridges, J.C.; Calef, F.; Clark, Brian R.; Clegg, Samuel M.; Cousin, Agnes; Edgar, L.; Edgett, Kenneth S.; Ehlmann, B.L.; Fabre, Cecile; Fisk, M.; Grotzinger, John P.; Gupta, S.C.; Herkenhoff, Kenneth E.; Hurowitz, J.A.; Johnson, J. R.; Kah, Linda C.; Lanza, Nina L.; Lasue, Jeremie; Le Mouélic, S.; Lewin, Eric; Malin, Michael; McLennan, Scott M.; Maurice, S.; Melikechi, Noureddine; Mezzacappa, Alissa; Milliken, Ralph E.; Newsome, H.L.; Ollila, A.; Rowland, Scott K.; Sautter, Violaine; Schmidt, M.E.; Schroder, S.; D'Uston, C.; Vaniman, Dave; Williams, R.A.

    2015-01-01

    The Yellowknife Bay formation represents a ~5 m thick stratigraphic section of lithified fluvial and lacustrine sediments analyzed by the Curiosity rover in Gale crater, Mars. Previous works have mainly focused on the mudstones that were drilled by the rover at two locations. The present study focuses on the sedimentary rocks stratigraphically above the mudstones by studying their chemical variations in parallel with rock textures. Results show that differences in composition correlate with textures and both manifest subtle but significant variations through the stratigraphic column. Though the chemistry of the sediments does not vary much in the lower part of the stratigraphy, the variations in alkali elements indicate variations in the source material and/or physical sorting, as shown by the identification of alkali feldspars. The sandstones contain similar relative proportions of hydrogen to the mudstones below, suggesting the presence of hydrous minerals that may have contributed to their cementation. Slight variations in magnesium correlate with changes in textures suggesting that diagenesis through cementation and dissolution modified the initial rock composition and texture simultaneously. The upper part of the stratigraphy (~1 m thick) displays rocks with different compositions suggesting a strong change in the depositional system. The presence of float rocks with similar compositions found along the rover traverse suggests that some of these outcrops extend further away in the nearby hummocky plains.

  20. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    USGS Publications Warehouse

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2.03/1.27??m, and B: 1.27/1.08??m; the channels either dissect pure bluish surface units or they are carved into terrain with a mixed spectral signature between bright and bluish surface materials. The global picture of fluvial flows clearly indicates a high diversity of parameters controlling fluvial erosion, such as climatic processes, as well as surface and bedrock types. Recent fluvial activity is very likely in the north polar region in contrast to more arid conditions at lower latitudes and at the south pole of Titan. This divergence is probably an indication of seasonal climatic asymmetries between the hemispheres. However, traces of previous fluvial activity are scattered over all latitudes of Titan, which is indicative of previous climatic conditions with at least episodic rainfall. ?? 2011 Elsevier Ltd. All rights reserved.

  1. Fluvial responses to land-use changes and climatic variations within the Drury Creek watershed, southern Illinois

    NASA Astrophysics Data System (ADS)

    Miller, Suzanne Orbock; Ritter, Dale F.; Kochel, R. Craig; Miller, Jerry R.

    1993-04-01

    Fluvial responses to climatic variation and Anglo-American settlement were documented for the Drury Creek watershed, southern Illinois by examining stratigraphic, geomorphic, climatic, and historical data. Regional analyses of long-term precipitation records document a period of decreasing mean annual precipitation from 1904 to about 1945, and an increasing trend in annual precipitation from 1952 to the present. The period between 1945 and 1951 experienced a large number of intense storms that resulted in high annual precipitation totals. Statistical relationships illustrate that changes in precipitation totals are transferred to the hydrologic system as fluctuations in stream discharge. Historical records of southern Illinois show that a maximum period of settlement and deforestation occurred between the 1860s and 1920s. This era ended in the 1940s when large tracts of land were revegetated in an attempt to curtail erosion which had caused extensive upland degradation. In response to hillslope erosion at least two meters of fine-grained sediments were deposited on valley floors. Average sedimentation rates, determined using decdrochronologic techniques, are estimated to be 2.11 cm/yr for the period between 1890 and 1988; rates that are 1 to 2 orders of magnitude greater than pre-settlement values calculated for other areas of the midwest. However, botanical data suggest that aggradation was episodic, possibly occurring during three periods characterized by greater annual precipitation. Since the 1940s, sedimentation rates have declined. Reduced rates of sedimentation are related to an episode of channel entrenchment that reduced overbank flooding. Entrenchment coincided with a period of: (1) reduced sediment yields associated with watershed revegetation and the introduction of soil conservation practices, and (2) intense storm activity that resulted in long periods of high discharge. As a result of channel incision and hillslope erosion, newly exposed bedrock in upstream areas currently provides a source of gravel load to the channels. The distribution of coarse bedload material along tributary streams combined with downstream decreases in width:depth ratios and tractive force estimates suggest that channels in the Drury Creek watershed are slowly adjusting their configuration to transport coarse bedload material. The fluvial response to the increased influx of coarse sediment began more than 45 years ago and continues today.

  2. The Role of Anthropogenic Stratigraphy in River Restoration Projects

    NASA Astrophysics Data System (ADS)

    Evans, J. E.; Webb, L. D.

    2012-12-01

    As part of a river restoration project and removal of a low-head dam on the Ottawa River (northwestern Ohio and southeastern Michigan) in 2007, a longer-term project was initiated to assess anthropogenic changes of the Ottawa River fluvial system. A composite stratigraphic section 4.5 m in length was constructed by stratigraphic correlation from three trenches up to 2.5 m in depth and 14 vibracores up to 2.5 m in length, all within a small region (<0.5 km2 in area). At various stratigraphic levels, the cores contain a suite of anthropogenic materials including fragments of bricks and cement blocks, pieces of modern ceramics, fragments of plastic and rubber tires, intact or pieces of glass bottles, and one horizon of displaced railroad ties. Age control for the composite section is provided by 4 14C dates, 6 OSL dates, and one bottle with a date stamp. Two prominent flood horizons are indicated in multiple trenches or cores, and identified as the historic floods of 1913 and 1959. The data show the following major changes in the fluvial system over time: (1) prior to approximately 5 Ka, the river system was transporting mineral-rich sediment and formed meandering point-bar sequences approximately 1.5 m thick; (2) between approximately 5 Ka and 200 YBP, the river system was transporting organic-rich sediment (i.e., blackwater stream) bordered by riparian wetlands accumulating peat (part of the regional "Great Black Swamp" discovered by settlers from eastern North America); (3) between approximately 200 YBP and the early 1960s the river system was transporting mineral-rich sediment (i.e., brownwater stream), probably sourced from extensive land clearance for agriculture, which backfilled and overtopped the previous riparian wetlands and produced an series of thin channel fills interpreted as rapidly shifting avulsional channels; (4) since the early 1960s, sediment supply has exceeded sediment conveyance capacity, leading to vertical aggradation of approximately 1.7 m, creating the fill-terrace morphology evident today; and (5) overlapping with the previous stage, channel incision and lateral channel migration has produced a fluvial system dominated by bank erosion, logjams due to tree fall, and degraded substrate with fluvial pavements. Stage 4 is interpreted as a time-specific (1950s-1960s) sediment pulse related to extensive urbanization of the lower drainage basin, while the partly overlapping stage 6 is interpreted as fluvial reworking of intrabasinal storage of legacy sediment under conditions of lower sediment input (reforested suburban housing developments) but higher water inputs (increasingly urbanized stormwater networks). Regarding river restoration, it is clear that most of the modern fluvial system is a recent and highly manipulated system that may not be sustainable.

  3. Mercury partition in the interface between a contaminated lagoon and the ocean: the role of particulate load and composition.

    PubMed

    Pato, P; Otero, M; Válega, M; Lopes, C B; Pereira, M E; Duarte, A C

    2010-10-01

    After having estimated the patterns of flow to the ocean and found some seasonal and tidal differences, mainly with regard to the relative importance of dissolved and particulate fractions, mercury partitioning at the interface between a contaminated lagoon and the Atlantic Ocean was investigated during four tidal cycles in contrasting season and tidal regimes. Mercury was found to be located predominantely in the particulate fraction throughout the year, contributing to its retention within the system. Seasonal conditions, variations in marine and fluvial signals and processes affecting bed sediment resuspension influenced the character and concentration of suspended particulate matter in the water column. Variation in the nature, levels and partitioning of organic carbon in the particulate fraction affected levels of particulate mercury as well as mercury partitioning. These results highlight the dominant role of suspended particulate matter in the distribution of anthropogenic mercury and reinforce the importance of competitive behavior related to organic carbon in mercury scavenging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  5. Fluvial channel-belts, floodbasins, and aeolian ergs in the Precambrian Meall Dearg Formation (Torridonian of Scotland): Inferring climate regimes from pre-vegetation clastic rock records

    NASA Astrophysics Data System (ADS)

    Lebeau, Lorraine E.; Ielpi, Alessandro

    2017-07-01

    The interpretation of climate regimes from facies analysis of Precambrian clastic rocks has been challenging thus far, hindering full reconstructions of landscape dynamics in pre-vegetation environments. Yet, comparisons between different and co-active sedimentary realms, including fluvial-channelised, floodplain, and aeolian hold the potential to shed further light on this thematic. This research discusses a fluvial-aeolian record from the 1.2 Ga Meall Dearg Formation, part of the classic Torridonian succession of Scotland. Tentatively considered to date as a braided-fluvial deposit, this unit is here reappraised as the record of fluvial channel-belts, floodbasins, and aeolian ergs. Fluvial deposits with abundant transitional- to upper-flow regime structures (mostly cross-beds with tangential sets and plane/antidunal beds) and simple, low-relief sediment bars indicate a low-sinuosity, ephemeral style. Floodbasin deposits consist of plane and cross-beds ubiquitously bounded by symmetrical ripples, and rare sediment bars related to the progradation of splay complexes in temporary flooded depressions. Aeolian deposits occur nearby basement topography, and are dominated by large-scale, pin-stripe laminated cross-beds, indicative of intermountain ergs. Neither ephemeral-fluvial nor intermountain aeolian systems can be considered as reliable indicators of local climate, since their sedimentary style is respectively controlled by catchment size and shape, and basin topography relative to groundwater tables. Contrarily, the occurrence of purely clastic - rather than carbonate or evaporitic - floodplain strata can be more confidently related to humid regimes. In brief, this study provides new insight into an overlooked portion of the Torridonian succession of Scotland, and discusses climate inferences for Precambrian clastic terrestrial rocks.

  6. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    USGS Publications Warehouse

    Edgar, Lauren; Gupta, Sanjeev; Rubin, David M.; Lewis, Kevin W.; Kocurek, Gary A.; Anderson, Ryan; Bell, James F.; Dromart, Gilles; Edgett, Kenneth S.; Grotzinger, John P.; Hardgrove, Craig; Kah, Linda C.; LeVeille, Richard A.; Malin, Michael C.; Mangold, Nicholas; Milliken, Ralph E.; Minitti, Michelle; Palucis, Marisa C.; Rice, Melissa; Rowland, Scott K.; Schieber, Juergen; Stack, Kathryn M.; Sumner, Dawn Y.; Wiens, Roger C.; Williams, Rebecca M.E.; Williams, Amy J.

    2018-01-01

    This paper characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time, and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture, and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification to determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution, and bedform migration direction, this study concludes that the Shaler outcrop likely records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the northeast, across the surface of a bar that migrated southeast. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggests that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry, and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.

  7. Shaler: in situ analysis of a fluvial sedimentary deposit on Mars

    DOE PAGES

    Edgar, Lauren A.; Gupta, Sanjeev; Rubin, David M.; ...

    2017-03-09

    This article characterizes the detailed sedimentology of a fluvial sandbody on Mars for the first time and interprets its depositional processes and palaeoenvironmental setting. Despite numerous orbital observations of fluvial landforms on the surface of Mars, ground-based characterization of the sedimentology of such fluvial deposits has not previously been possible. Results from the NASA Mars Science Laboratory Curiosity rover provide an opportunity to reconstruct at fine scale the sedimentary architecture and palaeomorphology of a fluvial environment on Mars. This work describes the grain size, texture and sedimentary facies of the Shaler outcrop, reconstructs the bedding architecture, and analyses cross-stratification tomore » determine palaeocurrents. On the basis of bedset geometry and inclination, grain-size distribution and bedform migration direction, this study concludes that the Shaler outcrop probably records the accretion of a fluvial barform. The majority of the outcrop consists of large-scale trough cross-bedding of coarse sand and granules. Palaeocurrent analyses and bedform reconstruction indicate that the beds were deposited by bedforms that migrated towards the north-east, across the surface of a bar that migrated south-east. Stacked cosets of dune cross-bedding suggest aggradation of multiple bedforms, which provides evidence for short periods of sustained flow during Shaler deposition. However, local evidence for aeolian reworking and the presence of potential desiccation cracks within the outcrop suggest that fluvial deposition may have been intermittent. The uppermost strata at Shaler are distinct in terms of texture and chemistry and are inferred to record deposition from a different sediment dispersal system with a contrasting provenance. The outcrop as a whole is a testament to the availability of liquid water on the surface of Mars in its early history.« less

  8. Integrated stratigraphy of Paleocene lignite seams of the fluvial Tullock Formation, Montana (USA).

    NASA Astrophysics Data System (ADS)

    Noorbergen, Lars J.; Kuiper, Klaudia F.; Hilgen, Frederik J.; Krijgsman, Wout; Dekkers, Mark J.; Smit, Jan; Abels, Hemmo A.

    2015-04-01

    Coal-bearing fluvial sedimentation is generally thought to be dominated by autogenic processes that are processes intrinsic to the sedimentary system. Ongoing research however suggests that several fluvial processes such as floodplain inundation and avulsion, can also be controlled by external forcing such as orbital climate change. Still, the exact role of orbital climate forcing in fluvial sediments is difficult to decipher since riverine deposits are complicated by variable sedimentation rates including erosion of previously deposited material, by lateral heterogeneity of sedimentation, and by scarcity of independent dating methods. The early Paleocene lignite-bearing Tullock Formation of the Williston Basin in eastern Montana represents a record of fluvial sedimentation that is perfectly exposed and, displays a seemingly regular alternation of sandstones and lignite seams. These coal beds contain multiple volcanic ash layers. Here, we use an integrated stratigraphic approach (litho- and magnetostratigraphy, geochemical fingerprinting and radio-isotope dating of volcanic ash layers) to establish a high-resolution time frame for the early Paleocene fluvial sediments. First age estimations indicate that the Tullock Formation in Eastern Montana was deposited over a time span of ~ 1000 kyr subsequent to the Cretaceous - Paleogene boundary, dated at ~ 65.95 Ma [1]. Initial high-resolution magnetostratigraphy revealed the occurrence of the C29r/C29n polarity reversal which was stratigraphic consistent at different field locations. We investigate the regional significance of sedimentary change at multiple sites of the same age in order to provide improved insight on the role of orbital forcing in fluvial coal formation. References: [1] Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R. (2008). Synchronizing Rock Clocks of Earth History. Science 320, 500-504.

  9. Luminescence dating of river terrace formation - methodological challenges and complexity of result interpretation: a case study from the headwaters of the River Main, Germany

    NASA Astrophysics Data System (ADS)

    Kolb, Thomas; Fuchs, Markus; Zöller, Ludwig

    2015-04-01

    River terraces are widespread geomorphic features of Quaternary landscapes. Besides tectonics, their formation is predominantly controlled by climatic conditions. Changes in either conditions cause changes in fluvial discharge and sediment load. Therefore, fluvial terraces are widely used as important non-continuous sedimentary archives for paleotectonic and paleoenvironmental reconstruction. The informative value of fluvial archives and their significance for paleoenvironmental research, however, strongly depend on a precise dating of the terrace formation. Over the last decades, various luminescence dating techniques have successfully been applied on fluvial deposits and were able to provide reliable age information. In contrast to radiocarbon dating, modern luminescence dating techniques provide an extended dating range, which enables the determination of age information for fluvial and other terrestrial archives far beyond the last glacial-interglacial cycle. Due to the general abundance of quartz and feldspar minerals, there is almost no limitation of dateable material, so that luminescence dating methods can be applied on a wide variety of deposits. When using luminescence dating techniques, however, some methodological difficulties have to be considered. Due to the mechanism of fluvial transport, this is especially true for fluvial sediments, for which two major problems have been identified to be the main reasons of incorrect age estimations: (1) incomplete resetting of the luminescence signal during transport and (2) dosimetric inaccuracies as a result of the heterogeneity of terrace gravels. Thus, luminescence dating techniques are still far from being standard methods for dating fluvial archives and the calculated sedimentation ages always demand a careful interpretation. This contribution reveals some of the difficulties that may occur when luminescence dating techniques are applied on river terraces and illustrates several strategies used for overcoming these problems and for determining correct sedimentation ages. The presented results are based on a case study, located in the headwaters of the River Main, the longest right bank tributary of the Rhine drainage system. Here, within an oversized dry valley in Northern Bavaria (Germany), five Pleistocene terraces are distinguished. The terraces are interpreted as the result of a complex landscape evolution, which is characterized by multiple river deflections. The need for a careful interpretation of luminescence results is illustrated by some optically stimulated luminescence (OSL) ages calculated for the youngest of these five Pleistocene terraces. These results show different sedimentation ages of samples originating from the same morphological unit. Thus, these ages may be interpreted as evidence for a diachronic character of river incision and, hence, point to the complexity of fluvial systems' response to climatically and/or tectonically forced changes in local and regional paleoenvironmental conditions.

  10. Deciphering Fluvial-Capture-Induced Erosional Patterns at the Continental Scale on the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Anton, L.; Munoz Martin, A.; De Vicente, G.; Finnegan, N. J.

    2017-12-01

    The process of river incision into bedrock dictates the landscape response to changes in climate and bedrock uplift in most unglaciated settings. Hence, understanding processes of river incision into bedrock and their topographic signatures are a basic goal of geomorphology. Formerly closed drainage basins provide an exceptional setting for the quantification of long term fluvial dissection and landscape change, making them valuable natural laboratories. Internally drained basins are peculiar because they trap all the sediment eroded within the watershed; as closed systems they do not respond to the base level of the global ocean and deposition is the dominant process. In that context, the opening of an outward drainage involves a sudden lowering of the base level, which is transmitted upstream along fluvial channels in the form of erosional waves, leading to high incision and denudation rates within the intrabasinal areas. Through digital topographic analysis and paleolandscape reconstruction based on relict deposits and landscapes on the Iberian Peninsula, we quantify the volume of sediments eroded from formerly internally drained basins since capture. Mapping of fluvial dissection patterns reveals how, and how far, regional waves of incision have propagated upstream. In our analysis, erosional patterns are consistent with the progressive establishment of an outward drainage system, providing a relative capture chronology for the different studied basins. Divide migration inferred from chi maps supports the interpretations based on fluvial dissection patterns and volumes, providing clues on how landscaped changed and how drainage integration occurred within the studied watersheds. [Funded by S2013/MAE-2739 and CGL2014-59516].

  11. Fluvial Apophenia

    NASA Astrophysics Data System (ADS)

    Coulthard, Tom; Armitage, John

    2017-04-01

    Apophenia describes the experience of seeing meaningful patterns or connections in random or meaningless data. Francis Bacon was one of the first to identify its role as a "human understanding is of its own nature prone to suppose the existence of more order and regularity in the world than it finds". Examples include pareidolia (seeing shapes in random patterns), gamblers fallacy (feeling past events alter probability), confirmation bias (bias to supporting a hypothesis rather than disproving), and he clustering illusion (an inability to recognise actual random data, instead believing there are patterns). Increasingly, researchers use records of past floods stored in sedimentary archives to make inferences about past environments, and to describe how climate and flooding may have changed. However, it is a seductive conclusion, to infer that drivers of landscape change can lead to changes in fluvial behaviour. Using past studies and computer simulations of river morphodynamics we explore how meaningful the link between drivers and fluvial changes is. Simple linear numerical models would suggest a direct relation between cause and effect, despite the potential for thresholds, phase changes, time-lags and damping. However, a comparatively small increase in model complexity (e.g. the Stream Power law) introducing non-linear behaviour and Increasing the complexity further can lead to the generation of time-dependent outputs despite constant forcing. We will use this range of findings to explore how apophenia may manifest itself in studies of fluvial systems, what this can mean and how we can try to account for it. Whilst discussed in the context of fluvial systems the concepts and inferences from this presentation are highly relevant to many other studies/disciplines.

  12. Rapid fluvial incision of a late Holocene lava flow: Insights from LiDAR, alluvial stratigraphy, and numerical modeling

    USGS Publications Warehouse

    Sweeney, Kristin; Roering, Joshua J.

    2016-01-01

    Volcanic eruptions fundamentally alter landscapes, paving over channels, decimating biota, and emplacing fresh, unweathered material. The fluvial incision of blocky lava flows is a geomorphic puzzle. First, high surface permeability and lack of sediment should preclude geomorphically effective surface runoff and dissection. Furthermore, past work has demonstrated the importance of extreme floods in driving incision via column toppling and plucking in columnar basalt, but it is unclear how incision occurs in systems where surface blocks are readily mobile. We examine rapid fluvial incision of the Collier lava flow, an andesitic Holocene lava flow in the High Cascades of Oregon. Since lava flow emplacement ∼1600 yr ago, White Branch Creek has incised bedrock gorges up to 8 m deep into the coherent core of the lava flow and deposited >0.2 km3 of sediment on the lava flow surface. Field observation points to a bimodal discharge regime in the channel, with evidence for both annual snowmelt runoff and outburst floods from Collier glacier, as well as historical evidence of vigorous glacial meltwater. To determine the range of discharge events capable of incision in White Branch Creek, we used a mechanistic model of fluvial abrasion. We show that the observed incision implies that moderate flows are capable of both initiating channel formation and sustaining incision. Our results have implications for the evolution of volcanic systems worldwide, where glaciation and/or mass wasting may accelerate fluvial processes by providing large amounts of sediment to otherwise porous, sediment-starved landscapes.

  13. Landslide mobility and connectivity with fluvial networks during earthquakes

    NASA Astrophysics Data System (ADS)

    Clark, M. K.; West, A. J.; Li, G.; Roback, K.; Zekkos, D.

    2016-12-01

    In some tectonically active mountain belts, coseismic landslide events displace sediment volumes equal to long-term erosion rates when averaged over typical seismic cycles. However, the contribution of landsliding to total erosional budgets depends critically on the export of landslide debris, which in turn is thought to depend on connectivity of landslides with fluvial channels and the sediment transport capacity of fluvial systems. From the 2015 Mw7.8 Gorkha event in central Nepal, we present connectivity data based on a mapped inventory of nearly 25,000 landslides and compare these results to those from the 2008 Mw7.9 Wenchuan earthquake in China. Landslide runout length in Nepal scales with landslide volume, and has a strong association with slope, elevation and relief. Connectivity is greatest for larger landslides in the high-relief, high-elevation part of the High Himalaya, suggesting that these slope failures may have the most immediate impact on sediment dynamics and cascading hazards, such as landslide reactivation by monsoon rainfall and outburst floods that pose immediate threat to communities far down stream. Although more rare than landslides at lower elevation, large high-elevation landslides that cause outburst flooding due to failure of landslide dams in the upper reaches of large Himalayan rivers may also enhance river incision downstream. The overall high fluvial connectivity (i.e. high percentage of landslide volumes directly intersecting the stream network) of coseismic landsliding in the Gorkha event suggests coupling between the earthquake cycle and sediment/geochemical budgets of fluvial systems in the steep topography of the Himalaya.

  14. Alluvial to lacustrine sedimentation in an endorheic basin during the Mio-Pliocene: The Toro Negro Formation, Central Andes of Argentina

    NASA Astrophysics Data System (ADS)

    Ciccioli, Patricia L.; Marenssi, Sergio A.; Amidon, William H.; Limarino, Carlos O.; Kylander-Clark, Andrew

    2018-07-01

    A 2400 m-thick sedimentary column belonging to the Toro Negro Formation was recorded along the Quebrada del Yeso, Sierra de Los Colorados (Vinchina Basin), La Rioja province, NW Argentina. The Vinchina basin is a good example of a closed basin surrounded by the Precordillera fold and thrust belt to the west and basement-cored blocks to the north, south (Western Sierras Pampeanas) and east (Sierra de Famatina). Seven facies associations (FA) are described and interpreted to represent fluvial, lacustrine and alluvial environments developed in the southern part of the Vinchina basin from the Late Miocene until the earliest Pleistocene. The depositional evolution of the formation was divided in four phases. Phase I (∼7-6.6 Ma) represents sedimentation in medial (FA I) to distal (FA II) parts of a southward directed distributive fluvial system with a retrogradational pattern. During phase II (6.6-6.1Ma), the distributive fluvial system was replaced by a mixed clastic-evaporitic shallow lake (FA III) in a high aggradational basin. In phase III (∼6.1-5 Ma) the eastward progradation of a fluvial system (FA IV) was recorded as a distal clastic wedge. Finally, phase IV (∼5-2.4Ma) records two depositional cycles of proximal clastic wedge progradation of fluvial-dominated piedmonts (FAV, FAVII) from the southwest (Sierra de Umango) and/or the west (Precordillera) with an intervening playa lake (FA VI). Two new U-Pb ages obtained from zircons in volcanic ash layers confirm the Late Miocene age of the lower member of the Toro Negro Formation and permit a tight correlation with the central part of the basin (Quebrada de La Troya section). The sedimentation rate calculated for the dated lacustrine-fluvial interval is higher than the corresponding one in La Troya area suggesting a higher subsidence in the southern part of the basin. During the Late Miocene (∼7-6.6Ma) the ephemeral drainage was controlled by an arid to semiarid climate and initially dissipated mostly internally as terminal fan/distributive fluvial systems descending from the north. A thick lacustrine interval developed in the southern part of the basin between ∼6.6 and 6.1 Ma during a period of high subsidence and closed drainage. Besides, this interval coincides with increased aridity recorded in other basins in the Northwest of Argentina. By ∼6.1 Ma the area started to receive the first coarse-grained sediments heralding the progradation of a clastic wedge from the southwest-west (Sierra de Umango and Precordillera) which fully developed during the rest of the Pliocene to the earliest Pleistocene (∼5-2.4 Ma). The 6.1-2.4 Ma interval records ameliorating climate conditions.

  15. Fluvial fluxes from the Magdalena River into Cartagena Bay, Caribbean Colombia: Trends, future scenarios, and connections with upstream human impacts

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Escobar, Rogger; Tosic, Marko

    2018-02-01

    Fluxes of continental runoff and sediments as well as downstream deposition of eroded soils have severely altered the structure and function of fluvial and deltaic-estuarine ecosystems. The Magdalena River, the main contributor of continental fluxes into the Caribbean Sea, delivers important amounts of water and sediments into Cartagena Bay, a major estuarine system in northern Colombia. Until now, trends in fluvial fluxes into the bay, as well as the relationship between these tendencies in fluvial inputs and associated upstream changes in the Magdalena catchment, have not been studied. Here we explore the interannual trends of water discharge and sediment load flowing from the Magdalena River-Canal del Dique system into Cartagena Bay during the last three decades, forecast future scenarios of fluxes into the bay, and discuss possible connections between observed trends in fluvial inputs and trends in human intervention in the Magdalena River basin. Significant upward trends in annual runoff and sediment load during the mid-1980s, 1990s, and post-2000 are observed in the Magdalena and in the Canal del Dique flowing into Cartagena Bay. During the last decade, Magdalena streamflow and sediment load experienced increases of 24% and 33%, respectively, compared to the pre-2000 year period. Meanwhile, the Canal del Dique witnessed increases in water discharge and sediment load of 28% and 48%, respectively. During 26 y of monitoring, the Canal del Dique has discharged 177 Mt of sediment to the coastal zone, of which 52 Mt was discharged into Cartagena Bay. Currently, the Canal drains 6.5% and transports 5.1% of the Magdalena water discharge and sediment load. By 2020, water discharge and sediment flux from the Canal del Dique flowing to the coastal zone will witness increments of 164% and 260%, respectively. Consequently, sediment fluxes into Cartagena Bay will witness increments as high as 8.2 Mt y- 1 or 317%. Further analyses of upstream sediment load series for 21 tributary systems of the main Magdalena during the 2005-2010 period reveal that six tributaries, representing 55% of the analyzed Magdalena basin area, have witnessed increasing trends in sediment load, raising the river's sediment load by 44 Mt y- 1. Overall, trends in sediment load of the Magdalena and the Canal del Dique during the last three decades are in close agreement with the observed trends in human induced upstream erosion. The last decade has witnessed even stronger increments in fluvial fluxes to Cartagena Bay. Our results emphasize the importance of the catchment-coast linkage in order to predict future changes of fluvial fluxes into Caribbean estuarine systems.

  16. Tidal sedimentation from a fluvial to estuarine transition, Douglas Group, Missourian -- Virgilian, Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanier, W.P.; Feldman, H.R.; Archer, A.W.

    The Tonganoxie Sandstone Member of the Stranger Formation (Douglas Group, Upper Pennsylvanian, Kansas) was deposited in a funnel-shaped, northeast-southwest-trending paleovalley that was incised during the uppermost Missourian sealevel lowstand and backfilled during the subsequent transgression. Quarry exposures of the Tonganoxie near Ottawa, Kansas, include [approximately] 5 m of sheetlike, vertically accreted siltstones and sandy siltstones, bounded above and below by thin coals with upright plant fossils and paleosols. Strata range from submillimeter-thick, normally graded rhythmites to graded bedsets up to 12.5 cm thick with a vertical sedimentary structure sequence (VSS) consisting of the following intervals: (A) a basal massive tomore » normally graded interval; (B) a parallel-laminated interval; (C) a ripple-cross-laminated interval; and (D) an interval of draped lamination. The Tonganoxie succession has many similarities to fluvial overbank/floodplain deposits: sheetlike geometry, upright plant fossils, lack of bioturbation and body fossils, dominance of silt, and a punctuated style of rapid sedimentation from suspension-laden waning currents. Analysis of stratum-thickness variations through the succession suggests that tides significantly influenced sediment deposition. A fluvial-to-estuarine transitional depositional setting is interpreted for the Tonganoxie by analogy with modern depositional settings that show similar physical and biogenic sedimentary structures, vertical sequences of sedimentary structures, and aggradation rates.« less

  17. Time and the rivers flowing: Fluvial geomorphology since 1960

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2014-07-01

    Fluvial geomorphology has been the largest single subdiscipline within geomorphology for many decades. Fluvial geomorphic expertise is integral to understanding and managing rivers and to developing strategies for sustainable development. This paper provides an overview of some of the significant advances in fluvial geomorphology between 1960 and 2010 with respect to: conceptual models; fluvial features and environments being studied; tools used by fluvial geomorphologists; geomorphic specialty groups within professional societies; journals in which fluvial geomorphic research is published; and textbooks of fluvial geomorphology. During this half century, fluvial geomorphology broadened considerably in scope, from a focus primarily on physical principles underlying process and form in lower gradient channels with limited grain size range, to a more integrative view of rivers as ecosystems with nonlinear behavior and great diversity of gradient, substrate composition, and grain size. The array of tools for making basic observations, analyzing data, and disseminating research results also expanded considerably during this period, as did the diversity of the fluvial geomorphic community.

  18. Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution

    NASA Astrophysics Data System (ADS)

    Yue, Zhiyuan; Cao, Zhixian; Li, Xin; Che, Tao

    2008-09-01

    Alluvial rivers may experience intense sediment transport and rapid bed evolution under a high flow regime, for which traditional decoupled mathematical river models based on simplified conservation equations are not applicable. A two-dimensional coupled mathematical model is presented, which is generally applicable to the fluvial processes with either intense or weak sediment transport. The governing equations of the model comprise the complete shallow water hydrodynamic equations closed with Manning roughness for boundary resistance and empirical relationships for sediment exchange with the erodible bed. The second-order Total-Variation-Diminishing version of the Weighted-Average-Flux method, along with the HLLC approximate Riemann Solver, is adapted to solve the governing equations, which can properly resolve shock waves and contact discontinuities. The model is applied to the pilot study of the flooding due to a sudden outburst of a real glacial-lake.

  19. Geochronology, Geochemistry and Tectonics of Subduction-Related Late Triassic Rift Basins in Northern Chile (24º-26ºS).

    NASA Astrophysics Data System (ADS)

    Espinoza, M. E.; Oliveros, V.; Celis, C.

    2016-12-01

    As plate-tectonic processes ultimately control the location, initiation, and evolution of sedimentary basins, the study of these is crucial to understand the geodynamic framework of a specific period. In northern Chile, Late Triassic depocenters crop out along the Coastal Cordillera and Precordillera. These basins have been typically associated to a continental rifting unrelated to subduction prior to the Andean orogeny. In this work, we characterize these basins and present field and analytical data suggesting the development of these basins during an active subduction system. U-Pb geochronology show the opening of these basins probably during the Anisian-Carnian (>233 Ma) with the deposition of highly mature sediments in fluvial systems, followed by the initiation of the volcanism and associated fluvial-alluvial redeposition. Furthermore, a continental (fluvial and lacustrine) deposition and its transition to shallow marine facies are recorded during the Norian to Raethian (212-200 Ma), contemporaneous with the development of acidic volcanic centers. The sedimentary provenance evidence a main detrital supply of Early Permian age ( 297-283 Ma) corresponding to volcanic and plutonic basement rocks and a minor supply close to 478 Ma related to the exhumed Famatinian arc to the east. Geochemical results from volcanic products present in the basins show a typical subduction signal (calc-alkaline trend, low HFS/LILE ratio and Nb-Ta negative anomalies), while petrography indicate a wide compositional variation more than a bimodal distribution. These basins present half-graben geometries with the recognition of structural highs separating local depocenters. Kinematic analyses carried in synrift extensional faults show a bimodal distribution of the maximum strain axes from a NE-SW to a subordinate NW-SE direction of elongation. This bimodality could be related to the co-existence of two competing strain directions associated to the breakup of Pangea and the presence of a subducting slab. These results integrates the magmatic, sedimentary and tectonic record pointing to a subduction-related extensional basin model developed over a continental substratum. The recognition of this ancient examples are important to understand an actual underrepresented basin setting.

  20. Decoding sediment transport dynamics on alluvial fans from spatial changes in grain size, Death Valley, California

    NASA Astrophysics Data System (ADS)

    Brooke, Sam; Whittaker, Alexander; Watkins, Stephen; Armitage, John

    2017-04-01

    How fluvial sediment transport processes are transmitted to the sedimentary record remains a complex problem for the interpretation of fluvial stratigraphy. Alluvial fans represent the condensed sedimentary archive of upstream fluvial processes, controlled by the interplay between tectonics and climate over time, infused with the complex signal of internal autogenic processes. With high sedimentation rates and near complete preservation, alluvial fans present a unique opportunity to tackle the problem of landscape sensitivity to external boundary conditions such as climate. For three coupled catchments-fan systems in the tectonically well-constrained northern Death Valley, we measure grain size trends across well-preserved Holocene and Late-Pleistocene deposits, which we have mapped in detail. Our results show that fan surfaces from the Late-Pleistocene are, on average, 50% coarser than counterpart active or Holocene fan surfaces, with clear variations in input grain sizes observed between surfaces of differing age. Furthermore, the change in ratio between mean grain size and standard deviation is stable downstream for all surfaces, satisfying the statistical definition of self-similarity. Applying a self-similarity model of selective deposition, we derive a relative mobility function directly from our grain size distributions, and we evaluate for each fan surface the grain size for which the ratio of the probability of transport to deposition is 1. We show that the "equally mobile" grain size lies in the range of 20 to 35 mm, varies over time, and is clearly lower in the Holocene than in the Pleistocene. Our results indicate that coarser grain sizes on alluvial fans are much less mobile than in river systems where such an analysis has been previously applied. These results support recent findings that alluvial fan sediment characteristics can be used as an archive of past environmental change and that landscapes are sensitive to environmental change over a glacial-interglacial cycle. Significantly, the self-similarity methodology offers a means to constrain relative mobility of grain sizes from field measurements where hydrological information is lost or irretrievable.

  1. Reactivation of the Pleistocene trans-Arabian Wadi ad Dawasir fluvial system (Saudi Arabia) during the Holocene humid phase

    NASA Astrophysics Data System (ADS)

    Matter, Albert; Mahjoub, Ayman; Neubert, Eike; Preusser, Frank; Schwalb, Antje; Szidat, Sönke; Wulf, Gerwin

    2016-10-01

    The Wadi ad Dawasir fluvial system in central Saudi Arabia is investigated using remote sensing and sedimentology, in combination with bio-proxy analyses (molluscs and ostracods). Age control is provided by radiocarbon as well as luminescence dating, using both quartz and feldspar grains. It is shown that the fluvial system was active from the Asir Mountains across the partially sand-covered interior of the Arabian Peninsula to the Arabian Gulf during the Holocene humid period. Sedimentology and faunal analysis reveal the presence of perennial streams and a permanent freshwater lake in the distal reach of the Dawasir system that are synchronous with fluvial accumulation in the headwaters of its major tributary, Wadi Tathlith. The increased runoff during the Holocene led to a re-activation of streams that largely followed pre-existing Late Pleistocene courses and eroded into older sediments. The absence of Holocene lakes in most of the Rub' al-Khali implies that trans-Arabian rivers were mainly fed by precipitation in the Asir Mountains. Monsoonal rainfall was apparently stronger there as well as in the northern, south-eastern and southern part of the Arabian Peninsula (southern Yemen and Oman), but it apparently did not directly affect the interior during the Holocene. The palaeoenvironmental reconstruction shows a narrow trans-Arabian green freshwater corridor as the result of phases of sustained flow lasting up to several centuries. The permanent availability of water and subsistence for wildlife provided a favourable environment for human occupation as documented by Neolithic stone tools that are found all along Wadi ad Dawasir.

  2. Crevasse splay processes and deposits in an ancient distributive fluvial system: The lower Beaufort Group, South Africa

    NASA Astrophysics Data System (ADS)

    Gulliford, Alice R.; Flint, Stephen S.; Hodgson, David M.

    2017-08-01

    Up to 12% of the mud-prone, ephemeral distributive fluvial system stratigraphy in the Permo-Triassic lower Beaufort Group, South Africa, comprises tabular fine-grained sandstone to coarse-grained siltstone bodies, which are interpreted as proximal to distal crevasse splay deposits. Crevasse splay sandstones predominantly exhibit ripple to climbing ripple cross-lamination, with some structureless and planar laminated beds. A hierarchical architectural scheme is adopted, in which 1 m thick crevasse splay elements extend for tens to several hundreds of meters laterally, and stack with other splay elements to form crevasse splay sets up to 4 m thick and several kilometers in width and length. Paleosols and nodular horizons developed during periods, or in areas, of reduced overbank flooding are used to subdivide the stratigraphy, separating crevasse splay sets. Deposits from crevasse splays differ from frontal splays as their proximal deposits are much thinner and narrower, with paleocurrents oblique to the main paleochannel. In order for crevasse splay sets to develop, the parent channel belt and the location where crevasse splays form must stay relatively fixed during a period of multiple flood events. Beaufort Group splays have similar geometries to those of contemporary perennial rivers but exhibit more lateral variability in facies, which is interpreted to be the result of more extreme fluctuations in discharge regime. Sharp-based crevasse splay packages are associated with channel avulsion, but most are characterized by a gradual coarsening upward, interpreted to represent progradation. The dominance of progradational splays beneath channel belt deposits may be more characteristic of progradational stratigraphy in a distributive fluvial system rather than dominated by avulsion processes in a trunk river system. This stratigraphic motif may therefore be an additional criterion for recognition of distributive fluvial systems in the ancient record.

  3. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    NASA Astrophysics Data System (ADS)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  4. Magmatic Intrusions and a Hydrothermal Origin for Fluvial Valleys on Mars

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C

    1998-01-01

    Numerical models of Martian hydrothermal systems demonstrate that systems associated with magmatic intrusions greater than several hundred cubic kilometers can provide sufficient groundwater outflow to form the observed fluvial valleys, if subsurface permeability exceeds about 1.0 darcy. Groundwater outflow increases with increasing intrusion volume and subsurface permeability and is relatively insensitive to intrusion depth and subsurface porosity within the range considered here. Hydrothermally-derived fluids can melt through 1 to 2 km thick ice-rich permafrost layers in several thousand years. Hydrothermal systems thus provide a viable alternative to rainfall for providing surface water for valley formation. This mechanism can form fluvial valleys not only during the postulated early warm, wet climatic epoch, but also during more recent epochs when atmospheric conditions did not favor atmospheric cycling of water. The clustered distribution of the valley networks on a given geologic surface or terrain unit of Mars may also be more compatible with localized, hydrothermally-driven groundwater outflow than regional rainfall. Hydrothermal centers on Mars may have provided appropriate environments for the initiation of life or final oases for the long-term persistence of life.

  5. Geomorphic change in Dingzi Bay, East China since the 1950s: impacts of human activity and fluvial input

    NASA Astrophysics Data System (ADS)

    Tian, Qing; Wang, Qing; Liu, Yalong

    2017-06-01

    This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal flats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, largescale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.

  6. Characterizing the Response of Fluvial Systems to Extreme Global Warming During the Early Eocene Climatic Optimum: An Analysis of the Wasatch and Green River Formations, Uinta Basin, UT

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2013-12-01

    The Wasatch and Green River Formations in the Uinta Basin, UT contain fluvial sandstones that record changes in terrestrial sedimentation coincident with Paleocene-Eocene Thermal Maximum (PETM) and at least six post-PETM hyperthermal climate change events. While proxies for chemical weathering rates during the PETM have been developed using the marine osmium isotope record, to date there has been little research on chemical weathering rates in proximal terrestrial depocenters. This work is one part of a multi-proxy research effort combining quantitative petrographic analysis, the stable carbon isotope record, and a high-resolution stratigraphic and sedimentologic framework across the southern margin of the Uinta Basin. Relative tectonic quiescence in the Uinta Basin during the Early Eocene suggests that climate is the forcing mechanism controlling fluvial architecture and composition, and gradual basin subsidence has preserved at least six pulses of greenhouse climate change during the Early Eocene Climatic Optimum (EECO). Terrestrial records of PETM climate do not support a humid climate with increased precipitation as previously suggested from marine proxies of climate change. Instead, terrestrial records of the PETM climate show evidence of prolonged drought punctuated by intense terrestrial flooding events in mid-latitude continental interiors. Increases in chemical weathering rates during the PETM due to increased temperature and average precipitation is cited as a key carbon sink to initiate a recovery phase where atmospheric CO2 returned to normal concentrations. If terrestrial records of chemical weathering rates differ substantially from marine proxies the carbon-cycle dynamics active during the EECO must be reconsidered. Initial results of this study show that these peak hyperthermal climate change conditions in the Uinta Basin preserve more compositionally and texturally immature sediments due to extremely high erosion and deposition rates, and subdued duration of transport. In particular the relative proportions of preserved potassium and especially plagioclase feldspar are sensitive to these pulses of greenhouse climate change. This dataset suggests that the seasonality of sediment dispersal and transport can play a more important role in the preservation potential of unstable mineral phases in the sedimentary record than just variations in global chemical weathering rates. Compositional variability in perenially wet and peaked seasonality facies in fluvial sandstones in the Wasatch Formation.

  7. Beaver ponds' impact on fluvial processes (Beskid Niski Mts., SE Poland).

    PubMed

    Giriat, Dorota; Gorczyca, Elżbieta; Sobucki, Mateusz

    2016-02-15

    Beaver (Castor sp.) can change the riverine environment through dam-building and other activities. The European beaver (Castor fiber) was extirpated in Poland by the nineteenth century, but populations are again present as a result of reintroductions that began in 1974. The goal of this paper is to assess the impact of beaver activity on montane fluvial system development by identifying and analysing changes in channel and valley morphology following expansion of beaver into a 7.5 km-long headwater reach of the upper Wisłoka River in southeast Poland. We document the distribution of beaver in the reach, the change in river profile, sedimentation type and storage in beaver ponds, and assess how beaver dams and ponds have altered channel and valley bottom morphology. The upper Wisłoka River fluvial system underwent a series of anthropogenic disturbances during the last few centuries. The rapid spread of C. fiber in the upper Wisłoka River valley was promoted by the valley's morphology, including a low-gradient channel and silty-sand deposits in the valley bottom. At the time of our survey (2011), beaver ponds occupied 17% of the length of the study reach channel. Two types of beaver dams were noted: in-channel dams and valley-wide dams. The primary effect of dams, investigated in an intensively studied 300-m long subreach (Radocyna Pond), was a change in the longitudinal profile from smooth to stepped, a local reduction of the water surface slope, and an increase in the variability of both the thalweg profile and surface water depths. We estimate the current rate of sedimentation in beaver ponds to be about 14 cm per year. A three-stage scheme of fluvial processes in the longitudinal and transverse profile of the river channel is proposed. C. fiber reintroduction may be considered as another important stage of the upper Wisłoka fluvial system development. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Computer Simulations of Deltas with Varying Fluvial Input and Tidal Forcing

    NASA Astrophysics Data System (ADS)

    Sun, T.

    2015-12-01

    Deltas are important depositional systems because many large hydrocarbon reservoirs in the world today are found in delta deposits. Deltas form when water and sediments carried by fluvial channels are emptied to an open body of water, and form delta shaped deposits. Depending on the relative importance of the physical processes that controls the forming and the growth of deltas, deltas can often be classified into three different types, namely fluvial, tidal and wave dominated delta. Many previous works, using examples from modern systems, tank experiments, outcrops, and 2 and 3D seismic data sets, have studied the shape, morphology and stratigraphic architectures corresponding to each of the deltas' types. However, few studies have focused on the change of these properties as a function of the relative change of the key controls, and most of the studies are qualitative. Here, using computer simulations, the dynamics of delta evolutions under an increasing amount of tidal influences are studied. The computer model used is fully based on the physics of fluid flow and sediment transport. In the model, tidal influences are taken into account by setting proper boundary conditions that varies both temporally and spatially. The model is capable of capturing many important natural geomorphic and sedimentary processes in fluvial and tidal systems, such as channel initiation, formation of channel levees, growth of mouth bars, bifurcation of channels around channel mouth bars, and channel avulsion. By systematically varying tidal range and fluvial input, the following properties are investigated quantitatively: (1) the presence and the form of tidal beds as a function of tidal range, (2) change of stratigraphic architecture of distributary channel mouth bars or tidal bars as tidal range changes, (3) the transport and sorting of different grainsizes and the overall facie distributions in the delta with different tidal ranges, and (4) the conditions and locations of mud drapes with different magnitude of tidal forcing.

  9. Spatial and temporal modelling of fluvial aggradation in the Hasli Valley (Swiss Alps) during the last 1300 years

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Schulte, Lothar; Carvalho, Filipe

    2016-04-01

    The Haslital delta (upper Aare River catchment, Bernese Alps) progradated into the Lake Brienz after the retreat of the Aare Glacier (post-LGM). Present delta plain geomorphology and spatial distribution of sedimentary facies result from historical fluvial dynamics and aggradation. Over centuries, local communities have struggled to control the Aare floods and to mitigate their effects on the floodplain (by means of raising artificial levees, channelizing the course, creating an underground drainage network, constructing dams at the basin headwaters). This study focuses on the spatial and temporal evolution of sediment dynamics of the floodplain by analyzing fluvial sedimentary records . The internal variability of lithostratigraphic sequences is a key issue to understand hydrological processes in the basin under the effect of environmental and anthropogenic changes of the past. The floodplain lithostratigraphy was reconstructed by coring alongside four cross-sections; each one is composed of more than 25 shallow boreholes (2 m deep) and two long drillings (variable depth, up to 9 m). The chronostratigraphical models were obtained by AMS 14C dating, and information of paleofloods and channel migration were reconstructed from historical sources (Schulte et al., 2015). The identification of different sedimentary facies, associated with the fluvial architecture structures, provides information on variations of vertical and lateral accretion processes (Houben, 2007). The location and geometry of buried channel-levee facies (gravel and coarse sand layers) indicate a significant mobility of the riverbed of the Hasli-Aare river, following an oscillatory pattern during the last millennia. Furthermore, fine sedimentary deposits and peat layers represent the existence of stable areas where floods have a low incidence. Once the different types of deposits were identified, aggradation rates were estimated in order to determine the spatial variability of the accumulation process. Results suggest a longitudinal decrease of sedimentation rates from the apex towards the distal section of the delta plain. Differences in rates are also found within each cross-section (e.g. channel-levée: higher rates; interdistributary depression: lower rates), suggesting an asymmetric growth of the floodplain. A GIS paleosurfaces model was executed to calculate the fluvial sediment storage, which was subdivided in 300-year time slices, thus contributing to identify temporal trends in floodplain aggradation. The results were analyzed with regard to external drivers that control the sedimentation processes in the Haslital delta, such as climate and/or anthropogenic factors (land-use changes, hydraulic management), as well as the influence of the internal system settings. The facies-based approach provides an explanation of both the spatial and temporal components of delta plain formation; and produces valid information for local flood risk management, concerning the problem of alpine floodplains aggradation.

  10. Controls of sediment transfers, sedimentary budgets and relief development in cold environments: Results from four catchment systems in Iceland, Swedish Lapland and Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.

    2012-04-01

    By the combined, longer-term and quantitative recording of relevant denudative slope processes and stream work in four selected catchment systems in sub-arctic oceanic Eastern Iceland (Hrafndalur and Austdalur), arctic-oceanic Swedish Lapland (Latnjavagge) and sub-arctic oceanic Finnish Lapland (Kidisjoki), information on the absolute and relative importance of the different denudative processes is collected. Direct comparison of the four catchment geo-systems (the catchment sizes range from 7 km2 to 23 km2) allows conclusions on major controls of sediment transfers, sedimentary budgets and relief development in theses cold climate environments. To allow direct comparison of the different processes, all mass transfers are calculated as tonnes multiplied by meter per year, i.e. as the product of the annually transferred mass and the corresponding transport distance. Ranking the different processes according to their annual mass transfers shows that stream work dominates over slope denudation. For Hrafndalur (Eastern Iceland) the following order of denudative processes is found after nine years of process studies (2001 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Creep processes, (7) Avalanches, (8) Debris flows, (9) Translation slides, (10) Deflation. Compared to that, in Austdalur the following ranking is given after fourten years of process studies (1996 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Mechanical fluvial slope denudation (slope wash), (4) Chemical slope denudation, (5) Avalanches, (6) Rock falls plus boulder falls, (7) Creep processes, (8) Debris flows, (9) Deflation, (10) Translation slides. In the Latnjavagge catchment (Swedish Lapland) the ranking is (eleven-years period of studies, 1999 - 2010): (1) Fluvial solute transport, (2) Fluvial suspended sediment plus bedload transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Avalanches, (7) Creep processes and solifluction, (8) Slush flows, (9) Debris flows, (10) Translation slides, (11) Deflation. In Kidisjoki (Finnish Lapland) the order of processes, as determined after a nine-years period (2001 - 2010) of geomorphic process studies, is: (1) Fluvial solute transport, (2) Chemical slope denudation, (3) Fluvial suspended sediment plus bedload transport, (4) Mechanical fluvial slope denudation, (5) Creep processes, (6) Avalanches and slush flows, (7) Debris flows and slides, (8) Rock and boulder falls, (9) Deflation. As a result, in all four selected cold climate study areas the intensity of contemporary denudative processes and mass transfers is altogether rather low, which is in opposition to the earlier postulated oppinion of a generally high intensity of geomorphic processes in cold climate environments. A direct comparison of the annual mass transfers summarises that there are differences between process intensities and the relative importance of different denudative processes within the four study areas. The major controls of these detected differences are: (i) Climate: The higher annual precipitation along with the larger number of extreme rainfall events and the higher frequency of snowmelt and rainfall generated peak runoff events in Eastern Iceland as compared to Swedish Lapland and Finnish Lapland lead to higher mass transfers, (ii) Lithology: The low resistance of rhyolites in Hrafndalur causes especially high weathering rates and connected mass transfers in this catchment. Due to the lower resistance of the rhyolites as compared to the basalts found in Austdalur Postglacial modification of the glacially formed relief is clearly further advanced in Hrafndalur as compared to Austdalur, (iii) Relief: The greater steepness of the Icelandic catchments leads to higher mass transfers here as compared to Latnjavagge and Kidisjoki, (iv) Vegetation cover: The significant disturbance of the vegetation cover by human impacts in Easter Iceland causes higher mass transfers (slope wash) whereas restricted sediment availability is a main reason for lower mass transfers in Swedish Lapland and Finnish Lapland. The applied catchment-based approach seems to be effective for analysing sediment budgets and trends of Postglacial relief development in selected study areas with given environmental settings. Direct comparison of investigated catchments will improve possibilities to model relief development as well as possible effects of projected climate change in cold climate environments.

  11. Streamflow response to glacier melt and related fluvial sediment transport in a proglacial Alpine river system

    NASA Astrophysics Data System (ADS)

    Morche, D.; Schuchardt, A.; Baewert, H.; Weber, M.; Faust, M.

    2016-12-01

    Glaciers in the European Alps are retreating since the end of the Little Ice Age around 1850. Where the glaciers shrink, they leave unconsolidated sediment stores (moraines, till, glacifluvial deposits). These sediment stores are highly vulnerable for being subsequently eroded and are thus a key variable (source) in the fluvial sediment budget of proglacial areas. The fluvial system in proglacial areas is more or less continuously fed with (fine) sediment by glacial melt water (glacial milk) during the ablation period and infrequently (e.g. during rainstorm events) supplied with sediment by landslides, debris flows, rock fall or fluvial transport from the slopes. A part of the sediment input is temporary stored in intermitted sinks, such as the river bed, bars or braid plains. These storages can be reworked and then become sources for fluvial sediment transport mainly during floods. These sediment transporting processes are highly variable in both, the temporal and spatial scale. A research project has been set up in the Kaunertal valley, Austrian Alps. The presented part of this joint project is focussed on the quantification of recent fluvial sediment dynamics in the proglacial Fagge River below the glacier Gepatschferner. The glacier is located in the Eastern European Alps at the south end of the Kaunertal valley covering an area of 15.7 km² (2012) and is drained by the Fagge River. During the years 2012 to 2015 the Gepatschferner has shown an accelerated glacial retreat leading to the exposure of unconsolidated sediments as well as bedrock areas. The main aim of the presented part of the joint project is the investigation of the fluvial sediment transport rates in the proglacial Fagge River in the Kaunertal valley. Sediment output of the glacial meltwater stream was measured during the ablation periods at a gauging station installed in front of the glacier outlet. Water level was recorded every 15 minutes and discharge measurements were made at different stages. Using the derived stage-discharge relationships, a hydrograph was computed for each ablation season. Suspended sediment concentration (SSC) of several hundred water samples and bedload transport using a portable Helley-Smith sampler were measured. The solid sediment output was finally estimated using the discharge data as well as SSC and bedload data.

  12. Fluvial responses to the Weichselian ice sheet advances and retreats: implications for understanding river paleohydrology and pattern changes in Central Poland

    NASA Astrophysics Data System (ADS)

    Weckwerth, Piotr

    2018-06-01

    The evolution of the fluvial systems during the Weichselian Pleniglacial in the Toruń Basin (Central Poland) was investigated through sedimentological investigation and paleohydraulic analysis. Within the basin, three fluvial cycles deposited after successive phases of the ice advance which took place 50, 28 and 20 ka ago. Successions of four fluvial lithotypes characterize each fluvial formation, that are related to the paleoenvironmental changes (e.g., climate instability and changes in the river regime) which affected the channel hydraulics and morphology. The successions comprise river-style metamorphosis between high-energy sand-bed meandering rivers (lithotype M1), high-energy sand-bed braided rivers (lithotype B1), and medium-energy sand-bed braided rivers with either unit bars (lithotype B2) or compound bars (lithotype B3) reflects the maturity stage of sand-bed-braided river evolution in the basin. The assessment of the fluvial sedimentary environments enabled the construction of a quantitative model of the changes in the river channel pattern in relation to the climate oscillation. Both the paleohydrological controls and their sedimentary consequences are discussed in the article. Lithotypes M1 and B1 represent riverbed modeled under supercritical flow condition. Deposition of lithotype B2 corresponded to the river channel pattern transformation and was manifested by decreasing flow velocity (energy losses associated with bedform roughness and with the transportation of coarser particles). The flow velocity was generally greater in rivers of lithotype B3 and energy of sedimentary environment was more stable than during the deposition of lithotype B2.

  13. Possible Fluvial Features in Golden Crater

    NASA Image and Video Library

    2015-03-25

    This observation from NASA Mars Reconnaissance Orbiter shows an interesting crater floor with what appear to be inverted channels, rounded lobe-like landforms, and light-toned layered deposits along the southern portion of the crater wall. High resolution can help study the layers, with an enhanced-color image showing us any variations in composition between those light-toned layers and the darker-toned surfaces. http://photojournal.jpl.nasa.gov/catalog/PIA19353

  14. Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain)

    NASA Astrophysics Data System (ADS)

    Vázquez-Urbez, M.; Pardo, G.; Arenas, C.; Sancho, C.

    2011-01-01

    The Pleistocene deposits of the valley of the River Piedra (NE Spain) are represented by thick tufas with small amounts of detrital material; the development of these deposits correlates with marine isotopic stages 9, 7, 6, and 5. The sedimentary scenario in which they formed mostly corresponded to stepped fluvial systems with barrage-cascade and associated dammed areas separated by low gradient fluvial stretches. Mapping and determining the sedimentology and chronology of these deposits distinguished two main episodes of fluvial diffluence that originated as a result of the temporary blockage of the river — a consequence of the vertical growth of tufa barrages in the main channel. In both episodes, water spilt out toward a secondary course from areas upstream of barrages where the water level surpassed the height of the divide between the main and secondary course. As a consequence, extensive and distinct tufa deposits with very varied facies formed over a gently inclined area toward and, indeed, within the secondary course. The hydrology of this secondary course was episodic, fed only by surface water. The two diffluence episodes detected occurred during MIS 7 and 7-6 and were interrupted by incision events, reflected by detrital deposits at the base of each tufa sedimentation stage in the main channel. Incision, which caused the breakage of the barrages, allowed water to again flow through the main channel. No evidence of diffluence was seen in any younger (MIS 5 to present-day) tufa deposits. The proposed diffluence model might help explain other carbonate fluvial systems in which (1) tufas appear in areas with no permanent water supply, and (2) tufas are absent over extensive areas despite conditions favourable to their formation.

  15. Lower and lower Middle Pennsylvanian fluvial to estuarine deposition, central Appalachian basin: Effects of eustasy, tectonics, and climate

    USGS Publications Warehouse

    Greb, S.F.; Chesnut, D.R.

    1996-01-01

    Interpretations of Pennsylvanian sedimentation and peat accumulation commonly use examples from the Appalachian basin because of the excellent outcrops and large reserve of coal (>100 billion metric tons) in the region. Particularly controversial is the origin of Lower and lower Middle Pennsylvanian quartzose sandstones; beach-barrier, marine-bar, tidalstrait, and fluvial models all have been applied to a series of sand bodies along the western outcrop margin of the basin. Inter-pretations of these sandstones and their inferred lateral relationships are critical for understanding the relative degree of eustatic, tectonic, and climatic controls on Early Pennsylvanian sedimentation. Cross sections utilizing >1000 subsurface records and detailed sedimentological analysis of the Livingston Conglomerate, Rockcastle Sandstone, Corbin Sandstone, and Pine Creek sandstone (an informal member) of the Breathitt Group were used to show that each of the principal quartzose sandstones on the margin of the central Appalachian basin contains both fluvial and marginal marine facies. The four sandstones are fluvially dominated and are inferred to represent successive bed-load trunk systems of the Appalachian foreland. Base-level rise and an associated decrease in extra-basinal sediment at the end of each fluvial episode led to the development of local estuaries and marine reworking of the tops of the sand belts. Each of the sand belts is capped locally by a coal, regardless of whether the upper surfaces of the sand belts are of fluvial or estuarine origin, suggesting allocyclic controls on deposition. Peats were controlled by a tropical ever-wet climate, which also influenced sandstone composition through weathering of stored sands in slowly aggrading braidplains. Recurrent stacking of thick, coarse-grained, fluvial deposits with extra-basinal quartz pebbles; dominance of bed-load fluvial-lowstand deposits over mixed-load, estuarine-transgressive deposits; thinning of sand belts around tectonic highs and along faults; cratonward shift and amalgamation of successive sand belts on the margin of the basin; and truncation of successive sand belts toward the fault-bound margin of the basin are interpreted as regional responses to Alleghenian tectonism, inferred to have been the dominant control on accommodation space and sediment flux in the Early Pennsylvanian basin.

  16. Landform evolution modeling of fine-grained sedimentation on alluvial fans on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Howard, A. D.; Moore, J. M.; Swander, Z. J.; Fink, D.; Korup, O.; Hesse, P. P.; Singh, T.; Srivastava, P.

    2017-12-01

    Reconstructing how rivers respond to changes in runoff or sediment supply by incising or aggrading has been pivotal in gauging the role of the Indian Summer Monsoon (ISM) as a geomorphic driver in the Himalayas. Here we present new data on how the fluvial systems of the Lesser Himalaya of India has responded to late Quaternary climate change. Our study is based on new chronological data for fluvial aggradation and incision from the Donga alluvial fan and several reaches of the upper Alaknanda River, as well as a meta-analysis of previous work. Fluvial sediments in the Himalayas in general, and quartz from the region in particular, have been previously noted for a number of unsuitable OSL properties including large recuperation and the existence of unremovable feldspar signals, leading to controversial discussions with regard to the reliability of existing OSL chronologies in this region. In order to improve the applicability and validity of OSL in the Lesser Himalaya, we have tested and applied pulsed OSL signals (POSL) to quartz grains from alluvial terrace and fan sediments, and propose a new chronology of regional fluvial aggradation. For previously dated terraces and alluvial fan sections, our POSL ages are systematically older than previously reported OSL ages. These results suggest periods of aggradation in the Alaknanda and Dehradun Valleys mainly between 20 and 50 ka. This most likely reflects decreased stream power during periods of weakened monsoon. The concentration of in-situ cosmogenic beryllium-10 from fluvial bedrock surfaces was also used to infer bedrock surface exposure ages, which should inform about episodes of active fluvial erosion. Resulting exposure ages span between 1.3 and 9.0 ka, suggesting that strath terraces were exposed relatively recently, and incision was dominant through most of the Holocene. In combination, our results support a precipitation-driven climatic control on fluvial dynamics, which regulates the balance between stream power and sediment supply. On a larger spatial scale, however, fluvial dynamics are probably not homogeneous as aggradation was taking place in adjacent catchments while incision dominated in the study area.

  17. The anthropogenic nature of present-day low energy rivers in western France and implications for current restoration projects

    NASA Astrophysics Data System (ADS)

    Lespez, L.; Viel, V.; Rollet, A. J.; Delahaye, D.

    2015-12-01

    As in other European countries, western France has seen an increase in river restoration projects. In this paper, we examine the restoration goals, methods and objectives with respect to the long-term trajectory and understanding of the contemporary dynamics of the small low energy rivers typical of the lowlands of Western Europe. The exhaustive geomorphological, paleoenvironmental and historical research conducted in the Seulles river basin (Normandy) provides very accurate documentation of the nature and place of the different legacies in the fluvial systems we have inherited. The sedimentation rate in the Seulles valley bottom has multiplied by a factor of 20 since the end of the Bronze Age and has generated dramatic changes in fluvial forms. Hydraulic control of the rivers and valley bottoms drainage throughout the last millennium has channelized rivers within these deposits. The single meandering channel which characterizes this river today is the legacy of the delayed and complex effects of long term exploitation of the river basin and the fluvial system. Bring to light that the "naturalness" of the restored rivers might be questioned. Our research emphasizes the gap between the poor knowledge of the functioning of these rivers and the concrete objectives of the restoration works undertaken, including dam and weir removal. Account of the long-term history of fluvial systems is required, not only to produce a pedagogic history of the "river degradation" but more fundamentally (i) to situate the current functioning of the fluvial system in a trajectory to try to identify thresholds and anticipate the potential turning points in a context of climate and land use change, (ii) to understand the role of morphosedimentary legacies on the current dynamics, (iii) to open the discussion on reference functioning or expected states and (iv) to open discussion on the sustainability of ecological restoration. To conclude, we point out the necessity to take into account the hybrid nature of low energy rivers in rural environments and to develop specific evaluation protocols which would include both biophysical processes and usual human activities which could be a way to share the evaluation and overcome conflicts between socioeconomic needs and environmental issues.

  18. Preservation of distributive vs. tributive and other fluvial system deposits in the rock record (Invited)

    NASA Astrophysics Data System (ADS)

    Fielding, C. R.

    2010-12-01

    A recent paper (Weissmann et al., 2010, Geology 38, 39-42) has suggested that deposits of distributive fluvial systems (DFS) “may represent the norm in the continental rock record, with axial and incised river deposits composing a relatively minor proportion of the succession”. Herein, I examine this hypothesis by reference to a number of well-exposed fluvial successions from a variety of basinal settings. The cited paper suggests that DFS dominate modern fluvial landscapes in subsiding sedimentary basins, while acknowledging that many merge into a trunk stream in the basin depocenter. Most of the modern World’s largest rivers, however, are tributive, and many of them preserve significant thicknesses of alluvium beneath and lateral to the modern channel belt. Because DFS are abundant on modern landscapes does not necessarily mean that they will be proportionately well-represented in the ancient. Consideration must also be given to the location within a basin where fluvial systems are most likely to be preserved (the depocenter), and to other factors. DFS (or fluvial/alluvial fans) are commonly developed on the tilted margins of asymmetric basins (hangingwalls of half-grabens and supradetachment basins, transtensional and foreland basins), but not in the depocenters. Symmetrically subsiding basins and long wavelength passive margin basins, however, facilitate development of extensive, very low-gradient plains where trunk streams with tributive or anabranching planforms are typical. Such basins, and the depocenters of asymmetric basins, are most likely to facilitate long-term establishment of trunk systems that have the greatest preservation potential. Incised and/or trunk stream deposits have, furthermore, been interpreted from a large number of ancient examples, some long-lived on timescales of millions of years. In the latter cases it has been argued that tectonic stability of the drainage basin is a key characteristic. A survey of the modern landscape therefore represents only a snapshot of time and one minor component of any climatically- or tectonically-driven cycle. It seems unlikely that DFS dominate alluvial stratigraphy. Criteria for recognition of DFS in the ancient have not yet been fully formulated, but might include 1) a relatively tightly constrained width vs. thickness distribution of channel lithosomes, and 2) lack of outsized channel bodies, in association with 3) centrifugal palaeocurrent distributions, and 4) down-paleoslope decreases in channel body dimensions. Neither these criteria, nor those cited in Weissmann et al. (2010), are necessarily unique to DFS, however. Accordingly, I consider it unlikely that a dominance of DFS in the alluvial rock record could be persuasively demonstrated even it were true.

  19. Latest Miocene-earliest Pliocene evolution of the ancestral Rio Grande at the Española-San Luis Basin boundary, northern New Mexico

    USGS Publications Warehouse

    Daniel J. Koning,; Aby, Scott B.; Grauch, V. J.; Matthew J. Zimmerer,

    2016-01-01

    We use stratigraphic relations, paleoflow data, and 40Ar/39Ar dating to interpret net aggradation, punctuated by at least two minor incisional events, along part of the upper ancestral Rio Grande fluvial system between 5.5 and 4.5 Ma (in northern New Mexico). The studied fluvial deposits, which we informally call the Sandlin unit of the Santa Fe Group, overlie a structural high between the San Luis and Española Basins. The Sandlin unit was deposited by two merging, west- to southwest-flowing, ancestral Rio Grande tributaries respectively sourced in the central Taos Mountains and southern Taos Mountains-northeastern Picuris Mountains. The river confluence progressively shifted southwestward (downstream) with time, and the integrated river (ancestral Rio Grande) flowed southwards into the Española Basin to merge with the ancestral Rio Chama. Just prior to the end of the Miocene, this fluvial system was incised in the southern part of the study area (resulting in an approximately 4–7 km wide paleovalley), and had sufficient competency to transport cobbles and boulders. Sometime between emplacement of two basalt flows dated at 5.54± 0.38 Ma and 4.82±0.20 Ma (groundmass 40Ar/39Ar ages), this fluvial system deposited 10–12 m of sandier sediment (lower Sandlin subunit) preserved in the northern part of this paleovalley. The fluvial system widened between 4.82±0.20 and 4.50±0.07 Ma, depositing coarse sand and fine gravel up to 14 km north of the present-day Rio Grande. This 10–25 m-thick sediment package (upper Sandlin unit) buried earlier south- to southeast-trending paleovalleys (500–800 m wide) inferred from aeromagnetic data. Two brief incisional events are recognized. The first was caused by the 4.82±0.20 Ma basalt flow impounding south-flowing paleodrainages, and the second occurred shortly after emplacement of a 4.69±0.09 Ma basalt flow in the northern study area. Drivers responsible for Sandlin unit aggradation may include climate-modulated hydrologic factors (i.e., variable sediment supply and water discharge) or a reduction of eastward tilt rates of the southern San Luis Basin half graben. If regional in extent, these phenomena could also have promoted fluvial spillover that occurred in the southern Albuquerque Basin at about 6–5 Ma, resulting in southward expansion of the Rio Grande to southern New Mexico.

  20. Evolution of Early Pleistocene fluvial systems in central Poland prior to the first ice sheet advance - a case study from the Bełchatów lignite mine

    NASA Astrophysics Data System (ADS)

    Goździk, Jan; Zieliński, Tomasz

    2017-06-01

    Deposits formed between the Neogene/Pleistocene transition and into the Early Pleistocene have been studied, mainly on the basis of drillings and at rare, small outcrops in the lowland part of Polish territory. At the Bełchatów lignite mine (Kleszczów Graben, central Poland), one of the largest opencast pits in Europe, strata of this age have long been exposed in extensive outcrops. The present paper is based on our field studies and laboratory analyses, as well as on research data presented by other authors. For that reason, it can be seen as an overview of current knowledge of lowermost Pleistocene deposits at Bełchatów, where exploitation of the Quaternary overburden has just been completed. The results of cartographic work, sedimentological, mineralogical and palynological analyses as well as assessment of sand grain morphology have been considered. All of these studies have allowed the distinction of three Lower Pleistocene series, i.e., the Łękińsko, Faustynów and Krzaki series. These were laid down in fluvial environments between the end of the Pliocene up to the advance of the first Scandinavian ice sheet on central Poland. The following environmental features have been interpreted: phases of river incision and aggradation, changes of river channel patterns, source sediments for alluvia, rates of aeolian supply to rivers and roles of fluvial systems in morphological and geological development of the area. The two older series studied, i.e., Łękińsko and Faustynów, share common characteristics. They were formed by sinuous rivers in boreal forest and open forest environments. The Neogene substratum was the source of the alluvium. The younger series (Krzaki) formed mainly in a braided river setting, under conditions of progressive climatic cooling. Over time, a gradual increase of aeolian supply to the fluvial system can be noted; initially, silt and sand were laid down, followed by sand only during cold desert conditions. These fluvio-periglacial conditions are identified in the foreground of the advance of the oldest ice sheet into this part of central Poland. The series studied have been compared with other fluvial successions which accumulated in the Kleszczów Graben during subsequent glaciations so as to document general changes in fluvial systems as reactions to climatic evolution. Thus, a palaeoenvironmental scenario has emerged which could be considered to be characteristic of central Poland during the Early Pleistocene.

  1. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  2. Allogenic controls on the fluvial architecture and fossil preservation of the Upper Triassic Ischigualasto Formation, NW Argentina

    NASA Astrophysics Data System (ADS)

    Colombi, Carina E.; Limarino, Carlos O.; Alcober, Oscar A.

    2017-12-01

    The Upper Triassic Ischigualasto Formation in NW Argentina was deposited in a fluvial system during the synrift filling of the extensional Ischigualasto-Villa Unión Basin. The expansive exposures of the fluvial architecture and paleosols provide a framework to reconstruct the paleoenvironmental evolution of this basin during the Upper Triassic using continental sequence stratigraphy. The Ischigualasto Formation deposition can be divided into seven sequential sedimentary stages: the 1) Bypass stage; 2) Confined low-accommodation stage; 3) Confined high accommodation stage; 4) Unstable-accommodation stage; 5) Unconfined high-accommodation stage; 6) Unconfined low-accommodation stage; and finally, 7) Unconfined high-accommodation stage. The sedimentary evolution of the Ischigualasto Formation was driven by different allogenic controls such as rises and falls in lake levels, local tectonism, subsidence, volcanism, and climate, which also produced modifications of the equilibrium profile of the fluvial systems. All of these factors result in different accommodations in central and flank areas of the basin, which led to different architectural configurations of channels and floodplains. Allogenic processes affected not only the sequence stratigraphy of the basin but also the vertebrate and plant taphocenosis. Therefore, the sequence stratigraphy can be used not only as a predictive tool related to fossil occurrence but also to understand the taphonomic history of the basin at each temporal interval.

  3. Ridge Orientations of the Ridge-Forming Unit, Sinus Meridiani, Mars-A Fluvial Explanation

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. Justin; Herridge, A.

    2013-01-01

    Imagery and MOLA data were used in an analysis of the ridge-forming rock unit (RFU) exposed in Sinus Meridiani (SM). This unit shows parallels at different scales with fluvial sedimentary bodies. We propose the terrestrial megafan as the prime analog for the RFU, and likely for other members of the layered units. Megafans are partial cones of fluvial sediment, with radii up to hundreds of km. Although recent reviews of hypotheses for the RFU units exclude fluvial hypotheses [1], inverted ridges in the deserts of Oman have been suggested as putative analogs for some ridges [2], apparently without appreciating The wider context in which these ridges have formed is a series of megafans [3], a relatively unappreciated geomorphic feature. It has been argued that these units conform to the megafan model at the regional, subregional and local scales [4]. At the regional scale suites of terrestrial megafans are known to cover large areas at the foot of uplands on all continents - a close parallel with the setting of the Meridiani sediments at the foot of the southern uplands of Mars, with its incised fluvial systems leading down the regional NW slope [2, 3] towards the sedimentary units. At the subregional scale the layering and internal discontinuities of the Meridiani rocks are consistent, inter alia, with stacked fluvial units [4]. Although poorly recognized as such, the prime geomorphic environment in which stream channel networks cover large areas, without intervening hillslopes, is the megafan [see e.g. 4]. Single megafans can reach 200,000 km2 [5]. Megafans thus supply an analog for areas where channel-like ridges (as a palimpsest of a prior landscape) cover the intercrater plains of Meridiani [6]. At the local, or river-reach scale, the numerous sinuous features of the RFU are suggestive of fluvial channels. Cross-cutting relationships, a common feature of channels on terrestrial megafans, are ubiquitous. Desert megafans show cemented paleo-channels as inverted topography [4] with all these characteristics.

  4. A numerical solution to define channel heads and hillslope parameters from digital topography of glacially conditioned catchments

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard; Baumann, Sebastian; Kober, Florian; Robl, Jörg; Heiniger, Lukas

    2016-04-01

    The analysis of the slope-area relationship in bedrock streams is a common way for discriminating the channel from the hillslope domain and associated landscape processes. Spatial variations of these domains are important indicators of landscape change. In fluvial catchments, this relationship is a function of contributing drainage area, channel slope and the threshold drainage area for fluvial erosion. The resulting pattern is related to climate, tectonic and underlying bedrock. These factors may become secondary in catchments affected by glacial erosion, as it is the case in many mid- to high-latitude mountain belts. The perturbation (i.e. the destruction) of an initial steady state fluvial bedrock morphology (where uplift is balanced by surface lowering rates) will tend to become successively larger if the repeated action of glacial processes exceeds the potential of fluvial readjustment during deglaciated periods. Topographic change is associated with a decrease and fragmentation of the channel network and an extension of the hillslope domain. In case of glacially conditioned catchments discrimination of the two domains remains problematic and a discrimination inconsistent. A definition is therefore highly needed considering that (i) a spatial shift in the domains affect the process and rate of erosion and (ii) topographic classifications of alpine catchments often base on channel and hillslope parameters (i.e.channel or hillslope relief). Here we propose a novel numerical approach to topographically define channel heads from digital topography in glacially conditioned mountain range catchments in order to discriminate the channel from the hillslope domain. We analyzed the topography of the southern European Central Alps, a region which (i) has been glaciated multiple times during the Quaternary, shows (ii) little lithological variations, is (iii) home of very low erodible rocks and is (iv) known as a region were tectonic processes have largely ceased. The region shows a distinct increase of mean elevation from the major overdeepend valleys near the Foreland to the alpine main divide at around 4000 m.a.s.l. within a distance of only 150 km. To define channel heads we first analyzed the variations to fine-scale topography of catchments by calculating the plan curvature at low topographic wavelengths. Higher elevated catchments more frequently impacted by glacial erosion show a higher degree in topographic flattening than catchments with a lower mean elevation where rougher fluvial (steady state) channels dominate. We found that this process of glacial destruction of fine-scale topography can well be analyzed by extracting the plan curvature from a DEM (1-30 m resolution). We furthermore found that the plan curvature frequency depends on the mean elevation of a catchment. Accordingly, the correlation between mean elevation of basins and the related density of pixels with a certain curvature is highly controlled by the used curvature threshold (e.g. used range of curvature pixels). A statistically derived optimum of the negative plan curvature was taken to define a threshold for the concavity of channels. The resulting fragmented network of channel segments was then fully integrated by utilizing a steepest descent algorithm. The upstream-most point of this fully integrated network was then defined as channel head. Our approach offers not only a consistent method to derive (i) hillslope and channel parameters in formerly glaciated catchments but also to (ii) measure the degree in glacial conditioning and therefore (iii) separating non-glacial from glacial catchments.

  5. Introduction to the special issue on discontinuity of fluvial systems

    NASA Astrophysics Data System (ADS)

    Burchsted, Denise; Daniels, Melinda; Wohl, Ellen E.

    2014-01-01

    Fluvial systems include natural and human-created barriers that modify local base level; as such, these discontinuities alter the longitudinal flux of water and sediment by storing, releasing, or changing the flow path of those materials. Even in the absence of distinct barriers, fluvial systems are typically discontinuous and patchy. The size of fluvial discontinuities ranges across scales from 100 m, such as riffles, to 104 m, such as lava dams or major landslides. The frequency of occurrence appears to be inversely related to size, with creation and failure of the small features, such as beaver dams, occurring on a time scale of 100 to 101 years and a frequency of occurrence at scales as low as 101 m. In contrast, larger scale discontinuities, such as lava dams, can last for time scales up to 105 years and have a frequency of occurrence of approximately 104 m. The heterogeneity generated by features is an essential part of river networks and should be considered as part of river management. Therefore, we suggest that "natural" dams are a useful analog for human dams when evaluating options for river restoration. This collection of papers on the studies of natural dams includes bedrock barriers, log jams and beaver dams. The collection also addresses the discontinuity generated by a floodplain — in the absence of an obvious barrier in the channel — and tools for evaluation of riverbed heterogeneity. It is completed with a study of impact of human dams on floodplain sedimentation. These papers will help geomorphologists and river managers understand the factors that control river heterogeneity across scales and around the world.

  6. Organic carbon transport through a discontinuous fluvial system in a Mediterranean catchment after a greening-up process

    NASA Astrophysics Data System (ADS)

    Boix-Fayos, Carolina; Almagro, María; Díaz-Pereira, Elvira; Pérez-Cutillas, Pedro; de Vente, Joris; Martínez-Mena, María

    2017-04-01

    Quantification of different organic carbon pools mobilized by lateral fluxes is important to close organic carbon (OC) budgets at the catchment scale. This quantification helps to identify in which forms OC is transferred, deposited, and mineralized during the erosion cycle. Many Mediterranean mountain catchments have experienced important land use changes in the last 50 years leading to a recovery of the vegetation in many cases. Furthermore, many of them are characterized by stream discontinuity with high runoff rates responding to intensive hydrological pulses. There is a current lack of knowledge on fluvial OC fluxes and their relation to soil organic carbon stocks in these systems. The objective of this research was to quantify the amount of organic carbon transported by these systems in a catchment representative of Mediterranean conditions and to explore how intermittent fluvial systems can affect organic carbon transported by lateral flows. During six years OC fluvial fluxes in a catchment of 77 km2 in SE Spain were monitored. The catchment experienced a greening-up process in the last 50 years through a conversion mainly from agricultural use (decrease 44%) to forest (increase 45%). Data on water discharge, sediment concentration, total organic carbon (OC) of suspended sediments and dissolved organic carbon (DOC) were collected throughout 32 rainfall events and 13 sampling periods with base flow conditions. The data were collected from two monitoring stations located on two nested subcatchments covering permanent and ephemeral flow conditions. We found no significant differences in OC concentrations in suspended sediments (10.1 ± 5 g kg-1) and DOC (0.014 ± 0.010 g kg-1) between the ephemeral and the permanent streams. However, sediment concentration, index of aggregation and silt content of suspended load were significantly higher in the ephemeral stream than in the permanent one. OC concentration of suspended sediments was much lower than OC concentration of the catchment soils (20.5 ± 7 g kg-1), and it showed a strong positive correlation with clay content. DOC concentrations were quite high, being in the upper limit of the mean values reported for European rivers and close to DOC values of runoff generated in natural forests from similar areas. A strong positive correlation between DOC and sediment concentration was also observed. DOC represents a 20% and 12% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. OC in suspended solids represents an 80% and 88% of the total OC fluvial flux in the permanent and ephemeral streams, respectively. The ephemeral stream (with a contribution of 70% to the total catchment area) provides up to 20% to the total transported OC downstream. The OC transported to the catchment outlet (1.97 g C m-2 year-1) constitutes 33 % of the OC lateral flux mobilized in the upper subcatchment areas (6 g C m-2 year-1). These findings highlight the strong dynamic character of organic carbon during transport in these fluvial systems and the important role of the hydrological regime for carbon transport and stability.

  7. A Late Pleistocene linear dune dam record of aeolian-fluvial dynamics at the fringes of the northwestern Negev dunefield

    NASA Astrophysics Data System (ADS)

    Roskin, Joel; Bookman, Revital; Friesem, David; Vardi, Jacob

    2017-04-01

    The paper presents a late Pleistocene aeolian-fluvial record within a linear dune-like structure that partway served as a dune dam. Situated along the southern fringe of the northwestern Negev desert dunefield (Israel) the structure's morphology, orientation, and some of its stratigraphic units partly resemble adjacent west-east extending vegetated linear dunes. Uneven levels of light-colored, fine-grained fluvial deposits (LFFDs) extend to the north and south from the flanks of the studied structure. Abundant Epipalaeolithic sites line the fringes of the LFFDs. The LFFD microstructures of fine graded bedding and clay blocky peds indicate sorting and shrinking of saturated clays in transitional environments between low energy flows to shallow standing water formed by dunes damming a mid-sized drainage system. The structure's architecture of interchanging units of sand with LFFDs indicates interchanging dominances between aeolian sand incursion and winter floods. Sand mobilization associated with powerful winds during the Heinrich 1 event led to dune damming downstream of the structure and within the structure to in-situ sand deposition, partial fluvial erosion, reworking of the sand, and LFFD deposition. Increased sand deposition led to structure growth and blockage of its drainage system that in turn accumulated LFFD units up stream of the structure. Extrapolation of current local fluvial sediment yields indicate that LFFD accretion up to the structure's brim occurred over a short period of several decades. Thin layers of Geometric Kebaran (c. 17.5-14.5 ka cal BP) to Harifian (12-11 ka BP) artifacts within the structure's surface indicates intermittent, repetitive, and short term camping utilizing adjacent water along a timespan of 4-6 kyr. The finds directly imply that the NW Negev LFFDs formed in dune-dammed water bodies which themselves were formed following events of vegetated linear dune elongation. LFFD accumulation persisted as a result of dune dam maintenance by smaller sand mobilization events. Wetter climates increased flood events boosting LFFD buildup rates but shortened dune dam longevity. The abundance and recurrence of water bodies in middle and large basins deteriorated after Harifian times when reduced wind power during the post-Younger Dryas constrained dune dam maintenance. Eventually, dune dam incision began as a result of overland flow after accommodation space dissipated due to LFFD accretion. Altogether, fluctuating high wind power and precipitation during a glacial-interglacial time window and high availability of fine-grained fluvial sediment yield from eroded middle to late Pleistocene upstream highlands loess mantles, combined to create a trio of aeolian-fluvial forcing factors supporting short-term but amplified dune-dammed fluvial depositional conditions.

  8. Using High-Resolution Comparison of Bedrock Properties and Channel Morphology to Empirically Characterize Erodibility in Fluvial Settings

    NASA Astrophysics Data System (ADS)

    Chilton, K.; Spotila, J. A.

    2017-12-01

    Bedrock erodibility exerts a primary control on landscape evolution and fluvial morphodynamics, but the relationships between erodibility and the many factors that influence it (rock strength, spacing and orientation of discontinuities, weathering susceptibility, erosive process, etc.) remain poorly defined. This results in oversimplification of erodibility in landscape evolution models, the primary example being the stream power incision model, which groups together factors which may influence erodibility into a single coefficient. There is therefore need to better define how bedrock properties influence erodibility and, in turn, channel form and evolution. This study seeks to deconvolve the relationships between bedrock material properties and erodibility by quantifying empirical relationships between substrate characteristics and bedrock channel morphology (slope, steepness index, width, form) at a high spatial resolution (5-10 m scale) in continuous and mixed alluvial-bedrock channels. We specifically focus on slowly eroding channels with minimal evidence for landscape transience, such that variations in channel morphology are mainly due to bedrock properties. We also use channels cut into sedimentary rock, which exhibit extreme variation (yet predictability and continuity) in discontinuity spacing. Here we present preliminary data comparing the morphology and bedrock properties of 1st through 4th order channels in the tectonically inactive Valley and Ridge province of the Appalachian Mountains, SW Virginia. Field surveys of channel slope, width, substrate, and form consist of 0.5 km long, continuous stream reaches through different intervals of tilted Paleozoic siliciclastic stratigraphy. Some surveys exhibit nearly complete bedrock exposure, whereas others are predominantly mixed, with localized bedrock reaches in high-slope knickzones. We statistically analyze relationships between fluvial morphology and lithology, strength (based on field and laboratory measurements), and discontinuity spacing and orientation. Results are informative for models of landscape evolution, and specifically provide insight into the controls on erosive process dominance (i.e., plucking vs. abrasion) and on the development and evolution of knickpoints in non-transient settings.

  9. An approximate fluvial equilibrium topography for the Alps

    NASA Astrophysics Data System (ADS)

    Stüwe, K.; Hergarten, S.

    2012-04-01

    This contribution addresses the question whether the present topography of the Alps can be approximated by a fluvial equilibrium topography and whether this can be used to determine uplift rates. Based on a statistical analysis of the present topography we use a stream-power approach for erosion where the erosion rate is proportional to the square root of the catchment size for catchment sizes larger than 12 square kilometers and a logarithmic dependence to mimic slope processes at smaller catchment sizes. If we assume a homogeneous uplift rate over the entire region (block uplift), the best-fit fluvial equilibrium topography differs from the real topography by about 500 m RMS (root mean square) with a strong systematic deviation. Regions of low elevation are too high in the equilibrium topography, while high-mountain regions are too low. The RMS difference significantly decreases if a spatially variable uplift function is allowed. If a strong variation of the uplift rate on a scale of 5 km is allowed, the systematic deviation becomes rather small, and the RMS difference decreases to about 150 m. A significant part of the remaining deviation apparently arises from glacially-shaped valleys, while another part may result from prematurity of the relief (Hergarten, Wagner & Stüwe, EPSL 297:453, 2010). The best-fit uplift function can probably be used for forward or backward simulation of the landform evolution.

  10. Fluvial sedimentary styles and associated depositional environments in the buntsandstein west of river rhine in saar area and pfalz (F.R. Germany) and vosges (France)

    NASA Astrophysics Data System (ADS)

    Dachroth, Wolfgang

    The Buntsandstein west of river Rhine in Saar area, Pfalz and Vosges consists of three fluvial magnacycles which are characterized by different associated non-alluvial environments. The stratigraphic sequence is divided by several unconformities reflecting tectonic movements which were connected with periods of extension of the depositional area. Two major phases and two minor events are recognized by the evaluation of the Pfalz unconformity and the Lothringen unconformity, and the Leuter unconformity and the Saar unconformity, respectively. The Lower Buntsandstein (including Zechstein) compries the first magnacycle and is built up of alluvial-fan deposits, fluvial braidplain sediments and marine to lagoonal deposits. Some aeolian sands as well as several palaeosols are also present. The palaeolandscape consists of alluvial fans seaming the margin of the basin and fluvial braidplains reaching from the toes of the fan belt to the centre of the depositional area which is occupied by a lagoonal sea that partially evolves into a playa-lake with progressive refreshment. The Middle Buntsandstein comprises the second magnacycle and is composed of an alternation of aeolian Dünnschichten and fluvial Felsbänke. The third facies are alluvial-fan deposits of palaeogeographically restricted distribution along the margins of the basin. The aeolian Dünnschichten originate in the marginal parts of chott-type depressions (in comparison with the recent Chott Djerid in Tunesia) where rising ground water moistens the dry sediments that are laid down on the playa floor and thus allows their enhanced preservation. In dry periods, wind-blown sand is spread out as plane sheets or as migrating wind ripple trains, or accumulates to barchanoid-type dunes that advance across the flat. Depending on supply of sand, all stages of transition between dune fields with only narrow interdune corridors between the ridges and interdune playas with isolated widely-spaced dunes are developed. The individual sand storms operating in the erg are recorded in a mm-scale graded grain-size lamination. The desert-type setting is divided into depositional sand ergs where aeolian bedforms migrate, and deflationary gravel serirs where pebbly fluvial sediments are winnowed, resulting in concentration of the gravel to residual lags and in abundant grinding of clasts to ventifacts. During time of flooding of the chotts by atmospheric precipitation, fluvial incursions or rising ground water level, lacustrine playa deposits settle out in shallow stagnant water. The fluvial Felsbänke originate in wadi-type braided river systems intersecting the erg and serir zones and often redepositing aeolian sand which is derived from undercutting during abandonment and displacement of the watercourses. The stream complexes are partially fed at their proximal ends by runoff from local alluvial fans which are aligned along parts of the margins of the basin. The Upper Buntsandstein comprises the third magnacycle which is split into three megacycles that in turn are divided into several phases. A change from generally arid to primarily semi-arid climate along with tectonical up-lift in the source area results in extinction of aeolian deposition and gives rise to formation of Violette Horizonte calcrete palaeosols which are widespread throughout the Upper Buntsandstein, if their origin was not inhibited by the dynamics of the fluvial systems. The palaeosols occur in different evolutionary stages and are mainly characterized by the typical blue-violet colour, presence of root tubes, carbonate nodules and carbonate crusts, destratification and polyedric jointing. The fluvial fining-upwards cyclothems are formed in braided river systems which partially pass into meandering stream complexes. At the top of the Upper Buntsandstein, the alluvial inland plain is converted into a delta complex in the coastal plain along the approaching sea, and with a sequence of alternating progradation and recession events, the Muschelkalk transgression finally inundates the continental setting.

  11. Climate Variability and Surface Processes in Tectonically Active Orogens: Insights From the Southern Central Andes and the Northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Strecker, M. R.; Bookhagen, B.

    2008-12-01

    The Southern Central Andes of NW Argentina and the NW Himalaya are important orographic barriers that intercept moisture-bearing winds associated with monsoonal circulation. Changes in both atmospheric circulation systems on decadal to millennial timescales fundamentally influence differences in the amount and location of rainfall in both orogens. In India, the eastern arm of the monsoonal circulation draws moisture from the Bay of Bengal and transports humid air masses along the southern Himalayan front to the northwest. There, at the end of the monsoonal conveyer belt, rainfall is diminished and moisture typically does not reach far into the orogen interior. Similar conditions apply to the NW Argentine Andes, which are located within the precipitation regime of the South American Monsoon. Here, pronounced local relief blocks humid air masses from the Amazon region, resulting in extreme gradients in rainfall that leave the orogen interior dry. However, during negative ENSO years (La Niña) and intensified Indian Summer Monsoon years, moisture penetrates farther into the Andean and Himalayan orogens, respectively. Structurally pre- conditioned valley systems may enhance this process and funnel moisture far into the orogen interior. The greater availability of moisture increases runoff, lateral scouring of mountin streams, and ultimately triggers intensified hillslope processes on decadal to centennial timescales. In both environments, the scenario of intensified present-day surface processes and rates is analogous to protracted episodes of enhanced mass removal from hillslopes via deep-seated landslides during the early Holocene and late Pleistocene. Apparently, these episodes were also associated with transient storage of voluminous conglomerates and lacustrine deposits in narrow intermontane basins. Subsequently, these deposits were incised, partly removed, and the fluvial systems adjusted themselves to the pre-depositional base levels through a readjustment and an increase in the fluvial efficiency and connectivity. Farther into the orogen interior, however, the episodically occurring increase in the availability of material may have contributed to the overall long-term reduction of relief due to reduced fluvial connectivity and the inability of rivers to evacuate material to the foreland. Pronounced coeval variations in erosion and depositional processes therefore emphasize the far-reaching impact of climate variability on the surface-process regime and hence provide insights into intensified episodes of landscape evolution in orogens. In addition, the present-day effects of climatic variability on the surface-process system may serve as a model for similar intensified processes that might be expected in a future global change scenario.

  12. Late Noachian Climate Of Mars: Constraints From Valley Network System Formation Times And The Intermittencies (Episodic/Periodic And Punctuated).

    NASA Astrophysics Data System (ADS)

    Head, James

    2017-04-01

    Formation of Late Noachian-Early Hesperian (LN-EH) valley network systems (VNS) signaled the presence of warm/wet conditions generating several hypotheses for climates permissive of these conditions. To constrain options for the ambient Noachian climate, we examine estimates for time required to carve channels/deltas and total duration implied by plausible intermittencies. Formation Times for VN, OBL, Deltas, Fans: A synthesis of required timescales show that even with the longest estimated continuous duration of VN formation/intermittencies, total time to carve the VN does not exceed 106 years, <˜0.25% of the total Noachian. Intermittency/episodicity assumptions are climate-model dependent (e.g., most workers use Earth-like fluvial activity and intermittency). Noachian-Early Hesperian Climate Models: 1) Warm and wet/semiarid/arid climate: Sustained background MAT >273 K, hydrological system vertically integrated, and rainfall occurs to recharge the aquifer. Two subtypes: a) "Rainfall/Fluvial Erosion-Dominated Warm and Wet Model": "Rainfall and surface runoff" persist throughout Noachian to explain crater degradation, and a LN-EH short rapidly ending terminal epoch. b) "Recharge Evaporation/Evaporite Dominated Warm and Wet Model": Sustained period of equatorial/mid-latitude precipitation and a vertically integrated hydrological system driven by evaporative upwelling and fluctuating shallow water table playa environments account for sulfate evaporate environments at Meridiani Planum. Sustained temperatures >273 K are required for extended periods (107-108 years). 2) Cold and icy climate: Sustained background temperatures extremely low (MAT ˜225 K), cryosphere is globally continuous, hydrological system is horizontally stratified, separating groundwater system from surface; no combination of spin-axis/orbital perturbations can raise MAT to 273 K. Adiabatic cooling effects transfer water to high altitudes, leading to "Late Noachian Icy Highlands Model". VNS cannot form in this nominal climate environment without special circumstances (e.g., impacts or volcanic eruptions elevate of temperatures by >˜50 K to induce melting and fluvial/lacustrine activity). 3) Cold and Icy climate warmed by greenhouse gases: The climate is sustained cold/icy model, but greenhouse gases of unspecified nature/amount/duration elevate MAT by several tens of Kelvins (say 25 K, to MAT 250 K), bringing annual temperature range into the realm where peak seasonal temperatures (PST) exceed 273 K. In this climate environment, analogous to the Antarctic Dry Valleys, seasonal summer temperatures above 273 K are sufficient to melt snow/ice and form fluvial and lacustrine features, but MAT is well below 273 K (253 K). Fluvial systems driven by episodic/periodic intermittency typically involve short intermittency time-scales (10-106 years) but require a warm climate (MAT >273 K) to be sustained for >0.4 x 109 years. Fluvial systems driven by punctuated intermittency typically involve short duration time-scales (10-105 years) but only require a warm climate (MAT >273 K) for the very short duration of the climatic impact of the punctuated event (102-105 years). We conclude that a cold and icy background climate with punctuated intermittency of warming and melting events is consistent with: 1) the estimated durations of continuous VN formation (<105 years) and 2) VN system estimated recurrence rates (106-107 years).

  13. Optimality approaches to describe characteristic fluvial patterns on landscapes

    PubMed Central

    Paik, Kyungrock; Kumar, Praveen

    2010-01-01

    Mother Nature has left amazingly regular geomorphic patterns on the Earth's surface. These patterns are often explained as having arisen as a result of some optimal behaviour of natural processes. However, there is little agreement on what is being optimized. As a result, a number of alternatives have been proposed, often with little a priori justification with the argument that successful predictions will lend a posteriori support to the hypothesized optimality principle. Given that maximum entropy production is an optimality principle attempting to predict the microscopic behaviour from a macroscopic characterization, this paper provides a review of similar approaches with the goal of providing a comparison and contrast between them to enable synthesis. While assumptions of optimal behaviour approach a system from a macroscopic viewpoint, process-based formulations attempt to resolve the mechanistic details whose interactions lead to the system level functions. Using observed optimality trends may help simplify problem formulation at appropriate levels of scale of interest. However, for such an approach to be successful, we suggest that optimality approaches should be formulated at a broader level of environmental systems' viewpoint, i.e. incorporating the dynamic nature of environmental variables and complex feedback mechanisms between fluvial and non-fluvial processes. PMID:20368257

  14. Depositional aspects and a guide to Paleocene coal-bearing sequences, Powder River Basin

    USGS Publications Warehouse

    Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Glass, Gary; Smith, Archie; Nichols, Douglas J.; Wolfe, Jack A.; Stanton, Ronald W.; Weaver, Jean

    1989-01-01

    The Paleocene coal-bearing sequences in the northern Powder River Basin are contained in the Tongue River Member of the Fort Union Formation and include anomalously thick (54 m) subbituminous coals. These thick coals have been the target of exploration and development for the past few decades. For the past decade, these coals have also been the object of depositional modeling studies [Law, 1976; Galloway, 1979; Flores, 1981, 1983, 1986; Ethridge and others, 1981; Ayers and Kaiser, 1984; Warwick, 1985; Ayers, 1986; Moore, 1986; Warwick and Stanton, 1988].Intensive modeling of these coals has resulted in two major schools of thought. Firstly, Galloway [1979], Flores [1981, 1983, 1986], Ethridge and others [1981], Warwick [1985], Moore [1986], and Warwick and Stanton [1988] believe that the coals formed from peat that accumulated in swamps of fluvial systems. The fluvial systems are interpreted as a basin axis trunktributary complex that drained to the north-northeast into the Williston Basin. Secondly, Ayers and Kaiser [1984] and Ayers [1986] believe that the coals formed from peat swamps of deltaic systems. These deltas are envisioned to have prograded east to west from the Black Hills and infilled Lebo lake that was centrally located along the basin axis.In order to explain the low ash content of the thick coals, Flores [1981] proposed that they are formed as domed peats, similar in geomorphology to swamps associated with the modern fluvial systems in Borneo as described by Anderson [1964]. Ethridge and others [1981] suggested that these fluvial-related swamps are platforms well above drainage systems and are fed by ground water that is recharged from surrounding highlands. Warwick [1985], Warwick and Stanton [1988], Satchell [1984], and Pocknall and Flores [1987] confirmed the domed peat hypothesis by investigating the petrology and palynology of the thick coals.The purpose of this paper is to provide a guide to the depositional aspects of the thick coals in the Tongue River Member of the Fort Union Formation and, because of the biases of the field trip leaders, it elaborates on the fluvial origin of the swamps in which the thick coals formed. Case histories of these thick coals and associated sediments in the Gillette, Powder River, and Kaycee-Linch areas of Wyoming and in the Decker-Tongue River area of Montana (fig. 1) are highlighted on this field trip.

  15. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  16. Linking glacial melting to Late Quaternary sedimentation in climatically sensitive mountainous catchments of the Mount Chlemos compex, Kalavryta, southern Greece

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Hughes, Philip

    2014-05-01

    Compared to the mountainous areas of northern Greece (e.g. Woodward et al., 2008), the influence of deglaciation cycles on sedimentation in mountainous catchments in southern Greece remains poorly understood due to the poor preservation of small moraines and limited opportunities to date glacial and fluvial sediment dynamics fluvial sediments (Pope, unpublished data). Nevertheless, intriguing new insight into links between glacial cycles and sediment transfer/deposition phases in upland catchments have emerged by applying multiple dating techniques to well-preserved multiple generations of moraines and extensive glacio-fluvial fan systems on Mount Chelmos (2355 m a.s.l.). U-series dating of calcites within proximal fan sediments constrain the earliest phase of glacio-fluvial sedimentation to 490 (±21.0)(ka (MIS 12), while OSL dating of fine sands constrains the deposition of extensive medial glacio-fluvial gravels in (valley we walked down through trees) to between 250.99 (±20.67) and 160.82 (±11.08) ka. By comparison, cosmogenic dating of moraine boulders indicates that three generations of well-preserved moraines in the highest cirque areas date to 31-23 ka, 17-16 ka and 12-11.5 ka. OSL dating also provides ages of 18 and 17 (±11.08) for an extensive glacio-fluvial terrace in a major valley draining the southern flanksof Mount Chelmos. The initial Mount Chelmos geochronology suggests that the earliest and middle phases of glacio-fluvial sedimentation are coincident with the Middle Pleistocene glacial stages stages recorded in the Pindus range (Hughes et al, 2006). These include the Skamnellian (MIS 12) and the Vlasian (MIS 6) Stages as well as other cold stage between these (e.g. MIS 8).Evidence of glacio-fluvial outwash in MIS 8 is interesting since evidence for this in the moraine records has remained elusive although is suggested further north in the Balkans (Hughes et al., 2011). The valley moraines and glacio-fluvial terraces (late MIS 2) post-date the local last glacial maximum and are coeval with the later part of the Tymphian stage in the Pindus range. Refs: Hughes, P.D., Woodward, J.C., Gibbard, P.L., Macklin, M.G., Gilmour, M.A. & Smith G.R. (2006) The glacial history of the Pindus Mountains, Greece. Journal of Geology 114, 413-434. Hughes, P.D., Woodward, J.C., van Calsteren, P.C. and Thomas, L.E. (2011) The Glacial History of The Dinaric Alps, Montenegro. Quaternary Science Reviews 30, 3393-3412. Woodward, J.C., Hamlin, R.H.B., Macklin, M.G., Hughes, P.D. & Lewin, J. (2008) Pleistocene catchment dynamics in the Mediterranean: glaciation, fluvial geomorphology and the slackwater sediment record. Geomorphology 101, 44-67.

  17. Fluvial processes in Ma'adim Vallis and the potential of Gusev crater as a high priority site

    NASA Technical Reports Server (NTRS)

    Cabrol, Nathalie; Landheim, Ragnild; Greeley, Ronald; Farmer, Jack

    1994-01-01

    According to exobiology site selection criteria for Mars, the search for potential extinct/extant water dependent life should focus on sites were water flowed and ponded. The Ma'adim Vallis/Gusev crater system is of high priority for exobiology research, because it appears to have involved long term flooding, different periods and rates of sedimentation, and probable episodic ponding. The topics covered include the following: evidence of nonuniform fluvial processes and early overflooding of the plateau and ponding.

  18. Integrated loessite-paleokarst depositional system, early Pennsylvanian Molas Formation, Paradox Basin, southwestern Colorado, U.S.A.

    NASA Astrophysics Data System (ADS)

    Evans, James E.; Reed, Jason M.

    2007-03-01

    Mississippian paleokarst served as a dust trap for the oldest known Paleozoic loessite in North America. The early Pennsylvanian Molas Formation consists of loessite facies (sorted, angular, coarse-grained quartz siltstone), infiltration facies (loess redeposited as cave sediments within paleokarst features of the underlying Mississippian Leadville Limestone), colluvium facies (loess infiltrated into colluvium surrounding paleokarst towers) and fluvial facies (siltstone-rich, fluvial channel and floodplain deposits with paleosols). The depositional system evolved from an initial phase of infiltration and colluvium facies that were spatially and temporally related to the paleokarst surface, to loessite facies that mantled the paleotopography, and to fluvial facies that were intercalated with marine-deltaic rocks of the overlying Pennsylvanian Hermosa Formation. This sequence is interpreted as a response to the modification of the dust-trapping ability of the paleokarst surface. Loess was initially eroded from the surface, transported and redeposited in the subsurface by the karst paleohydrologic system, maintaining the dust-trapping ability of the paleotopographic surface. Later, the paleotopographic surface was buried when loess accumulation rates exceeded the transport capacity of the karst paleohydrologic system. These changes could have occurred because of (1) increased dust input rates in western Pangaea, (2) rising base levels and/or (3) porosity loss due to deposition within paleokarst passageways.

  19. Pre- and post-remediation characterization of acid-generating fluvial tailings material

    USGS Publications Warehouse

    Smith, Kathleen S.; Walton-Day, Katherine; Hoal, Karin O.; Driscoll, Rhonda L.; Pietersen, K.

    2012-01-01

    The upper Arkansas River south of Leadville, Colorado, USA, contains deposits of fluvial tailings from historical mining operations in the Leadville area. These deposits are potential non-point sources of acid and metal contamination to surface- and groundwater systems. We are investigating a site that recently underwent in situ remediation treatment with lime, fertilizer, and compost. Pre- and post-remediation fluvial tailings material was collected from a variety of depths to examine changes in mineralogy, acid generation, and extractable nutrients. Results indicate sufficient nutrient availability in the post-remediation near-surface material, but pyrite and acid generation persist below the depth of lime and fertilizer addition. Mineralogical characterization performed using semi-quantitative X-ray diffraction and quantitative SEM-based micro-mineralogy (Mineral Liberation Analysis, MLA) reveal formation of gypsum, jarosite, and complex coatings surrounding mineral grains in post-remediation samples.

  20. Major controls on architecture, sequence stratigraphy and paleosols of middle Pleistocene continental sediments ("Qc Unit"), eastern central Italy

    NASA Astrophysics Data System (ADS)

    Di Celma, Claudio; Pieruccini, Pierluigi; Farabollini, Piero

    2015-05-01

    Middle Pleistocene continental sediments in central Italy ("Qc Unit") record the oldest fluvial accumulation along the uplifting margin of the Peri-Adriatic basin. The architecture of the sediment body can be divided into two unconformity-bounded, fining-upward cycles interpreted as genetically related depositional sequences. These sequences highlight the systematic adjustment of the fluvial system to changes in the ratio between accommodation space and sediment supply (A/S ratio) and, from base to top, comprise the following surfaces and stratal components: (i) a regionally correlative sequence boundary resulting from an A/S ratio ≤ 0; (ii) a low-accommodation systems tract characterized by conglomerate-rich, amalgamated channel fills and recording an A/S ratio < 1; (iii) an expansion surface marking the turnaround point from low-accommodation systems tract to high-accommodation systems tract deposits; (iv) a high-accommodation systems tract dominated by floodplain fines encasing lens-like, fluvial channel deposits and denoting an A/S ratio > 1; and (v) a mature red argillic paleosol. To constrain the climatic signal for paleosols formation, the two sequence-capping mature paleosols have been investigated. The results of these studies suggest that they were developed under humid and warm climatic conditions associated with interglacial phases, which have been correlatively attributed to Marine Oxygen Isotope Stages 11 and 9.

  1. Paleohydrology of Late Quaternary floods in the Atacama Desert and their paleoclimate implications

    NASA Astrophysics Data System (ADS)

    Izquierdo, Tatiana; Abad, Manuel; Larrondo, Lidisy

    2017-04-01

    The Quaternary fluvial succession in the Copiapó Valley (northern Chile) have not been deeply studied even though they record a large amount of palaeoenvironmental and paleoclimate information in an area of great interest as the Atacama Desert. The city of Copiapó is located at the confluence between Quebrada Paipote (the most important tributary of the middle course) and Copiapó River which has been dry during the last decades due to the surface and groundwater exploitation for agricultural and mining activity purposes upstream. Despite that, historical chronicles describe numerous flooding events in the city during the last 400 years due to snowmelt during the summer months or unusually intense rains during any time of the year. The most recent event occurred on March 25, 2015 when 70% of the city flooded and more than 2.2 million m3 of sediment accumulated, mostly coming from Quebrada Paipote. The sedimentological analysis of the lower fluvial terrace of the Copiapó River has allowed us to identify a fluvial system that abruptly changes upward to paleoflood and aeolian deposits. The latter constitute the top of the lower fluvial terraces on which the city of Copiapó is built. The fluvial facies are mainly formed by imbricated to massive conglomerates and poorly sorted pebble and cobble sized conglomerates with laminated sandstones that probably were deposited in a braided gravel-bed river. The overlying deposits are constituted by several levels of massive sandy siltstones and well sorted fine sands of aeolian origin that are interpreted as overbank flood events linked to flooding episodes that alternate with long episodes of eolian dunes and sand sheets development that buried almost the entire alluvial plain. This sharp change in the facies association record an abrupt climate change in the southern Atacama Desert during the recent Quaternary towards more arid conditions, with a dominance of floods and aeolian morphogenesis over the typical fluvial system processes in a semiarid environment. Several authors have proposed two episodes of regional changes in groundwater recharge tied to long-term changes in precipitation in the Atacama Desert when wet periods were terminated by pronounced dry periods, from 9 to 8 ka and from 3 to 0 ka. The change recorded in the fluvial succession of the Copiapó Valley can probably be linked to one of this climate event what would be confirmed by means of the deposits dating. In addition, this will provide more information for the estimation of the recurrence period for this catastrophic processes.

  2. Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.

    2017-12-01

    Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.

  3. Timing of fluvial terrace formation and concomitant travertine deposition in the upper Sutlej River (Tirthapuri, southwestern Tibet) and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Wang, Zhijun; Meyer, Michael C.; Gliganic, Luke A.; Hoffmann, Dirk L.; May, Jan-Hendrik

    2017-08-01

    Travertines are carbonates precipitated from hydrothermal springs and are relatively common on the Tibetan plateau and occur along tectonically active faults. The Karakoram fault system is an active strike-slip fault that extends from the Pamir into southwestern Tibet, where it controls the course of the upper Sutlej River and the occurrence of several hydrothermal springs, including the Tirthapuri hot springs. Multiple fluvial terraces that are partly capped by travertine are preserved in the Tirthapuri area. Four main fluvial terrace levels (labelled as T1 to T4 with increasing height above river) were identified and several meter-thick travertine platforms occur on the current river level as well as the T2 and T3 terraces. Sedimentological and petrographic observations suggest that the travertine platforms were deposited on active floodplains of the paleo- and modern Sutlej River, and preserved from fluvial erosion because travertine precipitation was immediately followed by vertical river-bed incision and thus terrace abandonment. Results of 230Th/U in combination with luminescence dating show that the deposition of travertine platform and river incision that led to the formation of T3 terrace (∼93 m above the Sutlej) took place at ca. 127.5 ka. The development of terrace T2 and overlying travertine platform (∼28 m above the Sutlej) occurred between ca. 10.0 and 8.8 ka. Fluvial incision has arrived at the modern level at least ca. 0.2 ka ago. Both the travertine deposition and major river incision are likely triggered by the intensified Indian summer monsoon and are linked to phases of maximum monsoon strength. During strong monsoon phases, a large quantity of moisture is transported into southwestern Tibet, activating hot springs and thus travertine precipitation, facilitating fluvial incision and stripping off sediments from the regional hill-slopes. At least over the last glacial cycle we suggest that the Tirthapuri travertine and associated fluvial incision are sensitive indicators of (peak) monsoonal activity and can thus provide valuable insights into past climate change and climate-driven landscape evolution on the southwestern Tibetan Plateau. Comparison of our findings with published data further suggests that monsoon-controlled fluvial aggradation and incision during the early Holocene is synchronous in southwestern Tibet and the adjacent sector of the Himalayan orogen (north-western Sub-to High Himalaya).

  4. Fluvial archives, a valuable record of vertical crustal deformation

    NASA Astrophysics Data System (ADS)

    Demoulin, A.; Mather, A.; Whittaker, A.

    2017-06-01

    The study of drainage network response to uplift is important not only for understanding river system dynamics and associated channel properties and fluvial landforms, but also for identifying the nature of crustal deformation and its history. In recent decades, geomorphic analysis of rivers has proved powerful in elucidating the tectonic evolution of actively uplifting and eroding orogens. Here, we review the main recent developments that have improved and expanded qualitative and quantitative information about vertical tectonic motions (the effects of horizontal deformation are not addressed). Channel long profiles have received considerable attention in the literature, and we briefly introduce basic aspects of the behaviour of bedrock rivers from field and numerical modelling perspectives, before describing the various metrics that have been proposed to identify the information on crustal deformation contained within their steady-state characteristics. Then, we review the literature dealing with the transient response of rivers to tectonic perturbation, through the production of knickpoints propagating through the drainage network. Inverse modelling of river profiles for uplift in time and space is also shown to be very effective in reconstructing regional tectonic histories. Finally, we present a synthetic morphometric approach for deducing the tectonic record of fluvial landscapes. As well as the erosional imprint of tectonic forcing, sedimentary deposits, such as fluvial terrace staircases, are also considered as a classical component of tectonic geomorphology. We show that these studies have recently benefited from rapid advances in dating techniques, allowing more reliable reconstruction of incision histories and estimation of incision rates. The combination of progress in the understanding of transient river profiles and larger, more rigorous data sets of terrace ages has led to improved understanding of river erosion and the implications for terrace profile correlation, i.e., extrapolation of local data to entire profiles. Finally, planform changes in fluvial systems are considered at the channel scale in alluvial rivers and regional level in terms of drainage reorganisation. Examples are given of how numerical modelling can efficiently combine with topographic data to shed new light on the (dis)equilibrium state of drainage systems across regional drainage divides.

  5. Variables and potential models for the bleaching of luminescence signals in fluvial environments

    USGS Publications Warehouse

    Gray, Harrison J.; Mahan, Shannon

    2015-01-01

    Luminescence dating of fluvial sediments rests on the assumption that sufficient sunlight is available to remove a previously obtained signal in a process deemed bleaching. However, luminescence signals obtained from sediment in the active channels of rivers often contain residual signals. This paper explores and attempts to build theoretical models for the bleaching of luminescence signals in fluvial settings. We present two models, one for sediment transported in an episodic manner, such as flood-driven washes in arid environments, and one for sediment transported in a continuous manner, such as in large continental scale rivers. The episodic flow model assumes that the majority of sediment is bleached while exposed to sunlight at the near surface between flood events and predicts a power-law decay in luminescence signal with downstream transport distance. The continuous flow model is developed by combining the Beer–Lambert law for the attenuation of light through a water column with a general-order kinetics equation to produce an equation with the form of a double negative exponential. The inflection point of this equation is compared with the sediment concentration from a Rouse profile to derive a non-dimensional number capable of assessing the likely extent of bleaching for a given set of luminescence and fluvial parameters. Although these models are theoretically based and not yet necessarily applicable to real-world fluvial systems, we introduce these ideas to stimulate discussion and encourage the development of comprehensive bleaching models with predictive power.

  6. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    PubMed Central

    Vandevenne, Floor I.; Delvaux, Claire; Hughes, Harold J.; André, Luc; Ronchi, Benedicta; Clymans, Wim; Barão, Lúcia; Govers, Gerard; Meire, Patrick; Struyf, Eric

    2015-01-01

    Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ30Si) signatures in soil water samples across a temperate land use gradient. We show that – independent of geological and climatological variation – there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ30Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ30Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate). PMID:25583031

  7. Monitoring and Attributions of Recent Dynamics in East Asia's Largest Fluvial Lake System: Integration of Remote Sensing, Hydrological Modeling, and Gauging Measurements

    NASA Astrophysics Data System (ADS)

    Wang, J.; Sheng, Y.; Wada, Y.

    2017-12-01

    The fluvial lake system across China's Yangtze Plain (YP), a World Wildlife Fund (WWF) ecoregion, are critical freshwater storages for nearly half a billion people. Our mapping using daily MODIS imagery revealed an approximately 10% net loss in the YP lake area from 2000 to 2011. Causes of this decadal lake decline were highly contentious, as it coincided with several meteorological droughts, a rising human water consumption (HWC), and the initial and yearly intensified water regulation from the world's largest hydroelectric project, the Three Gorges Dam (TGD). Here we integrated optical remote sensing, hydrological modeling, and in situ measurements to decouple the impacts of climate variability and anthropogenic activities including (i) Yangtze flow and sediment alterations by the TGD and (ii) HWC in agricultural, industrial, and domestic sectors throughout the downstream Yangtze Basin. Results suggest that this decadal lake decline was predominantly driven by climate variability closely linked to the El Niño-Southern Oscillation. Studied human activities, despite varying seasonal impacts that peak in fall, contribute ˜10-20% or less to the inter-annual lake area decline. Given that the TGD impacts on the total YP lake area and its seasonal variation are both under ˜5%, we also dismiss the speculation that the TGD might be responsible for evident downstream climate change by altering lake surface extent and thus open water evaporation. Nevertheless, anthropogenic impacts exhibited a strengthening trend during the past decade. Although the TGD has reached its full-capacity water regulation, the negative impacts of HWC and TGD-induced net channel erosion, which are already comparable to that of TGD's flow regulation, may continue to grow as crucial anthropogenic factors to future YP lake conservation.

  8. Downstream aggradation owing to lava dome extrusion and rainfall runoff at Volcán Santiaguito, Guatemala

    USGS Publications Warehouse

    Harris, Andrew J. L.; Vallance, James W.; Kimberly, Paul; Rose, William I.; Matías, Otoniel; Bunzendahl, Elly; Flynn, Luke P.; Garbeil, Harold

    2006-01-01

    Persistent lava extrusion at the Santiaguito dome complex (Guatemala) results in continuous lahar activity and river bed aggradation downstream of the volcano. We present a simple method that uses vegetation indices extracted from Landsat Thematic Mapper (TM) data to map impacted zones. Application of this technique to a time series of 21 TM images acquired between 1987 and 2000 allow us to map, measure, and track temporal and spatial variations in the area of lahar impact and river aggradation.In the proximal zone of the fluvial system, these data show a positive correlation between extrusion rate at Santiaguito (E), aggradation area 12 months later (Aprox), and rainfall during the intervening 12 months (Rain12): Aprox=3.92+0.50 E+0.31 ln(Rain12) (r2=0.79). This describes a situation in which an increase in sediment supply (extrusion rate) and/or a means to mobilize this sediment (rainfall) results in an increase in lahar activity (aggraded area). Across the medial zone, we find a positive correlation between extrusion rate and/or area of proximal aggradation and medial aggradation area (Amed): Amed=18.84-0.05 Aprox - 6.15 Rain12 (r2=0.85). Here the correlation between rainfall and aggradation area is negative. This describes a situation in which increased sediment supply results in an increase in lahar activity but, because it is the zone of transport, an increase in rainfall serves to increase the transport efficiency of rivers flowing through this zone. Thus, increased rainfall flushes the medial zone of sediment.These quantitative data allow us to empirically define the links between sediment supply and mobilization in this fluvial system and to derive predictive relationships that use rainfall and extrusion rates to estimate aggradation area 12 months hence.

  9. Fluvial particle characterization using artificial neural network and spectral image processing

    NASA Astrophysics Data System (ADS)

    Shrestha, Bim Prasad; Gautam, Bijaya; Nagata, Masateru

    2008-03-01

    Sand, chemical waste, microbes and other solid materials flowing with the water bodies are of great significance to us as they cause substantial impact to different sectors including drinking water management, hydropower generation, irrigation, aquatic life preservation and various other socio-ecological factors. Such particles can't completely be avoided due to the high cost of construction and maintenance of the waste-treatment methods. A detailed understanding of solid particles in surface water system can have benefit in effective, economic, environmental and social management of water resources. This paper describes an automated system of fluvial particle characterization based on spectral image processing that lead to the development of devices for monitoring flowing particles in river. Previous research in coherent field has shown that it is possible to automatically classify shapes and sizes of solid particles ranging from 300-400 μm using artificial neural networks (ANN) and image processing. Computer facilitated with hyper spectral and multi spectral images using ANN can further classify fluvial materials into organic, inorganic, biodegradable, bio non degradable and microbes. This makes the method attractive for real time monitoring of particles, sand and microorganism in water bodies at strategic locations. Continuous monitoring can be used to determine the effect of socio-economic activities in upstream rivers, or to monitor solid waste disposal from treatment plants and industries or to monitor erosive characteristic of sand and its contribution to degradation of efficiency of hydropower plant or to identify microorganism, calculate their population and study the impact of their presence. Such system can also be used to characterize fluvial particles for planning effective utilization of water resources in micro-mega hydropower plant, irrigation, aquatic life preservation etc.

  10. Preliminary assessment of factors influencing riverine fish communities in Massachusetts.

    USGS Publications Warehouse

    Armstrong, David S.; Richards, Todd A.; Brandt, Sara L.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Conservation and Recreation (MDCR), Massachusetts Department of Environmental Protection (MDEP), and the Massachusetts Department of Fish and Game (MDFG), conducted a preliminary investigation of fish communities in small- to medium-sized Massachusetts streams. The objective of this investigation was to determine relations between fish-community characteristics and anthropogenic alteration, including flow alteration and impervious cover, relative to the effect of physical basin and land-cover (environmental) characteristics. Fish data were obtained for 756 fish-sampling sites from the Massachusetts Division of Fisheries and Wildlife fish-community database. A review of the literature was used to select a set of fish metrics responsive to flow alteration. Fish metrics tested include two fish-community metrics (fluvial-fish relative abundance and fluvial-fish species richness), and five indicator species metrics (relative abundance of brook trout, blacknose dace, fallfish, white sucker, and redfin pickerel). Streamflows were simulated for each fish-sampling site using the Sustainable Yield Estimator application (SYE). Daily streamflows and the SYE water-use database were used to determine a set of indicators of flow alteration, including percent alteration of August median flow, water-use intensity, and withdrawal and return-flow fraction. The contributing areas to the fish-sampling sites were delineated and used with a Geographic Information System (GIS) to determine a set of environmental characteristics, including elevation, basin slope, percent sand and gravel, percent wetland, and percent open water, and a set of anthropogenic-alteration variables, including impervious cover and dam density. Two analytical techniques, quantile regression and generalized linear modeling, were applied to determine the association between fish-response variables and the selected environmental and anthropogenic explanatory variables. Quantile regression indicated that flow alteration and impervious cover were negatively associated with both fluvial-fish relative abundance and fluvial-fish species richness. Three generalized linear models (GLMs) were developed to quantify the response of fish communities to multiple environmental and anthropogenic variables. Flow-alteration variables are statistically significant for the fluvial-fish relative-abundance model. Impervious cover is statistically significant for the fluvial-fish relative-abundance, fluvial-fish species richness, and brook trout relative-abundance models. The variables in the equations were demonstrated to be significant, and the variability explained by the models, as measured by the correlation between observed and predicted values, ranges from 39 to 65 percent. The GLM models indicated that, keeping all other variables the same, a one-unit (1 percent) increase in the percent depletion or percent surcharging of August median flow would result in a 0.4-percent decrease in the relative abundance (in counts per hour) of fluvial fish and that the relative abundance of fluvial fish was expected to be about 55 percent lower in net-depleted streams than in net-surcharged streams. The GLM models also indicated that a unit increase in impervious cover resulted in a 5.5-percent decrease in the relative abundance of fluvial fish and a 2.5-percent decrease in fluvial-fish species richness.

  11. Ichnofossils and rhizoliths of the nearshore fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt

    USGS Publications Warehouse

    Bown, T.M.

    1982-01-01

    The ichnofossils and rhizoliths of the Oligocene Jebel Qatrani Formation of Egypt are among the best preserved, most diverse in form, and most abundant of such structures yet recognized in fluvial rocks. Twenty-one forms are described. The ichnofauna contains traces (domichnia, fodinichnia, cubichnia) of probable annelid, insect, crustacean, and vertebrate origin. These include the first described fossil nest structures and gallery systems of subterranean termites (Isoptera), the first examples of Ophiomorpha from wholly fluvial rocks, and the first fossil vertebrate burrows from the African Tertiary. Rhizoliths associated with the ichnofauna and those occurring elsewhere document a variety of small, wetland plants, coastal mangroves, and much larger trees. The environment suggested by these traces is consistent with the coastal, tropical to subtropical, monsoonal rain forest, with adjacent more open areas, that is indicated by independent evidence of sedimentology, paleontology, and paleopedology. ?? 1982.

  12. Using a conceptual model to assess the role of flow regulation in the hydromorphological evolution of riparian corridors

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, Vanesa; Gonzalez del Tánago, Marta; García de Jalón, diego

    2017-04-01

    Riparian corridors result from active vegetation-fluvial interactions, which are highly dependent on flow regime conditions and sediment dynamics. Colonization, establishment and survival of species are constrained by fluvial processes which vary according to topographic and sedimentological complexity of the corridor. In order to manage these dynamic and complex riparian systems there is a need for practical tools based on conceptual models. The objective of this study was to apply the conceptual model of riparian corridors lateral zonation in response to the dominant fluvial processes established by Gurnell et al. (2015) and verify its usefulness as a tool for assessing the effect of flow regulation. Two gravel rivers have been selected for this purpose from the north of Spain, the Porma River regulated by Boñar large dam and the unregulated Curueño River. The historical series of flows and the aerial photographs of 1956 and 2011 on which the river corridor has been delimited have been analyzed and identified the permanent inundated zone (1) and four areas of riparian vegetation dominated respectively by fluvial disturbance with coarse sediment erosion and deposition (zone 2), fluvial disturbance with finer sediment deposition (zone 3), inundation (zone 4) and soil moisture regime (zone 5). Likewise, a two-dimensional hydraulic simulation was performed with avenues of different return periods and calculated the prevailing hydraulic conditions (depths, velocities and drag forces) to characterize each of the vegetation zones mentioned in both rivers. The results show that the most active zone 2 (fluvial disturbance dominated showing coarse sediment erosion and deposition) disappears due to the regulation of flows and vegetation encroachment, while the riparian corridor is dominated by the less active zone where the vegetation is maintained by the humidity of sporadic floods and underground runoff. Moreover, by means of the hydraulic simulation we have found a close relationship between the different areas of fluvial processes recognized through its vegetation and hydraulic conditions, which predicts the expected evolution of vegetation at different scenarios of regulation.

  13. Hillslope to fluvial process domain transitions in headwater catchments

    NASA Astrophysics Data System (ADS)

    Williams, Karen Mary

    The landscape is partitioned into hillslopes and unchanneled valleys (hollows), and colluvial (hillslope controlled) and alluvial (self-formed) channels. The key issue for any study of headwater catchments is the rational distinction between these elements. Accurate identification of process domain transitions from hillslopes to hollows, hollows to colluvial channels and colluvial to alluvial channels, are not obvious either in the field or from topographic data derived from remotely sensed data such as laser derived (LIDAR) digital elevation models. The research in this dissertation investigates the spatial arrangement of these landforms and how hillslope and fluvial process domains interact in two pairs of headwater catchments in southwest and central Montana, using LIDAR data. This dissertation uses digital terrain analysis of LIDAR-derived topography and field studies to investigate methods of detection, modeling, and prediction of process transitions from the hillslope to fluvial domains and within the fluvial domain, from colluvial to alluvial channel reaches. Inflections in the scaling relationships between landscape parameters such as flowpath length, unit stream power (a metric of the energy expended by the channel in doing work), and drainage area were used to detect transitions in flow regimes characteristic of hillslope, unchanneled valleys, and channeled landforms. Using the scale-invariant properties of fluvial systems as a threshold condition, magnitude-frequency distributions of curvature and the derivative of aspect were also used to detect hillslope, fluvial, and transitional process domains. Finally, within the classification of channeled landforms, the transition from colluvial to alluvial channels was detected using the presence/absence of repeating patterns in the power spectra of fluvial energy and channel form parameters. LIDAR-derived scaling relations and magnitude-frequency distributions successfully detected and predicted locations of mapped channel heads and hollows and spatial regions of process transitions. Subreaches of arguably alluvial channel conditions were also identified in power spectra. However, extrinsic forcing limits ability to detect a clear transition from colluvial to fully alluvial conditions. Headwater catchments present a mosaic of process domains, in large determined by local structure and lithology. However, process domain transitions appear detectable and statistically, though not deterministically, predictable, irrespective of setting.

  14. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.

    2015-12-01

    Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display specific morphologic patterns. Tributary rivers tend to increase in size in the downstream direction. Because axial tributary rivers are present in confined settings in the sedimentary basin, they migrate back and forth within a relatively narrow belt (relative to the overall size of the sedimentary basin). Thus, axial tributary rivers tend to display amalgamated channel belt form with minimal preservation potential of floodplain deposits. Chute and neck cutoff avulsions are also common on meandering rivers in these settings. Where rivers on DFS exit their confining valley on the basin margin, sediment transport capacity is reduced and sediment deposition occurs resulting in development of a 'valley exit' nodal avulsion point that defines the DFS apex. Rivers may incise downstream of the basin margin valley because of changes in sediment supply and discharge through climatic variability or tectonic processes. We demonstrate that rivers on DFS commonly decrease in width down-DFS caused by infiltration, bifurcation, and evaporation. In proximal areas, channel sands are amalgamated through repeated avulsion, reoccupation of previous channel belts, and limited accumulation space. When rivers flood on the medial to distal portions of a DFS, the floodwaters spread across a large area on the DFS surface and typically do not re-enter the main channel. In these distal areas, rivers on DFS commonly avulse, leaving a discrete sand body and providing high preservation potential for floodplain deposits. Additional work is needed to evaluate the geomorphic character of modern sedimentary basins in order to construct improved facies models for the continental sedimentary rock record. Specifically, models for avulsion, bifurcation, infiltration, and geomorphic form on DFS are required to better define and subsequently predict facies geometries. Studies of fluvial systems in sedimentary basins are also important for evaluating flood patterns and groundwater distributions for populations in these regions.

  15. Depositional and provenance record of the Paleogene transition from foreland to hinterland basin evolution during Andean orogenesis, northern Middle Magdalena Valley Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Moreno, Christopher J.; Horton, Brian K.; Caballero, Victor; Mora, Andrés; Parra, Mauricio; Sierra, Jair

    2011-10-01

    The Central Cordillera and Eastern Cordillera of the northern Andes form the topographic flanks of the north-trending Magdalena Valley Basin. Constraining the growth of these ranges and intervening basin has implications for Andean shortening and the transformation from a foreland to hinterland basin configuration. We present sedimentological, paleocurrent, and sandstone petrographic results from Cenozoic type localities to provide insights into the tectonic history of the northern Middle Magdalena Valley Basin of Colombia. In the Nuevo Mundo Syncline, the mid-Paleocene transition from marine to nonmarine deposystems of the Lisama Formation corresponds with a paleocurrent shift from northward to eastward transport. These changes match detrital geochronological evidence for a contemporaneous shift from cratonic (Amazonian) to orogenic (Andean) provenance, suggesting initial shortening-related uplift of the Central Cordillera and foreland basin generation in the Magdalena Valley by mid-Paleocene time. Subsequent establishment of a meandering fluvial system is recorded in lower-middle Eocene strata of the lower La Paz Formation. Eastward paleocurrents in mid-Paleocene through uppermost Eocene fluvial deposits indicate a continuous influence of western sediment source areas. However, at the upper middle Eocene (˜40 Ma) boundary between the lower and upper La Paz Formation, sandstone compositions show a drastic decrease in lithic content, particularly lithic volcanic fragments. This change is accompanied by a facies shift from mixed channel and overbank facies to thick, amalgamated braided fluvial deposits of possible fluvial megafans, reflecting changes in both the composition and proximity of western sediment sources. We attribute these modifications to the growing influence of exhumed La Cira-Infantas paleohighs in the axial Magdalena Valley, features presently buried beneath upper Eocene-Quaternary basin fill along the western flank of the Nuevo Mundo Syncline. In uppermost Eocene strata of the lower Esmeraldas Formation, paleocurrents show a sharp reversal from eastward to dominantly westward transport that persisted into the Neogene. The Esmeraldas also records a change to more-distal, floodplain-dominated deposition of finer sediments. These adjustments are interpreted to reflect burial of the La Cira-Infantas highs and onset of Eastern Cordillera exhumation, resulting in a transition from foreland to hinterland basin conditions in the Magdalena Valley. The lack of significant variation in sandstone compositions suggests a bulk-rock compositional similarity between the La Cira-Infantas paleohighs (subsurface Magdalena Valley) and the Eastern Cordillera. Collectively, the data presented here refine previous thermochronologic and provenance studies and suggest that major uplift-induced exhumation in the Central Cordillera and Eastern Cordillera commenced by the mid-Paleocene and latest Eocene, respectively.

  16. Characteristics of Southern California coastal aquifer systems

    USGS Publications Warehouse

    Edwards, B.D.; Hanson, R.T.; Reichard, E.G.; Johnson, T.A.

    2009-01-01

    Most groundwater produced within coastal Southern California occurs within three main types of siliciclastic basins: (1) deep (>600 m), elongate basins of the Transverse Ranges Physiographic Province, where basin axes and related fluvial systems strike parallel to tectonic structure, (2) deep (>6000 m), broad basins of the Los Angeles and Orange County coastal plains in the northern part of the Peninsular Ranges Physiographic Province, where fluvial systems cut across tectonic structure at high angles, and (3) shallow (75-350 m), relatively narrow fluvial valleys of the generally mountainous southern part of the Peninsular Ranges Physiographic Province in San Diego County. Groundwater pumped for agricultural, industrial, municipal, and private use from coastal aquifers within these basins increased with population growth since the mid-1850s. Despite a significant influx of imported water into the region in recent times, groundwater, although reduced as a component of total consumption, still constitutes a significant component of water supply. Historically, overdraft from the aquifers has caused land surface subsidence, flow between water basins with related migration of groundwater contaminants, as well as seawater intrusion into many shallow coastal aquifers. Although these effects have impacted water quality, most basins, particularly those with deeper aquifer systems, meet or exceed state and national primary and secondary drinking water standards. Municipalities, academicians, and local water and governmental agencies have studied the stratigraphy of these basins intensely since the early 1900s with the goals of understanding and better managing the important groundwater resource. Lack of a coordinated effort, due in part to jurisdictional issues, combined with the application of lithostratigraphic correlation techniques (based primarily on well cuttings coupled with limited borehole geophysics) have produced an often confusing, and occasionally conflicting, litany of names for the various formations, lithofacies, and aquifer systems identified within these basins. Despite these nomenclatural problems, available data show that most basins contain similar sequences of deposits and share similar geologic histories dominated by glacio-eustatic sea-level fluctuations, and overprinted by syndepositional and postdepositional tectonic deformation. Impermeable, indurated mid-Tertiary units typically form the base of each siliciclastic groundwater basin. These units are overlain by stacked sequences of Pliocene to Holocene interbedded marine, paralic, fluvial, and alluvial sediment (weakly indurated, folded, and fractured) that commonly contain the historically named "80-foot sand," "200-foot sand," and "400-foot gravel" in the upper part of the section. An unconformity, cut during the latest Pleistocene lowstand (??18O stage 2; ca. 18 ka), forms a major sequence boundary that separates these units from the overlying Holocene fluvial sands and gravels. Unconfined aquifers occur in amalgamated coarse facies near the bounding mountains (forebay area). These units are inferred to become lithologically more complex toward the center of the basins and coast line, where interbedded permeable and low-permeability alluvial, fluvial, paralic, and marine facies contain confined aquifers (pressure area). Coastal bounding faults limit intrabasin and/or interbasin flow in parts of many basins. ?? 2009 Geological Society of America.

  17. Morphology of fluvial levee series along a river under human influence, Maros River, Hungary

    NASA Astrophysics Data System (ADS)

    Kiss, Tímea; Balogh, Márton; Fiala, Károly; Sipos, György

    2018-02-01

    The development and morphometry of fluvial levees reflect the connection between channel and overbank processes, which can be altered by various human activities. The aims of this study are to investigate the morphology and spatial characteristics of fluvial levees and evaluate the role of some local- and catchment-scale human activities on their medium-term (150 years) development. This study applies LiDAR data along a 53-km-long reach of the Maros River in Hungary. Six fluvial levee types are identified based on the beginning and end of their evolution. These levee types were generated by local nineteenth century channel regulation works (cutoffs) and mid-twentieth century channel narrowing, which was caused by gravel mining and water impoundment in the upstream sections. However, other human activities also influenced the development of active fluvial levees because their horizontal evolution could have been limited by embanked flood-protection levees or the widening of low-lying floodplain benches that were generated by channel narrowing. Additionally, revetment constructions influenced their vertical parameters as higher fluvial levees developed along the fixed banks. Generally, the older active fluvial levees are wider, while the younger active levees are narrower with steeper slopes but not always lower. On the low-lying floodplain levels (benches), the youngest fluvial levees evolved quite rapidly and consist of coarser material. Currently, only 9.8- to 38-year return-period floods could cover the fluvial levees, contributing to their evolution. This fact and the development of fluvial levee series with two-three members reflect a gradual decoupling of the channel from the floodplain.

  18. Ecoregions and stream morphology in eastern Oklahoma

    USGS Publications Warehouse

    Splinter, D.K.; Dauwalter, D.C.; Marston, R.A.; Fisher, W.L.

    2010-01-01

    Broad-scale variables (i.e., geology, topography, climate, land use, vegetation, and soils) influence channel morphology. How and to what extent the longitudinal pattern of channel morphology is influenced by broad-scale variables is important to fluvial geomorphologists and stream ecologists. In the last couple of decades, there has been an increase in the amount of interdisciplinary research between fluvial geomorphologists and stream ecologists. In a historical context, fluvial geomorphologists are more apt to use physiographic regions to distinguish broad-scale variables, while stream ecologists are more apt to use the concept of an ecosystem to address the broad-scale variables that influence stream habitat. For this reason, we designed a study using ecoregions, which uses physical and biological variables to understand how landscapes influence channel processes. Ecoregions are delineated by similarities in geology, climate, soils, land use, and potential natural vegetation. In the fluvial system, stream form and function are dictated by processes observed throughout the fluvial hierarchy. Recognizing that stream form and function should differ by ecoregion, a study was designed to evaluate how the characteristics of stream channels differed longitudinally among three ecoregions in eastern Oklahoma, USA: Boston Mountains, Ozark Highlands, and Ouachita Mountains. Channel morphology of 149 stream reaches was surveyed in 1st- through 4th-order streams, and effects of drainage area and ecoregion on channel morphology was evaluated using multiple regressions. Differences existed (?????0.05) among ecoregions for particle size, bankfull width, and width/depth ratio. No differences existed among ecoregions for gradient or sinuosity. Particle size was smallest in the Ozark Highlands and largest in the Ouachita Mountains. Bankfull width was larger in the Ozark Highlands than in the Boston Mountains and Ouachita Mountains in larger streams. Width/depth ratios of the Boston Mountains and Ozark Highlands were not statistically different. Significant differences existed, however, between the Boston Mountains and Ozark Highlands when compared individually to the Ouachita Mountains. We found that ecoregions afforded a good spatial structure that can help in understanding longitudinal trends in stream reach morphology surveyed at the reach scale. The hierarchy of the fluvial system begins within a broad, relatively homogenous setting that imparts control on processes that affect stream function. Ecoregions provide an adequate regional division to begin a large-scale geomorphic study of processes in stream channels. ?? 2010 Elsevier B.V.

  19. Megafans-Some New Perspectives from a Global Study

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. Justin

    2016-01-01

    A global study of megafans (greater than 100 km long) has revealed their widespread existence on all continents, with almost 200 documented, 93 in Africa where research is most thorough. The largest measures 705 km. Megafans are a major subset of "DFS" (distributive fluvial systems, a category that includes all fan-like features greater than 30 km long). 1. Many researchers now recognize megafans as different from floodplains, small coarse-grained alluvial fans, and deltas. Although smaller architectural elements in megafans are the same as those encountered in floodplains (channel, overbank, etc.), larger architectures differ because of the unconfined setting of megafans, versus the valley-confined setting of floodplains. 2. A length continuum is now documented between steep alluvial fans 10-20 km in length, and fluvial fans 30-50 km long. This implies a continuum of process from end-member alluvial fan processes (e.g. high-energy flows that emplace gravels, debris-flow units) to the relatively fine-grained channel and overbank deposits common to purely fluvial fans. Combinations of these different processes will then occur in many mid-sized fans. 3. The global distribution suggests a prima facie relationship with tectonic environment rather than climatic zones, with local controls being the slope of the formative river and the existence of a basin subsiding below the long profile of the river. But the global population has revealed that most megafans are relict. So it is possible that further research will show relationships to prior climatic regimes. 4. Megafans can have regional importance: e.g., along the east flank of the central Andes, nested megafans total approximately 750,000 km2-and 1.2m km2 if all megafans in S. America are counted. Modern megafan landscapes thus have basinal importance, orders of magnitude greater than alluvial fan bajadas. 5. Because so many aggrading basins are dominated today by DFS, it is claimed that DFS ought to be significant in the subsurface; and that existing fluvial models therefore may not apply to the majority of fluvial sedimentary units. Arguments have been raised against this view, but as modern megafan systems become better known they are rapidly being applied as a model in many fluvial basins. A small literature has arisen with apparent examples from every part of the world.

  20. Early Cretaceous to Paleocene North American Drainage Reorganization and Sediment Routing from Detrital Zircons: Significance to the Alberta Oil Sands and Gulf of Mexico Petroleum Provinces

    NASA Astrophysics Data System (ADS)

    Blum, M. D.

    2014-12-01

    Detrital zircons (DZs) represent a powerful tool for reconstructing continental paleodrainage. This paper uses new DZ data from Lower Cretaceous strata of the Alberta foreland basin, and Upper Cretaceous and Cenozoic strata of the Gulf of Mexico passive margin, to reconstruct paleodrainage and sediment routing, and illustrate significance to giant hydrocarbon systems. DZ populations from the Lower Cretaceous Mannville Group of Alberta and Saskatchewan infer a continental-scale river system that routed sediment from the eastern 2/3rds of North America to the Boreal Sea. Aptian McMurray Formation fluvial sands were derived from a drainage sourced in the Appalachians that was similar in scale to the modern Amazon. Albian fluvial sandstones of the Clearwater and Grand Rapids Formations were derived from the same Appalachian-sourced drainage area, which had expanded to include tributaries from the Cordilleran arc of the northwest US and southwest Canada. DZ populations from the Gulf of Mexico coastal plain complement this view, showing that only the southern US and Appalachian-Ouachita cordillera was integrated with the Gulf through the Late Cretaceous. However, by the Paleocene, drainage from the US Western Cordillera to the Appalachians had been routed to the Gulf of Mexico, establishing the template for sediment routing that persists today. The paleodrainage reorganization and changes in sediment routing described above played key roles in establishment of the Alberta oil sands and Gulf of Mexico as giant petroleum provinces. Early Cretaceous routing of a continental-scale fluvial system to the Alberta foreland provided large and contiguous fluvial point-bar sand bodies that became economically viable reservoirs, whereas mid- to late Cretaceous drainage reorganization routed greatly increased sediment loads to the Gulf of Mexico, which loaded the shelf, matured source rocks, and drove the gravitational and salt tectonics that helped establish the working hydrocarbon systems extant today.

  1. Quantifying uranium transport rates and storage of fluvially eroded mine tailings from a historic mine site in the Grand Canyon Region

    NASA Astrophysics Data System (ADS)

    Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.

    2015-12-01

    The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.

  2. Assessing the Effects of Climate on Global Fluvial Discharge Variability

    NASA Astrophysics Data System (ADS)

    Hansford, M. R.; Plink-Bjorklund, P.

    2017-12-01

    Plink-Bjorklund (2015) established the link between precipitation seasonality and river discharge variability in the monsoon domain and subtropical rivers (see also Leier et al, 2005; Fielding et al., 2009), resulting in distinct morphodynamic processes and a sedimentary record distinct from perennial precipitation zone in tropical rainforest zone and mid latitudes. This study further develops our understanding of discharge variability using a modern global river database created with data from the Global Runoff Data Centre (GRDC). The database consists of daily discharge for 595 river stations and examines them using a series of discharge variability indexes (DVI) on different temporal scales to examine how discharge variability occurs in river systems around the globe. These indexes examine discharge of individual days and monthly averages that allows for comparison of river systems against each other, regardless of size of the river. Comparing river discharge patterns in seven climate zones (arid, cold, humid subtropics, monsoonal, polar, rainforest, and temperate) based off the Koppen-Geiger climate classifications reveals a first order climatic control on discharge patterns and correspondingly sediment transport. Four groupings of discharge patterns emerge when coming climate zones and DVI: persistent, moderate, seasonal, and erratic. This dataset has incredible predictive power about the nature of discharge in fluvial systems around the world. These seasonal effects on surface water supply affects river morphodynamics and sedimentation on a wide timeframe, ranging from large single events to an inter-annual or even decadal timeframe. The resulting sedimentary deposits lead to differences in fluvial architecture on a range of depositional scales from sedimentary structures and bedforms to channel complex systems. These differences are important to accurately model for several reasons, ranging from stratigraphic and paleoenviromental reconstructions to more economic reasons, such as predicting reservoir presence, distribution, and connectivity in continental basins. The ultimate objective of this research is to develop differentiated fluvial facies and architecture based on the observed discharge patterns in the different climate zones.

  3. Evolution of Subaerial Coastal Fluvial Delta Island Topography into Multiple Stable States Under Influence of Vegetation and Stochastic Hydrology

    NASA Astrophysics Data System (ADS)

    Moffett, K. B.; Smith, B. C.; O'Connor, M.; Mohrig, D. C.

    2014-12-01

    Coastal fluvial delta morphodynamics are prominently controlled by external fluvial sediment and water supplies; however, internal sediment-water-vegetation feedbacks are now being proposed as potentially equally significant in organizing and maintaining the progradation and aggradation of such systems. The time scales of fluvial and climate influences on these feedbacks, and of their responses, are also open questions. Historical remote sensing study of the Wax Lake Delta model system (Louisiana, USA) revealed trends in the evolution of the subaerial island surfaces from a non-systematic arrangement of elevations to a discrete set of levees and intra-island platforms with distinct vegetation types, designated as high marsh, low marsh, and mudflat habitat. We propose that this elevation zonation is consistent with multiple stable state theory, e.g. as applied to tidal salt marsh systems but not previously to deltas. According to zonally-distributed sediment core analyses, differentiation of island elevations was not due to organic matter accumulation as in salt marshes, but rather by differential mineral sediment accumulation with some organic contributions. Mineral sediment accumulation rates suggested that elevation growth was accelerating or holding steady over time, at least to date in this young delta, in contrast to theory suggesting rates should slow as elevation increases above mean water level. Hydrological analysis of island flooding suggested a prominent role of stochastic local storm events in raising island water levels and supplying mineral sediment to the subaerial island surfaces at short time scales; over longer time scales, the relative influences of local storms and inland/regional floods on the coupled sediment-water-vegetation system of the subaerial delta island surfaces remain the subject of ongoing study. These results help provide an empirical foundation for the next generation of coupled sediment-water-vegetation modeling and theory.

  4. Do river channels decrease in width downstream on Distributive Fluvial Systems? An evaluation of modern mega-fans

    NASA Astrophysics Data System (ADS)

    Espinoza, T. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Recent studies on aggradational continental sedimentary basins globally show that fluvial deposits in most modern sedimentary basins are dominated Distributive Fluvial Systems (DFS). DFS's are identified by: (1) pattern of channels and floodplain deposits that radiate outward from an apex located where the river enters the sedimentary basin, (2) deposition where an alluvial system becomes unconfined upon entering the sedimentary basin, (3) broadly fan shaped deposit that is convex upward across the DFS and concave upward down-fan, and (4) if the DFS is incised, an intersection point above which the alluvial system is held in an incised valley and below which it distributes sediment across an active depositional lobe. Several papers about DFS hypothesized that rivers on DFS decrease in size down-fan. We are testing this hypothesis through evaluation of LANDSAT and STRM data from large DFS described by Hartley et al (2010). We use ArcGIS to: (1) open the images and merge them together if there are more than one image corresponding to the DFS being studied, (2) use a Maximum Likelihood Analysis in six classes to segment different features on the DFS (e.g. exposed sands, water, vegetation, and other fan environments), (3) isolate the classes that correspond to the active channel belt (e.g., exposed sand bars and water), (4) divide the active channel belt into 1000 m long sections, (5) determine the area of active channel belt in each section, and (6) calculate the average width of the river in each section (e.g., W = area/1000m). We present our result for each DFS river on a graph that shows the change in width downstream. Our final product will be a dataset that contains width versus distance down-fan from the apex for as many of the large DFS from Hartley et al (2010) as possible. If the hypothesis is supported, the decrease in width could have a substantial predictive significance on sandstone geometry in fluvial successions.

  5. Evidence of anthropogenic tipping points in fluvial dynamics in Europe

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert

    2018-05-01

    In this study the occurrence of thresholds in fluvial style changes during the Holocene are discussed for three different catchments: the Dijle and Amblève catchments (Belgium) and the Valdaine Region (France). We consider tipping points to be a specific type of threshold, defined as relatively rapid and irreversible changes in the system. Field data demonstrate that fluvial style has varied in all three catchments over time, and that different tipping points can be identified. An increase in sediment load as a result of human induced soil erosion lead to a permanent change in the Dijle floodplains from a forested peaty marsh towards open landscape with clastic deposition and a well-defined river channel. In the Valdaine catchment, an increase in coarse sediment load, caused by increased erosion in the mountainous upper catchment, altered the floodplains from a meandering pattern to a braided pattern. Other changes in fluvial style appeared to be reversible. Rivers in the Valdaine were prone to different aggradation and incision phases due to changes in peak water discharge and sediment delivery, but the impact was too low for these changes to be irreversible. Likewise the Dijle River has recently be prone to an incision phase due to a clear water effect, and also this change is expected to be reversible. Finally, the Amblève River did not undergo major changes in style during the last 2000 to 5000 years, even though floodplain sedimentation rates increased tenfold during the last 600 years. Overall, these examples demonstrate how changes in fluvial style depend on the crossing of thresholds in sediment supply and water discharge. Although changes in these controlling parameters are caused by anthropogenic land use changes, the link between those land use changes and changes in fluvial style is not linear. This is due to the temporal variability in landscape connectivity and sediment transport and the non-linear relationship between land use intensity and soil erosion.

  6. Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    PubMed Central

    Starcevich, Steven J.; Howell, Philip J.; Jacobs, Steven E.; Sankovich, Paul M.

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID:22655037

  7. Late Cenozoic fluvial successions in northern and western India: an overview and synthesis

    NASA Astrophysics Data System (ADS)

    Sinha, R.; Kumar, R.; Sinha, S.; Tandon, S. K.; Gibling, M. R.

    2007-11-01

    Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga-Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability-both spatial and temporal-in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.

  8. Sedimentology of the lower part of the Upper Triassic Chinle Formation and its relationship to uranium deposits, White Canyon area, southeastern Utah

    USGS Publications Warehouse

    Dubiel, Russell F.

    1983-01-01

    Closely spaced measured stratigraphic sections of the lower part of the Late Triassic Chinle Formation in the White Canyon area of southeastern Utah depict a fluvial-deltaic-lacustrine depositional sequence that hosts uranium deposits in basal fluvial sandstones. The basal Shinarump Member consists of predominantly trough-crossbedded, coarse-grained sandstone and minor gray, carbonaceous mudstone and is interpreted as a valley-fill sequence overlain by deposits of a braided stream system. The overlying Monitor Butte Member is composed of cyclic- and foreset-bedded siltstone, sandstone, and mudstone and is interpreted as a succession of low-energy fluvial, deltaic and orqanicrich, lacustrine-marsh sediments. The overlying Moss Back Member is composed of a laterally extensive, coarse- to medium-grained, conglomeratic sandstone and is interpreted as a braided-stream system that flowed north to northwest. The entire sequence was deposited in response to changes in local base level associated with a large lake that lay to the west. Isopachs of lithofacies indicate distinct lacustrine basins and a correspondence between these facies and modern structural synclines. Facies changes and coincidence of isopach thicks suggest that structural synclines were active in the Late Triassic and influenced the pattern of sediment distribution within the basins. Uranium mineralization appears to be related to certain low-energy depositional environments in that uranium is localized in fluvial sandstones that lie beneath organic-rich lacustrine-marsh mudstones and carbonaceous delta-front sediments. The reducing environment preserved in these facies may have played an important role in the localization of uranium.

  9. Assessment of Large Wood budget in the gravel-bed Piave River: first attempt

    NASA Astrophysics Data System (ADS)

    Tonon, Alessia; Picco, Lorenzo; Ravazzolo, Diego; Aristide Lenzi, Mario

    2015-04-01

    During the last decades, the dynamics of large wood (LW) in rivers were analyzed to consider and define the LW budget. The space-time variations of LW amount results from the differences among input (e.g. fluvial transport, lateral recruitment) and output (e.g. fluvial transport, overbank deposition, natural chronic dead) of LW along a riverine environment. Different methodologies were applied in several fluvial environments, however in large river systems characterized by complex LW dynamics, the processes are still poor quantified. Aim of this contribution is to perform a LW budget estimation over the short period, assessing the effect of an over bankfull flood (Q=1039 m3 s-1; R.I=3.5 years). The research was carried out along a 1 km-long reach (around 15 ha) located into the middle course of the large gravel-bed Piave River (North East of Italy). The LW budget has been defined considering the recruitment through bank erosion and the fluvial transport of LW into and out of the study reach. The former factor was achieved integrating field data on riparian vegetation with the monitoring of riverbanks with a Differential Global Positioning System (DGPS). The latter was obtained detecting all LW elements (diameter ≥ 0.10 m and/or length ≥ 1 m) stored along the study reach, before and after the flood. For each LW the GPS position was recorded and a numbered tag was installed with the addition of colored paint to permit a rapid post-event recovery. Preliminary results indicate that, along the study area, the floating transport of LW is one of the most significant processes able to modify the amount of LW deposited along a riverine system. In fact, considering the input of LW, the 99.4 % (102 m3 km-1) comes from upstream due to floating, whereas the 0.6% (0.17 m3 km-1) was recruited through bank erosion. Analyzing the output, 94.3% (40.26 m3 km-1) of LW was transported downstream of the study area, whereas only the 5.7 % (2.43 m3 km-1) of LW was involved in the "internal displacement". In this study, the amount of LW increased of about 60.29% in the number of LW elements and 145% in volume, corresponding to 61.98 m3 km-1. The methodology here presented appears an easy and economical way to assess LW budget at a small spatial scale. However, further improvements are needed to allow the construction of comprehensive LW budget, considering also the loss of LW from overbank deposition as from natural decay. This research is funded within both, the University of Padova Research Project CPDA149091- "WoodAlp: linking large Wood and morphological dynamics of gravel bed rivers of Eastern Italian Alps"- 2014-16 and the Project "SedAlp: sediment management in Alpine basins, integrating sediment continuum, risk mitigation and hydropower", 83-4-3-AT, in the framework of the European Territorial Cooperation Program "Alpine Space" 2007-13.

  10. Fluvial response to the last Holocene rapid climate change in the Northwestern Mediterranean coastlands

    NASA Astrophysics Data System (ADS)

    Degeai, Jean-Philippe; Devillers, Benoît; Blanchemanche, Philippe; Dezileau, Laurent; Oueslati, Hamza; Tillier, Margaux; Bohbot, Hervé

    2017-05-01

    The variability of fluvial activity in the Northwestern Mediterranean coastal lowlands and its relationship with modes of climate change were analysed from the late 9th to the 18th centuries CE. Geochemical analyses were undertaken from a lagoonal sequence and surrounding sediments in order to track the fluvial inputs into the lagoon. An index based on the K/S and Rb/S ratios was used to evidence the main periods of fluvial activity. This index reveals that the Medieval Climate Anomaly (MCA) was a drier period characterized by a lower fluvial activity, while the Little Ice Age (LIA) was a wetter period with an increase of the river dynamics. Three periods of higher than average fluvial activity were evidenced at the end of the first millennium CE (ca. 900-950 cal yr CE), in the first half of the second millennium CE (ca. 1150-1550 cal yr CE), and during the 1600s-1700s CE (ca. 1650-1800 cal yr CE). The comparison of these fluvial periods with other records of riverine or lacustrine floods in Spain, Italy, and South of France seems to indicate a general increase in fluvial and flood patterns in the Northwestern Mediterranean in response to the climate change from the MCA to the LIA, although some episodes of flooding are not found in all records. Besides, the phases of higher than average fluvial dynamics are in good agreement with the North Atlantic cold events evidenced from records of ice-rafted debris. The evolution of fluvial activity in the Northwestern Mediterranean coastlands during the last millennium could have been driven by atmospheric and oceanic circulation patterns.

  11. The Gediz River fluvial archive: A benchmark for Quaternary research in Western Anatolia

    NASA Astrophysics Data System (ADS)

    Maddy, D.; Veldkamp, A.; Demir, T.; van Gorp, W.; Wijbrans, J. R.; van Hinsbergen, D. J. J.; Dekkers, M. J.; Schreve, D.; Schoorl, J. M.; Scaife, R.; Stemerdink, C.; van der Schriek, T.; Bridgland, D. R.; Aytaç, A. S.

    2017-06-01

    The Gediz River, one of the principal rivers of Western Anatolia, has an extensive Pleistocene fluvial archive that potentially offers a unique window into fluvial system behaviour on the western margins of Asia during the Quaternary. In this paper we review our work on the Quaternary Gediz River Project (2001-2010) and present new data which leads to a revised stratigraphical model for the Early Pleistocene development of this fluvial system. In previous work we confirmed the preservation of eleven buried Early Pleistocene fluvial terraces of the Gediz River (designated GT11, the oldest and highest, to GT1, the youngest and lowest) which lie beneath the basalt-covered plateaux of the Kula Volcanic Province. Deciphering the information locked in this fluvial archive requires the construction of a robust geochronology. Fortunately, the Gediz archive provides ample opportunity for age-constraint based upon age estimates derived from basaltic lava flows that repeatedly entered the palaeo-Gediz valley floors. In this paper we present, for the first time, our complete dataset of 40Ar/39Ar age estimates and associated palaeomagnetic measurements. These data, which can be directly related to the underlying fluvial deposits, provide age constraints critical to our understanding of this sequence. The new chronology establishes the onset of Quaternary volcanism at ∼1320ka (MIS42). This volcanism, which is associated with GT6, confirms a pre-MIS42 age for terraces GT11-GT7. Evidence from the colluvial sequences directly overlying these early terraces suggests that they formed in response to hydrological and sediment budget changes forced by climate-driven vegetation change. The cyclic formation of terraces and their timing suggests they represent the obliquity-driven climate changes of the Early Pleistocene. By way of contrast the GT5-GT1 terrace sequence, constrained by a lava flow with an age estimate of ∼1247ka, span the time-interval MIS42 - MIS38 and therefore do not match the frequency of climate change as previously suggested. The onset of volcanism breaks the simple linkage of terracing to climate-driven change. These younger terraces more likely reflect a localized terracing process triggered by base level changes forced by volcanic eruptions and associated reactivation of pre-existing faults, lava dam construction, landsliding and subsequent lava-dammed lake drainage. Establishing a firm stratigraphy and geochronology for the Early Pleistocene archive provides a secure framework for future exploitation of this part of the archive and sets the standard as we begin our work on the Middle-Late Pleistocene sequence. We believe this work forms a benchmark study for detailed Quaternary research in Turkey.

  12. A geomorphologist's dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar

    NASA Astrophysics Data System (ADS)

    Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain

    2016-04-01

    Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main challenge lies in the post-processing of the massive amount of data generated by the instrument (typically 10 billions points for 60 km of rivers). Yet the very high density of the raw point cloud data (40 pts/m² on topography, 20 pts/m² on bathymetry) and the full waveform nature of the signal offers new opportunities to develop classification and change detection algorithms. In this context, we present a new automated workflow to extract automatically the water surface (a critical aspect for refraction correction) and submerged data in highly complex fluvial environments based on a combined analysis of the 1064 nm and 532 nm channels. We conclude that topo-bathymetric lidar is getting close to being an operational technique for fluvial bathymetry offering a vast range of applications in hydrology, ecohydrology, geomorphology and river management.

  13. Fluvial processes on Mars: Erosion and sedimentation

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  14. Geomorphic and sedimentary responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene environmental change

    NASA Astrophysics Data System (ADS)

    Arauza, Hanna M.; Simms, Alexander R.; Bement, Leland C.; Carter, Brian J.; Conley, Travis; Woldergauy, Ammanuel; Johnson, William C.; Jaiswal, Priyank

    2016-01-01

    Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.

  15. Implications of the fluvial history of the Wacheqsa River for hydrologic engineering and water use at Chavín de Húntar, Peru

    USGS Publications Warehouse

    Contreras, Daniel A.; Keefer, David K.

    2009-01-01

    Channeling of water through a variety of architectural features represents a significant engineering investment at the first millennium B.C. ceremonial center of Chavín de Huántar in the Peruvian Central Andes. The site contains extensive evidence of the manipulation of water, apparently for diverse purposes. The present configuration of the two local rivers, however, keeps available water approximately 9m below the highest level of water-bearing infrastructure in the site. Geomorphic and archaeological investigation of the fluvial history of the Wacheqsa River has revealed evidence that the Chavín-era configuration of the Wacheqsa River was different. A substantially higher water level, likely the result of a local impoundment of river water caused by a landslide dam, made the provision of water for the hydrologic system within the site a more readily practical possibility. We review what is known of that system and argue that the fluvial history of the Wacheqsa River is critical to understanding this aspect of hydrologic engineering and ritual practice at Chavín. This study demonstrates the relative rapidity and archaeological relevance of landscape change in a dynamic environment.

  16. Styles and timing of volatile-driven activity in the eastern Hellas region of Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Bleamaster, Leslie F.; Mest, Scott C.

    2005-12-01

    Recent analyses of Mars Global Surveyor and Mars Odyssey data sets provide new insights into the geologic evolution of the eastern Hellas region of Mars, in particular, the role of volatiles. Here, we present results of our recent work and integrate these with previous studies by various investigators to provide a synthesis of the history of volatile-driven activity of the region. We utilize high-resolution images from the Mars Orbiter Camera and Thermal Emission Imaging System combined with Mars Orbiter Laser Altimeter digital elevation models and profiles to examine fluvial systems that dissect the circum-Hellas highlands, to characterize stages in the development of the Dao, Niger, Harmakhis, and Reull Valles canyon systems, and to evaluate evidence for ancient lakes in Hellas Planitia. The occurrence of valley networks, dissected highland crater rims, and crater interior deposits such as layered plateaus suggests widespread ancient degradation of the circum-Hellas highlands. Canyon development, which represents subsequent more localized activity, may have included an early fluvial phase followed by the collapse and sapping dominated stages that, along with recent wall erosion and floor resurfacing, produced the currently observed morphologies. The prominent role of collapse and sapping along the east rim of Hellas, along with the presence of numerous channels extending toward the basin and sequences of finely layered deposits along the basin rim, suggests a volatile-rich substrate across a broad depositional shelf. The east rim of the basin was an accumulation zone for atmospheric volatiles and/or the edge of volatile-rich deposits associated with the basin floor. This evidence combined with topographic data and cratered terrain preservation around the basin is consistent with a lacustrine period or periods in early Martian history. The style, magnitude, and spatial extent of volatile-driven activity in eastern Hellas have varied considerably with time, and these variations may represent a transition from a water- to an ice-dominated surface environment.

  17. Stream restoration in dynamic fluvial systems: Scientific approaches, analyses, and tools

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    In the United States the average annual investment in river restoration programs is approximately $1 billion. Despite this burgeoning industry, the National Water Quality Inventory, which tracks the health of the nation's rivers, has shown no serious improvement in cumulative river health since the early 1990s. In the AGU monographStream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools, editors Andrew Simon, Sean J. Bennett, and Janine M. Castro pull together the latest evidence-based understanding of stream restoration practices, with an aim of guiding the further development of the field and helping to right its apparently unsuccessful course. In this interview, Eos talks to Sean J. Bennett, University of Buffalo, about the culture, practice, and promise of restoring rivers.

  18. Reach-scale characterization of large woody debris in a low-gradient, Midwestern U.S.A. river system

    NASA Astrophysics Data System (ADS)

    Martin, Derek J.; Pavlowsky, Robert T.; Harden, Carol P.

    2016-06-01

    Addition of large woody debris (LWD) to rivers has increasingly become a popular stream restoration strategy, particularly in river systems of the Midwestern United States. However, our knowledge of LWD dynamics is mostly limited to high gradient montane river systems, or coastal river systems. The LWD-related management of low-gradient, Midwestern river systems is thus largely based on higher gradient analogs of LWD dynamics. This research characterizes fluvial wood loads and investigates the relationships between fluvial wood, channel morphology, and sediment deposition in a relatively low-gradient, semiconfined, alluvial river. The LWD and channel morphology were surveyed at nine reaches along the Big River in southeastern Missouri to investigate those relationships in comparison to other regions. Wood loads in the Big River are low (3-114 m3/100 m) relative to those of higher gradient river systems of the Pacific Northwest, but high relative to lower-gradient river systems of the Eastern United States. Wood characteristics such as size and orientation suggest that the dominant LWD recruitment mechanism in the Big River is bank erosion. Also, ratios of wood geometry to channel geometry show that the Big River maintains a relatively high wood transport capacity for most of its length. Although LWD creates sites for sediment storage, the overall impact on reach-scale sediment storage in the Big River is low (< 4.2% of total in-channel storage). However, wood loads, and thus opportunities for sediment storage, have the potential to grow in the future as Midwestern riparian forests mature. This study represents the first of its kind within this particular type of river system and within this region and thus serves as a basis for understanding fluvial wood dynamics in low-gradient river systems of the Midwestern United States.

  19. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the <63 micron fraction of sediment sources including forested topsoils (Cs-137 11.28 +/- 0.75 Bq/kg; Pb-210ex 181.87 +/- 20.00 Bq/kg), agricultural topsoils (Cs-137 3.21 +/- 0.26 Bq/kg; Pb-210ex 29.59 +/- 10.94 Bq/kg) and sub-soils from channel banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the upper reach (<10 km long), while sub-soils account for 90 to 100% of sediment entering and being transported in the remaining ~50 km of the system. This shift in dominant sediment source material coincided with a large increase in channel cross sectional area (~20 to >200 m2) downstream, with channel expansion and gullies contributing fine sediment to the system. A lack of topsoil being supplied to the channel suggests minimal lateral connectivity between the catchment and the trunk stream in all areas apart from the upper catchment. The enlargement and entrenchment of the channel downstream has also resulted in lateral disconnection between the channel and floodplain. In this case, a rapid reduction in radionuclide concentrations downstream does coincide with hydrogeomorphic changes, supporting their use for studying short-term sediment dynamics. These findings highlight the importance of understanding hydrogeomorphic processes and connectivity when interpreting sediment source and tracer data.

  20. Slip slidin' away: A post-glacial environmental history of the Waipaoa River basin

    NASA Astrophysics Data System (ADS)

    Gomez, Basil; Rosser, Brenda J.

    2018-04-01

    The dramatic changes that occurred to the post-glacial landscape in the headwaters of the Waipaoa River basin are a consequence of perturbations about the equilibrium that exists between the rate of tectonic uplift and fluvial incision. At times when the amount of coarse sediment delivered to channels exceeds the capacity of streams to remove it, the channel bed rises at the rate of tectonic uplift. Once bedload overcapacity is replaced by undercapacity and the alluvial cover is depleted, streams reestablish contact with bedrock and recuperate the time lost to fluvial incision. The first major perturbation occurred during the final phase of the last glaciation (ca. 33-17.5 cal. ka), when aggradation was driven by a climate-forced variation in the relative supplies of sediment and water. We suggest that the subsequent transformation of channels in the headwaters of the Waipaoa River basin, from alluvial to bedrock, occurred as the atmospheric and oceanic circulation converged on their contemporary patterns ca. 12 cal. ka. A second major perturbation that continues to the present began ca. 1910-1912 CE, when a massive increase in sediment load was accompanied by a modest increase in water discharge after the native vegetation cover in the headwaters was replaced by pasture. The processes of terrace creation and incision are inherently unsteady, and in five interim cases incision was arrested by a transient increase in the thickness of the alluvial cover that was a response to climatic forcing. Events that disrupted the native vegetation cover in the headwaters also modulated patterns of sediment dispersal and accumulation in other parts of the fluvial system and caused rapid, storm-driven infilling of the Poverty Bay Flats. Tectonic subsidence dictates the course of the Waipaoa River across Poverty Bay Flats which, because the modern rate of floodplain construction by vertical accretion is rapid relative to the amount of destruction by lateral channel migration, has remained virtually unchanged for the past 100 years. During this time the channel assumed a narrower, deeper form that is in equilibrium with the contemporary supply of sediment and hydraulic regime.

  1. A Major Eocene Lake System in the Hinterland of the North American Cordillera Comes into Geochronologic Focus

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Cassel, E. J.; Canada, A.; Jicha, B.; Singer, B. S.

    2015-12-01

    Eastern Nevada lay east of the Cordilleran continental divide and experienced continental drainage ponding during the Eocene Epoch. Though recognized for nearly a century, lake deposits of the Elko Formation have yet to be placed in a regional chronostratigraphic context, due primarily to Neogene extension and a paucity of radioisotopic ages. New geochronology is essential for creating robust reconstructions of paleogeography and paloeohydrology from scattered surviving outcrops, and for assessing competing tectonic interpretations for lake basin formation and evolution. New single crystal sanidine 40Ar/39Ar ages for 21 ash beds collected from the Elko Formation and contemporaneous fluvial deposits indicate that lacustrine deposition occurred locally as early as ca. 48.7 Ma, coeval with deposition of the Bridgerian portion of the lacustrine Sheep Pass Formation to the south. Lake Elko's most expansive phase occurred between ca. 44.0 and 40.5 Ma, resulting in regional overlap of lacustrine strata atop fluvial strata. Based on lithofacies and lithofacies stacking patterns, an up-section transition from overfilled to balanced-fill conditions occurred at ca. 41.3 Ma. This transition led to increasing salinity and lake level variations that formed a prominent 1-4 meter-scale depositional cyclicity characteristic of partly closed lakes that periodically dropped below their sill elevation. The stromatolitic uppermost Elko Formation records proximal volcanism, including several welded ignimbrites, and is overlain by an unconformity of >10 m.y. duration. Initial ponding, the shift to balanced fill conditions, voluminous siliceous volcanism, and subsequent unconformity are interpreted to reflect the progressive NE to SW advance of 500-900 m of topographic uplift and volcanism resulting from rollback of the Farallon slab. 40Ar/39Ar ages for ash beds at five individual locations suggest that a single ignimbrite, likely the Tuff of Nelson Creek, was deposited across a ~10,000 km2 area of NE NV at 40.45 ± 0.08 Ma, near the end of Elko Formation accumulation. Within this bed, the hydrogen isotope composition of glass hydration waters vary systematically according to paleo-landscape position, recording a 102 ± 20‰ increase in δD values for glasses deposited in lacustrine versus fluvial environments.

  2. Experimental Investigation of Terminal Fans Prograding on a Salt Substrate: 3-d Physical Experiments

    NASA Astrophysics Data System (ADS)

    Chatmas, E.; Kim, W.

    2015-12-01

    Interactions between geologic features and a mobile substrate layer are present in several passive margin locations throughout the world. Deformation of a substrate layer is primarily due to differential loading of sediment and results in complexities within the morphology and subsequently the stratigraphic record. By using simplified scaled tank experiments, we investigated the relationship between substrate deformation and fan evolution in a fluvial-dump-wind-redistribution setting. In this system, sediment is being eroded from a mountain range and creating terminal fans; fluvial channels form off of the fan body and the deposited fluvial sediment is the source for an aeolian dune field. Several past experimental studies have focused on how deltas and dunes are affected on when deposited on a salt substrate, however terminal fans and channel formation off of fans have not been thoroughly investigated. The current experiments focused on which variables are the most significant in controlling fan growth, channel initiation and channel behavior on the salt substrate. Our experimental basin is 120 cm long, 60 cm wide and 30 cm tall. The materials used for a suite of five experiments involved a polymer polydimethylsiloxane (PDMS) as the deformable substrate analog and 100-μm quartz sand. By isolating certain variables such as substrate thickness, basin slope and sediment discharge we are able to see how terminal fans and channels are affected in different settings. The experimental results show that 1) increase in substrate thickness increased the amount of subsidence around the fan body, limiting sediment transport to channels off of the toe of the fan, 2) a higher basin slope increased the number of channels formed and increased sinuosity and width variations of channels over distance, and 3) a higher sediment discharge rate on a thin substrate allowed for the farthest downstream fan deposits. Preliminary results show that channel behavior and fan morphology is strongly dependent on substrate thickness and basin slope directly influences channel geometry. These findings will also be compared to the Mojave River Wash located in southern California off the San Bernardino Mountains near Zzyzx, CA to further understand the dynamics of terminal fans on a mobile substrate.

  3. Reconstructing the Holocene depositional environments along the northern coast of Sfax (Tunisia): Mineralogical and sedimentological approaches

    NASA Astrophysics Data System (ADS)

    Lamourou, Ali; Touir, Jamel; Fagel, Nathalie

    2017-05-01

    A sedimentological and mineralogical study of sedimentary cores allowed reconstructing the evolution of depositional environments along the Northern coast of Sfax (Tunisia). The aim of this research work is to identify the factors controlling the sedimentation from the Holocene to the Present time. Three 30-m sediment cores collected by drilling at 30 m water depth were analyzed for their color, magnetic susceptibility signal, grain size by laser diffraction, organic matter content by loss of ignition, carbonate content by calcimetry and mineralogy by X-ray diffraction on bulk powder and clay <2 μm. They broadly present the same sedimentological and mineralogical features. Microscopical observations of petrographic slides allowed identifying six main sedimentary facies. Bulk mineralogical assemblages comprised clay minerals, quartz, calcite, gypsum and K-feldspars were examined. Considerable change was observed in the carbonate content that mimicked the bioclaste abundance and diluted the detrital minerals (clay minerals, quartz and feldspars). The gypsum mainly occurred in the lower sedimentary columns (SC12 and SC9) and in the upper/middle of core SC6. The clay fraction was made of a mixture of kaolinite, illite, smectite and palygorskite with no clear variation through core depth. Both grain-size parameters and magnetic susceptibility profile showed a sharp transition in the upper 2-5 m of the sedimentological columns. Coarse, sandy to gravely sediments characterized by a low magnetic susceptibility signal were replaced by fine bioclastic-rich clayey sediments. The analysis of vertical succession of depositional facies revealed a fluvial depositional environment (coastal plain) basically marked by fluvial channels and inundation plains at the bottom of all cores. However, core-top sediments recorded a littoral marine environment with sand depositions rich in gastropods, lamellibranches and algæ. Depositional facies, sedimentological and mineralogical parameters were consistent with a transition from a fluviatile depositional environment with some emersion phases marked by the gypsum precipitation, to a marine littoral environment. Such evolution was accompanied with a relative sea-level rise which flooded the fluvial system at the coastal plain during the Holocene, in agreement with sea-level fluctuations in southeast Tunisia during the Holocene.

  4. Depositional evolution of the Lower Khuzestan plain (SW Iran) since the end of the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Bogemans, Frieda; Janssens, Rindert; Baeteman, Cecile

    2017-09-01

    A detailed sedimentological investigation of sixty-six cores supported by radiocarbon age determination enabled the reconstruction of the depositional environmental evolution since the end of the Late Pleistocene in the Iranian part of the Mesopotamian plain. Both fluvial and estuarine environments have been identified on the basis of the sediment characteristics and their between-core stratigraphic correlations. At the end of the Late Pleistocene the fluvial behaviour allowed only the deposition of sand. Prior to 12400-12040 yr cal BP the palaeohydraulics changed by which heterolithic fluvial facies were deposited. Shortly after 12400 - 12040 yr cal BP an erosional phase caused the incision of depressions most probably because of a climate change to further arid conditions. In the early Holocene, mud-dominated river systems filled the depressions; a situation that lasted at least until 7900 - 7700 yr cal BP. After this period tides invaded via the active channels in the downstream part of the area, which turned into an estuarine environment for a period of about 2000-2500 years. Tidal influence diminished and stopped around 5000 yr cal BP because of progradation. Fluvial processes dominated again the sedimentary environment in the study area, except at the southern margin of it where tides controlled, although very locally, the environment.

  5. Miocene-Recent sediment flux in the south-central Alaskan fore-arc basin governed by flat-slab subduction

    NASA Astrophysics Data System (ADS)

    Finzel, Emily S.; Enkelmann, Eva

    2017-04-01

    The Cook Inlet in south-central Alaska contains the early Oligocene to Recent stratigraphic record of a fore-arc basin adjacent to a shallowly subducting oceanic plateau. Our new measured stratigraphic sections and detrital zircon U-Pb geochronology and Hf isotopes from Neogene strata and modern rivers illustrate the effects of flat-slab subduction on the depositional environments, provenance, and subsidence in fore-arc sedimentary systems. During the middle Miocene, fluvial systems emerged from the eastern, western, and northern margins of the basin. The axis of maximum subsidence was near the center of the basin, suggesting equal contributions from subsidence drivers on both margins. By the late Miocene, the axis of maximum subsidence had shifted westward and fluvial systems originating on the eastern margin of the basin above the flat-slab traversed the entire width of the basin. These mud-dominated systems reflect increased sediment flux from recycling of accretionary prism strata. Fluvial systems with headwaters above the flat-slab region continued to cross the basin during Pliocene time, but a change to sandstone-dominated strata with abundant volcanogenic grains signals a reactivation of the volcanic arc. The axis of maximum basin subsidence during late Miocene to Pliocene time is parallel to the strike of the subducting slab. Our data suggest that the character and strike-orientation of the down-going slab may provide a fundamental control on the nature of depositional systems, location of dominant provenance regions, and areas of maximum subsidence in fore-arc basins.

  6. Applications of genetic data to improve management and conservation of river fishes and their habitats

    USGS Publications Warehouse

    Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.

    2015-01-01

    Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.

  7. A description of how metal pollution occurs in the Tinto-Odiel rias (Huelva-Spain) through the application of cluster analysis.

    PubMed

    Grande, J A; Borrego, J; Morales, J A; de la Torre, M L

    2003-04-01

    In the last few decades, the study of space-time distribution and variations of heavy metals in estuaries has been extensively studied as an environmental indicator. In the case described here, the combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel Rivers, located in the southwest of the Iberian Peninsula. Based on the statistical treatment of the data from the analysis of the water samples from this system, which has been affected by processes of industrial and mining pollution, the 16 variables analyzed can be grouped into two large families. Each family presents high, positive Pearson r values that suggest common origins (fluvial or sea) for the pollutants present in the water analyzed and allow their subsequent contrast through cluster analysis.

  8. An Early Pennsylvanian threshold for the influence of vegetation on fluvial landscapes, based on the geological record of Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Gibling, Martin; Ielpi, Alessandro; Bashforth, Arden; Davies, Neil

    2015-04-01

    Vegetation profoundly influences modern fluvial systems, depending on plant life-history strategies, tolerance to disturbance, and habitat drainage. However, direct evidence for these dynamic relationships is cryptic and has commonly been overlooked in ancient deposits. We report evidence for profound interactions between channels, in situ and transported vegetation in Lower Pennsylvanian formations of Atlantic Canada (~310 Ma), attributed to braided, meandering and fixed-channel (anastomosing) systems. Plant groups include lycopsids that preferred stable wetland settings, disturbance-tolerant calamitaleans, and deeply rooted cordaitaleans (early gymnosperms) that originated in the late Mississippian and colonised both wetland and dryland settings. For the meandering and anastomosing channel deposits, upright vegetation was observed within channel-based bedforms and bars and on channel margins. Lycopsids and calamitalean groves colonized the channel bed and bank-attached bars during periods of reduced flow, nucleating bar growth after flow resumed. Upright lycopsids and cordaitaleans are common along channel cutbanks and are locally tilted towards the channel, implying involvement in bank stabilization. Rhizoconcretions that formed around deep cordaitalean roots may have aided bank reinforcement. Tetrapod and arthropod trackways in the channel deposits indicate a close linkage between riparian and aquatic ecosystems. In the braided systems, sediments that contain abundant cordaitalean logs constitute nearly 20% of channel deposits, and the logs form channel-base lags, fill channels up to 6 m deep, and form nuclei for shallow sandbars. Log accumulations overlain by shale lenses imply a contribution to channel avulsion. Rooted channel-sandstones containing upright trees are interpreted as vegetated islands in an island-braided system. Anastomosing systems are abundant in these Lower Pennsylvanian formations but rare in older strata, and the multi-channel island-braided systems are the oldest yet described. The rise to prominence of these two anabranching styles, broadly coinciding with the rise of cordaitaleans, implies that fluvial landscapes had crossed a threshold from a geomorphic and biogeomorphic mode of operation into a fully ecological mode with feedback loops between vegetation and fluvial processes. Thereafter, patterns of interaction between rivers and vegetation broadly resembled those of today, with prominent riparian corridors and profound consequences for aquatic, soil and other terrestrial ecosystems. Our field observations confirm the co-evolution of river systems, vegetation and animals, and highlight a need to incorporate vegetation more fully into earth-system and landscape models.

  9. Long-term sand supply to Coachella Valley Fringe-toed Lizard Habitat in the Northern Coachella Valley, California

    USGS Publications Warehouse

    Griffiths, Peter G.; Webb, Robert H.; Lancaster, Nicholas; Kaehler, Charles A.; Lundstrom, Scott C.

    2002-01-01

    The Coachella Valley fringe-toed lizard (Uma inornata) is a federally listed threatened species that inhabits active sand dunes in the vicinity of Palm Springs, California. The Whitewater Floodplain and Willow Hole Reserves provide some of the primary remaining habitat for this species. The sediment-delivery system that creates these active sand dunes consists of fluvial depositional areas fed episodically by ephemeral streams. Finer fluvial sediments (typically sand size and finer) are mobilized in a largely unidirectional wind field associated with strong westerly winds through San Gorgonio Pass. The fluvial depositional areas are primarily associated with floodplains of the Whitewater?San Gorgonio Rivers and Mission Creek?Morongo Wash; other small drainages also contribute fluvial sediment to the eolian system. The eolian dunes are transitory as a result of unidirectional sand movement from the depositional areas, which are recharged with fine-grained sediment only during episodic floods that typically occur during El Ni?o years. Eolian sand moves primarily from west to east through the study area; the period of maximum eolian activity is April through June. Wind speed varies diurnally, with maximum velocities typically occurring during the afternoon. Development of alluvial fans, alteration of stream channels by channelization, in-stream gravel mining, and construction of infiltration galleries were thought to reduce the amount of fluvial sediment reaching the depositional areas upwind of Uma habitat. Also, the presence of roadways, railroads, and housing developments was thought to disrupt or redirect eolian sand movement. Most of the sediment yield to the fluvial system is generated in higher elevation areas with little or no development, and sediment yield is affected primarily by climatic fluctuations and rural land use, particularly livestock grazing and wildfire. Channelization benefits sediment delivery to the depositional plains upwind of the reserves by minimizing in-channel sediment storage on the alluvial fans. The post-development annual sediment yield to the Whitewater and Mission Creek?Morongo Wash depositional areas are 3.5 and 1.5 million ft3/yr, respectively, covering each depositional area to a depth of 0.2 to 0.4 in. Given existing sand-transport rates, this material could be depleted by eolian processes in 8 to 16 months, a rate consistent with the presence of persistent sand dunes. However, these depletion times are likely minimum estimates, as some eolian sand is seen to persist in the immediate vicinity of depositional areas for longer time periods. Transport rates may be reduced by the presence of vegetation and other windbreaks. Because they are perpendicular to prevailing winds, the infiltration galleries on Whitewater River trap fluvial and eolian sediment, reducing sediment availability. Also, the presence of the railroad and Interstate 10 redirect eolian sand movement to the southeast along their corridors,potentially eliminating the Whitewater depositional area as a sand source for the Willow Hole Reserve. Using directional wind data, we discuss the potential for eolian sand transport from the Mission Creek?Morongo Wash depositional area to Willow Hole.

  10. The first polluted river? Repeated copper contamination of fluvial sediments associated with Late Neolithic human activity in southern Jordan.

    PubMed

    Grattan, J P; Adams, R B; Friedman, H; Gilbertson, D D; Haylock, K I; Hunt, C O; Kent, M

    2016-12-15

    The roots of pyrometallurgy are obscure. This paper explores one possible precursor, in the Faynan Orefield in southern Jordan. There, at approximately 7000cal. BP, banks of a near-perennial meandering stream (today represented by complex overbank wetland and anthropogenic deposits) were contaminated repeatedly by copper emitted by human activities. Variations in the distribution of copper in this sequence are not readily explained in other ways, although the precise mechanism of contamination remains unclear. The degree of copper enhancement was up to an order of magnitude greater than that measured in Pleistocene fluvial and paludal sediments, in contemporary or slightly older Holocene stream and pond deposits, and in the adjacent modern wadi braidplain. Lead is less enhanced, more variable, and appears to have been less influenced by contemporaneous human activities at this location. Pyrometallurgy in this region may have appeared as a byproduct of the activity practised on the stream-bank in the Wadi Faynan ~7000years ago. Copyright © 2016. Published by Elsevier B.V.

  11. Global Soil and Sediment transfer during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Hoffmann, Thomas; Vanacker, Veerle; Stinchcombe, Gary; Penny, Dan; Xixi, Lu

    2016-04-01

    The vulnerability of soils to human-induced erosion and its downstream effects on fluvial and deltaic ecosystems is highly variable in space and time; dependent on climate, geology, the nature and duration of land use, and topography. Despite our knowledge of the mechanistic relationships between erosion, sediment storage, land-use and climate change, the global patterns of soil erosion, fluvial sediment flux and storage throughout the Holocene remain poorly understood. The newly launched PAGES working group GloSS aims to determine the sensitivity of soil resources and sediment routing systems to varying land use types during the period of agriculture, under contrasting climate regimes and socio-ecological settings. Successfully addressing these questions in relation to the sustainable use of soils, sediments and river systems requires an understanding of past human-landscape interactions. GloSS, therefore, aims to: Develop proxies for, or indices of, human impact on rates of soil erosion and fluvial sediment transfer that are applicable on a global scale and throughout the Holocene; Create a global database of long-term (102-104 years) human-accelerated soil erosion and sediment flux records; Identify hot spots of soil erosion and sediment deposition during the Anthropocene, and Locate data-poor regions where particular socio-ecological systems are not well understood, as strategic foci for future work. This paper will present the latest progress of the PAGES GloSS working group.

  12. Preparing for uncertainty: toward managing fluvial geomorphic assessment of Massachusetts rivers

    NASA Astrophysics Data System (ADS)

    Hatch, C. E.; Mabee, S. B.; Slovin, N. B.; Vogel, E.

    2014-12-01

    Climate scientists predict (and have already observed) that in the Northeastern U.S., individual storms may be more intense, and that there will be more precipitation on an annual basis. In steep post-glacial terrain, erosion caused by floodwaters is the largest destructive force during high-intensity storm events, and the force most likely to drive major morphological changes to riverbanks and channels. What remains uncertain is which watersheds or river reaches may be subjected to increased damage from more intense storms. This presents a challenge for scientific outreach and management. Many New England states have developed systems for delineating the potentially geomorphically active zones adjacent to rivers, and Vermont has an excellent assessment and land use management system informed by process-based fluvial geomorphologic science. To date, however, Massachusetts has neither. In this project we survey existing protocols for accurately predicting locations of fluvial erosion hazard, including using LiDAR and DEM models to extract basic morphologic metrics. Particularly in states or landscapes with high river density, and during a time of tight fiscal constraints, managers need automated methods that require a minimum of expert input. We test these methods in the Deerfield river watershed in Massachusetts and Vermont, and integrate our knowledge with that of the basin's agricultural and floodplain stakeholders. The results will inform development of a comprehensive river assessment and land use management system for the state of Massachusetts.

  13. An ancient example of fluvial cave sediment derived from dust (eolian silt) infiltration

    NASA Astrophysics Data System (ADS)

    Evans, J. E.

    2011-12-01

    Silt-rich grain size distributions are geologically rare and typically eolian. Such sediments (and lithified equivalents) are called dust/dustites in a general case, or loess/loessite in the special case of eolian silts derived from glacial deposits. In both cases, silt-rich deposits require a source area of silt-sized materials, transport mechanisms (prevailing winds of sufficient energy) and one or more depositional mechanisms (such as trapping in the lee of topographic obstacles or adhesion to surfaces with moisture or vegetation). This study evaluates a third type of silt-rich geological deposit, paleo-cave sediments derived from mixtures of dust (eolian silt) and karst breccias. Cave sediments can be autochthonous (speleothems), parautochthonous (karst breccias), and allochthonous (such as fluvial cave sediments). The provenance of fluvial cave sediments is the landscape overlying the cave-karst system, and they are introduced to the cave-karst system by flood events. The Mississippian Leadville Limestone (SW Colorado) was subject to karst processes following Late Mississippian eustatic sea-level fall. These processes included formation of phreatic tubes, tower karst (kegelkarst), solution valleys (poljes), sinkholes (dolines), solution-enhanced joints (grikes), surficial flutes (rillenkarren), solution pans (kamenitzas), and breakout domes containing mosaic and crackle breccias. Flowstone, dripstone, and cave pearls are interbedded with karst breccias and fluvial cave sediments in the Leadville Limestone. The overlying Pennsylvanian Molas Formation is an eolian siltstone (dustite) with sediment sources from the peri-Gondwanan and Grenville rocks of eastern North America. Evidence that the fluvial cave sediments in the Leadville Limestone are derived from this dustite include compositional and textural matches, especially grain size distribution trends vertically downward from the former landscape surface. These grain size trends indicate infiltration of the dustite into the underlying cave-karst system. There is a significant amount of evidence that the resedimentation process was episodic. Some individual phreatic tubes have complex infill history of up to eight events (successive debrites or inundites interbedded with speleothems). Some individual vertical grikes have complex infill histories of as many as six laminated or massive jointites with weakly developed paleosols superimposed on these individual deposits. Late Cenozoic cave sediments are increasingly utilized as archives of geologic change. The role of dust (eolian silt), including its inherited compositional and textural properties from a distant source area, land-atmosphere transfer processes, and resedimentation processes on the land surface overlying the cave-karst system, remain promising areas for research.

  14. Spatial and temporal variations in the sediment state of North American dune fields

    NASA Astrophysics Data System (ADS)

    Halfen, Alan F.; Lancaster, Nicholas; Wolfe, Stephen

    2015-04-01

    This research evaluates geomorphic and chronologic data from the INQUA Dune Atlas for three areas of North America: 1) the Prairie, Parkland and Boreal ecozones of the northern Great Plains in Canada; 2) the Central Great Plains of the USA; and 3) the deserts of southwestern USA and northern Mexico. Chronometric data for periods of dune activity and stability are compared with palaeoenvironment reconstructions to assess dune system response to changes in sediment supply, availability, and mobility. Dune fields in the northern Great Plains were formed from glaciofluvial or glaciolacustrine sediments deposited during deglaciation 16-11 ka. Subsequent aeolian deposition occurred in Parkland and Prairie dune fields as a result of mid-Holocene (8-5 ka) and late-Holocene (< 3.5 ka) activity related to drought conditions. In the Central Great Plains, many dune fields are closely linked to fluvial sediment sources. Sediment supply was high in these dune fields during deglaciation of the Rocky Mountains and resulted in widespread dune construction 16-10 ka. Multiple periods of Holocene reactivation are recorded and reflect increased sediment availability during drought episodes. Dune fields in the southwestern deserts experienced periods of construction as a result of enhanced supply of sediment from fluvial and lacustrine sources during the period 11.8 - 8 ka and at short but repeated intervals during the late Holocene. Despite spatial and temporal gaps in chronometric data, the record from North American dune fields indicates the strong influence of sediment supply on dune construction, with changes in sediment availability, as a result of drought, being the primary driver of dune activity during the Holocene.

  15. Modeling Fluvial Incision and Transient Landscape Evolution: Influence of Dynamic Channel Adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Cowie, P. A.; Whittaker, A. C.; Roberts, G. P.

    2007-12-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width (W) depends on a number of parameters, including channel slope, and is not only a function of drainage area (A) as is commonly assumed. The present work represents the first attempt to investigate the consequences, for landscape evolution, of using a static expression of channel width (W ~ A0.5) versus a relationship that allows channels to dynamically adjust to changes in slope. We consider different models for the evolution of the channel geometry, including constant width-to-depth ratio (after Finnegan et al., Geology, v. 33, no. 3, 2005), and width-to-depth ratio varying as a function of slope (after Whittaker et al., Geology, v. 35, no. 2, 2007). We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic disturbance. The topography of a catchment in the footwall of an active normal fault in the Apennines (Italy) is used as a template for the study. We show that, for this catchment, the transient response can be fairly well reproduced using a simple detachment-limited fluvial incision law. We also show that, depending on the relationship used to express channel width, initial steady-state topographies differ, as do transient channel width, slope, and the response time of the fluvial system. These differences lead to contrasting landscape morphologies when integrated at the scale of a whole catchment. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the uplift field is non-uniform.

  16. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.

    PubMed

    Kim, Christopher S; Stack, David H; Rytuba, James J

    2012-07-01

    As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.

  17. Errors in Martian paleodischarges skew interpretations of hydrologic history: Case study of the Aeolis Dorsa, Mars, with insights from the Quinn River, NV

    NASA Astrophysics Data System (ADS)

    Jacobsen, Robert E.; Burr, Devon M.

    2018-03-01

    Changes in Martian fluvial geomorphology with time-stratigraphic age, including decreases in paleochannel widths, suggest waning paleodischarges through time. Where fluvial landforms do not preserve paleochannel widths (e.g., meander deposits), other landform dimensions (i.e., radius of curvature) may be used to estimate paleodischarges. In the Aeolis Dorsa region, topographically inverted and stacked fluvial deposits - wide meander point bars overlain by thin channel fills - preserve ostensible evidence of decreasing paleodischarges through time. However, a robust paleohydraulic analysis of these distinct deposits requires knowledge of the accuracy of a terrestrial-based empirical relationship that estimates channel width from point-bar radius of curvature. We assess the accuracy of this radius-width relationship by applying it to a well-studied terrestrial analog, the Quinn River, Nevada. We find that radii of curvature from the Quinn River exceed the values predicted from the empirical relationship. These anomalously high radii are associated with greater resistance in the channel cut banks, indicating that bank strength is a confounding factor in the radius-width relationship. Some deposits in the Aeolis Dorsa include irregular meander morphologies, suggesting variably resistant channel banks and overestimates of both paleochannel widths and paleodischarges. Furthermore, the morphometry of the overlying thin channel fills suggests their widths have been eroded, such that their paleodischarges are underestimates. These overestimates and underestimates, when considered together, suggest little change in paleodischarge during the stratigraphic transition from meander deposits to channel fills. This work demonstrates the importance of terrestrial analog studies for revealing confounding factors in Martian fluvial systems and cautions against simplistic interpretations of Martian fluvial history. The discovered inaccuracies of paleodischarge estimates expose sources of uncertainty in the extant paleodischarge data that bias inferences toward waning hydrologic activity through time.

  18. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California

    USGS Publications Warehouse

    Kim, Christopher S.; Slack, David H.; Rytuba, James J.

    2012-01-01

    As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash.

  19. The Late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Cozzuol, Mario; da Silva-Caminha, Silane A. F.; Rigsby, Catherine A.; Absy, Maria Lucia; Jaramillo, Carlos

    2010-05-01

    On the basis of paleontological content (vertebrates and palynology) and facies analysis from river banks, road cuts, and three wells, we have assigned the uppermost levels of the Solimões Formation in western Amazonia, Brazil, to the Late Miocene. The vertebrate fossil record from outcropping sediments is assigned to the Huayquerian-Mesopotamian mammalian biozones, spanning 9-6.5 Ma. Additionally, we present results that demonstrate that deposits in Peruvian Amazonia attributed to Miocene tidal environments are actually fluvial sediments that have been misinterpreted (both environmentally and chronologically) by several authors. The entire Late Miocene sequence was deposited in a continental environment within a subsiding basin. The facies analysis, fossil fauna content, and palynological record indicate that the environment of deposition was dominated by avulsive rivers associated with megafan systems, and avulsive rivers in flood basins (swamps, lakes, internal deltas, and splays). Soils developed on the flatter, drier areas, which were dominated by grasslands and gallery forest in a tropical to subtropical climate. These Late Miocene sediments were deposited from westward of the Purus arch up to the border of Brazil with Peru (Divisor Ranges) and Bolivia (Pando block). Eastward of the Iquitos structural high, however, more detailed studies, including vertebrate paleontology, need to be performed to calibrate with more precision the ages of the uppermost levels of the Solimões Formation. The evolution of the basin during the late Miocene is mainly related to the tectonic behavior of the Central Andes (˜ 3°-15°S). At approximately 5 Ma, a segment of low angle of subduction was well developed in the Nazca Plate, and the deformation in the Subandean foreland produced the inland reactivation of the Divisor/Contamana Ranges and tectonic arrangements in the Eastern Andes. During the Pliocene southwestern Brazilian Amazonia ceased to be an effective sedimentary basin, and became instead an erosional area that contributed sediments to the Amazon fluvial system. At that time, the lowland fluvial systems of southwestern Amazonia (the Purus, Jurua and Javarí basins) become isolated from the Andes by the newly formed north-flowing Ucayali system and south-east flowing Madre de Dios System. It was during the early Pliocene that the Amazon fluvial system integrated regionally and acquired its present appearance, and also when it started to drain water and sediments on a large scale to the Atlantic Ocean.

  20. Long-lived sediment dispersal pathways of the U.S. Cordillera in southwest Montana: Evidence from Paleogene intermontane basin deposits and relationship to regional structure

    NASA Astrophysics Data System (ADS)

    Weislogel, A. L.; Schwartz, R.; Rothfuss, J. L.; Schwartz, T.

    2010-12-01

    Inherited topography and basement crustal infrastructure associated with Sevier-Laramide orogenesis played a major role in the fluvial sculpting of intermontane-scale paleovalleys that served as precursors to the modern intermontane basins and existing drainage network. Paleocurrent, facies and detrital zircon and petrologic provenance data indicate that Upper Eocene-Lower Miocene units in the Renova Fm. mark the transition from fluvial incision to sediment backfilling of long-lived, paleovalley systems. Paleo-alluvial systems carried Renova detritus shed from high-relief (>2 km) early Paleogene highlands that originated as Sevier-Laramide uplifts and persist today as modern highlands. Detrital zircon and clast composition data indicate the Boulder and Tobacco Roots batholiths were widely unroofed, and plutons in the Anaconda range and Idaho batholith were at least partially unroofed. Renova sediment was routed by a recurved trellis-like fluvial trunk system that generally paralleled the track of river systems occupying the modern intermontaine basins. In most areas, geometry of these pathways are demonstrably linked to structural grain of the underlying Sevier-Laramide orogen and may have been modified by later extensional reactivation. Renova paleodrainage configuration bears resemblance to sediment pathways identified in the Cretaceous Kootenai, Blackleaf, and Frontier formations and Beaverhead Group. Detrital remnants of the substantial volume of Elkhorn Mountain volcanic rock and Paleozoic-Mesozoic sedimentary rock overburden are rare within Renova deposits indicating that batholith overburden was exported out of the system in the >20 m.y. duration between the end of the Cretaceous and beginning of widespread Renova deposition. Thus, significant mass was transferred from a segment the Sevier-Laramide orogenic highlands and routed via an ancestral drainage network to a sink that lies several hundreds of kilometers away and along strike of the prevailing structural grain. The ultimate sink for this excavated material remains in question, though paleocurrent data for much of the study area documents eventual escape from the orogenic wedge into the northward-flowing paleo-Missouri headwater system. Once in the paleo-Missouri fluvial system, detritus was carried longitudinally along the remnant foreland basin axis before turning cratonward (i.e., eastward) toward the retreating Western Interior Seaway. Overall, this work suggests drainage configuration of the upper Missouri watershed has persisted for at least 40 m.y., and perhaps had initiated several tens of millions of years earlier.

  1. Sedimentary Record of the Back-Arc Basins of South-Central Mexico: an Evolution from Extensional Basin to Carbonate Platform.

    NASA Astrophysics Data System (ADS)

    Sierra-Rojas, M. I.; Molina-Garza, R. S.; Lawton, T. F.

    2015-12-01

    The Lower Cretaceous depositional systems of southwestern Oaxaquia, in south-central Mexico, were controlled by tectonic processes related to the instauration of a continental arc and the accretion of the Guerrero arc to mainland Mexico. The Atzompa Formation refers to a succession of conglomerate, sandstone, siltstone, and limestone that crop out in southwestern Mexico with Early Cretaceous fauna and detrital zircon maximum depositional ages. The sedimentary record shows a transition from early fluvial/alluvial to shallow marine depositional environments. The first stage corresponds to juvenile fluvial/alluvial setting followed by a deep lacustrine depositional environment, suggesting the early stages of an extensional basin. The second stage is characterized by anabranched deposits of axial fluvial systems flowing to the NE-SE, showing deposition during a period of rapid subsidence. The third and final stage is made of tidal deposits followed, in turn, by abrupt marine flooding of the basin and development of a Barremian-Aptian carbonate ramp. We interpret the Tentzo basin as a response to crustal extension in a back-arc setting, with high rates of sedimentation in the early stages of the basin (3-4 mm/m.y), slower rates during the development of starved fluvial to tidal systems and carbonate ramps, and at the top of the Atzompa Formation an abrupt deepening of the basin due to flexural subsidence related to terrane docking and attendant thrusting to the west. These events were recorded in the back-arc region of a continental convergent margin (Zicapa arc) where syn-sedimentary magmatism is indicated by Early Cretaceous detrital and volcanic clasts from alluvial fan facies west of the basin. Finally, and as a response to the accretion of the Guerrero superterrane to Oaxaquia during the Aptian, a carbonate platform facing toward the Gulf of Mexico was established in central to eastern Oaxaquia.

  2. Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems

    NASA Astrophysics Data System (ADS)

    Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.

    2016-12-01

    Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size distributions and the predominant driver of sediment transport controls the potential for geomorphic change on societally relevant time scales in multiple settings.

  3. The contribution of total suspended solids to the Bay of Biscay by Cantabrian Rivers (northern coast of the Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Prego, Ricardo; Boi, Paola; Cobelo-García, Antonio

    2008-07-01

    Information of suspended sediments fluxes of small rivers to the coastal zone is sparse, and this is particularly so for the Iberian Rivers. To help address this shortage of information, the relationship between fluvial discharge and total suspended solids (TSS) for the main 28 Cantabrian Rivers using data from 22 years monitoring by the COCA network has been analysed, and their particulate material fluxes to the Bay of Biscay coasts have been quantified. The Cantabrian Fluvial System (drainage basin area of 20,333 km 2) may be considered as a quasi-homogeneous fluvial system with an average discharge of 561 m - 3 s - 1 and average loads of 35 kg TSS s - 1 with rivers showing similar average yields of 56 t km - 2 a - 1 . The average TSS contribution is 1.2 ± 0.2 10 9 kg a - 1 . This seaward flux of sediment is dispersed along the entire North Iberian coast and is rather modest (25% of the total supply) in comparison with the output from the French Rivers to the Bay of Biscay. The TSS loads of Cantabrian Rivers indicate they are similar to world upland rivers and those of other parts of Northern Europe according to Milliman and Syvistki [Milliman and Syvistki, 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 100: 525-544] and Milliman [Milliman, 2001. Delivery and fate of fluvial water and sediment to the sea: a marine geologist's view of European rivers. Scientia Marina, 65: 121-132]. Although their TSS flux is practically negligible (13,000 times lower) when compared to the world average flux, they provide a good example of the role of small Atlantic temperate rivers.

  4. Effects of Wildfire on Fluvial Sediment Regime through Perturbations in Dry-Ravel

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Chin, A.; Kinoshita, A. M.; Nourbakhshbeidokhti, S.; Storesund, R.; Keller, E. A.

    2015-12-01

    In steep chaparral ecosystems with Mediterranean climate, dry ravel is a natural process resulting from wildfire disturbance that supplies sediment to fluvial systems. When dense chaparral vegetation burns, sediment accumulated on steep hillslopes is released for dry-season transport (dry ravel) down steep hillslopes during or soon after the wildfire. Results of a field study in southern California's Transverse Ranges illustrate the effect of wildfire on fluvial sediment regime in an unregulated chaparral system. Big Sycamore Canyon in the steep Santa Monica Mountains burned during the May 2013 Springs Fire and experienced one small sediment-transporting stormflow during the following winter. We conducted pre- and post-storm field campaigns during the fall and winter following the fire to quantify the effect of wildfire on the fluvial sediment regime. We utilized a sediment mass balance approach in which: 1) sediment supply, consisting primarily of dry ravel-derived deposits composed of relatively fine grained-sediment, was measured in the upstream basin and in the hillslope-channel margin adjacent to the study reach; 2) changes in storage in the study reach were quantified by analyzing the difference between pre- and post-storm channel topography derived from Terrestrial LiDAR Scanning (TLS) and field surveys; and 3) transport from the study reach was estimated as the difference between supply and change in storage where uncertainty is estimated using calculated sediment transport as a comparison. Results demonstrate channel deposition caused by changes in the short-term post-wildfire sediment regime. The increased sediment supply and storage are associated with significant changes in morphology, channel bed-material characteristics, and ecology. These results suggest that dry-ravel processes are an important factor to consider in post-wildfire sediment management.

  5. Vegetation ecogeomorphology, dynamic equilibrium, and disturbance: chapter 7

    USGS Publications Warehouse

    Hupp, Cliff R.

    2013-01-01

    Early ecologists understood the need to document geomorphic form and process to explain plant species distributions. Although this relationship has been acknowledged for over a century, with the exception of a few landmark papers, only the past few decades have experienced intensive research on this interdisciplinary topic. Here the authors provide a summary of the intimate relations between vegetation and geomorphic/process on hillslopes and fluvial systems. These relations are separated into systems (primarily fluvial) in dynamic equilibrium and those that are in nonequilibrium conditions including the impacts of various human disturbances affecting landforms, geomorphic processes, and interrelated, attendant vegetation patterns and processes. The authors conclude with a conceptual model of stream regime focusing on sediment deposition, erosion, and equilibrium that can be expanded to organize and predict vegetation patterns and life history strategies.

  6. Modeling Long-Term Fluvial Incision : Shall we Care for the Details of Short-Term Fluvial Dynamics?

    NASA Astrophysics Data System (ADS)

    Lague, D.; Davy, P.

    2008-12-01

    Fluvial incision laws used in numerical models of coupled climate, erosion and tectonics systems are mainly based on the family of stream power laws for which the rate of local erosion E is a power function of the topographic slope S and the local mean discharge Q : E = K Qm Sn. The exponents m and n are generally taken as (0.35, 0.7) or (0.5, 1), and K is chosen such that the predicted topographic elevation given the prevailing rates of precipitation and tectonics stay within realistic values. The resulting topographies are reasonably realistic, and the coupled system dynamics behaves somehow as expected : more precipitation induces increased erosion and localization of the deformation. Yet, if we now focus on smaller scale fluvial dynamics (the reach scale), recent advances have suggested that discharge variability, channel width dynamics or sediment flux effects may play a significant role in controlling incision rates. These are not factored in the simple stream power law model. In this work, we study how these short- term details propagate into long-term incision dynamics within the framework of surface/tectonics coupled numerical models. To upscale the short term dynamics to geological timescales, we use a numerical model of a trapezoidal river in which vertical and lateral incision processes are computed from fluid shear stress at a daily timescale, sediment transport and protection effects are factored in, as well as a variable discharge. We show that the stream power law model might still be a valid model but that as soon as realistic effects are included such as a threshold for sediment transport, variable discharge and dynamic width the resulting exponents m and n can be as high as 2 and 4. This high non-linearity has a profound consequence on the sensitivity of fluvial relief to incision rate. We also show that additional complexity does not systematically translates into more non-linear behaviour. For instance, considering only a dynamical width without discharge variability does not induce a significant difference in the predicted long-term incision law and scaling of relief with incision rate at steady-state. We conclude that the simple stream power law models currently in use are false, and that details of short-term fluvial dynamics must make their way into long-term evolution models to avoid oversimplifying the coupled dynamics between erosion, tectonics and climate.

  7. Riparian shrub metal concentrations and growth in amended fluvial mine tailings

    USDA-ARS?s Scientific Manuscript database

    Fluvial mine tailing deposition has caused extensive riparian damage throughout the western United States. Willows are often used for fluvial mine tailing revegetation, but some species accumulate excessive metal concentrations which could be detrimental to browsers. In a greenhouse experiment, gr...

  8. Long-term accumulation and transport of anthropogenic phosphorus in world river basins

    NASA Astrophysics Data System (ADS)

    Powers, S. M.

    2015-12-01

    Global food production crucially depends on phosphorus (P). In agricultural and urban landscapes, much P is anthropogenic, entering via trade, and then can be transported by a combination of fluvial and human processes. To date there have been few long-term, large-scale analyses combining both fluvial and human modes of P transport. Here we present reconstructed historical records of anthropogenic P entering and leaving soils and aquatic systems via a combination of trade, infrastructure, food waste, and fluvial fluxes. We then report the net annual P inputs, and the mass of P that has accumulated over the long-term, for entire river basins. Our analyses reveal rapid historical P accumulation for two mixed agricultural-urban landscapes (Thames Basin, UK, Yangtze Basin, China), and one rural agricultural landscape (Maumee Basin, USA). We also show that the human P fluxes massively dominate over the fluvial fluxes in these large basins. For Thames and Maumee Basins, recently there has been modest P depletion/drawdown of the massive P pool accumulated in prior decades, whereas the Yangtze Basin has consistently and rapidly accumulated P since 1980. These first estimates of the magnitude of historical P accumulation in contrasting settings illustrate the scope of management challenges surrounding the storage, fate, exploitation, and reactivation of legacy P that is currently present in the Earth's critical zone.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang

    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentarymore » rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.« less

  10. Thermal Modeling of Permafrost Melt by Overlying Lava Flows with Applications to Flow-associated Outflow Channel Volumes in the Cerberus Plains, Mars

    NASA Technical Reports Server (NTRS)

    Chase, Z. A. J.; Sakimoto, S. E. H.

    2003-01-01

    The Cerberus region of Mars has numerous geologically recent fluvial and volcanic features superimposed spatially, with some of them using the same flow channels and apparent vent structures. Lava-water interaction landforms such as psuedocraters suggest some interaction of emplacing lava flows with underlying ground ice or water. This study investigates a related interaction type a region where the emplaced lava might have melted underlying ice in the regolith, as there are small outflow channel networks emerging from the flank flows of a lava shield over a portion of the Eastern Cerberus Rupes. Specifically, we use high-resolution Mars Orbiter Laser Altimeter (MOLA) topography to constrain channel and flow dimensions, and thus estimate the thermal pulse from the emplaced lava into the substrate and the resulting melting durations and refreezing intervals. These preliminary thermal models indicate that the observed flows could easily create thermal pulse(s) sufficient to melt enough ground ice to fill the observed fluvial small outflow channels. Depending on flow eruption timing and hydraulic recharge times, this system could easily have produced multiple thermal pulses and fluvial releases. This specific case suggests that regional small water releases from similar cases may be more common than suspected, and that there is a possibility for future fluvial releases if ground ices are currently present and future volcanic eruptions in this young region are possible.

  11. The planetary hydraulics analysis based on a multi-resolution stereo DTMs and LISFLOOD-FP model: Case study in Mars

    NASA Astrophysics Data System (ADS)

    Kim, J.; Schumann, G.; Neal, J. C.; Lin, S.

    2013-12-01

    Earth is the only planet possessing an active hydrological system based on H2O circulation. However, after Mariner 9 discovered fluvial channels on Mars with similar features to Earth, it became clear that some solid planets and satellites once had water flows or pseudo hydrological systems of other liquids. After liquid water was identified as the agent of ancient martian fluvial activities, the valley and channels on the martian surface were investigated by a number of remote sensing and in-suit measurements. Among all available data sets, the stereo DTM and ortho from various successful orbital sensor, such as High Resolution Stereo Camera (HRSC), Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), are being most widely used to trace the origin and consequences of martian hydrological channels. However, geomorphological analysis, with stereo DTM and ortho images over fluvial areas, has some limitations, and so a quantitative modeling method utilizing various spatial resolution DTMs is required. Thus in this study we tested the application of hydraulics analysis with multi-resolution martian DTMs, constructed in line with Kim and Muller's (2009) approach. An advanced LISFLOOD-FP model (Bates et al., 2010), which simulates in-channel dynamic wave behavior by solving 2D shallow water equations without advection, was introduced to conduct a high accuracy simulation together with 150-1.2m DTMs over test sites including Athabasca and Bahram valles. For application to a martian surface, technically the acceleration of gravity in LISFLOOD-FP was reduced to the martian value of 3.71 m s-2 and the Manning's n value (friction), the only free parameter in the model, was adjusted for martian gravity by scaling it. The approach employing multi-resolution stereo DTMs and LISFLOOD-FP was superior compared with the other research cases using a single DTM source for hydraulics analysis. HRSC DTMs, covering 50-150m resolutions was used to trace rough routes of water flows for extensive target areas. After then, refinements through hydraulics simulations with CTX DTMs (~12-18m resolution) and HiRISE DTMs (~1- 4m resolution) were conducted by employing the output of HRSC simulations as the initial conditions. Thus even a few high and very high resolution stereo DTMs coverage enabled the performance of a high precision hydraulics analysis for reconstructing a whole fluvial event. In this manner, useful information to identify the characteristics of martian fluvial activities, such as water depth along the time line, flow direction, and travel time, were successfully retrieved with each target tributary. Together with all above useful outputs of hydraulics analysis, the local roughness and photogrammetric control of the stereo DTMs appeared to be crucial elements for accurate fluvial simulation. The potential of this study should be further explored for its application to the other extraterrestrial bodies where fluvial activity once existed, as well as the major martian channel and valleys.

  12. Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka

    NASA Astrophysics Data System (ADS)

    Sancho, Carlos; Arenas, Concha; Vázquez-Urbez, Marta; Pardo, Gonzalo; Lozano, María Victoria; Peña-Monné, José Luis; Hellstrom, John; Ortiz, José Eugenio; Osácar, María Cinta; Auqué, Luis; Torres, Trinidad

    2015-11-01

    The drainage area of the Iberian Ranges (NE Spain) houses one of the most extensive Quaternary fluvial tufaceous records in Europe. In this study, tufa deposits in the Añamaza, Mesa, Piedra and Ebrón river valleys were mapped, stratigraphically described and chronologically referenced from U/Th disequilibrium series, amino acid racemization and radiocarbon methods. Tufa deposits accumulated in cascades, barrage-cascades and related damming areas developed in stepped fluvial systems. The maximum frequency of tufa deposition was identified at 120 ka (Marine Oxygen Isotope Stage [MIS] 5e), 102 ka (MIS 5c), 85 ka ( MIS 5a) and 7 ka (MIS 1), probably under warmer and wetter conditions than today. Additional phases of tufa deposition appear at 353 ka ( end of MIS 11), 258-180 ka (MIS 7) and 171-154 ka (MIS 6). Although most tufa deposition episodes are clearly correlated with interstadial periods, the occurrence of tufa deposits during the penultimate glaciation (MIS 6) is remarkable, indicating that the onset of this stage was climatically favourable in the Iberian Peninsula. Biostatic conditions and the dynamics of karstic systems regulating tufa deposition seem to be sensitive to the precipitation regime, controlled by shifts in the position of North Atlantic atmospheric belts, and summer insolation, regulated by orbital forcing.

  13. Sequence stratigraphic analysis of Cenomanian greenhouse palaeosols: A case study from southern Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Varela, Augusto N.; Veiga, Gonzalo D.; Poiré, Daniel G.

    2012-10-01

    The aim of this contribution is to analyse extrinsic (i.e., tectonics, climate and eustasy) and intrinsic (i.e., palaeotopography, palaeodrainage and relative sedimentation rates) factors that controlled palaeosol development in the Cenomanian Mata Amarilla Formation (Austral foreland basin, southwestern Patagonia, Argentina). Detailed sedimentological logs, facies analysis, pedofeatures and palaeosol horizon identification led to the definition of six pedotypes, which represent Histosols, acid sulphate Histosols, Vertisols, hydromorphic Vertisols, Inceptisols and vertic Alfisols. Small- and large-scale changes in palaeosol development were recognised throughout the units. Small-scale or high-frequency variations, identified within the middle section are represented by the lateral and vertical superimposition of Inceptisols, Vertisols and hydromorphic Vertisols. Lateral changes are interpreted as the result of intrinsic factors to the depositional systems, such as the relative position within the floodplain and the distance from the main channels, that condition the nature of parent material, the sedimentation rate and eventually the palaeotopographic position. Vertical stacking of different soil types is linked to avulsion processes and the relatively abrupt change in the distance to main channels as the system aggraded. The large-scale or low-frequency vertical variations in palaeosol type occurring in the Mata Amarilla Formation are related to long-term changes in depositional environments. The lower and upper sections of the studied logs are characterised by Histosols and acid sulphate Histosols, and few hydromorphic Vertisols associated with low-gradient coastal environments (i.e., lagoons, estuaries and distal fluvial systems). At the lower boundary of the middle section, a thick palaeosol succession composed of vertic Alfisols occurs. The rest of the middle section is characterised by Vertisols, hydromorphic Vertisols and Inceptisols occurring on distal and proximal fluvial floodplains, respectively. The palaeosol succession for the Mata Amarilla Formation can be analysed within a sequence stratigraphic scheme considering changes in depositional environments in relation to accommodation/supply conditions. The results contrast with classical models, mainly in that the palaeosols of the Mata Amarilla Formation are relatively well-developed throughout the whole sequence, including transgressive periods of relatively high aggradation rate. Also, even when during regressive episodes, when a thick palaeosol succession that marks the sequence boundary is developed in the classical models, the lack of incised valleys in this succession led to the preservation of thick palaeosol successions during lowstand conditions. The vertical and lateral palaeosol distribution identified in the Mata Amarilla Formation could be eventually extrapolated to other sequences deposited during climate optimums.

  14. Seasonal variability of suspended sediment transport in the Seine river catchment area (France)

    NASA Astrophysics Data System (ADS)

    Franke, Christine; Baati, Selma; Ayrault, Sophie; Bonte, Philippe; Evrard, Olivier; Kissel, Catherine

    2010-05-01

    This study consists in an innovative application of environmental physico-chemical techniques on fluvial sediments with the aim to trace the seasonal changes in suspended sediment transport of the complex Seine river catchment area in northern France. The aim of this project is to develop a detailed understanding for the discrimination of naturally triggered and anthropogenic induced processes and their temporal changes with weather conditions. With a focus on the heavy metal fraction, we determine the regional distribution of the suspended material and search for environmental fingerprints demonstrating the influence of fluvial transport mechanisms, changes in concentration related to discharge variations or different sediment sources, and in-situ alteration caused by variations in the geochemical conditions (oxy-redox, pH, Eh, etc.). To achieve these goals, we apply a combination of straightforward rock magnetic hysteresis measurements (performed using an AGM2900 at the LSCE) and advanced scanning electron microscopy analyses (SEM). This interdisciplinary approach allows refining the detailed analysis of sediment trap samples, originating from Tessier et al. (2003), as recently shown by Franke et al. (2009). In our preliminary results, we observe a general increase in magnetic concentrations from summer to winter conditions, coupled with a magneto-mineralogic change to rather reduced metallic mineral phases. However, each riversection of the Seine system shows its specific trend line depending on the regional initial input, weathering conditions, drainage area and potential pollution sources. A systematic analysis of the detailed results will allow highlighting the climatic/seasonal influence on the metallic particle assembly. Keywords: Seine river system, environmental magnetism, suspended particulate matter, anthropogenic and natural input, magnetic hysteresis, scanning electron microscopy (SEM),, heavy metal pollution, seasonal variability References: Franke, C., Kissel, C., Robin, E., Bonté, P. and Lagroix, F., 2009, Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input, Geochem. Geophys. Geosyst., doi:10.1029/2009GC002544. Tessier, L., Bonté, P., Mouchel, J.M., Lefevre, I., Sogon, S., Ayrault, S., Le Cloarec, M.F., 2003, Transport et characterisation des matieres en suspension dans le basin de la Seine : Identification des signatures naturelles et anthropiques, 14èmes Journées Scientifiques de l'Environnement : l'Eau, la Ville, la Vie, Créteil : France 2003. http://hal.archives-ouvertes.fr/docs/00/20/30/84/PDF/4-JSE-2003-Manuscrit-Tessier-HAL-2008-01-08.pdf

  15. The Maya Tropical Forest: Cascading Human impacts from Hillslopes to Floodplains

    NASA Astrophysics Data System (ADS)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Doyle, Colin; Krause, Samantha; Brokaw, Nicholas; Yaeger, Jason

    2016-04-01

    We review the long-term human impact on fluvial systems in the Maya tropical forest region. Although most of this karstic region is drained by groundwater, the southern and coastal margins have several river systems that drain volcanic and metamorphic as well as sedimentary terrains. Some positive environmental impacts of Maya Civilization were the long-term impacts of both landesque capital, like wetland field systems, and other land uses that have enriched many soils. Some negative impacts included stripped soils and eutrophic rivers, both playing out again today with recent deforestation and intensive agriculture. We review trends in the region's fluvial systems, present new evidence on beneficial and detrimental impacts of Maya civilization, and present a new study using LiDAR mapping of fluvial geomorphology of the Belize River. Our new field research comes from the transboundary Rio Bravo watershed of Belize and Guatemala near the border with Mexico. This watershed today is mainly a well preserved tropical forest but from 3,000 to 1000 years ago was partly deforested by Maya cities, farms, roads, fires, and fields. We present studies of soils and sediment movement along slopes, floodplains, and water quality impacts of high dissolved loads of sulfate and calcium. We use AMS dates and soil stratigraphy to date slope and floodplain flux, and we use multiple proxies like pollen and carbon isotopes to reconstruct ancient land use. Aggradation in the floodplain and colluvial deposits began by at least 3,000 years ago and continued until 1100 years ago in several study sites. Some Classic period sites with peak human population and land use intensity experienced less soil erosion, perhaps due to soil conservation, post urban construction, and source reduction. Additional evidence suggests that ancient terraced sites and colluvial slopes that gained upslope sediment and soil nutrients from ancient Maya erosion had greater biodiversity. Lastly, we map fluvial geomorphology with LiDAR in the Belize River Valley, connect the LiDAR with aggradation and erosion evidence, and develop a model to field test the timing of erosion and aggradation in summer 2016.

  16. Flashy Water and Sediment Delivery to Fluvial Megafan andFan Delta Systems on Opposing Shorelines of an Early Eocene Lake

    NASA Astrophysics Data System (ADS)

    Jones, E. R.; Plink-Bjorklund, P.

    2015-12-01

    Flashy delivery of water and sediment had distinct effects on the process of deposition in coeval fluvial megafan and fan delta deposits on opposing shorelines of a paleolake that occupied the Uinta Basin throughout the Eocene. The Tertiary Uinta Basin was an asymmetric continental interior basin with a steep northern margin, adjacent to the block uplift controlling basin subsidence, and a low gradient southern margin. A ~140 km wide fluvial megafan with catchments as far as ~750 km away occupied the southern margin of the lacustrine basin. Within this megafan system, fluvial deposits contain within-channel continental bioturbation and paleosol development on bar accretion surfaces that are evidence of prolonged periods of groundwater flow or channel abandonment. These are punctuated by channel fills exhibiting a suite of both high-deposition rate and upper flow regime sedimentary structures that were deposited by very rapid suspension-fallout during seasonal to episodic river flooding events. A series of small (~8 km wide) and proximally sourced fan deltas fed sediment into the steeper northern margin of the lacustrine basin. 35-50% of the deposits in the delta plain environment of these fan deltas are very sandy debris flows with as low as 5% clay and silt sized material. Detrital zircon geochronology shows that these fan deltas were tapping catchments where mostly unconsolidated Cretaceous sedimentary cover and thick Jurassic eolianites were being eroded. A combination of flashy precipitation, arid climate, catchments mantled by abundant loose sand-sized colluvium, and steep depositional gradients promoted generation of abundant very sandy (5-10% clay and silt sized material) debris flows. In this way, the Wasatch and Green River Formations in the Uinta Basin, Utah, U.S.A. gives us two very different examples of how routing flashy water and sediment delivery (associated with pulses of hyperthermal climate change during the Early Eocene) through different depositional systems produced unique processes of deposition, and also gives us an opportunity to isolate the effects of other variables (e.g. sediment caliber, system gradient, catchment size) that can modulate the flashy precipitation signal in stratigraphy.

  17. New Mesoscale Fluvial Landscapes - Seismic Geomorphology and Exploration

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.

    2013-01-01

    Megafans (100-600 km radius) are very large alluvial fans that cover significant areas on most continents, the surprising finding of recent global surveys. The number of such fans and patterns of sedimentation on them provides new mesoscale architectures that can now be applied on continental fluvial depositional systems, and therefore on. Megafan-scale reconstructions underground as yet have not been attempted. Seismic surveys offer new possibilities in identifying the following prospective situations at potentially unsuspected locations: (i) sand concentrations points, (ii) sand-mud continuums at the mesoscale, (iii) paleo-valley forms in these generally unvalleyed landscapes, (iv) stratigraphic traps, and (v) structural traps.

  18. The Brahmaputra River: a stratigraphic analysis of Holocene avulsion and fluvial valley reoccupation history

    NASA Astrophysics Data System (ADS)

    Hartzog, T. R.; Goodbred, S. L.

    2011-12-01

    The Brahmaputra River, one of the world's largest braided streams, is a major component of commerce, agriculture, and transportation in India and Bangladesh. Hence any significant change in course, morphology, or behavior would be likely to influence the regional culture and economy that relies on this major river system. The history of such changes is recorded in the stratigraphy deposited by the Brahmaputra River during the Holocene. Here we present stratigraphic analysis of sediment samples from the boring of 41 tube wells over a 120 km transect in the upper Bengal Basin of northern Bangladesh. The transect crosses both the modern fluvial valley and an abandoned fluvial valley about 60 km downstream of a major avulsion node. Although the modern Brahmaputra does not transport gravel, gravel strata are common below 20 m with fluvial sand deposits dominating most of the stratigraphy. Furthermore, the stratigraphy preserves very few floodplain mud strata below the modern floodplain mud cap. These preliminary findings will be assessed to determine their importance in defining past channel migration, avulsion frequency, and the reoccupation of abandoned fluvial valleys. Understanding the avulsion and valley reoccupation history of the Brahmaputra River is important to assess the risk involved with developing agriculture, business, and infrastructure on the banks of modern and abandoned channels. Based on the correlation of stratigraphy and digital surface elevation data, we hypothesize that the towns of Jamalpur and Sherpur in northern Bangladesh were once major ports on the Brahmaputra River even though they now lie on the banks of small underfit stream channels. If Jamalpur and Sherpur represent the outer extent of the Brahmaputra River braid-belt before the last major avulsion, these cities and any communities developed in the abandoned braid-belt assume a high risk of devastation if the next major avulsion reoccupies this fluvial valley. It is important to scrutinize the entire Holocene stratigraphic record of Brahmaputra River avulsion and valley reoccupation to provide evidence for the assessment of risk involved with future occurrences. Thomas R. Hartzog, Steven L. Goodbred, Jr., Jennifer L. Pickering, Haley E. Briel, Dhiman R. Mondal, Zobayer Mahmud, Saddam Hossain

  19. Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.; Schenk, P. M.

    2015-01-01

    Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.

  20. Using nitrogen stable isotopes to detect longdistance movement in a threatened cutthroat trout (Oncorhynchus clarkii utah)

    USGS Publications Warehouse

    Sepulveda, A.J.; Colyer, W.T.; Lowe, W.H.; Vinson, M.R.

    2009-01-01

    Interior cutthroat trout occupy small fractions of their historic ranges and existing populations often are relegated to headwater habitats. Conservation requires balancing protection for isolated genetically pure populations with restoration of migratory life histories by reconnecting corridors between headwater and mainstem habitats. Identification of alternative life history strategies within a population is critical to these efforts. We tested the application of nitrogen stable isotopes to discern fluvial from resident Bonneville cutthroat trout (BCT; Oncorhynchus clarkii utah) in a headwater stream. Fluvial BCT migrate from headwater streams with good water quality to mainstem habitats with impaired water quality. Resident BCT remain in headwater streams. We tested two predictions: (i) fluvial BCT have a higher ??15N than residents, and (ii) fluvial BCT ??15N reflects diet and ??15N enrichment characteristics of mainstem habitats. We found that fluvial ??15N was greater than resident ??15N and that ??15N was a better predictor of life history than fish size. Our data also showed that fluvial and resident BCT had high diet overlap in headwater sites and that ??15N of lower trophic levels was greater in mainstem sites than in headwater sites. We conclude that the high ??15N values of fluvial BCT were acquired in mainstem sites.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.; Branagan, P.; Warpinski, N.R.

    A new model suggests that the fracture systems that control permeability in flat-lying fluvial reservoirs are distributed in a continuum of sizes, and occur in subparallel, en echelon patterns. Few high angle ''orthogonal'' fractures exist because this system is created by high pore pressures and relatively low differential horizontal stresses, rather than by structural deformation. Interfracture communication occurs primarily at infrequent, low-angle intersections of fractures. Vertical continuity of such fractures through a reservoir is commonly limited by the numerous lithologic discontinuities inherent in fluvial sandstones. This type of fracture system has been documented in Mesaverde rocks in the Rulison fieldmore » of the Piceance Creek basin, northwestern Colorado, by studies of 4300 ft (1310 m) of core from the US Department of Energy's three Multiwell Experiment wells, and by studies of the excellent nearby outcrops. Well test results and geologic data from core and outcrop support the model. The described natural fracture system has a significant effect on production and stimulation. 16 refs., 15 figs., 1 tab.« less

  2. Aeolian sedimentation in the middle buntsandstein in the eifel north-south depression zone: Summary of the variability of sedimentary processes in a buntsandstein erg as a base for evaluation of the mutual relationships between aeolian sand seas and fluvial river systems in the mid-european buntsandstein

    NASA Astrophysics Data System (ADS)

    Mader, Detlef

    The spectrum of aeolian depositional subenvironments in the upper Middle Buntsandstein Karlstal-Schichten sequence in the Eifel North-South-zone at the western margin of the Mid-European Triassic Basin comprises trains of larger and higher narrowly-spaced dunes in sand seas, isolated smaller and lower widely-spaced dunes in floodplains and interdune playas, dry interdune sheet sands, damp interdune adhesive sandflats, wet interdune playa lakes, rainfall runoff watercourses and ephemeral channels cutting through the dune belt, and deflation gravel lag veneers. Distinction of aeolian and fluvial sediments within the succession of closely intertonguing wind- and water-laid deposits is possible by independent analysis of the conventional criteria and the more modern stratification styles. Thick cross-bedded aeolian sand sequences originate as barchanoid-type dunes which accumulate and migrate in the regime of narrow to wide unimodal southeasterly to southwesterly trade winds in low northern palaeolatitude in summer when the intertropical convergence zone is shifted to the north. The predominantly transverse-ridge dunes accrete mainly by grainfall and subcritical climbing of wind ripples, subordinately also by grainflow interfingering with grainfall. Horizontal-laminated aeolian sands form as sand sheets in dry interdune playas by subcritical migration of wind ripple trains, rarely also by plane bed accretion. Thin cross-bedded dune sands or horizontal-laminated aeolian sands capping fluvial cyclothems originate by deflation of emerged alluvial bar sands during low-water stages and subsequent accumulation of the winnowed sand as widely-spaced dunelets or chains of wind ripples in desiccated parts of the adjoining floodplain. The aeolian sand layers at the base of lacustrine cyclothems record migration of isolated little dunes across the dry playa floor at the beginning of a wetting-upwards cyclothem, with the sand deriving from deflation of fluvial incursions or representing residual sand not having been incorporated into larger dunes of the surrounding sand sea. Damp interdune deposits originate by trapping of loose sand that is blown across a moist playa surface as adhesion ripples and warts. The adhesion structures form both in aeolian sheet sand environments with increasing moisture of the substrate and on fluvial channel bars and stream bottoms with declining dampness during subaerial exposure. Wet interdune deposits originate by settling of suspension fines in periodic shallow lakes between the dunes following heavy ephemeral rainfall or forming by rising ground water table, and by aquatic redeposition of aeolian sand due to washout after atmospheric precipitation and alluvial invasion. Deflationary interdune deposits form by winnowing of the sandy matrix from fluvial sheet or bar conglomerates thereby leaving the dispersed gravel as more or less tightly-packed residual veneer on the degradation surface providing bed armour against further aeolian or aquatic erosion. Aeolian deposition is at the top of the Middle Buntsandstein rather rapidly terminated by fluvial inundation of the erg, erosion and partial resedimentation of dune sands and burial of the more or less degraded aeolian bedforms under a carpet of alluvial deposits. At the beginning of the Upper Buntsandstein, a change to semi-arid climate results in stabilization of emerging overbank plains and channels by palaeosol formation and plant growth thus completely inhibiting further accumulation of aeolian sands. The range of modes of origin of dune sands and interdune deposits, the spatial and temporal variability of their accumulation and preservation and the distribution of water-laid intercalations provide a base for independent evaluation of the dynamics of the aeolian system and its controls as well as for comparative assessment of the behaviour of the aeolian environment and the fluvial milieu in a system of intertonguing sand sea and river belt and of the mechanisms triggering and governing the interference pattern.

  3. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    NASA Astrophysics Data System (ADS)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated from ongoing radionuclide (Pb-210 and Cs-137) and pollen analysis of the fluvial sediment sequences. However, based on the established chronology and geomorphic field relationships, it is plausible that the archaeological complex represents a late medieval site linked to Dunmoe Castle (14th to 17th century AD), which overlooks the floodplain.

  4. The application of PIT tags to measure transport of detrital coral fragments on a fringing reef: Majuro Atoll, Marshall Islands

    NASA Astrophysics Data System (ADS)

    Ford, Murray R.

    2014-06-01

    Passive integrated transponder (PIT) tags are a radio-frequency identification device widely used as a machine-readable identification tool in fisheries research. PIT tags have also been employed, to a lesser extent, to track the movement of gravel-sized clasts within fluvial and coastal systems. In this study, PIT tags were inserted into detrital coral fragments and used to establish source-sink transport pathways on a fringing reef on Majuro Atoll in the Marshall Islands. Results suggest the transport of gravel-sized material on the inter-tidal reef flat is exclusively across-reef towards the lagoon. Considerable variation in the distance travelled by fragments was observed. Fragments were largely intact and visually recognisable after almost 5 months on the reef flat. However, the branches of some recovered fragments had broken off and corallite abrasion was observed in recovered fragments. This study indicates that PIT tags are an inexpensive and powerful new addition to the suite of sediment transport and taphonomic tools for researchers working within coral reef systems.

  5. Lithofacies control of lignite distribution and ground-water quality, Wilcox group (Eocene), east-central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, W.B. Jr.; Lewis, A.H.

    1984-04-01

    Deep lignite resources (200-2000 ft; 61-610 m) were evaluated regionally using 1470 geophysical well logs to interpret lithofacies, lignite occurrence, and resistivity (water quality). The regional distribution of lithofacies indicates that in the region, the Wilcox Group is a fluvial-deltaic system. The primary fluvial system entered the Wilcox coastal plain west of Waco, Texas, trended southeast, and supplied a 75-mi (120-km) wide fluvial-deltaic system comparable in size to the Mississippi system. Lignites are most abundant in the Calvert Bluff Formation (upper Wilcox). Lower Calvert Bluff lignites are thickest and most extensive southwest of the Navasota River, whereas those of themore » upper Calvert Bluff are thickest northeast of the Brazos River. In the shallow subsurface, Calvert Bluff lignites are found in dip-elongate low-sand areas (flood plains) between channel-sand belts. Basinward, laterally continuous lignites coincide with high net sand areas comprise of distributary channel sands indicative of a delta-plain setting. The wilcox Group is a major aquifer. Maps of resistivity values show that Wilcox channel sands are conduits for ground-water flow. High values of formation resistivity (low total dissolved solids) exist in recharge areas at outcrop and around salt domes. Elongate trends of high resistivity values extend tens of miles basinward and coincide with axes of major sands. Resistivity values decrease basinward and the 20 ohm-m contour delineates the downdip limit of fresh water. Lithofacies and lignite occurrence maps are guides to exploration for deep lignite. Resistivity maps can be used to explore for ground-water resources.« less

  6. Resource Documentation and Recharge Area Delineation of a Large Fluvial Karst System: Carroll Cave, Missouri

    USDA-ARS?s Scientific Manuscript database

    Located along Wet Glaize Creek in the central Missouri Ozarks, Toronto Spring is a distributary spring system where surface stream flow mixes with flow from the Carroll Cave system. Following recharge area delineations for Thunder River and Confusion Creek in Carroll Cave, flow from these rivers wa...

  7. Land-ocean contributions of arsenic through a river-estuary-ria system (SW Europe) under the influence of arsenopyrite deposits in the fluvial basin.

    PubMed

    Costas, Marta; Prego, Ricardo; Filgueiras, Ana V; Bendicho, Carlos

    2011-12-15

    Water was sampled monthly from September 2005 to August 2006 at 14 stations distributed throughout the coastal system of Anllóns-Laxe, from where 30 surface sediment samples were also taken. After filtration through 0.22 μm polycarbonate filters, dissolved inorganic and total arsenic (UV oxidation) concentration was determined by HG-AFS. After microwave digestion, the arsenic in SPM and sediment was determined by AAS. Ultra-clean procedures were adopted during sampling, handling and analysis and the analytical accuracy was checked using certified reference material. Spatial distribution of As in water (0.2-4.0 μg L(-1)), SPM (21-169 mg kg(-1)) and sediment of the river reservoir was altered by the presence of arsenopyrite deposits in the middle fluvial basin that increases 2.1±0.5 and 1.7±0.5 times the concentrations of inorganic dissolved (DI-As) and particulate (P-As) arsenic, respectively. At the termination fluvial zone As fluxes can be calculated to be: [DI-As]=7.09·Q(-0.69). The Anllóns River exports to its estuary 460 kg a(-1) of dissolved (<7% as organic) arsenic annually. It is higher (i.e. 0.83 kgs(-1) km(-2) of DI-As) than that of most of European rivers. In the estuary reservoir, the influence of arsenopyrite is also evident as the river concentration of DI-As, which was lower than in seawater during the wet season and higher during the dry season. Arsenic has non-conservative behaviour, as in other European estuaries, but the Anllóns shows an ambivalent pattern: as it usually gains DI-As during the wet season and loses it during the dry season, whilst P-As seems to behave contrary to the DI-As. When the fluvial arsenic reaches the ria its concentration varies due to the estuarine processes. In the wet season DI-As increases its concentration by one third whilst in the dry season it decreases by one fifth and the annual contribution to the ria is 10% higher than the fluvial output. In the case of P-As more data are necessary to quantify its behaviour; however, the estuarine sediments are contaminated by arsenic. In the ria reservoir DI-As levels were similar to those of the ocean, DO-As comprises 9-22% of the inorganic, P-As ranges from 3 to 40 mg kg(-1), and As-sedimentary can be classified as uncontaminated (4-18 mg kg(-1)), except in the fishing ports. The ria circulation, reinforced by upwelling favours the exportation of arsenic to the ocean. In the Anllóns-Laxe system as a whole, the freshwater-saline interface processes do not lead to a decrease in the dissolved fluvial arsenic flux to the ocean. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Data mining of external and internal forcing of fluvial systems for catchment management: A case study on the Red River (Song Hong), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, Rafael; Bizzi, Simone; Castelletti, Andrea

    2013-04-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since interactions of natural and anthropogenic forces within the catchment drives fluvial geomorphic processes, which shape physical habitat, affect river infrastructures and influence freshwater ecological processes. The characterization of river hydromorphological features is commonly location and time specific and highly resource demanding. Therefore, its routine application at regional or national scales and the assessment of spatio-temporal changes as reaction to internal and external disturbances is rarely feasible at present. Information ranging from recently available high-resolution remote-sensing data (such as DEM), historic data such as land use maps or aerial photographs and monitoring networks of flow and rainfall, open up novel and promising capacity for basin-wide understanding of dominant hydromorphological drivers. Analysing the resulting multiparametric data sets in their temporal and spatial dimensions requires sophisticated data mining tools to exploit the potential of this information. We propose a novel framework that allows for the quantitative assessment of multiparametric data sets to identify classes of channel reaches characterized by similar geomorphic drivers using remote-sensing data and monitoring networks available in the catchment. This generic framework was applied to the Red River (Song Hong) basin, the second largest basin (87,800 sq.km) in Vietnam. Besides its economic importance, the river is experiencing severe river bed incisions due to recent construction of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high development rate, current efforts to increase water productivity and minimize impacts on the fluvial systems by means of focused infrastructure and management measures require a thorough understanding of the fluvial system and, in particular, basin-wide assessment of resilience to human-induced change. . The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale while integrating recent and historic point records for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model in combination with fuzzy clustering. The above framework is able to identify non-trivial correlations in driving forces and to derive a fuzzy classification at reach scale which represents continuities and discontinuities in the river systems. The use of the above framework allowed analyzing the spatial distribution of geomorphic features at catchment scale, revealing patterns of similarities and dissimilarities within the catchment and allowing a classification of river reaches characterized by similar geomorphic drivers, fluvial processes and response to external forcing. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale integrating historical and recent available high resolution data. The framework aims at opening the way to a more structured organization and analyses of recently available information on river geomorphic features, so far often missing or rarely exploited. This approach poses the basis to produce efficient databases of river geomorphic features and processes related to natural and anthropogenic drivers. That is a necessity in order to enhance our understanding of the internal and external forces which drive fluvial systems, to assess the resilience and dynamic of river landscapes and to develop the more efficient river management strategies of the future.

  9. Tipping Points in Texas Rivers

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2016-04-01

    Anticipating geomorphic tipping points requires that we learn from the past. Major geomorphic changes in coastal plain rivers of Texas resulting in river metamorphosis or regime shifts were identified, and the major driving factors determined. Nine fluvial tipping points were identified from contemporary observations, historical records, and Quaternary reconstructions. Two of the tipping points (between general aggrading and degrading valley states) are associated with reversals in a fundamental system control (sea-level). One (stable or aggrading vs. degrading channels) is associated with an abrupt change in sediment supply due to dam construction, and two others (changes from meandering to anastomosing channel patterns, and different anastomosis styles) are similarly related to changes in sediment supply and/or transport capacity, but with additional elements of historical contingency. Three tipping points are related to avulsions. One, from a regime dominated to reoccupation of former channels to one dominated by progradation into flood basins, is driven by progressive long term filling of incised valleys. Another, nodal avulsions, are driven by disturbances associated with tectonics or listric faults. The third, avulsions and related valley metamorphosis in unfilled incised valleys, is due to fundamental dynamical instabilities within the fluvial system. This synthesis and analysis suggests that geomorphic tipping points are sometimes associated with general extrinsic or intrinsic (to the fluvial system) environmental change, independent of any disturbances or instabilities. Others are associated with natural (e.g., tectonic) or human (dams) disturbances, and still others with intrinsic geomorphic instabilities. This suggests that future tipping points will be equally diverse with respect to their drivers.

  10. Fluvial systems of Upper Cretaceous Mesaverde Group and Paleocene North Horn formation, central Utah: record of transition from thin-skinned deformation in foreland region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, T.F.

    1985-05-01

    Nonmarine strata of the upper part of the Mesaverde Group and North Horn Formation exposed between the Wasatch Plateau and the Green River in central Utah record a late Campanian tectonic transition from thrust-belt deformation to basement-cored uplift. Mesaverde Group sediments were deposited by synorogenic braided and meandering rivers. During most of Campanian time, sediment transport was east and northeast away from the thrust belt across a fluvial coastal plain. Subsequent development of the San Rafael swell, a basement uplift, between western and eastern localities caused erosional thinning of the section. Sandstones within the upper part of the Mesaverde Groupmore » form two distinct compositional suites, a lower quartzose petrofacies and an upper lithic petrofacies. Lithic grain populations of the upper petrofacies are dominated by sedimentary lithic grains were derived from the thrust belt, whereas volcanic lithic grains were derived from a volcanic terrane to the southwest. Tributary streams carrying quartzose detritus from the thrust belt entered a northeast-flowing trunk system and caused a basinward dilution of volcanic detritus. Disappearance of volcanic grains and local changes in paleocurrent directions in latest Campanian time reflect initial growth of the San Rafael swell and development of an intermontane trunk-tributary fluvial system. Depositional onlap across the Mesaverde Group by the post-tectonic North Horn Formation indicates a minimum late Paleocene age for uplift of the San Rafael swell.« less

  11. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.

    PubMed

    Foreman, Brady Z; Heller, Paul L; Clementz, Mark T

    2012-11-01

    Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface.

  12. The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems

    NASA Astrophysics Data System (ADS)

    Davies, Neil S.; Gibling, Martin R.

    2013-05-01

    Evidence from modern rivers and the deep-time geological record attests to the fundamental importance of plant life for the construction of physical habitats within fluvial environments. Data from an extensive literature review and original fieldwork demonstrates that many landforms and geomorphic features of modern river systems appear in the Palaeozoic stratigraphic record once terrestrial vegetation had adopted certain evolutionary advances. For example, stable point bars are associated with the onset of rooted plants in the Siluro-Devonian and avulsive and anabranching fluvial systems become common at the same time as extensive arborescent vegetation in the Carboniferous. In this paper, we demonstrate a correlation between the diversification of physical fluvial environments and the expansion of terrestrial fauna and flora, with an emphasis on the culmination of these trends within Carboniferous alluvial systems. Many extrinsic factors have been considered as possible controls on the evolutionary timelines of terrestrialization for organisms. However, a fundamental prerequisite for achieving terrestrial biodiversity was the variety of physical habitats, especially riparian systems, available for newly evolved organisms. In association with abundant lowland meandering systems, the widespread appearance across Carboniferous alluvial plains of fixed-channel and anabranching reaches created further physical landforms for colonization and would have promoted increasingly complex hyporheic flow regimes. Furthermore the associated increase in arborescent vegetation and supply of large woody debris to inland and coastal rivers would have created a wealth of microhabitats for continental organisms. We argue that the expanding extent and diversity of physical alluvial niches during the Palaeozoic is an underappreciated driver of the terrestrialization of early continental life. The study of the deep-time fossil and stratigraphic record also illustrates that vegetation is a fundamental prerequisite for the creation of biogeomorphic alluvial landforms and physical habitats and microhabitats.

  13. Evolution of biomolecular loadings along a major river system

    NASA Astrophysics Data System (ADS)

    Freymond, Chantal V.; Kündig, Nicole; Stark, Courcelle; Peterse, Francien; Buggle, Björn; Lupker, Maarten; Plötze, Michael; Blattmann, Thomas M.; Filip, Florin; Giosan, Liviu; Eglinton, Timothy I.

    2018-02-01

    Understanding the transport history and fate of organic carbon (OC) within river systems is crucial in order to constrain the dynamics and significance of land-ocean interactions as a component of the global carbon cycle. Fluvial export and burial of terrestrial OC in marine sediments influences atmospheric CO2 over a range of timescales, while river-dominated sedimentary sequences can provide valuable archives of paleoenvironmental information. While there is abundant evidence that the association of organic matter (OM) with minerals exerts an important influence on its stability as well as hydrodynamic behavior in aquatic systems, there is a paucity of information on where such associations form and how they evolve during fluvial transport. Here, we track total organic carbon (TOC) and terrestrial biomarker concentrations (plant wax-derived long-chain fatty acids (FA), branched glycerol dialkyl glycerol tetraethers (brGDGTs) and lignin-derived phenols) in sediments collected along the entire course of the Danube River system in the context of sedimentological parameters. Mineral-specific surface area-normalized biomarker and TOC concentrations show a systematic decrease from the upper to the lower Danube basin. Changes in OM loading of the available mineral phase correspond to a net decrease of 70-80% of different biomolecular components. Ranges for biomarker loadings on Danube River sediments, corresponding to 0.4-1.5 μgFA/m2 for long-chain (n-C24-32) fatty acids and 17-71 ngbrGDGT/m2 for brGDGTs, are proposed as a benchmark for comparison with other systems. We propose that normalizing TOC as well as biomarker concentrations to mineral surface area provides valuable quantitative constraints on OM dynamics and organo-mineral interactions during fluvial transport from terrigenous source to oceanic sink.

  14. Designing forward with an eye to the past: Morphogenesis of the lower Yuba River

    NASA Astrophysics Data System (ADS)

    James, L. Allan

    2015-12-01

    The early geomorphic evolution of the lower Yuba River (LYR), northern California, up to 1906 is reconstructed using cartographic, documentary, topographic, and stratigraphic evidence. The importance of early river mining is identified along with rates and patterns of floodplain aggradation and channel incision at the turn of the 20th century. The LYR is a classic example of anthropogeomorphic transformation of a river by episodic hydraulic mining sedimentation. This was followed by channelization, damming, dredging, and other engineering works to redirect, contain, and stabilize channels. These geomorphic changes and engineering controls continue to govern channel and floodplain form and process, control the trajectory of river responses, and constrain flood control, water quality, and aquatic ecosystem management options. Returning a river system to a prior condition should not be the primary goal of river rehabilitation projects, especially if hydrologic inputs have substantially changed. Reconstructing former conditions may be impractical and unsustainable under modern circumstances. Instead, fluvial systems should be designed and managed for present inputs and processes while anticipating future conditions. Rapid changes in land use and climate that generate changes in runoff and sediment loadings are likely to generate morphological instability, and these changes should be considered in the design and management of fluvial systems. The past geomorphic evolution of fluvial systems should also be considered in design and management decisions to recognize trajectories and suppressed tendencies. Recognition of trends and system vulnerabilities may avoid potential blunders, such as removing critical stabilizing works. Complex causalities may be difficult to reconstruct from geomorphic form alone, however, due to process-form dynamics. Detailed research on the geomorphic and engineering history of a river is essential, therefore, if substantial changes and morphologic instabilities have occurred.

  15. Climatic and Glacioeustatic Controls on Sunda Shelf Dispersal Systems Simulated with LLEM

    NASA Astrophysics Data System (ADS)

    Aalto, R. E.; Darby, S. E.; Best, J.; Hackney, C. R.

    2017-12-01

    During glacial-marine transgressions vast volumes of sediment are deposited due to the infilling of lowland fluvial systems and shallow shelves, material that is removed during ensuing regressions. Rock converted to sediment moves from hillslopes to rivers, lowland depocenters, delta, shelves, and finally the deep ocean in a series of steps. Modelling processes controlling these steps would illuminate system-scale morphodynamics, fluxes, and complexity in response to base level change, yet such problems are computationally formidable. Large environmental systems are characterized by strong process interdependency throughout domains, yet traditional supercomputers have slow nodal communications that stymie interconnectivity. The Landscape-Linked Environmental Model (LLEM) utilizes massively parallel architectures (GPUs with > 3000 cores and 100x the interconnect bandwidth of CPU blades) to simulate multiple-direction flow, sediment transport, deposition, and incision for exceptionally large (30-80 million nodes per GPU) lowland dispersal systems covering large spatial and temporal scales. LLEM represents key fluvial processes such as bed and bar deposition, lateral and vertical erosion/incision, levee and floodplain construction, floodplain hydrology channel hydraulic geometry, `badlands dissection' of weak sedimentary deposits during falling sea level, tectonic and glacial-isostatic flexure. LLEM also uses novel, ultra-fast Optane storage to reference a detailed 3D record of all stratigraphy (and associated biogeochemistry) that is created and destroyed. We used LLEM to simulate the evolution of the main fluvial dispersal systems debouching to the Sunda Shelf, one of Earth's most important shallow marine depocenters and probably the largest contributor of sediment to Earth's oceans. The Mekong is just one of many large rivers in the study domain, with all systems simulated together. We explore how sea level and climate affect mobilization, transport, storage, and remobilization of mineral sediment, presenting metrics, videos, and 3D fly-throughs characterizing how system development responds to assumptions. Model outcomes can be compared against field records for the delivery of sediment and construction/destruction of stratigraphy throughout the system.

  16. Data Processing and Quality Evaluation of a Boat-Based Mobile Laser Scanning System

    PubMed Central

    Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri

    2013-01-01

    Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0–1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data. PMID:24048340

  17. Data processing and quality evaluation of a boat-based mobile laser scanning system.

    PubMed

    Vaaja, Matti; Kukko, Antero; Kaartinen, Harri; Kurkela, Matti; Kasvi, Elina; Flener, Claude; Hyyppä, Hannu; Hyyppä, Juha; Järvelä, Juha; Alho, Petteri

    2013-09-17

    Mobile mapping systems (MMSs) are used for mapping topographic and urban features which are difficult and time consuming to measure with other instruments. The benefits of MMSs include efficient data collection and versatile usability. This paper investigates the data processing steps and quality of a boat-based mobile mapping system (BoMMS) data for generating terrain and vegetation points in a river environment. Our aim in data processing was to filter noise points, detect shorelines as well as points below water surface and conduct ground point classification. Previous studies of BoMMS have investigated elevation accuracies and usability in detection of fluvial erosion and deposition areas. The new findings concerning BoMMS data are that the improved data processing approach allows for identification of multipath reflections and shoreline delineation. We demonstrate the possibility to measure bathymetry data in shallow (0-1 m) and clear water. Furthermore, we evaluate for the first time the accuracy of the BoMMS ground points classification compared to manually classified data. We also demonstrate the spatial variations of the ground point density and assess elevation and vertical accuracies of the BoMMS data.

  18. Characterizing avulsion stratigraphy in ancient alluvial deposits

    NASA Astrophysics Data System (ADS)

    Jones, H. L.; Hajek, E. A.

    2007-11-01

    Guidelines for identifying ancient avulsion deposits were set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268], building on the study by Smith et al. [Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology 36, 1-23] of the modern Saskatchewan River system (Cumberland Marshes, central Canada), and serve to characterize avulsion depositional sequences in the ancient Willwood and Fort Union Formations (Paleogene, Bighorn Basin, NW Wyoming, USA). We recognize, however, that the model is not universally applicable to avulsion-dominated successions, specifically systems which lack defining "heterolithic avulsion deposits", set forth by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268]. Observations in several fluvial intervals suggest that the avulsion stratigraphy outlined by Kraus and Wells [Kraus, M.J., Wells, T.M., 1999. Recognizing avulsion deposits in the ancient stratigraphical record. In: Smith, N.D., Rogers, J. (Eds.), Fluvial Sedimentology VI, Special Publication of the International Association of Sedimentologists, vol. 28, pp. 251-268] represents one category of avulsion stratigraphy found in the rock record, but does not capture the nature of avulsion deposits everywhere. Based on observations (using measured sections, outcrop photo-panels, and aerial photographs) in the Willwood Formation (Eocene, Wyoming) and Ferris Formation (Cretaceous/Paleogene, Wyoming), we present two end-member categories of avulsion stratigraphy in ancient deposits; stratigraphically abrupt, when a main paleochannel is stratigraphically juxtaposed directly atop floodplain/overbank deposits, and stratigraphically transitional, where crevasse splays and other non-floodplain/-overbank deposits stratigraphically precede a main paleochannel. This characterization provides a broader, more inclusive way to recognize and describe avulsion stratigraphy in ancient deposits and may be an important factor to consider when modeling connectivity in fluvial reservoirs. Furthermore, our observations show that one type of avulsion channel stratigraphy may prevail over another within an ancient basin, suggesting that system-wide factors such as splay-proneness or avulsion style (i.e. aggradational, incisional, etc.; [Slingerland, R., Smith, N.D., 2004. River avulsions and their deposits. Annual Review of Earth and Planetary Sciences 32, 257-285]) may be primary controls on the type of avulsion stratigraphy deposited and preserved in ancient basin-fills.

  19. Quantifying the influence of sediment source area sampling on detrital thermochronometer data

    NASA Astrophysics Data System (ADS)

    Whipp, D. M., Jr.; Ehlers, T. A.; Coutand, I.; Bookhagen, B.

    2014-12-01

    Detrital thermochronology offers a unique advantage over traditional bedrock thermochronology because of its sensitivity to sediment production and transportation to sample sites. In mountainous regions, modern fluvial sediment is often collected and dated to determine the past (105 to >107 year) exhumation history of the upstream drainage area. Though potentially powerful, the interpretation of detrital thermochronometer data derived from modern fluvial sediment is challenging because of spatial and temporal variations in sediment production and transport, and target mineral concentrations. Thermochronometer age prediction models provide a quantitative basis for data interpretation, but it can be difficult to separate variations in catchment bedrock ages from the effects of variable basin denudation and sediment transport. We present two examples of quantitative data interpretation using detrital thermochronometer data from the Himalaya, focusing on the influence of spatial and temporal variations in basin denudation on predicted age distributions. We combine age predictions from the 3D thermokinematic numerical model Pecube with simple models for sediment sampling in the upstream drainage basin area to assess the influence of variations in sediment production by different geomorphic processes or scaled by topographic metrics. We first consider a small catchment from the central Himalaya where bedrock landsliding appears to have affected the observed muscovite 40Ar/39Ar age distributions. Using a simple model of random landsliding with a power-law landslide frequency-area relationship we find that the sediment residence time in the catchment has a major influence on predicted age distributions. In the second case, we compare observed detrital apatite fission-track age distributions from 16 catchments in the Bhutan Himalaya to ages predicted using Pecube and scaled by various topographic metrics. Preliminary results suggest that predicted age distributions scaled by the rock uplift rate in Pecube are statistically equivalent to the observed age distributions for ~75% of the catchments, but may improve when scaled by local relief or specific stream power weighted by satellite-derived precipitation. Ongoing work is exploring the effect of scaling by other topographic metrics.

  20. River networks as ecological corridors: A coherent ecohydrological perspective

    NASA Astrophysics Data System (ADS)

    Rinaldo, Andrea; Gatto, Marino; Rodriguez-Iturbe, Ignacio

    2018-02-01

    This paper draws together several lines of argument to suggest that an ecohydrological framework, i.e. laboratory, field and theoretical approaches focused on hydrologic controls on biota, has contributed substantially to our understanding of the function of river networks as ecological corridors. Such function proves relevant to: the spatial ecology of species; population dynamics and biological invasions; the spread of waterborne disease. As examples, we describe metacommunity predictions of fish diversity patterns in the Mississippi-Missouri basin, geomorphic controls imposed by the fluvial landscape on elevational gradients of species' richness, the zebra mussel invasion of the same Mississippi-Missouri river system, and the spread of proliferative kidney disease in salmonid fish. We conclude that spatial descriptions of ecological processes in the fluvial landscape, constrained by their specific hydrologic and ecological dynamics and by the ecosystem matrix for interactions, i.e. the directional dispersal embedded in fluvial and host/pathogen mobility networks, have already produced a remarkably broad range of significant results. Notable scientific and practical perspectives are thus open, in the authors' view, to future developments in ecohydrologic research.

  1. The Ba/Ca record of corals from the Southern Gulf of Mexico: contributions from land-use changes, fluvial discharge and oil-drilling muds.

    PubMed

    Carriquiry, José D; Horta-Puga, Guillermo

    2010-09-01

    The Ba/Ca in the growth bands of Montastraea faveolata from the Veracruz Reef System was used to reconstruct the long-term environmental change associated to anthropogenic activity in the Southern Gulf of Mexico (SGM). The 168-yr coral record shows two periods of distinct Ba concentrations: a pre-industrial period (1835-1965: 7.54 micromol/mol) followed by an industrial one (1966-2000: 8.57 micromol/mol). As human population quadrupoled during the latter, sediment load in the fluvial discharge also increased due to changes in land-use, yielding a 14% increase in the Ba-levels. A remarkable finding is that the periods at which the coral Ba/Ca ratio losses its correlation with fluvial discharge coincide exactly with peak periods of high barite consumption (used for oil drilling) in the Northern Gulf of Mexico, and the onset of oil drilling in the SGM. This finding suggests that barite may be one of the dominant sources for dissolved-Ba in the SGM. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Radiocarbon constraints on the coupled growth of sediment and organic carbon reservoirs in fluvial systems

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; Kemeny, P. C.; Fischer, W. W.; Lamb, M. P.

    2017-12-01

    Vast amounts of sediments are stored transiently in fluvial deposits as they move in rivers from source to sink. The timescale(s) of transient storage have the potential to set the cadence for biogeochemical reactions to occur in river sediments. However, the extent to which storage modulates the chemical composition of river sediments remains unclear. In case of the organic carbon (OC) cycle, transient sediment storage may leave an imprint in the radiocarbon (14C) content of riverine particulate OC (POC), offering a potential tool to trace the coupling of sediment storage and biogeochemical cycling in river systems. We investigated the modern and ancient budgets of sediments and POC in the Efi Haukadalsá River catchment in West Iceland to provide new empirical constraints on the role of sediment storage in the terrestrial OC cycle. This field site is attractive because the basaltic bedrock is free of rock-derived (i.e. "petrogenic") POC such that bulk 14C measurements can be interpreted more directly as constraints on catchment OC storage timescales. Additionally, Lake Haukadalsvatn at the outlet of the river catchment has captured sediment for nearly 13 ka, which offers a complementary record of the evolution of climate-sediment-OC linkages since deglaciation. New 14C measurements show that bulk POC in fine grained fluvial deposits within the Haukadalsá catchment is remarkably old (model ages between 1 and 10 ka). This evidence for "aged" POC in floodplain storage is consistent with previous measurements from Lake Haukadalsvatn, which show that POC is aged in the river system by thousands of years prior to deposition in the lake. Additionally, our estimate of the mean transit time of sediments through the river system matches the millennial-scale reservoir age of riverine POC derived from 14C, which implies a tight coupling between sediment storage and the OC cycle. We interpret the long-term increase in the 14C reservoir age of riverine POC over the last 10 ka preserved in the lake sediments to reflect the growth of a terrestrial sediment reservoir and concomitant POC storage in response to deglaciation. Our results illustrate how sediment storage by fluvial systems strongly influences the terrestrial OC cycle and its response to changes in environmental conditions.

  3. Factors influencing riverine fish assemblages in Massachusetts

    USGS Publications Warehouse

    Armstrong, David S.; Richards, Todd A.; Levin, Sara B.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Conservation and Recreation, Massachusetts Department of Environmental Protection, and the Massachusetts Department of Fish and Game, conducted an investigation of fish assemblages in small- to medium-sized Massachusetts streams. The objective of this study was to determine relations between fish-assemblage characteristics and anthropogenic factors, including impervious cover and estimated flow alteration, relative to the effects of environmental factors, including physical-basin characteristics and land use. The results of this investigation supersede those of a preliminary analysis published in 2010. Fish data were obtained for 669 fish-sampling sites from the Massachusetts Division of Fisheries and Wildlife fish-community database. A review of the literature was used to select fish metrics - species richness, abundance of individual species, and abundances of species grouped on life history traits - responsive to flow alteration. The contributing areas to the fish-sampling sites were delineated and used with a geographic information system to determine a set of environmental and anthropogenic factors that were tested for use as explanatory variables in regression models. Reported and estimated withdrawals and return flows were used together with simulated unaltered streamflows to estimate altered streamflows and indicators of flow alteration for each fish-sampling site. Altered streamflows and indicators of flow alteration were calculated on the basis of methods developed in a previous U.S. Geological Survey study in which unaltered daily streamflows were simulated for a 44-year period (water years 1961-2004), and streamflow alterations were estimated by use of water-withdrawal and wastewater-return data previously reported to the State for the 2000-04 period and estimated domestic-well withdrawals and septic-system discharges. A variable selection process, conducted using principal components analysis and Spearman rank correlation, was used to select a set of 15 non-redundant environmental and anthropogenic factors to test for use as explanatory variables in the regression analyses. Twenty-one fish species were used in a multivariate analysis of fish-assemblage patterns. Results of nonmetric multidimensional scaling and hierarchical cluster analysis were used to group fish species into fluvial and macrohabitat generalist habitat-use classes. Two analytical techniques, quantile regression and generalized linear modeling, were applied to characterize the association between fish-response variables and environmental and anthropogenic explanatory variables. Quantile regression demonstrated that as percent impervious cover and an indicator of percent alteration of August median flow from groundwater withdrawals increase, the relative abundance and species richness of fluvial fish decrease. The quantile regression plots indicate that (1) as many as seven fluvial fish species are expected in streams with little flow alteration or impervious cover, (2) no more than four fluvial fish species are expected in streams where flow alterations from groundwater withdrawals exceed 50 percent of the August median flow or the percent area of impervious cover exceeds 15 percent, and (3) few fluvial fish remain at high rates of withdrawal (approaching 100 percent) or high rates of impervious cover (between 25 and 30 percent). Three generalized linear models (GLMs) were developed to quantify the response of fluvial fish to multiple environmental and anthropogenic variables. All variables in the GLM equations were demonstrated to be significant (p less than 0.05, with most less than 0.01). Variables in the fluvial-fish relative-abundance model were channel slope, estimated percent alteration of August median flow from groundwater withdrawals, percent wetland in a 240-meter buffer strip, and percent impervious cover. Variables in the fluvial-fish species-richness model were drainage area, channel slope, total undammed reach length, percent wetland in a 240-meter buffer strip, and percent impervious cover. Variables in the brook trout relativeabundance model were drainage area, percent open water, and percent impervious cover. The variability explained by the GLM models, as measured by the pseudo R2, ranged from 18.2 to 34.6, and correlations between observed and predicted values ranged from 0.50 to 0.60. Results of GLM models indicated that, keeping all other variables the same, a one-unit (1 percent) increase in the percent depletion of August median flow would result in a 0.9-percent decrease in the relative abundance (in counts per hour) of fluvial fish. The results of GLM models also indicated that a unit increase in impervious cover (1 percent) resulted in a 3.7-percent decrease in the relative abundance of fluvial fish, a 5.4-percent decrease in fluvial-fish species richness, and an 8.7-percent decrease in brook trout relative abundance.

  4. Spatial and temporal variation in microcystins occurrence in wadeable streams in the southeastern USA

    USGS Publications Warehouse

    Loftin, Keith A.; Clark, Jimmy M.; Journey, Celeste A.; Kolpin, Dana W.; Van Metre, Peter C.; Bradley, Paul M.

    2016-01-01

    Despite historical observations of potential microcystin-producing cyanobacteria (including Leptolyngbya,Phormidium, Pseudoanabaena, and Anabaena species) in 74% of headwater streams in Alabama, Georgia, South Carolina, and North Carolina (USA) from 1993 to 2011, fluvial cyanotoxin occurrence has not been systematically assessed in the southeastern United States. To begin to address this data gap, a spatial reconnaissance of fluvial microcystin concentrations was conducted in 75 wadeable streams in the Piedmont region (southeastern USA) during June 2014. Microcystins were detected using enzyme-linked immunosorbent assay (limit = 0.10 µg/L) in 39% of the streams with mean, median, and maximum detected concentrations of 0.29 µg/L, 0.11 µg/L, and 3.2 µg/L, respectively. Significant (α = 0.05) correlations were observed between June 2014 microcystin concentrations and stream flow, total nitrogen to total phosphorus ratio, and water temperature; but each of these factors explained 38% or less of the variability in fluvial microcystins across the region. Temporal microcystin variability was assessed monthly through October 2014 in 5 of the streams where microcystins were observed in June and in 1 reference location; microcystins were repeatedly detected in all but the reference stream. Although microcystin concentrations in the present study did not exceed World Health Organization recreational guidance thresholds, their widespread occurrence demonstrates the need for further investigation of possible in-stream environmental health effects as well as potential impacts on downstream lakes and reservoirs. Environ Toxicol Chem 2016;9999:1–7. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  5. Tidal-Fluvial and Estuarine Processes in the Lower Columbia River: I. Along-channel Water Level Variations, Pacific Ocean to Bonneville Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay, D. A.; Leffler, K.; Diefenderfer, Heida L.

    This two-part paper provides comprehensive time and frequency domain analyses and models of along-channel water level variations in the 234km-long Lower Columbia River and Estuary (LCRE) and documents the response of floodplain wetlands thereto. In Part I, power spectra, continuous wavelet transforms, and harmonic analyses are used to understand the influences of tides, river flow, upwelling and downwelling, and hydropower operations ("power-peaking") on the water level regime. Estuarine water levels are influenced primarily by astronomical tides and coastal processes, and secondarily by river flow. The importance of coastal and tidal influences decreases in the landward direction, and water levels aremore » increasingly controlled by river flow variations at periods from ≤1 day to years. Water level records are only slightly non-stationary near the ocean, but become increasingly irregular upriver. Although astronomically forced tidal constituents decrease above the estuary, tidal fortnightly and overtide variations increase for 80-200km landward, both relative to major tidal constituents and in absolute terms.« less

  6. Applying fluvial geomorphology to river channel management: Background for progress towards a palaeohydrology protocol

    NASA Astrophysics Data System (ADS)

    Gregory, K. J.; Benito, G.; Downs, P. W.

    2008-06-01

    Significant developments have been achieved in applicable and applied fluvial geomorphology as shown in publications of the last three decades, analyzed as the basis for using results of studies of environmental change as a basis for management. The range of types of publications and of activities are more pertinent to river channel management as a result of concern with sustainability, global climate change, environmental ethics, ecosystem health concepts and public participation. Possible applications, with particular reference to river channel changes, include those concerned with form and process, assessment of channel change, urbanization, channelization, extractive industries, impact of engineering works, historical changes in land use, and restoration with specific examples illustrated in Table 1. In order to achieve general significance for fluvial geomorphology, more theory and extension by modelling methods is needed, and examples related to morphology and process characteristics, integrated approaches, and changes of the fluvial system are collected in Table 2. The ways in which potential applications are communicated to decision-makers range from applicable outputs including publications ranging from review papers, book chapters, and books, to applied outputs which include interdisciplinary problem solving, educational outreach, and direct involvement, with examples summarized in Table 3. On the basis of results gained from investigations covering periods longer than continuous records, a protocol embracing palaeohydrological inputs for application to river channel management is illustrated and developed as a synopsis version (Table 4), demonstrating how conclusions from geomorphological research can be expressed in a format which can be considered by managers.

  7. A multi-scale approach of fluvial biogeomorphic dynamics using photogrammetry.

    PubMed

    Hortobágyi, Borbála; Corenblit, Dov; Vautier, Franck; Steiger, Johannes; Roussel, Erwan; Burkart, Andreas; Peiry, Jean-Luc

    2017-11-01

    Over the last twenty years, significant technical advances turned photogrammetry into a relevant tool for the integrated analysis of biogeomorphic cross-scale interactions within vegetated fluvial corridors, which will largely contribute to the development and improvement of self-sustainable river restoration efforts. Here, we propose a cost-effective, easily reproducible approach based on stereophotogrammetry and Structure from Motion (SfM) technique to study feedbacks between fluvial geomorphology and riparian vegetation at different nested spatiotemporal scales. We combined different photogrammetric methods and thus were able to investigate biogeomorphic feedbacks at all three spatial scales (i.e., corridor, alluvial bar and micro-site) and at three different temporal scales, i.e., present, recent past and long term evolution on a diversified riparian landscape mosaic. We evaluate the performance and the limits of photogrammetric methods by targeting a set of fundamental parameters necessary to study biogeomorphic feedbacks at each of the three nested spatial scales and, when possible, propose appropriate solutions. The RMSE varies between 0.01 and 2 m depending on spatial scale and photogrammetric methods. Despite some remaining difficulties to properly apply them with current technologies under all circumstances in fluvial biogeomorphic studies, e.g. the detection of vegetation density or landform topography under a dense vegetation canopy, we suggest that photogrammetry is a promising instrument for the quantification of biogeomorphic feedbacks at nested spatial scales within river systems and for developing appropriate river management tools and strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The Ephemeral Signature of Permafrost Carbon in an Arctic Fluvial Network

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Drake, T.; Guillemette, F.; Chanton, J.; Podgorski, D. C.; Zimov, N.

    2016-12-01

    Arctic fluvial networks process, outgas, and transport significant quantities of terrestrial organic carbon (OC). The contribution from permafrost thaw, however, remains uncertain. A primary obstacle to quantifying the contribution of permafrost OC is its high biodegradability, since it is lost to microbial respiration soon after thaw. In this study, we investigate the by-product of respiration (dissolved inorganic carbon; DIC) at maximum late-summer thaw in sites spanning the fluvial network in order to assess whether the microbial consumption of permafrost imparts a persisting aged (14C-depleted) signature on the DIC pool. Using keeling-curve incubations, we show that water column bacteria respire different sources of dissolved OC (DOC) downstream. Evidence of permafrost respiration (production of aged DIC) was only present in permafrost-influenced sites. In the non-permafrost sites, ambient DIC was modern, which does not preclude respiration of permafrost OC upstream since depleted 14C in DIC can be easily overwhelmed by modern (14C-enriched) DIC. DOC compositional analysis via FT-ICR-MS showed that aliphatic and nitrogen containing compounds were associated with the production of aged DIC, which provides insight as to why permafrost OC is likely rapidly respired upon thaw. Overall, the results from this study demonstrate the complications of using 14C-DIC as a geochemical tracer for permafrost. We highlight the need for novel and unique conservative geochemical tracers to quantify the release and fate of permafrost OC in fluvial systems.

  9. Migration Rate Of Tidal Meanders: Inferences From The Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Finotello, A.; D'Alpaos, A.; Ghinassi, M.; Lanzoni, S.; Marani, M.; Rinaldo, A.

    2015-12-01

    Meandering channels are ubiquitous features of tidal landscapes. However, despite their fundamental role on the eco-morphodynamic evolution of these landscapes, tidal meanders have received less attention when compared to their fluvial counterparts. Improving current understanding of tidal meander migration, a largely-examined topic in fluvial landscapes, is a key step to highlight analogies and differences between tidal and fluvial cases. The migration of about 400 meander bends, belonging to 40 salt-marsh channels in the Northern Venice Lagoon (Italy), from 1968 to nowadays, has been investigated by means of both a classical method in fluvial frameworks and new procedure. Similarities with fluvial meanders occur, although important difference also emerge. Meanders cutting through the San Felice marsh follow the relationship between cartesian length and channel width, typical of meanders developed within different settings. However, meander migration rates proved to be smaller than those characterizing fluvial meanders. Indeed, the analysis of meander migration suggests a mean migration rate of about 0.10 m/year, consistent with the few data available in the literature. As for the fluvial case, the maximum-potential migration rate (i.e. the envelope curve of the relationship between migration rate and bend radius, both divided by channel width) reaches a maximum for radius-over-width ratio included between 2 and 3, regardless of the considered method. Nevertheless, the new-proposed method allows us to provide a more objective and continuous characterization. By using this new procedure, the channel curvature has finally been Fourier-analyzed, confirming the importance of even harmonics along the curvature spectrum. A correlation between migration rates and dominant harmonics seems to drive the evolution of tidal meanders and might represent a key-feature to distinguish them from their fluvial counterparts.

  10. Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes

    NASA Astrophysics Data System (ADS)

    Vihermaa, Leena E.; Waldron, Susan; Domingues, Tomas; Grace, John; Cosio, Eric G.; Limonchi, Fabian; Hopkinson, Chris; da Rocha, Humberto Ribeiro; Gloor, Emanuel

    2016-12-01

    We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance (EC) measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but it is rarely done. The footprint area of the flux tower is drained by two small streams ( 5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export, and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC, and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1); hence, it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7% of the uncertainty related to the site C balance; thus, other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export.

  11. Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution.

    PubMed

    Lan, Tu; Feng, Yue; Liao, Jiali; Li, Xiaolong; Ding, Congcong; Zhang, Dong; Yang, Jijun; Zeng, Junhui; Yang, Yuanyou; Tang, Jun; Liu, Ning

    2014-08-01

    In order to identify a more efficient biosorbent for (137)Cs, we have investigated the biosorption behavior and mechanism of (137)Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of (137)Cs on R. fluviale strain UA2 was a fast and pH-dependent process in the solution composed of R. fluviale strain UA2 (5 g/L) and cesium (1 mg/L). While a Langmuir isotherm equation indicated that the biosorption of (137)Cs was a monolayer adsorption, the biosorption behavior implied that R. fluviale strain UA2 adsorbed cesium ions by electrostatic attraction. The TEM analysis revealed that cesium ions were absorbed into the cytoplasm of R. fluviale strain UA2 across the cell membrane, not merely fixed on the cell surface, which implied that a mechanism of metal uptake contributed largely to the cesium biosorption process. Moreover, PIXE and EPBS analyses showed that ion-exchange was another biosorption mechanism for the cell biosorption of (137)Cs, in which the decreased potassium ions were replaced by cesium ions. All the above results implied that the biosorption of (137)Cs on R. fluviale strain UA2 involved a two-step process. The first step is passive biosorption that cesium ions are adsorbed to cells surface by electrostatic attraction; after that, the second step is active biosorption that cesium ions penetrate the cell membrane and accumulate in the cytoplasm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evolution of Holocene fluvio-deltaic systems along the Mississippi-Alabama Shelf, USA

    NASA Astrophysics Data System (ADS)

    Dike, C.; Wallace, D. J.; Miner, M. D.

    2017-12-01

    Understanding the response of coastal systems to past sea-level rise is paramount to better predicting future scenarios and identifying suitable sand resources for coastal restoration. The Mississippi-Alabama (MS-AL) shelf is an ideal natural laboratory to examine this in detail as there are multiple rivers that discharge into the Mississippi Sound, which is ultimately connected with the Gulf of Mexico. These systems include the Pascagoula, Biloxi, Pearl, and Mobile Rivers, which transport sediment from a combined drainage basin area of 270,000 km2. During the most recent sea-level lowstand, fluvial downcutting produced valley systems that bypassed the exposed shelf producing shelf-edge deltas. During the subsequent transgression, portions of these fluvio-deltaic systems were reworked and generally back-stepped in response to forcing mechanisms (i.e. rate of relative sea-level rise, sediment supply, and accommodation space). The sediment produced from this partial transgressive ravinement likely played a key role in forming the modern barrier islands along the MS-AL chain. While many of the general locations of lowstand valleys and deltas have been previously published, the chronology of valley occupation and infilling, and the detailed response to forcing mechanisms of these paleo-fluvial systems remain largely unclear. Further, the stratigraphic architecture and character of these deposits comprising the lowstand valley fill remains enigmatic due to sparse data coverage. Here we synthesize and analyze prior geophysical data from seven cruises conducted since the mid-1980s. We will present the current knowledge of these fluvial deltaic systems from the shelf slope to modern descendants in the northern Gulf of Mexico, relying on a source-to-sink approach. These shelf deposits not only represent important sand resources to this storm-prone coast, but will also shed light on the nature of the response of these systems to coastal change forcing mechanisms.

  13. Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.

  14. Comparability and accuracy of fluvial-sediment data - A view from the U.S. Geological Survey

    USGS Publications Warehouse

    Gray, J.R.; Glysson, G.D.; Mueller, D.S.; ,

    2002-01-01

    The quality of historical fluvial-sediment data cannot be taken for granted, based on a review of upper Colorado River basin suspended-sediment discharges, and on an evaluation of the reliability of Total Suspended Solids (TSS) data. Additionally, the quality of future fluvial-sediment data are not assured. Sediment-surrogate technologies, including those that operate on acoustic, laser, bulk optic, digital optic, or pressure differential principles, are being used with increasing frequency to measure in-stream and (or) laboratory fluvial-sediment characteristics. Data from sediment-surrogate technologies may yield results that differ significantly from those obtained by traditional methods for the same sedimentary conditions. Development of national sediment data-quality criteria and rigorous comparisons of data derived from sediment-surrogate technologies to those obtained by traditional techniques will minimize the potential for future fluvial-sediment data-quality concerns.

  15. Discussion of "Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California" (Schumann et al., 2016. Geomorphology, 268: 322-340)

    NASA Astrophysics Data System (ADS)

    Pinter, Nicholas; Hardiman, Mark; Scott, Andrew C.; Anderson, R. Scott

    2018-01-01

    Schumann et al. (2016) presented a field assessment of late Pleistocene to Holocene fluvial sediments preserved in the valleys of Santa Rosa Island, California. This is a rigorous study, based on stratigraphic descriptions of 54 sections and numerous radiocarbon ages. The paper makes important contributions that we would like to highlight, but other parts of the paper rely upon overly simplistic interpretations that lead to misleading conclusions. In one case, a conclusion of the Schumann et al. paper has important management implications for Santa Rosa Island and similar locations, compelling us to discuss and qualify this conclusion.

  16. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (

  17. Rapid analysis of 13C in plant-wax n-alkanes for reconstruction of terrestrial vegetation signals from aquatic sediments

    NASA Astrophysics Data System (ADS)

    McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.

    2004-10-01

    Long-chain, odd-carbon-numbered C25 to C35n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (

  18. The beginning of the Buntsandstein cycle (Early-Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Galán-Abellán, Belén; López-Gómez, José; Barrenechea, José F.; Marzo, Mariano; De la Horra, Raúl; Arche, Alfredo

    2013-10-01

    The Early-Middle Triassic siliciclastic deposits of the Catalan Ranges, NE Spain, are dominated by aeolian sediments indicating a predominance of arid climate during this time span, in sharp contrast with the coeval fluvial sediments found in the Castilian Branch of the Iberian Ranges, 300 km to the SW. The NE-SW-oriented Catalan Basin evolved during the Middle-Late Permian as the result of widespread extension in the Iberian plate. This rift basin was bounded by the Pyrenees, Ebro and Montalbán-Oropesa highs. The Permian-Early Triassic-age sediments of the Catalan Basin were deposited in three isolated subbasins (Montseny, Garraf, Prades), separated by intrabasinal highs, but linked by transversal NW-SE oriented faults. The three subbasins show evidence of diachronic evolution with different subsidence rates and differences in their sedimentary records. The Buntsandstein sedimentary cycle started in the late Early Triassic (Smithian-Spathian) in the central and southern domains (Garraf and Prades), with conglomerates of alluvial fan origin followed by fluvial and aeolian sandstones. Source area of the fluvial sediments was nearby Paleozoic highs to the north and west, in contrast with the far-away source areas of the fluvial sediments in the Iberian Ranges, to the SW. These fluvial systems were interacting with migrating aeolian dune fields located towards the S, which developed in the shadow areas behind the barriers formed by the Paleozoic highs. These highs were separating the subbasins under arid and semi-arid climate conditions. The dominating winds came from the east where the westernmost coast of the Tethys Sea was located, and periods of water run-off and fields of aeolian dunes development alternated. Some of the fluvial systems were probably evaporating as they were mixed into the interdune areas, never reaching the sea. From the end of the Smithian to the Spathian, the Catalan Basin and neighbour peri-Tethys basins of the present-day southern France, Sardinia and Minorca islands constituted a geographical arch where arid and semi-arid conditions represented an extension of the prevailed arid and hyper-arid conditions in surrounding areas of the Variscan Belt. Harsh climatic conditions in this area prevented the life recovery in the aftermath of the Permian-Triassic extinction event until the early Anisian, when more humid climate allowed for the colonisation of the area by plants, amphibians and reptiles. The boundary between desert areas and semi-arid and/or seasonal climate domains during the Smithian-Spathian in SW Europe can be precisely established in NE Iberia, between the Catalan-Ebro region and the Castilian Branch of the Iberian Ranges, to the SW.

  19. A Volcanic Origin for Sinuous and Branching Channels on Mars: Evidence from Hawaiian Analogs

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; deWet, Andrew; Garry, W. Brent; Zimbelman, James R.

    2012-01-01

    Observations of sinuous and branching channels on planets have long driven a debate about their origin, fluvial or volcanic processes. In some cases planetary conditions rule out fluvial activity (e.g. the Moon, Venus, Mercury). However, the geology of Mars leads to suggestions that liquid water existed on the surface in the past. As a result, some sinuous and branching channels on Mars are cited as evidence of fluvial erosion. Evidence for a fluvial history often focuses on channel morphologies that are unique from a typical lava channel, for instance, a lack of detectable flow margins and levees, islands and terraces. Although these features are typical, they are not necessarily diagnostic of a fluvial system. We conducted field studies in Hawaii to characterize similar features in lava flows to better define which characteristics might be diagnostic of fluvial or volcanic processes. Our martian example is a channel system that originates in the Ascraeus Mons SW rift zone from a fissure. The channel extends for approx.300 km to the SE/E. The proximal channel displays multiple branches, islands, terraces, and has no detectable levees or margins. We conducted field work on the 1859 and 1907 Mauna Loa flows, and the Pohue Bay flow. The 51-km-long 1859 Flow originates from a fissure and is an example of a paired a a and pahoehoe lava flow. We collected DGPS data across a 500 m long island. Here, the channel diverted around a pre-existing obstruction in the channel, building vertical walls up to 9 m in height above the current channel floor. The complicated emplacement history along this channel section, including an initial a a stage partially covered by pahoehoe overflows, resulted in an appearance of terraced channel walls, no levees and diffuse flow margins. The 1907 Mauna Loa flow extends > 20 km from the SW rift zone. The distal flow formed an a a channel. However the proximal flow field comprises a sheet that experienced drainage and sagging of the crust following the eruption. The lateral margins of the proximal sheet, past which all lava flowed to feed the extensive channel, currently display a thickness of < 20 cm. Were this area covered by a dust layer, as is the Tharsis region on Mars, the margins would be difficult to identify. The Pohue Bay flow forms a lava tube. Open roof sections experienced episodes of overflow and spill out. In several places the resultant surface flows appear to have moved as sheet flows that inundated the preexisting meter scale features. Here the flows developed pathways around topographic highs, and in so doing accreted lava onto those features. The results are small islands within the multiple branched channels that display steep, sometimes overhanging walls. None of these features alone proves that the martian channel networks are the result of volcanic processes, but analog studies such as these are the first step towards identifying which morphologies are truly diagnostic of fluvial and volcanic channels.

  20. The Fluvial Archives Group: 20 years of research connecting fluvial geomorphology and palaeoenvironments

    NASA Astrophysics Data System (ADS)

    Cordier, Stéphane; Briant, Becky; Bridgland, David; Herget, Jürgen; Maddy, Darrel; Mather, Anne; Vandenberghe, Jef

    2017-06-01

    The Fluvial Archives Group (FLAG) was formed in 1996 under the auspices of the British Quaternary Research Association (QRA). The rationale for its creation was the desire to bring together those working across timescales encompassing the last few million years to the Holocene and even modern process studies. The principles of uniformitarianism are important in the validation of this grouping of interests, with the modern and recent providing analogues from which the older and longer-timescale sequences can be more readily interpreted. The creation of FLAG occurred in the context of improved understanding of terrestrially-based Quaternary sequences and at a time when knowledge of the environmental significance of river systems had also seen great advances, following several decades of engineering experience and research into the management of such systems. This field was subsequently transformed in the European Union by the Water Framework Directive (WFD, 2000), which promoted a strategy for the re-naturalization of rivers. Above all, the WFD implied the (re-)establishment of an initial, pre-anthropogenic, reference state, the recovery of which was a prime aim. This would be a demanding task, considering that rivers are characterized by constant change, even without anthropogenic intervention. The evidence for and understanding of such change, observable at various timescales, is very much the business of FLAG (see below, section 6).

  1. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    NASA Astrophysics Data System (ADS)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  2. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported, eroded or deposited at the different locations in the river and its distributaries. Parameters such as critical erosion velocity and settling velocity were also calculated to describe sediment transport along the channel. This research provides a better understanding of the fluvial geomorphic system, particularly sediment transport in channels. It also provides excellent validation data for future sediment transport studies in similar fluvial study domains.

  3. The ecology of methane in streams and rivers: Patterns, controls, and global significance

    USGS Publications Warehouse

    Stanley, Emily H.; Casson, Nora J.; Christel, Samuel T.; Crawford, John T.; Loken, Luke C.; Oliver, Samantha K.

    2016-01-01

    Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO2) is the major end-product of ecosystem respiration, methane (CH4) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH4, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global-scale estimate of fluvial CH4 efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH4 dynamics. Current understanding of CH4 in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH4 to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH4 production and loss. CH4 makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH4 sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH4 and we estimate an annual global emission of 26.8 Tg CH4, equivalent to ~15-40% of wetland and lake effluxes, respectively. Less clear is the role of CH4 oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH4 generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its extreme redox status and low solubility result in high spatial and temporal variance of CH4 in fluvial environments, which presents a substantial challenge for understanding its larger-scale dynamics. Further understanding of CH4 production and consumption, anaerobic metabolism, and ecosystem energetics in streams and rivers can be achieved through more directed studies and comparison with knowledge from terrestrial, wetland, and aquatic disciplines.

  4. Fluvial sediment in Double Creek subwatershed No. 5, Washington County, Oklahoma

    USGS Publications Warehouse

    Bednar, Gene A.; Waldrep, Thomas E.

    1973-01-01

    A total of 21,370 tons of fluvial sediment was transported into reservoir No. 5 and a total of 19,930 tons was deposited. Seventy-eight percent of the total fluvial sediment was deposited during the first 9.2 years, or 63 percent of time of reservoir operation. The computed trap efficiency of reservoir No. 5 was 93 percent.

  5. Radon in the fluvial aquifers of the White River Basin, Indiana, 1995

    USGS Publications Warehouse

    Fenelon, Joseph M.; Moore, Rhett C.

    1996-01-01

    Water samples collected in 1995 from 57 monitoring wells (48 shallow and 9 deep) in the fluvial aquifers of the White River Basin were analyzed for radon. Radon concentrations in the shallow wells ranged from 140 to 1,600 pCi/L (picocuries per liter); the median concentration was 420 pCi/L. In comparison, analyses of the samples from the nine deep wells indicate that radon concentrations decrease with depth within the fluvial aquifers; the median concentration was 210 pCi/L. No areal trends in radon concentrations are evident in the water of the shallow fluvial aquifers of the basin

  6. Complex response of a midcontinent north America drainage system to late Wisconsinan sedimentation

    USGS Publications Warehouse

    Bettis, E. Arthur; Autin, W.J.

    1997-01-01

    The geomorphic evolution of Mud Creek basin in eastern Iowa, U.S.A. serves to illustrate how geomorphic influences such as sediment supply, valley gradient, climate, and vegetation are recorded in the alluvial stratigraphic record. Sediment supply to the fluvial system increased significantly during the late Wisconsinan through a combination of periglacial erosion and loess accumulation. Subsequent evolution of the Holocene alluvial stratigraphic record reflects long-term routing of the late Wisconsinan sediment through the drainage basin in a series of cut-and-fill cycles whose timing was influenced by hydrologic response to change in climate and vegetation. When viewed in a regional context, the alluvial stratigraphic record appears to reflect a long-term complex response of the fluvial system to increased sediment supply during the late Wisconsinan. Hydrologic and sediment-supply changes accompanying the spread of Euroamerican agriculture to the basin in the 180Os dramatically upset trends in sedimentation and channel behavior established during the Holocene. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).

  7. Pre-Miocene birth of the Yangtze River

    PubMed Central

    Zheng, Hongbo; Clift, Peter D.; Wang, Ping; Tada, Ryuji; Jia, Juntao; He, Mengying; Jourdan, Fred

    2013-01-01

    The development of fluvial systems in East Asia is closely linked to the evolving topography following India–Eurasia collision. Despite this, the age of the Yangtze River system has been strongly debated, with estimates ranging from 40 to 45 Ma, to a more recent initiation around 2 Ma. Here, we present 40Ar/39Ar ages from basalts interbedded with fluvial sediments from the lower reaches of the Yangtze together with detrital zircon U–Pb ages from sand grains within these sediments. We show that a river containing sediments indistinguishable from the modern river was established before ∼23 Ma. We argue that the connection through the Three Gorges must postdate 36.5 Ma because of evaporite and lacustrine sedimentation in the Jianghan Basin before that time. We propose that the present Yangtze River system formed in response to regional extension throughout eastern China, synchronous with the start of strike–slip tectonism and surface uplift in eastern Tibet and fed by strengthened rains caused by the newly intensified summer monsoon. PMID:23610418

  8. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    USGS Publications Warehouse

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean < 1%; SE < 1%) and snorkeling (mean = 1%; SE = 1%) surveys; Arctic grayling constituted 0–14% of the salmonid catch obtained by targeted angling (3 of 22 fish; mean = 4%; SE = 5%). Low values of the genetic differentiation index (F ST = 0.0021 ± 0.002 [mean ± 95% confidence interval]) between headwater lake and river Arctic grayling indicated that fish from throughout the Gibbon River system probably belonged to the same population. Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  9. Unravelling the stratigraphy and sedimentation history of the uppermost Cretaceous to Eocene sediments of the Kuching Zone in West Sarawak (Malaysia), Borneo

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; BouDagher-Fadel, Marcelle K.

    2018-07-01

    The Kuching Zone in West Sarawak consists of two different sedimentary basins, the Kayan and Ketungau Basins. The sedimentary successions in the basins are part of the Kuching Supergroup that extends into Kalimantan. The uppermost Cretaceous (Maastrichtian) to Lower Eocene Kayan Group forms the sedimentary deposits directly above a major unconformity, the Pedawan Unconformity, which marks the cessation of subduction-related magmatism beneath SW Borneo and the Schwaner Mountains, due to termination of the Paleo-Pacific subduction. The successions consist of the Kayan and Penrissen Sandstones and are dominated by fluvial channels, alluvial fans and floodplain deposits with some deltaic to tidally-influenced sections in the Kayan Sandstone. In the late Early or early Middle Eocene, sedimentation in this basin ceased and a new basin, the Ketungau Basin, developed to the east. This change is marked by the Kayan Unconformity. Sedimentation resumed in the Middle Eocene (Lutetian) with the marginal marine, tidal to deltaic Ngili Sandstone and Silantek Formation. Upsequence, the Silantek Formation is dominated by floodplain and subsidiary fluvial deposits. The Bako-Mintu Sandstone, a potential lateral equivalent of the Silantek Formation, is formed of major fluvial channels. The top of the Ketungau Group in West Sarawak is formed by the fluvially-dominated Tutoop Sandstone. This shows a transition of the Ketungau Group in time towards terrestrial/fluvially-dominated deposits. Paleocurrent measurements show river systems were complex, but reveal a dominant southern source. This suggests uplift of southern Borneo initiated in the region of the present-day Schwaner Mountains from the latest Cretaceous onwards. Additional sources were local sources in the West Borneo province, Mesozoic melanges to the east and potentially the Malay Peninsula. The Ketungau Group also includes reworked deposits of the Kayan Group. The sediments of the Kuching Supergroup are predominantly horizontal or dip with low angles and form large open synclines. Steep dips are usually restricted to faults, such as the Lupar Line.

  10. Experimental insights into organic carbon oxidation potential during fluvial transport without floodplain storage

    NASA Astrophysics Data System (ADS)

    Scheingross, J. S.; Hovius, N.; Sachse, D.; Vieth-Hillebrand, A.; Turowski, J. M.; Hilton, R. G.

    2016-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, rock, and biosphere is thought to be a major control on global climate. CO2 flux estimates from oxidation of rock-derived OC and sequestration of biospheric OC during fluvial transit from source to sink are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing loss of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in laboratory experiments simulating fluvial transport without floodplain storage. Mixtures of OC-rich and siliciclastic sediment were transported for distances of 2000 km in annular flumes while making time-series measurements of sediment TOC and water DOC concentrations. Initial results for transport of OC-rich soil show increasing DOC with transport distance to levels that represent a transfer of 2% of the total OC from the solid to the dissolved phase; however, we observed no detectable change in the solid-phase TOC. Similar results were obtained in a control experiment with identical sediment in still water. These preliminary results suggest minimal OC oxidation within our experiment, and, to the extent that such experiments represent natural transport through river systems, are consistent with the hypothesis that OC losses may occur primarily during floodplain storage rather than fluvial transport.

  11. The effects of vegetation and climate change on catchment erosion over millennial time scales: Insights from coupled dynamic vegetation and landscape evolution models

    NASA Astrophysics Data System (ADS)

    Schmid, Manuel; Ehlers, Todd; Werner, Christian; Hickler, Thomas

    2017-04-01

    Recent studies hypothesize that vegetation and the morphology of landscapes are strongly coupled. On a small scale, plants influence the erosivity of soil and sediments and therefore systematically impact catchment erosion and topography. Previous landscape evolution modeling studies primarily focus on changes in fluvial and hillslope erosion due to variations in climate and tectonics, without explicit consideration of vegetation effects. In this study, we complement previous work by investigating the effects of vegetation and vegetation change on hillslope and fluvial processes by combining LPJ-GUESS, a dynamic global vegetation model, with a modified version of the Landlab surface process model. The LandLab model was extended to account for vegetation-dependent sediment fluxes for both hillslope and detachment-limited fluvial erosion. The models are coupled by using predicted changes in surface vegetation from LPJ-GUESS for different climate scenarios as input for vegetation dependent erosional coefficients in Landlab. Simulations were conducted with the general climate and vegetation conditions representative between 25° and 40°S along the Coastal Cordillera of Chile. This region is the focus of the EarthShape research program (www.earthshape.net). These areas present a natural climatic and associated vegetation gradient that ranges from hyper-arid (Atacama desert) to humid-temperate conditions without a dry season and pristine temperate Araucaria forest. All study areas considered have a similar and uniform granite substrate, which minimizes lithologic variations and their effect on catchment erosion. Simulations are in progress that were designed to independently determine the climatic or vegetation controls on topography and erosion histories over the last 21 kyr. Our preliminary findings suggest that an increase in the surface vegetation results in a modulation of the mean hillslope angle and the average drainage density. In addition, we find that a decrease in surface vegetation density within a landscape can act as a trigger for sudden pulses of erosion, leading towards a new equilibrium topography. Our study suggests that vegetation changes (e.g. from the Last Glacial Maximum to present) act as a main agent of perturbing topographic equilibria. Reducing surface vegetation increases erosional efficiency and therefore sediment transport until a new stable state is reached.

  12. Landslides in Valles Marineris, Mars.

    USGS Publications Warehouse

    Lucchitta, B.K.

    1979-01-01

    Large landslides in the Martian equatorial troughs have been investigated with respect to morphology, geologic structure of the troughs, time of emplacement, similarity to terrestrial landslides, and origin and mechanism of transport. The morphologic variations of the landslides can be attributed mainly to their degree of confinement on trough floors. The huge size of many landslides is due to their occurrence on fault scarps that may have attained several kilometers in height in the absence of vigorous fluvial erosion on Mars. The mechanical efficiency of the Martian landslides is high but in accord with predictions from large landslides on earth. -from Author

  13. Arctic Alaska’s Lower Cretaceous (Hauterivian and Barremian) mudstone succession - Linking lithofacies, texture, and geochemistry to marine processes: Chapter B in Studies by the U.S. Geological Survey in Alaska, vol. 15

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.

    2015-01-01

    Our results document the variation in facies and textures of the Hauterivian and Barremian Lower Cretaceous mudstone succession of Arctic Alaska. Comparison of these characteristics to the products of modern processes on the North Slope of Alaska, in the Beaufort Sea, and elsewhere suggest that this succession formed primarily from depositional processes related to seasonal sea ice with intermittent fluvial-sourced sediment deposited by density currents and episodic erosion and reworking by storms and other currents.

  14. Reconstructing hotspot-induced dynamic topography through palaeogeomorphology

    NASA Astrophysics Data System (ADS)

    Whitchurch, A. L.; Gupta, S.; Barfod, D.

    2009-12-01

    The interaction of a buoyant mantle plume head with the overlying lithosphere is thought to generate significant, kilometre-scale topographic doming of the crust. Consequently, continental mantle plumes should have an observable response in river drainage systems and should potentially drive large-scale erosional denudation. The key to understanding the complex landscape evolution associated with the life cycle of a mantle plume is therefore locked within the sedimentary record of basins neighbouring such uplifts. The Yellowstone region, western USA, provides the perfect natural laboratory in which to test the above hypothesis. The Yellowstone hotspot initiated at the Oregon-Nevada border ca. 16 Ma. It is associated with a hotspot track, marked by time-transgressive volcanic centres which line the Snake River Plain, generated through migration of the North American plate across this stationary mantle plume. Today the hotspot is located beneath Yellowstone National Park and is thought to generate crustal-scale doming. We investigate the Mio-Pliocene Sixmile Creek Formation within the Ruby Basin, a rift basin located on the northern shoulder of the hotspot track between ~16-6 Ma. Through the temporal reconstruction of sedimentary architecture, grain size, palaeoslope and palaeocurrent trends, we show that hotspot-related crustal doming acted to uplift the headwaters of a fluvial system supplying the basin, driving exhumation that was associated with distinct fluvial reconfiguration. Evolution of the axial river system is evidenced by the transition from isolated, single-storey ribbon channels to amalgamated, multi-storey, braided fluvial deposition. This subsequently drove a pulse of coarse-grained gravel progradation through the basin. Detailed grain size analysis and calculation of fluvial palaeoslopes indicates a distinct coarsening of the axial river sediment and an increase in depositional slope from ~0.47 m/km to ~1.90 m/km between ~12-6 Ma. Our results help to constrain the scale, geometry and evolution of hotspot-generated topographic doming over the life cycle of the Yellowstone mantle plume. This study demonstrates the use of field geologic work in providing insight into large-scale geodynamic problems.

  15. Identifying heavy metal levels in historical flood water deposits using sediment cores.

    PubMed

    Lintern, Anna; Leahy, Paul J; Heijnis, Henk; Zawadzki, Atun; Gadd, Patricia; Jacobsen, Geraldine; Deletic, Ana; Mccarthy, David T

    2016-11-15

    When designing mitigation and restoration strategies for aquatic systems affected by heavy metal contamination, we must first understand the sources of these pollutants. In this study, we introduce a methodology that identifies the heavy metal levels in floodplain lake sediments deposited by one source; fluvial floods. This is done by comparing sediment core heavy metal profiles (i.e., historical pollution trends) to physical and chemical properties of sediments in these cores (i.e., historical flooding trends). This methodology is applied to Willsmere and Bolin Billabongs, two urban floodplain lakes (billabongs) of the Yarra River (South-East Australia). Both billabongs are periodically inundated by flooding of the Yarra River and one billabong (Willsmere Billabong) is connected to an urban stormwater drainage network. 1-2-m long sediment cores (containing sediment deposits up to 500 years old) were taken from the billabongs and analysed for heavy metal concentrations (arsenic, chromium, copper, lead, nickel, zinc). In cores from both billabongs, arsenic concentrations are high in the flood-borne sediments. In Bolin Billabong, absolute metal levels are similar in flood and non-flood deposits. In Willsmere Billabong, absolute copper, lead and zinc levels were generally lower in fluvial flood-borne sediments in the core compared to non-fluvial sediments. This suggests that heavy metal concentrations in Bolin Billabong sediments are relatively similar regardless of whether or not fluvial flooding is occurring. However for Willsmere Billabong, heavy metal concentrations are high when overland runoff, direct urban stormwater discharges or atmospheric deposition is occurring. As such, reducing the heavy metal concentrations in these transport pathways will be of great importance when trying to reduce heavy metal concentrations in Willsmere Billabong sediments. This study presents a proof-of-concept that can be applied to other polluted aquatic systems, to understand the importance of river floods in the contamination of the bed sediments of aquatic systems. As a cost effective and less time consuming alternative to extensive field monitoring, our proposed method can be used to identify the key sources of pollution and therefore support the development of effective management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Generalized potentiometric surface of aquifers of Pleistocene age, Southern Louisiana, 1980

    USGS Publications Warehouse

    Martin, Angel; Whiteman, Charles D.

    1985-01-01

    A map of potentiometric surface defines generalized water levels for 1980 in the Pleistocene aquifers of southern Louisiana. The map was prepared as part of the Western Gulf Coast Regional Aquifer-System Analysis study. The Pleistocene deposits in southern Louisiana consist of alternating beds of sand, gravel, silt, and clay deposited under fluvial, deltaic, and near-short marine conditions. The aquifers are mainly under artesian conditions and the regional flow direction is primarily southward. Areally definable cones of depression result from heavy pumpage in the Baton Rouge, Lake Charles, and New Orleans metropolitan areas and in the rice irrigation area of southwestern Louisiana. Where water levels differ vertically within the aquifer, the lowest water levels in the vertical section were used because these levels represented the thickest and most heavily pumped unit in the aquifer. The map represents regional water levels in the Pleistocene aquifers, and is not intended to show localized variations near pumping centers. (USGS)

  17. Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal

    USGS Publications Warehouse

    Draut, Amy; Ritchie, Andrew C.

    2015-01-01

    Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or proposed.

  18. The impact of urban expansion and agricultural legacies on trace metal accumulation in fluvial and lacustrine sediments of the lower Chesapeake Bay basin, USA.

    PubMed

    Coxon, T M; Odhiambo, B K; Giancarlo, L C

    2016-10-15

    The progressively declining ecological condition of the Chesapeake Bay is attributed to the influx of contaminants associated with sediment loads supplied by its largest tributaries. The continued urban expansion in the suburbs of Virginia cities, modern agricultural activities in the Shenandoah Valley, the anthropogenic and climate driven changes in fluvial system hydrodynamics and their potential associated impacts on trace metals enrichment in the bay's tributaries necessitate constant environmental monitoring of these important water bodies. Eight (210)Pb and (137)Cs dated sediment cores and seventy two sediment grab samples were used to analyze the spatial and temporal distributions of Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, and Fe in the waterways of the Virginia portion of the Chesapeake Bay basin. The sediment cores for trace metal historical fluctuation analysis were obtained in lower fluvial-estuarine environments and reservoirs in the upper reaches of the basin. The trace metal profiles revealed high basal enrichment factors (EF) of between 0.05 and 40.24, which are interpreted to represent early nineteenth century agricultural activity and primary resource extraction. Surficial enrichment factors on both cores and surface grab samples ranged from 0.01 (Cu) to 1421 (Cd), with Pb, Cu, Zn, and Cd enrichments a plausible consequence of modern urban expansion and industrial development along major transportation corridors. Contemporary surficial enrichments of As, Se, and Cr also ranged between 0 and 137, with the higher values likely influenced by lithological and atmospheric sources. Pearson correlation analyses suggest mining and agricultural legacies, coupled with aerosol deposition, are responsible for high metal concentrations in western lakes and headwater reaches of fluvial systems, while metal accumulation in estuarine reaches of the major rivers can be attributed to urban effluence and the remobilization of legacy sediments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Tributaries affect the thermal response of lakes to climate change

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  20. Gone But Not Forgotten: The Aeolian Modification of Fluvial Surfaces on Mars: Preliminary Results from Central Australia

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.

    2003-01-01

    MOC images indicate that aeolian ridges may mask and even obliterate primary depositional surfaces on Mars. This modification increases the difficulty in mapping the recent geological history of the planet. An analogue study in central Australia demonstrates how patterns in aeolian dunes, formed over abandoned fluvial surfaces, can be used to detect buried fluvial features.

  1. Fluvial incision by the Qingyijiang River on the northern fringe of Mt. Huangshan, eastern China: Responses to weakening of the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Hu, Chunsheng; Liu, Shaochen; Hu, Chenqi; Xu, Guanglai; Zhou, Yingqiu

    2017-12-01

    This paper focuses on climatic and tectonic controls to determine their relative importance to the Quaternary fluvial incision by the Qingyijiang River, eastern China. The Qingyijiang, which is one of longest tributaries of the lower Yangtze River, drains the northern piedmont of Mt. Huangshan. A field survey focused on three natural sections of the Qingyijiang in the Jingxian basin, where a well-preserved sequence of one alluvial platform (P) and three fluvial terraces (T3, T2, and T1) is presented. The heights of the platform and the terraces above river level are 65, 40, 20, and 7 m respectively. In this study, electron spin resonance (ESR), optical stimulated luminescence (OSL), and palaeomagnetic dating were applied to reconstruct the fluvial incision history of the Qingyijiang and evaluate the possible influence of tectonic uplift and/or climate change on the fluvial incision. The main results show that (1) the ages of P, T3, T2, and T1 were determined to be ∼ 1300, ∼ 900, ∼ 600, and ∼ 1.5 ka respectively, corresponding to four incision events in the Qingyijiang; (2) the East Asian summer monsoon (EASM) experienced four significant weakening events at 1300, 900, 600, and ∼ 1.5 ka, according to previous research. Correspondingly, we propose that four significant increased periods of regional precipitation occurred at 1300, 900, 600, and ∼ 1.5 ka in the study area because of the negative correlation between the intensity of the EASM and regional precipitation from 1960 to 2012; and (3) fluvial incision by the Qingyijiang arose as a result of the weakening of the EASM in combination with tectonic uplift, determined by matching fluvial incision history of the Qingyijiang with tectonic movement and EASM change. In addition, the weakening of the EASM climatically triggered fluvial incision by the Qingyijiang. This study supports the conclusion that major fluvial incision has been climatically triggered; however, it also suggests that the mechanism of river incision may be regionally distinctive in different climatic zones.

  2. Constraining Depositional Slope From Sedimentary Structures in Sandy Braided Streams

    NASA Astrophysics Data System (ADS)

    Lynds, R. M.; Mohrig, D.; Heller, P. L.

    2003-12-01

    Determination of paleoslopes in ancient fluvial systems has potentially broad application to quantitatively constraining the history of tectonics and paleoclimate in continental sequences. Our method for calculating paleoslopes for sandy braided streams is based upon a simple physical model that establishes depositional skin-frictional shear stresses from assemblages of sedimentary structures and their associated grain size distributions. The addition of a skin-frictional shear stress, with a geometrically determined form-drag shear stress results in a total boundary shear stress which is directly related to water-surface slope averaged over an appropriate spatial scale. In order to apply this model to ancient fluvial systems, it is necessary to measure the following: coarsest suspended sediment size, finest grain size carried in bed load, flow depth, dune height, and dune length. In the rock record, suspended load and bed load can be accurately assessed by well-preserved suspended load deposits ("low-energy" ripples) and bed load deposits (dune foresets). This model predicts an average slope for the North Loup River near Taylor, Nebraska (modern case study) of 2.7 x 10-3. The measured reach-averaged water surface slope for the same reach of the river is 1.37 x 10-3. We suggest that it is possible to calculate the depositional slope of a sandy fluvial system by a factor of approximately two. Additionally, preliminary application of this model to the Lower Jurassic Kayenta Formation throughout the Colorado Plateau provides a promising and consistent evaluation of paleoslope in an ancient and well-preserved, sandy braided stream deposit.

  3. The use of GIS tools in determining the intensity of meandering of rivers based on the example of Noteć River (Poland)

    NASA Astrophysics Data System (ADS)

    Szatten, Dawid; Rabant, Hubert; Nadolny, Grzegorz

    2017-11-01

    The study used the tools of Geographic Information System (GIS) in the analysis of the intensity of meandering of Noteć River, calculated using indicators proposed by Brice [16], Leopold et al. [17], Rust [15] and Rosgen [18]. In this work the emphasis is placed on showing the suitability of using modelling software and spatial data. The study was based on archival cartographic materials and orthophotomap presenting the current course of the river channel. The software of geographic information system used for analysis was ArcMap v.10.0. The rate of meandering of the river in a multiyear period 1876-2013 and four typical scenarios of the development of river channel were determined. Comparing them with the types of human intervention in the fluvial system, the dynamics of transformation channel in the analysed period of time was specified. These types are characteristic for all the meandering rivers. These scenarios can determine the amount of anthropopressure and to evaluate the usefulness of GIS in the analysis of transformations of the fluvial system.

  4. Reports of planetary geology program, 1983

    NASA Technical Reports Server (NTRS)

    Holt, H. E. (Compiler)

    1984-01-01

    Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.

  5. Quantification of shear stress in a meandering native topographic channel using a physical hydraulic model

    Treesearch

    Michael E. Ursic; Christopher I. Thornton; Amanda L. Cox; Steven R. Abt

    2012-01-01

    Fluvial systems respond to changes in boundary conditions in order to sustain the flow and sediment supplied to the system. Local channel responses are typically difficult to predict due to possible affects from upstream, downstream, or local boundary conditions that cause changes in channel or planform geometry. Changes to the system can threaten riverside...

  6. Heavy mineral analyses as a powerful tool in fluvial geomorphology

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik

    2014-05-01

    The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.

  7. Field migration rates of tidal meanders recapitulate fluvial morphodynamics

    NASA Astrophysics Data System (ADS)

    Finotello, Alvise; Lanzoni, Stefano; Ghinassi, Massimiliano; Marani, Marco; Rinaldo, Andrea; D'Alpaos, Andrea

    2018-02-01

    The majority of tidal channels display marked meandering features. Despite their importance in oil-reservoir formation and tidal landscape morphology, questions remain on whether tidal-meander dynamics could be understood in terms of fluvial processes and theory. Key differences suggest otherwise, like the periodic reversal of landscape-forming tidal flows and the widely accepted empirical notion that tidal meanders are stable landscape features, in stark contrast with their migrating fluvial counterparts. On the contrary, here we show that, once properly normalized, observed migration rates of tidal and fluvial meanders are remarkably similar. Key to normalization is the role of tidal channel width that responds to the strong spatial gradients of landscape-forming flow rates and tidal prisms. We find that migration dynamics of tidal meanders agree with nonlinear theories for river meander evolution. Our results challenge the conventional view of tidal channels as stable landscape features and suggest that meandering tidal channels recapitulate many fluvial counterparts owing to large gradients of tidal prisms across meander wavelengths.

  8. Fluvial valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-01-01

    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.

  9. Linking fluvial and aeolian morphodynamics in the Grand Canyon, USA

    USGS Publications Warehouse

    Kasprak, Alan; Bangen, Sara G.; Buscombe, Daniel; Caster, Joshua; East, Amy; Grams, Paul E.; Sankey, Joel B.

    2017-01-01

    In river valleys, fluvial and upland landscapes are intrinsically linked through sediment exchange between the active channel, near-channel fluvial deposits, and higher elevation upland deposits. During floods, sediment is transferred from channels to low-elevation nearchannel deposits [Schmidt and Rubin, 1995]. Particularly in dryland river valleys, subsequent aeolian reworking of these flood deposits redistributes sediment to higher elevation upland sites, thus maintaining naturallyoccurring aeolian landscapes [Draut, 2012].

  10. 100-kyr fluvial fill terrace cycles since the Middle Pleistocene in the southern Central Andes, Toro Basin, NW Argentina

    NASA Astrophysics Data System (ADS)

    Tofelde, Stefanie; Schildgen, Taylor F.; Bookhagen, Bodo; Savi, Sara; Pingel, Heiko; Wickert, Andrew D.; Wittmann, Hella; Alonso, Ricardo N.; Strecker, Manfred R.

    2017-04-01

    Fluvial fill terraces in intermontane basins are valuable sedimentary and geomorphic archives that record tectonic and/or climate- driven changes of river networks and their adjacent hillslopes. However, the rarely complete preservation of such geomorphic features, often combined with large distances from sediment source areas, complicates the identification of causal links between tectonic/climatic forcing mechanisms and landscape response, especially over timescales of 105 to 106 years. The intermontane Quebrada del Toro Basin in the Eastern Cordillera of NW Argentina contains at least five fluvial terrace-surface remnants that have been sculpted into a succession of several-hundred-meter-thick Quaternary gravel conglomerate. These terraces can be followed over several tens of kilometers and are located in the higher part of the basin, close to the sediment source areas. In this study, we determined the onset of multiple river incision phases by dating the abandonment of the three most extensive and best preserved terrace surfaces with nine cosmogenic 10Be-depth profiles. The timing of terrace-gravel deposition is based on four cosmogenic 26Al/10Be burial ages and U-Pb zircon age estimates of three intercalated volcanic ashes in the conglomeratic fill. The 10Be depth profile ages suggest a successive abandonment of these terrace surfaces with a 100-kyr-cyclicity between 487 ± 34 ka and 75 ± 7 ka. Depositional ages of the conglomerates, determined by 26Al/10Be burial samples and U-Pb zircon ages, range from 936 ± 170 ka to 18 ± 141ka. They show a clear overlap with the terrace-surface abandonment ages and thus indicate the existence of multiple cut-and-fill cycles. Although the initial onset of aggradation of the Quaternary gravel conglomerate at ˜1 Ma and the overall net fluvial incision since ˜0.5 Ma can be linked to tectonic processes affecting the narrow basin outlet, the superimposed 100-kyr-cycles of aggradation and incision are best explained by eccentricity-driven climate change. Within these cycles, the onset of river incision can be correlated with global cold periods that are linked with regional humid phases recorded on the Bolivian Altiplano, 1000 km north of the Toro Basin. Deposition, on the other hand, occurs mainly during more arid conditions on the Altiplano (regional) and global interglacial periods. We suggest that enhanced runoff during global cold phases - due to increased regional precipitation, reduced evapotranspiration, or both - resulted in increased sediment-transport capacity in the Toro Basin, which outweighed any possible increases in upstream sediment supply and thus triggered incision. On the other hand during arid phases, the river runoff decreases and the still high sediment supply rates result in overall aggradation. Although located far from major ice-sheets, our study shows that global eccentricity-driven glacial-interglacial cycles also result in significant variations in the sediment-transport system in high mountains of the sub-tropics.

  11. Late cenozoic fluvial stratigraphy of the New Jersey piedmont: A record of glacioeustasy, planation, and incision on a low-relief passive margin

    USGS Publications Warehouse

    Stanford, S.D.; Ashley, G.M.; Brenner, G.J.

    2001-01-01

    Late Cenozoic fluvial deposits and erosional landforms in the New Jersey Piedmont record two episodes of valley incision, one in the Late Miocene and one in the Early Pleistocene, separated by periods of planation and fluvial deposition. The upland erosion surface and a fluvial gravel are the remnants of a low-relief Late Miocene landscape. Late Miocene incision was followed by deposition of a fluvial plain and cutting of straths in the Pliocene. Early Pleistocene incision produced the present valleys, which contain Middle to Late Pleistocene fluvial deposits. The two incisions correspond to permanent glacioeustatic lowering during expansion of the Antarctic ice sheet in the Middle to Late Miocene and development of Northern Hemisphere ice sheets in the Late Pliocene. Bordering Coastal Plain marine deposits indicate that the upland erosion surface was formed during a rising sea-level trend between the Late Oligocene and Middle Miocene. The Pliocene plain and straths formed during a period of rising sea level in the Early Pliocene. The stratigraphic record indicates that the oldest preserved landforms are no older than Late Miocene, that landscape planation in coastal regions of low-relief passive margins can be achieved in <20 m.yr., and that these surfaces can be incised and dissected in <5 m.yr.

  12. Large-scale coastal and fluvial models constrain the late Holocene evolution of the Ebro Delta

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Ashton, Andrew D.; Kettner, Albert J.; Giosan, Liviu

    2017-09-01

    The distinctive plan-view shape of the Ebro Delta coast reveals a rich morphologic history. The degree to which the form and depositional history of the Ebro and other deltas represent autogenic (internal) dynamics or allogenic (external) forcing remains a prominent challenge for paleo-environmental reconstructions. Here we use simple coastal and fluvial morphodynamic models to quantify paleo-environmental changes affecting the Ebro Delta over the late Holocene. Our findings show that these models are able to broadly reproduce the Ebro Delta morphology, with simple fluvial and wave climate histories. Based on numerical model experiments and the preserved and modern shape of the Ebro Delta plain, we estimate that a phase of rapid shoreline progradation began approximately 2100 years BP, requiring approximately a doubling in coarse-grained fluvial sediment supply to the delta. River profile simulations suggest that an instantaneous and sustained increase in coarse-grained sediment supply to the delta requires a combined increase in both flood discharge and sediment supply from the drainage basin. The persistence of rapid delta progradation throughout the last 2100 years suggests an anthropogenic control on sediment supply and flood intensity. Using proxy records of the North Atlantic Oscillation, we do not find evidence that changes in wave climate aided this delta expansion. Our findings highlight how scenario-based investigations of deltaic systems using simple models can assist first-order quantitative paleo-environmental reconstructions, elucidating the effects of past human influence and climate change, and allowing a better understanding of the future of deltaic landforms.

  13. Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    NASA Astrophysics Data System (ADS)

    Medici, Giacomo; West, L. J.; Mountney, N. P.

    2018-03-01

    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to 1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability ( K 10-1-100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K 10-2 m/day at 150-400 m BGL to 10-3 m/day down-dip at 1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs ( 0.7-1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields.

  14. Permian-Early Triassic tectonics and stratigraphy of the Karoo Supergroup in northwestern Mozambique

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Philipp, Ruy Paulo; Jelinek, Andrea Ritter; Ketzer, João Marcelo Medina; dos Santos Scherer, Claiton Marlon; Jamal, Daúd Liace; dos Reis, Adriano Domingos

    2017-06-01

    The Gondwana continent was the base of great basin inception, sedimentation and magmatism throughout the Cambrian to Middle Jurassic periods. The northwestern Mozambique igneous and metamorphic basement assemblages host the NW-trending Moatize Minjova Basin, which has great economic potential for coal and gas mining. This rift basin was activated by an S-SW stress field during the Early Permian period, as constrained by regional and field scale structural data. Tectonically induced subsidence in the basin, from the reactivation of NW-SE and NNE-SSW regional structures is well recorded by faults, folds and synsedimentary fractures within the Early Late Permian Moatize Formation. NW-SE, N-S and NE-SW field structures consist of post-Karoo reactivation patterns related to a NNE-SSW extension produced by the Pangea breakup and early inception stages of the Great East African Rift System. The Early Late Permian sequences of the Moatize-Minjova Basin are composed of fluvial meandering, coal-bearing beds of the Moatize Formation, which comprises mostly floodplain, crevasse splay and fluvial channel lithofacies associations, deposited in a cyclic pattern. This sequence was overlapped by a multiple-story, braided fluvial plain sequence of the Matinde Formation (Late Permian - Early Triassic). Lithofacies associations in the Matinde Formation and its internal relationships suggest deposition of poorly channelized braided alluvial plain in which downstream and probably lateral accretion macroforms alternate with gravity flow deposits. NW paleoflow measurements suggest that Permian fluvial headwaters were located somewhere southeast of the study area, possibly between the African and Antarctic Precambrian highlands.

  15. Palaeohydrological and palaeoecological studies on South Cameroonian alluvial sedimentary basins - New evidence on the palaeoenvironmental evolution of western Central Africa since the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Sangen, M.

    2009-04-01

    A new valuable and innovative contribution will be presented to ascertain the timing and extension of climatic and ecological changes in western equatorial Africa. Main focus is laid on the dynamics of climate, fluvial systems and the high sensitive tropical ecosystems (dense evergreen and semi-deciduous rain forest and savanna-rain forest margin) since the Late Pleistocene (~50 kyrs. BP). For this purpose extended fieldworks were carried out in South Cameroon (2004-2008) by the ReSaKo-Project (sub-project of DFG-Project 510) with abundant investigations on alluvial sedimentary basins of equatorial tropical fluvial systems. Suitable alluvial sediment-archives for palaeoenvironmental research were uncovered along selected braiding, meandering and anabranching/anastomosing reaches of major southwestern, into the Gulf of Guinea (Ntem, Nyong and Sanaga) and southeastern, into the Congo basin (Boumba, Dja and Ngoko) draining rivers (RUNGE et al. 2006, SANGEN 2008). Among geomorphological investigations and cross section discussions, 150 corings (Edelman, 20 cm layers) reaching maximum depths of 550 cm were carried out on river benches, levees, cut-off and periodical branches, islands and terraces as well as in seasonal inundated floodplains and backswamps. Corresponding sedimentary profiles and catenae recovered multilayered, sandy to clayey alluvia containing sedimentary form-units and palaeosurfaces which contribute to the reconstruction of palaeoenvironmental conditions in western equatorial Africa. Several (59) radiocarbon (AMS) dated samples (Erlangen and Lecce) from fossil organic layers and macro-rests embedded in these units yielded Late Pleistocene to recent ages (14C-ages around 48 to 0.2 kyrs. BP), spanning also the Last Glacial Maximum (LGM) and Holocene record. Abrupt grain-size modifications and alternating form-units (sandy and clayey layers, palaeosurfaces) in the stratigraphic records display fluctuations in the fluvial-morphological response of the fluvial systems to climatic variability and other extrinsic and intrinsic impacts. Although the sedimentary record varies among the studied river reaches, fossil organic sediment layers (palaeosurfaces) containing valuable proxy data were found in almost all alluvia basins of examined southern Cameroonian rivers. Around 56 ^13C-values corresponding to the dated samples (-31.4 to -18.0 ) evidence that despite major disturbances of the African rain forest over geological times (MALEY 2001) mainly rain forest ecosystems have prevailed during the corresponding time periods, presumably as gallery forests, which were able to persist in this fluvial habitat ("fluvial refuge"), even during arid periods (e.g. LGM). The results are consistent with earlier findings from lacustrine (SERVANT & SERVANT-VILDARY 2000), marine (WELDEAB et al. 2007) and additional sediment archives (GASSE et al. 2008) and will add additional insights and information to the unravelling of the complex respond of the African monsoon, the Central African ecosystems and fluvial systems to Late Quaternary climatic and environmental fluctuations within a globally teleconnected system. References: GASSE, F., CHALIé, F., VINCENS, A., WILLIAMS, M.A.J. & WILLIAMSON, D. (2008): Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quaternary Science Reviews, 27 (25-26), 2316-2340. MALEY, J. (2001): The impact of arid phases on the African rain forest through geological history. In: WEBER, W., WHITE, L., VEDDER, A., NAUGHTON-TREVES, L. (Eds.): African rain forest ecology and conservation - An interdisciplinary perspective. Yale University Press, New Haven, 68-87. RUNGE, J., EISENBERG, J., SANGEN, M. (2006): Geomorphic evolution of the Ntem alluvial basin and physiogeographic evidence for Holocene environmental changes in the rain forest of SW Cameroon (Central Africa) - preliminary results. Z. Geomorph. N.F., Suppl. Bd. 145, 63-79. SERVANT, M. & SERVANT-VILDARY, S. (2000): Dynamique à long terme des écosystèmes forestiers intertropicaux. Publications issues du Symposium international « Dynamique à long terme des écosystèmes forestiers intertropicaux », Paris, 20-22 mars 1996. Paris, UNESCO, 1-434. WELDEAB, S., LEA, D.W., SCHNEIDER, R.R. & ANDERSEN, N. (2007): 155,000 years of West African monsoon ocean thermal evolution. Science, 316, 1303-1307.

  16. Investigation of fluvial landforms in the north-eastern Pannonian Basin, using cartographic materials from the XIX-XXI Centuries

    NASA Astrophysics Data System (ADS)

    Robu, Delia; Niga, Bogdan; Perşoiu, Ioana

    2015-04-01

    The study area is located in the north-eastern Pannonian Basin, and covers approximately 3700 km2. Using cartographic materials for the last 155 years, we analyzed and defined river network and relict fluvial morphologies created by the rivers Tur, Someş, Homorod and Crasna. Database extraction from each set of historical maps was performed by field verification and validation, associated to GIS techniques. Relict fluvial morphologies on the Someş alluvial cone comprise a wide variety of channel typologies and sizes, drainage directions and their consequent typology, which indicates a complex fluvial evolution. The dominant category of relict fluvial morphology is represented by the meander loop. Following the quantitative analysis on the successive sets of maps we identified and delimited meander loops and meandering paths formed prior to the reference year 1860. Generally, the post-1860 relict fluvial morphologies are secondary morphologies, as the keynote is given by those formed previous to the reference moment 1860. An analysis of the share of the relict fluvial morphologies on the three sets of reference cartographic materials (the second Austro-Hungarian topographic survey, Google Earth and orthophotoplans) highlights that most relict fluvial morphologies were identified on the second Austro-Hungarian topographic survey, followed by those identified in Google Earth and orthophotoplans. The map of fluvial morphologies constructed in this study enables a discussion on drainage directions, based on the observation that a series of abandoned meander loops and segments follow clear directions. We applied several quantitative indices in assessing the relict fluvial morphology (radius of curvature, paleochannel width). Consequently, we identified underfit stream sectors with meander loops larger than the modern ones Someş meanders (on the Racta River), uncharacteristic features such as braided riverbed reaches, a high frequency of meander scrolls present on the right bank of Crasna at its entrance in the plain, or the occurrence of wetlands in an area affected by subsidence (the Ecedeea Plain). Despite the ample human intervention in our study area through sewers, dams, meander cuts, the river network evolution trend remained the same between 1860 and 2005, with evolution and formation of meanders, although the change rate has diminished. "ACKNOWLEDGMENT This paper has been financially supported within the project entitled "SOCERT. Knowledge society, dynamism through research", contract number POSDRU/159/1.5/S/132406. This project is co-financed by European Social Fund through Sectoral Operational Programme for Human Resources Development 2007-2013. Investing in people!"

  17. Late Holocene interdecadal climate variability in the Sahel: inferences from a marine dust record offshore Senegal

    NASA Astrophysics Data System (ADS)

    Meyer, I.; Stuut, J.-B.; Mollenhauer, G.; Mulitza, S.; Zabel, M.

    2009-04-01

    Present-day climate in northwestern Africa strongly depends on the avaiability of water. At least since the Pliocene the Saharan Desert and the semiarid Sahel belt (tropical North Afrika) have been frequently affected by sudden shifts to more arid climate. The rate of change from arid to humid conditions is presently under heavy debate (e.g., deMenocal et al., 2001, Kröpelin et al., 2008). A recent example of abrupt droughts occurred in the early 70's and 80's of the last century. In this study we compare different high-resolution marine sediment records of Sahel climate variability from the Senegal mud belt, northwest Africa. Marine sediment cores show the variations of terrigenous input (both aeolian dust and fluvial matter) from the African continent. Due to their different distinctive grain-size distributions, aeolian dust and fluvial mud can be recognised and quantified in marine sediments (e.g., Stuut et al., 2002). Based on these variations in the grain-size distributions of the terrigenous sediment fraction, deconvolved with an end-member modelling algorithm (Weltje, 1997), are used to reconstruct rainfall variability and dust production on land for the last 4,000 years. References P. B. deMenocal, et al. (2001). Late Holocene Cultural Responses to Climate Change During the Holocene. Science 292, 667 S. Kröpelin, et al. (2008) Response to Comment on "Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years" Science 322, 1326c G. J. Weltje (1997) End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology 9, 4

  18. Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate

    NASA Astrophysics Data System (ADS)

    van de Lageweg, Wietse I.; McLelland, Stuart J.; Parsons, Daniel R.

    2018-03-01

    Microbial assemblages (biofilms) preferentially develop at water-sediment interfaces and are known to have a considerable influence on sediment stability and erodibility. There is potential for significant impacts on sediment transport and morphodynamics, and hence on the longer-term evolution of coastal and fluvial environments. However, the biostabilisation effects remain poorly understood and quantified due to the inherent complexity of biofilms and the large spatial and temporal (i.e. seasonality) variations involved. Here, we use controlled laboratory tests to systematically quantify the effects of natural biofilm colonisation as well as extracted extracellular polymeric substances (EPSs) on sediment stability. Extracted EPSs may be useful to simulate biofilm-mediated biostabilisation and potentially provide a method of speeding up timescales of physical modelling experiments investigating biostabilisation effects. We find a mean biostabilisation effect due to natural biofilm colonisation and development of almost 4 times that of the uncolonised sand. The presented cumulative probability distribution of measured critical threshold for erosion of colonised sand reflects the large spatial and temporal variations generally seen in natural biostabilised environments. For identical sand, engineered sediment stability from the addition of extracted EPSs compares well across the measured range of the critical threshold for erosion and behaves in a linear and predictable fashion. Yet, the effectiveness of extracted EPSs to stabilise sediment is sensitive to the preparation procedure, time after application and environmental conditions such as salinity, pH and temperature. These findings are expected to improve biophysical experimental models in fluvial and coastal environments and provide much-needed quantification of biostabilisation to improve predictions of sediment dynamics in aquatic ecosystems.

  19. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream.

    PubMed

    Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena

    2013-02-01

    While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA

    USGS Publications Warehouse

    Hupp, C.R.; Pierce, Aaron R.; Noe, G.B.

    2009-01-01

    Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.

  1. Spatial variations in fluvial incision across the eastern margin of Tibet reveal locus of deformation in the deep crust

    NASA Astrophysics Data System (ADS)

    Kirby, Eric

    2017-04-01

    The manifestation of coupling among climate, erosion and tectonics along steep topographic margins of orogenic plateaus is strongly dependent on the processes driving crustal thickening. Along the eastern margin of the Tibetan Plateau, a long-standing and vigorous debate persists over whether mountain building occurred largely along upper-crustal faults or was the consequence of distributed thickening in the lower crust. Here I revisit this debate and show how surface deformation recorded by geomorphology over millennial timescales (10^4-105 yr) can yield insight into the role the deep crust along plateau margins. In contrast to the intensively studied Longmen Shan, the topographic margin of the Tibetan Plateau north of the Sichuan Basin follows the north-south Min Shan and cuts orthogonally across the structural grain of the Mesozoic West Qinling orogen. The lack of a direct association of topography with upper crustal faults affords an opportunity to evaluate the patterns of differential rock uplift from geomorphology. First, I employ an empirical calibration of river profile steepness (channel gradient normalized for drainage basin area) and erosion rate from cosmogenic 10Be concentrations in modern sediment. Application to the channels draining the plateau margin reveals a locus of high (300-500 m/Myr) erosion rate coincident with the Min Shan. Second, I present new results of surveying and dating of fluvial terraces developed along the Bailong Jiang, one of the major rivers draining across the plateau margin. A preliminary chronology of terrace formation and abandonment based on radiocarbon and OSL dating of fluvial deposits reveals systematic spatial gradients in fluvial incision, with highest incision rates (1000-2000 m/Myr) localized along the axis of the Min Shan and decreasing toward both the foreland and the plateau. This locus of incision has apparently been sustained through multiple generations of terrace formation and abandonment since at least 80 ka and thus is interpreted to reflect sustained differential rock uplift along this axis. The wavelength of the region of highest incision rates is 80 km and requires either 1) a deeply buried tip of a blind fault, or 2) thickening in the deep crust. We argue that terrace deformation and associated rock uplift likely reflects flow and thickening of deep Tibetan crust against the foreland of the West Qinling.

  2. The interplay of fractures and sedimentary architecture: Natural gas from reservoirs in the Molina sandstones, Piceance Basin, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, J.C.

    1997-03-01

    The Molina Member of the Wasatch Formation produces natural gas from several fields along the Colorado River in the Piceance Basin, northwestern Colorado. The Molina Member is a distinctive sandstone that was deposited in a unique fluvial environment of shallow-water floods. This is recorded by the dominance of plane-parallel bedding in many of the sandstones. The Molina sandstones crop out on the western edge of the basin, and have been projected into the subsurface and across the basin to correlate with thinner sandy units of the Wasatch Formation at the eastern side of the basin. Detailed study, however, has shownmore » that the sedimentary characteristics of the type-section Molina sandstones are incompatible with a model in which the eastern sandstones are its distal facies equivalent. Rather, the eastern sandstones represent separate and unrelated sedimentary systems that prograded into the basin from nearby source-area highlands. Therefore, only the subsurface {open_quotes}Molina{close_quotes} reservoirs that are in close proximity to the western edge of the basin are continuous with the type-section sandstones. Reservoirs in the Grand Valley and Rulison gas fields were deposited in separate fluvial systems. These sandstones contain more typical fluvial sedimentary structures such as crossbeds and lateral accretion surfaces. Natural fractures play an important role in enhancing the conductivity and permeability of the Molina and related sandstones of the Wasatch Formation.« less

  3. Late Cretaceous fluvial systems and inferred tectonic history, central Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, T.F.

    1983-08-01

    Upper Campanian nonmarine sedimentary rocks exposed between the Wasatch Plateau and the Green River in central Utah record a tectonic transition from thin-skinned deformation in the thrust belt to basement-cored uplift in the foreland region. Sandstones within the section consist of two distinct compositional suites, a lower quartzose petrofacies and an upper lithic petrofacies. The volcanic lithic grains of the Farrer and Tuscher Formations were derived from more distal arc sources to the southwest, and transported through the thrust belt somewhere west of the Kaiparowits region, where time-equivalent sedimentary rocks are also rich in volcanic lithic fragments. Disappearance of volcanicmore » lithics and appearance of pebbles at the top of the Tuscher Formation is interpreted to reflect a latest Campanian reorganization of drainage patterns that marked initial growth of the San Rafael swell and similar basement uplifts to the south of the swell. Contemporaneous fluvial systems that deposited the uppermost part of the Price River Formation in the Wasatch Plateau were apparently unaffected by the uplift and continued to flow northeast. Depositional patterns thus indicate that initial growth of the San Rafael swell was probably concurrent with late deformation in the thrust belt. Depositional onlap across the Mesaverde Group by a largely post-tectonic assemblage of fluvial and lacustrine strata (North Horn Formation) indicates a minimum late Paleocene age for growth of the San Rafael swell and deformation within the thrust belt.« less

  4. A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning

    NASA Astrophysics Data System (ADS)

    Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.

    2005-12-01

    Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.

  5. a Review of Late Holocene Fluvial Systems in the Karst Maya Lowlands with Focus on the Rio Bravo, Belize

    NASA Astrophysics Data System (ADS)

    Beach, T.; Luzzadder-Beach, S.; Krause, S.; Doyle, C.

    2015-12-01

    The Maya Lowlands is mostly an internally draining karst region with about 400 m of regional relief. Fluvial and fluviokarst systems drain the edges of this landscape either from low limestone uplands or igneous and metamorphic complexes. Thus far most fluvial research has focused around archaeology projects, and here we review the extant research conducted across the region and new research on the transboundary Rio Bravo watershed of Belize and Guatemala. The Rio Bravo drains a largely old growth tropical forest today, but was partly deforested around ancient Maya cities and farms from 3,000 to 1000 BP. Several studies estimate that 30 to 40 percent of forest survived through the Maya period. Work here has focused on soils and sediment movement along slope catenas, in floodplain sites, and on contributions from groundwater with high dissolved loads of sulfate and calcium. We review radiocarbon dates and present new dates and soil stratigraphy from these sequences to date slope and floodplain movement, and we estimate ancient land use from carbon isotopic and pollen evidence. Aggradation in this watershed occurred by flooding, gypsum precipitation, upland erosion, and ancient Maya canal building and filling for wetland farming. Soil erosion and aggradation started at least by 3,000 BP and continued through the ancient Maya period, though reduced locally by soil conservation, post urban construction, and source reduction, especially in Maya Classic period from 1700 to 1000 BP.

  6. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  7. Mapping Variability in the Medusae Fossae Formation: Yardang Morphologies, Fluvial Reworking, and Crater Depth to Diameter Ratios

    NASA Astrophysics Data System (ADS)

    Khuller, A. R.; Kerber, L.

    2017-12-01

    The Medusae Fossae Formation (MFF) is a voluminous, fine-grained deposit thought to be of pyroclastic origin. While it contains widespread, well-preserved inverted fluvial features, its pervasive cover of dust means that little is known about its composition, and indirect means must be used to characterize its material properties. This project aims to correlate fluvial features in the Western MFF with other indicators of material strength: yardang morphology and crater depth-to-diameter ratios. For this work, Context Camera (CTX) images were used to map features of fluvial origin (inverted channels, sinuous ridges, alluvial fans). The presence of rounded, meso-yardangs in close proximity to fluvial features was also mapped. Crater depth-diameter (d/D) ratios (for craters 1-512km) were analyzed using a global Mars crater database (Robbins and Hynek, 2012) as a proxy for material strength. Approximately 1400 fluvial segments were mapped, with the most populous cluster located in Aeolis and Zephyria Plana. Rounded meso-yardangs were found to be common in areas that also have fluvial features. In agreement with previous work (Barlow, 1993), MFF craters were found to have a greater d/D ratio (0.0523) than the global mean (0.0511). Ratios between MFF lobes differ significantly, providing insight into the heterogeneity of induration within the formation. The deepest craters are found in Eumenides Dorsum and the shallowest in Aeolis Planum, consistent with a greater degree of induration and reworking in the western part of the formation where the fluvial features and "salt-playa" meso-yardangs are found. It also suggests that Eumenides, which is the tallest MFF outcrop, could also be the least compacted. The presence of long, complex, and sometimes overlapping branching networks imply multiple relative episodes of channel formation. Rounded meso-yardangs, which are associated with salt playa surfaces on Earth, provide additional evidence for the presence of liquid water during the history of the MFF. The preservation of fluvial activity, through inversion and negative relief as well as the `protection' provided by the layers of friable MFF deposits indicates that some of the most well-preserved stratigraphy could perhaps be accessed by future Martian surface exploration missions within the MFF.

  8. Chronostratigraphic and depositional sequences of the Fort Union formation (Paleocene), Williston Basin, North Dakota, South Dakota, and Montana

    USGS Publications Warehouse

    Warwick, Peter D.; Flores, Romeo M.; Nichols, Douglas J.; Murphy, Edward C.; Pashin, Jack C.; Gastaldo, Robert A.

    2004-01-01

    The Fort Union Formation in the Williston Basin of North Dakota, South Dakota, and Montana comprises chronostratigraphic and depositional sequences of Paleocene age. Individual chronostratigraphic sequences are defined by palynostratigraphic (pollen and spore) biozones and radiometric (40Ar/39Ar) ages obtained from tonsteins or volcanic ash layers. Analyses of depositional sequences are based on lithofacies constrained by the radiometric ages and biozones.The lower Paleocene (biozones P1-P3) contains three marine parasequences (landward stepping) in southwestern North Dakota that sequentially onlapped westward between 65 and 61 Ma (lower Ludlow and Cannonball Members). Maximum flooding (transgressive systems tract) occurred during an approximate 1-m.y. interval from 65 to 64 Ma, which regionally is correlated biostratigraphically to a tidally influenced, distributary-shoreface, and fluvial-channel complex in the Cave Hills, northwestern South Dakota, and to channel-dominated fluvial (low-stand incised paleovalley systems) and tidally influenced, flood-plain-deltaic transition facies in the Ekalaka area of southeastern Montana.The progradational parasequences in the Cannonball Member consist of shore-face sandstone beds (with ravinement lag deposits) deposited by strand-plain barrier systems. Landward of the barrier systems, tidal-estuarine and mire deposits included thick but laterally discontinuous peat accumulations (e.g., Beta and Yule coal beds in the Ludlow Member, southwestern North Dakota). However, landward of the coastal deposits, the laterally equivalent T-Cross-Big Dirty coal zone (dated 64.78 Ma) in southeastern Montana formed as thick, laterally extensive peat accumulations in mires in a fluvial setting. In the flood-plain-deltaic, tidal transition zone near Ekalaka, Montana, the Ludlow Member consists of flood-plain facies, discontinuous coal beds, and rooted and burrowed horizons that contain the marine or brackish trace fossil Skolithos. The flood-plain-deltaic tidal transition zone facies are incised by a massive, agglomerated channel sandstone complex (paleovalley fill) that is exposed along the modern Snow Creek drainage south of Mill Iron, Montana. The flood-plain-tidal transition zone was reworked during the maximum sea level highstand during the early Paleocene. This event was followed by a fall of sea level and deposition of the paleovalley fill.Sea level fall during the mid-Paleocene (biozones P3 and P4) produced a regressive shallow-marine and lower deltaic tidal system (seaward stepping) that deposited strata that thin toward the east. These strata are overlain by a widespread paleosol (Rhame bed) and, in turn, a lignite-bearing fluvial facies (Tongue River Member) containing the laterally persistent Harmon-Hanson coal zone (61.23 Ma). Upper Paleocene biozone P5 is represented by fluvial, coal-bearing strata that contain several economically minable coal beds (HT Butte, Hagel, and Beulah-Zap zones, Sentinel Butte Member).The Fort Union Formation of the Williston Basin contains significant coal resources. These coal deposits are now being explored for their potential coal-bed gas resources. A better understanding of the depositional setting for these deposits can lead to improved exploration and exploitation practices and a better understanding of regional paleogeography and paleoclimate during the Paleocene.

  9. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes.

    PubMed

    Moore, Sam; Evans, Chris D; Page, Susan E; Garnett, Mark H; Jones, Tim G; Freeman, Chris; Hooijer, Aljosja; Wiltshire, Andrew J; Limin, Suwido H; Gauci, Vincent

    2013-01-31

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia--an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.

  10. What is the prognosis of nitrogen losses from UK soils?

    NASA Astrophysics Data System (ADS)

    Burt, T. P.; Worrall, F.; Whelan, M.; Howden, N. J.

    2009-12-01

    The UK’s high population density, intensive agriculture and relative short, unimpeded rivers mean that the UK is a known “hotspot” of fluvial nitrogen flux. Furthermore, it is known that the fluvial flux of nitrogen from the UK is increasing. This study estimates the release of nitrate from the UK terrestrial biosphere to understand this rising fluvial flux and i to assess the in-stream losses of nitrate, thusgiving an assessment of the fluvial component of the total nitrogen budget of UK. The approach taken by the study is to use an export coefficient model coupled with a description of mineralisation and immobilisation of nitrogen within soil reserves. The study applies the modelling approach to the whole of the UK from 1925 to 2007 using long term records of: land use (including - agricultural, forestry and urban uses); livestock; human population and atmospheric deposition. The study shows that: i) The flux of nitrate from the UK soils varied from 420 to 1463 Ktonnes N/yr with two peaks in the period since 1925, one in 1944 and one in 1967, the first is caused by mineralisation of soil organic matter following large-scale land use change in the Second World War, and the second is a multifactorial response to land use change and intensification. ii) The current trend in the release from soils is downward whilst the current fluvial flux at the tidal limit is upwards. With the current trends fluvial flux at the tidal limit will be greater than release from the soils of the UK, i.e. there will be net gain across the fluvial network. This apparent gain can be explained by the breakthrough of high nitrate groundwater into surface waters.

  11. New Insights Into Valley Formation and Preservation: Geophysical Imaging of the Offshore Trinity River Paleovalley

    NASA Astrophysics Data System (ADS)

    Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.

    2017-12-01

    The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river systems.

  12. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks and carbon transformation in fluvial networks.

  13. Geology of natural gas reservoir: Upper Travis Peak Formation, western flank of Sabine Uplift, east Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fracasso, M.A.

    The Travis Peak Formation (Lower Cretaceous) in the eastern East Texas basin represents a sand-rich, fluvial-deltaic depositional system. This lobate, high-constructive deltaic system prograded radially to the southeast from an Upshur County locus. Regional studies of the Travis Peak established a threefold internal stratigraphic framework: a middle sand-rich fluvial and delta-plain sequence is gradationally overlain and underlain by a marine-influenced delta-fringe zone with a higher mud content. The entire Travis Peak succession thins over the Bethany dome on the western flank of the Sabine uplift. However, the delta-fringe sequences are relatively thicker over the structure because of a disproportionately greatermore » thinning of the middle sandy fluvial-deltaic sequence. Lesser sand deposition over the Bethany dome reflects an active structural control over facies distribution. Gas production in the Bethany field and surrounding area is concentrated in thin zones (5-15 ft) of the upper delta-fringe sequence. This distribution probably reflects the increased abundance of mudstone beds in the upper delta-fringe interval, which may have served as source rocks or barriers to upward gas migration, or as both. The predominant trapping mechanism in this region is stratigraphic sand pinch-out in a structurally updip direction on the flanks of major structures. Studies of core and closely spaced electric logs west of the Bethany dome help define the depositional systems in the upper delta-fringe producing interval. This sequence comprises a complex mosaic of continental and marine facies, and exhibits an overall upward trend of increasing marine influence that spans a gradual transition into transgressive carbonates of the Sligo Formation.« less

  14. Evolution of sediment plumes in the Chesapeake bay and implications of climate variability.

    PubMed

    Zheng, Guangming; DiGiacomo, Paul M; Kaushal, Sujay S; Yuen-Murphy, Marilyn A; Duan, Shuiwang

    2015-06-02

    Fluvial sediment transport impacts fisheries, marine ecosystems, and human health. In the upper Chesapeake Bay, river-induced sediment plumes are generally known as either a monotonic spatial shape or a turbidity maximum. Little is known about plume evolution in response to variation in streamflow and extreme discharge of sediment. Here we propose a typology of sediment plumes in the upper Chesapeake Bay using a 17 year time series of satellite-derived suspended sediment concentration. On the basis of estimated fluvial and wind contributions, we define an intermittent/wind-dominated type and a continuous type, the latter of which is further divided into four subtypes based on spatial features of plumes, which we refer to as Injection, Transport, Temporary Turbidity-Maximum, and Persistent Turbidity-Maximum. The four continuous types exhibit a consistent sequence of evolution within 1 week to 1 month following flood events. We also identify a "shift" in typology with increased frequency of Turbidity-Maximum types before and after Hurricane Ivan (2004), which implies that extreme events have longer-lasting effects upon estuarine suspended sediment than previously considered. These results can serve as a diagnostic tool to better predict distribution and impacts of estuarine suspended sediment in response to changes in climate and land use.

  15. Application of cluster analysis to the geochemistry zonation of the estuary waters in the Tinto and Odiel rivers (Huelva, Spain).

    PubMed

    Grande, José Antonio; Borrego, José; de la Torre, Maria Luisa; Sáinz, A

    2003-06-01

    The combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel rivers. This estuary is in the southwest of the Iberian Peninsula and is one of the estuarine systems on the northwest coast of the Gulf of Cádiz. From the statistical treatment of data obtained by analyzing samples of water from this system, which is affected by industrial and mining pollution processes, we can see how the sampling points studied form two large groups depending on whether they receive tidal or fluvial influences. Fluvial input contributes acid water with high concentrations of heavy metal, whereas industrial effluents are responsible for the presence of phosphates, silica and other nutrients. The estuarine system of the Tinto and Odiel Rivers can be divided into three areas--the Tinto estuary, the Odiel estuary and the area of confluence--based on the physical--chemical characteristics of the water.

  16. Relevance of the Paraná River hydrology on the fluvial water quality of the Delta Biosphere Reserve.

    PubMed

    Puig, Alba; Olguín Salinas, Héctor F; Borús, Juan A

    2016-06-01

    The increasing frequency of extreme events in large rivers may affect not only their flow, but also their water quality. In the present study, spatial and temporal changes in fluvial physico-chemical variables were analyzed in a mega-river delta during two extreme hydrological years (La Niña-El Niño) and related to potential explanatory factors. Basic water variables were evaluated in situ at 13 points (distant 2-35 km from each other) in watercourses of the Delta Biosphere Reserve (890 km(2)) in the Lower Paraná River (Argentina) in nine surveys (October 2008-July 2010) without meteorological tides. Samples for laboratory analyses were collected from each main river. Multivariate tests by permutations were applied. The period studied was influenced by a drought, within a long period dominated by low flows combined with dry weather and wildfires, and a large (10 years of recurrence) and prolonged (7 months) flood. The hydrological phase, followed by the season and the hydrological year (according to the ENSO event) were the principal explanatory factors of the main water quality changes, whereas the drainage sub-basin and the fluvial environment (river or stream) were secondary explanatory factors. During the drought period, conductivity, turbidity, and associated variables (e.g., major ions, silicon, and iron concentrations) were maximal, whereas real color was minimal. In the overbanking flood phase, pH and dissolved oxygen concentration were minimal, whereas real color was maximal. Dissolved oxygen saturation was also low in the receding flood phase and total major ion load doubled after the arrival of the overbanking stage. The water quality of these watercourses may be affected by the combination of several influences, such as the Paraná River flow, the pulses with sediments and solutes from the Bermejo River, the export of the Delta floodplain properties mainly by the flood, the season, and the saline tributaries to the Lower Paraná River. The high influence of the hydrology of this large river on the Delta fluvial water quality emphasizes the relevance of changes in its flow regime in recent decades, such as the seasonality attenuation. Considering that the effects of extreme events differ among and within fluvial systems, specific ecohydrological evaluations and powerful appropriate statistics are key tools to gain knowledge on these systems and to provide bases for suitable management measures in a scenario of climate change and increasing human alterations and demands.

  17. How Do River Meanders Change with Sea Level Rise and Fall?

    NASA Astrophysics Data System (ADS)

    Scamardo, J. E.; Kim, W.

    2016-12-01

    River meander patterns are controlled by numerous factors, including variations in water discharge, sediment input, and base level. However, the effect of sea level rise and fall on meandering rivers has not been thoroughly quantified. This study examines geomorphic changes to meandering rivers as a result of sea level rise and fall. Twenty experimental runs using coarse-grained walnut shell sediment (D50= 500 microns) in a flume tank (2.4m x 0.6m x 0.1m) tested the optimal initial conditions for creating meandering rivers in a laboratory setting as well as variations in base level rise and fall rates. Geomorphic changes were recorded by camera images every 20 seconds for a duration of 4 hours per experiment. Seventeen experiments tested the effects of changes in initial base levels, water discharge between 200 and 400 mL/min, and sediment to water input ratios between 1:1000 and 1:250 while measuring sinuosity, channel geometry, and the timescale of the channel to reach a stable form. Sinuosity and channel activity increased with increasing water discharge, initial base level, and the sediment to water ratio to a point after which the activity decreased with increasing sediment input. Base-level change experiments used initial conditions of 400 mL/min, a 1:750 sediment to water input ratio, and a 6 cm initial base-level to induce river meanders for the initial 2 hours before base-level change occurred. Three separate experiments investigated the effects of increasing rates of sea level change: 0.07 cm/min, 0.1 cm/min, and 0.2 cm/min. Experimental sea level was decreased constantly from a high-stand of 6 cm to a low-stand of 2 cm back to the high-stand base-level in each experiment. The rates of change in the experiments scale roughly from central to glacial cycles. In all three experiments, sea level fall induced meander cut-off while sea level rise prompted greater rates of meander bend erosion and meander growth. Sinuosity increased by 12%, 13.5%, and 24%, respectively in the three experiments, with most sinuosity changes occurring in the downstream reach of the channel. These experiments could provide insight into long term effects of sea level change on modern meandering fluvial systems as well as provide a key to interpreting past fluvial changes in the stratigraphic record.

  18. Fluvial reservoir architecture in the Malay Basin: Opportunities and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, M.R.; Dharmarajan, K.

    1994-07-01

    Miocene fluvial sandstones are significant hydrocarbon-bearing reservoirs in the Malay Basin. These include high energy, braided stream deposits of group K, associated with late development of extensional half grabens and relatively lower energy, meandering, and anastomosing channel deposits of group I formed during the subsequent basin sag phase. Group K reservoirs are typically massive, commonly tens of meters thick, and cover an extensive part of the Malay Basin. These reservoirs have good porosity and permeability at shallow burial depths. However, reservoir quality deteriorates rapidly with increasing depth. Lateral and vertical reservoir continuity is generally good within a field, commonly formingmore » a single system. Good water drive enhances recovery. Seismic modeling to determine fluid type and the extent of interfluvial shales is possible due to reservoir homogeneity.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoirmore » characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.« less

  20. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  1. Discussion of case study of a stimulation experiment in a fluvial, tight-sandstone gas reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azari, M.; Wooden, W.

    The authors found Warpinski et al.'s paper (Case Study of a Stimulation Experiment in Fluvial, Tight-Sandstone Gas Reservoir. Nov. 1990 SPE Production Engineering, Pages 403-10) to be very thorough and informative. That paper considered geological, logging, completion, and pressure-transient data to produce a comprehensive formation evaluation of a fluvial, tight-sandstone gas reservoir. The purpose of this paper is to present the author's view on the peculiar pressure-transient responses shown.

  2. Quaternary fluvial history of the Delaware River, New Jersey and Pennsylvania, USA: The effects of glaciation, glacioisostasy, and eustasy on a proglacial river system

    NASA Astrophysics Data System (ADS)

    Stanford, Scott D.; Witte, Ron W.; Braun, Duane D.; Ridge, John C.

    2016-07-01

    Fluvial, glacial, and estuarine deposits in the Delaware Valley record the response of the Delaware River to glaciation, sea-level change, and glacioisostasy during the Quaternary. Incision following an early Pleistocene glaciation created the present valley, which is inset into a Pliocene strath and fluvial plain. Middle and upper Pleistocene and Holocene deposits were laid down in this inset valley. Estuarine terraces in the lower valley and bayshore at + 20 m (probably Marine Isotope Stage [MIS] 11), + 8 m (MIS 5e), and + 3 m (MIS 5a or c), and a fluvial deposit that correlates to offshore MIS 3 marine deposits at - 20 m are at elevations consistent with glacioisostatic models. Successive incisions during lowstands in the middle and late Pleistocene lengthened, deepened, and narrowed the channel in the lower valley and shifted the channel westward in Delaware Bay. During MIS 2 glaciation, from 25 to 18 ka, the Delaware was diverted to the Hudson Shelf Valley by glacioisostatic tilting. Most glacial sediment was trapped in fluvial-lacustrine valley fills north of the terminal moraine. Incision of the valley fill was accomplished during the early stage of rebound, between 17 and 12 ka. Drainage to the Delaware shelf was restored between 15 and 13 ka as the forebulge collapsed. During incision, multiple postglacial terraces formed where the valley was perpendicular to rebound contours and so was steepened and elevated northward; and a single terrace formed where the valley paralleled the contours, and there was no differential elevation or steepening. About 65% of the original volume of MIS 2 glacial sediment remains in the main valley, and most of the eroded volume is in the channel in the lower valley beneath Holocene estuarine fill. Little glacial sediment reached the Delaware or Hudson shelf. Overbank deposition on the lower postglacial terrace and modern floodplain spans the Holocene. The volume of Holocene sediment in the estuary and bay yields a basinwide denudation rate of about 20 m/my.

  3. Controls on fluvial metamorphosis during global warming at the Paleocene-Eocene boundary (56 Ma) in Spain: extreme droughts, extreme floods or both?

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien; Chen, Chen; Guerit, Laure; Foreman, Brady; Paola, Chris; Adatte, Thierry

    2017-04-01

    How does global warming change the frequency and intensity of extreme weather events? The response to this question is partly preserved in the geological record. 56 Ma ago, global temperatures increased during the Paleocene-Eocene Thermal Maximum (PETM), leading to a major biotic turnover, but how this event affected the nature of extreme events remains unknown. On several continents, fluvial systems with sinuous channels within fine-grained floodplains suddenly transformed at the P-E boundary into apparently coarser-grained braid plains with frequent lateral migrations, washing their muddy floodplains to the seas. This landscape transformation has been related to aridification and intensification of precipitation allowing transport of coarser material as a result of P-E global warming, with important implications for predicting the consequences of current global change. Here we test this hypothesis by quantifying the magnitude of grain size change and flow depth at a representative P-E locality in Northern Spain. We find that the size of pebbles in transport and flow depth remained similar to, or even smaller than, pre-PETM conditions. This suggests that, if more seasonal and extreme precipitation occurred, they are not necessarily borne out in the predicted deeper flow depths and coarser grain sizes, but rather trigger a shift to multiple active channels. However, an alternative or complementary explanation may rest in pollen data found in coeval marine records and which document a dramatic vegetation shift from permanent conifer forests prior to the crisis into periodic vegetation in brief periods of rain during the hyperthermal episode. Such change induced by long periods of intense droughts, could have enhanced erodibility of channel banks by decreasing root-controlled cohesion of fine-grained floodplains and interfluves, promoting their lateral mobility and the observed fluvial metamorphosis. Thus, although water is regarded as the main agent sculpting fluvial landscapes, the absence of it during extreme droughts rather than its presence during extreme precipitation events, may be a dominant control on fluvial metamorphosis and landscape evolution.

  4. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture dynamics revealed that wood loads increased the channel complexity and strengthened connections between the stream channel and floodplain. Future work will continue to explore the complex interconnections between beaver dams, channel morphology, hydraulics, floodplain dynamics and water chemistry.

  5. Tectonic and climatic controls on continental depositional facies in the Karoo Basin of northern Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Turner, Brian R.

    1986-02-01

    The eastern Karoo Basin, South Africa, contains a thick sequence of terrigenous clastic sediments comprising a meanderbelt facies, braided channel facies divided into coarse and fine subfacies, fluviolacustrine facies and aeolian facies. Depositional trends and changes in fluvial style reflect a progressive increase in aridity of the climate under stable tectonic conditions, interrupted by two phases of source area tectonism and the development of fine and coarse clastic wedges of the braided channel subfacies; the latter signifying a short interlude of cool, wet conditions. The fine braided channel subfacies occurs in the upper part of the meanderbelt facies, which was deposited by ephemeral, meandering mixed-load streams of variable discharge and sinuosity, under dry, semi-arid climatic conditions. These deposited complex, internally discordant channel sands and well-developed levee deposits. Following deposition of the coarse braided channel subfacies semi-arid conditions returned and fluvial deposition was dominated by ephemeral, straight to slightly sinuous mixed load streams characterised by simple channel sand bodies. As the aridity of the climate increased, the streams became more localised and carried an increasing proportion of fines. Interbedded with and overlying the fluvial deposits is a mudstone-dominated lacustrine sequence grading up into aeolian sands suggesting a playa lake-type situation. The general absence of evaporites from these sediments is attributed to the fresh nature of the lake waters, as evidenced by the freshwater aquatic organisms and clay-mineral suite, the lack of adequate inflow for solute accumulation and the removal of dust impregnated by salts from the surface of the dry lake bed during the dry season by superheated, upward-spiralling columns of air. Broadly similar environments to the fluvio-lacustrine and aeolian facies sequence are to be found in the Lake Eyre Basin of central Australia and the Okavango "delta" of northern Botswana. The Okavango "delta" model has an important bearing on patterns of fluvial sedimentation in arid regions since it shows many characteristics of temperate, well-vegetated anastomosed fluvial systems despite its location in the Kalahari Desert.

  6. Methods for assessment of stream-related hazards to highways and bridges.

    DOT National Transportation Integrated Search

    1981-03-01

    particular river reach, but also on the behavior of the entire fluvial system of which it is a part. Rivers are complex landforms. A simple and straight forward approach to the identification of river hazards is not always possible. A complete evalua...

  7. Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection and reaction

    NASA Technical Reports Server (NTRS)

    Kooi, Henk; Beaumont, Christopher

    1994-01-01

    Experiments with a surface processes model of large-scale (1-1000 km) long-term (1-100 m.y.) erosional denudation are used to establish the controls on the evolution of a model escarpment that is related to the rifting of a continent. The mdoel describes changes in topographic form as a result of sumultaneous short- and long-range mass transport representing hillslope (diffusive) processes and fluvial transport (advection), repsectively. Fluvial entrainment is modeled as a first-order kinetic reaction which reflects the erodibility of the substrate, and therefore the fluvial system is not necessarily carrying at capacity. One dimensional and planform models demonstrate that the principal controls on the evolution of an initially steep model escarpment are (1) antecedent topography/drainage; (2) the timesale (or equivalently a length scale) in the fluvial entrainment reaction; (3) the flexural response of the lithosphere to denudation; and (4) the relative efficiencies of the short- and long-range transport processes. When rainfall and substrate lithology are uniform, a significant amount of discharge draining over the escarpment top causes it to degrade. Only when the top of the model escarpment coincides with a drainage divide can escarpment retreat occur for these conditions. An additional requirement for retreat of a model escarpment without decline is a long reaction time scale for fluvial entrainment. This corresponds to a substrate that is hard to detach by flucial erosion, and therefore to fluvial erosion that is not transport limited. Coninuous backtilting of an escarpment due ot flexural isostatic uplift in response to denudational unloading helps maintain the scarp top as a divide. It is essntial if the escarpment gradient is to be preserved during retreat in a uniform lithology. Low flexural rigidieties propote steep and slowly retreating escarpments. For given rainfall and substrate conditions, the morphology of a retraeating model escarpment is determined by the ratio of hte short-range diffusive and long range advective transport efficiencies. A low ration (which is interpreted to correspond to a more humid, temperate climate) produces a convex upper slope, and concave lower slope morphology and only major escarpments are predicted to preserve a high scarp gradient. Lithological contrasts in hte model produce more complex morphologies and predict the formation of scarps crowned by an erosionaly resistant caprock. However, resistant caprocks are not an essential requirement for model scarps to retreat. We conclude that the inferred controls and model behavior are both consistent with the present-day morphology of rifted continental margins and with modern conceptual models of landscape evolution.

  8. Suspended sediment transport trough a large fluvial-tidal channel network

    USGS Publications Warehouse

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they move through the system. Herein, we present analyses of the “first flush” sediment pulse that occurred on the Sacramento River in December 2012, documenting the transport pathways as well as the effects of advection and dispersion on the sediment as it moved through the fluvial-tidal transition in the Delta. The analyses identified an important transport pathway through the interior of the Delta toward the large pumping facilities in the south Delta, which has important implications for native fish (because their movements are triggered by sediment/turbidity). The results also reveal the dramatic transition from fluvial-dominated transport (advection) to tidal-dominated transport (dispersion) as the sediment pulse approaches the estuary.

  9. Mesozoic Continental Sediment-dispersal Systems of Mexico Linked to Development of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lawton, T. F.; Molina-Garza, R. S.; Barboza-Gudiño, R.; Rogers, R. D.

    2013-05-01

    Major sediment dispersal systems on western Pangea evolved in concert with thermal uplift, rift and drift phases of the Gulf of Mexico Basin, and were influenced by development of a continental arc on Pangea's western margin. Existing literature and preliminary data from fieldwork, sandstone petrology and detrital zircon analysis reveal how major drainages in Mexico changed from Late Triassic through Late Jurassic time and offer predictions for the ultimate destinations of sand-rich detritus along the Gulf and paleo-Pacific margins. Late Triassic rivers drained away from and across the present site of the Gulf of Mexico, which was then the location of a major thermal dome, the Texas uplift of recent literature. These high-discharge rivers with relatively mature sediment composition fed a large-volume submarine fan system on the paleo-Pacific continental margin of Mexico. Predictably, detrital zircon age populations are diverse and record sources as far away as the Amazonian craton. This enormous fluvial system was cut off abruptly near the Triassic-Jurassic boundary by extensive reorganization of continental drainages. Early and Middle Jurassic drainage systems had local headwaters and deposited sediment in extensional basins associated with arc magmatism. Redbeds accumulated across northern and eastern Mexico and Chiapas in long, narrow basins whose locations and dimensions are recorded primarily by inverted antiformal massifs. The Jurassic continental successions overlie Upper Triassic strata and local subvolcanic plutons; they contain interbedded volcanic rocks and thus have been interpreted as part of the Nazas continental-margin arc. The detritus of these fluvial systems is volcanic-lithic; syndepositional grain ages are common in the detrital zircon populations, which are mixed with Oaxaquia-derived Permo-Triassic and Grenville age populations. By this time, interior Pangea no longer supplied sediment to the paleo-Pacific margin, possibly because the continental-margin arc blocked westward drainage and detritus was captured in rift basins. Latest Middle Jurassic fluvial systems formed as the Yucatan block rotated counterclockwise and the Gulf of Mexico began to open. Sediment dispersal, partly equivalent to salt deposition in the Gulf, was largely southward in southern Oaxaquia, but large-volume braided river systems on the Maya (Yucatan) block, represented by the Todos Santos Formation in Chiapas, evidently flowed northward along graben axes toward the western part of the Gulf of Mexico Basin. River systems of nuclear Mexico, or Oaxaquia, occupied a broad sedimentary basin west and south of a divide formed adjacent to the translating Maya block. Despite their big-river characteristics, these deposits contain mainly Grenville and Permo-Triassic grains derived from Oaxaquia basement and subordinate Early and Middle Jurassic grains derived from volcanic rocks and plutons of the arc. Early Late Jurassic (Oxfordian) marine flooding of the entire Gulf rim and nuclear Mexico, evidently resulting in part from marginal subsidence adjoining newly-formed oceanic crust, terminated fluvial deposition adjacent to the young Gulf of Mexico.

  10. Ecological site-based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands

    USGS Publications Warehouse

    Webb, Nicholas P.; Herrick, Jeffrey E.; Duniway, Michael C.

    2014-01-01

    Accelerated soil erosion occurs when anthropogenic processes modify soil, vegetation or climatic conditions causing erosion rates at a location to exceed their natural variability. Identifying where and when accelerated erosion occurs is a critical first step toward its effective management. Here we explore how erosion assessments structured in the context of ecological sites (a land classification based on soils, landscape setting and ecological potential) and their vegetation states (plant assemblages that may change due to management) can inform systems for reducing accelerated soil erosion in rangelands. We evaluated aeolian horizontal sediment flux and fluvial sediment erosion rates for five ecological sites in southern New Mexico, USA, using monitoring data and rangeland-specific wind and water erosion models. Across the ecological sites, plots in shrub-encroached and shrub-dominated vegetation states were consistently susceptible to aeolian sediment flux and fluvial sediment erosion. Both processes were found to be highly variable for grassland and grass-succulent states across the ecological sites at the plot scale (0.25 Ha). We identify vegetation thresholds that define cover levels below which rapid (exponential) increases in aeolian sediment flux and fluvial sediment erosion occur across the ecological sites and vegetation states. Aeolian sediment flux and fluvial erosion in the study area can be effectively controlled when bare ground cover is 100 cm in length is less than ~35%. Land use and management activities that alter cover levels such that they cross thresholds, and/or drive vegetation state changes, may increase the susceptibility of areas to erosion. Land use impacts that are constrained within the range of natural variability should not result in accelerated soil erosion. Evaluating land condition against the erosion thresholds identified here will enable identification of areas susceptible to accelerated soil erosion and the development of practical management solutions.

  11. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Marchetti, Mauro

    2002-05-01

    The fluvial environment of the central Po Plain, the largest plain in Italy, is discussed in this paper. Bounded by the mountain chains of the Alps and the Apennines, this plain is a link between the Mediterranean environment and the cultural and continental influences of both western and eastern Europe. In the past decades, economic development has been responsible for many changes in the fluvial environment of the area. This paper discusses the changes in fluvial dynamics that started from Late Pleistocene and Early Holocene due to distinct climatic changes. The discussion is based on geomorphological, pedological, and archaeological evidences and radiocarbon dating. In the northern foothills, Late Pleistocene palaeochannels indicate several cases of underfit streams among the northern tributaries of the River Po. On the other hand, on the southern side of the Po Plain, no geomorphological evidence of similar discharge reduction has been found. Here, stratigraphic sections, together with archaeological remains buried under the fluvial deposits, show a reduction in the size of fluvial sediments after the 10th millennium BC. During the Holocene, fluvial sedimentation became finer, and was characterised by minor fluctuations in the rate of deposition, probably related to short and less intense climatic fluctuations. Given the high rate of population growth and the development of human activities since the Neolithic Age, human influence on fluvial dynamics, especially since the Roman Age, prevailed over other factors (i.e., climate, tectonics, vegetation, etc.). During the Holocene, the most important changes in the Po Plain were not modifications in water discharge but in sediment. From the 1st to 3rd Century AD, land grants to war veterans caused almost complete deforestation, generalised soil erosion, and maximum progradation of the River Po delta. At present, land abandonment in the mountainous region has led to reafforestation. Artificial channel control in the mountain sector of the basins and in-channel gravel extraction (now illegal but very intense in the 1960s and 1970s) are causing erosion along the rivers and along large sectors of the Adriatic coast. These changes are comparable with those occurring in basins of other Mediterranean rivers.

  12. Depositional environments of the Cache, Lower Lake, and Kelseyville Formations, Lake County, California

    USGS Publications Warehouse

    Rymer, Michael J.; Roth, Barry; Bradbury, J. Platt; Forester, Richard M.

    1988-01-01

    We describe the depositional environments of the Cache, Lower Lake, and Kelseyville Formations in light of habitat preferences of recovered mollusks, ostracodes, and diatoms. Our reconstruction of paleoenvironments for these late Cenozoic deposits provides a framework for an understanding of basin evolution and deposition in the Clear Lake region. The Pliocene and Pleistocene Cache Formation was deposited primarily in stream and debris flow environments; fossils from fine-grained deposits indicate shallow, fresh-water environments with locally abundant aquatic vegetation. The fine-grained sediments (mudstone and siltstone) were probably deposited in ponds in abandoned channels or shallow basins behind natural levees. The abandoned channels and shallow basins were associated with the fluvial systems responsible for deposition of the bulk of the technically controlled Cache Formation. The Pleistocene Lower Lake Formation was deposited in a water mass large enough to contain a variety of local environments and current regimes. The recovered fossils imply a lake with water depths of 1 to 5 m. However, there is strong support from habitat preferences of the recovered fossils for inferring a wide range of water depths during deposition of the Lower Lake Formation; they indicate a progressively shallowing system and the culmination of a desiccating lacustrine system. The Pleistocene Kelseyville Formation represents primarily lacustrine deposition with only minor fluvial deposits around the margins of the basin. Local conglomerate beds and fossil tree stumps in growth position within the basin indicate occasional widespread fluvial incursions and depositional hiatuses. The Kelseyville strata represent a large water mass with a muddy and especially fluid substrate having permanent or sporadic periods of anoxia. Central-lake anoxia, whether permanent or at irregular intervals, is the simplest way to account for the low numbers of benthic organisms recovered from the Kelseyville Formation. Similar low-oxygen conditions for benthic life are represented throughout the sedimentary history of Clear Lake. Water depths for the Kelseyville Formation of 10 to 30 m and 12 m near the margins of the basin are inferred both before and after fluvial incursions. These water-depth fluctuations cannot be correlated with major climatic changes as indicated by pollen and fossil leaves and cones; they may be due to faulting in this technically active region.

  13. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida

    NASA Astrophysics Data System (ADS)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.

    2011-12-01

    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in fluvial zones of the Apalachicola River and its distributaries through field investigation and laboratory analysis of a series of total suspended solid (TSS) samples. Time-series TSS samples are collected at the alluvial zone. TSS and particle-size distribution analyses are performed to determine the TSS hydrograph and particle-size distribution of suspended solids. Relationships between the TSS hydrograph, discharge hydrograph, and tidal data provide a better understanding of the deposition and re-suspension of the fluvial system in the region. Total suspended particle-size distribution data are used to determine the deposition rate or diminishing rate of alluvial landform in the estuarine system. This dataset and analysis provide excellent information for future modeling work and wetland morphologic studies in the Apalachicola River and similar systems.

  14. Transposition of a Process-Based Model, Flumy: from Meandering Fluvial Systems to Channelized Turbidite Systems

    NASA Astrophysics Data System (ADS)

    Lemay, M.; Cojan, I.; Rivoirard, J.; Grimaud, J. L.; Ors, F.

    2017-12-01

    Channelized turbidite systems are among the most important hydrocarbon reservoirs. Yet building realistic turbidite reservoir models is still a challenge. Flumy has been firstly developed to simulate the long-term evolution of aggrading meandering fluvial systems in order to build facies reservoir models. In this study, Flumy has been transposed to channelized turbidite systems. The channel migration linear model of Imran et al. (1999) dedicated to subaqueous flows has been implemented. The whole model has been calibrated taking into account the differences on channel morphology, avulsion frequency, and aggradation and migration rates. This calibration and the comparison of the model to natural systems rely on: i) the channel planform morphology characterized by the meander wavelength, amplitude, and sinuosity; ii) the channel trajectory and the resulting stratigraphic architecture described using Jobe et al. (2016) indexes. Flumy succeeds in reproducing turbidite channel planform morphology as shown by the mean sinuosity of 1.7, the wavelength to width and amplitude to width ratios around 4 and 1 respectively. First-order meander architecture, characterized by the ratios meander belt width versus channel width, meander belt thickness versus channel depth, and the deduced stratigraphic mobility number (the ratio between lateral versus vertical channel displacements), is also well reproduced: 2.5, 3.8, and 0.6 respectively. Both lateral and downstream channel normalized migrations are around 3.5 times lower than in fluvial systems. All these values are absolutely coherent with the observations. In the other hand, the channel trajectory observed on seismic cross sections (hockey stick geometry) is not fully reproduced: the local stratigraphic mobility number is divided upward by 3 whereas up to 10 is expected. This behavior is generally explained in the literature by an increasing aggradation rate through time and/or flow stripping at outer bend that decreases lateral migration rate (Peakall et al., 2000). These processes are not currently simulated in Flumy, and need to be implemented. This study shows that Flumy model reproduces quite well the first order characteristics observed in the nature and can be used to simulate channelized turbidite reservoirs.

  15. Sedimentary response to halfgraben dipslope faults evolution -Billefjorden Trough, Svalbard.

    NASA Astrophysics Data System (ADS)

    Smyrak-Sikora, Aleksandra; Kristensen, Jakob B.; Braathen, Alvar; Johannessen, Erik P.; Olaussen, Snorre; Sandal, Geir; Stemmerik, Lars

    2017-04-01

    Fault growth and linkage into larger segments has profound effect on the sedimentary architecture of rift basins. The uplifted Billefjorden Through located in central Spitsbergen is an excellent example of half-graben basin development. Detailed sedimentological and structural investigations supported by helicopter and ground base lidar scans along with photogrammetry analysis have been used to improve our understanding of the sedimentary response to faulting and along strike variations in footwall uplift and hanging wall subsidence. The early syn-rift basin fill, the Serpukhovian to Bashkirian Hultberget Formation and the Bashkirian Ebbaelven Member consists of fluvial to deltaic sandstones with minor marine incursions. During this early stage tens to hundred- meters-scale syn-tectonic faults disrupted the dipslope, and created local hanging wall depocentres where sediments were arrested. Changes in fluvial drainage pattern, development of small lacustrine basins along the faults, and the sharp based boundaries of some facies associations are interpreted as response to activity along these, mostly antithetic faults. The basin fill of the late syn-rift stage is composed of shallow marine to tidal mixed evaporite -carbonate facies in the hanging wall i.e. the Bashkirian Trikolorfjellet Member and the Moscovian Minkenfjellet Formation. These sediments interfinger with thick alluvial fan deposits outpouring from relay ramps on the master fault i.e. drainage from the footwall. The carbonate-evaporite cycles deposited on the hanging wall responded to both the eustatic sea level variations and tectonic movements in the rift basin. Intra-basinal footwall uplift of the dipslope controlled development of an internal unconformity and resulted in dissolution of the gypsum to produce stratiform breccia. In contrast thick gypsum-rich subbasins are preserved locally in hanging wall positions where they were protected from the erosion. The syn rift basin fill is capped by post rift carbonate ramp deposit of the Kasimovian to Asselian Wordiekammen Formation. This unit marks the final fill (and drowning) of the rift basin and covers both the hanging wall and footwall. In this presentation our focus will be on details of the sedimentary architecture related to internal and local dipslope activity within the rift basin, particularly thickness and facies variations, and transport directions.

  16. Wetland evolution in the Qinghai Lake area, China, in response to hydrodynamic and eolian processes during the past 1100 years

    NASA Astrophysics Data System (ADS)

    Yan, Dada; Wünnemann, Bernd; Hu, Yanbo; Frenzel, Peter; Zhang, Yongzhan; Chen, Kelong

    2017-04-01

    The Daotanghe riverine wetland in close proximity to the Qinghai Lake was investigated to demonstrate the interrelationships between Qinghai Lake hydrodynamic processes, eolian mobility and ecological conditions during the past 1100 years in response to climate change. We used ostracod assemblages from various sites east of Qinghai Lake and from the sediment core QW15 of Daotanghe Pond and combined them with grain size and geochemical data from the same core. The statistical extraction of grain size endmembers (EM) revealed three different transportation processes responsible for pond-related fluvio-lacustrine, pure fluvial and eolian deposits. Identified seasonal effects (eolian mobility phase) and timing of ice cover are possible tracers for the competing influence between the Asian summer monsoon and the Westerlies in the Daotanghe Wetland and surrounding area. Our results show that ostracod associations and sediment properties are evidence of a fluvio-lacustrine fresh water environment without ingression of Qinghai Lake into the wetland. Hydrodynamic variations coupled with phases of eolian input indicate highly variable water budgets in response to climate-induced effective moisture supply. The Medieval Warm Period (MWP) until about 1270 CE displays generally moist and warm climate conditions with minor fluctuations, likely in response to variations in summer monsoon intensity. The three-partite period of the Little Ice Age (LIA), shows hydrologically unstable conditions between 1350 and 1530 CE with remarkably colder periods, assigned to a prolonged seasonal ice cover. Pond desiccation and replacement by fluvial deposits occurred between 1530 and 1750 CE, superimposed by eolian deposits. The phase 1730-1900 CE is recorded by the re-occurrence of a pond environment with reduced eolian input. Principal Component Analysis (PCA) on ostracod abundances shows similar trends. All three phases of the LIA developed during a weak summer monsoon influence, favoring westerly-derived climate conditions until ca. 1850 CE, in accordance with records from the adjacent regions. Seasonal freezing periods in excess of the average time of frozen water bodies also occurred in periods of the well-known grand solar minima and indicate stronger seasonality, possibly independent from variations in summer monsoon strength but with links to global northern hemispheric climate.

  17. Late Pleistocene drainage systems beneath Delaware Bay

    USGS Publications Warehouse

    Knebel, H.J.; Circe, R.C.

    1988-01-01

    Analyses of an extensive grid of seismic-reflection profiles, along with previously published sedimentary data and geologic information from surrounding coastal areas, outline the ancestral drainage systems of the Delaware River beneath lower Delaware Bay. Major paleovalleys within these systems have southeast trends, relief of 10-35 m, widths of 1-8 km, and axial depths of 31-57 m below present sea level. The oldest drainage system was carved into Miocene sands, probably during the late Illinoian lowstand of sea level. It followed a course under the northern half of the bay, continued beneath the Cape May peninsula, and extended onto the present continental shelf. This system was buried by a transgressive sequence of fluvial, estuarine, and shallow-marine sediments during Sangamonian time. At the height of the Sangamonian sea-level transgression, littoral and nearshore processes built the Cape May peninsula southward over the northern drainage system and formed a contiguous submarine sedimentary ridge that extended partway across the present entrance to the bay. When sea level fell during late Wisconsinan time, a second drainage system was eroded beneath the southern half of the bay in response to the southerly shift of the bay mouth. This system, which continued across the shelf, was cut into Coastal Plain deposits of Miocene and younger age and included not only the trunk valley of the Delaware River but a large tributary valley formed by the convergence of secondary streams that drained the Delaware coastal area. During the Holocene rise of sea level, the southern drainage system was covered by a transgressive sequence of fluvial, estuarine, and paralic deposits that accumulated due to the passage of the estuarine circulation cell and to the landward and upward migration of coastal sedimentary environments. Some Holocene deposits have been scoured subsequently by strong tidal currents. The southward migration of the ancestral drainage systems beneath Delaware Bay is analogous to that found under nearby Chesapeake Bay. In both areas, shifts in the bay mouths and river courses have preserved the morphologies and sedimentary fill of former drainage systems and provided a clear record of major sea-level fluctuations. Data from this study demonstrate that important information concerning ancient estuarine environments can be derived from the locations and characteristics of former fluvial systems. ?? 1988.

  18. Neogene weathering and terrestrial sedimentation in southern New Caledonia; inference on post-obduction tectonics and climate change

    NASA Astrophysics Data System (ADS)

    Folcher, Nicolas; Ricordel-Prognon, Caroline; Sevin, Brice; Maurizot, Pierre; Cluzel, Dominique; Quesnel, Florence

    2014-05-01

    Iron-rich sediments that fill up karst-like depressions and paleo-valleys in southern New Caledonia are mainly composed of re-sedimented laterite and saprolite. These fluvial sediments come from the erosion of an older regolith that developed upon peridotites and gabbros of the Peridotite Nappe during Late Oligocene times. At the bottom, conglomeratic facies fill incised valleys and contain some metre-size cobbles of ferricrete that record dissection of pre-existing weathering profiles and were deposited in alluvial fan environment. The basal conglomerate is overlain by sand, then dominantly silty fluvial sediments 40 to 50 m thick, with a few thin conglomerate channels. Brutal grain size reduction suggests that erosion was short-lived and followed by quiescence. Multiple interbedded ferruginous duricrusts and rhizocretions made of goethite (and secondary hematite) and liesegang rings reveal iron mobility and several iron oxi-hydroxides concretion/ cementation episodes alternating with sedimentation, probably as a consequence of water table variations. The top of the succession is overlain by a weathering profile and capped by a nodular lateritic ferricrete. Finally, reactivated erosion profoundly incised the fluvial succession and locally reached the bedrock which today crops out upstream along the main river beds. In southern New Caledonia some ferricretes and ferruginous duricrusts have been dated at -25 Ma and -20 to -10 Ma by paleomagnetic method (in progress). They could be correlated to some warming events of the Late Oligocene and Early Miocene or to the Middle Miocene Climatic Optimum. Erosion that predates the accumulation of terrestrial sediments may be tentatively correlated to the uplift that accompanied the emplacement of the Saint-Louis and Koum plutons, and some internal dissection episodes could be related to the Lower Miocene post-obduction slab break off. The final erosion is most probably related to the southward tilt of New Caledonia due to Recent SW Pacific tectonics and to sea level drops during the Quaternary as well.

  19. Woody Debris: Denitrification Hotspots and N2O Production in Fluvial Systems

    EPA Science Inventory

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and control nitrous oxide (N2O) production. We examined the effects of ...

  20. Study of heat and salt transport processes in the Espinheiro Channel (Ria de Aveiro)

    NASA Astrophysics Data System (ADS)

    Vaz, Nuno Alexandre Firmino

    O principal objectivo deste trabalho consistiu no estudo da dinâmica termohalina do Canal do Espinheiro em funcao de dois forcamentos principais: mare e caudal fluvial, usando duas abordagens distintas: trabalho experimental e modelacao numerica. A propagacao da mare e o caudal fluvial do Rio Vouga sao determinantes no estabelecimento da estrutura horizontal da salinidade ao longo do canal. A estrutura termica horizontal ao longo do canal e, em grande parte, determinada pela variacao sazonal da temperatura da agua do Rio Vouga, bem como, pela variacao sazonal das condicoes meteorologicas devido a reduzida profundidade. Foi observada a formacao de fortes gradientes de salinidade (relacionados com a formacao de frentes estuarinas) numa regiao a cerca de 7-8 km da embocadura do canal, observando-se a sua migracao numa regiao de aproximadamente 1 km, dependendo do regime de mare. O balanco entre o transporte de sal de natureza advectiva e difusiva foi calculado, revelando que junto a embocadura os processos fisicos que mais contribuem para o transporte de sal sao a circulacao residual e o aprisionamento da agua em canais secundarios. Junto a foz do Rio Vouga os termos devidos a descarga fluvial e a circulacao gravitacional dominam o transporte de sal. Foi calibrado e validado um modelo numerico (Mohid, em modo 2D e 3D), sendo posteriormente utilizado para estudar a hidrologia do canal. Foi concedida particular atencao ao estudo da hidrologia em condicoes extremas de caudal fluvial e de mare. Os resultados da modelacao numerica permitiram numa primeira fase avaliar o bom desempenho do Mohid na reproducao dos escoamentos barotropicos na Ria de Aveiro, bem como na evolucao temporal das propriedades termohalinas da agua. Sob condicoes de caudal fluvial reduzido, a dinâmica do canal e essencialmente dominada pela mare. Com o aumento do caudal fluvial, a influencia da agua doce estende-se para jusante, estratificando a coluna de agua. As simulacoes 3D do Canal do Espinheiro foram efectuadas para periodos marcadamente diferentes de caudal fluvial e de mare. O modelo reproduziu qualitativamente/quantitativamente as observacoes de alturas de agua, velocidade e distribuicoes longitudinais de salinidade e temperatura sob um regime fraco a medio de caudal fluvial. Sob condicoes de caudal fluvial elevado, os resultados mostram que o modelo subestima a estratificacao. Este estudo contribuiu para o aumento do conhecimento da dinâmica do Canal do Espinheiro, bem como para o desenvolvimento de um sistema numerico capaz de reproduzir e prever os processos de transporte de sal e calor. None

  1. Formation of Valley Networks in a Cold and Icy Early Mars Climate: Predictions for Erosion Rates and Channel Morphology

    NASA Astrophysics Data System (ADS)

    Cassanelli, J.

    2017-12-01

    Mars is host to a diverse array of valley networks, systems of linear-to-sinuous depressions which are widely distributed across the surface and which exhibit branching patterns similar to the dendritic drainage patterns of terrestrial fluvial systems. Characteristics of the valley networks are indicative of an origin by fluvial activity, providing among the most compelling evidence for the past presence of flowing liquid water on the surface of Mars. Stratigraphic and crater age dating techniques suggest that the formation of the valley networks occurred predominantly during the early geologic history of Mars ( 3.7 Ga). However, whether the valley networks formed predominantly by rainfall in a relatively warm and wet early Mars climate, or by snowmelt and episodic rainfall in an ambient cold and icy climate, remains disputed. Understanding the formative environment of the valley networks will help distinguish between these warm and cold end-member early Mars climate models. Here we test a conceptual model for channel incision and evolution under cold and icy conditions with a substrate characterized by the presence of an ice-free dry active layer and subjacent ice-cemented regolith, similar to that found in the Antarctic McMurdo Dry Valleys. We implement numerical thermal models, quantitative erosion and transport estimates, and morphometric analyses in order to outline predictions for (1) the precise nature and structure of the substrate, (2) fluvial erosion/incision rates, and (3) channel morphology. Model predictions are compared against morphologic and morphometric observational data to evaluate consistency with the assumed cold climate scenario. In the cold climate scenario, the substrate is predicted to be characterized by a kilometers-thick globally-continuous cryosphere below a 50-100 meter thick desiccated ice-free zone. Initial results suggest that, with the predicted substrate structure, fluvial channel erosion and morphology in a cold early Mars climate exposed to episodic high temperatures will not differ significantly from that in a warm climate. The fundamentally different hydrologic conditions are likely to influence other aspects of valley network morphology and morphometry including: drainage density, drainage pattern, and stream orders.

  2. Influence of fluvial processes on the quaternary geologic framework of the continental shelf, North Carolina, USA

    USGS Publications Warehouse

    Boss, S.K.; Hoffman, C.W.; Cooper, B.

    2002-01-01

    Digital, single-channel, high-resolution seismic reflection profiles were acquired from the insular continental shelf of North Carolina, USA along a data grid extending from Oregon Inlet northward 48 km to Duck, North Carolina and from the nearshore zone seaward approximately 28 km (total surveyed area= 1334 km2). These data were processed and interpreted to delineate principal reflecting horizons and develop a three-dimensional seismic stratigraphic framework for the continental shelf that was compared to stratigraphic data from the shoreward back-barrier (estuarine) and barrier island system. Six principal reflecting horizons (designated R0 through R5) were present within the upper 60 m of the shelf stratigraphic succession. Three-dimensional mapping of reflector R1 demonstrated its origin from fluvial incision of the continental shelf during an episode (or episodes) of lowered sea-level. Fluvial processes during development of reflector R1 were responsible for extensive reworking and re-deposition of sediment throughout most of the northern half of the study area. Five seismic stratigraphic units (designated S1 through S5) were tentatively correlated with depositional sequences previously identified from the North Carolina back-barrier (estuarine) and barrier island system. These five stratigraphic units span the Quaternary Period (S1 = early Holocene; S2 = 51-78 ka; S3 = 330-530 ka; S4 = 1.1-1.8 Ma; S5 = earliest Pleistocene). Unit S1 is composed of fine-grained fluvial/estuarine sediment that back-filled incised streams during early Holocene sea-level rise. The four other stratigraphic units (S2-S5) display tabular depositional geometries, low total relief, and thicken toward the east-southeast as their basal reflectors dip gently between 0.41 m km-1 (0.02??) and 0.54 m km-1 (0.03??). Knowledge of the three-dimensional subsurface stratigraphic architecture of the continental shelf enhances understanding of the development of shelf depositional successions and provides a framework for development of better Quaternary sea-level data, especially offshore North Carolina where such data are sparse. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Sedimentology and sequence stratigraphy of the Lower Jurassic Kayenta Formation, Colorado Plateau, United States

    NASA Astrophysics Data System (ADS)

    Sanabria, Diego Ignacio

    2001-07-01

    Detailed outcrop analysis of the Lower Jurassic Kayenta Formation provides the basis for the formulation of a new sequence stratigraphic model for arid to semi-arid continental deposits and the generation of a comprehensive set of sedimentologic criteria for the recognition of ephemeral stream deposits. Criteria for the recognition of ephemeral deposits in the ancient record were divided into three categories according to the scale of the feature being considered. The first category takes into account sedimentary structures commonly found in the record of ephemeral stream deposits including hyperconcentrated and debris flow deposits, planar parallel bedding, sigmoidal cross-bedding, hummocky cross-bedding, climbing ripple lamination, scour-and-fill structures, convolute bedding, overturned cross-bedding, ball-and-pillow structures, pocket structures, pillars, mud curls, flaser lamination, algal lamination, termite nests, and vertebrate tracks. The second category is concerned with the mesoscale facies architecture of ephemeral stream deposits and includes waning flow successions, bedform climb, downstream accretion, terminal wadi splays, and channel-fill successions indicating catastrophic flooding. At the large-scale facies architecture level, the third category, ephemeral stream deposits are commonly arranged in depositional units characterized by a downstream decrease in grain size and scale of sedimentary structures resulting from deposition in terminal fan systems. Outcrops of the Kayenta Formation and its transition to the Navajo Sandstone along the Vermilion and Echo Cliffs of Northern Arizona indicate that wet/dry climatic cyclicity exerted a major control on regional facies architecture. Two scales of wet/dry climatic cyclicity can be recognized in northern Arizona. Three sequence sets composed of rocks accumulated under predominantly dry or wet conditions are the expression of long-term climatic cyclicity. Short-term climatic cyclicity, on the other hand, is represented by high-frequency sequences composed of eolian or ephemeral fluvial deposits overlain by perennial fluvial sediments. Increased evapotranspiration rates, depressed water tables, and accumulation of eolian or ephemeral fluvial deposits characterize the dry portion of these cycles. The wet part of the cycles is marked by an increase in precipitation and the establishment of perennial fluvial systems and lacustrine basins. This depositional model constitutes a valuable tool for correlation of similar deposits in the subsurface.

  4. Late Quaternary paleoenvironments and paleoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Tripaldi, Alfonsina; Zárate, Marcelo A.; Brook, George A.; Li, Guo-Qiang

    2011-09-01

    The Andean piedmont of Mendoza is a semiarid region covered by extensive and partially vegetated dune fields consisting of mostly inactive aeolian landforms of diverse size and morphology. This paper is focused on the San Rafael plain (SRP) environment, situated in the distal Andean piedmont of Mendoza (34° 30'S), and reports the sedimentology and OSL chronology of two representative exposures of late Quaternary deposits, including their paleoenvironmental and paleoclimatic significance. Eleven facies, including channel, floodplain, fluvio-aeolian interaction, and reworked pyroclastic and aeolian deposits, were described and grouped into two facies associations (FA1 and FA2). FA1 was formed by unconfined sheet flows, minor channelized streams and fluvial-aeolian interaction processes. FA2 was interpreted as aeolian dune and sand-sheet deposits. OSL chronology from the SRP sedimentary record indicates that between ca. 58-39 ka and ca. 36-24 ka (MIS 3), aggradation was governed by ephemeral fluvial processes (FA1) under generally semiarid conditions. During MIS 2, the last glacial maximum (ca. 24-12 ka), a major climatic shift to more arid conditions is documented by significant aeolian activity (FA2) that became the dominant sedimentation process north of the Diamante-Atuel fluvial system. The inferred paleoenvironmental conditions from the SRP sections are in broad agreement with regional evidence.

  5. Controls on methane concentrations and fluxes in streams draining human-dominated landscapes

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.

    2016-01-01

    Streams and rivers are active processors of carbon, leading to significant emissions of CO2 and possibly CH4 to the atmosphere. Patterns and controls of CH4 in fluvial ecosystems remain relatively poorly understood. Furthermore, little is known regarding how major human impacts to fluvial ecosystems may be transforming their role as CH4 producers and emitters. Here, we examine the consequences of two distinct ecosystem changes as a result of human land use: increased nutrient loading (primarily as nitrate), and increased sediment loading and deposition of fine particles in the benthic zone. We did not find support for the hypothesis that enhanced nitrate loading down-regulates methane production via thermodynamic or toxic effects. We did find strong evidence that increased sedimentation and enhanced organic matter content of the benthos lead to greater methane production (diffusive + ebullitive flux) relative to pristine fluvial systems in northern Wisconsin (upper Midwest, USA). Overall, streams in a human-dominated landscape of southern Wisconsin were major regional sources of CH4 to the atmosphere, equivalent to ~20% of dairy cattle emissions, or ~50% of a landfill’s annual emissions. We suggest that restoration of the benthic environment (reduced fine deposits) could lead to reduced CH4 emissions, while decreasing nutrient loading is likely to have limited impacts to this ecosystem process.

  6. Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California

    NASA Astrophysics Data System (ADS)

    Schumann, R. Randall; Pigati, Jeffrey S.; McGeehin, John P.

    2016-09-01

    Santa Rosa Island (SRI) is one of four east-west aligned islands forming the northern Channel Islands chain, and one of the five islands in Channel Islands National Park, California, USA. The island setting provides an unparalleled environment in which to record the response of fluvial systems to major changes of sea level. Many of the larger streams on the island occupy broad valleys that have been filled with alluvium and later incised to form steep- to vertical-walled arroyos, leaving a relict floodplain as much as 12-14 m above the present channel. The period of falling sea level between the end of the last interglacial highstand at 80 ka and the last glacial lowstand at 21 ka was marked by erosion and incision in the uplands and by deposition of alluvial sediment on the exposed marine shelf. Sea level rose relatively rapidly following the last glacial lowstand of - 106 m, triggering a shift from an erosional to a depositional sedimentary regime. Accumulation of sediment occurred first through vertical and lateral accretion in broad, shallow channels on the shelf. Channel avulsion and delta sedimentation produced widespread deposition, creating lobes or wedges of sediment distributed across relatively large areas of the shelf during the latest Pleistocene. Backfilling of valleys onshore (landward of present sea level) appears to have progressed in a more orderly and predictable fashion throughout the Holocene primarily because the streams were confined to their valleys. Vertical aggradation locally reduced stream gradients, causing frequent overbank flooding and lateral channel shift by meandering and/or avulsion. Local channel gradient and morphology, short-term climate variations, and intrinsic controls also affected the timing and magnitudes of these cut, fill, and flood events, and are reflected in the thickness and spacing of the episodic alluvial sequences. Floodplain aggradation within the valleys continued until at least 500 years ago, followed by intensive arroyo cutting that abandoned the relict floodplains, forming alluvial terraces. Sedimentary evidence points to overgrazing and drought, followed by catastrophic flooding, in the mid-nineteenth century as factors that may have accelerated and dramatically enhanced arroyo formation on the island.

  7. POM Pulses: Characterizing the Physical and Chemical Properties of Particulate Organic Matter (POM) Mobilized by Large Storm Events and its Influence on Receiving Fluvial Systems

    NASA Astrophysics Data System (ADS)

    Johnson, E. R.; Rowland, R. D.; Protokowicz, J.; Inamdar, S. P.; Kan, J.; Vargas, R.

    2016-12-01

    Extreme storm events have tremendous erosive energy which is capable of mobilizing vast amounts of material from watershed sources into fluvial systems. This complex mixture of sediment and particulate organic matter (POM) is a nutrient source, and has the potential to impact downstream water quality. The impact of POM on receiving aquatic systems can vary not only by the total amount exported but also by the various sources involved and the particle sizes of POM. This study examines the composition of POM in potential sources and within-event POM by: (1) determining the amount and quality of dissolved organic matter (DOM) that can be leached from coarse, medium and fine particle classes; (2) assessing the C and N content and isotopic character of within-event POM; and (3) coupling physical and chemical properties to evaluate storm event POM influence on stream water. Storm event POM samples and source sediments were collected from a forested headwater catchment (second order stream) in the Piedmont region of Maryland. Samples were sieved into three particle classes - coarse (2mm-1mm), medium (1mm-250µm) and fine (<250µm). Extractions were performed for three particle class sizes and the resulting fluorescent organic matter was analyzed. Carbon (C) and Nitrogen (N) amount, C:N ratio, and isotopic analysis of 13C and 15N were performed on solid state event and source material. Future work will include examination of microbial communities associated with POM particle size classes. Physical size class separation of within-event POM exhibited differences in C:N ratios, δ15N composition, and extracted DOM lability. Smaller size classes exhibited lower C:N ratios, more enriched δ15N and more recalcitrant properties in leached DOM. Source material had varying C:N ratios and contributions to leached DOM. These results indicate that both source and size class strongly influence the POM contribution to fluvial systems during large storm events.

  8. The River Orontes in Syria and Turkey: Downstream variation of fluvial archives in different crustal blocks

    NASA Astrophysics Data System (ADS)

    Bridgland, David R.; Westaway, Rob; Romieh, Mohammad Abou; Candy, Ian; Daoud, Mohamad; Demir, Tuncer; Galiatsatos, Nikolaos; Schreve, Danielle C.; Seyrek, Ali; Shaw, Andrew D.; White, Tom S.; Whittaker, John

    2012-09-01

    The geomorphology and Quaternary history of the River Orontes in western Syria and south-central Turkey have been studied using a combination of methods: field survey, differential GPS, satellite imagery, analysis of sediments to determine provenance, flow direction and fluvial environment, incorporation of evidence from fossils for both palaeoenvironments and biostratigraphy, uranium-series dating of calcrete cement, reconciliation of Palaeolithic archaeological contents, and uplift modelling based on terrace height distribution. The results underline the contrasting nature of different reaches of the Orontes, in part reflecting different crustal blocks, with different histories of landscape evolution. Upstream from Homs the Orontes has a system of calcreted terraces that form a staircase extending to ~200 m above the river. New U-series dating provides an age constraint within the lower part of the sequence that suggests underestimation of terrace ages in previous reviews. This upper valley is separated from another terraced reach, in the Middle Orontes, by a gorge cut through the Late Miocene-Early Pliocene Homs Basalt. The Middle Orontes terraces have long been recognized as a source of mammalian fossils and Palaeolithic artefacts, particularly from Latamneh, near the downstream end of the reach. This terraced section of the valley ends at a fault scarp, marking the edge of the subsiding Ghab Basin (a segment of the Dead Sea Fault Zone), which has been filled to a depth of ~ 1 km by dominantly lacustrine sediments of Pliocene-Quaternary age. Review of the fauna from Latamneh suggests that its age is 1.2-0.9 Ma, significantly older than previously supposed, and commensurate with less uplift in this reach than both the Upper and Lower Orontes. Two localities near the downstream end of the Ghab have provided molluscan and ostracod assemblages that record somewhat saline environments, perhaps caused by desiccation within the former lacustrine basin, although they include fluvial elements. The Ghab is separated from another subsiding and formerly lacustrine depocentre, the Amik Basin of Hatay Province, Turkey, by a second gorge, implicit of uplift, this time cut through Palaeogene limestone. The NE-SW oriented lowermost reach of the Orontes is again terraced, with a third and most dramatic gorge through the northern edge of the Ziyaret Dağı mountains, which are known to have experienced rapid uplift, probably again enhanced by movement on an active fault. Indeed, a conclusion of the research, in which these various reaches are compared, is that the crust in the Hatay region is significantly more dynamic than that further upstream, where uplift has been less rapid and less continuous.

  9. Episodes of fluvial and volcanic activity in Mangala Valles, Mars.

    PubMed

    Keske, Amber L; Hamilton, Christopher W; McEwen, Alfred S; Daubar, Ingrid J

    2015-01-01

    A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ~1 Ga, (2) emplacement of Tharsis lava flows in the valley from ~700 to 1000 Ma, (3) a megaflooding event at ~700-800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ~400-500 Ma, (5) another megaflooding event from ~400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ~300-350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ~300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars.

  10. Deep Time Ecosystem Engineers: The Correlation between Palaeozoic Vegetation, Evolution of Physical Riverine Habitats, and Plant and Animal Terrestrialization

    NASA Astrophysics Data System (ADS)

    Davies, N. S.; Gibling, M. R.

    2012-04-01

    Evidence from the deep time geological record attests to the fundamental importance of plant life to the construction of physical habitats within fluvial environments. Data from an extensive literature review and original fieldwork has demonstrated that many landforms and geomorphic features present in modern river systems do not appear in the deep time stratigraphic record until terrestrial vegetation had adopted certain evolutionary advances that enabled them: for example, stable point bars are associated with the development of deep rooting in the Siluro-Devonian and avulsive anabranching fluvial systems appear at the same time as extensive arborescent vegetation in the Carboniferous. In this presentation, we demonstrate a correlation between the diversification of physical fluvial sedimentary environments and the expansion of terrestrial fauna and flora throughout the Cambrian to Carboniferous, and offer an explanation for this observation that considers plants as ecosystem engineers on an evolutionary timescale. Many extrinsic factors have been considered when attempting to identify controls on the evolutionary timelines of terrestrialization for various different organisms. Factors such as O2 and CO2 levels in the atmosphere, climatic events, global tectonic organisation, sea-level changes, extinction events, weathering rates and nutrient supply are all known to have played a role. However, another factor is likely to have been a fundamental prerequisite for achieving terrestrial biodiversity: the variety of physical habitats available for newly evolved organisms. In fluvial environments, this is a function of the diversity of hydrodynamic regimes (both temporal and spatial) within the world's river systems. In a world where only sheet-like ephemeral braided rivers existed, such as appears to be the case in pre-vegetation settings, both the geographic extent of riparian margins and the diversity of hydrodynamic regimes would be minimal. However, as fluvial corridors narrowed throughout the Ordovician and Silurian, the potential importance of riparian zones as a global biome would have increased as they became more extensive in continental environments. Furthermore, the move towards climatic controls on the ephemeral or perennial nature of streams would have boosted the diversity of temporally diverse hydrodynamic regimes. As single-thread meandering channels and extensive muddy floodplains, stabilised by vegetation, became significant components of the global suite of alluvial geomorphic components throughout the Siluro-Devonian, further diversification of the extent and diversity of physical habitats within the global riparian biome occurred. Into the Carboniferous, the evolution of the anabranching habit within alluvial systems created further new physical landforms for colonization and would have promoted increasingly complex hyporheic flow regimes. Furthermore the associated advent of arborescent vegetation and, specifically, the large woody debris supplied by this, would have created a wealth of new microhabitats for continental organisms. The expanding extent and diversity of physical alluvial niches during the Palaeozoic can be argued to be an underappreciated driver of the terrestrialization of early continental life. The study of the deep time fossil and stratigraphic record also illustrates that vegetation is a fundamental prerequisite for the creation of biogeomorphic alluvial landforms and physical habitats and microhabitats.

  11. Ancient Martian Lakestands and Fluvial Processes in Iani Chaos: Geology of Light-Toned Layered Deposits and their Relationship to Ares Vallis Outflow Channels

    NASA Astrophysics Data System (ADS)

    Guallini, Luca; Gilmore, Martha; Marinangeli, Lucia; Thomas, Nicolas

    2015-04-01

    Iani Chaos is a ~30,000 square kilometers region that lies at the head of the Ares Vallis outflow channel system. Mapping of Ares Vallis reveals multiple episodes of erosion, probably linked to several discharge events from the Iani Chaos aquifer. We present the first detailed geomorphological map of the Iani region. Five chaos units have been distinguished with varying degrees of modification (primarily by erosion and fracturing), starting from a common terrain (Noachian highlands). We observe a general progressive decrease of their mean elevation from the Mesas, Mesas & Knobs and Hummocky (Hy) terrains to the Knobs and Knobby morphologies. This trend is consistent with an initial collapse of the original surface with an increase of the fracturing and/or of the erosion. Light-toned Layered Deposits (LLD) have been also mapped and described in Iani Chaos. These terrains are clearly distinguished by a marked light-toned albedo, high thermal inertia and a pervasively fractured morphology. LLD both fill the basins made by the collapsed chaotic terrains and are found to be partially modified by the chaos formation. LLD also overlap chaos mounds or are themselves eroded into mounds after deposition. These stratigraphic relationships demonstrate that LLD deposition occurred episodically in the Iani region and throughout the history of the development of the chaos. Water seems to have had an active role in the geological history of Iani. The composition and morphologies of the LLD are consistent with deposition in an evaporitic environment and with erosion by outflows, requiring stable water on the surface. For the first time, we have also mapped and analyzed potential fluvial features (i.e., channels, streamlined islands, terraces, grooved surfaces) on the surface of the LLD. These landforms describe a fluvial system that can be traced from central Iani and linked northward to Ares Vallis. Using topographic data, we have compared the elevation of the LLD and channel units and find that their altitudes are remarkably similar to the altitude of the floors of the major Ares Vallis channels. This is decisive evidence of 1) a possible fluvial system within Iani linked to the Ares Vallis outflow system, characterized by five episodes of outflow at least (S1 to S5), and 2) of the existence of the LLD within Iani during the occurrence of the outflows (i.e., the LLD are coeval with or postdate the Ares Vallis outflow channels). On the basis of our analysis, we propose the following formation model for Iani Chaos: 1) Initial fracturing and tectonic subsidence of the pristine Noachian materials and subsequent outflow erosion of the bedrock (Ares Vallis S1 channel origin); 2) Evaporitic deposition of older LLD units on top and between chaotic terrains. Layering suggests cyclic wetting and drying; 3) Tectonic subsidence and fluvial erosion of chaos and LLD (Ares Vallis S2 to S3 channels); 4) Deposition of younger LLD units in central and northern Iani; 5) Tectonic subsidence and outflows, erosion of chaos and LLD (Ares Vallis S4 to S5 channel origin and subsequent downdropping of NW and N(e) Iani).

  12. Successful combination of electron spin resonance, luminescence and palaeomagnetic dating methods allows reconstruction of the Pleistocene evolution of the lower Moulouya river (NE Morocco)

    NASA Astrophysics Data System (ADS)

    Bartz, Melanie; Rixhon, Gilles; Duval, Mathieu; King, Georgina E.; Álvarez Posada, Claudia; Parés, Josep M.; Brückner, Helmut

    2018-04-01

    Based on a combination of Electron Spin Resonance (ESR) dating of quartz, luminescence dating of K-feldspar and palaeomagnetism, this study presents the first chronostratigraphic framework for the Pleistocene fluvial deposits of the lower Moulouya river in the Triffa basin (NE Morocco). K-feldspar pIRIR225 and pIRIR290 signals of all samples are saturated, suggesting fluvial deposition at least as early as the Middle Pleistocene (∼0.39-0.80 Ma). Consequently, further chronological information was obtained with ESR dating of quartz grains from the ancient Pleistocene fluvial deposits. As for ESR, the multiple centres approach provides equivalent dose values derived from the Al and Ti centres that mostly agree within 1σ-error, suggesting complete signal resetting from the former during fluvial transport. ESR dating results yield Calabrian deposition ages for all river profiles from ∼1.1 to ∼1.5 Ma. These ages are remarkably consistent with the palaeomagnetic results: the occurrence of mostly reversed polarity in the deposits indicates a Matuyama age (>0.78 Ma). While low incision rates in the Triffa basin (0.025 ± 0.003 mm/a) related to thrusting activity during the Calabrian could be inferred, the fluvial record points to an acyclic and discontinuous sedimentation pattern over the last ∼1.3 Ma. It thereby probably rules out climate as the main driver for fluvial aggradation in the lowermost sedimentary basin. At a regional scale, several indicators point to transient fluvial response resulting from major Quaternary tectonic activity along the Beni Snassen gorge, located directly upstream of the investigated basin. We suggest that a capture event at the margin of the uplifting Beni Snassen massif occurred between 1.04 and 1.36 Ma at the latest and subsequently led to the creation of the gorge.

  13. Evidence for an early land use in the Rhône delta (Mediterranean France) as recorded by late Holocene fluvial paleoenvironments (1640-100 BC)

    NASA Astrophysics Data System (ADS)

    Arnaud-Fassetta, Gilles; De Beaulieu, Jacques-Louis; Suc, Jean-Pierre; Provansal, Mireille; Williamson, David; Leveau, Philippe; Aloïsi, Jean-Claude; Gadel, François; Giresse, Pierre; Oberlin, Christine; Duzer, Danièle

    The overall objective of this paper is to describe the late Holocene (1640-100 BC) sedimentary and biological evolution of the Rhône-delta-plain, to interpret the sedimentary facies and palynofacies as the result of the effects of fluvial dynamic fluctuations and relative sea level change and to evaluate the paleohydrological constraints in the development of the land use and settlements of the Camargue. Focus is made on the upper part of V III core drilled on NE of the Vaccarès lagoon. By combining sedimentology, palynology, magnetic susceptibility and archeological data, this study allowed to identify the superposition of three types of paleo-environments (marsh, fluvial floodplain, levee/crevasse splay). This sequence indicates a gradual extension of fluvial environments between the end of the second millennium BC and the 1st century BC. The variability of fluvial dynamic is evident during this period with important flood events which contrast with periods of low flow. Pollen record can be a good marker of the fluvial dynamic variability. The expression of the riparian tree pollen grains in the coarser floodplain deposits could correspond to increased fluvial influence and probably to erosion of riverbank during flood events. The local plants are associated to the low energy sedimentary environments. Focuses are made on the relations between the evolution of the environment and land use. The development of the cereal culture in the floodplain of the Rhône delta has been demonstrated between 1640-1410 and 100 BC. The last alluviation of the Rhône perturbs the research of the archaeological sites in the central part of the delta but the existence of the rural villages from the first part of the first millennium BC is highly possible.

  14. Fluvial Channel Networks as Analogs for the Ridge-Forming Unit, Sinus Meridiani, Mars

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.; du Bois, J. B.

    2010-01-01

    Fluvial models have been generally discounted as analogs for the younger layered rock units of Sinus Meridiani. A fluvial model based on the large fluvial fan provides a possibly close analog for various features of the sinuous ridges of the etched, ridge-forming unit (RFU) in particular. The close spacing of the RFU ridges, their apparently chaotic orientations, and their organization in dense networks all appear unlike classical stream channel patterns. However, drainage patterns on large fluvial fans low-angle, fluvial aggradational features, 100s of km long, documented worldwide by us provide parallels. Some large fan characteristics resemble those of classical floodplains, but many differences have been demonstrated. One major distinction relevant to the RFU is that channel landscapes of large fans can dominate large areas (1.2 million km2 in one S. American study area). We compare channel morphologies on large fans in the southern Sahara Desert with ridge patterns in Sinus Meridiani (fig 1). Stream channels are the dominant landform on large terrestrial fans: they may equate to the ubiquitous, sinuous, elongated ridges of the RFU that cover areas region wide. Networks of convergent/divergent and crossing channels may equate to similar features in the ridge networks. Downslope divergence is absent in channels of terrestrial upland erosional landscapes (fig. 1, left), whereas it is common to both large fans (fig. 1, center) and RFU ridge patterns (fig 1, right downslope defined as the regional NW slope of Sinus Meridiani). RFU ridge orientation, judged from those areas apparently devoid of impact crater control, is broadly parallel with the regional slope (arrow, fig. 1, right), as is mean orientation of major channels on large fans (arrow, fig. 1, center). High densities per unit area characterize fan channels and martian ridges reaching an order of magnitude higher than those in uplands just upstream of the terrestrial study areas fig. 1. In concert with several other regional features, these morphological similarities argue for the RFU as a possibly fluvial unit.

  15. Phosphorus Adsorption and Desorption During and After Swine Manure Spill Simulations

    USDA-ARS?s Scientific Manuscript database

    Manure spills contribute phosphorus (P) to surface waters during catastrophic events and little is known about the effectiveness of the current manure spill remediation methods with regard to the water column and sediments within the fluvial system. Therefore, the objectives of this study were to (1...

  16. Transport and Fate of Phosphorus During and After Manure Spill Simulations

    USDA-ARS?s Scientific Manuscript database

    Manure spills contribute phosphorus (P) to surface waters during catastrophic events and little is known about the effectiveness of the current manure spill remediation methods with regard to the water column and sediments within the fluvial system. Therefore, the objectives of this study were to (1...

  17. Future Change to Tide-Influenced Deltas

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Hoitink, A. J. F. (Ton); Törnqvist, Torbjörn E.

    2018-04-01

    Tides tend to widen deltaic channels and shape delta morphology. Here we present a predictive approach to assess a priori the effect of fluvial discharge and tides on deltaic channels. We show that downstream channel widening can be quantified by the ratio of the tide-driven discharge and the fluvial discharge, along with a second metric representing flow velocities. A test of our new theory on a selection of 72 deltas globally shows good correspondence to a wide range of environments, including wave-dominated deltas, river-dominated deltas, and alluvial estuaries. By quantitatively relating tides and fluvial discharge to delta morphology, we offer a first-order prediction of deltaic change that may be expected from altered delta hydrology. For example, we expect that reduced fluvial discharge in response to dam construction will lead to increased tidal intrusion followed by enhanced tide-driven sediment import into deltas, with implications for navigation and other human needs.

  18. Spatio-temporal variations in biomass and mercury concentrations of epiphytic biofilms and their host in a large river wetland (Lake St. Pierre, Qc, Canada).

    PubMed

    Hamelin, Stéphanie; Planas, Dolors; Amyot, Marc

    2015-02-01

    Within wetlands, epiphytes and macrophytes play an important role in storage and transfer of metals, through the food web. However, there is a lack of information about spatial and temporal changes in their metal levels, including those of mercury (Hg), a key priority contaminant of aquatic systems. We assessed total mercury (THg) and methylmercury (MeHg) concentrations of epiphyte/macrophyte complexes in Lake St. Pierre, a large fluvial lake of the St. Lawrence River (Québec, Canada). THg and MeHg concentrations were ten fold higher in epiphytes than in macrophytes. THg concentrations in epiphytes linearly decreased as a function of the autotrophic index, suggesting a role of algae in epiphyte Hg accumulation, and % of MeHg in epiphytes reached values as high as 74%. Spatio-temporal variability in THg and MeHg concentrations in epiphytes and macrophytes were influenced by water temperature, available light, host species, water level, dissolved organic carbon and dissolved oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Subsidence Monitoring in Seville (S Spain) Using Multi-Temporal InSAR

    NASA Astrophysics Data System (ADS)

    Ruiz-Armenteros, Antonio M.; Ruiz-Constan, Ana; Lamas-Fernandez, Francisco; Galindo-Zaldivar, Jesus; Sousa, Joaquim J.; Sanz de Galdeano, Carlos; Delgado, Manuel J.; Pedrera-Parias, Antonio; Martos-Rosillo, Sergio; Gil, Antonio J.; Caro-Cuenca, Miguel; Hanssen, Ramon F.

    2016-08-01

    Seville, with a metropolitan population of about 1.5 million, is the capital and largest city of Andalusia (S Spain). It is the 30th most populous municipality in the European Union and contains three UNESCO World Heritage Sites. The Seville harbour, located about 80 km from the Atlantic Ocean, is the only river port in Spain. The city is located on the plain of the Guadalquivir River. Using Multi-Temporal InSAR with ERS-1/2 and Envisat data a subsidence behavior is detected in the period 1992-2010. The geometry of the subsiding areas suggests that it should be conditioned by the fluvial dynamics of the Guadalquivir River and its tributaries. Facies distribution along the fluvial system (paleochannels, flood plains...), with different grain size and matrix proportion, may explain the relative subsidence between the different sectors.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fecht, K.R.

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending majormore » fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems.« less

  1. Fluvial deposits as an archive of early human activity: Progress during the 20 years of the Fluvial Archives Group

    NASA Astrophysics Data System (ADS)

    Chauhan, Parth R.; Bridgland, David R.; Moncel, Marie-Hélène; Antoine, Pierre; Bahain, Jean-Jacques; Briant, Rebecca; Cunha, Pedro P.; Despriée, Jackie; Limondin-Lozouet, Nicole; Locht, Jean-Luc; Martins, Antonio A.; Schreve, Danielle C.; Shaw, Andrew D.; Voinchet, Pierre; Westaway, Rob; White, Mark J.; White, Tom S.

    2017-06-01

    Fluvial sedimentary archives are important repositories for Lower and Middle Palaeolithic artefacts throughout the 'Old World', especially in Europe, where the beginning of their study coincided with the realisation that early humans were of great antiquity. Now that many river terrace sequences can be reliably dated and correlated with the globally valid marine isotope record, potentially useful patterns can be recognized in the distribution of the find-spots of the artefacts that constitute the large collections that were assembled during the years of manual gravel extraction. This paper reviews the advances during the past two decades in knowledge of hominin occupation based on artefact occurrences in fluvial contexts, in Europe, Asia and Africa. As such it is an update of a comparable review in 2007, at the end of IGCP Project no. 449, which had instigated the compilation of fluvial records from around the world during 2000-2004, under the auspices of the Fluvial Archives Group. An overarching finding is the confirmation of the well-established view that in Europe there is a demarcation between handaxe making in the west and flake-core industries in the east, although on a wider scale that pattern is undermined by the increased numbers of Lower Palaeolithic bifaces now recognized in East Asia. It is also apparent that, although it seems to have appeared at different places and at different times in the later Lower Palaeolithic, the arrival of Levallois technology as a global phenomenon was similarly timed across the area occupied by Middle Pleistocene hominins, at around 0.3 Ma.

  2. Laboratory investigations into the potential for transformation of POC to dissolved and gaseous forms

    NASA Astrophysics Data System (ADS)

    Goulsbra, Claire; Evans, Martin; Allott, Tim; Evans, Chris; Flint, Rebecca; Mcmorron, Katherine

    2014-05-01

    In eroding peatland systems POC is the dominant component of the fluvial carbon flux, with POC flux to up to circa 80 g C m-2 yr-1. The fate of this POC has remained uncertain, however, and at present many carbon models exclude POC flux from estimations of atmospherically active carbon budgets. Recent work on headwater systems with high POC concentrations has demonstrated that POC:DOC ratios decrease rapidly downstream, hypothesised to be due the physical and microbial breakdown of POC in the fluvial system and transformation of soil carbon to dissolved and gaseous phases. To assess this hypothesis, laboratory investigations of the potential for transformation of POC to dissolved and gaseous forms were undertaken. POC derived from an exposed gully face was mixed with stream waters collected from Upper North Grain, an eroded peatland catchment in the South Pennines, UK, to simulate typical storm flow suspended sediment concentrations. The solutions were agitated using a magnetic stirring system for one week and subsamples of the solution were extracted at intervals of 0.5, 1, 1.5, 2, 3, 4, 5 and 6 hours, and 1, 2, 3, 4, and 7 days. Samples were analysed for POC and DOC concentration using a Shimadzu total carbon analyser and absorbance was measured spectrophotometrically at 254, 400 465 and 665 nm wavelengths as a proxy for DOC quality. In a parallel experiment CO2 emissions to the mixing flask were measured using an infra-red gas analyser (IRGA). To isolate the role of microbial versus physical breakdown, both experiments were replicated with POM and streamwater which had been sterilised by gamma irradiation. The experiments were further repeated to assess the impact of variations in pH and the initial DOC concentration of the stream water on rates of POC conversion to on DOC and CO2. The results of these experiments will be presented here. Initial results show that peat-derived POC was found to be reactive in streamwater, leading to a rapid in DOC within 24 hours of the start of mixing experiments, thought to occur via physicochemical processes. Mixing of POC with streamwater also led to rapid CO2 emissions, possibly via a DOC intermediary, and overall CO2 production exceeded that of DOC. These results strongly indicate that POC is actively converted to other carbon forms in high-POC waters over the timescale of water residence in typical UK river systems, and that a high proportion of this carbon is emitted to the atmosphere as CO2.

  3. Simulating C fluxes along the terrestrial-aquatic continuum of the Amazon basin from 1861-2100

    NASA Astrophysics Data System (ADS)

    Lauerwald, R.; Regnier, P. A. G.; Ciais, P.

    2017-12-01

    To date, Earth System Models (ESM) ignore the lateral transfers of carbon (C) along the terrestrial-aquatic continuum down to the oceans and thus overestimate the terrestrial C storage. Here, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE, the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks in riparian wetlands. The model is calibrated and applied to the Amazon basin, including historical simulations starting from 1861 and future projections to the end of the 21st century. The model is found to reproduce well the observed dynamics in lateral DOC fluxes and CO2 evasion from the water surface. According to the simulations, half of the evading CO2 and 2/3 of the DOC transported in the rivers are produced within the water column or in flooded wetlands. We predict an increase in fluvial DOC exports to the coast and CO2 evasion to the atmosphere of about 1/4 over the 21st century (RCP 6.0). These long-term trends are mainly controlled by increasing atmospheric CO2 concentration and its fertilizing effect on terrestrial primary production in the model, while the effects of land-use change and increasing air temperature are minor. Interannual variations and seasonality of CO2 evasion and DOC transported by the river are however mainly controlled by hydrology. Over the simulation period, the actual land C sink represents less than half of the balance between terrestrial production and respiration in the Amazon basin, while the larger proportion is exported through the terrestrial-aquatic interface. These results highlight the importance of the terrestrial-aquatic continuum in the global C cycle.

  4. Impacts of variable channel hydraulics on the stratigraphic record: an example provided from the Tullig Sandstone, Western Irish Namurian Basin

    NASA Astrophysics Data System (ADS)

    Wu, C.; Nittrouer, J. A.; Burmeister, K. C.

    2017-12-01

    River hydrodynamic conditions are modified where a system approaches its terminal basin, characterized by the onset of non-uniform "backwater" flow. A decrease in boundary shear stress in the backwater region reduces transport capacity and results in sediment deposition on the channel bed. Although such morphodynamic conditions are common in modern fluvial-deltaic channels, the extent to which these processes are prevalent in the stratigraphic record remains unclear. For example, a few studies documenting changes in fluvial sandstone channel dimensions and grain size distributions near a river terminus attributed this variability to backwater hydrodynamics. However, quantitative tests using morphodynamic models bolstered by a variety of field observations, which could then be linked to sediment depositional patterns and stratigraphy, have yet to be produced. Here we calibrate a one-dimensional river flow model with measurements of paleo-slope and channel depth, and use the output to constrain a sediment transport model, with data from the Tullig Sandstone in the Western Irish Namurian Basin. Based on the model results, our analyses indicate that: (1) backwater hydrodynamics influence the spatial variation of sandstone dimensions and grain size across the delta, and (2) backwater hydrodynamics drive channel bed aggradation and progradation of the river mouth for conditions of constant sea level. Field data indicate that the reach-average story thickness increases, and then decreases, progressing downstream over the backwater reach. Based on the inferred transport and depositional processes, the measured deltaic stratigraphy patterns shown here are assumed to be associated with backwater hydrodynamics, and are therefore largely autogenic in origin. These analyses indicate that non-uniform hydrodynamics can generate stratigraphic patterns that could be conflated as arising due to allogenic effects, based on traditional geometric or diffusion-based depositional models. Moreover, the signals of river hydrodynamics preserved in the stratigraphic record can be a useful tool for differentiating between short-term autogenic and long-term allogenic processes.

  5. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  6. Coalbed methane potential of the Upper Cretaceous Mesaverde and Meeteetse formations, Wind River Reservation, Wyoming

    USGS Publications Warehouse

    Johnson, R.C.; Clark, A.C.; Barker, C.E.; Crysdale, B.L.; Higley, D.K.; Szmajter, R.J.; Finn, T.M.

    1993-01-01

    The environments of deposition of the uppermost part of the Cody Shale and the Mesaverde and Meeteetse Formations of Late Cretaceous age were studied on outcrop in the Shotgun Butte area in the north-central part of the Wind River Reservation. A shoreface sandstone occurs in the lower part of the Mesaverde Formation at all localities studied, and is directly overlain by a coaly interval. Repetitive coarsening-upward cycles of mudstone, siltstone, and sandstone occur in the 200 ft interval of the upper part of the Cody Shale below the shoreface sandstone. These Cody sandstones are typically hummocky cross stratified with symmetrical ripples near the top, indicating that they are largely storm surge deposits that were later reworked. Channel-form sandstones from 10 to 20 ft thick, with abundant locally derived clayey clasts, occur in a 75 ft thick interval below the shoreface at one locality. These unusual sandstones are largely confined to a narrow area of the outcrop and grade laterally into more typical storm surge deposits. They may be unusually large storm surge channels created when high-energy flow conditions were localized to a limited area of the shelf.The Mesaverde Formation above the shoreface sandstone is divided into a middle member and the Teapot Sandstone Member. The lower part of the middle member is everywhere coaly. Erosional-based sandstones in this coaly interval are highly variable in thickness and architecture. Thin, single channel sandstone bodies were deposited by moderate to high sinuosity streams, and thick, multistory channel sandstone bodies were deposited by rapidly switching fluvial channel systems that remained relatively stationary for extended periods of time. The architecture of the fluvial channel sandstones in the overlying noncoaly interval appears to be highly variable as well, with complex multistory sandstones occurring at different stratigraphic levels at different localities. This distribution may be explained by long term stability of fluvial channel systems followed by major avulsion events.The Teapot Sandstone Member consists of fairly persistent to lenticular white multistory sandstone units that are as much as 85 ft thick and contain trough cross beds as much as 5 ft high. These sandstone units are interbedded with gray mudstones and carbonaceous shales. Paleosols are preserved at the tops of individual sandstones in the multistory units in some places. It is suggested that these sandstones were deposited largely by low-sinuosity to braided streams. The Meeteetse Formation consists of alternating coal and sandstone-rich intervals. The coal-rich intervals have relatively thin fluvial channel sandstones probably deposited by medium to high sinuosity streams whereas the sand-rich intervals have thick (to 105 ft) multistory fluvial channel sandstones possibly deposited by low-sinousity to braided streams.

  7. Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone

    USGS Publications Warehouse

    Anderson, P.B.; Chidsey, T.C.; Ryer, T.A.

    1997-01-01

    East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.

  8. Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian Peninsula (Upper Tagus and Duero drainage basins, Central Spain)

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.; Roquero, Elvira; López-Recio, Mario; Huerta, Pedro; Martínez-Graña, Antonio M.

    2017-06-01

    This work analyses the chronology of fluvial terrace sequences of the two most important fluvial basins from central Spain draining to the Atlantic Ocean (Upper Tagus and Duero drainage basins). Both basins evolved under similar Mediterranean climatic conditions throughout the Pleistocene and present comparable number of fluvial terraces (16-17) after excluding the higher terrace levels of the Tagus (T1-T5) entrenched in the Raña surface. These higher ;rañizo terraces; was formed in response to fan-head trenching in this high alluvial piedmont (+220 m) and therefore not properly controlled by Quaternary fluvial downcutting. The study accomplishes the implementation of multiple regression analyses for terrace height-age relationships. To transform relative terrace heights above the present river thalwegs (i.e. +100 m) in numerical ages a ;height-age transference function; has been developed on the basis of preliminary statistical geochronological approaches proposed for Central Spain. The resultant height-age transference function gather 73 published geochronological data for terrace sequences, featuring a 3rd Order Polynomial Function (R2 0.90). This function describes the overall trend of valley downcutting for the last c. 2.3 Ma in Central Spain and is used to assign numerical ages to terrace levels at different relative elevation.

  9. "The Waters of Meridiani" - Further Support for a Fluvial Interpretation of the Ridged, Layered Units

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin; Kreslavsky, Misha

    2009-01-01

    A relatively unknown terrestrial fluvial environment, the mesoscale megafan, provides analogs for various Martian landscapes, including the etched unit (etched unit, Unite E of Arvidson et al., 2003; ridge-forming unit R of Edgett, 2005) of the Sinus Meridiani region on Mars. A global survey of Earth shows that megafans are very large partial cones of dominantly fluvial sediment with radii on the order of hundreds of km, and very low slopes. Responsible fluvial processes are sufficiently different from those of classical arid alluvial fans and deltas that it is useful to class megafans as separate features. The megafan model calls into question two commonly held ideas. 1. Earth examples prove that topographic basins per se are unnecessary for the accumulation of large sedimentary bodies. 2. River channels are by no means restricted to valleys (Meridiani sediments are termed a "valley-ed volume" of Edgett). These perspectives reveal unexpected parallels with features at Meridiani-several channel-like features that are widespread, mostly as ridges inverted by eolian erosion; channel networks covering thousands of sq km, especially on intercrater plains; and regional relationships of sediment bodies situated immediately downstream of highland masses. These all suggest that fluvial explanations are at least part of the Meridiani story.

  10. Increased losses of organic carbon and destabilising of tropical peatlands following deforestation, drainage and burning. (Invited)

    NASA Astrophysics Data System (ADS)

    Moore, S.; Gauci, V.; Evans, C.; Page, S. E.

    2013-12-01

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams. Approximately 65% of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and associated fire is converting it into a globally significant source of atmospheric carbon dioxide. Unlike boreal and temperate forests and higher-latitude wetlands, however, the loss of fluvial organic carbon from tropical peats has yet to be fully quantified. Here, we present the first data from intact and degraded peat swamp forest (PSF) catchments in Central Kalimantan, Borneo, that indicate a doubling of fluvial organic carbon losses from tropical peatlands following deforestation and drainage. Through carbon-14 dating of dissolved organic carbon (DO14C), we find that leaching of DOC from intact PSF is derived mainly from recent primary production. In contrast, DOC from disturbed PSF consists mostly of much older carbon from deep within the peat column. When we include this fluvial carbon loss, which is often ignored in peatland carbon budgets, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22%. We further estimate that since 1990, peatland disturbance has resulted in a 32% increase in fluvial organic carbon flux from Southeast Asia - an increase that equates to more than half of the entire annual fluvial organic carbon flux from all European peatlands. Finally, we monitored fluvial organic carbon fluxes following large-scale peatland fires in 2009/10 within the study sub-catchments and found fluvial carbon fluxes to be 30-70% larger in the fire-affected catchments when compared to fluxes during the same interval in the previous year (pre-fire). This is in marked contrast to the intact catchment (control/no fire) where there were no differences observed in fluxes 'pre to post fire years'. Our sub-catchment findings were also found to be representative at a larger river basin scale and we estimate the fluvial carbon flux from the Sebangau River basin (5,200 km2) to the Java Sea to be 0.58 Tg year-1. This is a 25% increase on the flux calculated for the River Sebangau the preceding year (pre-fire; 0.46 Tg). These new data are the first to demonstrate a large and sustained pulse of fluvial carbon following large scale human-induced fires in carbon rich tropical PSF. (L) Undisturbed PSF, (R) Disturbed PSF Borneo study sites and land-cover class properties Area = area of each catchment (PSF1 = intact, PSF2 & PSF3 = disturbed). Rainfall = total annual. Total annual discharge = standardized by area. TOC concentrations & fluxes = mean × standard error of site means.

  11. Detrital dating of Asian orogenesis: insights and caveats

    NASA Astrophysics Data System (ADS)

    Burbank, D. W.

    2007-12-01

    Technological advances over the past two decades have facilitated increasingly routine application of single- crystal dating and cosmogenic nuclide dating to studies of orogenic erosion. Both approaches commonly utilize grab samples of detrital sediment, either modern or ancient. Whereas detrital cosmogenic data are typically used to define mean erosion rates for upstream catchments, single-crystal ages are used both to discern provenance and to define lag times: interval between isotopic closure and deposition. Recent results from dating modern fluvial sediments illuminate key concepts that underpin interpretations of results from older strata: the fidelity of the detrital signal, its evolution through an orogen, its relationship to discrete source areas, and its temporal evolution. Despite the increasing availability of dates and rates for detrial grains, relatively few studies have addressed the sources of uncertainty that modulate the precision and accuracy with which detrital results should be interpreted. Such uncertainties derive not only from sampling statistics and measurement uncertainties, but also from both geomorphic sources (seasonal variation in sediment supply and source, changes in glacial cover, the impact of stochastic geomorphic events, such as landslides), as well as tectonic ones (time-dependent deformation and thermal models, particle paths through the orogen). A better understanding of the impact of these uncertainties will underpin more reliable and less speculative interpretations of future dating results from both ancient and modern detrital fluvial sediments.

  12. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  13. Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Hebbeln, D.; Wefer, G.

    The regional patterns of texture and composition of modern continental slope and pelagic sediments off Chile between 25°S and 43°S reflect the latitudinal segmentation of geological, morphological, and climatic features of the continental hinterland. Grain-size characteristics are controlled by the grain-size of source rocks, the weathering regime, and mode of sediment input (eolian off northern Chile vs fluvial further south). Bulk-mineral assemblages reveal a low grade of maturity. Regional variations are governed by the source-rock composition of the different geological terranes and the relative source-rock contribution of the Coastal Range and Andes, as controlled by the continental hydrology. The relative abundance of clay minerals is also predominantly influenced by the source-rock composition and partly by continental smectite neoformation. Latitudinal variations of illite crystallinities along the Chilean continental slope (and west of the Peru-Chile trench) clearly reflect modifications of the weathering regime which correspond to the strong climatic zonation of Chile.

  14. Geomorphic and geochemical controls on leaf wax biomarker transport and preservation in alluvial river systems: Rio Bermejo, Argentina

    NASA Astrophysics Data System (ADS)

    Repasch, M. N.; Sachse, D.; Hovius, N.; Scheingross, J. S.; Szupiany, R. N.

    2017-12-01

    Rivers are the primary conduits for organic carbon (OC) transfer from vegetation-rich uplands to long-term sinks, and thus are responsible for significant fluxes among different reservoirs of the carbon cycle. Fluxes of terrestrial OC out of river systems are generally less than fluxes into the systems, indicating loss of OC either during active fluvial transport, during residence in the active channel belt, or in older deposits outside of the active channel belt. Sedimentary biomarkers can be used to elucidate the mechanisms of transport, preservation, and/or transformation of OC during its passage from source to sink. In this study we evaluate the influence of fluvial sediment transport on preservation of terrestrial leaf wax n-alkanes. Our natural laboratory is the Rio Bermejo in northern Argentina, which transports sediment and organic matter from the central Andes over 700 km across the foreland basin without input of foreign material from tributaries. Rapid channel migration rates in a region of flexural foreland basin uplift (the forebulge) are responsible for remobilization of floodplain sediment and terrestrial OC. By sampling suspended sediment, river bank sediment, and soil from several locations along the length of the Rio Bermejo, and analyzing the dissolved chemistry, biomarker composition, and compound-specific stable isotopes, we can evaluate the geomorphic and geochemical processes that act to influence the preservation of terrestrial biomarkers through the river system. Data suggest that concentrations of long-chain terrestrial (C25-C33) alkanes decrease downstream, while concentrations of short-chain (C15-C19) alkanes increase. This trend is corroborated by a downstream increase in suspended sediment δ13C values, suggesting a replacement of terrestrial OC by microbial OC. It is likely that microbial degradation is responsible for loss of terrestrial biomarkers as their residence time in the river system increases. Controlled laboratory experiments and analysis of modern and aged river bank sediment samples will determine where and over what timescales leaf wax alkanes are oxidized by microorganisms. With these data, we will be able to quantify the loss of OC during fluvial transit and determine the mechanisms responsible, enabling carbon cycle models to account for these losses.

  15. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward

    NASA Astrophysics Data System (ADS)

    Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.

    2018-03-01

    Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.

  16. Geophysical methods for the assessment of earthen dams

    USDA-ARS?s Scientific Manuscript database

    Dams and levees are an integral part of the fluvial system in watersheds. Their stability is of utmost concern to the Nation and to those directly impacted should failure occur. There are some 88,000 dams and 110,000 miles of levees in the USA. Many of those are earthen embankments and structures su...

  17. Sediment budgets as an organizing framework in fluvial geomorphology

    Treesearch

    Leslie Reid; Thomas Dunne

    2016-01-01

    Sediment budgets describe the input, transport, storage, and export of sediment in a geomorphic system. Such budgets can be used to address questions regarding how changes in catchment conditions affect channels, how long the effects will last, and what the sequence of responses will be. This chapter defines and describes budget components, outlines strategies...

  18. Metal concentrations in urban riparian sediments along an urbanization gradient

    Treesearch

    Daniel J. Bain; Ian D. Yesilonis; Richard V. Pouyat

    2012-01-01

    Urbanization impacts fluvial systems via a combination of changes in sediment chemistry and basin hydrology. While chemical changes in urban soils have been well characterized, similar surveys of riparian sediments in urbanized areas are rare. Metal concentrations were measured in sediments collected from riparian areas across the urbanization gradient in Baltimore, MD...

  19. Channel morphology investigations using Geographic Information Systems and field research

    Treesearch

    Scott N. Miller; Ann Youberg; D. Phillip Guertin; David C. Goodrich

    2000-01-01

    Stream channels are integral to watershed function and are affected by watershed management decisions. Given an understanding of the relationships among channel and watershed variables, they may serve as indicators of upland condition or used in distributed rainfall-runoff models. This paper presents a quantitative analysis of fluvial morphology as related to watershed...

  20. Occurrence of fecal-indicator bacteria and protocols for identification of fecal-contamination sources in selected reaches of the West Branch Brandywine Creek, Chester County, Pennsylvania

    USGS Publications Warehouse

    Cinotto, Peter J.

    2005-01-01

    The presence of fecal-indicator bacteria indicates the potential presence of pathogens originating from the fecal matter of warm-blooded animals. These pathogens are responsible for numerous human diseases ranging from common diarrhea to meningitis and polio. The detection of fecal-indicator bacteria and interpretation of the resultant data are, therefore, of great importance to water-resource managers. Current (2005) techniques used to assess fecal contamination within the fluvial environment primarily assess samples collected from the water column, either as grab samples or as depth- and (or) width-integrated samples. However, current research indicates approximately 99 percent of all bacteria within nature exist as attached, or sessile, bacteria. Because of this condition, most current techniques for the detection of fecal contamination, which utilize bacteria, assess only about 1 percent of the total bacteria within the fluvial system and are, therefore, problematic. Evaluation of the environmental factors affecting the occurrence and distribution of bacteria within the fluvial system, as well as the evaluation and modification of alternative approaches that effectively quantify the larger population of sessile bacteria within fluvial sediments, will present water-resource managers with more effective tools to assess, prevent, and (or) eliminate sources of fecal contamination within pristine and impaired watersheds. Two stream reaches on the West Branch Brandywine Creek in the Coatesville, Pa., region were studied between September 2002 and August 2003. The effects of sediment particle size, climatic conditions, aquatic growth, environmental chemistry, impervious surfaces, sediment and soil filtration, and dams on observed bacteria concentrations were evaluated. Alternative approaches were assessed to better detect geographic sources of fecal contamination including the use of turbidity as a surrogate for bacteria, the modification and implementation of sandbag bacteria samplers, and the use of optical brighteners. For the purposes of this report, sources of bacteria were defined as geographic locations where elevated concentrations of bacteria are observed within, or expected to enter, the main branch of the West Branch Brandywine Creek. Biologic sources (for example, waterfowl) were noted where applicable; however, no specific study of biologic sources (such as bacterial source tracking) was conducted. Data indicated that specific bacterial populations within fluvial sediments could be related to specific particle-size ranges. This relation is likely the result of the reduced porosity and permeability associated with finer sediments and the ability of specific bacteria to tolerate particular environments. Escherichia coli (E. coli) showed a higher median concentration (2,160 colonies per gram of saturated sediment) in the 0.125 to 0.5-millimeter size range of natural sediments than in other ranges, and enterococcus bacteria showed a higher median concentration (61,830 colonies per gram of saturated sediment) in the 0.062 to 0.25-millimeter size range of natural sediments than in other ranges. There were insufficient data to assess the particle-size relation to fecal coliform bacteria and (or) fecal streptococcus bacteria. Climatic conditions were shown to affect bacteria concentrations in both the water column and fluvial sediments. Drought conditions in 2002 resulted in lower overall bacteria concentrations than the more typically wet year of 2003. E. coli concentrations in fluvial sediment along the Coatesville study reach in 2002 had a median concentration of 92 colonies per gram of saturated sediment; in 2003, the median concentration had risen to 4,752 colonies per gram of saturated sediment. Symbiotic relations between bacteria and aquatic growth were likely responsible for increased bacteria concentrations observed within an impoundment area on the Coatesville study reach. This reach showed evidence of

  1. Local efficiency in fluvial systems: Lessons from Icicle Bend

    NASA Astrophysics Data System (ADS)

    Jerin, Tasnuba; Phillips, Jonathan

    2017-04-01

    Development of fluvial systems is often described and modeled in terms of principles related to maxima, minima, or optima of various hydraulic or energy parameters that can generally be encompassed by a principle of efficiency selection (more efficient flow routes tend to be preferentially selected and enhanced). However, efficiency selection is highly localized, and the cumulative effects of these local events may or may not produce more efficient pathways at a broader scale. This is illustrated by the case of Icicle Bend on Shawnee Run, a limestone bedrock stream in central Kentucky. Field evidence indicates that a paleochannel was abandoned during downcutting of the stream, and the relocation was analyzed using a flow partitioning model. The bend represents abandonment of a steeper, straighter, more efficient channel at the reach scale in favor of a longer, currently less steep and less efficient flow path. This apparently occurred owing to capture of Shawnee Run flow by a subsurface karst flow path that was subsequently exhumed. The development of Icicle Bend illustrates the local nature of efficiency selection and the role of historical contingency in geomorphic evolution.

  2. A comprehensive sediment dynamics study of a major mud belt system on the inner shelf along an energetic coast.

    PubMed

    Liu, James T; Hsu, Ray T; Yang, Rick J; Wang, Ya Ping; Wu, Hui; Du, Xiaoqin; Li, Anchun; Chien, Steven C; Lee, Jay; Yang, Shouye; Zhu, Jianrong; Su, Chih-Chieh; Chang, Yi; Huh, Chih-An

    2018-03-09

    Globally mud areas on continental shelves are conduits for the dispersal of fluvial-sourced sediment. We address fundamental issues in sediment dynamics focusing on how mud is retained on the seabed on shallow inner shelves and what are the sources of mud. Through a process-based comprehensive study that integrates dynamics, provenance, and sedimentology, here we show that the key mechanism to keep mud on the seabed is the water-column stratification that forms a dynamic barrier in the vertical that restricts the upward mixing of suspended sediment. We studied the 1000 km-long mud belt that extends from the mouth of the Changjiang (Yangtze) River along the coast of Zhejiang and Fujian Provinces of China and ends on the west coast of Taiwan. This mud belt system is dynamically attached to the fluvial sources, of which the Changjiang River is the primary source. Winter is the constructive phase when active deposition takes place of fine-grained sediment carried mainly by the Changjiang plume driven by Zhe-Min Coastal Currents southwestward along the coast.

  3. Composition and Biolability of Dissolved Organic Matter Leached from the Dominant Endmembers of the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Borgen, M.; Spencer, R. G.; Mann, P. J.; Vonk, J. E.; Bulygina, E. B.; Holmes, R. M.

    2012-12-01

    Terrigenous dissolved organic matter (DOM) has historically been thought to be refractory as it is mobilized into and transported through Arctic fluvial networks. However, a growing body of evidence suggests that this DOM, largely leached from vegetation, soils, and litter during the annual freshet, is highly biolabile. This study examined DOM leached from these dominant endmembers of the Kolyma River watershed in the Siberian Arctic. As leachates progressed through time, measurements of dissolved organic carbon (DOC), optical parameters to assess DOM composition, and biodegradation incubations were undertaken. This suite of measurements allowed examination of the rate and composition of leached DOC into the aquatic system and quantification of the biolability of the DOM from the diverse range of endmembers examined. Of all the endmembers, vascular plants leached the greatest amount of DOC and results will be presented relating DOC concentration and DOM composition to initial source material. Furthermore, controls on DOM biolability, enzymatic activity, and the ultimate fate of terriginous DOC in Siberian fluvial systems will be discussed.

  4. Karst landforms revealed at various scales using LiDAR and UAV in semi-arid Brazil: Consideration on karstification processes and methodological constraints

    NASA Astrophysics Data System (ADS)

    Silva, Orildo L.; Bezerra, Francisco H. R.; Maia, Rubson P.; Cazarin, Caroline L.

    2017-10-01

    This paper analyzes different types of karst landforms and their relationships with fracture systems, sedimentary bedding, and fluvial processes. We mapped karst features in the Cretaceous carbonates of the Jandaíra Formation in the Potiguar Basin, Brazil. We used high-resolution digital elevation models acquired using LiDAR and aerial orthophotographs acquired using an unmanned aerial vehicle (UAV). We grouped and described karst evolution according to scale and degree of karstification. These degrees of karst evolution are coeval. Fractures are opened by dissolution, forming vertical fluid conduits, whereas coeval dissolution occurs along horizontal layers. This conduit system acts as pathways for water flow. The enlargement of conduits contributes to the collapse of blocks in sinkholes and expansion of caves during an intermediate degree of karstification. Propagation of dissolution can cause the coalescence of sinkholes and the capture of small streams. Fluvial processes dominate karst dissolution at an advanced degree of karstification. Comparisons with previously published ground-penetrating radar (GPR), borehole and seismic surveys in sedimentary basins indicate that these structures can be partially preserved during burial.

  5. Construction and maintenance of the Ganges-Brahmaputra-Meghna delta: linking process, morphology, and stratigraphy.

    PubMed

    Wilson, Carol A; Goodbred, Steven L

    2015-01-01

    We present a review of the processes, morphology, and stratigraphy of the Ganges-Brahmaputra-Meghna delta (GBMD), including insights gained from detailed elevation data. The review shows that the GBMD is best characterized as a composite system, with different regions having morphologic and stratigraphic attributes of an upland fluvial fan delta; a lowland, backwater-reach delta; a downdrift tidal delta plain; and an offshore subaqueous-delta clinoform. These distinct areas of upland and lowland fluvial reaches and tidal dominance vary in time and space, and we distinguish late-Holocene phases of delta construction, maintenance, and decline similar to delta-lobe cycling in other systems. The overall stability of the GBMD landform, relative to many deltas, reflects the efficient, widespread dispersal of sediment by the large monsoon discharge and high-energy tides that affect this region. However, we do identify portions of the delta that are in decline and losing elevation relative to sea level owing to insufficient sediment delivery. These areas, some of which are well inland of the coast, represent those most at risk to the continued effect of sea-level rise.

  6. A process-sedimentary framework for characterizing recent and ancient sabkhas

    USGS Publications Warehouse

    Handford, C.R.

    1981-01-01

    The discovery of sabkha environments during the 1960's, marked the beginning of Recent evaporite sedimentological studies and their perception as models for facies analysis. However, variation among Recent sabkhas, though recognized by the geologic community, has not been duly addressed, which has resulted in overuse of the Trucial Coast model in comparative sedimentological studies. Knowledge of the dominant physical processes which determine sabkha morphology, and of the sedimentary response to those processes, can lead to a fundamental understanding of a sabkha's origin and of how it differs from other sabkhas. Physical processes thought to be most important (besides evaporation) include those operative under: (1) marine-; (2) fluvial-lacustrine-; and (3) eolian-dominated conditions. Dominance of one or more of these in the proper settings give rise to marine coastal sabkhas, continental playas, and interdune sabkhas. Sedimentary responses to dominant physical processes lead to the development of sabkhas consisting of a combination of either: (1) terrigenous clastics; (2) carbonate-sulfate (anhydrite-gypsum) minerals; or (3) soluble salts (halite, sylvite, polyhalite, etc.). Sediment characterization can also allow discrimination of the range or compositional variety in, for example, coastal sabkhas. Where applied to the stratigraphic record, this classification system may help unravel the sedimentary history of an ancient sabkha system, and a determination of the dominant physical processes that ruled its development. ?? 1981.

  7. Triassic–Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China)

    PubMed Central

    Sha, Jingeng; Olsen, Paul E.; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi

    2015-01-01

    Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth’s geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic–Early Jurassic (∼198–202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth–Mars orbital resonance was in today’s 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data. PMID:25759439

  8. Triassic-Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Ürümqi, China).

    PubMed

    Sha, Jingeng; Olsen, Paul E; Pan, Yanhong; Xu, Daoyi; Wang, Yaqiang; Zhang, Xiaolin; Yao, Xiaogang; Vajda, Vivi

    2015-03-24

    Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth's geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic-Early Jurassic (∼198-202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth-Mars orbital resonance was in today's 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data.

  9. Sedimentological controls on gold in a late Pleistocene glacial placer deposit, Cariboo Mining District, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Kocsis, Stephen P.

    1989-11-01

    It is a widely perceived notion that glaciation results in dispersal of mineralized bedrock and that sedimentary concentrates of economic minerals (placers) rarely occur in glaciated basins. This paper describes economic gold placers within late Pleistocene glacial and related fluvial sediments of the Cariboo Mining District in central British Columbia, Canada. The area has been defined as a "giant" gold placer; total production since 1858 is over 93,000 kg. The oldest and volumetrically largest placers occur in fluvial gravels and valley-side fan deposits deposited during a long non-glacial interval from as early as 125,000 to 30,000years B.P. The richest placers are found along bedrock "gutters" in the deepest parts of valleys, indicating repeated fluvial reworking of the valley infills. Braided and "wandering gravel bed" fluvial facies can be identified. Glacial placers, that overlie the fluvial placers, occur within lodgement till complexes deposited below the late Wisconsin Cordilleran ice sheet after 30,000 years B.P. The basal portions of lodgement tills are commonly enriched in gold as a result of incorporation from older gravels. Subglacial meltwaters created a highly effective sluicing system and left lucrative pay zones along meltwater-cut channels on bedrock benches, within intraformational gravels in lodgement till and within "lee-side" deposits down-ice of bedrock highs. "Lee-side" deposits are essentially water-worked talus slopes that accumulated in subglacial cavities. Finally, postglacial "wandering gravel-bed rivers" have repeatedly reworked older placers resulting in rich pay zones at the base of extensive bar platform deposits. Similar sedimentological controls on gold distribution can be identified in other glacial placers of late Cenozoic and Paleozoic age in North America, southern Africa and Australia. A distinction is drawn between these placers, all characterized by coarse-grained, nuggety gold, and the more well-known Precambrian and Paleozoic placers where finely-comminuted gold is dispersed through large thicknesses of rock. Episodes of glaciation typically occur after long periods of tropical and subtropical weathering when supergene processes were active and glaciers were able to remove and concentrate coarse gold. In contrast, gold in non-glacial placers of Precambrian and Paleozoic age has been through many cycles of erosion and transport and coarse gold is uncommon.

  10. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: Model development and its application to 2007 Cyclone Sidr in Bangladesh

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip J.; Winsemius, Hessel C.; Verlaan, Martin; Kanae, Shinjiro

    2017-08-01

    Water-related disasters, such as fluvial floods and cyclonic storm surges, are a major concern in the world's mega-delta regions. Furthermore, the simultaneous occurrence of extreme discharges from rivers and storm surges could exacerbate flood risk, compared to when they occur separately. Hence, it is of great importance to assess the compound risks of fluvial and coastal floods at a large scale, including mega-deltas. However, most studies on compound fluvial and coastal flooding have been limited to relatively small scales, and global-scale or large-scale studies have not yet addressed both of them. The objectives of this study are twofold: to develop a global coupled river-coast flood model; and to conduct a simulation of compound fluvial flooding and storm surges in Asian mega-delta regions. A state-of-the-art global river routing model was modified to represent the influence of dynamic sea surface levels on river discharges and water levels. We conducted the experiments by coupling a river model with a global tide and surge reanalysis data set. Results show that water levels in deltas and estuaries are greatly affected by the interaction between river discharge, ocean tides and storm surges. The effects of storm surges on fluvial flooding are further examined from a regional perspective, focusing on the case of Cyclone Sidr in the Ganges-Brahmaputra-Meghna Delta in 2007. Modeled results demonstrate that a >3 m storm surge propagated more than 200 km inland along rivers. We show that the performance of global river routing models can be improved by including sea level dynamics.

  11. Comparative study of fluvial lakes in floodplains of the Elbe, Lužnice and Svratka Rivers based on hydrochemical and biological approach.

    PubMed

    Havlíková, Petra; Chuman, Tomáš; Janský, Bohumír

    2017-11-17

    The aim of the thesis was to specify key differences in chemistry and biota (zooplankton communities) among fluvial lakes in three regions of the Czech Republic: the central part of the Elbe River, the upper part of the Lužnice River and the upper part of the Svratka River. The ten studied lakes of the three regions differ in size, geology, shading, connection with the river and the level of anthropogenic impact. The following hypotheses were tested: (1) The water chemistry of fluvial lakes significantly differs in different floodplains. In the central Elbe River floodplain, there are the highest values of conductivity and concentrations of organic matter and nutrients. Fluvial lakes of the Svratka River floodplain show the lowest level of these parameters, and fluvial lakes of the upper Lužnice River have levels intermediate between the two previous regions. (2) The chemistry of fluvial lakes that have contact with the river through surface connection is significantly influenced by the river. (3) The structure of zooplankton differs in different lakes due to the geographical distance between locations, their different altitude and water chemistry. The PCA analysis of selected parameters of the water chemistry revealed a close relationship of locations in the central Elbe River floodplain on the one side and close relationship of the locations in the upper Lužnice River and Svratka River on the other. However, the amount of organic matter, nitrogen (with the exception of nitrates) and phosphorus was independent of the region. The relationship between the extent of the lake-river connection and the water chemistry was not significant. The hypothesis that the zooplankton differ in different lakes was not proved-the species composition was similar in all the lakes.

  12. Fish habitat characterization and quantification using lidar and conventional topographic information in river survey

    NASA Astrophysics Data System (ADS)

    Marchamalo, Miguel; Bejarano, María-Dolores; García de Jalón, Diego; Martínez Marín, Rubén

    2007-10-01

    This study presents the application of LIDAR data to the evaluation and quantification of fluvial habitat in river systems, coupling remote sensing techniques with hydrological modeling and ecohydraulics. Fish habitat studies depend on the quality and continuity of the input topographic data. Conventional fish habitat studies are limited by the feasibility of field survey in time and budget. This limitation results in differences between the level of river management and the level of models. In order to facilitate upscaling processes from modeling to management units, meso-scale methods were developed (Maddock & Bird, 1996; Parasiewicz, 2001). LIDAR data of regulated River Cinca (Ebro Basin, Spain) were acquired in the low flow season, maximizing the recorded instream area. DTM meshes obtained from LIDAR were used as the input for hydraulic simulation for a range of flows using GUAD2D software. Velocity and depth outputs were combined with gradient data to produce maps reflecting the availability of each mesohabitat unit type for each modeled flow. Fish habitat was then estimated and quantified according to the preferences of main target species as brown trout (Salmo trutta). LIDAR data combined with hydraulic modeling allowed the analysis of fluvial habitat in long fluvial segments which would be time-consuming with traditional survey. LIDAR habitat assessment at mesoscale level avoids the problems of time efficiency and upscaling and is a recommended approach for large river basin management.

  13. Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars

    NASA Astrophysics Data System (ADS)

    Chavan, A. A.; Bhandari, S.

    2017-12-01

    The modern era of planetary exploration has revealed fluvial or fluvial like landforms on the extraterrestrial surfaces of planets and moons of our solar system. This has posed as interesting challenges for advancing our fundamental understanding of fluvial processes and their associated landforms on the planetary surfaces especially on Mars. It has been recognized through earlier studies that the channels and valleys are extensively dissected on Mars. The Valleys are low lying, elongate troughs surrounded by elevated topography. Moreover, valley networks on Mars are the most noticeable features attesting that different geological processes and possibly climatic conditions prevailed in the past and played a vital role in formulating the Martian topography. Channel incisions which are a domino effect both tectonic and surface runoff and groundwater sapping. The components of surface runoff have been deciphered with the help of morphometric exercises. Further, the geomorphological studies of these landforms are critical in understanding the regional tectonics. The present work is an assessment of Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars. This study focuses on the fluvio geomorphology of the southern highlands (00 to 400S to 850-1200W) to determine how these features were formed, which process formed these valleys and includes the probable causes resulting into the development of the topography. Keywords: Noctis Fossae; Noctis Labyrinthus; Syria Planum; Mars

  14. Quaternary landscape evolution of the Helmand Basin, Afghanistan: Insights from staircase terraces, deltas, and paleoshorelines using high-resolution remote sensing analysis

    NASA Astrophysics Data System (ADS)

    Evenstar, L. A.; Sparks, R. S. J.; Cooper, F. J.; Lawton, M. N.

    2018-06-01

    The Helmand Basin in southern Afghanistan is a large (310,000 km2), structurally controlled, endorheically drained basin with a hyperarid climate. The basin hosts a high elevation ( 200 m) plateau (the Dasht-i Margo), 11 fluvial staircase terraces (T11 to T1), 7 delta systems (D1 to D7), and 6 paleolake shorelines (SL1 to SL6) within the Sistan Depression on the western side of the basin. Mapping and surveying of these features by remote sensing is integrated with geological observations to reconstruct Quaternary landscape evolution of the basin. The fluvial systems, deltas, and paleolake shorelines are correlated with one another and with the younger terraces (T7 to T1). The shape of fluvial longitudinal profiles changes depending on whether they formed pre-, syn-, or post-growth of the Koh-i Khannesin volcano on the southern margin of the Helmand River. The age of the volcano ( 0.6 Ma) and correlation of the terraces with the global history of glacial-interglacial cycles constrain the age of the younger terraces to the late Pleistocene and indicates that the older terraces are middle Pleistocene (dating back to 800 ka). The Helmand Basin once hosted a large lake, called here the Sistan paleolake, which at SL6 times and before had a surface area >50,000 km2. Since that time the lake elevation and area have decreased, evolving to the present-day dried out Sistan Depression with small ephemeral playa lakes. Episodic formation of terraces, deltas, and paleolake shorelines is attributed to changes in base level modulated by climate change related to Milankovitch cycles.

  15. Miocene and Pliocene lacustrine and fluvial sequences, Upper Ramparts and Canyon village, Porcupine river, east-central Alaska

    USGS Publications Warehouse

    Fouch, T.D.; Carter, L.D.; Kunk, Michael J.; Smith, C.A.S.; White, J.M.

    1994-01-01

    Cenozoic strata exposed along the Porcupine River between the Upper Ramparts and Canyon Village, Alaska, can be divided into five unconformity-bounded units (sequences) which are: lower and middle Miocene unit A, the white sandy fluvial sequence with peat beds; middle Miocene unit B, the basalt sequence-part B1 is basalt, and part B2 is organic-rich sedimentary beds; upper Miocene unit C, mudrock-dominated lake sequence; late Miocene or Pliocene to Pleistocene unit D, terrace gravels, detrital organic matter and associated sediments, and Holocene unit E, mixed sand and gravel-rich sediment and other sedimentary material including peat and eolian silt. The sequence (unit A) of lower and middle Miocene fluvial deposits formed in streams and on flood plains, just before the inception of local volanism. Fossil pollen from unit A suggests conifer-dominated regional forests and cool temperate climates. Peat beds and lake deposits from unit B contain pollen that indicates a warmer temperate climate coinciding with the middle Miocene thermal maximum. The lake deposits (unit C) downstream from the basalts accumulated in a small basin which resulted from a hydrologic system that was dammed in the late Miocene but breached soon thereafter. The lower part of the terrace gravels (unit D) expresses breaching of the dammed hydrologic system (of unit C). The Porcupine River became a major tributary of the Yukon River in late Pleistocene time when Laurentide ice blocked drainage from the Yukon interior basins causing meltwater to spill over the low divide separating it from the Porcupine River drainage initiating erosion and capture of the Yukon interior basins. ?? 1994.

  16. Episodes of fluvial and volcanic activity in Mangala Valles, Mars

    PubMed Central

    Keske, Amber L.; Hamilton, Christopher W.; McEwen, Alfred S.; Daubar, Ingrid J.

    2017-01-01

    A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ~1 Ga, (2) emplacement of Tharsis lava flows in the valley from ~700 to 1000 Ma, (3) a megaflooding event at ~700–800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ~400–500 Ma, (5) another megaflooding event from ~400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ~300–350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ~300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars. PMID:29176911

  17. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    NASA Astrophysics Data System (ADS)

    Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.

    2014-11-01

    Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (<50 years) despite drainage. Boreal and temperate fens and raised bogs in Finland and the Czech Republic showed intermediate sensitivity. We attribute observed differences to physical and climatic differences between peatlands, in particular, hydraulic conductivity and temperature, as well as the extent of disturbance associated with drainage, notably land use changes in the tropics. Data from the UK Peak District, an area where air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.

  18. Sometimes processes don't matter: the general effect of short term climate variability on erosional systems.

    NASA Astrophysics Data System (ADS)

    Deal, Eric; Braun, Jean

    2017-04-01

    Climatic forcing undoubtedly plays an important role in shaping the Earth's surface. However, precisely how climate affects erosion rates, landscape morphology and the sedimentary record is highly debated. Recently there has been a focus on the influence of short-term variability in rainfall and river discharge on the relationship between climate and erosion rates. Here, we present a simple probabilistic argument, backed by modelling, that demonstrates that the way the Earth's surface responds to short-term climatic forcing variability is primarily determined by the existence and magnitude of erosional thresholds. We find that it is the ratio between the threshold magnitude and the mean magnitude of climatic forcing that determines whether variability matters or not and in which way. This is a fundamental result that applies regardless of the nature of the erosional process. This means, for example, that we can understand the role that discharge variability plays in determining fluvial erosion efficiency despite doubts about the processes involved in fluvial erosion. We can use this finding to reproduce the main conclusions of previous studies on the role of discharge variability in determining long-term fluvial erosion efficiency. Many aspects of the landscape known to influence discharge variability are affected by human activity, such as land use and river damming. Another important control on discharge variability, rainfall intensity, is also expected to increase with warmer temperatures. Among many other implications, our findings help provide a general framework to understand and predict the response of the Earth's surface to changes in mean and variability of rainfall and river discharge associated with the anthropogenic activity. In addition, the process independent nature of our findings suggest that previous work on river discharge variability and erosion thresholds can be applied to other erosional systems.

  19. Channel morphology and bed-load yield in fluvial, formerly-glaciated headwater streams of the Columbia Mountains, Canada

    NASA Astrophysics Data System (ADS)

    Green, K. C.; Brardinoni, F.; Alila, Y.

    2013-04-01

    This study examines channel-reach morphology and bedload yield dynamics in relation to landscape structure and snowmelt hydrology in headwater streams of the Columbia Mountains, Canada. Data collection relies on field surveys and geographic information systems analysis in conjunction with a nested monitoring network of water discharge and bedload transfer. The landscape is characterized by subdued, formerly-glaciated upland topography in which the geomorphic significance of landslides and debris flows is negligible and fluvial processes prevail. While the spatial organization of channel morphology is chiefly controlled by glacially imposed local slope in conjunction with wood abundance and availability of glacigenic deposits, downstream patterns of the coarse grain-size fraction, bankfull width, bankfull depth, and stream power are all insensitive to systematic changes of local slope along the typically stepped long profiles. This is an indication that these alluvial systems have adjusted to the contemporary snowmelt-driven water and sediment transport regimes, and as such are able to compensate for the glacially-imposed boundary conditions. Bedload specific yield increases with drainage area suggesting that fluvial re-mobilization of glacial and paraglacial deposits dominate the sedimentary dynamics of basins as small as 2 km2. Stepwise multiple regression analysis shows that annual rates of sediment transfer are mainly controlled by the number of peak events over threshold discharge. During such events, repeated destabilization of channel bed armoring and re-mobilization of sediment temporarily stored behind LWD structures can generate bedload transport across the entire snowmelt season. In particular, channel morphology controls the variability of bedload response to hydrologic forcing. In the present case studies, we show that the observed spatial variability in annual bedload yield appears to be modulated by inter-basin differences in morphometric characteristics, among which slope aspect plays a critical part.

  20. Integrating Fluvial and Oceanic Drivers in Operational Flooding Forecasts for San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Herdman, Liv; Erikson, Li; Barnard, Patrick; Kim, Jungho; Cifelli, Rob; Johnson, Lynn

    2016-04-01

    The nine counties that make up the San Francisco Bay area are home to 7.5 million people and these communties are susceptible to flooding along the bay shoreline and inland creeks that drain to the bay. A forecast model that integrates fluvial and oceanic drivers is necessary for predicting flooding in this complex urban environment. The U.S. Geological Survey ( USGS) and National Weather Service (NWS) are developing a state-of-the-art flooding forecast model for the San Francisco Bay area that will predict watershed and ocean-based flooding up to 72 hours in advance of an approaching storm. The model framework for flood forecasts is based on the USGS-developed Coastal Storm Modeling System (CoSMoS) that was applied to San Francisco Bay under the Our Coast Our Future project. For this application, we utilize Delft3D-FM, a hydrodynamic model based on a flexible mesh grid, to calculate water levels that account for tidal forcing, seasonal water level anomalies, surge and in-Bay generated wind waves from the wind and pressure fields of a NWS forecast model, and tributary discharges from the Research Distributed Hydrologic Model (RDHM), developed by the NWS Office of Hydrologic Development. The flooding extent is determined by overlaying the resulting water levels onto a recently completed 2-m digital elevation model of the study area which best resolves the extensive levee and tidal marsh systems in the region. Here we present initial pilot results of hindcast winter storms in January 2010 and December 2012, where the flooding is driven by oceanic and fluvial factors respectively. We also demonstrate the feasibility of predicting flooding on an operational time scale that incorporates both atmospheric and hydrologic forcings.

  1. Life in the fluvial hinterland of the late Sarmatian Sea (middle Miocene): a rare terrestrial fossil site in the Styrian Basin (Austria)

    NASA Astrophysics Data System (ADS)

    Doubrawa, Monika; Gross, Martin; Harzhauser, Mathias

    2018-02-01

    This paper describes the section and fossil content of a former gravel pit in the Eastern Styrian Basin (SE Austria), which exposes sediments of a fluvial system, ranging from within channel to overbank environments. A predominately terrestrial gastropod fauna of 15 species so far, was recovered from a palaeosol formed in a moist and vegetated, floodplain or abandoned channel. Up-section, a shallow freshwater pond/lake developed within the floodplain, settled by fishes, molluscs and ostracods. By integrating regional geological and biostratigraphical data derived from the terrestrial gastropod fauna as well as from the other recovered biota, these strata are of late middle Miocene (late Sarmatian s.str.) age. Hence, this fossil site provides a rare insight into the terrestrial habitats in the hinterland of the Sarmatian Sea and their biota, which are otherwise barely known in Central Europe.

  2. Exploring the Cloud Icy Early Mars Hypothesis Through Geochemistry and Mineralogy

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Michalski, J. R.

    2015-01-01

    While ancient fluvial channels have long been considered strong evidence for early surface water on Mars, many aspects of the fluvial morphology and occurrence suggest that they formed in relatively water limited conditions (com-pared to Earth) and that climatic excursions allowing for surface water might have been short-lived. Updated results mapping valley networks at higher resolution have changed this paradigm, showing that channels are much more abundant and wide-spread, and of higher order than was previously recognized, suggesting that Mars had a dense enough atmosphere and warm enough climate to allow channel formation up to 3.6-3.8 Ga. This revised view of the ancient martian climate might be broadly consistent with a climate history of Mars devised from infrared remote sensing of surface minerals, suggesting that widespread clay minerals formed in the Noachian, giving way to a sulfur-dominated surface weathering system by approx. 3.7 Ga.

  3. African humid periods triggered the reactivation of a large river system in Western Sahara.

    PubMed

    Skonieczny, C; Paillou, P; Bory, A; Bayon, G; Biscara, L; Crosta, X; Eynaud, F; Malaizé, B; Revel, M; Aleman, N; Barusseau, J-P; Vernet, R; Lopez, S; Grousset, F

    2015-11-10

    The Sahara experienced several humid episodes during the late Quaternary, associated with the development of vast fluvial networks and enhanced freshwater delivery to the surrounding ocean margins. In particular, marine sediment records off Western Sahara indicate deposition of river-borne material at those times, implying sustained fluvial discharges along the West African margin. Today, however, no major river exists in this area; therefore, the origin of these sediments remains unclear. Here, using orbital radar satellite imagery, we present geomorphological data that reveal the existence of a large buried paleodrainage network on the Mauritanian coast. On the basis of evidence from the literature, we propose that reactivation of this major paleoriver during past humid periods contributed to the delivery of sediments to the Tropical Atlantic margin. This finding provides new insights for the interpretation of terrigenous sediment records off Western Africa, with important implications for our understanding of the paleohydrological history of the Sahara.

  4. Gradational evolution of young, simple impact craters on the Earth

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    From these three craters, a first order gradational evolutionary sequence can be proposed. As crater rims are reduced by backwasting and downwasting through fluvial and mass wasting processes, craters are enlarged by approx. 10 pct. Enlargement of drainages inside the crater eventually forms rim breaches, thereby capturing headward portions of exterior drainages. At the same time, the relative importance of gradational processes may reverse on the ejecta: aeolian activity may supersede fluvial incisement and fan formation at late stages of modification. Despite actual high drainage densities on the crater exterior during early stages of gradation, the subtle scale of these systems results in low density estimates from air photos and satellite images. Because signatures developed on surfaces around all three craters appear to be mostly gradient dependent, they may not be unique to simple crater morphologies. Similar signatures may develop on portions of complex craters as well; however, important differences may also occur.

  5. Identification and evaluation of fluvial-dominated deltaic (class 1 oil) reservoirs in Oklahoma. Quarterly technical progress report, April 1, 1994--June 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankin, C.J.; Banken, M.K.

    The Oklahoma Geological Survey (OGS), the Geological Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaging in a program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes the systematic and comprehensive collection and evaluation of information on all of Oklahoma`s FDD reservoirs and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. This data collection and evaluation effort will be the foundation for an aggressive, multifaceted technology transfer program that is designed to support all ofmore » Oklahoma`s oil industry, with particular emphasis on smaller companies and independent operators in their attempts to maximize the economic producibility of FDD reservoirs.« less

  6. Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments

    NASA Astrophysics Data System (ADS)

    Phillips, J. M.; Russell, M. A.; Walling, D. E.

    2000-10-01

    Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.

  7. The Modification of Mars Fluvial Surfaces

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Zimbelman, J. R.; Finnegan, D.; Banerdt, B.

    2001-01-01

    The identification of fluvial deposits on Mars is impaired by modifying geological processes. An analysis of surface patterns of superimposed dunes and channels in paleoflood environments in Washington State and Australia can yield information on buried surfaces. Additional information is contained in the original extended abstract.

  8. Volcanic or Fluvial Channels on Ascraeus Mons: Focus on the Source Area of Sinuous Channels on the Southeast Rift Apron

    NASA Astrophysics Data System (ADS)

    Signorella, J. D.; de Wet, A. P.; Bleacher, J. E.; Collins, A.; Schierl, Z. P.; Schwans, B.

    2012-03-01

    This study focuses on the source area of sinuous channels on the southeast rift apron on Ascraeus Mons, Mars and attempts to understand whether the channels were formed through volcanic or fluvial processes.

  9. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    NASA Astrophysics Data System (ADS)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  10. New age constraints on the palaeoenvironmental evolution of the late Paleozoic back-arc basin along the western Gondwana margin of southern Peru

    NASA Astrophysics Data System (ADS)

    Boekhout, F.; Reitsma, M. J.; Spikings, R.; Rodriguez, R.; Ulianov, A.; Gerdes, A.; Schaltegger, U.

    2018-03-01

    The tectonic evolution of the western Gondwana margin during Pangaea amalgation is recorded in variations in the Permo-Carboniferous back-arc basin sedimentation of Peru. This study provides the first radiometric age constraints on the volcanic and sedimentary sequences of south-central eastern Peru up to the western-most tip of Bolivia, and now permits the correlation of lateral facies variations to the late Paleozoic pre-Andean orogenic cycle. The two phases of Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma are reflected in two major changes in this sedimentary environment. Our detrital U-Pb zircon ages demonstrate that the timing of Ambo Formation deposition corroborates the Late Mississipian age estimates. The transition from the Ambo to the Tarma Formation around the Middle Pennsylvanian Early Gondwanide Orogeny (c. 315 Ma) represents a relative deepening of the basin. Throughout the shallow marine deposits of the Tarma Formation evidence for contemporaneous volcanism becomes gradually more pronounced and culminates around 312 - 309 Ma. Continuous basin subsidence resulted in a buildup of platform carbonates of the Copacabana Formation. Our data highlights the presence of a previously unrecognized phase of deposition of mainly fluvial sandstones and localized volcanism (281-270 Ma), which we named ´Oqoruro Formation'. This sedimentary succession was previously miss-assigned to the so-called Mitu Group, which has recently been dated to start deposition in the Middle Triassic (∼245-240 Ma). The emersion of this marine basin coincides with the onset of a major plutonic pulse related to the Late Gondwanide Orogeny (c. 260). Exhumation lead to the consequent retreat of the epeiric sea to the present-day sub-Andean region, and the coeval accumulation of the fluvial Oqoruro Formation in south eastern Peru. These late Paleozoic palaeoenvironmental changes in the back-arc basins along the western Gondwana margin of southern reflect changes in tectonic plate reorganization in a long-lived Paleozoic accretionary orogeny.

  11. Stratigraphic variation in petrographic composition of Nanushuk Group sandstones at Slope Mountain, North Slope, Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Johnsson, Mark J.; Sokol, Nikolas K.

    2000-01-01

    Fluvial, deltaic, and marine sediments of the Nanushuk Group (Albian to Cenomanian), North Slope, Alaska, record Early Cretaceous orogenic events in the Brooks Range to the south. The 1,060-m section at Slope Mountain is part of the Lower Cretaceous Umiat Delta, shed from the Endicott and De Long Mountains subterranes in the central Brooks Range. These sandstones are litharenites dominated by metasedimentary lithic fragments. Subtle and previously unrecognized stratigraphic variations in composition (up-section increases in metasedimentary lithic fragments, volcanic lithic fragments, and quartz interpreted to be of metamorphic origin) reflect a combination of facies migration and changes in provenance associated with unroofing of the ancestral Brooks Range. We recognize stratigraphic variation in sandstone composition at Slope Mountain whereas previous workers have not, probably because of our use of finely subdivided point-counting categories. The source of the volcanic lithic fragments in the Nanushuk Group remains enigmatic; the most likely candidate is a now-eroded volcanic arc, perhaps a volcanic superstructure to granitic rocks of the Ruby terrane to the south.

  12. Modeling River Incision Across Active Normal Faults Using the Channel-Hillslope Integrated Landscape Development Model (CHILD): the case of the Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G.; Whittaker, A.; Cowie, P.; Roberts, G.

    2005-12-01

    River systems constitute some of the most efficient agents that shape terrestrial landscapes. Fluvial incision rates govern landscape evolution but, due to the variety of processed involved and the difficulty of quantifying them in the field, there is no "universal theory" describing the way rivers incise into bedrock. The last decades have seen the birth of numerous fluvial incision laws associated with models that assign different roles to hydrodynamic variables and to sediments. In order to discriminate between models and constrain their parameters, the transient response of natural river systems to a disturbance (tectonic or climatic) can be used. Indeed, the different models predict different kinds of transient response whereas most models predict a similar power law relationship between slope and drainage area at equilibrium. To this end, a coupled field - modeling study is in progress. The field area consists of the Central Apennines that are subject to active faulting associated with a regional extensional regime. Fault initiation occurred 3 My ago, associated with throw rates of 0.3 +/- 0.2 mm/yr. Due to fault interaction and linkage, the throw rate on the faults located near the center of the fault system increased dramatically 0.7 My ago (up to 2 mm/yr), whereas slip rates on distal faults either decayed or remained approximately constant. The present study uses the landscape evolution model, CHILD, to examine the behavior of rivers draining across these active faults. Distal and central faults are considered in order to track the effects of the fault acceleration on the development of the fluvial network. River characteristics have been measured in the field (e.g. channel width, slope, sediment grain size) and extracted from a 20m DEM (e.g. channel profile, drainage area). We use CHILD to test the ability of alternative incision laws to reproduce observed topography under known tectonic forcing. For each of the fluvial incision models, a Monte-Carlo simulation has been performed, allowing the exploration of a wide range of values for the different parameters relative to tectonic, climate, sediment characteristics, and channel geometry. Observed profiles are consistent with a dominantly wave-like, as opposed to diffusive, transient response to accelerated fault motion. The ability of the different models to reproduce more or less accurately the catchment characteristics, in particular the specific profiles exhibited by the rivers, are discussed in light of our first results.

  13. Experimental investigation of fluvial dike breaching due to flow overtopping

    NASA Astrophysics Data System (ADS)

    El Kadi Abderrezzak, K.; Rifai, I.; Erpicum, S.; Archambeau, P.; Violeau, D.; Pirotton, M.; Dewals, B.

    2017-12-01

    The failure of fluvial dikes (levees) often leads to devastating floods that cause loss of life and damages to public infrastructure. Overtopping flows have been recognized as one of the most frequent cause of dike erosion and breaching. Fluvial dike breaching is different from frontal dike (embankments) breaching, because of specific geometry and boundary conditions. The current knowledge on the physical processes underpinning fluvial dike failure due to overtopping remains limited. In addition, there is a lack of a continuous monitoring of the 3D breach formation, limiting the analysis of the key mechanisms governing the breach development and the validation of conceptual or physically-based models. Laboratory tests on breach growth in homogeneous, non-cohesive sandy fluvial dikes due to flow overtopping have been performed. Two experimental setups have been constructed, permitting the investigation of various hydraulic and geometric parameters. Each experimental setup includes a main channel, separated from a floodplain by a dike. A rectangular initial notch is cut in the crest to initiate dike breaching. The breach development is monitored continuously using a specific developed laser profilometry technique. The observations have shown that the breach develops in two stages: first the breach deepens and widens with the breach centerline being gradually shifted toward the downstream side of the main channel. This behavior underlines the influence of the flow momentum component parallel to the dike crest. Second, the dike geometry upstream of the breach stops evolving and the breach widening continues only toward the downstream side of the main channel. The breach evolution has been found strongly affected by the flow conditions (i.e. inflow discharge in the main channel, downstream boundary condition) and floodplain confinement. The findings of this work shed light on key mechanisms of fluvial dike breaching, which differ substantially from those of dam breaching. These specific features need to be incorporated in flood risk analyses involving fluvial dike breach and failure. In addition, a well-documented, reliable data set, with a continuous high resolution monitoring of the 3D breach evolution under various flow conditions, has been gathered, which can be used for validating numerical models.

  14. Knickpoint formation and retreat: stairway to heaven or pathway to declivity

    NASA Astrophysics Data System (ADS)

    Rengers, Francis; Tucker, Gregory

    2016-04-01

    The importance of knickpoints in shaping fluvial systems has been observed in laboratory settings, small experimental plots, and at the landscape scale. By creating a step in a river's longitudinal profile, knickpoints can shield upstream tributaries from a much lower base level, and therefore represent a buffer in the energy transfer of a stream system. Knickpoints are located at a transition point between the potential energy of material stored upstream and the kinetic energy of erosion processes and sediment transport below the knickpoint. We hypothesize that the long-term persistence of a discrete, retreating knickpoint requires a balance between the fluvial erosion of the feature, and sedimentation rates downstream. Here we present the results of a short-term (four year) study of knickpoint morphology in a natural gully system to better constrain the conditions necessary to preserve distinct knickpoints over time. We monitored knickpoint erosion using time-lapse photography, repeat terrestrial lidar, soil moisture monitoring, and rainfall-runoff measurements. Our results indicate that shallow subsurface hydrology leads to knickpoint erosion via mass failure, and produces a stable and predictable morphological signature of knickpoint erosion (amphitheater shaped heads). We generalized these observations into a numerical model of erosion/sedimentation to understand the geomorphic legacy of knickpoints in deeply incised gullies. Modeling showed that knickpoints can maintain an incisional step for hundreds to thousands of years when knickpoints retreat via mass failure and sediment is removed from the knickpoint base by fluvial scour. To test simulations of long-term stability generated by the numerical model, we used Optically Stimulated Luminesence to date alluvial deposits at existing gully knickpoints. This geochronological dating confirmed that gully knickpoints have been active in our study area for hundreds to thousands of years, particularly during drought periods. Therefore, numerical modeling and field data support our hypothesis that knickpoint preservation during upstream retreat represents a delicate balance between erosion and sediment transport, and given ideal conditions, a steep knickpoint may persist in long-term dynamic equilibrium.

  15. Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly-Matla estuarine system, India.

    PubMed

    Ghosh, Somdeep; Bakshi, Madhurima; Kumar, Alok; Ramanathan, A L; Biswas, Jayanta Kumar; Bhattacharyya, Subarna; Chaudhuri, Punarbasu; Shaheen, Sabry M; Rinklebe, Jörg

    2018-05-09

    Hooghly-Matla estuarine system along with the Sundarbans mangroves forms one of the most diverse and vulnerable ecosystems in the world. We have investigated the distribution of Co, Cr, Cu, Fe and Zn along with sediment properties at six locations [Shamshernagar (S1), Kumirmari (S2 and S3), Petuaghat (S4), Tapoban (S5) and Chemaguri (S6)] in the Hooghly estuary and reclaimed islands of the Sundarbans for assessing the degree of contamination and potential ecological risks. Enrichment factor values (0.9-21.6) show enrichment of Co, Cu and Zn in the intertidal sediments considering all sampling locations and depth profiles. Geo-accumulation index values irrespective of sampling locations and depth revealed that Co and Cu are under class II and class III level indicating a moderate contamination of sediments. The pollution load index was higher than unity (1.6-2.1), and Co and Cu were the major contributors to the sediment pollution followed by Zn, Cr and Fe with the minimum values at S1 and the maximum values at S5. The sediments of the Hooghly-Matla estuarine region (S4, S5 and S6) showed considerable ecological risks, when compared with effect range low/effect range median and threshold effect level/probable effect level values. The variation in the distribution of the studied elements may be due to variation in discharge pattern and exposure to industrial effluent and domestic sewage, storm water and agricultural run-off and fluvial dynamics of the region. The study illuminates the necessity for the proper management of vulnerable coastal estuarine ecosystem by stringent pollution control measures along with regular monitoring and checking program.

  16. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.G.; Hohn, M.E.; Aminian, K.

    1993-04-01

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less

  17. Measuring and predicting reservoir heterogeneity in complex deposystems: The fluvial-deltaic Big Injun sandstone in West Virginia. Annual report, September 20, 1991--September 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchen, D.G.; Hohn, M.E.; Aminian, K.

    1993-04-01

    The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less

  18. Nitrogen distribution in a tropical urbanized estuarine system in northeastern Brazil.

    PubMed

    Dos Santos, Celimarcos Bezerra; Silva, Maria Aparecida Macêdo; de Souza, Marcelo F Landim; da Silva, Daniela Mariano Lopes

    2018-01-08

    Nitrogen enters estuaries mostly through fluvial discharge and tide, although anthropogenic sources are known to influence the amount of this element in these aquatic ecosystems. Thus, the objective of this work was to verify which river (Cachoeira, Fundão, and/or Santana) exerts greater influence on the distribution of dissolved N forms (Dissolved Organic Nitrogen and Dissolved Inorganic Nitrogen = NH 3 /NH 4 + , NO 2 - , and NO 3 - ) along a tropical urbanized estuarine system in northeastern Brazil. The studies estuarine system lies with in urban municipality, and the upper portion of the Cachoeira river estuary receives the treated effluent from this municipality through a sewage treatment station and untreated effluents from nearby villages. The selected sampling stations were located near the outfall of the rivers in the estuaries to the treatment plant and the villages. Of all the nitrogen forms, dissolved organic nitrogen (DON) prevailed in the estuarine system, followed by nitrate (NO 3 - ) as the main inorganic form. The highest concentrations were recorded in the fluvial portion and upper estuary of Cachoeira river in the dry season. Based on the N concentrations found in the estuarine system, Cachoeira river has the greatest anthropogenic influence due to the amount of untreated effluents from the villages and treated effluents from the sewage treatment plant (STP) in the upper portion of the estuary.

  19. Excursions in fluvial (dis)continuity

    Treesearch

    Gordon E. Grant; Jim E. O' Connor; Elizabeth Safran

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in someways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in...

  20. A Field Exercise in Fluvial Sediment Transport.

    ERIC Educational Resources Information Center

    Tharp, Thomas M.

    1983-01-01

    Describes an investigation which introduces the mathematical principles of stream hydraulics and fluvial sediment in a practical context. The investigation has four stages: defining hydrology of the stream; defining channel hydraulics in a study reach; measuring grain size; and calculating transportable grain size and comparing measure stream-bed…

Top