Science.gov

Sample records for flux cancellation model

  1. REGULAR VERSUS DIFFUSIVE PHOTOSPHERIC FLUX CANCELLATION

    SciTech Connect

    Litvinenko, Yuri E.

    2011-04-20

    Observations of photospheric flux cancellation on the Sun imply that cancellation can be a diffusive rather than regular process. A criterion is derived, which quantifies the parameter range in which diffusive photospheric cancellation should occur. Numerical estimates show that regular cancellation models should be expected to give a quantitatively accurate description of photospheric cancellation. The estimates rely on a recently suggested scaling for a turbulent magnetic diffusivity, which is consistent with the diffusivity measurements on spatial scales varying by almost two orders of magnitude. Application of the turbulent diffusivity to large-scale dispersal of the photospheric magnetic flux is discussed.

  2. Magnetic Flux Cancellation and Formation of Prominence

    NASA Astrophysics Data System (ADS)

    Miley, George; Kim, Mun Song; Chon Nam, Sok; Kim, Kyong Chol

    2015-08-01

    Magnetic flux cancellation appears to be closely related to various kinds of solar activities such as flares, microflares/surges/jets, X-ray bright points, erupting mini-filaments, transition region explosive events, filament formation, filament activation and eruption, and coronal mass ejections. It is commonly believed that magnetic reconnections in the low atmosphere are responsible for canceling magnetic features, and magnetic fragments are observed to originate as bipoles. According to the Sweet-Parker type reconnection model, the inflow speed closely corresponds to the converging speed of each pole in a canceling magnetic feature and the rate of flux cancellation must be explained by the observed converging speed. As distinct from the corona, the efficiency of photospheric magnetic reconnection may be due to the small Cowling conductivity, instead of the Spitzer, of weakly ionized and magnetized plasma in the low atmosphere of the sun. Using the VAL-C atmospheric model and Cowling conductivity, we have computed the parameters describing Sweet-Parker type reconnecting current sheets in the plasma of the solar photosphere and chromosphere, and particularly for the phenomena of magnetic flux cancellation and dark filament formation which occurred on July 2, 1994 we have estimated the rate of flux cancellation, the inflow speed(the converging speed) and the upward mass flux to compare with the observation. The results show that when taking account of the Cowling conductivity in the low atmosphere, large flux cancellation rates(>1019Mxhr-1) in solar active regions are better explained than by the Spitzer conductivity-considered reconnection model. Particularly for the flux cancellation event on July 2, 1994, the inflow speed(0.26kms-1)is almost similar to the converging speed(0.22kms-1)and the upward mass flux(3.3X1012gs-1) in the model is sufficient for the large dark filament formation in a time of several hours through magnetic flux cancellation process.

  3. Flux-canceling electrodynamic maglev suspension. Part 1: Test fixture design and modeling

    SciTech Connect

    Thompson, M.T.; Thornton, R.D.; Kondoleon, A.

    1999-05-01

    The design and analysis of a scale-model suspension test facility for magnetic levitation (maglev) is discussed. The authors describe techniques for the design, construction, and testing of a prototype electrodynamic suspension (EDS) levitation system. The viability of future high-temperature superconducting magnet designs for maglev has been investigated with regard to their application to active secondary suspensions. In order to test the viability of a new flux-canceling EDS suspension, a 1/5-scale suspension magnet and guideway was constructed. The suspension was tested by using a high-speed rotating test wheel facility with linear peripheral speed of up to 84 m/s (300 km/h). A set of approximate design tools and scaling laws has been developed in order to evaluate forces and critical velocities in the suspension.

  4. Magnetic flux cancellation and Doppler shifts in flaring active regions

    NASA Astrophysics Data System (ADS)

    Burtseva, Olga; Petrie, Gordon

    2016-05-01

    Flux cancellation plays an important role in some theories of solar eruptions. The mechanism of flux cancellation is suggested by many models to be a necessary condition of flare initiation as a part of slow reconnection processes in the lower atmosphere. In our earlier work we analyzed flux cancellation events during major flares using GONG line-of-sight magnetograms. In this work we use vector magnetic field data from SDO/HMI for better interpretation of the longitudinal field changes. We also compute Doppler velocity shifts at the cancellation sites in attempt to distinguish between the three physical processes that could stand behind flux removal from the photosphere: submergence of U-shaped loops, emergence of Ω-shaped loops and magnetic reconnection.

  5. 2D and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  6. 20 and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  7. Magnetic Flux Cancellation in Ellerman Bombs

    NASA Astrophysics Data System (ADS)

    Reid, A.; Mathioudakis, M.; Doyle, J. G.; Scullion, E.; Nelson, C. J.; Henriques, V.; Ray, T.

    2016-06-01

    Ellerman Bombs (EBs) are often found to be co-spatial with bipolar photospheric magnetic fields. We use Hα imaging spectroscopy along with Fe i 6302.5 Å spectropolarimetry from the Swedish 1 m Solar Telescope (SST), combined with data from the Solar Dynamic Observatory, to study EBs and the evolution of the local magnetic fields at EB locations. EBs are found via an EB detection and tracking algorithm. Using NICOLE inversions of the spectropolarimetric data, we find that, on average, (3.43 ± 0.49) × 1024 erg of stored magnetic energy disappears from the bipolar region during EB burning. The inversions also show flux cancellation rates of 1014-1015 Mx s-1 and temperature enhancements of 200 K at the detection footpoints. We investigate the near-simultaneous flaring of EBs due to co-temporal flux emergence from a sunspot, which shows a decrease in transverse velocity when interacting with an existing, stationary area of opposite polarity magnetic flux, resulting in the formation of the EBs. We also show that these EBs can be fueled further by additional, faster moving, negative magnetic flux regions.

  8. DETECTION OF FLUX EMERGENCE, SPLITTING, MERGING, AND CANCELLATION OF NETWORK FIELD. I. SPLITTING AND MERGING

    SciTech Connect

    Iida, Y.; Yokoyama, T.; Hagenaar, H. J.

    2012-06-20

    Frequencies of magnetic patch processes on the supergranule boundary, namely, flux emergence, splitting, merging, and cancellation, are investigated through automatic detection. We use a set of line-of-sight magnetograms taken by the Solar Optical Telescope (SOT) on board the Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hr and field of view is 112'' Multiplication-Sign 112''. The total numbers of magnetic processes are as follows: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. The total numbers of emergence and cancellation are significantly smaller than those of splitting and merging. Further, the frequency dependence of the merging and splitting processes on the flux content are investigated. Merging has a weak dependence on the flux content with a power-law index of only 0.28. The timescale for splitting is found to be independent of the parent flux content before splitting, which corresponds to {approx}33 minutes. It is also found that patches split into any flux contents with the same probability. This splitting has a power-law distribution of the flux content with an index of -2 as a time-independent solution. These results support that the frequency distribution of the flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely, surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.

  9. TRANSIENT BRIGHTENINGS ASSOCIATED WITH FLUX CANCELLATION ALONG A FILAMENT CHANNEL

    SciTech Connect

    Wang, Y.-M.; Muglach, K. E-mail: karin.muglach@nasa.gov

    2013-02-15

    Filament channels coincide with large-scale polarity inversion lines of the photospheric magnetic field, where flux cancellation continually takes place. High-cadence Solar Dynamics Observatory (SDO) images recorded in He II 30.4 nm and Fe IX 17.1 nm during 2010 August 22 reveal numerous transient brightenings occurring along the edge of a filament channel within a decaying active region, where SDO line-of-sight magnetograms show strong opposite-polarity flux in close contact. The brightenings are elongated along the direction of the filament channel, with linear extents of several arcseconds, and typically last a few minutes; they sometimes have the form of multiple two-sided ejections with speeds on the order of 100 km s{sup -1}. Remarkably, some of the brightenings rapidly develop into larger scale events, forming sheetlike structures that are eventually torn apart by the diverging flows in the filament channel and ejected in opposite directions. We interpret the brightenings as resulting from reconnections among filament-channel field lines having one footpoint located in the region of canceling flux. In some cases, the flow patterns that develop in the channel may bring successive horizontal loops together and cause a cascade to larger scales.

  10. Hypercharge Flux, Exotics, and Anomaly Cancellation in F-theory Grand Unification

    SciTech Connect

    Marsano, Joseph

    2011-02-25

    We sharpen constraints related to hypercharge flux in F-theory grand unified theories that possess U(1) symmetries and argue that they arise as a consequence of four-dimensional anomaly cancellation. This gives a physical explanation for all restrictions that were observed in spectral cover models while demonstrating that the phenomenological implications for a well-motivated set of models are not tied to any particular formalism.

  11. Comments on Magnetic Reconnection Models of Canceling Magnetic Features on the Sun

    NASA Astrophysics Data System (ADS)

    Litvinenko, Yuri E.

    2015-06-01

    Data analysis and theoretical arguments support magnetic reconnection in a chromospheric current sheet as the mechanism of the observed photospheric magnetic flux cancellation on the Sun. Flux pile-up reconnection in a Sweet-Parker current sheet can explain the observed properties of canceling mag-netic features, including the speeds of canceling magnetic fragments, the magnetic uxes in the fragments, and the flux cancellation rates, inferred from the data. It is discussed how more realistic chromospheric reconnection models can be developed by relaxing the assumptions of a negligible current sheet curvature and a constant height of the reconnection site above the photosphere.

  12. Flux Cancellation and the Evolution of the Eruptive Filament of 2011 June 7

    NASA Astrophysics Data System (ADS)

    Yardley, S. L.; Green, L. M.; Williams, D. R.; van Driel-Gesztelyi, L.; Valori, G.; Dacie, S.

    2016-08-01

    We investigate whether flux cancellation is responsible for the formation of a very massive filament resulting in the spectacular eruption on 2011 June 7. We analyze and quantify the amount of flux cancellation that occurs in NOAA AR 11226 and its two neighboring active regions (ARs 11227 & 11233) using line-of-sight magnetograms from the Heliospheric Magnetic Imager. During a 3.6 day period building up to the eruption of the filament, 1.7 × 1021 Mx, 21% of AR 11226's maximum magnetic flux, was canceled along the polarity inversion line (PIL) where the filament formed. If the flux cancellation continued at the same rate up until the eruption then up to 2.8 × 1021 Mx (34% of the AR flux) may have been built into the magnetic configuration that contains the filament plasma. The large flux cancellation rate is due to an unusual motion of the positive-polarity sunspot, which splits, with the largest section moving rapidly toward the PIL. This motion compresses the negative polarity and leads to the formation of an orphan penumbra where one end of the filament is rooted. Dense plasma threads above the orphan penumbra build into the filament, extending its length, and presumably injecting material into it. We conclude that the exceptionally strong flux cancellation in AR 11226 played a significant role in the formation of its unusually massive filament. In addition, the presence and coherent evolution of bald patches in the vector magnetic field along the PIL suggest that the magnetic field configuration supporting the filament material is that of a flux rope.

  13. Two Types of Magnetic Flux Cancellation in the Solar Eruption of 2007 May 20

    NASA Technical Reports Server (NTRS)

    Sterlin, Alphonse C.; Moore, Ronald L.; Mason, Helen

    2010-01-01

    We study a solar eruption of 2007 May 20, in an effort to understand the cause of the eruption's onset. The event produced a GOES class B6.7 flare peaking at 05:56 UT, while ejecting a surge/filament and producing a coronal mass ejection (CME). We examine several data sets, including H-alpha images from the Solar Optical Telescope (SOT) on Hinode, EUV images from TRACE, and line-of-sight magnetograms from SOHO/MDI. Flux cancelation occurs among two different sets of flux elements inside of the erupting active region: First, for several days prior to eruption, opposite-polarity sunspot groups inside the region move toward each other, leading to the cancelation of approximately 10^{21} Mx of flux over three days. Second, within hours prior to the eruption, positive-polarity moving magnetic features (MMFs) flowing out of the positive-flux spots at approximately 1 kilometer per second repeatedly cancel with field inside a patch of negative-polarity flux located north of the sunspots. The filament erupts as a surge whose base is rooted in the location where the MMF cancelation occurs, while during the eruption that filament flows out along the polarity inversion line between the converging spot groups. We conclude that a plausible scenario is that the converging spot fields brought the magnetic region to the brink of instability, and the MMF cancelation pushed the system "over the edge." triggering the eruption.

  14. BUILDUP OF MAGNETIC SHEAR AND FREE ENERGY DURING FLUX EMERGENCE AND CANCELLATION

    SciTech Connect

    Fang Fang; Manchester, Ward IV; Van der Holst, Bart; Abbett, William P.

    2012-07-20

    We examine a simulation of flux emergence and cancellation, which shows a complex sequence of processes that accumulate free magnetic energy in the solar corona essential for the eruptive events such as coronal mass ejections, filament eruptions, and flares. The flow velocity at the surface and in the corona shows a consistent shearing pattern along the polarity inversion line (PIL), which together with the rotation of the magnetic polarities, builds up the magnetic shear. Tether-cutting reconnection above the PIL then produces longer sheared magnetic field lines that extend higher into the corona, where a sigmoidal structure forms. Most significantly, reconnection and upward-energy-flux transfer are found to occur even as magnetic flux is submerging and appears to cancel at the photosphere. A comparison of the simulated coronal field with the corresponding coronal potential field graphically shows the development of non-potential fields during the emergence of the magnetic flux and formation of sunspots.

  15. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  16. Chiral fermions and anomaly cancellation on orbifolds with Wilson lines and flux

    NASA Astrophysics Data System (ADS)

    Buchmuller, Wilfried; Dierigl, Markus; Ruehle, Fabian; Schweizer, Julian

    2015-11-01

    We consider six-dimensional supergravity compactified on orbifolds with Wilson lines and bulk flux. Torus Wilson lines are decomposed into Wilson lines around the orbifold fixed points, and twisted boundary conditions of matter fields are related to fractional localized flux. Both, orbifold singularities and flux lead to chiral fermions in four dimensions. We show that in addition to the standard bulk and fixed point anomalies the Green-Schwarz term also cancels the four-dimensional anomaly induced by the flux background. The two axions contained in the antisymmetric tensor field both contribute to the cancellation of the four-dimensional anomaly and the generation of a vector boson mass via the Stueckelberg mechanism. An orthogonal linear combination of the axions remains massless and couples to the gauge field in the standard way. Furthermore, we construct convenient expressions for the wave functions of the zero modes and relate their multiplicity and behavior at the fixed points to the bulk flux quanta and the Wilson lines.

  17. Helioseismic Holography and a Study of the Process of Magnetic Flux Disappearance in Canceling Bipoles

    NASA Technical Reports Server (NTRS)

    Lindsey, Charles; Harvey, Karen L.; Braun, D.; Jones, H. P.; Penn, M.; Hassler, D.

    2001-01-01

    Project 1: We have developed and applied a technique of helioseismic holography along the lines of originally set out in our proposal. The result of the application of this diagnostic technique to solar activity and the quiet Sun has produced a number of important discoveries: (1) acoustic moats surrounding sunspots; (2) acoustic glories surround large active regions; (3) acoustic condensations beneath active regions; and (4) temporally-resolve acoustic images of a solar flare. These results have been published in a series of papers in the Astrophysical Journal. We think that helioseismic holography is now established as the most powerful and discriminating diagnostic in local helioseismology. Project 2: We conducted a collaborative observational program to define the physical character and magnetic geometry of canceling magnetic bipoles aimed at determining if the cancellation process is the result of submergence of magnetic fields. This assessment is based on ground-based observations combining photospheric and chromospheric magnetograms from NSO/KP, BBSO, and SOHO-MDI, and EUV and X-ray images from SOHO EIT/CDS, Yohkoh/SXT, and TRACE. Our study involves the analysis of data taken during three observing campaigns to define the height structure of canceling bipoles inferred from magnetic field and intensity images, and how this varies with time. We find that some canceling bipoles can be explained by the submerge of their magnetic flux. A paper on the results of this analysis will be presented at an upcoming scientific meeting and be written up for publication.

  18. UNRESOLVED MIXED POLARITY MAGNETIC FIELDS AT FLUX CANCELLATION SITE IN SOLAR PHOTOSPHERE AT 0.''3 SPATIAL RESOLUTION

    SciTech Connect

    Kubo, Masahito; Low, Boon Chye; Lites, Bruce W

    2014-09-20

    This is a follow-up investigation of a magnetic flux cancellation event at a polarity inversion line (PIL) on the Sun observed with the spectropolarimeter on board Hinode. Anomalous circular polarization (Stokes V) profiles are observed in the photosphere along the PIL at the cancellation sites. Kubo et al. previously reported that the theoretically expected horizontal fields between the canceling opposite-polarity magnetic elements in this event are not detected at granular scales. We show that the observed anomalous Stokes V profiles are reproduced successfully by adding the nearly symmetric Stokes V profiles observed at pixels immediately adjacent to the PIL. This result suggests that these observed anomalous Stokes V profiles are not indications of a flux removal process, but are the result of either a mixture of unresolved, opposite-polarity magnetic elements or the unresolved width of the PIL, at an estimated resolution element of about 0.''3. The hitherto undetected flux removal process accounting for the larger-scale disappearance of magnetic flux during the observing period is likely to also fall below resolution.

  19. Modeling Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Xia, Chun; Keppens, Rony

    2014-01-01

    The magnetic configuration hosting prominences can be a large-scale helical magnetic flux rope. As a necessary step towards future prominence formation studies, we report on a stepwise approach to study flux rope formation. We start with summarizing our recent three-dimensional (3D) isothermal magnetohydrodynamic (MHD) simulation where a flux rope is formed, including gas pressure and gravity. This starts from a static corona with a linear force-free bipolar magnetic field, altered by lower boundary vortex flows around the main polarities and converging flows towards the polarity inversion. The latter flows induce magnetic reconnection and this forms successive new helical loops so that a complete flux rope grows and ascends. After stopping the driving flows, the system relaxes to a stable helical magnetic flux rope configuration embedded in an overlying arcade. Starting from this relaxed isothermal endstate, we next perform a thermodynamic MHD simulation with a chromospheric layer inserted at the bottom. As a result of a properly parametrized coronal heating, and due to radiative cooling and anisotropic thermal conduction, the system further relaxes to an equilibrium where the flux rope and the arcade develop a fully realistic thermal structure. This paves the way to future simulations for 3D prominence formation.

  20. Maximizing Adaptivity in Hierarchical Topological Models Using Cancellation Trees

    SciTech Connect

    Bremer, P; Pascucci, V; Hamann, B

    2008-12-08

    We present a highly adaptive hierarchical representation of the topology of functions defined over two-manifold domains. Guided by the theory of Morse-Smale complexes, we encode dependencies between cancellations of critical points using two independent structures: a traditional mesh hierarchy to store connectivity information and a new structure called cancellation trees to encode the configuration of critical points. Cancellation trees provide a powerful method to increase adaptivity while using a simple, easy-to-implement data structure. The resulting hierarchy is significantly more flexible than the one previously reported. In particular, the resulting hierarchy is guaranteed to be of logarithmic height.

  1. Combined Hinode, STEREO, and TRACE Observations of a Solar Filament Eruption: Evidence for Destabilization by Flux-Cancelation Tether Cutting

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, R. L.

    2007-01-01

    We present observations from Hinode, STEREO, and TRACE of a solar filament eruption and flare that occurred on 2007 March 2. Data from the two new satellites, combined with the TRACE observations, give us fresh insights into the eruption onset process. HINODE/XRT shows soft X-ray (SXR) activity beginning approximately 30 minutes prior to ignition of bright flare loops. STEREO andTRACE images show that the filament underwent relatively slow motions coinciding with the pre-eruption SXR brightenings, and it underwent rapid eruptive motions beginning near the time of flare onset. Concurrent HINODE/SOT magnetograms showed substantial flux cancelation under the filament at the site of the pre-eruption SXR activity. From these observations we infer that progressive tether-cutting reconnection driven by photospheric convection caused the slow rise of the filament and led to its eruption. NASA supported this work through a NASA Heliosphysics GI grant.

  2. Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone.

    PubMed

    Lee, Kang Il; Hughes, E R; Humphrey, V F; Leighton, T G; Choi, Min Joo

    2007-01-01

    The Biot and the modified Biot-Attenborough (MBA) models have been found useful to understand ultrasonic wave propagation in cancellous bone. However, neither of the models, as previously applied to cancellous bone, allows for the angular dependence of acoustic properties with direction. The present study aims to account for the acoustic anisotropy in cancellous bone, by introducing empirical angle-dependent input parameters, as defined for a highly oriented structure, into the Biot and the MBA models. The anisotropy of the angle-dependent Biot model is attributed to the variation in the elastic moduli of the skeletal frame with respect to the trabecular alignment. The angle-dependent MBA model employs a simple empirical way of using the parametric fit for the fast and the slow wave speeds. The angle-dependent models were used to predict both the fast and slow wave velocities as a function of propagation angle with respect to the trabecular alignment of cancellous bone. The predictions were compared with those of the Schoenberg model for anisotropy in cancellous bone and in vitro experimental measurements from the literature. The angle-dependent models successfully predicted the angular dependence of phase velocity of the fast wave with direction. The root-mean-square errors of the measured versus predicted fast wave velocities were 79.2 m s(-1) (angle-dependent Biot model) and 36.1 m s(-1) (angle-dependent MBA model). They also predicted the fact that the slow wave is nearly independent of propagation angle for angles about 50 degrees , but consistently underestimated the slow wave velocity with the root-mean-square errors of 187.2 m s(-1) (angle-dependent Biot model) and 240.8 m s(-1) (angle-dependent MBA model). The study indicates that the angle-dependent models reasonably replicate the acoustic anisotropy in cancellous bone.

  3. Helical flux ropes in solar prominences

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.; Van Ballegooijen, A. A.

    1990-01-01

    The present numerical method for the computation of force-free, cancelling magnetic structures shows that flux cancellation at the neutral line in a sheared magnetic arcade generates helical field lines that can support a prominence's plasma. With increasing flux cancellation, the axis of the helical fields moves to greater heights; this is suggestive of a prominence eruption. Two alternative scenarios are proposed for the formation of polar crown prominences which yield the correct axial magnetic field sign. Both models are noted to retain the formation of helical flux tubes through flux cancellation as their key feature.

  4. Array model interpolation and subband iterative adaptive filters applied to beamforming-based acoustic echo cancellation.

    PubMed

    Bai, Mingsian R; Chi, Li-Wen; Liang, Li-Huang; Lo, Yi-Yang

    2016-02-01

    In this paper, an evolutionary exposition is given in regard to the enhancing strategies for acoustic echo cancellers (AECs). A fixed beamformer (FBF) is utilized to focus on the near-end speaker while suppressing the echo from the far end. In reality, the array steering vector could differ considerably from the ideal freefield plane wave model. Therefore, an experimental procedure is developed to interpolate a practical array model from the measured frequency responses. Subband (SB) filtering with polyphase implementation is exploited to accelerate the cancellation process. Generalized sidelobe canceller (GSC) composed of an FBF and an adaptive blocking module is combined with AEC to maximize cancellation performance. Another enhancement is an internal iteration (IIT) procedure that enables efficient convergence in the adaptive SB filters within a sample time. Objective tests in terms of echo return loss enhancement (ERLE), perceptual evaluation of speech quality (PESQ), word recognition rate for automatic speech recognition (ASR), and subjective listening tests are conducted to validate the proposed AEC approaches. The results show that the GSC-SB-AEC-IIT approach has attained the highest ERLE without speech quality degradation, even in double-talk scenarios. PMID:26936567

  5. Vertical transport and sources in flux models

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Vertical transport in flux models in examined and shown to reproduce expected limits for densities and fluxes. Disparities with catalog distributions are derived and inverted to find the sources required to rectify them.

  6. Physical modeling of the feedback path in hearing aids with application to adaptive feedback cancellation

    NASA Astrophysics Data System (ADS)

    Hayes, Joanna L.; Rafaely, Boaz

    2002-05-01

    Hearing aid system modeling based on two-port network theory has been used previously to study the forward gain and the feedback path in hearing aids. The two-port modeling approach is employed in this work to develop an analytic model of the feedback path by reducing the model matrices to simplified analytic expressions. Such an analytic model can simulate the frequency response of the feedback path given the values of relatively few physical parameters such as vent dimensions. The model was extended to include variability in the feedback path due to slit leaks, for example. The analytic model was then incorporated in an adaptive feedback cancellation system, where the physical parameters of the model were adapted to match the actual feedback path and cancel the feedback signal. In the initial stage of this study, the ability of the model to match the frequency response of various measured feedback paths was studied using numerical optimization. Then, an adaptive filtering configuration based on the physical model was developed and studied using computer simulations. Results show that this new approach to adaptive feedback cancellation has the potential to improve both adaptation speed and performance robustness.

  7. Three dimensional stereolithography models of cancellous bone structures from muCT data: testing and validation of finite element results.

    PubMed

    Dobson, C A; Sisias, G; Phillips, R; Fagan, M J; Langton, C M

    2006-04-01

    Stereolithography (STL) models of complex cancellous bone structures have been produced from three-dimensional micro-computed tomography data sets of human cancellous bone histological samples from four skeletal sites. The STL models have been mechanically tested and the derived stiffness compared with that predicted by finite element analysis. The results show a strong correlation (R2 = 0.941) between the predicted and calculated stiffnesses of the structures and show promise for the use of STL as an additional technique to complement the use of finite element models, for the assessment of the mechanical properties of complex cancellous bone structures.

  8. Comparison of debris flux models

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Klinkrad, H.; Matney, M.; Nazarenko, A.; Wegener, P.

    The availability of models to estimate the impact risk from the man-made space debris and the natural meteoroid environment is essential for both, manned and unmanned satellite missions. Various independent tools based on different approaches have been developed in the past years. Due to an increased knowledge of the debris environment and its sources e.g. from improved measurement capabilities, these models could be updated regularly, providing more detailed and more reliable simulations. This paper addresses an in-depth, quantitative comparison of widely distributed debris flux models which were recently updated, namely ESA's MASTER 2001 model, NASA's ORDEM 2000 and the Russian SDPA 2000 model. The comparison was performed in the frame of the work of the 20t h Interagency Debris Coordination (IADC) meeting held in Surrey, UK. ORDEM 2000ORDEM 2000 uses careful empirical estimates of the orbit populations based onthree primary data sources - the US Space Command Catalog, the H ystackaRadar, and the Long Duration Exposure Facility spacecraft returned surfaces.Further data (e.g. HAX and Goldstone radars, impacts on Shuttle windows andradiators, and others) were used to adjust these populations for regions in time,size, and space not covered by the primary data sets. Some interpolation andextrapolation to regions with no data (such as projections into the future) wasprovided by the EVOLVE model. MASTER 2001The ESA MASTER model offers a full three dimensional description of theterrestrial debris distribution reaching from LEO up to the GEO region. Fluxresults relative to an orbiting target or to an inertial volume can be resolved intosource terms, impactor characteristics and orbit, as well as impact velocity anddirection. All relevant debris source terms are considered by the MASTERmodel. For each simulated source, a corresponding debris generation model interms of mass/diameter distribution, additional velocities, and directionalspreading has been developed. A

  9. Flux-mediated diffuse mismatch model

    NASA Astrophysics Data System (ADS)

    Loh, G. C.; Tay, B. K.; Teo, E. H. T.

    2010-09-01

    The diffuse mismatch model (DMM) is modified to account for the effect of thermal flux on phonon transmission at interfaces. This new model, the flux-mediated diffuse mismatch model (FMDMM) takes a slightly different approach in its formulation, and does not employ the principle of detailed balance. Two competing processes—an increase in the flux coefficient, and a decrease in the rest of the transmission term, may result in either a rise or fall in thermal boundary resistance when thermal flux is increased. This might partially explain the large disparities between experimental, theoretical, and simulated results of thermal boundary resistance.

  10. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    SciTech Connect

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  11. Modeling Magnetic Flux-Ropes Structures

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.; Savani, N.; Szabo, A.; Farrugia, C. J.; Yu, W.

    2015-12-01

    Flux-ropes are usually associated with magnetic structures embedded in the interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature (called Magnetic Clouds, MCs). However, small-scale flux-ropes in the solar wind are also identified with different formation, evolution, and dynamic involved. We present an analytical model to describe magnetic flux-rope topologies. The model is generalized to different grades of complexity. It extends the circular-cylindrical concept of Hidalgo et al. (2002) by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of flux-rope geometrical information and orientation. The generalized model provides flexibility for implementation in 3-D MHD simulations.

  12. Chesapeake Bay sediment flux model. Final report

    SciTech Connect

    Di Toro, D.M.; Fitzpatrick, J.J.

    1993-06-01

    Formulation and application of a predictive diagenetic sediment model are described in this report. The model considers two benthic sediment layers: a thin aerobic layer in contact with the water column and a thicker anaerobic layer. Processes represented include diagenesis, diffusion, particle mixing, and burial. Deposition of organic matter, water column concentrations, and temperature are treated as independent variables that influence sediment-water fluxes. Sediment oxygen demand and sediment-water fluxes of sulfide, ammonium, nitrate, phosphate, and silica are predicted. The model was calibrated using sediment-water flux observations collected in Chesapeake Bay 1985-1988. When independent variables were specified based on observations, the model correctly represented the time series of sediment-water fluxes observed at eight stations in the Bay and tributaries.... Chesapeake Bay, Models, Sediments, Dissolved oxygen, Nitrogen Eutrophication, Phosphorus.

  13. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone

    PubMed Central

    Patel, Purvi SD; Shepherd, Duncan ET; Hukins, David WL

    2008-01-01

    Background Polyurethane (PU) foam is widely used as a model for cancellous bone. The higher density foams are used as standard biomechanical test materials, but none of the low density PU foams are universally accepted as models for osteoporotic (OP) bone. The aim of this study was to determine whether low density PU foam might be suitable for mimicking human OP cancellous bone. Methods Quasi-static compression tests were performed on PU foam cylinders of different lengths (3.9 and 7.7 mm) and of different densities (0.09, 0.16 and 0.32 g.cm-3), to determine the Young's modulus, yield strength and energy absorbed to yield. Results Young's modulus values were 0.08–0.93 MPa for the 0.09 g.cm-3 foam and from 15.1–151.4 MPa for the 0.16 and 0.32 g.cm-3 foam. Yield strength values were 0.01–0.07 MPa for the 0.09 g.cm-3 foam and from 0.9–4.5 MPa for the 0.16 and 0.32 g.cm-3 foam. The energy absorbed to yield was found to be negligible for all foam cylinders. Conclusion Based on these results, it is concluded that 0.16 g.cm-3 PU foam may prove to be suitable as an OP cancellous bone model when fracture stress, but not energy dissipation, is of concern. PMID:18844988

  14. Vertical eddy heat fluxes from model simulations

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Yao, Mao-Sung

    1991-01-01

    Vertical eddy fluxes of heat are calculated from simulations with a variety of climate models, ranging from three-dimensional GCMs to a one-dimensional radiative-convective model. The models' total eddy flux in the lower troposphere is found to agree well with Hantel's analysis from observations, but in the mid and upper troposphere the models' values are systematically 30 percent to 50 percent smaller than Hantel's. The models nevertheless give very good results for the global temperature profile, and the reason for the discrepancy is unclear. The model results show that the manner in which the vertical eddy flux is carried is very sensitive to the parameterization of moist convection. When a moist adiabatic adjustment scheme with a critical value for the relative humidity of 100 percent is used, the vertical transports by large-scale eddies and small-scale convection on a global basis are equal: but when a penetrative convection scheme is used, the large-scale flux on a global basis is only about one-fifth to one-fourth the small-scale flux. Comparison of the model results with observations indicates that the results with the latter scheme are more realistic. However, even in this case, in mid and high latitudes the large and small-scale vertical eddy fluxes of heat are comparable in magnitude above the planetary boundary layer.

  15. Fractal dimension predicts broadband ultrasound attenuation in stereolithography models of cancellous bone

    NASA Astrophysics Data System (ADS)

    Langton, C. M.; Whitehead, M. A.; Haire, T. J.; Hodgskinson, R.

    1998-02-01

    There has been considerable debate on the relative dependence of broadband ultrasound attenuation (nBUA, ) upon the density and structure of cancellous bone. A nonlinear relationship between nBUA and porosity has recently been demonstrated using stereolithography models, indicating a high structural dependence for nBUA. We report here on the measurement of trabecular perimeter and fractal dimension on the two-dimensional images used to create the stereolithography models. Adjusted coefficients of determination with nBUA were 94.4% and 98.4% for trabecular perimeter and fractal dimension respectively. The feature of fractal dimension representing both the porosity and connectivity of a given structure is most exciting. Further work is required to determine the relationship between broadband ultrasound attenuation and fractal dimension in complex three-dimensional cancellous bone structures.

  16. Tissue-level remodeling simulations of cancellous bone capture effects of in vivo loading in a rabbit model.

    PubMed

    Morgan, Timothy G; Bostrom, Mathias P G; van der Meulen, Marjolein C H

    2015-03-18

    The adaptation of cancellous bone to mechanical stimuli occurs throughout normal skeletal growth and aging, as well as in response to surgery, disease and device implantation. Previously we developed an in vivo cancellous loading model in the distal lateral femur of the rabbit. In response to daily in vivo loading for four weeks, bone mass increased, trabeculae thickened and the apparent modulus of the underlying cancellous bone increased. Here, we simulated our prior in vivo rabbit loading experiment using a cell-based tissue remodeling algorithm (Mullender et al., 1994) and compared the results to the in vivo experimental data published previously. Cancellous bone tissue was added or removed from the surface of trabeculae in regions of high and low mechanical stimulus, respectively. To examine the effect of material properties on mechanically regulated adaptation, we implemented both a homogeneous material model and a model where the relative density of tissue was lower for new and surface bone tissue compared to interior tissue. The simulations captured the changes in histomorphometric parameters and mechanical properties measured in the in vivo experiment illustrating the ability of computational simulations to predict the effect of mechanically regulated adaptation on cancellous bone histomorphometry and apparent modulus. PMID:25579991

  17. Modelling stomatal ozone flux across Europe.

    PubMed

    Emberson, L D; Ashmore, M R; Cambridge, H M; Simpson, D; Tuovinen, J P

    2000-09-01

    A model has been developed to estimate stomatal ozone flux across Europe for a number of important species. An initial application of this model is illustrated for two species, wheat and beech. The model calculates ozone flux using European Monitoring and Evaluation Programme (EMEP) model ozone concentrations in combination with estimates of the atmospheric, boundary layer and stomatal resistances to ozone transfer. The model simulates the effect of phenology, irradiance, temperature, vapour pressure deficit and soil moisture deficit on stomatal conductance. These species-specific microclimatic parameters are derived from meteorological data provided by the Norwegian Meteorological Institute (DNMI), together with detailed land-use and soil type maps assembled at the Stockholm Environment Institute (SEI). Modelled fluxes are presented as mean monthly flux maps and compared with maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb or nl l(-1)), highlighting the spatial differences between these two indices. In many cases high ozone fluxes were modelled in association with only moderate AOT40 values. The factors most important in limiting ozone uptake under the model assumptions were vapour pressure deficit (VPD), soil moisture deficit (for Mediterranean regions in particular) and phenology. The limiting effect of VPD on ozone uptake was especially apparent, since high VPDs resulting in stomatal closure tended to co-occur with high ozone concentrations. Although further work is needed to link the ozone uptake and deposition model components, and to validate the model with field measurements, the present results give a clear indication of the possible implications of adopting a flux-based approach for future policy evaluation.

  18. Topological A-type models with flux

    NASA Astrophysics Data System (ADS)

    Stojevic, Vid

    2008-05-01

    We study deformations of the A-model in the presence of fluxes, by which we mean rank-three tensors with antisymmetrized upper/lower indices, using the AKSZ construction. There are two natural deformations of the A-model in the AKSZ language: 1) the Zucchini model, which can be defined on a generalized complex manifold and reduces to the A-model when the generalized complex structure comes from a symplectic structure, and 2) a topological membrane model, which naturally accommodates fluxes, and reduces to the Zucchini model on the boundary of the membrane when the fluxes are turned off. We show that the fluxes are related to deformations of the Courant bracket which generalize the twist by a closed 3-from H, in the sense that satisfying the AKSZ master equation implies precisely the integrability conditions for an almost generalized complex structure with respect to the deformed Courant bracket. In addition, the master equation imposes conditions on the fluxes that generalize dH = 0. The membrane model can be defined on a large class of U(m)- and U(m) × U(m)-structure manifolds relevant for string theory, including geometries inspired by (1, 1) supersymmetric σ-models with additional supersymmetries due to almost complex (but not necessarily complex) structures in the target space. In addition we show that the model can be defined on three particular half-flat manifolds related to the Iwasawa manifold. When only the closed 3-form flux is turned on it is possible to obtain a topological string model, which we do for the case of a Calabi-Yau. We argue that deformations from the standard A-model are due to the choice of gauge fixing fermion, rather than a flux deformation of the AKSZ action. The particularly interesting cases arise when the fermion depends on auxiliary fields, the simplest possibility being due to the (2, 0)+(0, 2) component of a non-trivial b-field. The model is generically no longer evaluated on holomorphic maps and defines new topological

  19. Solar Surface Emerging Flux Regions: A Comparative Study of Radiative MHD Modeling and Hinode SOT Observations

    NASA Astrophysics Data System (ADS)

    Cheung, M. C. M.; Schüssler, M.; Tarbell, T. D.; Title, A. M.

    2008-11-01

    We present results from numerical modeling of emerging flux regions on the solar surface. The modeling was carried out by means of three-dimensional (3D) radiative MHD simulations of the rise of buoyant magnetic flux tubes through the convection zone and into the photosphere. Due to the strong stratification of the convection zone, the rise results in a lateral expansion of the tube into a magnetic sheet, which acts as a reservoir for small-scale flux emergence events at the scale of granulation. The interaction of the convective downflows and the rising magnetic flux tube undulates it to form serpentine field lines that emerge into the photosphere. Observational characteristics, including the pattern of the emerging flux regions, the cancellation of surface flux and associated high-speed downflows, the convective collapse of photospheric flux tubes, the appearance of anomalous darkenings, the formation of bright points, and the possible existence of transient kilogauss horizontal fields are discussed in the context of new observations from the Hinode Solar Optical Telescope. Implications for the local helioseismology of emerging flux regions are also discussed.

  20. Experimental study of cancellous bone under large strains and a constitutive probabilistic model.

    PubMed

    Kefalas, V; Eftaxiopoulos, D A

    2012-02-01

    Experimental study of bovine cancellous bone up to compaction under uniaxial compression and up to fracture under tension, has been pursued in this article. Compression experiments have revealed the known three stages of the constitutive response, namely the initial increasing and softening branches at moderate strains, the plateau region at large strains and the hardening part at very large strains under compaction. Tension tests have quantified the increasing and softening branches of the stress-strain curve up to fracture. Subsequently, a constitutive mechanical model, for the simulation of the experimental findings up to very large strains (75% engineering strain under compression), is proposed. The model is based on the statistical description of (a) the failure process of the trabecular structure at small and moderate strains and (b) the compaction process of the trabecular mass at very large strains under compression. Several fitting cases indicated that the presented constitutive law can capture the evolution of the experimental results. PMID:22301172

  1. A digital flux-locked loop for high temperature SQUID magnetometer and gradiometer systems with field cancellation

    SciTech Connect

    Kraus, R.H. Jr.; Bracht, R.; Flynn, E.R.

    1996-12-01

    The SQUID sensor is typically operated in a null detector mode where an analogue flux-locked-loop, FLL, provides a negative feedback to maintain linear operation. The modulated SQUID signal is amplified, filtered, demodulated, and integrated in the FLL. The resulting analog signal is a measure of the magnetic field and noise at the SQUID and is also fed back to the modulation and feedback (M & F) coil to null the flux at the SQUID to maintain the linear operating point. Thus, the FLL output signal is proportional to the change in magnetic field at the SQUID pickup coil, provided the slew rate and dynamic range of the SQUID and FLL system are not exceeded. The goal of the work is to advance technologies needed for a practical fieldable SQUID biomagnetic sensor. We used HTC SQUIDs to realize the benefits noted above. We also implemented the FLL algorithm on a digital-signal-processor (DSP) to realize a number of benefits including (1) software control of noise filtering and background rejection to enable unshielded use of SQUID sensors, (2) flux quanta countin and resetting SQUID operating point to increase system slew rate and dynamic range, (3) programmable FLL adaptable to numerous specific applications, (4) digital signal output (up to 32-bit precision), and (5) reduced FLL package cost. This paper presents results of external signal rejection for a sensor system using HTC SQUIDs, preamplifier circuit, and DSP FLL designed and built at our laboratory. We also note a companion paper in these proceedings and other references to the use of DSP in SQUID applications.

  2. Modelled and observed continental surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; MacDougall, A. H.; Gonzalez-Rouco, F. J.; Stevens, M. B.; Bourlon, E.

    2009-12-01

    Heat fluxes in the continental subsurface were estimated from general circulation model (GCM) simulations of the climate of the last millennium and compared to those obtained from subsurface geothermal data. Since GCMs have bottom boundary conditions (BBCs) that are less than 10 m deep and thus may be thermodynamically restricted in the continental subsurface, we used an idealized land surface model (LSM) with a very deep BBC to estimate the potential for realistic subsurface heat storage in the absence of bottom boundary constraints. Results indicate that there is good agreement between observed fluxes and GCM simulated fluxes for the 1780-1980 period when the GCM simulated temperatures are coupled to the LMS with deep BBC. These results emphasize the importance of placing a deep BBC in GCM soil components for the proper simulation of the overall continental heat budget. In addition, the agreement between the LSM surface fluxes and the borehole temperature reconstructed fluxes lends additional support to the overall quality of the GCM (ECHO-G) paleoclimatic simulations. Simulations to 2100 show a divergence between the LSM simulated subsurface heat content and the heat gain in the ECHO-G soil model, with the placement of the BBCs surpassing the thermodynamical effect of the choice of emission scenario as the most important factor determining heat absorption in the simulated subsurface.

  3. Modeling vertical carbon flux from zooplankton respiration

    NASA Astrophysics Data System (ADS)

    Packard, Theodore T.; Gómez, May

    2013-03-01

    The transport of carbon from ocean surface waters to the deep sea is a critical factor in calculations of planetary carbon cycling and climate change. This vertical carbon flux is currently thought to support the respiration of all the organisms in the water column below the surface, the respiration of the organisms in the benthos, as well as the carbon lost to deep burial. Accordingly, for conditions where the benthic respiration and the carbon burial are small relative to the respiration in the water column, and where horizontal fluxes are known or negligible, the carbon flux can be calculated by integrating the vertical profile of the water-column plankton respiration rate. Here, this has been done for the zooplankton component of the vertical carbon flux from measurements of zooplankton ETS activity south of the Canary Island Archipelago. From zooplankton ETS activity depth profiles, zooplankton respiration depth profiles were calculated and using the equations for the profiles as models, the epipelagic (3.05 μmol CO2 m-3 h-1), mesopelagic (112.82 nmol CO2 m-3 h-1), and bathypelagic (27.89 nmol CO2 m-3 h-1) zooplankton respiration for these waters were calculated. Then, by integration of the depth-normalized respiration profiles, zooplankton-associated carbon flux profiles below 150 m were calculated. These had an uncertainty of ±40%. At the station level (local regional variation) the variability was ±114% (n = 16). At 150 m and 500 m the average passive carbon flux associated with the zooplankton was 36 (±114%) and 20 (±113%) μmol C m-2 h-1. The carbon transfer efficiency (Teff) from the 150 to the 500 m levels averaged 51 ± 21% and a new metric, the nutrient retention efficiency (NRE), averaged 49 ± 21%. This metric is an index of the efficiency with which nutrients are maintained in the epipelagic zone and is directly related to the respiration in the water column. The carbon flux equation describing the pooled data (n = 16) was 131.14Z-0.292. Using

  4. Flux-bubble models and mesonic molecules

    NASA Astrophysics Data System (ADS)

    Boyce, M. M.; Treurniet, J.; Watson, P. J. S.

    1999-06-01

    It has been shown that the string-flip potential model reproduces most of the bulk properties of nuclear matter, with the exception of nuclear binding. Furthermore, it was postulated that this model with the inclusion of the colour-hyperfine interaction should produce binding. In some recent work a modified version of the string-flip potential model was developed, called the flux-bubble model, which would allow for the addition of perturbative QCD interactions. In attempts to construct a simple q overlineq nucleon system using the flux-bubble model (which only included colour-Coulomb interactions) difficulties arise with trying to construct a many-body variational wave function that would take into account the locality of the flux-bubble interactions. In this paper we look at a toy system, a mesonic molecule, in order to understand these difficulties. En route, a new variational wave function is proposed that may have a sufficient impact on the old string-flip potential model results that the inclusion of perturbative effects may not be needed.

  5. Noise cancellation model validation for reduced motion artifact wearable PPG sensors using MEMS accelerometers.

    PubMed

    Wood, Levi B; Asada, H Harry

    2006-01-01

    This paper investigates the validity of utilizing Widrow's Active Noise Cancellation (ANC) in the context of motion artifact reduction for photoplethysmogram (PPG) sensors. The ANC approach has previously been applied to the PPG problem, but little consideration has been given to the validity of the ANC signal corruption assumptions and in what motion range the algorithm works. The ANC validity testing is done in the form of impact (approximate impulse) testing of the physical PPG system and comparing with the modeled response for a range of motion amplitudes. The testing reveals that the identified corruption model does not generally represent the true physical system, but locally approximates the true system. Testing shows that if a similar motion amplitude is used for model tuning as the impact test, an average peak deviation of 5.2% is obtained, but if motion amplitude that is smaller than the impact amplitude by a factor of 5, the peak deviation is 15%. Finally, after ANC filtering motion corrupted data, heart rate can be estimated with less than 1.6% error.

  6. Slow rise and partial eruption of a double-decker filament. II. A double flux rope model

    SciTech Connect

    Kliem, Bernhard; Török, Tibor; Titov, Viacheslav S.; Lionello, Roberto; Linker, Jon A.; Liu, Rui; Liu, Chang; Wang, Haimin

    2014-09-10

    Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov and Démoulin and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. If this component decreases sufficiently, then both flux ropes turn unstable for conditions typical of solar active regions, with the lower rope typically becoming unstable first. Either both flux ropes erupt upward, or only the upper rope erupts while the lower rope reconnects with the ambient flux low in the corona and is destroyed. However, for shear field strengths staying somewhat above the threshold value, the configuration also admits evolutions which lead to partial eruptions with only the upper flux rope becoming unstable and the lower one remaining in place. This can be triggered by a transfer of flux and current from the lower to the upper rope, as suggested by the observations of a split filament in Paper I. It can also result from tether-cutting reconnection with the ambient flux at the X-type structure between the flux ropes, which similarly influences their stability properties in opposite ways. This is demonstrated for the numerically constructed equilibrium.

  7. Bone augmentation for cancellous bone- development of a new animal model

    PubMed Central

    2013-01-01

    Background Reproducible and suitable animal models are required for in vivo experiments to investigate new biodegradable and osteoinductive biomaterials for augmentation of bones at risk for osteoporotic fractures. Sheep have especially been used as a model for the human spine due to their size and similar bone metabolism. However, although sheep and human vertebral bodies have similar biomechanical characteristics, the shape of the vertebral bodies, the size of the transverse processes, and the different orientation of the facet joints of sheep are quite different from those of humans making the surgical approach complicated and unpredictable. Therefore, an adequate and safe animal model for bone augmentation was developed using a standardized femoral and tibia augmentation site in sheep. Methods The cancellous bone of the distal femur and proximal tibia were chosen as injection sites with the surgical approach via the medial aspects of the femoral condyle and proximal tibia metaphysis (n = 4 injection sites). For reproducible drilling and injection in a given direction and length, a custom-made c-shaped aiming device was designed. Exact positioning of the aiming device and needle positioning within the intertrabecular space of the intact bone could be validated in a predictable and standardized fashion using fluoroscopy. After sacrifice, bone cylinders (∅ 32 mm) were harvested throughout the tibia and femur by means of a diamond-coated core drill, which was especially developed to harvest the injected bone area exactly. Thereafter, the extracted bone cylinders were processed as non-decalcified specimens for μCT analysis, histomorphometry, histology, and fluorescence evaluation. Results The aiming device could be easily placed in 63 sheep and assured a reproducible, standardized injection area. In four sheep, cardiovascular complications occurred during surgery and pulmonary embolism was detected by computed tomography post surgery in all of these animals

  8. The elliptic model for communication fluxes

    NASA Astrophysics Data System (ADS)

    Herrera-Yagüe, C.; Schneider, C. M.; Smoreda, Z.; Couronné, T.; Zufiria, P. J.; González, M. C.

    2014-04-01

    In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility.

  9. An odor flux model for cattle feedlots

    SciTech Connect

    Ormerod, R.J.

    1994-12-31

    Odor nuisance associated with cattle feedlots has been an issue of major interest and concern to regulators, rural communities and the beef industry in Australia over the past decade. Methods of assessing the likely impacts of new feedlots on community odor exposure are still being developed, but in the past few years much has been learnt about the processes of odor generation, flux and dispersion as well as the acceptability of feedlot odor to exposed communities. This paper outlines a model which simulates the complex physical and chemical processes leading to odor emissions in a simple and practical framework. The model, named BULSMEL, has been developed as a response to regulatory requirements for quantitative assessments of odor impact. It will continue to be refined as more data are gathered.

  10. On comparison of modeled surface flux variations to aircraft observations.

    SciTech Connect

    Song, J.; Wesely, M. L.; Environmental Research; Northern Illinois Univ.

    2003-07-30

    Evaluation of models of air-surface exchange is facilitated by an accurate match of areas simulated with those seen by micrometeorological flux measurements. Here, spatial variations in fluxes estimated with the parameterized subgrid-scale surface (PASS) flux model were compared to flux variations seen aboard aircraft above the Walnut River Watershed (WRW) in Kansas. Despite interference by atmospheric eddies, the areas where the modeled sensible and latent heat fluxes were most highly correlated with the aircraft flux estimates were upwind of the flight segments. To assess whether applying a footprint function to the surface values would improve the model evaluation, a two-dimensional correlation distribution was used to identify the locations and relative importance of contributing modeled surface pixels upwind of each segment of the flight path. The agreement between modeled surface fluxes and aircraft measurements was improved when upwind fluxes were weighted with an optimized footprint parameter {var_phi}, which can be estimated from wind profiler data and surface eddy covariance. Variations of the flight-observed flux were consistently greater than those modeled at the surface, perhaps because of the smoothing effect of using 1 km pixels in the model. In addition, limited flight legs prevented sufficient filtering of the effects of atmospheric convection, possibly accounting for some of the more prominent changes in fluxes measured along the flight paths.

  11. Surface Flux Modeling for Air Quality Applications

    EPA Science Inventory

    For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic c...

  12. Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-01-01

    To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.

  13. Remote sensing model for CO2 flux in wheat fields

    NASA Astrophysics Data System (ADS)

    Zhang, Renhua; Sun, Xiaomin; Zhu, Zhilin; Su, Hongbo; Chen, Gang

    1998-08-01

    In this paper we presented a model for calculating CO2 flux in the wheat field based on field simulate test. We adopted crop transpiration as 'information picker' of CO2 flux instead of the potential evaporation and crop water stress index. Another crucial factor is leaf index and air vapor saturation deficit. Experimental coefficient is equal to 1/58. Calculating values have a good agreement with real measurements. The model is useful to estimate regional distribution of CO2 flux.

  14. Modelling total solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2014-05-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1700.

  15. Green House Gases Flux Model in Boundary Layer

    NASA Astrophysics Data System (ADS)

    Nurgaliev, Ildus

    Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.

  16. Poynting Flux-Conserving Boundary Conditions for Global MHD Models

    NASA Astrophysics Data System (ADS)

    Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Lyon, J.; Merkin, V. G.; Wiltberger, M. J.

    2014-12-01

    Poynting Flux-conserving boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the low-altitude (or inner) boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. This method involves the mapping of both the potential from the ionosphere and the perpendicular magnetic field from the inner magnetosphere to the ghost cells of the computational domain. The single fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method. The comparisons of simulations using the standard hardwall boundary conditions of the LFM model and the flux-conserving boundary conditions show that the method reported here improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the field-aligned DC Poynting flux just above the boundary is very nearly equal to the ionospheric Joule heating, as it should be if electromagnetic energy is conserved.

  17. Gaussian mixture models as flux prediction method for central receivers

    NASA Astrophysics Data System (ADS)

    Grobler, Annemarie; Gauché, Paul; Smit, Willie

    2016-05-01

    Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.

  18. Future mission studies: Preliminary comparisons of solar flux models

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    The results of comparisons of the solar flux models are presented. (The wavelength lambda = 10.7 cm radio flux is the best indicator of the strength of the ionizing radiations such as solar ultraviolet and x-ray emissions that directly affect the atmospheric density thereby changing the orbit lifetime of satellites. Thus, accurate forecasting of solar flux F sub 10.7 is crucial for orbit determination of spacecrafts.) The measured solar flux recorded by National Oceanic and Atmospheric Administration (NOAA) is compared against the forecasts made by Schatten, MSFC, and NOAA itself. The possibility of a combined linear, unbiased minimum-variance estimation that properly combines all three models into one that minimizes the variance is also discussed. All the physics inherent in each model are combined. This is considered to be the dead-end statistical approach to solar flux forecasting before any nonlinear chaotic approach.

  19. Probabilistic Model for Low Altitude Trapped Proton Fluxes

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Huston, S. L.; Barth, J. L.; Stassiinopoulos, E. G.

    2003-01-01

    A new approach is developed for the assessment of low altitude trapped proton fluxes for future space missions. Low altitude fluxes are dependent on solar activity levels due to the resulting heating and cooling of the upper atmosphere. However, solar activity levels cannot be accurately predicted far enough into the future to accommodate typical spacecraft mission planning. Thus, the approach suggested here is to evaluate the trapped proton flux as a function of confidence level for a given mission time period. This is possible because of a recent advance in trapped proton modeling that uses the solar 10.7 cm radio flux, a measure of solar cycle activity, to calculate trapped proton fluxes as a continuous function of time throughout the solar cycle. This trapped proton model is combined with a new statistical description of the 10.7 cm flux to obtain the probabilistic model for low altitude trapped proton fluxes. Results for proton energies ranging from 1.5 to 81.3 MeV are examined as a function of time throughout solar cycle 22 for various orbits. For altitudes below 1000 km, fluxes are significantly higher and energy spectra are significantly harder than those predicted by the AP8 model.

  20. On The Relationship Between Magnetic Cancellation And UV Burst Formation

    NASA Astrophysics Data System (ADS)

    Nelson, C. J.; Doyle, J. G.; Erdélyi, R.

    2016-08-01

    Burst-like events with signatures in the UV are often observed co-spatial to strong line-of-sight photospheric magnetic fields. Several authors, for example, have noted the spatial relationship between Ellerman bombs (EBs) and Moving Magnetic Features (MMFs), regions of flux which disconnect from a sunspot or pore before propagating away in the moat flow and often displaying evidence of cancellation. In this article, data collected by the Solar Dynamics Observatory's Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly are analysed in an attempt to understand the potential links between such cancellation and UV burst formation. Two MMFs from AR 11579, three bi-poles from AR 11765, and six bi-poles (four of which were co-spatial to IRIS bursts) in AR 11850 were identified for analysis. All of these cancellation features were found to have lifetimes of the order hours and cancellation rates of the order 1014-1015 Mx s-1. Hα line wing data from the Dunn Solar Telescope's Interferometric BIdimensional Spectrometer were also available for AR 11579 facilitating a discussion of links between MMFs and EBs. Using an algebraic model of photospheric magnetic reconnection, the measured cancellation rates are then used to ascertain estimates of certain quantities (such as up-flow speeds, jet extents, and potential energy releases) which compared reasonably to the properties of EBs reported within the literature. Our results suggest that cancellation rates of the order measured here are capable of supplying enough energy to drive certain UV bursts (including EBs), however, they are not a guaranteeing condition for burst formation.

  1. Information for seasonal models of carbon fluxes in terrestrial biomes

    SciTech Connect

    King, A.W.; DeAngelis, D.L.

    1985-06-01

    This report is a compilation of information that can be used in developing seasonal carbon flux models for several principal terrestrial biome types. The information includes flux data as well as models made either to simulate such data or to deduce fluxes not directly measurable. The report is divided into three sections that examine (1) photosynthetic production, (2) litterfall, and (3) decomposition during a year. The sections on photosynthetic production and decomposition discuss a large number of models that relate the processes to basic abiotic variables in each of several biome types. The information on litterfall, however, is largely empirical phenology data. A fourth section demonstrates the application of this compiled information to a compartment model of seasonal carbon flux in terrestrial biomes. 14 figs., 12 tabs.

  2. Flux measurement and modeling in a typical mediterranean vineyard

    NASA Astrophysics Data System (ADS)

    Marras, Serena; Bellucco, Veronica; Pyles, David R.; Falk, Matthias; Sirca, Costantino; Duce, Pierpaolo; Snyder, Richard L.; Tha Paw U, Kyaw; Spano, Donatella

    2014-05-01

    Vineyard ecosystems are typical in the Mediterranean area, since wine is one of the most important economic sectors. Nevertheless, only a few studies have been conducted to investigate the interactions between this kind of vegetation and the atmosphere. These information are important both to understand the behaviour of such ecosystems in different environmental conditions, and are crucial to parameterize crop and flux simulation models. Combining direct measurements and modelling can obtain reliable estimates of surface fluxes and crop evapotranspiration. This study would contribute both to (1) directly measure energy fluxes and evapotranspiration in a typical Mediterranean vineyard, located in the South of Sardinia (Italy), through the application of the Eddy Covariance micrometeorological technique and to (2) evaluate the land surface model ACASA (Advanced-Canopy-Atmosphere-Soil Algorithm) in simulating energy fluxes and evapotranspiration over vineyard. Independent datasets of direct measurements were used to calibrate and validate model results during the growing period. Statistical analysis was performed to evaluate model performance and accuracy in predicting surface fluxes. Results will be showed as well as the model capability to be used for future studies to predict energy fluxes and crop water requirements under actual and future climate.

  3. Empirical Modeling of Plant Gas Fluxes in Controlled Environments

    NASA Technical Reports Server (NTRS)

    Cornett, Jessie David

    1994-01-01

    As humans extend their reach beyond the earth, bioregenerative life support systems must replace the resupply and physical/chemical systems now used. The Controlled Ecological Life Support System (CELSS) will utilize plants to recycle the carbon dioxide (CO2) and excrement produced by humans and return oxygen (O2), purified water and food. CELSS design requires knowledge of gas flux levels for net photosynthesis (PS(sub n)), dark respiration (R(sub d)) and evapotranspiration (ET). Full season gas flux data regarding these processes for wheat (Triticum aestivum), soybean (Glycine max) and rice (Oryza sativa) from published sources were used to develop empirical models. Univariate models relating crop age (days after planting) and gas flux were fit by simple regression. Models are either high order (5th to 8th) or more complex polynomials whose curves describe crop development characteristics. The models provide good estimates of gas flux maxima, but are of limited utility. To broaden the applicability, data were transformed to dimensionless or correlation formats and, again, fit by regression. Polynomials, similar to those in the initial effort, were selected as the most appropriate models. These models indicate that, within a cultivar, gas flux patterns appear remarkably similar prior to maximum flux, but exhibit considerable variation beyond this point. This suggests that more broadly applicable models of plant gas flux are feasible, but univariate models defining gas flux as a function of crop age are too simplistic. Multivariate models using CO2 and crop age were fit for PS(sub n), and R(sub d) by multiple regression. In each case, the selected model is a subset of a full third order model with all possible interactions. These models are improvements over the univariate models because they incorporate more than the single factor, crop age, as the primary variable governing gas flux. They are still limited, however, by their reliance on the other environmental

  4. Modeling flux noise in SQUIDs due to hyperfine interactions.

    PubMed

    Wu, Jiansheng; Yu, Clare C

    2012-06-15

    Recent experiments implicate spins on the surface of metals as the source of flux noise in superconducting quantum interference devices and indicate that these spins are able to relax without conserving total magnetization. We present a model of 1/f flux noise in which electron spins on the surface of metals can relax via hyperfine interactions. Our results indicate that flux noise would be significantly reduced in superconducting materials where the most abundant isotopes do not have nuclear moments, such as zinc and lead.

  5. The magnetotail and substorms. [magnetic flux transport model

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Mcpherron, R. L.

    1973-01-01

    The tail plays a very active and important role in substorms. Magmetic flux eroded from the dayside magnetosphere is stored here. As more and more flux is transported to the magnetotail and stored, the boundary flares more, the field strength in the tail increases, and the currents strengthen and move closer to the earth. Further, the plasma sheet thins and the magnetic flux crossing the neutral sheet lessens. The experimental evidence for these processes is discussed and a phenomenological or qualitative model of the substorm sequence is presented. In this model, the flux transport is driven by the merging of the magnetospheric and interplanetary magnetic fields. During the growth phase of substorms the merging rate on the dayside magnetosphere exceeds the reconnection rate in the neutral sheet.

  6. Software applications toward quantitative metabolic flux analysis and modeling.

    PubMed

    Dandekar, Thomas; Fieselmann, Astrid; Majeed, Saman; Ahmed, Zeeshan

    2014-01-01

    Metabolites and their pathways are central for adaptation and survival. Metabolic modeling elucidates in silico all the possible flux pathways (flux balance analysis, FBA) and predicts the actual fluxes under a given situation, further refinement of these models is possible by including experimental isotopologue data. In this review, we initially introduce the key theoretical concepts and different analysis steps in the modeling process before comparing flux calculation and metabolite analysis programs such as C13, BioOpt, COBRA toolbox, Metatool, efmtool, FiatFlux, ReMatch, VANTED, iMAT and YANA. Their respective strengths and limitations are discussed and compared to alternative software. While data analysis of metabolites, calculation of metabolic fluxes, pathways and their condition-specific changes are all possible, we highlight the considerations that need to be taken into account before deciding on a specific software. Current challenges in the field include the computation of large-scale networks (in elementary mode analysis), regulatory interactions and detailed kinetics, and these are discussed in the light of powerful new approaches.

  7. Using Idealized Coherent Structures to Parameterize Momentum Fluxes in a PBL Mass-Flux Model.

    NASA Astrophysics Data System (ADS)

    Lappen, Cara-Lyn; Randall, David A.

    2005-08-01

    In 2001, the authors presented a higher-order mass-flux model called assumed distributions with higher-order closure (ADHOC), which represents the large eddies of the planetary boundary layer (PBL) in terms of an assumed joint distribution of the vertical velocity and scalars such as potential temperature or water vapor mixing ratio. ADHOC is intended for application as a PBL parameterization. It uses the equations of higher-order closure to predict selected moments of the assumed distribution, and diagnoses the parameters of the distribution from the predicted moments. Once the parameters of the distribution are known, all moments of interest can be computed.The first version of ADHOC was incomplete in that the horizontal momentum equations, the vertical fluxes of horizontal momentum, the contributions to the turbulence kinetic energy from the horizontal wind, and the various pressure terms involving covariances between pressure and other variables were not incorporated into the assumed distribution framework. Instead, these were parameterized using standard methods.This paper describes an updated version of ADHOC. The new version includes representations of the horizontal winds and momentum fluxes that are consistent with the mass-flux framework of the model. The assumed joint probability distribution is replaced by an assumed joint spatial distribution based on an idealized coherent structure, such as a plume or roll. The horizontal velocity can then be determined using the continuity equation, and the momentum fluxes and variances are computed directly by spatial integration. These expressions contain unknowns that involve the parameters of the assumed coherent structures. Methods are presented to determine these parameters, which include the radius of convective updrafts and downdrafts and the wavelength, tilt, and orientation angle of the convective rolls. The parameterization is tested by comparison with statistics computed from large-eddy simulations. In a

  8. Empirically Modeling Carbon Fluxes over the Northern Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wylie, B. K.; Ji, L.; Gilmanov, T.; Tieszen, L. L.

    2007-12-01

    Grasslands cover nearly one-fifth of the global terrestrial surface and store most of their carbon below ground. The grassland ecosystem in the Great Plains occupies over 1.5 million km2 of land area and is the primary resource for livestock production in North America. However, the contributions of grasslands to local and regional carbon budgets remain uncertain due to the lack of carbon flux data for the expansive grassland ecosystems under various managements, land uses, and climate variability. A quantitative understanding of carbon fluxes across these systems is essential for developing regional, national, and global carbon budgets and providing guidance to policy makers and managers when substantial conversion to biofuels are implemented. Additionally, these estimates will provide insights into how the grassland ecosystem will respond to future climate and what systems are sustainable and offer net carbon sinks. This knowledge base and decisions support tools are needed for developing land management strategies for the region under a variety of environmental conditions and land use options. In the past, we used a remote sensing-based piecewise regression (PWR) model to estimate the grassland carbon fluxes in the northern Great Plains using the 1-km SPOT VEGETATION normalized difference vegetation index (NDVI) data. We estimated the carbon fluxes through integrated spatial databases and remotely sensed extrapolations of flux tower data to regional scales. The PWR model was applied to derive an empirical relationship between environmental variables and tower-based measurements. The PWR equations were then applied through time and space to estimate carbon fluxes across the study area at 1-km resolution. We now improve this modeling approach by 1) using Moderate Resolution Imaging Spectroradiometer (MODIS) data with higher temporal, spatial, and spectral resolutions (8-day, 500-m, and 7-band) as input; 2) incorporating the actual vegetation evapotranspiration

  9. QTAIM charge-charge flux-dipole flux interpretation of electronegativity and potential models of the fluorochloromethane mean dipole moment derivatives.

    PubMed

    Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E

    2011-11-17

    Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results

  10. Forecasting relativistic electron flux using dynamic multiple regression models

    NASA Astrophysics Data System (ADS)

    Wei, H.-L.; Billings, S. A.; Surjalal Sharma, A.; Wing, S.; Boynton, R. J.; Walker, S. N.

    2011-02-01

    The forecast of high energy electron fluxes in the radiation belts is important because the exposure of modern spacecraft to high energy particles can result in significant damage to onboard systems. A comprehensive physical model of processes related to electron energisation that can be used for such a forecast has not yet been developed. In the present paper a systems identification approach is exploited to deduce a dynamic multiple regression model that can be used to predict the daily maximum of high energy electron fluxes at geosynchronous orbit from data. It is shown that the model developed provides reliable predictions.

  11. Rotating reverse osmosis: a dynamic model for flux and rejection

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Reverse osmosis (RO) is a compact process for the removal of ionic and organic pollutants from contaminated water. However, flux decline and rejection deterioration due to concentration polarization and membrane fouling hinders the application of RO technology. In this study, a rotating cylindrical RO membrane is theoretically investigated as a novel method to reduce polarization and fouling. A dynamic model based on RO membrane transport incorporating concentration polarization is used to predict the performance of rotating RO system. Operating parameters such as rotational speed and transmembrane pressure play an important role in determining the flux and rejection in rotating RO. For a given geometry, a rotational speed sufficient to generate Taylor vortices in the annulus is essential to maintain high flux as well as high rejection. The flux and rejection were calculated for wide range of operating pressures and rotational speeds. c 2001 Elsevier Science B.V. All rights reserved.

  12. Models Robustness for Simulating Drainage and NO3-N Fluxes

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Jabro, Ann

    2013-04-01

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.

  13. Measurement and modelling of methane fluxes from UK peatlands

    NASA Astrophysics Data System (ADS)

    Levy, P. E.; Gray, A.

    2012-12-01

    Nearly 5000 chamber measurements of CH4 flux were collated from 21 sites across the UK, covering a range of soil and vegetation types, to derive a parsimonious model that explains as much of the variability as possible, with the least input requirements. Less than half of the observed variability in instantaneous fluxes could be explained by the independent variables measured. Measurement error is one reason for this, and here we analyse several of the uncertainties inherent in these measurements, including the choice of model used to calculate the flux. Other reasons include the stochastic nature of some of the transport processes and the poor correspondence between the independent variables measured and the actual variables influencing the processes underlying methane production, transport and oxidation. Alternative measurement methods are considered which may circumvent some of these problems. When temporal variation was removed, and the fluxes averaged at larger spatial scales, simple models explained up to ~75 % of the variance in CH4 fluxes. Soil carbon, peat depth, soil moisture and pH together provided the best sub-set of explanatory variables. To estimate the impact of changes in peatland water table on CH4 emissions in the UK, an emission factor of +0.4 g CH4 m-2 y-1 per cm increase in water table was derived from the data. As an alternative approach, vegetation species composition provides a long-term integrator of environmental conditions, which may correlate with methane flux. Here, we used a "weighted averaging" approach to predict methane flux from plant species composition at a range of sites in the UK, continental Europe and Canada. Species were classified into functional groups, defined by a number of qualitative traits considered relevant to methane dynamics. We compared the results based on this functional classification with those based on the original species composition data with a purely taxonomic classification.

  14. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    NASA Technical Reports Server (NTRS)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  15. Observational & modeling analysis of surface heat and moisture fluxes

    SciTech Connect

    Smith, E.

    1995-09-01

    An observational and modeling study was conducted to help assess how well current GCMs are predicting surface fluxes under the highly variable cloudiness and flow conditions characteristic of the real atmosphere. The observational data base for the study was obtained from a network of surface flux stations operated during the First ISLSCP Field Experiment (FIFE). The study included examination of a surface-driven secondary circulation in the boundary layer resulting from a persistent cross-site gradient in soil moisture, to demonstrate the sensitivity of boundary layer dynamics to heterogeneous surface fluxes, The performance of a biosphere model in reproducing the measured surface fluxes was evaluated with and without the use of satellite retrieval of three key canopy variables with RMS uncertainties commensurate with those of the measurements themselves. Four sensible heat flux closure schemes currently being used in GCMs were then evaluated against the FIFE observations. Results indicate that the methods by which closure models are calibrated lead to exceedingly large errors when the schemes are applied to variable boundary layer conditions. 4 refs., 2 figs.

  16. Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model.

    PubMed

    Wu, Zi-xiang; Lei, Wei; Hu, Yun-yu; Wang, Hai-qiang; Wan, Shi-yong; Ma, Zhen-sheng; Sang, Hong-xun; Fu, Suo-chao; Han, Yi-sheng

    2008-11-01

    Osteoporotic/osteopenia fractures occur most frequently in trabeculae-rich skeletal sites. The purpose of this study was to use a high-resolution micro-computed tomography (micro-CT) and dual energy X-ray absorptionmeter (DEXA) to investigate the changes in micro-architecture and bone mineral density (BMD) in a sheep model resulted from ovariectomy (OVX). Biomechanical tests were performed to evaluate the strength of the trabecular bone. Twenty adult sheeps were randomly divided into three groups: sham group (n=8), group 1 (n=4) and group 2 (n=8). In groups 1 and 2, all sheep were ovariectomized (OVX); in the sham group, the ovaries were located and the oviducts were ligated. In all animals, BMD for lumbar spine was obtained during the surgical procedure. BMD at the spine, femoral neck and femoral condyle was determined 6 months (group 1) and 12 months (group 2) post-OVX. Lumbar spines and femora were obtained and underwent BMD scan, micro-CT analysis. Compressive mechanical properties were determined from biopsies of vertebral bodies and femoral condyles. BMD, micro-architectural parameters and mechanical properties of cancellous bone did not decrease significantly at 6 months post-OVX. Twelve months after OVX, BMD, micro-architectural parameters and mechanical properties decreased significantly. The results of linear regression analyses showed that trabecular thickness (Tb.Th) (r=0.945, R2=0.886) and bone volume fraction (BV/TV) (r=0.783, R2=0.586) had strong (R2>0.5) correlation to compression stress. In OVX sheep, changes in the structural parameters of trabecular bone are comparable to the human situation during osteoporosis was induced. The sheep model presented seems to meet the criteria for an osteopenia model for fracture treatment with respect to morphometric and mechanical properties. But the duration of OVX must be longer than 12 months to ensure the animal model can be established successfully.

  17. Stable and flux-conserved meshfree formulation to model shocks

    NASA Astrophysics Data System (ADS)

    Roth, Michael J.; Chen, Jiun-Shyan; Slawson, Thomas R.; Danielson, Kent T.

    2016-05-01

    Accurate shock modeling requires that two critical issues be addressed: (1) correct representation of the essential shock physics, and (2) control of Gibbs phenomenon oscillation at the discontinuity. In this work a stable (oscillation limiting) and flux-conserved formulation under the reproducing kernel particle method is developed for shock modeling. A smoothed flux divergence is constructed under the framework of stabilized conforming nodal integration, which is locally-enriched with a Riemann solution to satisfy the entropy production constraints. This Riemann-enriched flux divergence is embedded into the reproducing kernel formulation through a velocity correction that also provides oscillation control at the shock. The correction is constrained to the shock region by an automatic shock detection algorithm that is constructed using the intrinsic spectral decomposition feature of the reproducing kernel approximation. Several numerical examples are provided to verify accuracy of the proposed formulation.

  18. Data Assimilation in the ADAPT Photospheric Flux Transport Model

    SciTech Connect

    Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; Arge, C. Nick

    2015-03-17

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF) to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.

  19. Characterizing the nucleation flux of linked-flux model for core-shell composite nucleus

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Masao

    2013-05-01

    The kinetics of nucleation of a core-shell composite nucleus that consists of a core of stable final phase surrounded by a wetting layer of an intermediate metastable phase is studied using the linked-flux model where the nucleation flux is considered in the two-dimensional space of stable and metastable components. The steady-state solution of the Fokker-Planck equation is considered not only in the size and composition space but also in the component space. It is shown that the kinetics of critical nucleus at the saddle point is more appropriately characterized in the size and composition space, while the kinetics of the post-critical nucleus is more appropriately described in the component space. Although both the free-energy landscape and the reaction rates play decisive role to determine the kinetics of nucleation at the saddle point, the details of the free energy landscape are irrelevant to the kinetics of the post critical nucleus.

  20. The across frequency independence of equalization of interaural time delay in the equalization-cancellation model of binaural unmasking

    NASA Astrophysics Data System (ADS)

    Akeroyd, Michael A.

    2004-08-01

    The equalization stage in the equalization-cancellation model of binaural unmasking compensates for the interaural time delay (ITD) of a masking noise by introducing an opposite, internal delay [N. I. Durlach, in Foundations of Modern Auditory Theory, Vol. II., edited by J. V. Tobias (Academic, New York, 1972)]. Culling and Summerfield [J. Acoust. Soc. Am. 98, 785-797 (1995)] developed a multi-channel version of this model in which equalization was ``free'' to use the optimal delay in each channel. Two experiments were conducted to test if equalization was indeed free or if it was ``restricted'' to the same delay in all channels. One experiment measured binaural detection thresholds, using an adaptive procedure, for 1-, 5-, or 17-component tones against a broadband masking noise, in three binaural configurations (N0S180, N180S0, and N90S270). The thresholds for the 1-component stimuli were used to normalize the levels of each of the 5- and 17-component stimuli so that they were equally detectable. If equalization was restricted, then, for the 5- and 17-component stimuli, the N90S270 and N180S0 configurations would yield a greater threshold than the N0S180 configurations. No such difference was found. A subsequent experiment measured binaural detection thresholds, via psychometric functions, for a 2-component complex tone in the same three binaural configurations. Again, no differential effect of configuration was observed. An analytic model of the detection of a complex tone showed that the results were more consistent with free equalization than restricted equalization, although the size of the differences was found to depend on the shape of the psychometric function for detection.

  1. Coronal Modeling with Flux-Evolved Maps: Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Linker, J.; Downs, C.; Lionello, R.; Caplan, R. M.; Mikic, Z.; Riley, P.; Henney, C. J.; Arge, C. N.

    2014-12-01

    MHD simulations of the solar corona rely on maps of the solar magnetic field for input as boundary conditions. These "synoptic" maps (available from a number of ground-based and space-based solar observatories) are built up over a solar rotation. A well-known problem with this approach is that the maps contain data that is as much as 27 days old. The Sun's magnetic flux is always evolving, and these changes in the flux affect coronal and heliospheric structure. Flux evolution models can in principle provide a more accurate specification, by estimating the likely state of the photospheric magnetic field on unobserved portions of the Sun. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model (Arge et al. 2010) is especially well suited for this purpose. ADAPT can also incorporate information from helioseismic acoustic images to estimate the emergence of new active regions on the Sun's far side. In this presentation we describe MHD models with boundary conditions derived from ADAPT maps. We investigate the June-August 2010 time period, when there was significant coronal hole evolution observed by the STEREO and SDO spacecraft. We compare model results using ADAPT maps, including those with far side data, as well as models using traditional synoptic maps, to STEREO EUVI and SDO AIA data. Research supported by AFOSR & NASA.

  2. Modeling energy fluxes in heterogeneous landscapes employing a mosaic approach

    NASA Astrophysics Data System (ADS)

    Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2015-04-01

    Recent studies show that uncertainties in regional and global climate and weather simulations are partly due to inadequate descriptions of the energy flux exchanges between the land surface and the atmosphere. One major shortcoming is the limitation of the grid-cell resolution, which is recommended to be about at least 3x3 km² in most models due to limitations in the model physics. To represent each individual grid cell most models select one dominant soil type and one dominant land use type. This resolution, however, is often too coarse in regions where the spatial diversity of soil and land use types are high, e.g. in Central Europe. An elegant method to avoid the shortcoming of grid cell resolution is the so called mosaic approach. This approach is part of the recently developed ecosystem model framework Expert-N 5.0. The aim of this study was to analyze the impact of the characteristics of two managed fields, planted with winter wheat and potato, on the near surface soil moistures and on the near surface energy flux exchanges of the soil-plant-atmosphere interface. The simulated energy fluxes were compared with eddy flux tower measurements between the respective fields at the research farm Scheyern, North-West of Munich, Germany. To perform these simulations, we coupled the ecosystem model Expert-N 5.0 to an analytical footprint model. The coupled model system has the ability to calculate the mixing ratio of the surface energy fluxes at a given point within one grid cell (in this case at the flux tower between the two fields). This approach accounts for the differences of the two soil types, of land use managements, and of canopy properties due to footprint size dynamics. Our preliminary simulation results show that a mosaic approach can improve modeling and analyzing energy fluxes when the land surface is heterogeneous. In this case our applied method is a promising approach to extend weather and climate models on the regional and on the global scale.

  3. Assessing cement injection behaviour in cancellous bone: an in vitro study using flow models.

    PubMed

    Bou-Francis, Antony; López, Alejandro; Persson, Cecilia; Hall, Richard M; Kapur, Nikil

    2014-10-01

    Understanding the cement injection behaviour during vertebroplasty and accurately predicting the cement placement within the vertebral body is extremely challenging. As there is no standardized methodology, we propose a novel method using reproducible and pathologically representative flow models to study the influence of cement properties on injection behaviour. The models, confined between an upper glass window and a lower aluminium plate, were filled with bone marrow substitute and then injected (4, 6 and 8 min after cement mixing) with commercially available bone cements (SimplexP, Opacity+, OsteopalV and Parallax) at a constant flow rate (3 mL/min). A load cell was used to measure the force applied on the syringe plunger and calculate the peak pressure. A camera was used to monitor the cement flow during injection and calculate the following parameters when the cement had reached the boundary of the models: the time to reach the boundary, the filled area and the roundness. The peak pressure was comparable to that reported during clinical vertebroplasty and showed a similar increase with injection time. The study highlighted the influence of cement formulations and model structure on the injection behaviour and showed that cements with similar composition/particle size had similar flow behaviour, while the introduction of defects reduced the time to reach the boundary, the filled area and the roundness. The proposed method provides a novel tool for quick, robust differentiation between various cement formulations through the visualization and quantitative analysis of the cement spreading at various time intervals. PMID:24913614

  4. Modeling of solvent and ionic fluxes in electronanofiltration

    SciTech Connect

    Pupunat, L.; Rios, G.M.; Joulie, R.

    1999-07-01

    Electronanofiltration (ENF) is a new membrane separation process that uses an additional electric field between the permeate and retentate sides during nanofiltration. A recently published pioneering work gives the performance with single and mixed ionic solutions containing one monovalent cation and one or two anions (mono-or/and divalent). It appears that the electric field leads to a net increase of cation flux and a decrease of anion permeation at the same time if the cathode is placed on the permeate side. In relation with the well-known dependence of solvent flux on transmembrane pressure, these data open up potential applications of ENF for new integrated operations of ion separation/concentration. In this paper a semiempirical model accounting for permeate and ionic fluxes is proposed. Based on the Sefan-Maxwell approach, a simple set of linearized equations is developed that fits experimental data at various transmembrane pressure ({Delta}P), electric fields ({Delta}U), and concentrations (C).

  5. Model Estimated GCR Particle Flux Variation - Assessment with CRIS Data

    NASA Astrophysics Data System (ADS)

    Saganti, Premkumar

    We present model calculated particle flux as a function of time during the current solar cycle along with the comparisons from the ACE/CRIS data and the Mars/MARIE data. In our model calculations we make use of the NASA's HZETRN (High Z and Energy Transport) code along with the nuclear fragmentation cross sections that are described by the quantum multiple scattering (QMSFRG) model. The time dependant variation of the GCR environment is derived making use of the solar modulation potential, phi. For the past ten years, Advanced Composition Explorer (ACE) has been in orbit at the Sun- Earth libration point (L1). Data from the Cosmic Ray Isotope Spectrometer (CRIS) instrument onboard the ACE spacecraft has been available from 1997 through the present time. Our model calculated particle flux showed high degree of correlation during the earlier phase of the current solar cycle (2003) in the lower Z region within 15

  6. Analytical model for flux saturation in sediment transport.

    PubMed

    Pähtz, Thomas; Parteli, Eric J R; Kok, Jasper F; Herrmann, Hans J

    2014-05-01

    The transport of sediment by a fluid along the surface is responsible for dune formation, dust entrainment, and a rich diversity of patterns on the bottom of oceans, rivers, and planetary surfaces. Most previous models of sediment transport have focused on the equilibrium (or saturated) particle flux. However, the morphodynamics of sediment landscapes emerging due to surface transport of sediment is controlled by situations out of equilibrium. In particular, it is controlled by the saturation length characterizing the distance it takes for the particle flux to reach a new equilibrium after a change in flow conditions. The saturation of mass density of particles entrained into transport and the relaxation of particle and fluid velocities constitute the main relevant relaxation mechanisms leading to saturation of the sediment flux. Here we present a theoretical model for sediment transport which, for the first time, accounts for both these relaxation mechanisms and for the different types of sediment entrainment prevailing under different environmental conditions. Our analytical treatment allows us to derive a closed expression for the saturation length of sediment flux, which is general and thus can be applied under different physical conditions.

  7. Antideuteron fluxes from dark matter annihilation in diffusion models

    SciTech Connect

    Donato, F.; Fornengo, N.; Maurin, D.

    2008-08-15

    Antideuterons are among the most promising galactic cosmic-ray-related targets for dark matter indirect detection. Currently only upper limits exist on the flux, but the development of new experiments, such as GAPS and AMS-02, provides exciting perspectives for a positive measurement in the near future. In this paper, we present a novel and updated calculation of both the secondary and primary d fluxes. We employ a two-zone diffusion model which successfully reproduces cosmic-ray nuclear data and the observed antiproton flux. We review the nuclear and astrophysical uncertainties and provide an up to date secondary (i.e. background) antideuteron flux. The primary (i.e. signal) contribution is calculated for generic weakly interactive massive particles (WIMPs) annihilating in the galactic halo: we explicitly consider and quantify the various sources of uncertainty in the theoretical evaluations. Propagation uncertainties, as is the case of antiprotons, are sizeable. Nevertheless, antideuterons offer an exciting target for indirect dark matter detection for low and intermediate mass WIMP dark matter. We then show the reaching capabilities of the future experiments for neutralino dark matter in a variety of supersymmetric models.

  8. Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model

    NASA Astrophysics Data System (ADS)

    Honda, M.; Athar, M. Sajjad; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2015-07-01

    We extend our calculation of the atmospheric neutrino fluxes to polar and tropical regions. It is well known that the air density profiles in the polar and the tropical regions are different from the mid-latitude region. Also there are large seasonal variations in the polar region. In this extension, we use the NRLMSISE-00 global atmospheric model J. M. Picone, J. Geophys. Res. 107, SIA 15 (2002), replacing the U.S.-standard 1976 atmospheric model, which has no positional or seasonal variations. With the NRLMSISE-00 atmospheric model, we study the atmospheric neutrino flux at the polar and tropical regions with seasonal variations. The geomagnetic model international geomagnetic reference field (IGRF) we have used in our calculations seems accurate enough in the polar regions also. However, the polar and the equatorial regions are the two extremes in the IGRF model, and the magnetic field configurations are largely different from one another. Note that the equatorial region is also the tropical region generally. We study the effect of the geomagnetic field on the atmospheric neutrino flux in these extreme regions.

  9. Driving Coronal MHD Simulations with Flux Evolution Models

    NASA Astrophysics Data System (ADS)

    Linker, J.; Lionello, R.; Mikic, Z.; Riley, P.; Downs, C.; Arge, C. N.; Henney, C. J.

    2013-12-01

    The solar corona and solar wind strongly influences space weather at Earth. While coronal mass ejections (CMEs) are the most obvious source of this influence, the structure and dynamics of the ambient solar corona and solar wind also play an important role. Coronal structure leads to the partitioning of the solar wind into fast and slow streams, which are the source of recurrent geomagnetic activity. The geo-effectiveness of CMEs is in part determined by their interaction with the ambient wind, and the connection of the ambient interplanetary magnetic field to CME-related shocks and impulsive solar flares determines where solar energetic particles propagate. MHD simulations of the solar corona based on maps of the solar magnetic field have been demonstrated to describe many aspects of coronal structure. However, these models are typically integrated to steady state, using synoptic or daily-updated magnetic maps to derive the boundary conditions. The Sun's magnetic flux is always evolving, and these changes in the flux affect the structure and dynamics of the corona and heliosphere. In this presentation, we describe an approach to evolutionary models of the corona and so wind, using time-dependent boundary conditions. A key aspect of our approach is the use of the Air Force Data Assimilative Photospheric flux Transport (ADAPT) model to develop time-evolving boundary conditions for the magnetic field. ADAPT incorporates data assimilation techniques into the Worden and Harvey (2000) flux evolution model, making it an especially suitable candidate for providing boundary conditions to MHD models. We describe initial results and compare them with more traditional approaches. Research supported by AFOSR, NASA, and NSF.

  10. The treatment of magnetic buoyancy in flux transport dynamo models

    NASA Astrophysics Data System (ADS)

    Choudhuri, Arnab Rai; Hazra, Gopal

    2016-10-01

    One important ingredient of flux transport dynamo models is the rise of the toroidal magnetic field through the convection zone due to magnetic buoyancy to produce bipolar sunspots and then the generation of the poloidal magnetic field from these bipolar sunspots due to the Babcock-Leighton mechanism. Over the years, two methods of treating magnetic buoyancy-a local method and a non-local method-have been used widely by different groups in constructing 2D kinematic models of the flux transport dynamo. We review both these methods and conclude that neither of them is fully satisfactory-presumably because magnetic buoyancy is an inherently 3D process. We also point out so far we do not have proper understanding of why sunspot emergence is restricted to rather low latitudes.

  11. Sediment flux modeling: Simulating nitrogen, phosphorus, and silica cycles

    NASA Astrophysics Data System (ADS)

    Testa, Jeremy M.; Brady, Damian C.; Di Toro, Dominic M.; Boynton, Walter R.; Cornwell, Jeffrey C.; Kemp, W. Michael

    2013-10-01

    Sediment-water exchanges of nutrients and oxygen play an important role in the biogeochemistry of shallow coastal environments. Sediments process, store, and release particulate and dissolved forms of carbon and nutrients and sediment-water solute fluxes are significant components of nutrient, carbon, and oxygen cycles. Consequently, sediment biogeochemical models of varying complexity have been developed to understand the processes regulating porewater profiles and sediment-water exchanges. We have calibrated and validated a two-layer sediment biogeochemical model (aerobic and anaerobic) that is suitable for application as a stand-alone tool or coupled to water-column biogeochemical models. We calibrated and tested a stand-alone version of the model against observations of sediment-water flux, porewater concentrations, and process rates at 12 stations in Chesapeake Bay during a 4-17 year period. The model successfully reproduced sediment-water fluxes of ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), and dissolved silica (Si(OH)4 or DSi) for diverse chemical and physical environments. A root mean square error (RMSE)-minimizing optimization routine was used to identify best-fit values for many kinetic parameters. The resulting simulations improved the performance of the model in Chesapeake Bay and revealed (1) the need for an aerobic-layer denitrification formulation to account for NO3- reduction in this zone, (2) regional variability in denitrification that depends on oxygen levels in the overlying water, (3) a regionally-dependent solid-solute PO43- partitioning that accounts for patterns in Fe availability, and (4) a simplified model formulation for DSi, including limited sorption of DSi onto iron oxyhydroxides. This new calibration balances the need for a universal set of parameters that remain true to biogeochemical processes with site-specificity that represents differences in physical conditions. This stand-alone model can be rapidly executed on a

  12. The development of climate models: tuning vs. flux corrections

    NASA Astrophysics Data System (ADS)

    Dommenget, Dietmar

    2016-04-01

    Current state-of-the-art coupled general circulation models (CGCMs) have substantial errors in their main climate representations. In particular they have large uncertainties in the simulated climate sensitivity on regional and global scale to a doubling of CO2 that result from model errors. The current approach in developing CGCMs and dealing with the error in it involves substantial amount of tuning of uncertain parameters of sub-scale process that need to be parameterized. This tuning process is neither documented, nor reproducible nor is it clear if it indeed improves the model performance. Alternative methods such as flux correcting are not used nor is it clear if such methods would perform better. In the study presented here we will perform perturbed physics experiments with the simplified globally resolved energy balance (GREB) model to test the different ideas of dealing with model errors in the development of models. It will be illustrated that tuning of CGCM is very likely to fail given the complexity of the system, the limited resources and the limited observations to optimize parameters. While tuning will improve the models performance on the cost function (such as the observed past climate), it will not get closer to the 'true' physics nor will it improve future climate change projection. In turn, not tuning or flux correcting is not only much cheaper and simpler, but it will actually perform better in nearly all aspects. This, however, varies whether one is focussed on regional or global scales.

  13. A reconstruction of solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie

    2012-07-01

    Solar irradiance is one of the important drivers of the Earth's global climate, but it has only been measured for the past 33 years. Its reconstructions are therefore crucial to study longer term variations relevant to climate timescales. Most successful in reproducing the measured irradiance variations have being the models that are based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field. Our SATIRE-S model is one of these, which uses solar full-disc magnetograms as an input, and these are available for less than four decades. To reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. The concept of overlapping ephemeral region cycles is used to describe the secular change in the irradiance.

  14. A reconstruction of solar irradiance using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2013-04-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1610.

  15. Data Assimilation in the ADAPT Photospheric Flux Transport Model

    DOE PAGESBeta

    Hickmann, Kyle S.; Godinez, Humberto C.; Henney, Carl J.; Arge, C. Nick

    2015-03-17

    Global maps of the solar photospheric magnetic flux are fundamental drivers for simulations of the corona and solar wind and therefore are important predictors of geoeffective events. However, observations of the solar photosphere are only made intermittently over approximately half of the solar surface. The Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model uses localized ensemble Kalman filtering techniques to adjust a set of photospheric simulations to agree with the available observations. At the same time, this information is propagated to areas of the simulation that have not been observed. ADAPT implements a local ensemble transform Kalman filter (LETKF)more » to accomplish data assimilation, allowing the covariance structure of the flux-transport model to influence assimilation of photosphere observations while eliminating spurious correlations between ensemble members arising from a limited ensemble size. We give a detailed account of the implementation of the LETKF into ADAPT. Advantages of the LETKF scheme over previously implemented assimilation methods are highlighted.« less

  16. Analysis of metabolic flux using dynamic labelling and metabolic modelling.

    PubMed

    Fernie, A R; Morgan, J A

    2013-09-01

    Metabolic fluxes and the capacity to modulate them are a crucial component of the ability of the plant cell to react to environmental perturbations. Our ability to quantify them and to attain information concerning the regulatory mechanisms that control them is therefore essential to understand and influence metabolic networks. For all but the simplest of flux measurements labelling methods have proven to be the most informative. Both steady-state and dynamic labelling approaches have been adopted in the study of plant metabolism. Here the conceptual basis of these complementary approaches, as well as their historical application in microbial, mammalian and plant sciences, is reviewed, and an update on technical developments in label distribution analyses is provided. This is supported by illustrative cases studies involving the kinetic modelling of secondary metabolism. One issue that is particularly complex in the analysis of plant fluxes is the extensive compartmentation of the plant cell. This problem is discussed from both theoretical and experimental perspectives, and the current approaches used to address it are assessed. Finally, current limitations and future perspectives of kinetic modelling of plant metabolism are discussed. PMID:23421750

  17. A web-services approach to modeling global fluid flux

    NASA Astrophysics Data System (ADS)

    Wood, W. T.; Martin, K. M.; Sample, J.; Owens, R.; Jung, W.; Calantoni, J.; Boyd, T. J.; Coffin, R. B.

    2013-12-01

    Regional and global estimates of fluid and solute accumulation and transport require aspects of physics, chemistry, and biology that manifest as geospatial data sets. Recent developments in computer sciences known as web-services allow a new approach to earth modeling that allows data and models from different sources and on different platforms to be linked - allowing continual updates as data are acquired or models upgraded. NRL has begun constructing a such a generic earth modeling system (GEMS) based on OGC and WD3 compliant web-services data exchange, and designed to take advantage of newly developing web-service based data repositories funded by NSF, NOAA, USGS and others. Specifically, global data sets such as those found in the World Ocean Atlas (2009), sediment thickness, crust age, and seafloor temperature that have been used previously to estimate methane hydrate content in the World's ocean can now be combined with models of sedimentary accretion to generate estimates of fluid flux along margins. The data are served up as independent web coverage services, so they can be independently updated as new data arrives. We anticipate the web services approach to will allow a more flexible, dynamic, and resilient global model of fluid and solute flux than was previously possible.

  18. Behavioral evaluation of movement cancellation.

    PubMed

    Walton, Mark M G; Gandhi, Neeraj J

    2006-10-01

    The countermanding saccade task has been used in many studies to investigate the neural mechanisms that underlie the decision to execute or restrain rapid eye movements. In this task, the presentation of a saccade target is sometimes followed by the appearance of a stop cue that indicates that the subject should cancel the planned movement. Performance has been modeled as a race between motor preparation and cancellation processes. The signal that reaches its activation threshold first determines whether a saccade is generated or cancelled. In these studies, an important parameter is the time required to process the stop cue, referred to as the stop signal reaction time (SSRT). The SSRT is estimated using statistical approaches, the validity of which has not been unequivocally established. A more direct measure of this parameter might be obtainable if a method was available to "unmask" the developing motor command. This can be accomplished by air-puff-evoked blinks, which inhibit pontine omnipause neurons that serve as an inhibitory gate for the saccadic system. In the present study, brief puffs of air were used to elicit blinks at various times while rhesus monkeys performed a countermanding saccade task. If the developing motor command has not yet been cancelled, this should trigger a saccade. When blinks occurred between approximately 50 and 200 ms after target onset, saccades were often evoked. Saccades were rarely evoked more than approximately 70 ms after stop cue onset; this value represents a behavioral evaluation of SSRT and was comparable to the estimates obtained using standard statistical approaches. When saccades occurred near the SSRT on blink trials, they were often hypometric. Furthermore, Monte Carlo simulations were performed to model the effects of blink time on the race model. Overall, the study supports the validity of the statistical methods currently in use. PMID:16760340

  19. Ionospheric Poynting Flux and Joule Heating Modeling Challenge: Latest Results and New Models.

    NASA Astrophysics Data System (ADS)

    Shim, J. S.; Rastaetter, L.; Kuznetsova, M. M.; Knipp, D. J.; Zheng, Y.; Cosgrove, R. B.; Newell, P. T.; Weimer, D. R.; Fuller-Rowell, T. J.; Wang, W.

    2014-12-01

    Poynting Flux and Joule Heating in the ionosphere - latest results from the challenge and updates at the CCMC. With the addition of satellite tracking and display features in the online analysis tool and at the Community Coordinated Modeling Center (CCMC), we are now able to obtain Poynting flux and Joule heating values from a wide variety of ionospheric models. In addition to Poynting fluxes derived from electric and magnetic field measurements from the Defense Meteorological Satellite Program (DMSP) satellites for a recent modeling challenge, we can now use a Poynting Flux model derived from FAST satellite observations for comparison. Poynting Fluxes are also correlated using Ovation Prime maps of precipitation patterns during the same time periods to assess how "typical" the events in the challenge are.

  20. Neutronics Modeling of the High Flux Isotope Reactor using COMSOL

    SciTech Connect

    Chandler, David; Primm, Trent; Freels, James D; Maldonado, G Ivan

    2011-01-01

    The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

  1. A Dynamic Flux Dissolution Model for Oxygen Steelmaking

    NASA Astrophysics Data System (ADS)

    Kadrolkar, Ameya; Andersson, Nils Å. I.; Dogan, Neslihan

    2016-08-01

    A modified model for prediction of flux dissolution in oxygen steelmaking process is presented in this study. The aim of this paper is to introduce a procedure for simulating the amount of dissolved lime with respect to the saturation concentration of CaO by coupling the existing thermodynamic and kinetic models simultaneously. The procedure is developed to calculate the saturation concentrations/solubility of CaO in slag using thermodynamic models namely FactSage™, Cell Model, and Thermo-Calc™. Total amount of dissolved lime is evaluated by integrating solubility values in the rate equation of lime dissolution over time taking into account the effects of physical properties and temperature of slag and particle size of flux additions and validated against industrial data available in literature. Comparison between measured and calculated undissolved lime shows a good agreement between them using any thermodynamic models even though there are some differences in the predictions of saturation concentration of CaO in slag. It has been shown that two distinct control mechanisms for lime dissolution in BOF slags exist and consideration of the free lime-controlled mechanism is essential for accurate prediction of dissolution rate of lime in slag.

  2. Heat flux in soil amended with biochar: modelling approach

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lipiec, Jerzy; Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Jerzy

    2016-04-01

    Temperature of soil has important influences on many soil processes and plant growth. It depends on the energy balance on the active surface, where the process of energy exchange between the Earth's surface and the atmosphere occurs. Heat flux is one of the components of the energy balance and can be influenced by biochar application to the soil, along with inherent texture and variables: moisture, density, and temperature of soil, as well as external conditions like climate, topography and surface properties related to the land use and vegetation cover. In this work we present the statistical-physical modelling approach for predicting the thermal conductivity and soil heat flux dynamics, based on temperature and soil moisture measurements, obtained from bare and grass fields with different rates of biochar. Adding biochar caused significant reduction of the thermal conductivity, diffusivity and heat capacity of the soil in the dry state and their significant increase in the wet state. The soil heat fluxes in bare and grassed soil were similar or different, depending on weather conditions, insolation, plant growth stage and changed with the soil depth, moisture as well as the rate of biochar applied.

  3. Quantum Paramagnet in a π Flux Triangular Lattice Hubbard Model.

    PubMed

    Rachel, Stephan; Laubach, Manuel; Reuther, Johannes; Thomale, Ronny

    2015-04-24

    We propose the π flux triangular lattice Hubbard model (π THM) as a prototypical setup to stabilize magnetically disordered quantum states of matter in the presence of charge fluctuations. The quantum paramagnetic domain of the π THM that we identify for intermediate Hubbard U is framed by a Dirac semimetal for weak coupling and by 120° Néel order for strong coupling. Generalizing the Klein duality from spin Hamiltonians to tight-binding models, the π THM maps to a Hubbard model which corresponds to the (J_{H},J_{K})=(-1,2) Heisenberg-Kitaev model in its strong coupling limit. The π THM provides a promising microscopic testing ground for exotic finite-U spin liquid ground states amenable to numerical investigation. PMID:25955072

  4. Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes

    PubMed Central

    Baart, Gino JE; Zomer, Bert; de Haan, Alex; van der Pol, Leo A; Beuvery, E Coen; Tramper, Johannes; Martens, Dirk E

    2007-01-01

    Background Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years. Results Using the genomic database of N. meningitidis serogroup B together with biochemical and physiological information in the literature we constructed a genome-scale flux model for the primary metabolism of N. meningitidis. The validity of a simplified metabolic network derived from the genome-scale metabolic network was checked using flux-balance analysis in chemostat cultures. Several useful predictions were obtained from in silico experiments, including substrate preference. A minimal medium for growth of N. meningitidis was designed and tested succesfully in batch and chemostat cultures. Conclusion The verified metabolic model describes the primary metabolism of N. meningitidis in a chemostat in steady state. The genome-scale model is valuable because it offers a framework to study N. meningitidis metabolism as a whole, or certain aspects of it, and it can also be used for the purpose of vaccine process development (for example, the design of growth media). The flux distribution of the main metabolic pathways (that is, the pentose phosphate pathway and the Entner-Douderoff pathway) indicates that the major part of pyruvate (69%) is synthesized through the ED-cleavage, a finding that is in good agreement with literature. PMID:17617894

  5. Quantum theory of atoms in molecules/charge-charge flux-dipole flux models for fundamental vibrational intensity changes on H-bond formation of water and hydrogen fluoride

    SciTech Connect

    Silva, Arnaldo F.; Richter, Wagner E.; Bruns, Roy E.; Terrabuio, Luiz A.; Haiduke, Roberto L. A.

    2014-02-28

    The Quantum Theory of Atoms In Molecules/Charge-Charge Flux-Dipole Flux (QTAIM/CCFDF) model has been used to investigate the electronic structure variations associated with intensity changes on dimerization for the vibrations of the water and hydrogen fluoride dimers as well as in the water-hydrogen fluoride complex. QCISD/cc-pVTZ wave functions applied in the QTAIM/CCFDF model accurately provide the fundamental band intensities of water and its dimer predicting symmetric and antisymmetric stretching intensity increases for the donor unit of 159 and 47 km mol{sup −1} on H-bond formation compared with the experimental values of 141 and 53 km mol{sup −1}. The symmetric stretching of the proton donor water in the dimer has intensity contributions parallel and perpendicular to its C{sub 2v} axis. The largest calculated increase of 107 km mol{sup −1} is perpendicular to this axis and owes to equilibrium atomic charge displacements on vibration. Charge flux decreases occurring parallel and perpendicular to this axis result in 42 and 40 km mol{sup −1} total intensity increases for the symmetric and antisymmetric stretches, respectively. These decreases in charge flux result in intensity enhancements because of the interaction contributions to the intensities between charge flux and the other quantities. Even though dipole flux contributions are much smaller than the charge and charge flux ones in both monomer and dimer water they are important for calculating the total intensity values for their stretching vibrations since the charge-charge flux interaction term cancels the charge and charge flux contributions. The QTAIM/CCFDF hydrogen-bonded stretching intensity strengthening of 321 km mol{sup −1} on HF dimerization and 592 km mol{sup −1} on HF:H{sub 2}O complexation can essentially be explained by charge, charge flux and their interaction cross term. Atomic contributions to the intensities are also calculated. The bridge hydrogen atomic contributions alone

  6. Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.

    PubMed

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-01-01

    Coccolithophores play a crucial role in the marine carbon cycle and thus it is interesting to know how they will respond to climate change. After several decades of research the interplay between intracellular processes and the marine carbonate system is still not well understood. On the basis of experimental findings given in literature, a numerical cell model is developed that describes inorganic carbon fluxes between seawater and the intracellular sites of calcite precipitation and photosynthetic carbon fixation. The implemented cell model consists of four compartments, for each of which the carbonate system is resolved individually. The four compartments are connected to each other via H(+), CO2, and HCO3(-) fluxes across the compartment-confining membranes. For CO2 accumulation around RubisCO, an energy-efficient carbon concentrating mechanism is proposed that relies on diffusive CO2 uptake. At low external CO2 concentrations and high light intensities, CO2 diffusion does not suffice to cover the carbon demand of photosynthesis and an additional uptake of external HCO3(-) becomes essential. The model is constrained by data of Emiliania huxleyi, the numerically most abundant coccolithophore species in the present-day ocean.

  7. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  8. The Empirical Low Energy Ion Flux Model for the Terrestrial Magnetosphere

    NASA Technical Reports Server (NTRS)

    Blackwell, William C.; Minow, Joseph I.; Diekmann, Anne M.

    2007-01-01

    This document includes a viewgraph presentation plus the full paper presented at the conference. The Living With a Star Ion Flux Model (IFM) is a radiation environment risk mitigation tool that provides magnetospheric ion flux values for varying geomagnetic disturbance levels in the geospace environment. IFM incorporates flux observations from the Polar and Geotail spacecraft in a single statistical flux model. IFM is an engineering environment model which predicts the proton flux not only in the magnetosphere, but also in the solar wind and magnetosheath phenomenological regions. This paper describes the ion flux databases that allows for IFM output to be correlated with the geomagnetic activity level, as represented by the Kp index.

  9. Modeling Evaporative Upflows Through a Flux Tube of Nonconstant Area

    NASA Astrophysics Data System (ADS)

    Unverferth, John E.; Longcope, Dana

    2016-05-01

    Chromospheric evaporation is a long studied part of solar flares. Spectroscopic observations of flares typically show subsonic upflows. This contrasts with simulations which consistently predict supersonic evaporation flows. One possible explanation is that the actual flows occur though flux tubes which expand from confined photospheric sources to volume-filling coronal field. Very few flare simulations to date have accounted for this geometry, and run instead with flare loops of uniform cross section. It is well known that transonic flows are dramatically affected by their geoemetry, and can exhibit shocks under certain circumstances.To investigate this we created a simple model of the canopy of magnetic field. This exhibited the expected expansion but also showed some cases of over-expansion followed by constriction. The flow through those flux tubes will encounter a kind of chamber. We then used a one-dimensional isothermal hydrodynamics to model the flow of plasma through such a chamber. According to this simulation, there exists a set of inflow parameters that will generate a standing shock inside the chamber. This solution results in a sonic outflow from a supersonic inflow.

  10. Adaptive cancellation techniques

    NASA Astrophysics Data System (ADS)

    1983-11-01

    An adaptive signal canceller has been evaluated for the enhancement of pulse signal reception during the transmission of a high power ECM jamming signal. The canceller design is based on the use of DRFM(Digital RF Memory) technology as part of an adaptive multiple tapped delay line. The study includes analysis of relationship of tap spacing and waveform bandwidth, survey of related documents in areas of sidelobe cancellers, transversal equalizers, and adaptive filters, and derivation of control equations and corresponding control processes. The simulation of overall processes included geometric analysis of the multibeam transmitting antenna, multiple reflection sources and the receiving antenna; waveforms, tap spacings and bandwidths; and alternate control algorithms. Conclusions are provided regarding practical system control algorithms, design characteristics and limitations.

  11. High Flux Isotope Reactor system RELAP5 input model

    SciTech Connect

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  12. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    NASA Astrophysics Data System (ADS)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  13. Quantifying Greenland freshwater flux underestimates in climate models

    NASA Astrophysics Data System (ADS)

    Little, Christopher M.; Piecuch, Christopher G.; Chaudhuri, Ayan H.

    2016-05-01

    Key processes regulating the mass balance of the Greenland Ice Sheet (GIS) are not represented in current-generation climate models. Here using output from 19 different climate models forced with a high-end business-as-usual emissions pathway, we compare modeled freshwater fluxes (FWF) to a parameterization based on midtropospheric temperature. By the mid 21st century, parameterized GIS FWF is 478 ± 215 km3 yr-1 larger than modeled—over 3 times the 1992-2011 rate of GIS mass loss. By the late 21st century, ensemble mean parameterized GIS FWF anomalies are comparable to FWF anomalies over the northern North Atlantic Ocean, equivalent to approximately 11 cm of global mean sea level rise. The magnitude and spread of these underestimates underscores the need for assessments of the coupled response of the ocean to increased FWF that recognize: (1) the widely varying freshwater budgets of each model and (2) uncertainty in the relationship between GIS FWF and atmospheric temperature.

  14. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Ma, Yaoming

    2016-07-01

    Land surface heat fluxes over the heterogeneous landscape of the Tibetan Plateau can serve as boundary conditions for modeling the regional climate and the Asian monsoon system. The Weather Research and Forecasting (WRF) atmospheric modeling system has enabled us to model the land surface heat flux through sensitivity experiments that utilize in situ observation data and the regional land-atmosphere exchanges of water and heat fluxes that are foundational to understanding the water and energy cycles present during the Asian monsoon period. A series of sensitivity experiments based on the WRF model and field observations has been proposed and tested for deriving the land surface heat fluxes (surface net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) over a heterogeneous land surface. The sensitivity experiments were simulated over the field area of the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP-CAMP/Tibet), located on the northern Tibetan Plateau of China. A WRF modeling period from July to August 2007 was selected for the summer monsoon conditions. To validate the modeling results, the ground-measured or calculated variables (e.g., net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) were compared to the simulated values. The modeling results show that the derived model land surface heat fluxes are in agreement with the land surface observations over the study area in summer. Therefore, the WRF model sensitivity experiments were successful in simulating the land surface heat fluxes over the study area.

  15. Exponential flux-controlled memristor model and its floating emulator

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wang, Fa-Qiang; Ma, Xi-Kui

    2015-11-01

    As commercial memristors are still unavailable in the market, mathematic models and emulators which can imitate the features of the memristor are meaningful for further research. In this paper, based on the analyses of characteristics of the q-φ curve, an exponential flux-controlled model, which has the quality that its memductance (memristance) will keep monotonically increasing or decreasing unless the voltage’s polarity reverses (if not approach the boundaries), is constructed. A new approach to designing the floating emulator of the memristor is also proposed. This floating structure can flexibly meet various demands for the current through the memristor (especially the demand for a larger current). The simulations and experiments are presented to confirm the effectiveness of this model and its floating emulator. Project supported by the National Natural Science Foundation of China (Grant Nos. 51377124 and 51221005), the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 201337), the Program for New Century Excellent Talents in University of China (Grant No. NCET-13-0457), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2012JQ7026).

  16. Numerical Modeling of a Magnetic Flux Compression Experiment

    NASA Astrophysics Data System (ADS)

    Makhin, Volodymyr; Bauer, Bruno S.; Awe, Thomas J.; Fuelling, Stephan; Goodrich, Tasha; Lindemuth, Irvin R.; Siemon, Richard E.; Garanin, Sergei F.

    2007-06-01

    A possible plasma target for Magnetized Target Fusion (MTF) is a stable diffuse z-pinch in a toroidal cavity, like that in MAGO experiments. To examine key phenomena of such MTF systems, a magnetic flux compression experiment with this geometry is under design. The experiment is modeled with 3 codes: a slug model, the 1D Lagrangian RAVEN code, and the 1D or 2D Eulerian Magneto-Hydro-Radiative-Dynamics-Research (MHRDR) MHD simulation. Even without injection of plasma, high- Z wall plasma is generated by eddy-current Ohmic heating from MG fields. A significant fraction of the available liner kinetic energy goes into Ohmic heating and compression of liner and central-core material. Despite these losses, efficiency of liner compression, expressed as compressed magnetic energy relative to liner kinetic energy, can be close to 50%. With initial fluctuations (1%) imposed on the liner and central conductor density, 2D modeling manifests liner intrusions, caused by the m = 0 Rayleigh-Taylor instability during liner deceleration, and central conductor distortions, caused by the m = 0 curvature-driven MHD instability. At many locations, these modes reduce the gap between the liner and the central core by about a factor of two, to of order 1 mm, at the time of peak magnetic field.

  17. On LBNE neutrino flux systematic uncertainties

    SciTech Connect

    Lebrun, Paul L. G.; Hylen, James; Marchionni, Alberto; Fields, Laura; Bashyal, Amit; Park, Seongtae; Watson, Blake

    2015-10-15

    The systematic uncertainties in the neutrino flux of the Long-Baseline Neutrino Experiment, due to alignment uncertanties and tolerances of the neutrino beamline components, are estimated. In particular residual systematics are evaluated in the determination of the neutrino flux at the far detector, assuming that the experiment will be equipped with a near detector with the same target material of the far detector, thereby canceling most of the uncertainties from hadroproduction and neutrino cross sections. This calculation is based on a detailed Geant4-based model of the neutrino beam line that includes the target, two focusing horns, the decay pipe and ancillary items, such as shielding.

  18. Postal cancellation from spaceport

    NASA Astrophysics Data System (ADS)

    The John F. Kennedy Space Center, in cooperation with the United States Postal Service, is offering a cancellation service to interested philatelists for the space flight programs at Kennedy.Philatelists who wish to avail themselves of this service may do so by following the procedures outlined below: Specify the event for which you wish this service. There is a limit of five covers per customer per event.

  19. A MODEL OF CORONAL STREAMERS WITH UNDERLYING FLUX ROPES

    SciTech Connect

    Cottaar, M.; Fan, Y.

    2009-10-10

    We present global two-dimensional axisymmetric isothermal MHD simulations of the dynamic evolution of a coronal helmet streamer, driven at the lower boundary by the emergence of a twisted flux rope. By varying both the detached toroidal and poloidal fluxes emerged into the corona, but fixing the normal flux distribution at the surface at the end of the emergence, we obtain solutions that either settle to a new steady state of a stable helmet streamer containing a flux rope, or result in a disruption of the helmet with the underlying flux rope being expelled in a coronal mass ejection (CME)-like eruption. In all of the cases studied, we find that the transition from a stable to an eruptive state takes place at a magnetic energy that is very close to the Aly open field energy. Furthermore, we find that the transition from a stable to an eruptive end state does not occur at a single critical value of the total relative magnetic helicity, but depends on the profile of the underlying flux rope. Cases where the detached flux rope contains a higher amount of self-helicity, i.e., higher internal twist or detached poloidal flux, are found to become eruptive at a significantly lower total helicity. For the eruptive cases, the detached flux rope after emergence first rises quasi-statically due to a gradual opening of the field lines at the edge of the streamer and a slow reconnection below the flux rope, which continues to slowly increase the amount of the detached flux. This decreases the downward magnetic tension on the flux rope. The dynamic eruption is initiated when the magnetic pressure gradient no longer decreases fast enough to balance the decrease in the magnetic tension. Later rapid reconnections below the flux rope are important for accelerating the flux rope. For the stable helmets, we find that no cavities are formed due to the simplifying assumption of isothermal energetics and the uniform density lower boundary condition. However during the eruption we see the

  20. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Hubbard, Kenneth G.; Verma, Shashi B.; Starks, Patrick; Norman, John M.; Walter-Shea, Elizabeth

    1987-01-01

    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning.

  1. A simple hydrologically based model of land surface water and energy fluxes for general circulation models

    NASA Technical Reports Server (NTRS)

    Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.

    1994-01-01

    A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

  2. Modeling the Relative Importance of Nutrient and Carbon Loads, Boundary Fluxes, and Sediment Fluxes on Gulf of Mexico Hypoxia.

    PubMed

    Feist, Timothy J; Pauer, James J; Melendez, Wilson; Lehrter, John C; DePetro, Phillip A; Rygwelski, Kenneth R; Ko, Dong S; Kreis, Russell G

    2016-08-16

    The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2). PMID:27406634

  3. Model sensitivity of ice flux over the grounding line to present-day climatic forcing and geothermal flux

    NASA Astrophysics Data System (ADS)

    Kleiner, Thomas; Humbert, Angelika

    2016-04-01

    Large uncertainties remain in the current and future contribution to sea level change from Antarctica from observations and numerical flow modelling. Within the SeaRISE project atmospheric, oceanic, and subglacial forcing scenarios were applied to different ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale. The scenario results have been compared to the individual state of each model at the end of its spin-up. It has been shown, that the model results highly depend on the chosen climate forcing and spin-up strategy. Here we use the Parallel Ice Sheet Model (PISM) to perform spin-up simulations across different data sets for present-day boundary conditions for the Antarctic Ice Sheet (surface temperature, surface mass balance and geothermal flux). The utilized spin-up methods include free evolving and geometry constrained simulations. Here we present our analysis of the ice flux over the grounding line for each set-up and compare the fluxes from large drainage basin units with estimates derived from remote sensing.

  4. Modeling the Relative Importance of Nutrient and Carbon Loads, Boundary Fluxes, and Sediment Fluxes on Gulf of Mexico Hypoxia.

    PubMed

    Feist, Timothy J; Pauer, James J; Melendez, Wilson; Lehrter, John C; DePetro, Phillip A; Rygwelski, Kenneth R; Ko, Dong S; Kreis, Russell G

    2016-08-16

    The Louisiana continental shelf in the northern Gulf of Mexico experiences bottom water hypoxia in the summer. In this study, we applied a biogeochemical model that simulates dissolved oxygen concentrations on the shelf in response to varying riverine nutrient and organic carbon loads, boundary fluxes, and sediment fluxes. Five-year model simulations demonstrated that midsummer hypoxic areas were most sensitive to riverine nutrient loads and sediment oxygen demand from settled organic carbon. Hypoxic area predictions were also sensitive to nutrient and organic carbon fluxes from lateral boundaries. The predicted hypoxic area decreased with decreases in nutrient loads, but the extent of change was influenced by the method used to estimate model boundary concentrations. We demonstrated that modeling efforts to predict changes in hypoxic area on the continental shelf in relationship to changes in nutrients should include representative boundary nutrient and organic carbon concentrations and functions for estimating sediment oxygen demand that are linked to settled organic carbon derived from water-column primary production. On the basis of our model analyses using the most representative boundary concentrations, nutrient loads would need to be reduced by 69% to achieve the Gulf of Mexico Nutrient Task Force Action Plan target hypoxic area of 5000 km(2).

  5. MODELS OF NEPTUNE-MASS EXOPLANETS: EMERGENT FLUXES AND ALBEDOS

    SciTech Connect

    Spiegel, David S.; Burrows, Adam; Ibgui, Laurent; Hubeny, Ivan; Milsom, John A. E-mail: burrows@astro.princeton.ed E-mail: hubeny@as.arizona.ed

    2010-01-20

    There are now many known exoplanets with Msin i within a factor of 2 of Neptune's, including the transiting planets GJ 436b and HAT-P-11b. Planets in this mass range are different from their more massive cousins in several ways that are relevant to their radiative properties and thermal structures. By analogy with Neptune and Uranus, they are likely to have metal abundances that are an order of magnitude or more greater than those of larger, more massive planets. This increases their opacity, decreases Rayleigh scattering, and changes their equation of state. Furthermore, their smaller radii mean that fluxes from these planets are roughly an order of magnitude lower than those of otherwise identical gas giant planets. Here, we compute a range of plausible radiative equilibrium models of GJ 436b and HAT-P-11b. In addition, we explore the dependence of generic Neptune-mass planets on a range of physical properties, including their distance from their host stars, their metallicity, the spectral type of their stars, the redistribution of heat in their atmospheres, and the possible presence of additional optical opacity in their upper atmospheres.

  6. Multi-property modeling of ocean basin carbon fluxes

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1988-01-01

    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.

  7. Heterogeneity of CH4 and net CO2 Fluxes Using Nested Chamber, Tower, Aircraft, Remote Sensing, and Modeling Approaches in Arctic Alaska for Regional Flux Estimation

    NASA Astrophysics Data System (ADS)

    Oechel, W. C.; Moreaux, V.; Kalhori, A. A. M.; Murphy, P.; Wilkman, E.; Sturtevant, C. S.; Zhuang, Q.; Miller, C. E.; Dinardo, S. J.; Fisher, J. B.; Gioli, B.; Zona, D.

    2014-12-01

    The topographic, environmental, biotic, and metabolic heterogeneity of terrestrial ecosystems and landscapes can be large even despite a seemingly homogeneous landscape. The error of estimating and simulating fluxes due to extant heterogeneity is commonly overlooked in regional and global estimates. Here we evaluate the pattern and controls on spatial heterogeneity on CH4 and CO2 fluxes over varying spatial scales. Data from the north slope of Alaska from chambers, up to a 16 year CO2 flux record from up to 7 permanent towers, over 20 portable tower locations, eddy covariance CH4 fluxes over several years and sites, new year-around CO2 and CH4 flux installations, hundreds of hours of aircraft concentration and fluxes, and terrestrial biosphere and flux inverse modeling, are used to evaluate the spatial variability of fluxes and to better estimate regional fluxes. Significant heterogeneity of fluxes is identified at varying scales from sub-meter scale to >100km. A careful consideration of the effect that heterogeneity causes when estimating ecosystem fluxes is critical to reliable regional and global estimates. The combination of eddy covariance tower flux, aircraft, remote sensing, and modeling can be used to provide reliable, accurate, regional assessments of CH4 and CO2 fluxes from large areas of heterogeneous landscape.

  8. Empirical models of the eddy heat flux and vertical shear on short time scales

    NASA Technical Reports Server (NTRS)

    Ghan, S. J.

    1984-01-01

    An intimate relation exists between the vertical shear and the horizontal eddy heat flux within the atmosphere. In the present investigation empirical means are employed to provide clues concerning the relationship between the shear and eddy heat flux. In particular, linear regression models are applied to individual and joint time series of the shear and eddy heat flux. These discrete models are used as a basis to infer continuous models. A description is provided of the observed relationship between the flux and the shear, taking into account means, standard deviations, and lag correction functions.

  9. Inverse Modeling of Hydrologic Parameters Using Surface Flux and Streamflow Observations in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L.

    2012-12-01

    This study aims at demonstrating the possibility of calibrating hydrologic parameters using surface flux and streamflow observations in version 4 of the Community Land Model (CLM4). Previously we showed that surface flux and streamflow calculations are sensitive to several key hydrologic parameters in CLM4, and discussed the necessity and possibility of parameter calibration. In this study, we evaluate performances of several different inversion strategies, including least-square fitting, quasi Monte-Carlo (QMC) sampling based Bayesian updating, and a Markov-Chain Monte-Carlo (MCMC) Bayesian inversion approach. The parameters to be calibrated include the surface and subsurface runoff generation parameters and vadose zone soil water parameters. We discuss the effects of surface flux and streamflow observations on the inversion results and compare their consistency and reliability using both monthly and daily observations at various flux tower and MOPEX sites. We find that the sampling-based stochastic inversion approaches behaved consistently - as more information comes in, the predictive intervals of the calibrated parameters as well as the misfits between the calculated and observed observations decrease. In general, the parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or streamflow observations. We also evaluated the possibility of probabilistic model averaging for more consistent parameter estimation.

  10. Scientific Visualization to Study Flux Transfer Events at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Rastatter, Lutz; Kuznetsova, Maria M.; Sibeck, David G.; Berrios, David H.

    2011-01-01

    In this paper we present results of modeling of reconnection at the dayside magnetopause with subsequent development of flux transfer event signatures. The tools used include new methods that have been added to the suite of visualization methods that are used at the Community Coordinated Modeling Center (CCMC). Flux transfer events result from localized reconnection that connect magnetosheath magnetic field and plasma with magnetospheric fields and plasma and results in flux rope structures that span the dayside magnetopause. The onset of flux rope formation and the three-dimensional structure of flux ropes are studied as they have been modeled by high-resolution magnetohydrodynamic simulations of the dayside magnetosphere of the Earth. We show that flux transfer events are complex three-dimensional structures that require modern visualization and analysis techniques. Two suites of visualization methods are presented and we demonstrate the usefulness of those methods through the CCMC web site to the general science user.

  11. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  12. The Integrated Storage-Flux Model For Groundwater Storage and Baseflow Dynamics

    NASA Astrophysics Data System (ADS)

    Lee, D.; Lee, J.

    2002-12-01

    The integrated storage-flux model is proposed based on the storage-flux relations and tested against the Richards equation in the idealized stream-aquifer system. The groundwater storage-baseflow relation and soil water storage-effective infiltration relation are identified by numerical analysis of the Richards equation under the steady-state conditions. The relationship between groundwater and baseflow exhibits a linear relation, while the relationship between soil water storage and effective rainfall is appeared to be the inverse linear relation. This inverse linear relation agrees with the results of Duffy (1996) and Lee (1993) who investigated the storage-flux relations on the hillslope terrain. The integrated storage-flux model is constructed by coupling the storage-flux relation with water balance equation. The coefficients of the integrated storage-flux model are based on the steady-state storage-flux relations and are calibrated against the response of the Richards equation. Under the step input condition, the dynamic response of the integrated storage-flux model agrees favorably with that of Richards equation. The development of the integrated storage-flux model has implication for predicting the groundwater storage and baseflow when the limited hydro-geologic data are available. Acknowledgement This research was supported by a grant (2-2-1) from Sustainable Water Resources Research Center of 21st Century Frontier Research Program.

  13. Constrained adaptation for feedback cancellation in hearing aids.

    PubMed

    Kates, J M

    1999-08-01

    In feedback cancellation in hearing aids, an adaptive filter is used to model the feedback path. The output of the adaptive filter is subtracted from the microphone signal to cancel the acoustic and mechanical feedback picked up by the microphone, thus allowing more gain in the hearing aid. In general, the feedback-cancellation filter adapts on the hearing-aid input signal, and signal cancellation and coloration artifacts can occur for a narrow-band input. In this paper, two procedures for LMS adaptation with a constraint on the magnitude of the adaptive weight vector are derived. The constraints greatly reduce the probability that the adaptive filter will cancel a narrow-band input. Simulation results are used to demonstrate the efficacy of the constrained adaptation. PMID:10462806

  14. Canceling planned action: an FMRI study of countermanding saccades.

    PubMed

    Curtis, Clayton E; Cole, Michael W; Rao, Vikas Y; D'Esposito, Mark

    2005-09-01

    We investigated the voluntary control of motor behavior by studying the process of deciding whether or not to execute a movement. We imaged the human dorsal cortex while subjects performed a countermanding task that allowed us to manipulate the probability that subjects would be able to cancel a planned saccade in response to an imperative stop signal. We modeled the behavioral data as a race between gaze-shifting mechanisms and gaze-holding mechanisms towards a finish line where a saccade is generated or canceled, and estimated that saccade cancelation took approximately 160 ms. The frontal eye fields showed greater activation on stop signal trials regardless of successful cancelation, suggesting coactivation of saccade and fixation mechanisms. The supplementary eye fields, however, distinguished between successful and unsuccessful cancelation, suggesting a role in monitoring performance. These oculomotor regions play distinct roles in the decision processes mediating saccadic choice. PMID:15616130

  15. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    NASA Astrophysics Data System (ADS)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  16. Flux tube train model for local turbulence simulation of toroidal plasmas

    SciTech Connect

    Watanabe, T.-H.; Sugama, H.; Ishizawa, A.; Nunami, M.

    2015-02-15

    A new simulation method for local turbulence in toroidal plasmas is developed by extending the conventional idea of the flux tube model. In the new approach, a train of flux tubes is employed, where flux tube simulation boxes are serially connected at each end along a field line so as to preserve a symmetry of the local gyrokinetic equations for image modes in an axisymmetric torus. Validity of the flux tube train model is confirmed against the toroidal ion temperature gradient turbulence for a case with a long parallel correlation of fluctuations, demonstrating numerical advantages over the conventional method in the time step size and the symmetry-preserving property.

  17. Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial

    NASA Astrophysics Data System (ADS)

    McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan

    2013-04-01

    loss after land use change at 100 fieldsites which encapsulate a range of UK climates and soil types. Our overall objective is to use our measured data to parameterise and validate the models that we will use to predict the implications of bioenergy crop deployment in the UK up to 2050. The resultant output will be a meta-model which will help facilitate decision making on the sustainable development of bioenergy in the UK, with potential deployment in other temperate climates around the world. Here we report on the outcome of the first of three years of work. This work is based on the Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial (ELUM) project, which was commissioned and funded by the Energy Technologies Institute (ETI). Don et al. (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4, 372-379.

  18. The Surface Heat Flux as a Function of Ground Cover for Climate Models

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Wayland, Robert; Toll, David

    1997-01-01

    Surface heat fluxes were examined as a function of surface properties and meteorological conditions in a 100 km x 100 km grid square at 1-km spatial resolution centered at the location of the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE), the Forest Ecosystem Dynamics site in central Maine, and a semiarid rangeland site around Walnut Gulch, Arizona. This investigation treats the surface heat flux variability within a GCM grid box to provide insight into methods for treating that variability in climate models. The heat fluxes were calculated using NOAA AVHRR and available meteorological data. The average heat fluxes that were estimated using the various area ground-cover representations were compared with the ensemble average heat fluxes for the entire area, which were assumed to be the best representation of the heat fluxes for the areas. Average beat fluxes were estimated for the entire 100 km x 100 km area based on a single ground-cover representation, and the mean error for the area sensible heat flux was about 10% and for the area latent heat flux, 21%. The estimation error was reduced, and in some cases significantly reduced, when the area heat fluxes were estimated by partitioning the area according to significant ground cover. The most significant effect of the partitioning was on the latent heat flux estimates.

  19. A conceptual model of ocean freshwater flux derived from sea surface salinity

    NASA Astrophysics Data System (ADS)

    Nieves, V.; Wang, J.; Willis, J. K.

    2014-09-01

    A conceptual model is proposed to express freshwater flux (evaporation minus precipitation) as a function of sea surface salinity (and vice versa). The model is formulated using an idealized one-dimensional diffusion equation for the ocean surface layer. It is shown to provide good agreement with existing freshwater flux estimates and salinity observations. It also has the potential to enhance our capability of monitoring and modeling global freshwater fluxes and salinity as a data retrieval algorithm for remote sensing. The model may improve physical parameterization in coupled ocean-atmosphere models to study the global water cycle.

  20. International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling

    NASA Astrophysics Data System (ADS)

    Bais, A. F.; Madronich, S.; Crawford, J.; Hall, S. R.; Mayer, B.; van Weele, M.; Lenoble, J.; Calvert, J. G.; Cantrell, C. A.; Shetter, R. E.; Hofzumahaus, A.; Koepke, P.; Monks, P. S.; Frost, G.; McKenzie, R.; Krotkov, N.; Kylling, A.; Swartz, W. H.; Lloyd, S.; Pfister, G.; Martin, T. J.; Roeth, E.-P.; Griffioen, E.; Ruggaber, A.; Krol, M.; Kraus, A.; Edwards, G. D.; Mueller, M.; Lefer, B. L.; Johnston, P.; Schwander, H.; Flittner, D.; Gardiner, B. G.; Barrick, J.; Schmitt, R.

    2003-08-01

    The International Photolysis Frequency Measurement and Model Intercomparison (IPMMI) took place in Boulder, Colorado, from 15 to 19 June 1998, aiming to investigate the level of accuracy of photolysis frequency and spectral downwelling actinic flux measurements and to explore the ability of radiative transfer models to reproduce the measurements. During this period, 2 days were selected to compare model calculations with measurements, one cloud-free and one cloudy. A series of ancillary measurements were also performed and provided parameters required as input to the models. Both measurements and modeling were blind, in the sense that no exchanges of data or calculations were allowed among the participants, and the results were objectively analyzed and compared by two independent referees. The objective of this paper is, first, to present the results of comparisons made between measured and modeled downwelling actinic flux and irradiance spectra and, second, to investigate the reasons for which some of the models or measurements deviate from the others. For clear skies the relative agreement between the 16 models depends strongly on solar zenith angle (SZA) and wavelength as well as on the input parameters used, like the extraterrestrial (ET) solar flux and the absorption cross sections. The majority of the models (11) agreed to within about ±6% for solar zenith angles smaller than ˜60°. The agreement among the measured spectra depends on the optical characteristics of the instruments (e.g., slit function, stray light rejection, and sensitivity). After transforming the measurements to a common spectral resolution, two of the three participating spectroradiometers agree to within ˜10% for wavelengths longer than 310 nm and at all solar zenith angles, while their differences increase when moving to shorter wavelengths. Most models agree well with the measurements (both downwelling actinic flux and global irradiance), especially at local noon, where the agreement

  1. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; Zhou, Tiehan

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  2. Models of flux in porous media with memory

    NASA Astrophysics Data System (ADS)

    Caputo, Michele

    2000-03-01

    Some data on the flow of fluids in rocks exhibit properties which may not be interpreted with the classic theory of propagation of pressure and of fluids in porous media [Bell and Nur, 1978; Roeloffs, 1988] based on Darcy's law, which states that the flux is proportional to the pressure gradient. Concerning the fluids, some may react chemically with the medium enlarging the pores; some carry solid particles, which may obstruct some of the pores; and finally, some may precipitate minerals in the pores diminishing their size or even closing them as in geothermal areas. These phenomena create a spatially variable pattern of mineralization and permeability changes that can be localized. In order to obtain a better representation of the flux and of the pressure of fluids, Darcy's law is modified, introducing general memory formalisms operating on the flow as well as on the pressure gradient, which imply a filtering of the pressure gradient without singularities. We also modify the second constitutive equation of diffusion, which relates the density variations of the fluid to the pressure, by introducing a rheology in the fluid also represented by memory formalisms operating on the pressure as well as on the density variations. The memory formalisms are then specified as derivatives of fractional order. The equations used here for the diffusion of fluids are different from the classic ones; however, the equation governing the diffusion of the pressure is the same as that of the flux, as in the classic case. For technical reasons the majority of the studies on diffusion is devoted to the diffusion of the pressure of the fluid rather than to the flux; in this paper we shall devote our attention to studying the flux and its spectral properties in a practical example seeing that the memory used implies a low-pass filtering of the flux or a band pass centered in the low-frequency range. A half space is considered where the boundary values are applied to the plane limiting it

  3. A framework to utilize turbulent flux measurements for mesoscale models and remote sensing applications

    NASA Astrophysics Data System (ADS)

    Babel, W.; Huneke, S.; Foken, T.

    2011-05-01

    Meteorologically measured fluxes of energy and matter between the surface and the atmosphere originate from a source area of certain extent, located in the upwind sector of the device. The spatial representativeness of such measurements is strongly influenced by the heterogeneity of the landscape. The footprint concept is capable of linking observed data with spatial heterogeneity. This study aims at upscaling eddy covariance derived fluxes to a grid size of 1 km edge length, which is typical for mesoscale models or low resolution remote sensing data. Here an upscaling strategy is presented, utilizing footprint modelling and SVAT modelling as well as observations from a target land-use area. The general idea of this scheme is to model fluxes from adjacent land-use types and combine them with the measured flux data to yield a grid representative flux according to the land-use distribution within the grid cell. The performance of the upscaling routine is evaluated with real datasets, which are considered to be land-use specific fluxes in a grid cell. The measurements above rye and maize fields stem from the LITFASS experiment 2003 in Lindenberg, Germany and the respective modelled timeseries were derived by the SVAT model SEWAB. Contributions from each land-use type to the observations are estimated using a forward lagrangian stochastic model. A representation error is defined as the error in flux estimates made when accepting the measurements unchanged as grid representative flux and ignoring flux contributions from other land-use types within the respective grid cell. Results show that this representation error can be reduced up to 56 % when applying the spatial integration. This shows the potential for further application of this strategy, although the absolute differences between flux observations from rye and maize were so small, that the spatial integration would be rejected in a real situation. Corresponding thresholds for this decision have been estimated as

  4. The association of flares to cancelling magnetic features on the sun

    NASA Technical Reports Server (NTRS)

    Livi, Silvia H. B.; Martin, Sara; Wang, Haimin; Ai, Guoxiang

    1989-01-01

    Previous work relating flares to evolutionary changes of photospheric solar magnetic fields are reviewed and reinterpreted in the light of recent observations of canceling magnetic fields. The results show that cancelation happens with fields spanning a wide range of magnetic field strengths. Flares of all magnitudes begin adjacent to cancelation sites, whether the associated active region as a whole is developing or decaying. Both small and big flares are initiated near canceling sites, from the microflares associated with ephemeral regions to the kernels of the great flares. Canceling magnetic flux is observed or deduced to be the common denominator among all observed associations of flares to changing magnetic fields. It is proposed that canceling magnetic fields are a necessary evolutionary condition for the initiation of solar flares.

  5. Modeling energy and mass fluxes from prairie canopies

    NASA Technical Reports Server (NTRS)

    Norman, John M.

    1992-01-01

    The main emphasis of this research project is on partitioning of mass and energy fluxes between vegetation and soil at the FIFE site, preparation of data from the FIFE Information System for an international thermal data set comparison, and studying the relation between surface temperatures observed from satellites and in situ measurements of surface temperature.

  6. Passive magnetic field cancellation device by multiple high-Tc superconducting coils

    NASA Astrophysics Data System (ADS)

    Gu, C.; Zou, S.; Han, Z.; Qu, T.-M.

    2010-04-01

    A passive magnetic field cancellation device (PMFCD) is designed. The PMFCD could automatically cancel the field as an active cancellation system did; however it requires no power sources and feedback systems. The capability of the PMFCD is based on the principle that a closed loop can resist flux variation and keep the flux constant inside. The closed loop in the PMFCD is formed by connecting two pairs of high temperature superconductor Helmholtz coils with different radii in series. More important thing is that the ratio of the radius and the turn number between the coils has to satisfy a number of conditions, with which 100% cancellation can be reached. Theoretical methods to obtain the turn number ratio and radius ratio are the major part of the paper. Numerical simulation was followed, aiming to evaluate field distribution under a cancellation state and correct the theoretical values.

  7. Prediction of methyl bromide flux from area sources using the ISCST model

    SciTech Connect

    Ross, L.J.; Johnson, B.; Kim, K.D.; Hsu, J.

    1996-07-01

    Growing concern about atmospheric exposure of humans to pesticides has led to increased air monitoring in California. Air monitoring data typically consist of measurements made downwind from point or area sources. The utility of monitoring at fixed stations is limited for establishing buffer zones to protect neighboring populations from pesticide exposure. A modeling approach designed to use these data would provide the flexibility needed to establish buffer zones. The Industrial Source Complex Short Term (ISCST) model is a gaussian plume dispersion model that predicts air concentrations around point or area sources using emission rates (flux) and meteorological conditions as model inputs. The flux data, however, are typically not collected in the field nor available in the literature. In order to use the field data currently available, we developed a procedure using methyl bromide (MeBr) concentrations around two area sources and the ISCST model, to back-calculate flux. In addition, MeBr flux was measured concurrently by cooperators conducting an independent study. Air concentrations, together with actual meteorological data, were used as inputs to the ISCST model. Flux of MeBr was then back-calculated using a two step process: (1) an arbitrary flux value of 100 {mu}g m{sup {minus}2} s{sup {minus}1} was used as an initial input value. Resultant air concentrations predicted by the model were then regressed on air concentrations predicted by the model were then regressed on air concentrations measured offsite and (2) the resultant regression coefficient was then used to adjust the arbitrary flux to a back-calculated flux. Using another regression analysis, back-calculated and measured flux rates were found to be significantly correlated, indicating this approach may be suitable for indirect estimation of flux. Implications for the use of this method in establishing buffer zones designed to protect human health are discussed. 14 refs., 5 figs., 1 tab.

  8. Room reverberation effects in hearing aid feedback cancellation.

    PubMed

    Kates, J M

    2001-01-01

    Room reverberation can affect feedback cancellation in hearing aids, with the strength of the effects depending on the acoustical conditions. These effects were studied using a behind the ear (BTE) hearing aid mounted on a dummy head and coupled to the ear canal via an open fitting. The hearing aid impulse response was measured for the dummy head placed at eight closely spaced locations in a typical office. The feedback cancellation in the hearing aid used a set of filter coefficients that were initialized for one location within the room, and then allowed to adapt to the feedback path measured at the same or to a different location. The maximum stable gain for the hearing aid was then estimated without feedback cancellation, for the initial set of feedback cancellation filter coefficients prior to adaptation, and for the feedback cancellation filter after adaptation. A low-order ARMA model combining a fixed set of poles with an adaptive FIR filter is shown to be effective in representing the feedback path exclusive of reverberation. Increasing the adaptive filter length has only a small benefit in improving the feedback cancellation performance due to the inability of the system to model the room reverberation. The mismatch between the modeled and actual feedback paths limits the headroom increase that can be achieved when using feedback cancellation, and varies with the location within the room. PMID:11206165

  9. Inverse modeling of Asian (222)Rn flux using surface air (222)Rn concentration.

    PubMed

    Hirao, Shigekazu; Yamazawa, Hiromi; Moriizumi, Jun

    2010-11-01

    When used with an atmospheric transport model, the (222)Rn flux distribution estimated in our previous study using soil transport theory caused underestimation of atmospheric (222)Rn concentrations as compared with measurements in East Asia. In this study, we applied a Bayesian synthesis inverse method to produce revised estimates of the annual (222)Rn flux density in Asia by using atmospheric (222)Rn concentrations measured at seven sites in East Asia. The Bayesian synthesis inverse method requires a prior estimate of the flux distribution and its uncertainties. The atmospheric transport model MM5/HIRAT and our previous estimate of the (222)Rn flux distribution as the prior value were used to generate new flux estimates for the eastern half of the Eurasian continent dividing into 10 regions. The (222)Rn flux densities estimated using the Bayesian inversion technique were generally higher than the prior flux densities. The area-weighted average (222)Rn flux density for Asia was estimated to be 33.0 mBq m(-2) s(-1), which is substantially higher than the prior value (16.7 mBq m(-2) s(-1)). The estimated (222)Rn flux densities decrease with increasing latitude as follows: Southeast Asia (36.7 mBq m(-2) s(-1)); East Asia (28.6 mBq m(-2) s(-1)) including China, Korean Peninsula and Japan; and Siberia (14.1 mBq m(-2) s(-1)). Increase of the newly estimated fluxes in Southeast Asia, China, Japan, and the southern part of Eastern Siberia from the prior ones contributed most significantly to improved agreement of the model-calculated concentrations with the atmospheric measurements. The sensitivity analysis of prior flux errors and effects of locally exhaled (222)Rn showed that the estimated fluxes in Northern and Central China, Korea, Japan, and the southern part of Eastern Siberia were robust, but that in Central Asia had a large uncertainty.

  10. Measurement of drag and its cancellation

    NASA Astrophysics Data System (ADS)

    DeBra, D. B.; Conklin, J. W.

    2011-05-01

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)—still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  11. Experimental Demonstration of Underwater Acoustic Scattering Cancellation

    PubMed Central

    Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2015-01-01

    We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067

  12. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.

    PubMed

    Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd

    2014-11-01

    Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications.

  13. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. R.

    2013-04-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  14. 43 CFR 3601.62 - Cancellation procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Contract and Permit Cancellation § 3601.62 Cancellation procedure....

  15. 43 CFR 3601.62 - Cancellation procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Contract and Permit Cancellation § 3601.62 Cancellation procedure....

  16. Cancellous Screws Are Biomechanically Superior to Cortical Screws in Metaphyseal Bone.

    PubMed

    Wang, Tim; Boone, Christopher; Behn, Anthony W; Ledesma, Justin B; Bishop, Julius A

    2016-09-01

    Cancellous screws are designed to optimize fixation in metaphyseal bone environments; however, certain clinical situations may require the substitution of cortical screws for use in cancellous bone, such as anatomic constraints, fragment size, or available instrumentation. This study compares the biomechanical properties of commercially available cortical and cancellous screw designs in a synthetic model representing various bone densities. Commercially available, fully threaded, 4.0-mm outer-diameter cortical and cancellous screws were tested in terms of pullout strength and maximum insertion torque in standard-density and osteoporotic cancellous bone models. Pullout strength and maximum insertion torque were both found to be greater for cancellous screws than cortical screws in all synthetic densities tested. The magnitude of difference in pullout strength between cortical and cancellous screws increased with decreasing synthetic bone density. Screw displacement prior to failure and total energy absorbed during pullout strength testing were also significantly greater for cancellous screws in osteoporotic models. Stiffness was greater for cancellous screws in standard and osteoporotic models. Cancellous screws have biomechanical advantages over cortical screws when used in metaphyseal bone, implying the ability to both achieve greater compression and resist displacement at the screw-plate interface. Surgeons should preferentially use cancellous over cortical screws in metaphyseal environments where cortical bone is insufficient for fixation. [Orthopedics.2016; 39(5):e828-e832.].

  17. Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis

    NASA Astrophysics Data System (ADS)

    Simms, Laura E.; Engebretson, Mark J.; Pilipenko, Viacheslav; Reeves, Geoffrey D.; Clilverd, Mark

    2016-04-01

    The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF Bz, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the prediction of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). A path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current (Dst), AE, and wave activity.

  18. Large scale, regional, CH4 and net CO2 fluxes using nested chamber, tower, aircraft flux, remote sensing, and modeling approaches in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Oechel, Walter; Moreaux, Virginie; Kalhori, Aram; Losacco, Salvatore; Murphy, Patrick; Wilkman, Eric; Zona, Donatella

    2014-05-01

    The topographic, environmental, biotic, and metabolic heterogeneity of terrestrial ecosystems and landscapes can be large even despite a seemingly homogeneous landscape. The error of estimating and simulating fluxes due to extant heterogeneity is commonly overlooked in regional and global estimates. We evaluate the pattern and controls on spatial heterogeneity on GHG fluxes over varying spatial scales and compare to standard estimates of NEE and other greenhouse gas fluxes. Data from the north slope of Alaska from up to a 16 year flux record from up to 7 permanent towers, over 20 portable tower locations, and hundreds of hours of aircraft fluxes, are used to evaluate the spatial variability of fluxes and to better estimate regional fluxes. Significant heterogeneity of fluxes is identified at varying scales from sub-meter scale to >100km. A careful consideration of the effect that heterogeneity causes when estimating ecosystem fluxes is critical to reliable regional and global estimates. The combination of tower, flux aircraft, remote sensing, and modeling can be used to provide reliable, accurate, regional assessments of CH4and CO2 fluxes or large areas of heterogeneous landscape.

  19. Electron Flux Models at GEO: 30 keV - 600 keV

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Ganushkina, N. Y.

    2015-12-01

    Forecast models are developed for the electron fluxes measured by the Magnetospheric Electron Detector (MagED) onboard the Geostationary Operational Environmental Satellite (GOES) 13. The models employ solar wind and geomagnetic indices as inputs to produce a forecast of the electron flux at Geostationary Earth Orbit (GEO) for five energy ranges from 30 keV - 600 keV. All of these models will be implemented in real time to forecast the electron fluxes on the PROGRESS project website (https://ssg.group.shef.ac.uk/progress2/html/index.phtml).

  20. A simple model for the interaction between vertical eddy heat fluxes and static stability

    NASA Technical Reports Server (NTRS)

    Gutowski, W. J., Jr.

    1985-01-01

    A numerical model for studying the interaction of vertical eddy heat fluxes and vertical temperature structure in midlatitude regions is described. The temperature profile for the model was derived from calculations of the equilibrium among heating rates in simplified representations of large-scale vertical eddy heat flux, moist convection and radiation. An eddy flux profile is calculated based on the quasi-geostrophic, liner baroclinic instability of a single wave. Model equilibrium states for summer and winter conditions are compared with observations, and the results are discussed in detail.

  1. A non-linear algebraic model for the turbulent scalar fluxes

    SciTech Connect

    Younis, B.A.; Speziale, C.G.; Clark, T.T.

    1995-09-01

    The need for a new approach to modelling the scalar fluxes stems from the lack of realism in the performance of the simple gradient-transport models and the inadequacy of many of the assumptions underlying the more complicated scalar-flux transport closures. The problems with the simple gradient-transport closures are well known. In models of this type, the scalar fluxes are related to the mean scalar field via a scalar turbulent diffusivity. The purpose of this paper is to report on a novel approach to the modelling of the turbulent scalar fluxes (u{sub i}{theta}) which arise as a consequence of time averaging the transport equation for a mean scalar ({Theta}). The focus of this paper will be on the case where {Theta} is a `passive` scalar; the extension of this approach to cases involving buoyancy and compressibility will be briefly discussed. Models of this type fail badly in complex and strongly-buoyant flows.

  2. Modeling Shock Propagation to the Outer Heliosphere Including Heat Flux and Pickup Protons

    NASA Astrophysics Data System (ADS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-12-01

    We compare different models of solar wind heat flux in the distant heliosphere in the context of simulating the propagation of the strong Halloween 2003 solar events to ACE, Ulysses, Cassini, and Voyager 2. We will modify our time-dependent, 3D MHD Hybrid Heliospheric Modeling System with Pickup Ions, HHMS-PI (Detman, et al.,JGR, 2011; Intriligator, et al., JGR, 2012) by installing an approximation of the Hollweg Collisionless Electron Heat Flux model (Hollweg, JGR, 1976). We evaluate each simulation against observations at ACE, Ulysses, and Voyager 2. We will compare results from HHMS-PI with heat flux against our previous results. We then plan to make similar comparisons with other heat flux models, e.g. the model based on field magnitude by Scime, et al., (JGR, 1995).

  3. Assessing FPAR Source and Parameter Optimization Scheme in Application of a Diagnostic Carbon Flux Model

    SciTech Connect

    Turner, D P; Ritts, W D; Wharton, S; Thomas, C; Monson, R; Black, T A

    2009-02-26

    The combination of satellite remote sensing and carbon cycle models provides an opportunity for regional to global scale monitoring of terrestrial gross primary production, ecosystem respiration, and net ecosystem production. FPAR (the fraction of photosynthetically active radiation absorbed by the plant canopy) is a critical input to diagnostic models, however little is known about the relative effectiveness of FPAR products from different satellite sensors nor about the sensitivity of flux estimates to different parameterization approaches. In this study, we used multiyear observations of carbon flux at four eddy covariance flux tower sites within the conifer biome to evaluate these factors. FPAR products from the MODIS and SeaWiFS sensors, and the effects of single site vs. cross-site parameter optimization were tested with the CFLUX model. The SeaWiFs FPAR product showed greater dynamic range across sites and resulted in slightly reduced flux estimation errors relative to the MODIS product when using cross-site optimization. With site-specific parameter optimization, the flux model was effective in capturing seasonal and interannual variation in the carbon fluxes at these sites. The cross-site prediction errors were lower when using parameters from a cross-site optimization compared to parameter sets from optimization at single sites. These results support the practice of multisite optimization within a biome for parameterization of diagnostic carbon flux models.

  4. Revisit of the Global Surface Energy Balance Using the MEP Model of Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Wang, J.; Park, T. W.; Ming, Y.

    2015-12-01

    The recently proposed model of surface heat fluxes, based on the theory of maximum entropy production (MEP), was used to estimate the global evapotranspiration (ET) and heat fluxes. Compared to bulk transfer models, the MEP model has several remote-sensing-friendly features including fewer input variables, automatic closure of surface energy budget, being independent of bulk gradients of temperature and water vapor, not using wind speed and surface roughness as model parameters, and being less sensitive to uncertainties of input variables and model parameters. The MEP model is formulated for the entire range of soil moisture from dryness to saturation over the land surfaces and has even more advantages over water-snow-ice surfaces compared to traditional methods due to its independence of surface humidity data. The MEP model provides the first global maps of water heat fluxes at ocean surfaces as well as conductive heat fluxes at snow/ice covered polar regions. Ten years of Clouds and the Earth's Radiant Energy System (CERES) earth surface radiation fluxes, surface temperature data products supplemented (when needed) by the Modern-Era Retrospective analysis for Research and Applications (MERRA) surface specific humidity data are used to test the MEP model by comparing the MEP based global annual ET and heat fluxes with existing products. The MEP based fluxes over land surfaces agree closely with previous studies. Over the oceans, the MEP modeled ET tends to be lower than previous estimates while those of sensible heat fluxes are in close agreement with previous studies. A counterpart, "off-line" analysis is also carried out using the NOAA GFDL climate model output from a control experiment and a "warming" experiment. Substantial differences in the warming-related changes of ET and Bowen ratio are found over regions such as North Africa and the southwestern U.S. The implications of these differences for understanding trends and variability in regional energy and

  5. Inverse modeling analysis of regional methane fluxes using GOSAT retrievals in 2010-2012

    NASA Astrophysics Data System (ADS)

    KIM, H. S.; Maksyutov, S. S.; Belikov, D.; Ito, A.; Morino, I.; Yoshida, Y.; Yokota, T.; Sasakawa, M.; Machida, T.

    2015-12-01

    Our inverse modeling system estimated monthly regional CH4 fluxes during the period 2010-2012, based on ground-based observations and GOSAT retrievals (called Inv.GG). With adding GOSAT retrievals to the flux estimation, we found enhanced fluxes in tropical Africa (17% from a priori and 10% from flux estimates using ground-based observations only, called Inv.GB), tropical and subtropical South America (12% and 9% respectively), and East Asia (21% and 6% respectively), but lowered fluxes in South and Southeast Asia (12% and 14% respectively). Overall, a larger year-to-year variation of estimated fluxes was found in Inv.GG. In 2010, raging fires occurred in Brazil and Bolivia under severe drought, and the highest biomass burning fluxes in central part of South America were estimated in 2010 during the simulation period 2010-2012. The intensity of the 2010 biomass burning flux was enhanced in Inv.GG compared with a priori of GFED v3.1 and Inv.GB. In Russia, two fire events occurred in 2010 and 2012 under very hot and relatively dry condition. The 2010 fires occurred over European Russia, and a large departure from the GFED estimates was not shown in both Inv.GB and Inv.GG. For the 2012 fires in eastern and central Russia, the severity was explained by the 2012 highest biomass burning fluxes over Siberia during the simulation period 2010-2012. The biomass burning fluxes in Inv.GG were similar to a priori, but lower than Inv.GB (particularly in the eastern part of Siberia). In Inv.GG, the Jun-Aug biomass burning fluxes account for ~14% of the annual mean Siberian total flux in 2010-2012.

  6. Modeling scalar flux and the energy and dissipation equations

    NASA Technical Reports Server (NTRS)

    Yoshizawa, A.

    1987-01-01

    Closure models derived from the Two-Scale Direct-Interaction Approximation were compared with data from direct simulations of turbulence. Attention was restricted to anisotropic scalar diffusion models, models for the energy dissipation equation, and models for energy diffusion.

  7. Towards a Data-Optimized Coronal Magnetic Field Model (DOC-FM): Simulating Flux Ropes with the Flux Rope Insertion Method

    NASA Astrophysics Data System (ADS)

    Dalmasse, K.; DeLuca, E. E.; Savcheva, A. S.; Gibson, S. E.; Fan, Y.

    2015-12-01

    Knowledge of the 3D magnetic filed structure at the time of major solar eruptions is vital or understanding of the space weather effects of these eruptions. Multiple data-constrained techniques that reconstruct the 3D coronal field based on photospheric magnetograms have been used to achieve this goal. In particular, we have used the flux rope insertion method to obtain the coronal magnetic field of multiple regions containing flux ropes or sheared arcades based on line-of-sight magnetograms and X-ray and EUV observations of coronal loops. For the purpose of developing statistical measures of the goodness of fit of these models to the observations, here we present our modeling of flux ropes based on synthetic magnetograms obtained from Fan & Gibson emerging flux rope simulation. The goal is to reproduce the flux rope structure from a given time step of the MHD simulations based only on the photospheric magnetogram and synthetic forward modeled coronal emission obtained from the same step of the MHD simulation. For this purpose we create a large grid of models with the flux rope insertion method with different combinations of axial and poloidal flux, which give us different morphology of the flux rope. Then we compare the synthetic coronal emission with the shape of the current distribution and field lines from the models to come up with a best fit. This fit is then tested using the statistical methods developed by our team.

  8. The truth is out there: measured, calculated and modelled benthic fluxes.

    NASA Astrophysics Data System (ADS)

    Pakhomova, Svetlana; Protsenko, Elizaveta

    2016-04-01

    In a modern Earth science there is a great importance of understanding the processes, forming the benthic fluxes as one of element sources or sinks to or from the water body, which affects the elements balance in the water system. There are several ways to assess benthic fluxes and here we try to compare the results obtained by chamber experiments, calculated from porewater distributions and simulated with model. Benthic fluxes of dissolved elements (oxygen, nitrogen species, phosphate, silicate, alkalinity, iron and manganese species) were studied in the Baltic and Black Seas from 2000 to 2005. Fluxes were measured in situ using chamber incubations (Jch) and at the same time sediment cores were collected to assess the porewater distribution at different depths to calculate diffusive fluxes (Jpw). Model study was carried out with benthic-pelagic biogeochemical model BROM (O-N-P-Si-C-S-Mn-Fe redox model). It was applied to simulate biogeochemical structure of the water column and upper sediment and to assess the vertical fluxes (Jmd). By the behaviour at the water-sediment interface all studied elements can be divided into three groups: (1) elements which benthic fluxes are determined by the concentrations gradient only (Si, Mn), (2) elements which fluxes depend on redox conditions in the bottom water (Fe, PO4, NH4), and (3) elements which fluxes are strongly connected with organic matter fate (O2, Alk, NH4). For the first group it was found that measured fluxes are always higher than calculated diffusive fluxes (1.5flux. In this case bioturbation, bioirrigation and advection should be taken into account. For the second group measured fluxes can be both much lower (practically absent) and much higher than calculated diffusive fluxes (0.01

  9. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Verma, Shashi B.; Hubbard, Kenneth G.; Starks, Patrick; Hays, Cynthia; Norman, John M.; Waltershea, Elizabeth

    1988-01-01

    The primary objectives of the 1985 study were to test the feasibility of using radio frequency receivers to collect data from automated weather stations and to evaluate the use of the data collected by the automated weather stations for modeling the fluxes of latent heat, sensible heat, and radiation over wheat. The model Cupid was used to calculate these fluxes which were compared with fluxes of these entities measured using micrometeorological techniques. The primary objectives of the 1986 study were to measure and model reflected and emitted radiation streams at a few locations within the First International Satellite Land-Surface Climatology Project Field Experiment (FIFE) site and to compare modeled and measured latent heat and sensible heat fluxes from the prairie vegetation.

  10. Analytical models for the groundwater tidal prism and associated benthic water flux

    USGS Publications Warehouse

    King, Jeffrey N.; Mehta, Ashish J.; Dean, Robert G.

    2010-01-01

    The groundwater tidal prism is defined as the volume of water that inundates a porous medium, forced by one tidal oscillation in surface water. The pressure gradient that generates the prism acts on the subterranean estuary. Analytical models for the groundwater tidal prism and associated benthic flux are presented. The prism and flux are shown to be directly proportional to porosity, tidal amplitude, and the length of the groundwater wave; flux is inversely proportional to tidal period. The duration of discharge flux exceeds the duration of recharge flux over one tidal period; and discharge flux continues for some time following low tide. Models compare favorably with laboratory observations and are applied to a South Atlantic Bight study area, where tide generates an 11-m3 groundwater tidal prism per m of shoreline, and drives 81 m3 s −1 to the study area, which describes 23% of an observational estimate. In a marine water body, the discharge component of any oscillatory benthic water flux is submarine groundwater discharge. Benthic flux transports constituents between groundwater and surface water, and is a process by which pollutant loading and saltwater intrusion may occur in coastal areas.

  11. Evaluation of the Community Land Model simulated carbon and water fluxes against observations over ChinaFLUX sites

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Mao, J.; Shi, X.; Ricciuto, D. M.; He, H.; Thornton, P. E.; Yu, G.; Han, S.; Li, Y.; Yan, J.; Hao, Y.; Wang, H.

    2014-12-01

    The Community Land Model (CLM) is an advanced process-based land surface model that simulates the complicated carbon, water vapor and energy exchanges between the terrestrial ecosystem and the atmosphere at various spatial-temporal scales. We for the first time use eddy-covariance observations of CO2 and water vapor exchange and soil respiration measurements at five representative Chinese Terrestrial Ecosystem Flux Observational Network (ChinaFLUX) tower sites to systematically evaluate the latest versions of CLM, the CLM4.0 and CLM4.5, and comprehensively examine the similarities and differences between the observational and simulated results. The CLM4.5 underestimates annual carbon sink at three forest sites and one alpine grassland site but overestimates the carbon sink at a semi-arid grassland site. The underestimation in annual carbon sink at a deciduous dominated forest site is resulted from underestimated daytime carbon sequestration in summer and overestimated nighttime carbon emission in spring and autumn. Compared with the CLM4.0, the bias of annual Gross Primary Production (GPP) is reduced by 24% and 28% in CLM4.5 at two subtropical forest sites. However, CLM4.5 still has a large positive bias in annual GPP. The improvement in NEE is limited, although the bias of soil respiration decreases by 16%-43% at three forest sites. The CLM4.5 has lower soil water content in dry season than this simulated by the CLM4.0 at two grassland sites. These lead to the significant drop in leaf area index and GPP, and the increase in respiration for the CLM4.5. The new fire parameterization in CLM4.5 causes incorrect fire estimation at Changbaishan forest site, which results in unexpected underestimation of NEE, vegetation carbon, and soil organic carbon by 46%, 95%, and 87%, respectively. Our study with the ChinaFLUX sites indicates a significant improvement of the CLM4.5 than the CLM4, and suggests further developments on the parameterization of seasonal GPP and

  12. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Houborg, R.; Izaurralde, R. C.

    2014-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  13. A Satellite Based Modeling Framework for Estimating Seasonal Carbon Fluxes Over Agricultural Lands

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; Izaurralde, R. C.; Sahajpal, R.; Houborg, R.; Milla, Z.

    2013-12-01

    Croplands are typically characterized by fine-scale heterogeneity, which makes it difficult to accurately estimate cropland carbon fluxes over large regions given the fairly coarse spatial resolution of high-frequency satellite observations. It is, however, important that we improve our ability to estimate spatially and temporally resolved carbon fluxes because croplands constitute a large land area and have a large impact on global carbon cycle. A Satellite based Dynamic Cropland Carbon (SDCC) modeling framework was developed to estimate spatially resolved crop specific daily carbon fluxes over large regions. This modeling framework uses the REGularized canopy reFLECtance (REGFLEC) model to estimate crop specific leaf area index (LAI) using downscaled MODIS reflectance data, and subsequently LAI estimates are integrated into the Environmental Policy Integrated Model (EPIC) model to determine daily net primary productivity (NPP) and net ecosystem productivity (NEP). Firstly, we evaluate the performance of this modeling framework over three eddy covariance flux tower sites (Bondville, IL; Fermi Agricultural Site, IL; and Rosemount site, MN). Daily NPP and NEP of corn and soybean crops are estimated (based on REGFLEC LAI) for year 2007 and 2008 over the flux tower sites and compared against flux tower observations and model estimates based on in-situ LAI. Secondly, we apply the SDCC framework for estimating regional NPP and NEP for corn, soybean and sorghum crops in Nebraska during year 2007 and 2008. The methods and results will be presented.

  14. Multiple-to-dominant path collapse of linked-flux model for diffusion-limited nucleation

    NASA Astrophysics Data System (ADS)

    Lau, Y. H.; Wu, D. T.

    2013-01-01

    While capable of estimating diffusion-limited nucleation rates, Kelton's linked-flux model has no simple solution. To increase the model's usability, we simplify the model by retaining only the dominant nucleation path to obtain a series solution. The solution agrees well with the Kelton's model's predictions of the nucleation rate, and thus provides a simple estimate of diffusion-limited nucleation rates.

  15. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications

    SciTech Connect

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-09-02

    This paper presents a nonlinear analytical model of a novel double sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets (PM), stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry which makes it a good alternative for evaluating prospective designs of TFM as compared to finite element solvers which are numerically intensive and require more computation time. A single phase, 1 kW, 400 rpm machine is analytically modeled and its resulting flux distribution, no-load EMF and torque, verified with Finite Element Analysis (FEA). The results are found to be in agreement with less than 5% error, while reducing the computation time by 25 times.

  16. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications: Preprint

    SciTech Connect

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain; Iqbal; Muljadi, Eduard

    2015-08-24

    This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solvers that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.

  17. An improved model for interplanetary dust grain fluxes to the outer planets

    NASA Astrophysics Data System (ADS)

    Poppe, A. R.

    2015-12-01

    We present an improved model for interplanetary dust grain fluxes in the outer solar system constrained by in-situ dust density observations. A dynamical dust grain tracing code is used to establish relative dust grain densities and three-dimensional velocity distributions in the outer solar system for four main sources of dust grains: Jupiter-family comets, Halley-type comets, Oort-Cloud comets, and Edgeworth-Kuiper Belt objects. Model densities are constrained by in-situ dust measurements by the New Horizons Student Dust Counter, the Pioneer 10 meteoroid detector, and the Galileo Dust Detection System (DDS). The model predicts that Jupiter-family comet grains dominate the interplanetary dust grain mass flux inside approximately 10 AU, Oort-Cloud cometary grains may dominate between 10 and 25 AU, and Edgeworth-Kuiper Belt grains are dominant outside 25 AU. The model also predicts that while the total interplanetary mass flux at Jupiter roughly matches that inferred by the analysis of the Galileo DDS measurements, mass fluxes to Saturn, Uranus, and Neptune are at least one order-of-magnitude lower than that predicted by extrapolations of dust grain flux models from 1 AU. We present modeled mass fluxes to various moons, atmospheres, and ring systems of the outer planets.

  18. Unexpected cancellations in gravity theories

    SciTech Connect

    Bern, Z.; Carrasco, J. J.; Johansson, H.; Forde, D.; Ita, H.

    2008-01-15

    Recent computations of scattering amplitudes show that N=8 supergravity is surprisingly well behaved in the ultraviolet and may even be ultraviolet finite in perturbation theory. The novel cancellations necessary for ultraviolet finiteness first appear at one loop in the guise of the ''no-triangle hypothesis.'' We study one-loop amplitudes in pure Einstein gravity and point out the existence of cancellations similar to those found previously in N=8 supergravity. These cancellations go beyond those found in the one-loop effective action. Using unitarity, this suggests that generic theories of quantum gravity based on the Einstein-Hilbert action may be better behaved in the ultraviolet at higher loops than suggested by naive power counting, though without additional (supersymmetric) cancellations they diverge. We comment on future studies that should be performed to support this proposal.

  19. Unexpected Cancellations in Gravity Theories

    SciTech Connect

    Bern, Z.; Carrasco, J.J.; Forde, D.; Ita, H.; Johansson, H.; /UCLA

    2007-07-13

    Recent computations of scattering amplitudes show that N = 8 supergravity is surprisingly well behaved in the ultraviolet and may even be ultraviolet finite in perturbation theory. The novel cancellations necessary for ultraviolet finiteness first appear at one loop in the guise of the ''no-triangle hypothesis''. We study one-loop amplitudes in pure Einstein gravity and point out the existence of cancellations similar to those found previously in N = 8 supergravity. These cancellations go beyond those found in the one-loop effective action. Using unitarity, this suggests that generic theories of quantum gravity based on the Einstein-Hilbert action may be better behaved in the ultraviolet at higher loops than suggested by naive power counting, though without additional (supersymmetric) cancellations they diverge. We comment on future studies that should be performed to support this proposal.

  20. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  1. Development of Daily Solar Maximum Flare Flux Forecast Models for Strong Flares

    NASA Astrophysics Data System (ADS)

    Shin, Seulki; Chu, Hyoungseok

    2015-08-01

    We have developed a set of daily solar maximum flare flux forecast models for strong flares using Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) methods. We consider input parameters as solar activity data from January 1996 to December 2013 such as sunspot area, X-ray maximum flare flux and weighted total flux of the previous day, and mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classification. For a training data set, we use the same number of 61 events for each C-, M-, and X-class from Jan. 1996 to Dec. 2004, while other previous models use all flares. For a testing data set, we use all flares from Jan. 2005 to Nov. 2013. The statistical parameters from contingency tables show that the ANN models are better for maximum flare flux forecasting than the MLR models. A comparison between our maximum flare flux models and the previous ones based on Heidke Skill Score (HSS) shows that our all models for X-class flare are much better than the other models. According to the Hitting Fraction (HF), which is defined as a fraction of events satisfying that the absolute differences of predicted and observed flare flux in logarithm scale are less than equal to 0.5, our models successfully forecast the maximum flare flux of about two-third events for strong flares. Since all input parameters for our models are easily available, the models can be operated steadily and automatically on daily basis for space weather service.

  2. Model-dependent high-energy neutrino flux from gamma-ray bursts.

    PubMed

    Zhang, Bing; Kumar, Pawan

    2013-03-22

    The IceCube Collaboration recently reported a stringent upper limit on the high energy neutrino flux from gamma-ray bursts (GRBs), which provides a meaningful constraint on the standard internal shock model. Recent broadband electromagnetic observations of GRBs also challenge the internal shock paradigm for GRBs, and some competing models for γ-ray prompt emission have been proposed. We describe a general scheme for calculating the GRB neutrino flux, and compare the predicted neutrino flux levels for different models. We point out that the current neutrino flux upper limit starts to constrain the standard internal shock model. The dissipative photosphere models are also challenged if the cosmic ray luminosity from GRBs is at least 10 times larger than the γ-ray luminosity. If the neutrino flux upper limit continues to go down in the next few years, then it would suggest the following possibilities: (i) the photon-to-proton luminosity ratio in GRBs is anomalously high for shocks, which may be achieved in some dissipative photosphere models and magnetic dissipation models; or (ii) the GRB emission site is at a larger radius than the internal shock radius, as expected in some magnetic dissipation models such as the internal collision-induced magnetic reconnection and turbulence model.

  3. Comparison of heat flux estimations from two turbulent exchange models based on thermal UAV data.

    NASA Astrophysics Data System (ADS)

    Hoffmann, Helene; Nieto, Hector; Jensen, Rasmus; Friborg, Thomas

    2015-04-01

    Advantages of UAV (Unmanned Aerial Vehicle) data-collection, compared to more traditional data-collections are numerous and already well-discussed (Berni et al., 2009; Laliberte et al., 2011; Turner et al., 2012). However studies investigating the quality and applications of UAV-data are crucial if advantages are to be beneficial for scientific purposes. In this study, thermal data collected over an agricultural site in Denmark have been obtained using a fixed-wing UAV and investigated for the estimation of heat fluxes. Estimation of heat fluxes requires high precision data and careful data processing. Latent, sensible and soil heat fluxes are estimates through two models of the two source energy modelling scheme driven by remotely sensed observations of land surface temperature; the original TSEB (Norman et al., 1995) and the DTD (Norman et al., 2000) which builds on the TSEB. The DTD model accounts for errors arising when deriving radiometric temperatures and can to some extent compensate for the fact that thermal cameras rarely are accurate. The DTD model requires an additional set of remotely sensed data during morning hours of the day at which heat fluxes are to be determined. This makes the DTD model ideal to use when combined with UAV data, because acquisition of data is not limited by fixed time by-passing tracks like satellite images (Guzinski et al., 2013). Based on these data, heat fluxes are computed from the two models and compared with fluxes from an eddy covariance station situated within the same designated agricultural site. This over-all procedure potentially enables an assessment of both the collected thermal UAV-data and of the two turbulent exchange models. Results reveal that both TSEB and DTD models compute heat fluxes from thermal UAV data that is within a very reasonable range and also that estimates from the DTD model is in best agreement with the eddy covariance system.

  4. Development of Daily Maximum Flare-Flux Forecast Models for Strong Solar Flares

    NASA Astrophysics Data System (ADS)

    Shin, Seulki; Lee, Jin-Yi; Moon, Yong-Jae; Chu, Hyoungseok; Park, Jongyeob

    2016-03-01

    We have developed a set of daily maximum flare-flux forecast models for strong flares (M- and X-class) using multiple linear regression (MLR) and artificial neural network (ANN) methods. Our input parameters are solar-activity data from January 1996 to December 2013 such as sunspot area, X-ray maximum, and weighted total flare flux of the previous day, as well as mean flare rates of McIntosh sunspot group (Zpc) and Mount Wilson magnetic classifications. For a training dataset, we used 61 events each of C-, M-, and X-class from January 1996 to December 2004. For a testing dataset, we used all events from January 2005 to November 2013. A comparison between our maximum flare-flux models and NOAA model based on true skill statistics (TSS) shows that the MLR model for X-class and the average of all flares (M{+}X-class) are much better than the NOAA model. According to the hitting fraction (HF), which is defined as a fraction of events satisfying the condition that the absolute differences of predicted and observed flare flux on a logarithm scale are smaller than or equal to 0.5, our models successfully forecast the maximum flare flux of about two-thirds of the events for strong flares. Since all input parameters for our models are easily available, the models can be operated steadily and automatically on a daily basis for space-weather services.

  5. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.

    PubMed

    Widmer Soyka, René P; López, Alejandro; Persson, Cecilia; Cristofolini, Luca; Ferguson, Stephen J

    2013-11-01

    Fluids present or used in biology, medicine and (biomedical) engineering are often significantly non-Newtonian. Furthermore, they are chemically complex and can interact with the porous matrix through which they flow. The porous structures themselves display complex morphological inhomogeneities on a wide range of length scales. In vertebroplasty, a shear-thinning fluid, e.g. poly(methyl methacrylate) (PMMA), is injected into the cavities of vertebral trabecular bone for the stabilization of fractures and metastatic lesions. The main objective of this study was therefore to provide a protocol for numerically investigating the rheological properties of PMMA-based bone cements to predict its spreading behavior while flowing through vertebral trabecular bone. A numerical upscaling scheme based on a dimensionless formulation of the Navier-Stokes equation is proposed in order to relate the pore-scale rheological properties of the PMMA that were experimentally estimated using a plate rheometer, to the continuum-scale. On the pore length scale, a viscosity change on the order of one magnitude was observed whilst the shear-thinning properties caused a viscosity change on the order of only 10% on the continuum length scale and in a flow regime that is relevant for vertebroplasty. An experimental validation, performed on human cadaveric vertebrae (n=9), showed a significant improvement of the cement spreading prediction accuracy with a non-Newtonian formulation. A root mean square cement surface prediction error of 1.53mm (assuming a Newtonian fluid) and 1.37mm (assuming a shear-thinning fluid) was found. Our findings highlight the importance of incorporating the non-Newtonian fluids properties in computational models of porous media at the appropriate length scale. PMID:23867293

  6. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.

    PubMed

    Widmer Soyka, René P; López, Alejandro; Persson, Cecilia; Cristofolini, Luca; Ferguson, Stephen J

    2013-11-01

    Fluids present or used in biology, medicine and (biomedical) engineering are often significantly non-Newtonian. Furthermore, they are chemically complex and can interact with the porous matrix through which they flow. The porous structures themselves display complex morphological inhomogeneities on a wide range of length scales. In vertebroplasty, a shear-thinning fluid, e.g. poly(methyl methacrylate) (PMMA), is injected into the cavities of vertebral trabecular bone for the stabilization of fractures and metastatic lesions. The main objective of this study was therefore to provide a protocol for numerically investigating the rheological properties of PMMA-based bone cements to predict its spreading behavior while flowing through vertebral trabecular bone. A numerical upscaling scheme based on a dimensionless formulation of the Navier-Stokes equation is proposed in order to relate the pore-scale rheological properties of the PMMA that were experimentally estimated using a plate rheometer, to the continuum-scale. On the pore length scale, a viscosity change on the order of one magnitude was observed whilst the shear-thinning properties caused a viscosity change on the order of only 10% on the continuum length scale and in a flow regime that is relevant for vertebroplasty. An experimental validation, performed on human cadaveric vertebrae (n=9), showed a significant improvement of the cement spreading prediction accuracy with a non-Newtonian formulation. A root mean square cement surface prediction error of 1.53mm (assuming a Newtonian fluid) and 1.37mm (assuming a shear-thinning fluid) was found. Our findings highlight the importance of incorporating the non-Newtonian fluids properties in computational models of porous media at the appropriate length scale.

  7. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    SciTech Connect

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite-years of observations from the Magnetospheric Plasma Analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local-times and 40 energies, at all possible values of Kp. Bi-linear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local-time, and for given values of geomagnetic activity (proxied by the 3-hour Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II (CEASE-II), also located at geosynchronous orbit, indicate a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user-requirements.

  8. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II, also located at geosynchronous orbit, indicates a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user requirements.

  9. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    DOE PAGESBeta

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite-years of observations from the Magnetospheric Plasma Analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local-times and 40 energies, at all possible values of Kp. Bi-linear interpolation is used between grid points to provide the ionmore » flux and the electron flux values at any energy and local-time, and for given values of geomagnetic activity (proxied by the 3-hour Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II (CEASE-II), also located at geosynchronous orbit, indicate a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user-requirements.« less

  10. Conserving mass and energy in cooling models of oceanic lithosphere requires upper mantle origins for trends in subsidence and heat flux and indicates global power of 30 TW

    NASA Astrophysics Data System (ADS)

    Criss, R. E.; Hofmeister, A. M.; Hamza, V. N.

    2008-12-01

    One-dimensional conductive cooling models of ocean lithosphere fail to predict the lateral variation in oceanic heat flux and provide problematic calculations of subsidence, for reasons enumerated below. Our new model follows conservation laws and shows that bathymetric trends are tied to upper mantle temperature variations, given realistic values for thermal expansivity. Heat flux increases towards mid-ocean ridges due to (1) flux varying across upper mantle convection cells and (2) redistribution of mantle heat (Qmtl) by moving magma, and also by (3) hydrothermal circulation. Foremost, widespread, lateral, uptake of Qmtl as latent heat occurs during deep lithospheric melting but this energy is released near ridges through dike emplacement during seafloor spreading. Redistribution and energy conservation account for the local heat flux maximum near x=1200 km, heretofore unexplained. We show that the trend Qmtl(x) far from the ridge is consistent with behavior near the ridge and measured global power of <30 TW , which is compatible with quasi-steady-state conditions and an enstatite chondrite model for the Earth. Observables, such as the pattern of mid-ocean ridges on the globe, point to layered convection and lack of vigor, and gross characteristics of the Earth are supported by an enstatite chondrite model. Our analysis circumvents problems associated with 1-d conductive cooling models of the lithosphere: (1) Existing models replaced conservation of rock-mass with isostatic balance, which unwittingly created subsidence by converting lithosphere to ocean. (2) Half-space models incorrectly cancelled infinities. (3) Plate models omitted latent heat which is immense. (4) 1-d models only permit vertical contraction. These faulty constructs fitted seafloor depths through erroneous use of volumetric (αV=3αL) thermal expansivity coupled with great leeway in cross-multiplied parameters. The underlying premise that thermal aspects of lithosphere can be separately

  11. Consistency of internal fluxes in a hydrological model running at multiple time steps

    NASA Astrophysics Data System (ADS)

    Ficchi, Andrea; Perrin, Charles; Andréassian, Vazken

    2016-04-01

    Improving hydrological models remains a difficult task and many ways can be explored, among which one can find the improvement of spatial representation, the search for more robust parametrization, the better formulation of some processes or the modification of model structures by trial-and-error procedure. Several past works indicate that model parameters and structure can be dependent on the modelling time step, and there is thus some rationale in investigating how a model behaves across various modelling time steps, to find solutions for improvements. Here we analyse the impact of data time step on the consistency of the internal fluxes of a rainfall-runoff model run at various time steps, by using a large data set of 240 catchments. To this end, fine time step hydro-climatic information at sub-hourly resolution is used as input of a parsimonious rainfall-runoff model (GR) that is run at eight different model time steps (from 6 minutes to one day). The initial structure of the tested model (i.e. the baseline) corresponds to the daily model GR4J (Perrin et al., 2003), adapted to be run at variable sub-daily time steps. The modelled fluxes considered are interception, actual evapotranspiration and intercatchment groundwater flows. Observations of these fluxes are not available, but the comparison of modelled fluxes at multiple time steps gives additional information for model identification. The joint analysis of flow simulation performance and consistency of internal fluxes at different time steps provides guidance to the identification of the model components that should be improved. Our analysis indicates that the baseline model structure is to be modified at sub-daily time steps to warrant the consistency and realism of the modelled fluxes. For the baseline model improvement, particular attention is devoted to the interception model component, whose output flux showed the strongest sensitivity to modelling time step. The dependency of the optimal model

  12. Improved analytical flux surface representation and calculation models for poloidal asymmetries

    NASA Astrophysics Data System (ADS)

    Collart, T. G.; Stacey, W. M.

    2016-05-01

    An orthogonalized flux-surface aligned curvilinear coordinate system has been developed from an up-down asymmetric variation of the "Miller" flux-surface equilibrium model. It is found that the new orthogonalized "asymmetric Miller" model representation of equilibrium flux surfaces provides a more accurate match than various other representations of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614-633 (2002)] discharges to flux surfaces calculated using the DIII-D Equilibrium Fitting tokamak equilibrium reconstruction code. The continuity and momentum balance equations were used to develop a system of equations relating asymmetries in plasma velocities, densities, and electrostatic potential in this curvilinear system, and detailed calculations of poloidal asymmetries were performed for a DIII-D discharge.

  13. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    SciTech Connect

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-06-15

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  14. Flux Balance Analysis of Plant Metabolism: The Effect of Biomass Composition and Model Structure on Model Predictions

    PubMed Central

    Yuan, Huili; Cheung, C. Y. Maurice; Hilbers, Peter A. J.; van Riel, Natal A. W.

    2016-01-01

    The biomass composition represented in constraint-based metabolic models is a key component for predicting cellular metabolism using flux balance analysis (FBA). Despite major advances in analytical technologies, it is often challenging to obtain a detailed composition of all major biomass components experimentally. Studies examining the influence of the biomass composition on the predictions of metabolic models have so far mostly been done on models of microorganisms. Little is known about the impact of varying biomass composition on flux prediction in FBA models of plants, whose metabolism is very versatile and complex because of the presence of multiple subcellular compartments. Also, the published metabolic models of plants differ in size and complexity. In this study, we examined the sensitivity of the predicted fluxes of plant metabolic models to biomass composition and model structure. These questions were addressed by evaluating the sensitivity of predictions of growth rates and central carbon metabolic fluxes to varying biomass compositions in three different genome-/large-scale metabolic models of Arabidopsis thaliana. Our results showed that fluxes through the central carbon metabolism were robust to changes in biomass composition. Nevertheless, comparisons between the predictions from three models using identical modeling constraints and objective function showed that model predictions were sensitive to the structure of the models, highlighting large discrepancies between the published models. PMID:27200014

  15. Bias in modeled bi-directional NH3 fluxes associated with temporal averaging of atmospheric NH3 concentrations

    EPA Science Inventory

    Direct flux measurements of NH3 are expensive, time consuming, and require detailed supporting measurements of soil, vegetation, and atmospheric chemistry for interpretation and model parameterization. It is therefore often necessary to infer fluxes by combining measurements of...

  16. ANALYSIS OF WATER AND ENERGY FLUXES USING SATELLITE, ENERGY BALANCE MODELING AND OBSERVATIONS (Invited)

    NASA Astrophysics Data System (ADS)

    Irmak, A.

    2009-12-01

    Surface energy fluxes, including net radiation (Rn), sensible heat (H), latent heat (LE), and soil heat flux (G) are critical in surface energy balance of any terrain or landscapes. Estimation or measurement of these energy fluxes is important for completing the water balance in terrestrial ecosystems, and therefore accurately predicting the effects of global climate and land use change. The objectives of this study were to (1) use METRICtm (Mapping Evapotranspiration at high Resolution using Internalized Calibration) model for estimating land surface energy fluxes in Nebraska (NE) by utilizing satellite remote sensing data, (2) identify model bias in energy balance components compared with measurements from Bowen Ratio Energy Balance System (BREBS) in a subsurface drip-irrigated maize field in South-central Nebraska, and (3) understand the partitioning of available energy into latent heat for corn and soybean cropping systems at large scale. A total of 15 Landsat images were processed to estimate instantaneous surface energy fluxes at Landsat overpasses with METRIC model. Results showed that the model predictions of the surface energy fluxes and daily evapotranspiration were correlated well with the BREBS measurements. There is a need, however, to test the performance of the model with in-situ observations in other locations with different dataset before utilizing it for crucial water regulatory and policy decisions. The METRICtm approach illustrated how an ‘off-the-shelf’ model can be applied operationally over a significant time period and how that model behaves. The findings makes considerable contribution to our understanding of estimating land surface energy fluxes using remote sensing approach and experimentally describes the operational characteristics of METRICtm and presents its limitations.

  17. A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2010-12-01

    Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies

  18. An improved model for interplanetary dust fluxes in the outer Solar System

    NASA Astrophysics Data System (ADS)

    Poppe, Andrew R.

    2016-01-01

    We present an improved model for interplanetary dust grain fluxes in the outer Solar System constrained by in situ dust density observations. A dynamical dust grain tracing code is used to establish relative dust grain densities and three-dimensional velocity distributions in the outer Solar System for four main sources of dust grains: Jupiter-family comets, Halley-type comets, Oort-Cloud comets, and Edgeworth-Kuiper Belt objects. Model densities are constrained by in situ dust measurements by the New Horizons Student Dust Counter, the Pioneer 10 meteoroid detector, and the Galileo Dust Detection System (DDS). The model predicts that Jupiter-family comet grains dominate the interplanetary dust grain mass flux inside approximately 10 AU, Oort-Cloud cometary grains may dominate between 10 and 25 AU, and Edgeworth-Kuiper Belt grains are dominant outside 25 AU. The model also predicts that while the total interplanetary mass flux at Jupiter roughly matches that inferred by the analysis of the Galileo DDS measurements, mass fluxes to Saturn, Uranus, and Neptune are at least one order-of-magnitude lower than that predicted by extrapolations of dust grain flux models from 1 AU. Finally, we compare the model predictions of interplanetary dust oxygen influx to the giant planet atmospheres with various observational and photochemical constraints and generally find good agreement, with the exception of Jupiter, which suggests the possibility of additional chemical pathways for exogenous oxygen in Jupiter's atmosphere.

  19. Statistical modelling of variability in sediment-water nutrient and oxygen fluxes

    NASA Astrophysics Data System (ADS)

    Serpetti, Natalia; Witte, Ursula; Heath, Michael

    2016-06-01

    Organic detritus entering, or produced, in the marine environment is re-mineralised to inorganic nutrient in the seafloor sediments. The flux of dissolved inorganic nutrient between the sediment and overlying water column is a key process in the marine ecosystem, which binds the biogeochemical sub-system to the living food web. These fluxes are potentially affected by a wide range of physical and biological factors and disentangling these is a significant challenge. Here we develop a set of General Additive Models (GAM) of nitrate, nitrite, ammonia, phosphate, silicate and oxygen fluxes, based on a year-long campaign of field measurements off the north-east coast of Scotland. We show that sediment grain size, turbidity due to sediment re-suspension, temperature, and biogenic matter content were the key factors affecting oxygen consumption, ammonia and silicate fluxes. However, phosphate fluxes were only related to suspended sediment concentrations, whilst nitrate fluxes showed no clear relationship to any of the expected drivers of change, probably due to the effects of denitrification. Our analyses show that the stoichiometry of nutrient regeneration in the ecosystem is not necessarily constant and may be affected by combinations of processes. We anticipate that our statistical modelling results will form the basis for testing the functionality of process-based mathematical models of whole-sediment biogeochemistry.

  20. ENERGY AND MASS FLUX SIMULATIONS IN URBAN AREA USING THE ACASA MODEL

    NASA Astrophysics Data System (ADS)

    Marras, S.; Spano, D.; Pyles, R. D.; Falk, M.; Sirca, C.; Miglietta, F.; Snyder, R. L.; Paw U, K.

    2009-12-01

    Urban metabolism considers a city as a system and usually distinguishes between energy and material flows as its components. Population who lives in urban areas is increasing and the exchanges of water, energy and carbon into and out of cities are key to the sustainable design of cities. In this context, it is important to provide quantitative estimate of the urban metabolism components using both observations and modeling of physical flows. Today, Eddy Covariance technique and accurate models are available to simulate the energy and mass flux exchanges in urban environment with a good spatial resolution. The Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) model, developed by University of California, Davis (UCD), is one of the most sophisticated models for estimating energy and mass fluxes between surface and the atmosphere. ACASA was recently modified to simulate energy and mass fluxes in urban environment. ACASA treats the surface and associated fluxes as an interconnected system The atmosphere, the urban surface and the soil are represented as a multilayer system. ACASA incorporates higher-order closure principles for turbulent statistics to predict the effects that higher-order turbulent kinetic and thermodynamic processes have on the surface microenvironment and associated fluxes of heat, moisture, momentum, and carbon. It allows counter-gradient transport that simpler models are unable to describe. Using a set of governing equations, ACASA creates vertical profiles of temperature, humidity, mean wind, and CO2 concentration. ACASA was run for the city of Florence (Italy), which is a case study of the European project “Bridge”. The simulations were compared with in situ measurements taken continuously from 2006 using an eddy covariance system located in the city centre. Different measurement periods were used to parameterize and validate the model. From the preliminary results, good agreement was obtained between simulated and observed fluxes with small

  1. Development and validation of a new return flux model for the International Space Station

    NASA Astrophysics Data System (ADS)

    Roussel, Jean-Francois; Soares, Carlos E.; Schmidl, William D.

    2002-09-01

    This paper documents the development and validation of a new return flux model for the International Space Station (ISS). This model has been developed to augment current ISS external contamination modeling tool capabilities. The model is capable of characterizing return flux from ISS molecular emission sources. These sources include materials outgassing, vacuum venting, propellant purging and thruster firings. The BGK method (named after its authors: Bhatnagar, Gross and Krook1) was selected for modeling ambient scatter. This method was used to reduce computational times, as the ISS geometric models used for external contamination modeling may contain up to 40,000 surface elements. The model has been validated by comparison with analytical results and with results from the ESA COMOVA software. Validation with on-orbit flight experiment data will be conducted when adequate experimental data is available. Previously flown experiments (i.e., REFLEX) have not produced data with high enough fidelity to validate this model. The model has been applied to the ISS to characterize return flux from the European Columbus module onto its own payload locations. Analysis results indicate the return flux contribution to ESA payload surfaces will be small, but not negligible.

  2. A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux.

    PubMed

    Wu, Wei; Liu, Yangang

    2010-05-12

    A new one-dimensional radiative equilibrium model is built to analytically evaluate the vertical profile of the Earth's atmospheric radiation entropy flux under the assumption that atmospheric longwave radiation emission behaves as a greybody and shortwave radiation as a diluted blackbody. Results show that both the atmospheric shortwave and net longwave radiation entropy fluxes increase with altitude, and the latter is about one order in magnitude greater than the former. The vertical profile of the atmospheric net radiation entropy flux follows approximately that of the atmospheric net longwave radiation entropy flux. Sensitivity study further reveals that a 'darker' atmosphere with a larger overall atmospheric longwave optical depth exhibits a smaller net radiation entropy flux at all altitudes, suggesting an intrinsic connection between the atmospheric net radiation entropy flux and the overall atmospheric longwave optical depth. These results indicate that the overall strength of the atmospheric irreversible processes at all altitudes as determined by the corresponding atmospheric net entropy flux is closely related to the amount of greenhouse gases in the atmosphere.

  3. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis.

    PubMed

    Dauner, M; Bailey, J E; Sauer, U

    2001-09-01

    Fluxes in central carbon metabolism of a genetically engineered, riboflavin-producing Bacillus subtilis strain were investigated in glucose-limited chemostat cultures at low (0.11 h(-1)) and high (0.44 h(-1)) dilution rates. Using a mixture of 10% [U-(13)C] and 90% glucose labeled at natural abundance, (13)C-labeling experiments were carried out to provide additional information for metabolic flux balancing. The resulting labeling pattern in the proteinogenic amino acids were analyzed by two-dimensional [(13)C, (1)H] nuclear magnetic resonance (NMR) spectroscopy. To account rigorously for all available data from these experiments, we developed a comprehensive isotopomer model of B. subtilis central metabolism. Using this model, intracellular carbon net and exchange fluxes were estimated on the basis of validated physiological data and biomass composition in combination with 2D NMR data from 45 individual carbon atom spectra in the amino acids. Glucose catabolism proceeded primarily via glycolysis but pentose phosphate pathway fluxes increased with increasing growth rate. Moreover, significant back fluxes from the TCA cycle to the lower part of glycolysis via the gluconeogenic PEP carboxykinase were detected. The malic enzyme reaction, in contrast, was found to be inactive. A thorough statistical analysis was performed to prove the reliability of the isotopomer balance model and the obtained results. Specifically, a chi(2) test was applied to validate the model and the chi-square criterion was used to explore the sensitivity of model predictions to the experimental data.

  4. Modeling Studies of the Effects of Winds and Heat Flux on the Tropical Oceans

    NASA Technical Reports Server (NTRS)

    Seager, R.

    1999-01-01

    Over a decade ago, funding from this NASA grant supported the development of the Cane-Zebiak ENSO prediction model which remains in use to this day. It also supported our work developing schemes for modeling the air-sea heat flux in ocean models used for studying climate variability. We introduced a succession of simple boundary layer models that allow the fluxes to be computed internally in the model and avoid the need to specify the atmospheric thermodynamic state. These models have now reached a level of generality that allows modeling of the global, rather than just tropical, ocean, including sea ice cover. The most recent versions of these boundary layer models have been widely distributed around the world and are in use by many ocean modeling groups.

  5. Evaluating interannual variability in modeled global carbon fluxes: the impacts of uncertainties in model parameters and driver data

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Collatz, G. J.; Pinzon, J. E.; Ivanoff, A.

    2012-12-01

    Confidence in predictions of future greenhouse gas levels depends on the ability to accurately model recent and current atmospheric CO2 variability. Observed global atmospheric CO2 growth rate for the past few decades has exhibited large interannual variability (IAV), most of which can likely be attributed to the differential response of terrestrial net primary productivity (NPP), heterotrophic respiration (Rh), and fire emissions to climate anomalies such as those associated with ENSO events (Nemani et al., 2003; van der Werf et al., 2006; Zeng and Qian, 2005). Terrestrial carbon models generally do not capture CO2 growth rate IAV or do so for suspect reasons. In this study, we characterize the Carnegie-Ames-Stanford Approach - Global Fire Emissions Database (CASA-GFED) modeled carbon flux anomalies in terms of timing and magnitude in relation to atmospheric observations of CO2 growth rate. Through sensitivity analysis we identify model parameters that have a large impact on modeled flux IAV and we use Monte Carlo methods to propagate uncertainty in parameters and driver data to the modeled fluxes. Finally, we compare modeled flux anomalies with recent large regional climate anomalies known to influence carbon fluxes (e.g. Ciais et al., 2005). The results identify strengths and weaknesses in the ability of the model to capture IAV in net carbon flux and atmospheric CO2 growth rate, and highlight ways to improve model performance. Satellite-constrained diagnostic models such as CASA-GFED provide a benchmark for prognostic models used to predict future terrestrial carbon fluxes. References: Ciais et al. (2005) Nature 437, 529-533, doi: 10.1038/nature03972. Nemani et al. (2003) Science 300, 1560-1563, doi: 10.1126/science.1082750. van der Werf et al. (2006) Atmos. Chem. Phys. 6, 3423-3441. Zeng and Qian (2005) Geophys. Res. Lett. 32, L22709, doi: 10.1029/2005GL024607.

  6. User-Friendly Predictive Modeling of Greenhouse Gas (GHG) Fluxes and Carbon Storage in Tidal Wetlands

    NASA Astrophysics Data System (ADS)

    Ishtiaq, K. S.; Abdul-Aziz, O. I.

    2015-12-01

    We developed user-friendly empirical models to predict instantaneous fluxes of CO2 and CH4 from coastal wetlands based on a small set of dominant hydro-climatic and environmental drivers (e.g., photosynthetically active radiation, soil temperature, water depth, and soil salinity). The dominant predictor variables were systematically identified by applying a robust data-analytics framework on a wide range of possible environmental variables driving wetland greenhouse gas (GHG) fluxes. The method comprised of a multi-layered data-analytics framework, including Pearson correlation analysis, explanatory principal component and factor analyses, and partial least squares regression modeling. The identified dominant predictors were finally utilized to develop power-law based non-linear regression models to predict CO2 and CH4 fluxes under different climatic, land use (nitrogen gradient), tidal hydrology and salinity conditions. Four different tidal wetlands of Waquoit Bay, MA were considered as the case study sites to identify the dominant drivers and evaluate model performance. The study sites were dominated by native Spartina Alterniflora and characterized by frequent flooding and high saline conditions. The model estimated the potential net ecosystem carbon balance (NECB) both in gC/m2 and metric tonC/hectare by up-scaling the instantaneous predicted fluxes to the growing season and accounting for the lateral C flux exchanges between the wetlands and estuary. The entire model was presented in a single Excel spreadsheet as a user-friendly ecological engineering tool. The model can aid the development of appropriate GHG offset protocols for setting monitoring plans for tidal wetland restoration and maintenance projects. The model can also be used to estimate wetland GHG fluxes and potential carbon storage under various IPCC climate change and sea level rise scenarios; facilitating an appropriate management of carbon stocks in tidal wetlands and their incorporation into a

  7. Modelling methane fluxes from managed and restored peatlands

    NASA Astrophysics Data System (ADS)

    Cresto Aleina, F.; Rasche, L.; Hermans, R.; Subke, J. A.; Schneider, U. A.; Brovkin, V.

    2015-12-01

    European peatlands have been extensively managed over past centuries. Typical management activities consisted of drainage and afforestation, which lead to considerable damage to the peat and potentially significant carbon loss. Recent efforts to restore previously managed peatlands have been carried out throughout Europe. These restoration efforts have direct implications for water table depth and greenhouse gas emissions, thus impacting on the ecosystem services provided by peatland areas. In order to quantify the impact of peatland restoration on water table depth and greenhouse gas budget, We coupled the Environmental Policy Integrated Climate (EPIC) model to a process-based model for methane emissions (Walter and Heimann, 2000). The new model (EPIC-M) can potentially be applied at the European and even at the global scale, but it is yet to be tested and evaluated. We present results of this new tool from different peatlands in the Flow Country, Scotland. Large parts of the peatlands of the region have been drained and afforested during the 1980s, but since the late 1990s, programs to restore peatlands in the Flow Country have been enforced. This region offers therefore a range of peatlands, from near pristine, to afforested and drained, with different resoration ages in between, where we can apply the EPIC-M model and validate it against experimental data from all land stages of restoration. Goals of this study are to evaluate the EPIC-M model and its performances against in situ measurements of methane emissions and water table changes in drained peatlands and in restored ones. Secondly, our purpose is to study the environmental impact of peatland restoration, including methane emissions, due to the rewetting of drained surfaces. To do so, we forced the EPIC-M model with local meteorological and soil data, and simulated soil temperatures, water table dynamics, and greenhouse gas emissions. This is the first step towards a European-wide application of the EPIC

  8. Poynting flux-conserving low-altitude boundary conditions for global magnetospheric models

    NASA Astrophysics Data System (ADS)

    Xi, S.; Lotko, W.; Zhang, B.; Brambles, O. J.; Lyon, J. G.; Merkin, V. G.; Wiltberger, M.

    2015-01-01

    A method for specifying low-altitude or inner boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. The single-fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method, with comparisons between simulations using LFM's standard hardwall boundary conditions and the new flux-conserving boundary conditions. Identical idealized upstream solar wind and interplanetary magnetic field conditions and the same constant ionospheric conductance are used in both runs. The results show that, compared to LFM's standard hardwall boundary conditions, the flux-conserving method improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the hemispheric integrated field-aligned DC Poynting flux just above the boundary is close to the hemispheric total Joule heating of the ionosphere, as it should be if electromagnetic energy is conserved. The MHD velocity and perpendicular currents are well-behaved near the inner boundary for the flux conserving boundary conditions.

  9. Data-Model Comparisons of Photoelectron Flux Intensities on the Strong Crustal Field Lines at Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael; Trantham, Matthew; Mitchell, David

    2010-05-01

    This study quantifies the factors controlling photoelectron fluxes on strong crustal field lines in the Martian ionosphere. Using data from Mars Global Surveyor's Magnetometer and Electron Reflectometer instruments, dayside electron populations near the strong crustal fields in the southern hemisphere are analyzed versus various controlling parameters. These parameters include a Mars F10.7 proxy, a solar wind pressure proxy, local solar zenith angle, magnetic elevation angle, magnetic field strength. It was found that solar EUV radiation (corrected for solar zenith angle and the Mars-Sun distance) has the strongest influence on the photoelectron fluxes, and during different time periods this radiation has a stronger influence than at others times. Second, fluxes show a slight enhancement when the magnetic elevation angle is near zero degrees (horizontal field lines). Finally, other parameters, such as pressure and magnetic field strength, seem to have no major influence. These measurement-based results are then compared against numerical modeling flux intensities to quantify the physical mechanisms behind the observed relationships. The numerical code used for this study is our superthermal electron transport model, which solves for the electric distribution function along a magnetic field line. The code includes the influence of a variable magnetic field strength, pitch angle scattering and mirror trapping, and collisional energy cascading. The influence of solar EUV flux, atmospheric composition, solar wind dynamic pressure, and the local magnetic field are systematically investigated with this code to understand why some of these parameters have a strong influence on photoelectron flux intensity while others do not.

  10. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  11. Small scale flux emergence, small flares, and the unresolved fine structure: modeling and observations

    NASA Astrophysics Data System (ADS)

    Haraldson Hansteen, Viggo H.

    2016-05-01

    The emergence of flux through the photosphere and into the outer solar atmosphere is known to produce dynamic events in the chromosphere and corona. In this talk we will describe three-dimensional (3d) magnetohydrodynamic simulations of magnetic flux emergence in a model that spans the convection zone and into the outer solar atmosphere with the Bifrost code. We will contrast this with models in which no flux emergence occurs. These are a ``realistic'' model, in the sense that the parameters and physical effects that control the atmosphere can be used to produce diagnostics that can be directly compared with observations. Thus we will also contrast the model predictions with with SST and IRIS observations of an emerging flux region. We discuss the evolution of the model and several synthetic observables. We discuss the model's possible relevance to the so called 'unresolved fine structure' observed in the solar transition region. Finally, we will report on developments to merge `deeper' models constructed from MURaM simulations with Bifrost models of the chromosphere and corona in flare relevant simulations.

  12. Two-field and drift-flux models with applications to nuclear reactor safety

    SciTech Connect

    Travis, J.R.

    1984-05-01

    The ideas of the two-field (6 equation model) and drift-flux (4 equation model) description of two-phase flows are presented. Several example calculations relating to reactor safety are discussed and comparisons of the numerical results and experimental data are shown to be in good agreement.

  13. Artificial neural network prediction model for geosynchronous electron fluxes: Dependence on satellite position and particle energy

    NASA Astrophysics Data System (ADS)

    Shin, Dae-Kyu; Lee, Dae-Young; Kim, Kyung-Chan; Hwang, Junga; Kim, Jaehun

    2016-04-01

    Geosynchronous satellites are often exposed to energetic electrons, the flux of which varies often to a large extent. Since the electrons can cause irreparable damage to the satellites, efforts to develop electron flux prediction models have long been made until recently. In this study, we adopt a neural network scheme to construct a prediction model for the geosynchronous electron flux in a wide energy range (40 keV to >2 MeV) and at a high time resolution (as based on 5 min resolution data). As the model inputs, we take the solar wind variables, geomagnetic indices, and geosynchronous electron fluxes themselves. We also take into account the magnetic local time (MLT) dependence of the geosynchronous electron fluxes. We use the electron data from two geosynchronous satellites, GOES 13 and 15, and apply the same neural network scheme separately to each of the GOES satellite data. We focus on the dependence of prediction capability on satellite's magnetic latitude and MLT as well as particle energy. Our model prediction works less efficiently for magnetic latitudes more away from the equator (thus for GOES 13 than for GOES 15) and for MLTs nearer to midnight than noon. The magnetic latitude dependence is most significant for an intermediate energy range (a few hundreds of keV), and the MLT dependence is largest for the lowest energy (40 keV). We interpret this based on degree of variance in the electron fluxes, which depends on magnetic latitude and MLT at geosynchronous orbit as well as particle energy. We demonstrate how substorms affect the flux variance.

  14. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  15. Two Improvements of an Operational Two-Layer Model for Terrestrial Surface Heat Flux Retrieval

    PubMed Central

    Zhang, Renhua; Tian, Jing; Su, Hongbo; Sun, Xiaomin; Chen, Shaohui; Xia, Jun

    2008-01-01

    In order to make the prediction of land surface heat fluxes more robust, two improvements were made to an operational two-layer model proposed previously by Zhang. These improvements are: 1) a surface energy balance method is used to determine the theoretical boundary lines (namely ‘true wet/cool edge’ and ‘true dry/warm edge’ in the trapezoid) in the scatter plot for the surface temperature versus the fractional vegetation cover in mixed pixels; 2) a new assumption that the slope of the Tm – f curves is mainly controlled by soil water content is introduced. The variables required by the improved method include near surface vapor pressure, air temperature, surface resistance, aerodynamic resistance, fractional vegetation cover, surface temperature and net radiation. The model predictions from the improved model were assessed in this study by in situ measurements, which show that the total latent heat flux from the soil and vegetation are in close agreement with the in situ measurement with an RMSE (Root Mean Square Error) ranging from 30 w/m2∼50 w/m2, which is consistent with the site scale measurement of latent heat flux. Because soil evaporation and vegetation transpiration are not measured separately from the field site, in situ measured CO2 flux is used to examine the modeled λEveg. Similar trends of seasonal variations of vegetation were found for the canopy transpiration retrievals and in situ CO2 flux measurements. The above differences are mainly caused by 1) the scale disparity between the field measurement and the MODIS observation; 2) the non-closure problem of the surface energy balance from the surface fluxes observations themselves. The improved method was successfully used to predict the component surface heat fluxes from the soil and vegetation and it provides a promising approach to study the canopy transpiration and the soil evaporation quantitatively during the rapid growing season of winter wheat in northern China.

  16. Application of Non-Arrhenius Models to the Viscosity of Mold Flux

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin

    2016-06-01

    The mold flux in continuous casting mold experiences a significant temperature gradient ranging from more than 1773 K (1500 °C) to room temperature, and the viscosity of the mold flux would therefore have a non-Arrhenius temperature dependency in such a wide temperature region. Three non-Arrhenius models, including Vogel-Fulcher-Tammann (VFT), Adam and Gibbs (AG), and Avramov (AV), were conducted to describe the relationship between the viscosity and temperature of mold flux in the temperature gradient existing in the casting mold. It found that the results predicted by the VFT and AG models are closer to the measured ones than those by the AV model and that they are much better than the Arrhenius model in characterizing the variation of viscosity of mold flux vs temperature. In addition, the VFT temperature and AG temperature can be considered to be key benchmarks in characterizing the lubrication ability of mold flux beyond the break temperature and glass transition temperature.

  17. Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints.

    PubMed

    Mazauric, Serge; Hébert, Mathieu; Simonot, Lionel; Fournel, Thierry

    2014-12-01

    We introduce a model allowing convenient calculation of the spectral reflectance and transmittance of duplex prints. It is based on flux transfer matrices and enables retrieving classical Kubelka-Munk formulas, as well as extended formulas for nonsymmetric layers. By making different assumptions on the flux transfers, we obtain two predictive models for the duplex halftone prints: the "duplex Clapper-Yule model," which is an extension of the classical Clapper-Yule model, and the "duplex primary reflectance-transmittance model." The two models can be calibrated from either reflectance or transmittance measurements; only the second model can be calibrated from both measurements, thus giving optimal accuracy for both reflectance and transmittance predictions. The conceptual differences between the two models are deeply analyzed, as well as their advantages and drawbacks in terms of calibration. According to the test carried out in this study with paper printed in inkjet, their predictive performances are good provided appropriate calibration options are selected.

  18. A Three Component Model to Estimate Sensible Heat Flux Over Sparse Shrubs in Nevada

    USGS Publications Warehouse

    Chehbouni, A.; Nichols, W.D.; Njoku, E.G.; Qi, J.; Kerr, Y.H.; Cabot, F.

    1997-01-01

    It is now recognized that accurate partitioning of available energy into sensible and latent heat flux is crucial to understanding surface-atmosphere interactions. This issue is more complicated in arid and semi-arid regions where the relative contribution to surface fluxes from the soil and vegetation may vary significantly throughout the day and throughout the season. The objective of this paper is to present a three-component model to estimate sensible heat flux over heterogeneous surfaces. The surface was represented with two adjacent compartments. The first compartment is made up of two components, shrubs and shaded soil; the second compartment consists of bare, unshaded soil. Data collected at two different sites in Nevada during the summers of 1991 and 1992 were used to evaluate model performance. The results show that the present model is sufficiently general to yield satisfactory results for both sites.

  19. A model of the Starfish flux in the inner radiation zone

    NASA Technical Reports Server (NTRS)

    Teague, M. J.; Stassinopoulos, E. G.

    1972-01-01

    A model of the Starfish electrons injected into the radiation belt in July 1962 was determined for epoch September 1964. This model distinguishes between artificial and natural electrons and provides the artificial unidirectional electron flux as a function of equatorial pitch angle, energy, and L value. The model is based primarily upon data from the OGO-1, OGO-3, OGO-5, 1963-38C, and the OV3-3 satellites. Decay times for the Starfish electrons are given as a function of energy and L value. These decay times represent the best compromise between a number of independently determined values. The times at which the artificial Starfish flux component had become insignificant in comparison to the natural flux component are determined as functions of energy and L value. These times are determined by two separate methods, and averaged values are presented. It is shown that Starfish electrons, by the present time, have become insignificant for all energies and L values.

  20. A review of micrometeoroid flux measurements and models for low orbital altitudes of the Space Station

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1984-01-01

    A review of meteoroid flux measurements and models for low orbital altitudes of the Space Station has been made in order to provide information that may be useful in design studies and laboratory hypervelocity impact tests which simulate micrometeoroids in space for design of the main wall of the Space Station. This report deals with the meteoroid flux mass model, the defocusing and shielding factors that affect the model, the probability of meteoroid penetration of the main wall of a Space Station. Whipple (1947) suggested a meteoroid bumper, a thin shield around the spacecraft at some distance from the wall, as an effective device for reducing penetration, which has been discussed in this report. The equations of the probability of meteoroid penetration, the average annual cumulative total flux, and the equations for the thickness of the main wall and the bumper are presented in this report.

  1. Soil-water fluxes modelling in a green roof

    NASA Astrophysics Data System (ADS)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2014-05-01

    Green roofs differ from a natural environment as they are on top of a building and are not connected to the natural ground; therefore it is critical that soils can drain and retain water simultaneously and that they work even in very shallow systems. The soil or growing medium used for green roofs is specifically engineered to provide the vegetation with nutrients, discharging any excess water into the drainage layer, and releasing stored water back into the substrate. In this way, medium depth and porosity plays an important role in stormwater retention and plant growth in a green roof. Due to the lack of a good understanding about the hydraulic efficiency of each green roof's layer in rainwater management, a detailed analysis of the hydrological dynamics, connected with the green roof technical design is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this research is analyzing the soil-water dynamics through the different components of a green roof and modeling these processes though a detailed but clear subsurface hydrology module, based on green roof vertical soil water movement reproduction, in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). A multi-layer bucket model has been applied to examine the hydrological response of the green roof system under a temperate maritime climate, by varying the physical and geometric parameters that characterize the different components of the vegetated cover. Following a stage of validation and calibration, results confirm the suitability of the model to describe the hydrologic response of the green roof during the observed rainfall events: the discharge hydrograph profile, volume and timing, predicted by the model, matched experimental measurements

  2. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  3. Application of the flux noise reducing filter for CO2 inverse modelling

    NASA Astrophysics Data System (ADS)

    Maksyutov, Shamil; Yaremchuk, Alexey

    2010-05-01

    Recent atmospheric remote sensing products from AIRS and GOSAT provide large volume of the observations but with larger errors and variance as compared to in-situ measurements, so efficient noise reduction techniques are required for inverse modeling of the surface fluxes. Inverse models of the atmospheric transport optimize regional or grid resolving surface CO2 fluxes to fit transport model simulation optimally to the observations. The optimization problem appears to be ill-posed so it is usually solved by applying regularization techniques. Most widely used regularization methods apply constraints on flux deviation from prior and/or from adjacent regions of same surface type (land-ocean, vegetation type), and from adjacent time periods. Convenient method for solving the problem of limited dimension is based on singular value decomposition (SVD) of the transport matrix, because it can decompose the solution space into a combination of the independent singular vectors. Introducing a simple constraint on fluxes limits amplitude of the corresponding singular vectors with larger reduction for smaller singular values. However this amplitude reduction is not sufficient in practice for inverse modeling of the regional CO2 fluxes, when we have large underconstrained regions in tropics. Alternatively other means of the amplitude reduction are also used, such as truncation, when all amplitudes below threshold singular value are set to zero. We apply a filter which is less abrupt is less abrupt compared to truncation but still suppressing strongly small singular value related vectors. Setting strength of a constraint is often done empirically. To decide a proper value of the cut-off singular value we suggest analyzing a dependence of the singular vector amplitude vs the singular value and set the cut-off value aiming at retaining most of useful information from observation. A graphical tool based on a plot of amplitude spectra is proposed. Advantage of the technique is

  4. Reconstructed Metabolic Network Models Predict Flux-Level Metabolic Reprogramming in Glioblastoma

    PubMed Central

    Özcan, Emrah; Çakır, Tunahan

    2016-01-01

    Developments in genome scale metabolic modeling techniques and omics technologies have enabled the reconstruction of context-specific metabolic models. In this study, glioblastoma multiforme (GBM), one of the most common and aggressive malignant brain tumors, is investigated by mapping GBM gene expression data on the growth-implemented brain specific genome-scale metabolic network, and GBM-specific models are generated. The models are used to calculate metabolic flux distributions in the tumor cells. Metabolic phenotypes predicted by the GBM-specific metabolic models reconstructed in this work reflect the general metabolic reprogramming of GBM, reported both in in-vitro and in-vivo experiments. The computed flux profiles quantitatively predict that major sources of the acetyl-CoA and oxaloacetic acid pool used in TCA cycle are pyruvate dehydrogenase from glycolysis and anaplerotic flux from glutaminolysis, respectively. Also, our results, in accordance with recent studies, predict a contribution of oxidative phosphorylation to ATP pool via a slightly active TCA cycle in addition to the major contributor aerobic glycolysis. We verified our results by using different computational methods that incorporate transcriptome data with genome-scale models and by using different transcriptome datasets. Correct predictions of flux distributions in glycolysis, glutaminolysis, TCA cycle and lipid precursor metabolism validate the reconstructed models for further use in future to simulate more specific metabolic patterns for GBM. PMID:27147948

  5. Modeling nitrogen fluxes in Germany - where does the nitrogen go?

    NASA Astrophysics Data System (ADS)

    Klement, Laura; Bach, Martin; Breuer, Lutz

    2016-04-01

    According to the latest inventory of the EU Water Framework Directive, 26.3% of German groundwater bodies are in a poor chemical state regarding nitrate. Additionally, the EU initiated infringement proceedings against Germany for not meeting the quality standards of the EU Nitrate Directive. Agriculture has been determined as the main source of nitrate pollution due to over-fertilization and regionally high density of livestock farming. The nitrogen balance surplus is commonly used as an indicator characterizing the potential of nitrate leaching into groundwater bodies and thus also serves as a foundation to introduce legislative restrictions or to monitor the success of mitigation measures. Currently, there is an ongoing discussion which measures are suitable for reducing the risk of nitrate leaching and also to what extent. However, there is still uncertainty about just how much the nitrogen surplus has to be reduced to meet the groundwater quality standards nationwide. Therefore, the aims of our study were firstly to determine the level of the nitrogen surplus that would be acceptable at the utmost and secondly whether the currently discussed target value of 30 kg N per hectare agricultural land for the soil surface nitrogen balance would be sufficient. The models MONERIS (Modeling Nutrient Emissions in River System) and MoRE (Modelling of Regionalized Emissions), the latter based on the first, are commonly used for estimating nitrogen loads into the river system in Germany at the mesoscale, as well as the effect of mitigation measures in the context of the EU directive 2008/105/EC (Environmental quality standards applicable to surface water). We used MoRE to calculate nitrate concentration for 2759 analytical units in Germany. Main factors are the surplus of the soil surface nitrogen balance, the percolation rate and an exponent representing the denitrification in the vadose zone. The modeled groundwater nitrate concentrations did not correspond to the regional

  6. Modelling ozone stomatal flux of wheat under mediterranean conditions

    NASA Astrophysics Data System (ADS)

    González-Fernández, I.; Bermejo, V.; Elvira, S.; de la Torre, D.; González, A.; Navarrete, L.; Sanz, J.; Calvete, H.; García-Gómez, H.; López, A.; Serra, J.; Lafarga, A.; Armesto, A. P.; Calvo, A.; Alonso, R.

    2013-03-01

    Correct estimation of leaf-level stomatal conductance (gsto) is central for current ozone (O3) risk assessment of wheat yield loss based on the absorbed O3 phytotoxic dose (POD). The gsto model parameterizations developed in Europe must be checked in the different climatic regions where they are going to be applied in order to reduce the uncertainties associated with the POD approach. This work proposes a new gsto model parameterization for estimating POD of Triticum aestivum and Triticum durum under Mediterranean conditions, based on phenological observations over 25 years and gsto field measurements during 5 growing seasons. Results show that POD in the Mediterranean area might be higher than previously estimated. However, caution must be paid when assessing the risk of yield loss for wheat in this area since field validation of O3 impacts is still limited.

  7. Modelling surface energy fluxes over a Dehesa ecosystem using a two-source energy balance model.

    NASA Astrophysics Data System (ADS)

    Andreu, Ana; Kustas, William. P.; Anderson, Martha C.; Carrara, Arnaud; Patrocinio Gonzalez-Dugo, Maria

    2013-04-01

    The Dehesa is the most widespread agroforestry land-use system in Europe, covering more than 3 million hectares in the Iberian Peninsula and Greece (Grove and Rackham, 2001; Papanastasis, 2004). It is an agro-silvo-pastural ecosystem consisting of widely-spaced oak trees (mostly Quercus ilex L.), combined with crops, pasture and Mediterranean shrubs, and it is recognized as an example of sustainable land use and for his importance in the rural economy (Diaz et al., 1997; Plieninger and Wilbrand, 2001). The ecosystem is influenced by a Mediterranean climate, with recurrent and severe droughts. Over the last decades the Dehesa has faced multiple environmental threats, derived from intensive agricultural use and socio-economic changes, which have caused environmental degradation of the area, namely reduction in tree density and stocking rates, changes in soil properties and hydrological processes and an increase of soil erosion (Coelho et al. 2004; Schnabel and Ferreira, 2004; Montoya 1998; Pulido and Díaz, 2005). Understanding the hydrological, atmospheric and physiological processes that affect the functioning of the ecosystem will improve the management and conservation of the Dehesa. One of the key metrics in assessing ecosystem health, particularly in this water-limited environment, is the capability of monitoring evaporation (ET). To make large area assessments requires the use of remote sensing. Thermal-based energy balance techniques that distinguish soil/substrate and vegetation contributions to the radiative temperature and radiation/turbulent fluxes have proven to be reliable in such semi-arid sparse canopy-cover landscapes. In particular, the two-source energy balance (TSEB) model of Norman et al. (1995) and Kustas and Norman (1999) has shown to be robust for a wide range of partially-vegetated landscapes. The TSEB formulation is evaluated at a flux tower site located in center Spain (Majadas del Tietar, Caceres). Its application in this environment is

  8. Fluxnet and Satellite data to optimize carbon and water fluxes simulated by ORCHIDEE biosphere model

    NASA Astrophysics Data System (ADS)

    Santaren, D.; Peylin, P.; Kuppel, S.; Bacour, C.; Granier, A.; Rayner, P. J.; Ciais, P.

    2010-12-01

    Terrestrial ecosystem models are used to predict the response of energy water and carbon balances of Earth's ecosystems to environmental changes. However, the estimated fluxes remain subject to large uncertainties, partly because of unknown or poorly calibrated parameters. Assimilation of in situ data should help constraining these parameter to improve simulations of the carbon balance and climate predictions. Using a state of the art mechanistic vegetation model ORCHIDEE, involved in the next AR5-IPCC report, we investigated the benefit of Fluxnet data (net CO2 flux (NEE) and latent heat flux (LE)) as well as remotely sensed fAPAR (fraction of absorbed photosynthetically active radiation) to improve the model. ORCHIDEE computes the energy, carbon and water balances on a half-hourly basis, depending on the meteorological forcing and the biome composition of the ecosystem. The phenology of the model is also fully prognostic allowing the derivation of leaf area index time course. A four dimensional variational data (4D-var) assimilation system has been developed, using the tangent linear model, to assimilate synergistically different observations (daily means) and optimize critical parameters of the model (on the order of 20). The study makes uses of available data from few sites in Europe and investigates three major points. We first analyze the ability of the model to capture the fluxes during particular extreme climate conditions (i.e. summer 2003 in Europe) using parameters optimized during “normal weather” conditions at a beach forest in France (Hesse site). The model-data fit for NEE and LE is analyzed in terms of annual mean, seasonal cycles and synoptic variations. We then performed an optimization using multiple sites of the same Plant Functional Type (PFT) at the same time. This optimization allows assessing the potential of the model to simulate with a mean set of parameters the carbon and water fluxes of several sites under different climate regimes

  9. CarbonTracker-Lagrange: A model-data assimilation system for North American carbon flux estimates

    NASA Astrophysics Data System (ADS)

    He, Wei; Chen, Huilin; van der Velde, Ivar; Andrews, Arlyn; Sweeney, Colm; Baker, Ian; Ju, Weimin; van der Laan-Luijkx, Ingrid; Tans, Pieter; Peters, Wouter

    2016-04-01

    Understanding the regional carbon fluxes is of great importance for climate-related studies. To derive these carbon fluxes, atmospheric inverse modeling methods are often used. Different from global inverse modeling, regional studies need to deal with lateral boundary conditions (BCs) at the outer atmospheric domain studied. Also, regional inverse modeling systems typically use a higher spatial resolution and can be more computation-intensive. In this study, we implement a regional inverse modeling system for atmospheric CO₂ based on the CarbonTracker framework. We combine it with a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). The new system uses independent information from aircraft CO₂ profiles to optimize lateral BCs, while simultaneously optimizing biosphere fluxes with near-surface CO₂ observations from tall towers. This Lagrangian transport model with precalculated footprints is computational more efficient than using an Eulerian model. We take SiBCASA biosphere model results as prior NEE from the terrestrial biosphere. Three different lateral BCs, derived from CarbonTracker North America mole fraction fields, CarbonTracker Europe mole fraction fields and an empirical BC from NOAA aircraft profiles, are employed to investigate the influence of BCs. To estimate the uncertainties of the optimized fluxes from the system and to determine the impacts of system setup on biosphere flux covariances, BC uncertainties and model-data mismatches, we tested various prior biosphere fluxes and BCs. To estimate the transport uncertainties, we also tested an alternative Lagrangian transport model Hybrid Single Particle Lagrangian Integrated Trajectory Model driven by the North American Mesoscale Forecast System meteorological fields (HYSPLIT-NAM12). Based on the above tests, we achieved an ensemble of inverse estimates from our system

  10. Development of a Scale Model for High Flux Isotope Reactor Cycle 400

    SciTech Connect

    Ilas, Dan

    2012-03-01

    The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

  11. Evaluate the seasonal cycle and interannual variability of carbon fluxes and the associated uncertainties using modeled and observed data

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Collatz, G. J.; Ivanoff, A.

    2013-12-01

    We assessed the performance of the Carnegie-Ames-Stanford Approach - Global Fire Emissions Database (CASA-GFED3) terrestrial carbon cycle model in simulating seasonal cycle and interannual variability (IAV) of global and regional carbon fluxes and uncertainties associated with model parameterization. Key model parameters were identified from sensitivity analyses and their uncertainties were propagated through model processes using the Monte Carlo approach to estimate the uncertainties in carbon fluxes and pool sizes. Three independent flux data sets, the global gross primary productivity (GPP) upscaled from eddy covariance flux measurements by Jung et al. (2011), the net ecosystem exchange (NEE) estimated by CarbonTracker, and the eddy covariance flux observations, were used to evaluate modeled fluxes and the uncertainties. Modeled fluxes agree well with both Jung's GPP and CarbonTracker NEE in the amplitude and phase of seasonal cycle, except in the case of GPP in tropical regions where Jung et al. (2011) showed larger fluxes and seasonal amplitude. Modeled GPP IAV is positively correlated (p < 0.1) with Jung's GPP IAV except in the tropics and temperate South America. The correlations between modeled NEE IAV and CarbonTracker NEE IAV are weak at regional to continental scales but stronger when fluxes are aggregated to >40°N latitude. At regional to continental scales flux uncertainties were larger than the IAV in the fluxes for both Jung's GPP and CarbonTracker NEE. Comparisons with eddy covariance flux observations are focused on sites within regions and years of recorded large-scale climate anomalies. We also evaluated modeled biomass using other independent continental biomass estimates and found good agreement. From the comparisons we identify the strengths and weaknesses of the model to capture the seasonal cycle and IAV of carbon fluxes and highlight ways to improve model performance.

  12. Gamma-Ray Line Flux Ratios as Diagnostics of SN Ia Models

    NASA Astrophysics Data System (ADS)

    Lara, Juan; The, Lih-Sin; Leising, Mark

    2004-05-01

    The ^56Ni decay chain that powers the optical output of Type Ia supernovae produces gamma-ray lines at 158, 812 ( ^56Ni decay ) and 847, 1238 keV ( ^56Co decay ). The detection of the line fluxes have been used to show indeed that ^56Ni is produced by explosive nucleosynthesis. We investigate the measurement precision required to use the flux ratios of these lines to each other and to the compton X-ray continuum to distinguish among a variety of SN Ia models. We compare this to using gamma-ray line profiles to distinguish among models.

  13. High Resolution Geothermal Heat Flux Data--Implications for Ice Sheet Dynamics and Model Uncertainty

    NASA Astrophysics Data System (ADS)

    Johnson, J. V.; Naslund, J. A.; Pattyn, F.; Jansson, P.

    2007-12-01

    Airborne surveys of radiogenic activity in Sweden and Finland have been utilized to create a 5 km resolution map of the geothermal heat flux. Statistical analysis of these data reveal contiguous areas where heat flux is more or less than two standard deviations from the mean. These anomalous areas have a length scale of approximately 22 km. In order to investigate the significance of these findings, thermo-mechanically coupled ice sheet models having both nearly complete and simplified stress treatments are used. Experiments which are formulated for finer scales (~180 km, 10,000 years) utilize the higher order stress treatments, and experiments that treat larger scales (~ 2000 km, 200,000 years) use the reduced stress models. Experiments involve both the measured data, as well as proxies for it, as is appropriate. Experiments also treat a range of sliding relations, and basal water treatments. A novel method of producing synthetic data from the original dataset is formulated, and used to assign confidence intervals to uncertainty estimates. In most all cases, it is found that the ice sheet model is effectively averaging the high resolution geothermal heat flux data, and the results are only marginally different than what would be found using a uniform heat flux boundary condition near the mean of the data set. In cases where it is significantly different, it is the interaction with basal water that provides the mechanism to amplify the impact of a heat flux anomaly.

  14. Including dislocation flux in a continuum crystal plasticity model to produce size scale effects

    SciTech Connect

    Becker, R; Arsenlis, A; Bulatov, V V; Parks, D M

    2004-02-13

    A novel model has been developed to capture size scale and gradient effects within the context of continuum crystal plasticity by explicitly incorporating details of dislocation transport, coupling dislocation transport to slip, evolving spatial distributions of dislocations consistent with the flux, and capturing the interactions among various dislocation populations. Dislocation flux and density are treated as nodal degrees of freedom in the finite element model, and they are determined as part of the global system of equations. The creation, annihilation and flux of dislocations between elements are related by transport equations. Crystallographic slip is coupled to the dislocation flux and the stress state. The resultant gradients in dislocation density and local lattice rotations are analyzed for geometrically necessary and statistically stored dislocation contents that contribute to strength and hardening. Grain boundaries are treated as surfaces where dislocation flux is restricted depending on the relative orientations of the neighboring grains. Numerical results show different behavior near free surfaces and non-deforming surfaces resulting from differing levels of dislocation transmission. Simulations also show development of dislocation pile-ups at grain boundaries and an increase in flow strength reminiscent of the Hall-Petch model. The dislocation patterns have a characteristic size independent of the numerical discretization.

  15. Analysis of Atmosphere-Ocean Surface Flux Feedbacks in Recent Satellite and Model Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Clayson, C. A.

    2010-01-01

    Recent investigations have examined observations in an attempt to determine when and how the ocean forces the atmosphere, and vice versa. These studies focus primarily on relationships between sea surface temperature anomalies and the turbulent and radiative surface heat fluxes. It has been found that both positive and negative feedbacks, which enhance or reduce sea surface temperature anomaly amplitudes, can be generated through changes in the surface boundary layer. Consequent changes in sea surface temperature act to change boundary layer characteristics through changes in static stability or turbulent fluxes. Previous studies over the global oceans have used coarse-resolution observational and model products such as ICOADS and the NCEP Reanalysis. This study focuses on documenting the atmosphere ocean feedbacks that exist in recently produced higher resolution products, namely the SeaFlux v1.0 product and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). It has been noted in recent studies that evidence of oceanic forcing of the atmosphere exists on smaller scales than the usually more dominant atmospheric forcing of the ocean, particularly in higher latitudes. It is expected that use of these higher resolution products will allow for a more comprehensive description of these small-scale ocean-atmosphere feedbacks. The SeaFlux intercomparisons have revealed large scatter between various surface flux climatologies. This study also investigates the uncertainty in surface flux feedbacks based on several of these recent satellite based climatologies

  16. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    PubMed

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle. PMID:26849343

  17. Modeling surface energy fluxes and thermal dynamics of a seasonally ice-covered hydroelectric reservoir.

    PubMed

    Wang, Weifeng; Roulet, Nigel T; Strachan, Ian B; Tremblay, Alain

    2016-04-15

    The thermal dynamics of human created northern reservoirs (e.g., water temperatures and ice cover dynamics) influence carbon processing and air-water gas exchange. Here, we developed a process-based one-dimensional model (Snow, Ice, WAater, and Sediment: SIWAS) to simulate a full year's surface energy fluxes and thermal dynamics for a moderately large (>500km(2)) boreal hydroelectric reservoir in northern Quebec, Canada. There is a lack of climate and weather data for most of the Canadian boreal so we designed SIWAS with a minimum of inputs and with a daily time step. The modeled surface energy fluxes were consistent with six years of observations from eddy covariance measurements taken in the middle of the reservoir. The simulated water temperature profiles agreed well with observations from over 100 sites across the reservoir. The model successfully captured the observed annual trend of ice cover timing, although the model overestimated the length of ice cover period (15days). Sensitivity analysis revealed that air temperature significantly affects the ice cover duration, water and sediment temperatures, but that dissolved organic carbon concentrations have little effect on the heat fluxes, and water and sediment temperatures. We conclude that the SIWAS model is capable of simulating surface energy fluxes and thermal dynamics for boreal reservoirs in regions where high temporal resolution climate data are not available. SIWAS is suitable for integration into biogeochemical models for simulating a reservoir's carbon cycle.

  18. Gamma-ray constraints on maximum cosmogenic neutrino fluxes and UHECR source evolution models

    SciTech Connect

    Gelmini, Graciela B.; Kalashev, Oleg; Semikoz, Dmitri V. E-mail: kalashev@ms2.inr.ac.ru

    2012-01-01

    The dip model assumes that the ultra-high energy cosmic rays (UHECRs) above 10{sup 18} eV consist exclusively of protons and is consistent with the spectrum and composition measure by HiRes. Here we present the range of cosmogenic neutrino fluxes in the dip-model which are compatible with a recent determination of the extragalactic very high energy (VHE) gamma-ray diffuse background derived from 2.5 years of Fermi/LAT data. We show that the largest fluxes predicted in the dip model would be detectable by IceCube in about 10 years of observation and are within the reach of a few years of observation with the ARA project. In the incomplete UHECR model in which protons are assumed to dominate only above 10{sup 19} eV, the cosmogenic neutrino fluxes could be a factor of 2 or 3 larger. Any fraction of heavier nuclei in the UHECR at these energies would reduce the maximum cosmogenic neutrino fluxes. We also consider here special evolution models in which the UHECR sources are assumed to have the same evolution of either the star formation rate (SFR), or the gamma-ray burst (GRB) rate, or the active galactic nuclei (AGN) rate in the Universe and found that the last two are disfavored (and in the dip model rejected) by the new VHE gamma-ray background.

  19. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    NASA Astrophysics Data System (ADS)

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-05-01

    Evapotranspiration (ET) is an important component of the water cycle - ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001-2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within the

  20. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    USGS Publications Warehouse

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within

  1. NACOB presentation to ASB Young Scientist Award: Postdoctoral. The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. North American Congress on Biomechanics.

    PubMed

    Jacobs, C R; Davis, B R; Rieger, C J; Francis, J J; Saad, M; Fyhrie, D P

    1999-11-01

    The apparent properties of cancellous bone are determined by a combination of both hard tissue properties and microstructural organization. A method is desired to extract the underlying hard tissue properties from simple mechanical tests, free from the complications of microstructure. It has been suggested that microCT voxel-based large-scale finite element models could be employed to accomplish this goal (van Rietbergen et al., 1995, Journal of Biomechanics, 28, 69-81). This approach has recently been implemented and it is becoming increasingly popular as finite element models increase in size and sophistication (Fyhrie et al., 1997, Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, p. 815; van Rietbergen et al., 1997, Proceedings of the 43rd Annual Meeting of the Orthopaedic Research Society, San Francisco, CA, p. 62). However, no direct quantitative measurements of the accuracy of this method applied to porous structures such as cancellous bone have been made. This project demonstrates the feasibility of this approach by quantifying its best-case accuracy in determining the trabecular hard tissue modulus of analogues fabricated of a material with known material properties determined independently by direct testing. In addition we were able to assess the impact of mesh size and boundary conditions on accuracy. We found that the assumption of a frictionless boundary condition in the parallel plate compression loading configuration was a significant source of error that could be overcome with the use of rigid end-caps similar to those used by Keaveny et al. (1997 Journal of Orthopaedic Research, 15(1), 101-110). In conclusion, we found that this approach is an effective method for determining the average trabecular hard tissue properties of human cancellous bone with an expected practical accuracy level better than 5%.

  2. 34 CFR 674.52 - Cancellation procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accelerated— (i) May qualify for a loan cancellation for services performed before the date of acceleration; and (ii) Cannot qualify for a cancellation for services performed on or after the date of...

  3. Measuring and modeling disturbance-induced changes to flux dynamics in increasingly heterogeneous canopy environments

    NASA Astrophysics Data System (ADS)

    Maurer, K.; Bohrer, G.; He, L.; Ivanov, V. Y.; Vogel, C.; Curtis, P.

    2012-12-01

    Turbulent eddies control the flux of carbon, water and other gases between forested environments and the atmosphere. Inside the canopy, eddy correlation length is very small and surface heterogeneity due to tree-crown structures occurs at these scales. Computer simulations, particularly Large-Eddy Simulations (LES), provide the foundation to test the sensitivity of flux exchange and turbulent mixing to small scale processes, such as successional- or disturbance-driven changes to canopy structure. At the Forest Accelerated Succession ExperimenT (FASET), we disturbed 39 ha of forest by girdling all canopy-dominant early-successional aspen and birch trees, leading to a large mortality event, followed by a shift in forest structure that is typical of a more mature successional stage. Over the course of the study, we have found a divergence from pre-treatment biosphere-atmosphere gas-exchange trends between the control and disturbance sites due to changes in canopy structure and, as a consequence, biological response. We use the Regional Atmospheric Modeling System (RAMS)-based Forest Large-Eddy Simulation (RAFLES), and the more dynamic RAFLES-Ecosystem Demography (ED2) model, to investigate the consequences of increasingly heterogeneous forest environments to canopy-atmosphere exchange. RAFLES-ED2 resolves multi-layered light attenuation and vegetation and surface heat, vapor and CO2 fluxes and includes a multi-layered soil column under each atmosphere-vegetation column, as opposed to the single-layered soil-vegetation model in RAFLES. The model environment was determined by remote sensing of the actual forested area of interest using airborne Light Detection and Ranging (LiDAR) measurements and eddy-flux gas exchange measurements at two neighboring AmeriFlux eddy-flux towers, the manipulated site (US-UMd) and its undisturbed control (US-UMB) both at the University of Michigan Biological Station (UMBS) cluster site. We find more accurate surface roughness estimates and

  4. Three-dimensional Oldroyd-B fluid flow with Cattaneo-Christov heat flux model

    NASA Astrophysics Data System (ADS)

    Shehzad, S. A.; Hayat, T.; Abbasi, F. M.; Javed, Tariq; Kutbi, M. A.

    2016-04-01

    The impact of Cattaneo-Christov heat flux in three-dimensional flow of an Oldroyd-B fluid over a bidirectional stretching surface is explored in this article. The boundary layer flow of an incompressible fluid is considered. Heat transfer analysis is discussed via the Cattaneo-Christov model of heat flux. Similarity transformations lead to the nonlinear ordinary differential systems. Convergent solutions of dimensionless velocities and temperature have been computed. Convergence analysis is presented graphically and numerically. The influence of physical parameters on the velocities and temperature are plotted and discussed. We observed that the values of temperature gradient are higher for the Cattaneo-Christov heat flux model when we compare it with the values obtained by the simple Fourier's law of heat conduction.

  5. Forecasting the Solar photospheric magnetic field using solar flux transport model and local ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-12-01

    Accurate forecasting the solar photospheric magnetic field distribution play an important role in the estimates of the inner boundary conditions of the coronal and solar wind model. Forecasting solar photospheric magnetic field using the solar flux transport (SFT) model can achieve an acceptable match to the actual field. The observations from ground-based or spacecraft instruments can be assimilated to update the modeled flux. The local ensemble Kalman filtering (LEnKF) method is utilized to improve forecasts and characterize their uncertainty by propagating the SFT model with different model parameters forward in time to control the evolution of the solar photospheric magnetic field. Optimal assimilation of measured data into the ensemble produces an improvement in the fit of the forecast to the actual field. Our approach offers a method to improve operational forecasting of the solar photospheric magnetic field. The LEnKF method also allows sensitivity analysis of the SFT model to noise and uncertainty within the physical representation.

  6. Forecasting the solar photospheric magnetic field using solar flux transport model and local ensemble Kalman filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Du, Aimin; Feng, Xueshang

    2015-04-01

    Accurate forecasting the solar photospheric magnetic field distribution play an important role in the estimates of the inner boundary conditions of the coronal and solar wind model. Forecasting solar photospheric magnetic field using the solar flux transport (SFT) model can achieve an acceptable match to the actual field. The observations from ground-based or spacecraft instruments can be assimilated to update the modeled flux. The local ensemble Kalman filtering (LEnKF) method is utilized to improve forecasts and characterize their uncertainty by propagating the SFT model with different model parameters forward in time to control the evolution of the solar photospheric magnetic field. Optimal assimilation of measured data into the ensemble produces an improvement in the fit of the forecast to the actual field. Our approach offers a method to improve operational forecasting of the solar photospheric magnetic field. The LEnKF method also allows sensitivity analysis of the SFT model to noise and uncertainty within the physical representation.

  7. Sources of Uncertainty in Predicting Land Surface Fluxes Using Diverse Data and Models

    NASA Technical Reports Server (NTRS)

    Dungan, Jennifer L.; Wang, Weile; Michaelis, Andrew; Votava, Petr; Nemani, Ramakrishma

    2010-01-01

    In the domain of predicting land surface fluxes, models are used to bring data from large observation networks and satellite remote sensing together to make predictions about present and future states of the Earth. Characterizing the uncertainty about such predictions is a complex process and one that is not yet fully understood. Uncertainty exists about initialization, measurement and interpolation of input variables; model parameters; model structure; and mixed spatial and temporal supports. Multiple models or structures often exist to describe the same processes. Uncertainty about structure is currently addressed by running an ensemble of different models and examining the distribution of model outputs. To illustrate structural uncertainty, a multi-model ensemble experiment we have been conducting using the Terrestrial Observation and Prediction System (TOPS) will be discussed. TOPS uses public versions of process-based ecosystem models that use satellite-derived inputs along with surface climate data and land surface characterization to produce predictions of ecosystem fluxes including gross and net primary production and net ecosystem exchange. Using the TOPS framework, we have explored the uncertainty arising from the application of models with different assumptions, structures, parameters, and variable definitions. With a small number of models, this only begins to capture the range of possible spatial fields of ecosystem fluxes. Few attempts have been made to systematically address the components of uncertainty in such a framework. We discuss the characterization of uncertainty for this approach including both quantifiable and poorly known aspects.

  8. Numerical modeling of cold magmatic CO2 flux measurements for the exploration of hidden geothermal systems

    NASA Astrophysics Data System (ADS)

    Peiffer, Loïc.; Wanner, Christoph; Pan, Lehua

    2015-10-01

    The most accepted conceptual model to explain surface degassing of cold magmatic CO2 in volcanic-geothermal systems involves the presence of a gas reservoir. In this study, numerical simulations using the TOUGH2-ECO2N V2.0 package are performed to get quantitative insights into how cold CO2 soil flux measurements are related to reservoir and fluid properties. Although the modeling is based on flux data measured at a specific geothermal site, the Acoculco caldera (Mexico), some general insights have been gained. Both the CO2 fluxes at the surface and the depth at which CO2 exsolves are highly sensitive to the dissolved CO2 content of the deep fluid. If CO2 mainly exsolves above the reservoir within a fracture zone, the surface CO2 fluxes are not sensitive to the reservoir size but depend on the CO2 dissolved content and the rock permeability. For gas exsolution below the top of the reservoir, surface CO2 fluxes also depend on the gas saturation of the deep fluid as well as the reservoir size. The absence of thermal anomalies at the surface is mainly a consequence of the low enthalpy of CO2. The heat carried by CO2 is efficiently cooled down by heat conduction and to a certain extent by isoenthalpic volume expansion depending on the temperature gradient. Thermal anomalies occur at higher CO2 fluxes (>37,000 g m-2 d-1) when the heat flux of the rising CO2 is not balanced anymore. Finally, specific results are obtained for the Acoculco area (reservoir depth, CO2 dissolved content, and gas saturation state).

  9. Adaptive feedback cancellation in hearing aids with clipping in the feedback path.

    PubMed

    Freed, Daniel J

    2008-03-01

    Adaptive linear filtering algorithms are commonly used to cancel feedback in hearing aids. The use of these algorithms is based on the assumption that the feedback path is linear, so nonlinearities in the feedback path may affect performance. This study investigated the effect on feedback canceller performance of clipping of the feedback signal arriving at the microphone, as well as the benefit of applying identical clipping to the cancellation signal so that the cancellation path modeled the nonlinearity of the feedback path. Feedback signal clipping limited the amount of added stable gain that the feedback canceller could provide, and caused misadjustment in response to high-level inputs, by biasing adaptive filter coefficients toward lower magnitudes. Cancellation signal clipping mitigated these negative effects, permitting higher amounts of added stable gain and less misadjustment in response to high-level inputs, but the benefit was reduced in the presence of the highest-level inputs. PMID:18345849

  10. Micro-scale modelling of energy fluxes over a small Fluxnet forest site in Denmark

    NASA Astrophysics Data System (ADS)

    Sogachev, A.; Dellwik, E.; Boegh, E.

    2012-12-01

    Most forests, especially in Europe, are too small to fulfil strict fetch requirements associated with idealized flux observations in undisturbed, homogeneous flow. As a consequence of limited fetch, the flux measured above the canopy will often deviate from the source strength underlying the measurements. Since representative measurements focused on heterogeneous effects are scarce because of demanding experimental arrangements the numerical modelling are often recruited for analysis of these deviations. During the last years the atmospheric boundary layer (ABL) model SCADIS (scalar distribution model; Sogachev et al., 2002, Tellus 54B, 784-819) has been successfully applied especially in the region adjacent to a forest edge in order to improve flux data interpretation. Most of the analyses were done for the neutral case and in two-dimensional mode. When analyzing the effect of a forest edge on both flow and passive scalar properties, numerical studies showed that sources located on a soil surface are major contributors to wave-like flux behavior downwind of the leading edge, and that it is important to distinguish the effects of ground sources from those of the foliage. In the present work, we apply the SCADIS model with enhanced turbulence closure including buoyancy for investigation of the daily course of energy fluxes over patchy forested terrain in Denmark, where the model is used in three-dimensional mode. The modelling results (with 50 m horizontal resolution) are in good qualitative agreement with high-resolution (60 m and 120 m) remote-sensing data of the effective surface temperature of the area near the site in focus: the forested areas are colder in daytime and warmer in night time than surrounding open areas. In contrast to the remote sensing approach, SCADIS provides the information about spatial distribution of latent and sensible heat vertical fluxes in the whole ABL. Topography and forest edge effects result in vertical turbulent fluxes that

  11. NASA Workmanship Hot Topics: Water Soluble Flux and ESD Charge Device Model

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette F.

    2009-01-01

    This slide presentation reviews two topics of interest to NASA Workmanship: (1) Water Soluble Flux (WSF) and Electrostatic Discharge (ESD) safety. In the first topic, WSF, the presentation reviews voiding and the importance of cleanliness in using WSF for welding and soldering operations. The second topic reviews the NASA-HDBK-8739.21 for Human Body Model, and Machine Model safety methods, and challenges associated with the Charged Device Model (CDM)

  12. Comparison of observed and general circulation model derived continental subsurface heat flux in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    MacDougall, Andrew H.; Beltrami, Hugo; GonzáLez-Rouco, J. Fidel; Stevens, M. Bruce; Bourlon, Evelise

    2010-06-01

    Heat fluxes in the continental subsurface were estimated from general circulation model (GCM) simulations of the climate of the last millennium and compared to those obtained from subsurface geothermal data. Since GCMs have bottom boundary conditions (BBCs) that are less than 10 m deep and thus may be thermodynamically restricted in the continental subsurface, we used an idealized land surface model (LSM) with a very deep BBC to estimate the potential for realistic subsurface heat storage in the absence of bottom boundary constraints. Results indicate that there is good agreement between observed fluxes and GCM simulated fluxes for the 1780-1980 period when the GCM simulated temperatures are coupled to the LSM with deep BBC. These results emphasize the importance of placing a deep BBC in GCM soil components for the proper simulation of the overall continental heat budget. In addition, the agreement between the LSM surface fluxes and the borehole temperature reconstructed fluxes lends additional support to the overall quality of the GCM (ECHO-G) paleoclimatic simulations.

  13. 77 FR 19747 - Proposed Cancelation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Proposed Cancelation of the Air Taxi Authority Of VIH Cougar Helicopters, Inc... cause why it should not issue an order finding that VIH Cougar Helicopters, Inc. is not a U.S....

  14. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a)...

  15. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a)...

  16. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a)...

  17. 47 CFR 213.3 - Cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Cancellation. 213.3 Section 213.3 Telecommunication OFFICE OF SCIENCE AND TECHNOLOGY POLICY AND NATIONAL SECURITY COUNCIL GOVERNMENT AND PUBLIC CORRESPONDENCE TELECOMMUNICATIONS PRECEDENCE SYSTEM § 213.3 Cancellation. This circular cancels: (a)...

  18. Daily evapotranspiration estimates by scaling instantaneous latent heat flux derived from a two-source model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radiometric brightness temperature can be used in energy balance models that estimate sensible and latent heat fluxes of the land surface. However, brightness temperature is usually available only at one time of day when acquired from aircraft, fine-scale satellite platforms, or infrared thermometer...

  19. Estimating long-term surface hydrological components by coupling remote sensing observation with surface flux model.

    SciTech Connect

    Song, J.; Wesely, M. L.

    2002-05-02

    A model framework for parameterized subgrid-scale surface fluxes (PASS) has been applied to use satellite data, models, and routine surface observations to infer root-zone available moisture content and evapotranspiration rate with moderate spatial resolution within Walnut River Watershed in Kansas. Biweekly composite normalized difference vegetative index (NDVI) data are derived from observations by National Oceanic and Atmospheric Administration (NOAA) satellites. Local surface observations provide data on downwelling solar irradiance, air temperature, relative humidity, and wind speed. Surface parameters including roughness length, albedo, surface water conductance, and the ratio of soil heat flux to net radiation are estimated; pixel-specific near-surface meteorological conditions such as air temperature, vapor pressure, and wind speed are adjusted according to local surface forcing. The PASS modeling system makes effective use of satellite data and can be run for large areas for which flux data do not exist and surface meteorological data are available from only a limited number of ground stations. The long-term surface hydrological budget is evaluated using radar-derived precipitation estimates, surface meteorological observations, and satellite data. The modeled hydrological components in the Walnut River Watershed compare well with stream gauge data and observed surface fluxes during 1999.

  20. EFFECT OF MODEL COMPLEXITY OF THE PREDICTION OF CONTAMINANT MASS FLUX

    EPA Science Inventory

    When is a soil vapor extraction project complete? Regulatory entities are beginning to define site closure based on predicted contaminant mass flux degradation to the underlying aquifer. However, the regulatory entities do not give guidance on how to perform the modeling. This...

  1. EFFECT OF MODEL COMPLEXITY ON THE PREDICTION OF CONTAMINANT MASS FLUX

    EPA Science Inventory

    When is a soil vapor extraction (SVE) project complete? Regulatory entities are beginning to define site closure based on predicted contaminant mass flux degradation to the underlying aquifer. However, regulatory entities do not give guidance on how to perform the modeling. Th...

  2. Bayesian flux balance analysis applied to a skeletal muscle metabolic model.

    PubMed

    Heino, Jenni; Tunyan, Knarik; Calvetti, Daniela; Somersalo, Erkki

    2007-09-01

    In this article, the steady state condition for the multi-compartment models for cellular metabolism is considered. The problem is to estimate the reaction and transport fluxes, as well as the concentrations in venous blood when the stoichiometry and bound constraints for the fluxes and the concentrations are given. The problem has been addressed previously by a number of authors, and optimization-based approaches as well as extreme pathway analysis have been proposed. These approaches are briefly discussed here. The main emphasis of this work is a Bayesian statistical approach to the flux balance analysis (FBA). We show how the bound constraints and optimality conditions such as maximizing the oxidative phosphorylation flux can be incorporated into the model in the Bayesian framework by proper construction of the prior densities. We propose an effective Markov chain Monte Carlo (MCMC) scheme to explore the posterior densities, and compare the results with those obtained via the previously studied linear programming (LP) approach. The proposed methodology, which is applied here to a two-compartment model for skeletal muscle metabolism, can be extended to more complex models. PMID:17568615

  3. DOSIMETRY MODELING OF INHALED FORMALDEHYDE: BINNING NASAL FLUX PREDICTIONS FOR QUANTITATIVE RISK ASSESSMENT

    EPA Science Inventory

    Dosimetry Modeling of Inhaled Formaldehyde: Binning Nasal Flux Predictions for Quantitative Risk Assessment. Kimbell, J.S., Overton, J.H., Subramaniam, R.P., Schlosser, P.M., Morgan, K.T., Conolly, R.B., and Miller, F.J. (2001). Toxicol. Sci. 000, 000:000.

    Interspecies e...

  4. Time-dependent modeling of solar wind acceleration from turbulent heating in open flux tubes

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren Nicole; Cranmer, Steven R.

    2015-04-01

    The acceleration of the solar wind, particularly from open flux tubes, remains an open question in solar physics. Countless physical processes have been suggested to explain all or parts of the coupled problem of coronal heating and wind acceleration, but the current generation of observations have been so far unable to distinguish which mechanism(s) dominates. In this project, we consider heating by Alfvén waves in a three-dimensional, time-dependent reduced magnetohydrodynamics model. This model solves for the heating rate as a function of time due to the twisting and braiding of magnetic field lines within a flux tube, which is caused by Alfvén waves generated at the single footpoint of the flux tube. We investigate three specific structures commonly found in the corona: 1) an open flux tube in a coronal hole, 2) an open flux tube on the edge of an equatorial streamer, and 3) an open flux tube directly neighboring an active region. We present the time-dependent heating rate, power spectra of fluctuations, and the time-averaged properties of the solar wind arising from each magnetic structure. We compare the time-averaged properties from the present modeling with previous results from a one-dimensional, time-steady code (Cranmer et al. 2007) to better calibrate the physics in the lower-dimensional code and get a better understanding of the intricate role that bursty, transient heating from Alfvén-wave-driven turbulence plays in the acceleration of the solar wind from different magnetic structures.

  5. Uncertainty and Sensitivity of Alternative Rn-222 Flux Density Models Used in Performance Assessment

    SciTech Connect

    Greg J. Shott, Vefa Yucel, Lloyd Desotell Non-Nstec Authors: G. Pyles and Jon Carilli

    2007-06-01

    Performance assessments for the Area 5 Radioactive Waste Management Site on the Nevada Test Site have used three different mathematical models to estimate Rn-222 flux density. This study describes the performance, uncertainty, and sensitivity of the three models which include the U.S. Nuclear Regulatory Commission Regulatory Guide 3.64 analytical method and two numerical methods. The uncertainty of each model was determined by Monte Carlo simulation using Latin hypercube sampling. The global sensitivity was investigated using Morris one-at-time screening method, sample-based correlation and regression methods, the variance-based extended Fourier amplitude sensitivity test, and Sobol's sensitivity indices. The models were found to produce similar estimates of the mean and median flux density, but to have different uncertainties and sensitivities. When the Rn-222 effective diffusion coefficient was estimated using five different published predictive models, the radon flux density models were found to be most sensitive to the effective diffusion coefficient model selected, the emanation coefficient, and the radionuclide inventory. Using a site-specific measured effective diffusion coefficient significantly reduced the output uncertainty. When a site-specific effective-diffusion coefficient was used, the models were most sensitive to the emanation coefficient and the radionuclide inventory.

  6. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  7. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees.

    PubMed

    Berdanier, Aaron B; Miniat, Chelcy F; Clark, James S

    2016-08-01

    Accurately scaling sap flux observations to tree or stand levels requires accounting for variation in sap flux between wood types and by depth into the tree. However, existing models for radial variation in axial sap flux are rarely used because they are difficult to implement, there is uncertainty about their predictive ability and calibration measurements are often unavailable. Here we compare different models with a diverse sap flux data set to test the hypotheses that radial profiles differ by wood type and tree size. We show that radial variation in sap flux is dependent on wood type but independent of tree size for a range of temperate trees. The best-fitting model predicted out-of-sample sap flux observations and independent estimates of sapwood area with small errors, suggesting robustness in the new settings. We develop a method for predicting whole-tree water use with this model and include computer code for simple implementation in other studies.

  8. Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.; Henze, D.; Bowman, K.; Chen, M.; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; Oechel, W.

    2014-09-01

    Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr-1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (-2.82 Pg C yr-1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining

  9. Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Lakshmi, Venkataraman

    1993-01-01

    Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.

  10. OBSERVATIONS AND MODELING OF NORTH-SOUTH ASYMMETRIES USING A FLUX TRANSPORT DYNAMO

    SciTech Connect

    Shetye, Juie; Tripathi, Durgesh; Dikpati, Mausumi

    2015-02-01

    The peculiar behavior of solar cycle 23 and its prolonged minima has been one of the most studied problems over the past few years. In the present paper, we study the asymmetries in active region magnetic flux in the northern and southern hemispheres during the complete solar cycle 23 and the rising phase of solar cycle 24. During the declining phase of solar cycle 23, we find that the magnetic flux in the southern hemisphere is about 10 times stronger than that in the northern hemisphere; however, during the rising phase of cycle 24, this trend is reversed. The magnetic flux becomes about a factor of four stronger in the northern hemisphere than in the southern hemisphere. Additionally, we find that there was a significant delay (about five months) in change of the polarity in the southern hemisphere in comparison with the northern hemisphere. These results provide us with hints of how the toroidal fluxes have contributed to the solar dynamo during the prolonged minima in solar cycle 23 and in the rising phase of solar cycle 24. Using a solar flux-transport dynamo model, we demonstrate that persistently stronger sunspot cycles in one hemisphere could be caused by the effect of greater inflows into active region belts in that hemisphere. Observations indicate that greater inflows are associated with stronger activity. Some other change or difference in meridional circulation between hemispheres could cause the weaker hemisphere to become the stronger one.

  11. Modelling the flux distribution function of the extragalactic gamma-ray background from dark matter annihilation

    SciTech Connect

    Feyereisen, Michael R.; Ando, Shin'ichiro; Lee, Samuel K. E-mail: s.ando@uva.nl

    2015-09-01

    The one-point function (i.e., the isotropic flux distribution) is a complementary method to (anisotropic) two-point correlations in searches for a gamma-ray dark matter annihilation signature. Using analytical models of structure formation and dark matter halo properties, we compute the gamma-ray flux distribution due to annihilations in extragalactic dark matter halos, as it would be observed by the Fermi Large Area Telescope. Combining the central limit theorem and Monte Carlo sampling, we show that the flux distribution takes the form of a narrow Gaussian of 'diffuse' light, with an 'unresolved point source' power-law tail as a result of bright halos. We argue that this background due to dark matter constitutes an irreducible and significant background component for point-source annihilation searches with galaxy clusters and dwarf spheroidal galaxies, modifying the predicted signal-to-noise ratio. A study of astrophysical backgrounds to this signal reveals that the shape of the total gamma-ray flux distribution is very sensitive to the contribution of a dark matter component, allowing us to forecast promising one-point upper limits on the annihilation cross-section. We show that by using the flux distribution at only one energy bin, one can probe the canonical cross-section required for explaining the relic density, for dark matter of masses around tens of GeV.

  12. Kim model for flux-pinning-induced stress in a long cylindrical superconductor

    NASA Astrophysics Data System (ADS)

    Zeng, Jun; Wang, Xiaogui; Wu, Huaping; Xue, Feng; Zhu, Jun

    2016-07-01

    In this work, the flux-pinning-induced stress distribution in a circular cylinder of high-temperature superconductors is studied by adopting the Kim critical state model to describe the relationship between the magnetic flux density and induced current. Based on the plane strain approach, the analytic expressions of the radial and hoop stress in the cylinder are derived for the zero-field cooling and field cooling magnetization processes. It is shown that the stress distributions depend on the activation processes and the values of the dimensionless parameter p in the Kim model, and the overall maximums of the stresses appear at or near the center of the cylinder where cracking may be most likely initiated. In addition, the Kim model has wider applicability than the Bean model, and the influence of p on the stress depends on the activation process. Generally speaking, these results may be useful for understanding the magnetoelastic problem in practical application of bulk superconductors.

  13. Influence of blade motion on mass flux to a model seagrass blade

    NASA Astrophysics Data System (ADS)

    Lei, Jiarui; Nepf, Heidi

    2015-11-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. While we anticipate that blade motion and reconfiguration may impact mass flux at the blade surface, this topic is an area of open discussion and research. We seek to better understand the interaction of individual blades with both unidirectional and oscillatory flows and how this interaction impacts mass flux. The degree of reconfiguration can be quantified by two dimensionless numbers, the Cauchy number, Ca, and the buoyancy parameter, B. For unidirectional currents (U) , a theoretical model for the transfer velocity (K) was constructed assuming the boundary layer on the blade surface remained laminar and developed like that over a flat plate, which predicts K ~U 0 . 5 . When the blades were bent-over, the model predicted the measured flux well; when the blades remained upright, the flux to the blade diminished relative to the model. Preliminary wave experiments show that blade motion increased with wave amplitude, and that there are two distinct regimes. In the first regime (Ca<15), the maximum reconfiguration was associated with the peak velocity (wave crest), so that the blade velocity leads the wave velocity by 90 degrees. The second regime occurred when Ca>15. In this regime, the phase difference was approximately zero and the blade moved passively with the wave. NSF.

  14. A simplified model for average kinetic energy flux within large wind turbine arrays

    NASA Astrophysics Data System (ADS)

    Markfort, Corey; Zhang, Wei; Porte-Agel, Fernando

    2015-11-01

    We investigate the kinetic energy distribution within an array of wind turbines using a 1-D model for the interactions between large-scale wind farms and the atmospheric boundary layer (ABL). Obstructed shear flow scaling is used to predict the development length of the wind farm flow as well as vertical momentum flux. Within the region of flow development, momentum and energy is advected into the wind farm and wake turbulence draws excess momentum in from between turbines. This is characterized by large dispersive fluxes. Once the flow within the farm is developed, the area - averaged velocity profile exhibits an inflection point, characteristic of obstructed shear flows. The inflected velocity profile is responsible for a characteristic turbulence eddy scale, which may be responsible for a significant amount of the vertical momentum and energy flux. Prediction of this scale is useful for determining the amount of available power for harvesting. The model result for kinetic energy flux is compared to wind tunnel measurements. The model is useful for optimizing wind turbine spacing and layout, and for assessing the impacts of wind farms on nearby wind resources and the environment.

  15. Genetic-algorithm selection of a regulatory structure that directs flux in a simple metabolic model.

    PubMed Central

    Gilman, A; Ross, J

    1995-01-01

    A genetic algorithm (GA) is used to optimize parameters for allosteric regulation of enzymes in a model of a metabolic futile cycle, in which two metabolites are interconverted by a pair of irreversible enzymatic reactions. The cycle is regulated by end products of the surrounding pathway. The optimization criterion for the GA is the proper direction of chemical flux in the regulated cycle toward one or the other end product in response to a simple, time-dependent model of biochemical "need" based on externally imposed variation of the end product concentrations. An energetic cost, to be held to a minimum, is also imposed on the operation of the cycle. The best-performing individuals selected by the GA are found to switch rapidly the direction of net flux according to need. In different "environments" (specific time courses of end product concentrations), the GA produces better- or poorer-performing individuals. In some cases "generalists" and "specialists" are produced. The present approach provides, purely as a consequence of formally specifying the task of flux direction, the new result of numerical confirmation, in a simple model, of the intuition that negative feedback and reciprocal regulation are important for good flux direction in arbitrary environments, and gives rise to a diversity of structures, suggestive of the results of biological evolution. Images FIGURE 3 FIGURE 6 PMID:8534802

  16. Idealised modelling of ocean circulation driven by geothermal and hydrothermal fluxes at the seabed

    NASA Astrophysics Data System (ADS)

    Barnes, Jowan; Morales Maqueda, Miguel; Polton, Jeff

    2016-04-01

    There are two distinct processes by which heat is transferred from the solid Earth into the abyssal ocean. The first is conductive geothermal heating and the second is hydrothermal heating, involving advection of heated water from within the Earth's crust. Here, the noticeably different impacts of these two physical systems on ocean circulation are investigated. Previous modelling studies have applied geothermal heat fluxes at the seabed and shown discrepancies in circulation compared to cases which neglected heat from the Earth in their boundary conditions. The true heat flux in the ocean, however, is not entirely geothermal. From areas where the crust is younger a significant proportion of the heat input from the Earth could be in the form of fluid flow from hydrothermal vents, introducing forcing to the circulation which has previously been unaccounted for. In this study a set of idealised modelling experiments are run in order to investigate the effects of changing the balance of the total heat flux from purely geothermal to purely hydrothermal, via intermediate states in which the two boundary conditions are combined in different ratios. By performing such experiments it will be shown which of the two processes is dominant in its effects on circulation driven by heating at the seabed, and whether neglecting the hydrothermal advection in favour of a fully conductive geothermal boundary condition is justifiable. The results will inform the construction of boundary conditions for future circulation models involving ocean floor heat fluxes, specifically a regional study of geothermal and hydrothermal contributions within the Panama Basin.

  17. Enhanced Cancelable Biometrics for Online Signature Verification

    NASA Astrophysics Data System (ADS)

    Muramatsu, Daigo; Inuma, Manabu; Shikata, Junji; Otsuka, Akira

    Cancelable approaches for biometric person authentication have been studied to protect enrolled biometric data, and several algorithms have been proposed. One drawback of cancelable approaches is that the performance is inferior to that of non-cancelable approaches. In this paper, we propose a scheme to improve the performance of a cancelable approach for online signature verification. Our scheme generates two cancelable dataset from one raw dataset and uses them for verification. Preliminary experiments were performed using a distance-based online signature verification algorithm. The experimental results show that our proposed scheme is promising.

  18. Efficient Modeling of MS/MS Data for Metabolic Flux Analysis

    PubMed Central

    Tepper, Naama; Shlomi, Tomer

    2015-01-01

    Metabolic flux analysis (MFA) is a widely used method for quantifying intracellular metabolic fluxes. It works by feeding cells with isotopic labeled nutrients, measuring metabolite isotopic labeling, and computationally interpreting the measured labeling data to estimate flux. Tandem mass-spectrometry (MS/MS) has been shown to be useful for MFA, providing positional isotopic labeling data. Specifically, MS/MS enables the measurement of a metabolite tandem mass-isotopomer distribution, representing the abundance in which certain parent and product fragments of a metabolite have different number of labeled atoms. However, a major limitation in using MFA with MS/MS data is the lack of a computationally efficient method for simulating such isotopic labeling data. Here, we describe the tandemer approach for efficiently computing metabolite tandem mass-isotopomer distributions in a metabolic network, given an estimation of metabolic fluxes. This approach can be used by MFA to find optimal metabolic fluxes, whose induced metabolite labeling patterns match tandem mass-isotopomer distributions measured by MS/MS. The tandemer approach is applied to simulate MS/MS data in a small-scale metabolic network model of mammalian methionine metabolism and in a large-scale metabolic network model of E. coli. It is shown to significantly improve the running time by between two to three orders of magnitude compared to the state-of-the-art, cumomers approach. We expect the tandemer approach to promote broader usage of MS/MS technology in metabolic flux analysis. Implementation is freely available at www.cs.technion.ac.il/~tomersh/methods.html PMID:26230524

  19. Metabolic Flux Elucidation for Large-Scale Models Using 13C Labeled Isotopes

    PubMed Central

    Suthers, Patrick F.; Burgard, Anthony P.; Dasika, Madhukar S.; Nowroozi, Farnaz; Van Dien, Stephen; Keasling, Jay D.; Maranas, Costas D.

    2007-01-01

    A key consideration in metabolic engineering is the determination of fluxes of the metabolites within the cell. This determination provides an unambiguous description of metabolism before and/or after engineering interventions. Here, we present a computational framework that combines a constraint-based modeling framework with isotopic label tracing on a large-scale. When cells are fed a growth substrate with certain carbon positions labeled with 13C, the distribution of this label in the intracellular metabolites can be calculated based on the known biochemistry of the participating pathways. Most labeling studies focus on skeletal representations of central metabolism and ignore many flux routes that could contribute to the observed isotopic labeling patterns. In contrast, our approach investigates the importance of carrying out isotopic labeling studies using a more comprehensive reaction network consisting of 350 fluxes and 184 metabolites in Escherichia coli including global metabolite balances on cofactors such as ATP, NADH, and NADPH. The proposed procedure is demonstrated on an E. coli strain engineered to produce amorphadiene, a precursor to the anti-malarial drug artemisinin. The cells were grown in continuous culture on glucose containing 20% [U-13C]glucose; the measurements are made using GC-MS performed on 13 amino acids extracted from the cells. We identify flux distributions for which the calculated labeling patterns agree well with the measurements alluding to the accuracy of the network reconstruction. Furthermore, we explore the robustness of the flux calculations to variability in the experimental MS measurements, as well as highlight the key experimental measurements necessary for flux determination. Finally, we discuss the effect of reducing the model, as well as shed light onto the customization of the developed computational framework to other systems. PMID:17632026

  20. Estimating the daily course of Konza Prairie latent heat fluxes using a modified Tergra model

    NASA Technical Reports Server (NTRS)

    Hope, Allen S.

    1992-01-01

    Experimental tests of the Tergra-2 model are based on data collected under moderately wet to wet and very dry soil moisture conditions. Further testing of the model under intermediate soil moisture conditions is required and additional testing under very dry conditions may lead to modifications that make the model more suitable to water-stressed conditions. Combining the Tergra model with a soil evaporation routine should enhance the accuracy of the model and allow it to be employed in situations where vapor fluxes are not almost solely attributable to transpiration.

  1. Heat and moisture flux modeling of the FIFE grassland canopy aided by satellite derived canopy variables

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Crosson, William L.; Cooper, Harry J.; Weng, Heng-Yi

    1990-01-01

    Satellite data corresponding to radiance variables are used to derive three canopy properties which describe slowly modulating boundary conditions of the interface between the biosphere and the atmosphere. The canopy properties are key factors in the regulation of heat and moisture transfer and are found to be radiance patterns within a homogeneous ecosystem. The physical modeling technique is enhanced by the satellite data, and the surface fluxes are represented more accurately in the resulting biosphere-interface model.

  2. Parameterization of biogeochemical sediment-water fluxes using in situ measurements and a diagenetic model

    NASA Astrophysics Data System (ADS)

    Laurent, A.; Fennel, K.; Wilson, R.; Lehrter, J.; Devereux, R.

    2016-01-01

    Diagenetic processes are important drivers of water column biogeochemistry in coastal areas. For example, sediment oxygen consumption can be a significant contributor to oxygen depletion in hypoxic systems, and sediment-water nutrient fluxes support primary productivity in the overlying water column. Moreover, nonlinearities develop between bottom water conditions and sediment-water fluxes due to loss of oxygen-dependent processes in the sediment as oxygen becomes depleted in bottom waters. Yet, sediment-water fluxes of chemical species are often parameterized crudely in coupled physical-biogeochemical models, using simple linear parameterizations that are only poorly constrained by observations. Diagenetic models that represent sediment biogeochemistry are available, but rarely are coupled to water column biogeochemical models because they are computationally expensive. Here, we apply a method that efficiently parameterizes sediment-water fluxes of oxygen, nitrate and ammonium by combining in situ measurements, a diagenetic model and a parameter optimization method. As a proof of concept, we apply this method to the Louisiana Shelf where high primary production, stimulated by excessive nutrient loads from the Mississippi-Atchafalaya River system, promotes the development of hypoxic bottom waters in summer. The parameterized sediment-water fluxes represent nonlinear feedbacks between water column and sediment processes at low bottom water oxygen concentrations, which may persist for long periods (weeks to months) in hypoxic systems such as the Louisiana Shelf. This method can be applied to other systems and is particularly relevant for shallow coastal and estuarine waters where the interaction between sediment and water column is strong and hypoxia is prone to occur due to land-based nutrient loads.

  3. Measurements and modeling of atmospheric flux of ammonia from an anaerobic dairy waste lagoon

    NASA Astrophysics Data System (ADS)

    Rumburg, Brian; Mount, George H.; Yonge, David; Lamb, Brian; Westberg, Hal; Neger, Manjit; Filipy, Jenny; Kincaid, Ron; Johnson, Kristen

    Atmospheric anthropogenic ammonia (NH3) emissions are not well understood in the US due to a lack of measurement data from the main emission sources. This paper describes concentration measurements downwind of an anaerobic dairy waste lagoon using differential optical absorption spectroscopy (DOAS), tracer ratio flux experiments and the testing of two mechanistic emission models. The tracer ratio method involves releasing a measured flux of a tracer gas upwind of the lagoon and measuring the concentration downwind along with the DOAS NH3 measurement. The flux is calculated by ratioing the tracer flux and concentration with the NH3 concentration and taking into account the differences in area and dispersion over the area source. Measured fluxes from the tracer experiments ranged from 0.11gm-2h-1 at an air temperature of 11C to 0.54gm-2h-1 at an air temperature of 27C. The NH3 emission models were based upon the temperature-dependent biological activity, the partitioning of NH3 and NH4+ in solution, and the partitioning of NH3 between the gas and liquid phases. The theoretical mechanistic model and the empirical mechanistic model had normalized mean errors of 120% and 21%, respectively, when compared to measurements. Emissions were most sensitive to changes in lagoon pH. Annual emissions were 55kgNH3cow-1yr-1 from all lagoons, estimated excretion is 180kgNcow-1yr-1. Using literature lagoon design criteria to estimate lagoon size resulted in an underestimation of emissions of -29%.

  4. Empirical properties of inter-cancellation durations in the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Gu, Gao-Feng; Xiong, Xiong; Zhang, Wei; Zhang, Yong-Jie; Zhou, Wei-Xing

    2014-03-01

    Order cancellation process plays a crucial role in the dynamics of price formation in order-driven stock markets and is important in the construction and validation of computational finance models. Based on the order flow data of 23 liquid stocks traded on the Shenzhen Stock Exchange in 2003, we investigate the empirical statistical properties of inter-cancellation durations in units of events defined as the waiting times between two consecutive cancellations. The inter-cancellation durations for both buy and sell orders of all the stocks favor a q-exponential distribution when the maximum likelihood estimation method is adopted; In contrast, both cancelled buy orders of 9 stocks and cancelled sell orders of 4 stocks prefer Weibull distribution when the nonlinear least-square estimation is used. Applying detrended fluctuation analysis (DFA), centered detrending moving average (CDMA) and multifractal detrended fluctuation analysis (MF-DFA) methods, we unveil that the inter-cancellation duration time series process long memory and multifractal nature for both buy and sell cancellations of all the stocks. Our findings show that order cancellation processes exhibit long-range correlated bursty behaviors and are thus not Poissonian.

  5. A new estimation of global soil greenhouse gas fluxes using a simple data-oriented model.

    PubMed

    Hashimoto, Shoji

    2012-01-01

    Soil greenhouse gas fluxes (particularly CO(2), CH(4), and N(2)O) play important roles in climate change. However, despite the importance of these soil greenhouse gases, the number of reports on global soil greenhouse gas fluxes is limited. Here, new estimates are presented for global soil CO(2) emission (total soil respiration), CH(4) uptake, and N(2)O emission fluxes, using a simple data-oriented model. The estimated global fluxes for CO(2) emission, CH(4) uptake, and N(2)O emission were 78 Pg C yr(-1) (Monte Carlo 95% confidence interval, 64-95 Pg C yr(-1)), 18 Tg C yr(-1) (11-23 Tg C yr(-1)), and 4.4 Tg N yr(-1) (1.4-11.1 Tg N yr(-1)), respectively. Tropical regions were the largest contributor of all of the gases, particularly the CO(2) and N(2)O fluxes. The soil CO(2) and N(2)O fluxes had more pronounced seasonal patterns than the soil CH(4) flux. The collected estimates, including both the previous and the present estimates, demonstrate that the means of the best estimates from each study were 79 Pg C yr(-1) (291 Pg CO(2) yr(-1); coefficient of variation, CV = 13%, N = 6) for CO(2), 21 Tg C yr(-1) (29 Tg CH(4) yr(-1); CV = 24%, N = 24) for CH(4), and 7.8 Tg N yr(-1) (12.2 Tg N(2)O yr(-1); CV = 38%, N = 11) for N(2)O. For N(2)O, the mean of the estimates that was calculated by excluding the earliest two estimates was 6.6 Tg N yr(-1) (10.4 Tg N(2)O yr(-1); CV = 22%, N = 9). The reported estimates vary and have large degrees of uncertainty but their overall magnitudes are in general agreement. To further minimize the uncertainty of soil greenhouse gas flux estimates, it is necessary to build global databases and identify key processes in describing global soil greenhouse gas fluxes.

  6. Analyzing consistency of interannual variability in air-sea sensible and latent heat fluxes in CMIP5 model simulations

    NASA Astrophysics Data System (ADS)

    Serykh, Ilya; Gulev, Sergey

    2015-04-01

    Surface turbulent heat fluxes are critically important in climate model experiments, since they represent a language of communication of the ocean and atmosphere. Interannual variability of surface turbulent heat fluxes is believed to be the major contributor to the changes in the ocean surface heat balance, at least in mid latitudes. Being relatively well assessed and validated in reanalyses, surface turbulent heat fluxes always were of a lesser attention in diagnostics of climate model experiments. We analysed interannual variability of sensible and latent heat fluxes in historical climate simulations with several CMIP5 models. Variability in surface turbulent sensible and latent heat fluxes in model simulations has been analysed during several last decades (from 1950s to 2005) with the emphasis on different scales of variability (short-term, interannual, decadal). At all scales has been found a little consistency between the changes in turbulent surface fluxes diagnosed by reanalyses and blended data sets (OA-FLUX) on one hand and model simulations on the other. Furthermore, some models (e.g. ECHAM, IPSL) surprisingly demonstrate large regions with negative correlations between sensible and latent heat fluxes, which is not the case in observational data sets (reanalyses and OAFLUX). Interestingly, variability in air temperature and surface humidity (which could be potentially considered as the reason for autocorrelation between sensible and latent fluxes) demonstrates consistency with each other at most scales. Further we discuss potential reasons for the discovered phenomenon.

  7. A Numerical Model to Assess Soil Fluxes from Meteoric 10Be Data

    NASA Astrophysics Data System (ADS)

    Campforts, B.; Govers, G.; Vanacker, V.; Vanderborght, J.; Smolders, E.; Baken, S.

    2015-12-01

    Meteoric 10Be may be mobile in the soil system. The latter hampers a direct translation of meteoric 10Be inventories into spatial variations in erosion and deposition rates. Here, we present a spatially explicit 2D model that allows us to simulate the behaviour of meteoric 10Be in the soil system. The Be2D model is then used to analyse the potential impact of human-accelerated soil fluxes on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile including particle migration, chemical leaching and bioturbation, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes from creep, water and tillage erosion. Model simulations show that meteoric 10Be inventories can indeed be related to erosion and deposition, across a wide range of geomorphological and pedological settings. However, quantification of the effects of vertical mobility is essential for a correct interpretation of the observed spatial patterns in 10Be data. Moreover, our simulations suggest that meteoric 10Be can be used as a tracer to unravel human impact on soil fluxes when soils have a high retention capacity for meteoric meteoric 10Be. Application of the Be2D model to existing data sets shows that model parameters can reliably be constrained, resulting in a good agreement between simulated and observed meteoric 10Be concentrations and inventories. This confirms the suitability of the Be2D model as a robust tool to underpin quantitative interpretations of spatial variability in meteoric 10Be data for eroding landscapes.

  8. Advanced Models of LWR Pressure Vessel Embrittlement for Low Flux-HighFluence Conditions

    SciTech Connect

    Odette, G. Robert; Yamamoto, Takuya

    2013-06-17

    Neutron embrittlement of reactor pressure vessels (RPVs) is an unresolved issue for light water reactor life extension, especially since transition temperature shifts (TTS) must be predicted for high 80-year fluence levels up to approximately 1,020 n/cm{sup 2}, far beyond the current surveillance database. Unfortunately, TTS may accelerate at high fluence, and may be further amplified by the formation of late blooming phases that result in severe embrittlement even in low-copper (Cu) steels. Embrittlement by this mechanism is a potentially significant degradation phenomenon that is not predicted by current regulatory models. This project will focus on accurately predicting transition temperature shifts at high fluence using advanced physically based, empirically validated and calibrated models. A major challenge is to develop models that can adjust test reactor data to account for flux effects. Since transition temperature shifts depend on synergistic combinations of many variables, flux-effects cannot be treated in isolation. The best current models systematically and significantly under-predict transition temperature at high fluence, although predominantly for irradiations at much higher flux than actual RPV service. This project will integrate surveillance, test reactor and mechanism data with advanced models to address a number of outstanding RPV embrittlement issues. The effort will include developing new databases and preliminary models of flux effects for irradiation conditions ranging from very low (e.g., boiling water reactor) to high (e.g., accelerated test reactor). The team will also develop a database and physical models to help predict the conditions for the formation of Mn-Ni-Si late blooming phases and to guide future efforts to fully resolve this issue. Researchers will carry out other tasks on a best-effort basis, including prediction of transition temperature shift attenuation through the vessel wall, remediation of embrittlement by annealing

  9. The application of a hierarchical Bayesian spatiotemporal model for forecasting the SAA trapped particle flux distribution

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Gusrizal

    2014-08-01

    We implement a hierarchical Bayesian spatiotemporal (HBST) model to forecast the daily trapped particle flux distribution over the South Atlantic Anomaly (SAA) region. The National Oceanic and Atmospheric Administration (NOAA)-15 data from 1-30 March 2008 with particle energies as >30 keV (mep0e1) and >300 keV (mep0e3) for electrons and 80-240 keV (mep0p2) and > 6900 keV (mep0p6) for protons were used as the model input to forecast the flux values on 31 March 2008. Data were transformed into logarithmic values and gridded in a 5∘×5∘ longitude and latitude size to fulfill the modelling precondition. A Monte Carlo Markov chain (MCMC) was then performed to solve the HBST Gaussian Process (GP) model by using the Gibbs sampling method. The result for this model was interpolated by a Kriging technique to achieve the whole distribution figure over the SAA region. Statistical results of the root mean square error (RMSE), mean absolute percentage error (MAPE), and bias (BIAS) showed a good indicator of the HBST method. The statistical validation also indicated the high variability of particle flux values in the SAA core area. The visual validation showed a powerful combination of HBST-GP model with Kriging interpolation technique. The Kriging also produced a good quality of the distribution map of particle flux over the SAA region as indicated by its small variance value. This suggests that the model can be applied in the development of a Low Earth Orbit (LEO)-Equatorial satellite for monitoring trapped particle radiation hazard.

  10. Comparing Amazon Basin CO2 fluxes from an atmospheric inversion with TRENDY biosphere models

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Alden, C. B.; Harper, A. B.; Ahlström, A.; Touma, D. E.; Miller, J. B.; Gatti, L. V.; Gloor, M.

    2015-12-01

    Net exchange of carbon dioxide (CO2) between the atmosphere and the terrestrial biosphere is sensitive to environmental conditions, including extreme heat and drought. Of particular importance for local and global carbon balance and climate are the expansive tracts of tropical rainforest located in the Amazon Basin. Because of the Basin's size and ecological heterogeneity, net biosphere CO2 exchange with the atmosphere remains largely un-constrained. In particular, the response of net CO2 exchange to changes in environmental conditions such as temperature and precipitation are not yet well known. However, proper representation of these relationships in biosphere models is a necessary constraint for accurately modeling future climate and climate-carbon cycle feedbacks. In an effort to compare biosphere response to climate across different biosphere models, the TRENDY model intercomparison project coordinated the simulation of CO2 fluxes between the biosphere and atmosphere, in response to historical climate forcing, by 9 different Dynamic Global Vegetation Models. We examine the TRENDY model results in the Amazon Basin, and compare this "bottom-up" method with fluxes derived from a "top-down" approach to estimating net CO2 fluxes, obtained through atmospheric inverse modeling using CO2 measurements sampled by aircraft above the basin. We compare the "bottom-up" and "top-down" fluxes in 5 sub-regions of the Amazon basin on a monthly basis for 2010-2012. Our results show important periods of agreement between some models in the TRENDY suite and atmospheric inverse model results, notably the simulation of increased biosphere CO2 loss during wet season heat in the Central Amazon. During the dry season, however, model ability to simulate observed response of net CO2 exchange to drought was varied, with few models able to reproduce the "top-down" inversion flux signals. Our results highlight the value of atmospheric trace gas observations for helping to narrow the

  11. Metabolic Flux Analysis -application in plant metabolic modelling for advanced life support systems

    NASA Astrophysics Data System (ADS)

    Sasidharan L, Swathy; Hezard, Pauline; Poughon, Laurent; Dussap, Claude-Gilles

    Plants have an important role in providing food and fresh oxygen for humans in a closed environment during long duration missions to Mars or Moon. Also, plants play an important role for recycling water. Thus, plant modelling (crop composition, yield prediction and the responses to its environment within the closed loop) gets much attention in the development of closed ecological life support systems. In order to achieve this, metabolic flux computation methods accounting for reactions stoichiometry and chemical energy conservation obtained from metabolic pathways description of different plant parts are required. The basic ideas of metabolic modelling and their application to various plant parts will be discussed. Metabolic systems consist of a set of metabolites and reactions that consume or produce them. The metabolic pathways within a metabolic network for each plant part or sub level are characterised and the metabolic fluxes, defined as the amount of converted metabolite per unit time and per unit mass of tissue (or per plant part), can be calculated. MBA (Metabolic flux analysis) which is a constraint based approach is effective at calculating flux distributions through bio-chemical networks. This methodology can be applied to several plants' growth situations. In terms of space appli-cations, it is shown how this approach could bring valuable tools for assessing and quantifying the effects of the environment of a close system on growth rate and conversion yields.

  12. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    NASA Astrophysics Data System (ADS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-06-01

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita , Radiation MeasurementsRMEAEP1350-4487 41, 1080 (2006).10.1016/j.radmeas.2006.07.013]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).APHYEE0927-650510.1016/j.astropartphys.2008.07.007] a little better than DPMJET-III [S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. DPRVDAQ1550-7998 75, 043005 (2007).10.1103/PhysRevD.75.043005][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. DPRVDAQ1550-7998 75, 043006 (2007).10.1103/PhysRevD.75.043006]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  13. Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models

    SciTech Connect

    Eyink, Gregory L.

    2009-08-15

    We prove that smooth solutions of nonideal (viscous and resistive) incompressible magnetohydrodynamic (MHD) equations satisfy a stochastic law of flux conservation. This property implies that the magnetic flux through a surface is equal to the average of the magnetic fluxes through an ensemble of surfaces advected backward in time by the plasma velocity perturbed with a random white noise. Our result is an analog of the well-known Alfven theorem of ideal MHD and is valid for any value of the magnetic Prandtl number. A second stochastic conservation law is shown to hold at unit Prandtl number, a random version of the generalized Kelvin theorem derived by Bekenstein and Oron for ideal MHD. These stochastic conservation laws are not only shown to be consequences of the nonideal MHD equations but are proved in fact to be equivalent to those equations. We derive similar results for two more refined hydromagnetic models, Hall MHD and the two-fluid plasma model, still assuming incompressible velocities and isotropic transport coefficients. Finally, we use these results to discuss briefly the infinite-Reynolds-number limit of hydromagnetic turbulence and to support the conjecture that flux conservation remains stochastic in that limit.

  14. Multiple angle measurement and modeling of M-band x-ray fluxes from vacuum hohlraum

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Li, Shanwei; Li, Zhichao; Jing, Longfei; Xie, Xufei; Jiang, Xiaohua; Yang, Dong; Du, Huabin; Hou, Lifei; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen; Ding, Yongkun; Hu, Guangyue; Zheng, Jian

    2016-09-01

    The energetics experiment of vacuum gold hohlraums is implemented on the Shenguang-II laser facility. The total and M-band x-ray fluxes from the laser entrance holes are measured by the flat response x-ray diodes which are set at multiple angles with respect to the axis of the hohlraums. The measured M-band fractions are from 5.72% to 7.71%, which present a specific angular distribution. Based on the fact that the M-band x-rays are mainly emitted from the under-dense high-temperature plasmas, a simplified model is developed to give a quantitative prediction of the intensity, temporal behavior, and angular distribution of the M-band x-ray flux. The results obtained with our model are in good agreement with the experimental data, showing that our model can be a useful tool for M-band x-ray investigation.

  15. Prediction of ECS and SSC Models for Flux-Limited Samples of Gamma-Ray Blazars

    NASA Technical Reports Server (NTRS)

    Lister, Matthew L.; Marscher, Alan P.

    1999-01-01

    The external Compton scattering (ECS) and synchrotron self-Compton (SSC) models make distinct predictions for the amount of Doppler boosting of high-energy gamma-rays emitted by Nazar. We examine how these differences affect the predicted properties of active galactic nucleus (AGN) samples selected on the basis of Murray emission. We create simulated flux-limited samples based on the ECS and SSC models, and compare their properties to those of identified EGRET blazars. We find that for small gamma-ray-selected samples, the two models make very similar predictions, and cannot be reliably distinguished. This is primarily due to the fact that not only the Doppler factor, but also the cosmological distance and intrinsic luminosity play a role in determining whether an AGN is included in a flux-limited gamma-ray sample.

  16. Modelling osmotic stress by Flux Balance Analysis at the genomic scale.

    PubMed

    Metris, Aline; George, Susan; Baranyi, József

    2012-01-16

    Predictive microbiology for food safety is still primarily based on empirical models describing the effect of the environmental conditions of the food on the kinetics of the growth of foodborne pathogens. One way to make these models more mechanistic is to use systems biology methods such as Flux Balance Analysis (FBA). FBA consists of evaluating the possible fluxes through the metabolic reactions taking place in a cell. Using this method, the specific growth rate of Escherichia coli can be predicted by assuming, as an objective function, that the cells maximise their biomass production during balanced growth. Whilst this works under favourable environmental conditions, our simulations show that this objective function is not sufficient to explain the decrease of the growth rate due to osmotic stress. One feature of the FBA models is that the parameters and objective function in general refer to chemostat experiments where the carbon source is the main limiting factor. This may be relevant to some foods where the carbon to nitrogen balance is limiting but, in general, it is the physico-chemical conditions which are the most stringent. We therefore need to examine the effect of such constraints on the fluxes and/or modify the objective function, or to elaborate the metabolic model by taking into account other functional levels of the cell in order to develop mechanistic predictive models for osmotic stress conditions.

  17. Validation of PICA Ablation and Thermal-Response Model at Low Heat Flux

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih-Kanq

    2009-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the forebody heatshield material on the Stardust sample-return capsule and is also a primary candidate material for the Mars Science Lander (MSL), the Orion Crew Module, and the SpaceX Dragon vehicle. As part of the heatshield qualification for Orion, physical and thermal properties of virgin and charred PICA were measured, and an ablation and thermal response model was developed. We validated the model by comparing it with recession and temperature data from stagnation arcjet tests conducted over a wide range of stagnation heat flux of 107 to 1102 W/sq cm. The effect of orthotropic thermal conductivity was evident in the thermal response of the arcjet models. In general, model predictions compared well with the data; however, the uncertainty of the recession prediction was greatest for heat fluxes below 200 W/sq cm. More recent MSL testing focused on the low heat flux regime of 45 to 250 W/sq cm. The new results confirm the recession uncertainty, especially for pressures below 6 kPa. In this work we focus on improving the model predictions for MSL and Orion tests below 250 W/sq cm.

  18. Comparison of modelled and observed sea ice fluxes in the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Huard, D. B.; Tremblay, B.; Lemieux, J.

    2009-12-01

    With the foreseeable increase in the strategic and economic importance of the Canadian Arctic Archipelago (CAA), a comprehensive picture of sea ice conditions at present and in the future is needed. However, due to the complex topography of the Canadian Arctic Archipelago (CAA), modelling sea ice fluxes in this area requires considerable spatial resolution. Our group has developed a stand-alone sea ice model based on the viscous-plastic rheology. The model includes both the Arctic Ocean and the CAA at a resolution of 10km, sufficient to resolve most of the channels and straits of the CAA. This study compares simulated fluxes across CAA channels and straits with satellite observations in order to identify potential improvements to the model and forcing fields. In particular, simulations were run with 32km resolution NARR surface winds instead of NCEP geostrophic winds in an attempt to capture wind channeling effects seen in the Eastern Arctic. Results show that fluxes are well simulated in the Western Arctic. In the Queen Elizabeth Islands region however, sea ice moves too freely compared with observations. The biggest challenge seems to be the Eastern Arctic, where the winter outflow of ice from Lancaster Sound towards Baffin Bay is not captured by the model. Potential explanations for the discrepancies are presented.

  19. Two- and three-body color flux tubes in the chromodielectric model

    NASA Astrophysics Data System (ADS)

    Martens, Gunnar; Greiner, Carsten; Leupold, Stefan; Mosel, Ulrich

    2004-12-01

    Using the framework of the chromodielectric model we perform an analysis of color electric flux tubes in mesonlike qq¯ and baryonlike qqq quark configurations. We discuss the Abelian color structure of the model and point out a symmetry in color space as a remnant of the SU(3) symmetry of QCD. The generic features of the model are discussed by varying the model parameters. We fix these parameters by reproducing the string tension τ=980 MeV/fm and the transverse width ρ=0.35 fm of the qq¯ flux tube obtained in lattice calculations. We use a bag constant B1/4=(240-260) MeV, a glueball mass mg=(1000-1700) MeV, and a strong coupling constant CFαs=0.2-0.3. We show that the asymptotic string profile of an infinitely long flux tube is already reached for qq¯ separations R≥1.0 fm. A connection to the dual color superconductor is made by extracting a magnetic current from the model equations and a qualitative agreement between the two descriptions of confinement is shown. In the study of the qqq system we observe a Δ-like geometry for the color electric fields and a Y-like geometry in the scalar fields both in the energy density distribution and in the corresponding potentials. The resulting total qqq potential is described neither by the Δ-picture nor by the Y-picture alone.

  20. Observed and Modeled Isoprene Fluxes at a Remote Michigan Forest Site

    NASA Astrophysics Data System (ADS)

    Wen, M.; Pressley, S. N.; Gu, D.; Yu, H.; Guenther, A. B.; VanReken, T. M.

    2015-12-01

    Biogenic volatile organic compounds (BVOCs) constitute a major part of global VOC emissions and can affect regional or global climate by influencing tropospheric chemistry and forming secondary organic aerosols. Isoprene is the most abundant species in global BVOC budget. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) 2.1 (Guenther et al., 2006, 2012) is a state-of-art emission model that simulates BVOC emissions by considering major environmental activity factors (e.g. temperature, solar radiation). Here we compare measurements of isoprene emissions in a mixed hardwood forest at the University of Michigan Biological Station (UMBS) during 1999-2005 growing seasons (Pressley et al., 2004, 2005) with MEGAN model simulations. We investigated the seasonal variations of isoprene emissions by considering the impacts from meteorological conditions, as well as correlations between sensible heat flux, latent heat flux and isoprene flux for a model uncertainty analysis. Model simulations are in good agreement with observations during leaf full expansion periods, but the values are 3-4 times higher than observations before full leaf development and after leaf senescence periods. There are significant correlations between the variations of isoprene emissions and precipitation.

  1. BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.

  2. Simplified Solar Modulation Model of Inner Trapped Belt Proton Flux As a Function of Atmospheric Density

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose. It has already been published in this journal that the absorbed dose rate, D, in the trapped belts exhibits a power law relationship, D = A(rho)(sup -n), where A is a constant, rho is the atmospheric density, and the index n is weakly dependent upon shielding. However, that method does not work for flux and fluence. Instead, we extend this idea by showing that the power law approximation for flux J is actually bivariant in energy E as well as density rho. The resulting relation is J(E,rho)approx.(sum of)A(E(sup n))rho(sup -n), with A itself a power law in E. This provides another method for calculating approximate proton flux and lifetime at any time in the solar cycle. These in turn can be used to predict the associated dose and dose rate.

  3. Generalized analytical model for benthic water flux forced by surface gravity waves

    USGS Publications Warehouse

    King, J.N.; Mehta, A.J.; Dean, R.G.

    2009-01-01

    A generalized analytical model for benthic water flux forced by linear surface gravity waves over a series of layered hydrogeologic units is developed by adapting a previous solution for a hydrogeologic unit with an infinite thickness (Case I) to a unit with a finite thickness (Case II) and to a dual-unit system (Case III). The model compares favorably with laboratory observations. The amplitude of wave-forced benthic water flux is shown to be directly proportional to the amplitude of the wave, the permeability of the hydrogeologic unit, and the wave number and inversely proportional to the kinematic viscosity of water. A dimensionless amplitude parameter is introduced and shown to reach a maximum where the product of water depth and the wave number is 1.2. Submarine groundwater discharge (SGD) is a benthic water discharge flux to a marine water body. The Case I model estimates an 11.5-cm/d SGD forced by a wave with a 1 s period and 5-cm amplitude in water that is 0.5-m deep. As this wave propagates into a region with a 0.3-m-thick hydrogeologic unit, with a no-flow bottom boundary, the Case II model estimates a 9.7-cm/d wave-forced SGD. As this wave propagates into a region with a 0.2-m-thick hydrogeologic unit over an infinitely thick, more permeable unit, the Case III quasi-confined model estimates a 15.7-cm/d wave-forced SGD. The quasi-confined model has benthic constituent flux implications in coral reef, karst, and clastic regions. Waves may undermine tracer and seepage meter estimates of SGD at some locations. Copyright 2009 by the American Geophysical Union.

  4. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling

    PubMed Central

    2011-01-01

    Background A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Results Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire

  5. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.

    PubMed

    Ekama, G A; Marais, P

    2004-01-01

    The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  6. Regional CO2 flux estimates from estuarine environments: a reactive-transport modeling approach

    NASA Astrophysics Data System (ADS)

    Goossens, Nicolas; Laruelle, Goulven G.; Arndt, Sandra; Regnier, Pierre

    2013-04-01

    Estuaries are key components of the land-ocean continuum and play an important role in the global carbon cycle. Large amounts of terrestrial carbon are channelled through estuaries before reaching the ocean. During estuarine transit, numerous biogeochemical processes transform the carbon flux, resulting in a significant CO2 evasion flux to the atmosphere. The global estuarine CO2 outgassing is evaluated at 0.25±0.25 PgC yr-1. Yet, these estimates rely on the extrapolation of local measurements and the scarcity of such measurements conducts to large uncertainties. Furthermore, the global quantification is biased towards anthropogenically impacted estuarine systems located in industrialized countries. Here we provide a first assessment of the estuarine carbon budget and, in particular, CO2 evasion fluxes using a generic and effective reactive-transport model (RTM) approach that is applicable at the regional scale. The new approach is based on the mutual dependency between estuarine geometry and hydrodynamics and uses idealized estuarine geometries. Global river databases (GLORICH) and watershed model outputs (GlobalNEWS) are used to quantify input fluxes for the generic estuarine model. The new modeling approach provides not only a quantification of the estuarine carbon budget, but also allows disentangling the relative contributions of biogeochemical and physical processes to estuarine CO2 emissions. Preliminary results are presented for the North Eastern coast of the US. Model results are consistent with observations and indicate that the net heterotrophy of these systems is the major contributor to estuarine CO2 fluxes (>50%), followed by outgassing of supersaturated riverine waters and nitrification. Results also highlight the strong seasonality in the biogeochemical dynamics. In addition, significant heterogeneity is observed across different estuaries due to spatial heterogeneities in climate forcing, estuarine geometry or riverine input fluxes. The proposed

  7. Bayesian hierarchical models for soil CO{sub 2} flux and leak detection at geologic sequestration sites

    SciTech Connect

    Yang, Ya-Mei; Small, Mitchell J.; Junker, Brian; Bromhal, Grant S.; Strazisar, Brian; Wells, Arthur

    2011-10-01

    Proper characterizations of background soil CO{sub 2} respiration rates are critical for interpreting CO{sub 2} leakage monitoring results at geologic sequestration sites. In this paper, a method is developed for determining temperature-dependent critical values of soil CO{sub 2} flux for preliminary leak detection inference. The method is illustrated using surface CO{sub 2} flux measurements obtained from the AmeriFlux network fit with alternative models for the soil CO{sub 2} flux versus soil temperature relationship. The models are fit first to determine pooled parameter estimates across the sites, then using a Bayesian hierarchical method to obtain both global and site-specific parameter estimates. Model comparisons are made using the deviance information criterion (DIC), which considers both goodness of fit and model complexity. The hierarchical models consistently outperform the corresponding pooled models, demonstrating the need for site-specific data and estimates when determining relationships for background soil respiration. A hierarchical model that relates the square root of the CO{sub 2} flux to a quadratic function of soil temperature is found to provide the best fit for the AmeriFlux sites among the models tested. This model also yields effective prediction intervals, consistent with the upper envelope of the flux data across the modeled sites and temperature ranges. Calculation of upper prediction intervals using the proposed method can provide a basis for setting critical values in CO{sub 2} leak detection monitoring at sequestration sites.

  8. Predicting the sun's polar magnetic fields with a surface flux transport model

    SciTech Connect

    Upton, Lisa; Hathaway, David H. E-mail: lar0009@uah.edu

    2014-01-01

    The Sun's polar magnetic fields are directly related to solar cycle variability. The strength of the polar fields at the start (minimum) of a cycle determine the subsequent amplitude of that cycle. In addition, the polar field reversals at cycle maximum alter the propagation of galactic cosmic rays throughout the heliosphere in fundamental ways. We describe a surface magnetic flux transport model that advects the magnetic flux emerging in active regions (sunspots) using detailed observations of the near-surface flows that transport the magnetic elements. These flows include the axisymmetric differential rotation and meridional flow and the non-axisymmetric cellular convective flows (supergranules), all of which vary in time in the model as indicated by direct observations. We use this model with data assimilated from full-disk magnetograms to produce full surface maps of the Sun's magnetic field at 15 minute intervals from 1996 May to 2013 July (all of sunspot cycle 23 and the rise to maximum of cycle 24). We tested the predictability of this model using these maps as initial conditions, but with daily sunspot area data used to give the sources of new magnetic flux. We find that the strength of the polar fields at cycle minimum and the polar field reversals at cycle maximum can be reliably predicted up to 3 yr in advance. We include a prediction for the cycle 24 polar field reversal.

  9. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  10. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars

    NASA Astrophysics Data System (ADS)

    Marscher, Alan P.

    2014-01-01

    The author presents a model for variability of the flux and polarization of blazars in which turbulent plasma flowing at a relativistic speed down a jet crosses a standing conical shock. The shock compresses the plasma and accelerates electrons to energies up to γmax >~ 104 times their rest-mass energy, with the value of γmax determined by the direction of the magnetic field relative to the shock front. The turbulence is approximated in a computer code as many cells, each with a uniform magnetic field whose direction is selected randomly. The density of high-energy electrons in the plasma changes randomly with time in a manner consistent with the power spectral density of flux variations derived from observations of blazars. The variations in flux and polarization are therefore caused by continuous noise processes rather than by singular events such as explosive injection of energy at the base of the jet. Sample simulations illustrate the behavior of flux and linear polarization versus time that such a model produces. The variations in γ-ray flux generated by the code are often, but not always, correlated with those at lower frequencies, and many of the flares are sharply peaked. The mean degree of polarization of synchrotron radiation is higher and its timescale of variability shorter toward higher frequencies, while the polarization electric vector sometimes randomly executes apparent rotations. The slope of the spectral energy distribution exhibits sharper breaks than can arise solely from energy losses. All of these results correspond to properties observed in blazars.

  11. Dynamic SPARROW Modeling of Nitrogen Flux with Climate and MODIS Vegetation Indices as Drivers

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Brakebill, J.; Schwarz, G.; Alexander, R. B.; Hirsch, R. M.; Nolin, A. W.; Macauley, M.; Zhang, Q.; Shih, J.; Wang, W.; Sproles, E.

    2011-12-01

    SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models are statistically calibrated and describe the average relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. But many watershed management issues stem from intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions which cause a temporary imbalance between inputs and stream water quality. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. In this study, we describe a dynamically calibrated SPARROW model of total nitrogen flux in the Potomac River Basin based on seasonal water quality and watershed input data for 80 monitoring stations over the period 2000 to 2008. One challenge in dynamic modeling of reactive nitrogen is obtaining frequently-reported, spatially-detailed input data on the phenology of agricultural production and terrestrial vegetation. In this NASA-funded research, we use the Enhanced Vegetation Index (EVI) and gross primary productivity data from the Terra Satellite-borne MODIS sensor to parameterize seasonal uptake and release of nitrogen. The spatial reference frame of the model is a 16,000-reach, 1:100,000-scale stream network, and the computational time step is seasonal. Precipitation and temperature data are from PRISM. The model formulation allows for separate storage compartments for nonpoint sources including fertilized cropland, pasture, urban land, and atmospheric deposition. Removal of nitrogen from watershed storage to stream channels and to "permanent" sinks (deep groundwater and the atmosphere) occur as parallel first-order processes. We use the model to explore an important issue in nutrient management in the Potomac and other

  12. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2016-05-01

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  13. Diffusive flux in a model of stochastically gated oxygen transport in insect respiration.

    PubMed

    Berezhkovskii, Alexander M; Shvartsman, Stanislav Y

    2016-05-28

    Oxygen delivery to insect tissues is controlled by transport through a branched tubular network that is connected to the atmosphere by valve-like gates, known as spiracles. In certain physiological regimes, the spiracles appear to be randomly switching between open and closed states. Quantitative analysis of this regime leads a reaction-diffusion problem with stochastically switching boundary condition. We derive an expression for the diffusive flux at long times in this problem. Our approach starts with the derivation of the passage probability for a single particle that diffuses between a stochastically gated boundary, which models the opening and closing spiracle, and the perfectly absorbing boundary, which models oxygen absorption by the tissue. This passage probability is then used to derive an expression giving the diffusive flux as a function of the geometric parameters of the tube and characteristic time scales of diffusion and gate dynamics.

  14. Flux noise resulting from vortex avalanches using a simple kinetic model

    SciTech Connect

    Mohler, G.; Stroud, D.

    1999-10-01

    We have carried out a model calculation of the flux noise produced by vortex avalanches in a type-II superconductor, using a simple kinetic model proposed by Bassler and Paczuski. Over a broad range of frequencies, we find that the flux noise S{sub {Phi}}({omega}) has a power-law dependence on frequency, S{sub {Phi}}({omega}){approximately}{omega}{sup {minus}s}, with s{approximately}1.4 in reasonable agreement with experiment. In addition, for small lattices, the calculated S{sub {Phi}}({omega}) has a high-frequency knee, which is seen in some experiments, and which is due to the finite lattice size. Deviations between calculation and experiment are attributed mostly to uncertainties in the measured critical current densities and pinning strengths of the experimental samples. {copyright} {ital 1999} {ital The American Physical Society}

  15. Flux noise resulting from vortex avalanches using a simple kinetic model

    NASA Astrophysics Data System (ADS)

    Mohler, G.; Stroud, D.

    1999-10-01

    We have carried out a model calculation of the flux noise produced by vortex avalanches in a type-II superconductor, using a simple kinetic model proposed by Bassler and Paczuski. Over a broad range of frequencies, we find that the flux noise SΦ(ω) has a power-law dependence on frequency, SΦ(ω)~ω-s, with s~1.4 in reasonable agreement with experiment. In addition, for small lattices, the calculated SΦ(ω) has a high-frequency knee, which is seen in some experiments, and which is due to the finite lattice size. Deviations between calculation and experiment are attributed mostly to uncertainties in the measured critical current densities and pinning strengths of the experimental samples.

  16. Intercomparison and interpretation of surface energy fluxes in atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Cess, R. D.; Blanchet, J. P.; Boer, G. J.; Dazlich, D. A.; Del Genio, A. D.; Deque, M.; Dymnikov, V.; Galin, V.; Ghan, S. J.

    1992-01-01

    Responses of the surface energy budgets and hydrologic cycles of 19 atmospheric general circulation models to an imposed, globally uniform sea surface temperature perturbation of 4 K were analyzed. The responses of the simulated surface energy budgets are extremely diverse and are closely linked to the responses of the simulated hydrologic cycles. The response of the net surface energy flux is not controlled by cloud effects; instead, it is determined primarily by the response of the latent heat flux. The prescribed warming of the oceans leads to major increases in the atmospheric water vapor content and the rates of evaporation and precipitation. The increased water vapor amount drastically increases the downwelling IR radiation at the earth's surface, but the amount of the change varies dramatically from one model to another.

  17. A Model-Independent Algorithm to Derive Ca2+ Fluxes Underlying Local Cytosolic Ca2+ Transients

    PubMed Central

    Ventura, Alejandra C.; Bruno, Luciana; Demuro, Angelo; Parker, Ian; Ponce Dawson, Silvina

    2005-01-01

    Local intracellular Ca2+ signals result from Ca2+ flux into the cytosol through individual channels or clusters of channels. To gain a mechanistic understanding of these events we need to know the magnitude and spatial distribution of the underlying Ca2+ flux. However, this is difficult to infer from fluorescence Ca2+ images because the distribution of Ca2+-bound dye is affected by poorly characterized processes including diffusion of Ca2+ ions, their binding to mobile and immobile buffers, and sequestration by Ca2+ pumps. Several methods have previously been proposed to derive Ca2+ flux from fluorescence images, but all require explicit knowledge or assumptions regarding these processes. We now present a novel algorithm that requires few assumptions and is largely model-independent. By testing the algorithm with both numerically generated image data and experimental images of sparklets resulting from Ca2+ flux through individual voltage-gated channels, we show that it satisfactorily reconstructs the magnitude and time course of the underlying Ca2+ currents. PMID:15681645

  18. An improved model for sensible heat flux estimation based on landcover classification

    NASA Astrophysics Data System (ADS)

    Zhou, Ti; Xin, Xiaozhou; Jiao, Jingjun; Peng, Zhiqing

    2014-10-01

    Remote sensing (RS) has been recognized as the most feasible means to provide spatially distributed regional evapotranspiration (ET). However, classical RS flux algorithms (SEBS, S-SEBI, SEBAL, etc.) can hardly be used with coarser resolution RS data from sensors like MODIS or AVHRR for no consideration of surface heterogeneity in mixed pixels even they are suitable for assessing the surface fluxes with high resolution RS data.A new model named FAFH is developed in this study to enhance the accuracy of flux estimation in mixed pixels based on high resolution landcover classification data. The area fraction and relative sensible heat fraction of each heterogeneous land use type calculated within coarse resolution pixels are calculated firstly, and then used for the weighted average of modified sensible heat. The study is carried out in the core agricultural land of Zhangye, the middle reaches of Heihe river based on the flux and landcover classification product of HJ-1B in our earlier work. The result indicates that FAFH increases the accuracy of sensible heat by 5% absolutely, 10.64% relatively in the whole research area.

  19. Model predictions and visualization of the particle flux on the surface of Mars.

    PubMed

    Cucinotta, Francis A; Saganti, Premkumar B; Wilson, John W; Simonsen, Lisa C

    2002-12-01

    Model calculations of the particle flux on the surface of Mars due to the Galactic Cosmic Rays (GCR) can provide guidance on radiobiological research and shielding design studies in support of Mars exploration science objectives. Particle flux calculations for protons, helium ions, and heavy ions are reported for solar minimum and solar maximum conditions. These flux calculations include a description of the altitude variations on the Martian surface using the data obtained by the Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument. These particle flux calculations are then used to estimate the average particle hits per cell at various organ depths of a human body in a conceptual shelter vehicle. The estimated particle hits by protons for an average location at skin depth on the Martian surface are about 10 to 100 particle-hits/cell/year and the particle hits by heavy ions are estimated to be 0.001 to 0.01 particle-hits/cell/year. PMID:12793727

  20. FORCED FIELD EXTRAPOLATION: TESTING A MAGNETOHYDRODYNAMIC (MHD) RELAXATION METHOD WITH A FLUX-ROPE EMERGENCE MODEL

    SciTech Connect

    Zhu, X. S.; Wang, H. N.; Du, Z. L.; Fan, Y. L.

    2013-05-10

    We undertake an attempt to reconstruct the Sun's non-force-free magnetic field. The solar corona is often considered to be magnetohydrostatic. We solve the full MHD equations with a semi-realistic atmosphere model to attain this stationary state. Our method is tested with a Sun-like model which simulates the emergence of a magnetic flux rope passing from below the photosphere into the corona. Detailed diagnostics shows that our method can model the forced field more successfully than the optimization and potential method, but it still needs to be applied to real data.

  1. Anisn-Dort Neutron-Gamma Flux Intercomparison Exercise for a Simple Testing Model

    NASA Astrophysics Data System (ADS)

    Boehmer, B.; Konheiser, J.; Borodkin, G.; Brodkin, E.; Egorov, A.; Kozhevnikov, A.; Zaritsky, S.; Manturov, G.; Voloschenko, A.

    2003-06-01

    The ability of transport codes ANISN, DORT, ROZ-6, MCNP and TRAMO, as well as nuclear data libraries BUGLE-96, ABBN-93, VITAMIN-B6 and ENDF/B-6 to deliver consistent gamma and neutron flux results was tested in the calculation of a one-dimensional cylindrical model consisting of a homogeneous core and an outer zone with a single material. Model variants with H2O, Fe, Cr and Ni in the outer zones were investigated. The results are compared with MCNP-ENDF/B-6 results. Discrepancies are discussed. The specified test model is proposed as a computational benchmark for testing calculation codes and data libraries.

  2. Inclusion of CO2 fluxes in a coupled mesoscale land surface and atmospheric model

    NASA Astrophysics Data System (ADS)

    Uebel, M.; Shrestha, P.; Sulis, M.; Bott, A.

    2012-12-01

    An essential part of numerical weather prediction models is the accurate simulation of the interaction of the land surface with the lower atmosphere. Thus, a detailed knowledge of the land surface characteristics is an inevitable precondition for a successful numerical weather forecast. Here, we present a fully coupled atmospheric model system that comprehensively simulates the exchange processes between the soil, the vegetation and the atmosphere in terms of water, carbon dioxide (CO2), heat and momentum fluxes. The model system couples the Community Land Model (CLM) to the non-hydrostatic weather prediction model COSMO of the German Meteorological Service. Field measurements on the regional scale indicate distinct spatio-temporal heterogeneities of atmospheric CO2 concentrations. This variable atmospheric CO2 partial pressure induces a direct response of the stomatal resistance of the plants resulting in a modified plant transpiration. This effect has a noticeable influence on the moisture and heat fluxes at the land surface which in turn may have a strong impact on the time evolution of the atmospheric planetary boundary layer (PBL). Since the evapotranspiration of plants is strongly controlled by the atmospheric humidity and CO2 concentration, for a consistent modeling of latent and sensible heat fluxes at the land surface a detailed treatment of the exchange of CO2 between the canopy and the PBL is of particular importance. To account for these effects, as a first step we implemented CO2 in the COSMO model as a passive tracer so that the spatial and temporal variations of the atmospheric CO2 concentration as caused by advective, turbulent and convective processes can now be simulated with reasonable accuracy. In the offline version of CLM photosynthesis and plant transpiration are calculated by utilizing a constant value of the atmospheric CO2 partial pressure. In contrast to this treatment, the coupled model system COSMO-CLM considers the varying atmospheric

  3. Assessing soil fluxes using meteoric 10Be: development and application of the Be2D model

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Baken, Stijn; Smolders, Erik; Vanderborght, Jan

    2015-04-01

    Meteoric 10Be is a promising and increasingly popular tool to better understand soil fluxes at different timescales. Unlike other, more classical, methods such as the study of sedimentary archives it enables a direct coupling between eroding and deposition sites. However, meteoric 10Be can be mobilized within the soil. Therefore, spatial variations in meteoric 10Be inventories cannot directly be translated into spatial variations in erosion and sedimentation rates: a correct interpretation of measured 10Be inventories requires that both lateral and vertical movement of meteoric 10Be are accounted for. Here, we present a spatially explicit 2D model that allows to simulate the behaviour of meteoric 10Be in the soil system over timescales of up to 1 million year and use the model to investigate the impact of accelerated erosion on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility within the soil profile, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes. Different types of erosion such as creep, water and tillage erosion are supported. Model runs show that natural soil fluxes can be well reconstructed based on meteoric 10Be inventories, and this for a wide range of geomorphological and pedological conditions. However, extracting signals of human impact and distinguishing them from natural soil fluxes is only feasible when the soil has a rather high retention capacity so that meteoric 10Be is retained in the top soil layer. Application of the Be2D model to an existing data set in the Appalachian Mountains [West et al.,2013] using realistic parameter values for the soil retention capacity as well as for vertical advection resulted in a good agreement between simulated and observed 10Be inventories. This confirms the robustness of the model. We

  4. Evapotranspiration flux partitioning using an Iso-SPAC model in a temperate grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, P.

    2014-12-01

    To partition evapotranspiration (ET) into soil evaporation and vegetation transpiration (T), a new numerical Iso-SPAC (coupled heat, water with isotopic tracer in Soil-Plant-Atmosphere-Continuum) model was developed and applied to a temperate-grassland ecosystem in central Japan. Several models of varying complexity have been tested with the aim of obtaining the close to true value for the isotope composition of leaf water and transpiration flux. The agreement between the model predictions and observations demonstrates that the Iso-SPAC model with a steady-state assumption for transpiration flux can reproduce seasonal variations of all the surface energy balance components,leaf and ground surface temperature as well as isotope data (canopy foliage and ET flux). This good performance was confirmed not only at diurnal timescale but also at seasonal timescale. Thus, although the non-steady-state behavior of isotope budget in a leaf and isotopic diffusion between leaf and stem or root is exactly important, the steady-state assumption is practically acceptable for seasonal timescale as a first order approximation. Sensitivity analysis both in physical flux part and isotope part suggested that T/ET is relatively insensitive to uncertainties/errors in assigned model parameters and measured input variables, which illustrated the partitioning validity. Estimated transpiration fractions using isotope composition in ET flux by Iso-SPAC model and Keeling plot are generally in good agreement, further proving validity of the both approaches. However, Keeling plot approach tended to overestimate the fraction during an early stage of glowing season and a period just after clear cutting. This overestimation is probably due to insufficient fetch and influence of transpiration from upwind forest. Consequently, Iso-SPAC model is more reliable than Keeling plot approach in most cases.The T/ET increased with grass growth, and the sharp reduction caused by clear cutting was well

  5. DO3SE modelling of soil moisture to determine ozone flux to forest trees

    NASA Astrophysics Data System (ADS)

    Büker, P.; Morrissey, T.; Briolat, A.; Falk, R.; Simpson, D.; Tuovinen, J.-P.; Alonso, R.; Barth, S.; Baumgarten, M.; Grulke, N.; Karlsson, P. E.; King, J.; Lagergren, F.; Matyssek, R.; Nunn, A.; Ogaya, R.; Peñuelas, J.; Rhea, L.; Schaub, M.; Uddling, J.; Werner, W.; Emberson, L. D.

    2012-06-01

    The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto), and subsequent O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of

  6. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Griffis, Tim J.; Baker, John; Wood, Jeffrey D.; Xiao, Ke

    2015-02-01

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water, and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to Earth system models is relatively rare. Here we evaluated two such models (CLM4-Crop and CLM3.5-CornSoy), both implemented within the Community Land Model (CLM) framework, at two AmeriFlux corn-soybean sites to assess their ability to simulate phenology, energy, and carbon fluxes. Our results indicated that the accuracy of net ecosystem exchange and gross primary production simulations was intimately connected to the phenology simulations. The CLM4-Crop model consistently overestimated early growing season leaf area index, causing an overestimation of gross primary production, to such an extent that the model simulated a carbon sink instead of the measured carbon source for corn. The CLM3.5-CornSoy-simulated leaf area index (LAI), energy, and carbon fluxes showed stronger correlations with observations compared to CLM4-Crop. Net radiation was biased high in both models and was especially pronounced for soybeans. This was primarily caused by the positive LAI bias, which led to a positive net long-wave radiation bias. CLM4-Crop underestimated soil water content during midgrowing season in all soil layers at the two sites, which caused unrealistic water stress, especially for soybean. Future work regarding the mechanisms that drive early growing season phenology and soil water dynamics is needed to better represent crops including their net radiation balance, energy partitioning, and carbon cycle processes.

  7. Spatial and Temporal Variation of Arctic CH4 and net CO2 Fluxes Using Nested Chamber, Tower, Aircraft, Remote Sensing, and Modeling Approaches for Regional Flux Identification and Estimation

    NASA Astrophysics Data System (ADS)

    Oechel, Walter; Kalhori, Aram; Miller, Charles; Gioli, Beniamino; Luus, Kristina; Chang, Rachel; Lindaas, Jakob; Commane, Roisin; Wofsy, Steve; Zona, Donatella

    2015-04-01

    The hydrological, cryogenic, topographic, environmental, biotic, and metabolic heterogeneity of terrestrial ecosystems and landscapes can be large even despite a seemingly homogeneous landscape. The error of estimating and simulating fluxes due to the existing heterogeneity is commonly overlooked in regional and global estimates. Here we evaluate the pattern and controls on spatial heterogeneity on CH4 and CO2 fluxes over varying spatial scales. Data from the north slope of Alaska from chambers, up to a 16 year CO2 flux record from up to 7 permanent towers, over 20 portable tower locations, eddy covariance CH4 fluxes over several years and sites, new year-around CO2 and CH4 flux installations, hundreds of hours of aircraft concentration and fluxes, and terrestrial biosphere data driven models and flux inverse modeling, are used to evaluate the spatial variability of fluxes and to better estimate regional fluxes. Significant heterogeneity of fluxes is identified at varying scales from sub-meter scale to >100km. A careful consideration of the effect that heterogeneity has on estimating ecosystem fluxes is critical to reliable regional and global estimates. The combination of eddy covariance tower flux, aircraft, remote sensing, and modeling can be used to provide reliable, accurate, regional assessments of CH4 and CO2 fluxes from large areas of heterogeneous landscape.

  8. Evaluation of Diagnostic CO2 Flux and Transport Modeling in NU-WRF and GEOS-5

    NASA Astrophysics Data System (ADS)

    Kawa, S. R.; Collatz, G. J.; Tao, Z.; Wang, J. S.; Ott, L. E.; Liu, Y.; Andrews, A. E.; Sweeney, C.

    2015-12-01

    We report on recent diagnostic (constrained by observations) model simulations of atmospheric CO2 flux and transport using a newly developed facility in the NASA Unified-Weather Research and Forecast (NU-WRF) model. The results are compared to CO2 data (ground-based, airborne, and GOSAT) and to corresponding simulations from a global model that uses meteorology from the NASA GEOS-5 Modern Era Retrospective analysis for Research and Applications (MERRA). The objective of these intercomparisons is to assess the relative strengths and weaknesses of the respective models in pursuit of an overall carbon process improvement at both regional and global scales. Our guiding hypothesis is that the finer resolution and improved land surface representation in NU-WRF will lead to better comparisons with CO2 data than those using global MERRA, which will, in turn, inform process model development in global prognostic models. Initial intercomparison results, however, have generally been mixed: NU-WRF is better at some sites and times but not uniformly. We are examining the model transport processes in detail to diagnose differences in the CO2 behavior. These comparisons are done in the context of a long history of simulations from the Parameterized Chemistry and Transport Model, based on GEOS-5 meteorology and Carnegie Ames-Stanford Approach-Global Fire Emissions Database (CASA-GFED) fluxes, that capture much of the CO2 variation from synoptic to seasonal to global scales. We have run the NU-WRF model using unconstrained, internally generated meteorology within the North American domain, and with meteorological 'nudging' from Global Forecast System and North American Regional Reanalysis (NARR) in an effort to optimize the CO2 simulations. Output results constrained by NARR show the best comparisons to data. Discrepancies, of course, may arise either from flux or transport errors and compensating errors are possible. Resolving their interplay is also important to using the data in

  9. Integral emission factors for methane determined using urban flux measurements and local-scale inverse models

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Johnson, Mark; Molodovskaya, Marina; Ketler, Rick; Nesic, Zoran; Crawford, Ben; Giometto, Marco; van der Laan, Mike

    2013-04-01

    The most important long-lived greenhouse gas (LLGHG) emitted during combustion of fuels is carbon dioxide (CO2), however also traces of the LLGHGs methane (CH4) and nitrous oxide (N2O) are released, the quantities of which depend largely on the conditions of the combustion process. Emission factors determine the mass of LLGHGs emitted per energy used (or kilometre driven for cars) and are key inputs for bottom-up emission modelling. Emission factors for CH4 are typically determined in the laboratory or on a test stand for a given combustion system using a small number of samples (vehicles, furnaces), yet associated with larger uncertainties when scaled to entire fleets. We propose an alternative, different approach - Can integrated emission factors be independently determined using direct micrometeorological flux measurements over an urban surface? If so, do emission factors determined from flux measurements (top-down) agree with up-scaled emission factors of relevant combustion systems (heating, vehicles) in the source area of the flux measurement? Direct flux measurements of CH4 were carried out between February and May, 2012 over a relatively densely populated, urban surface in Vancouver, Canada by means of eddy covariance (EC). The EC-system consisted of an ultrasonic anemometer (CSAT-3, Campbell Scientific Inc.) and two open-path infrared gas analyzers (Li7500 and Li7700, Licor Inc.) on a tower at 30m above the surface. The source area of the EC system is characterised by a relative homogeneous morphometry (5.3m average building height), but spatially and temporally varying emission sources, including two major intersecting arterial roads (70.000 cars drive through the 50% source area per day) and seasonal heating in predominantly single-family houses (natural gas). An inverse dispersion model (turbulent source area model), validated against large eddy simulations (LES) of the urban roughness sublayer, allows the determination of the spatial area that

  10. Modeling spatial surface energy fluxes of agricultural and riparian vegetation using remote sensing

    NASA Astrophysics Data System (ADS)

    Geli, Hatim Mohammed Eisa

    Modeling of surface energy fluxes and evapotranspiration (ET ) requires the understanding of the interaction between land and atmosphere as well as the appropriate representation of the associated spatial and temporal variability and heterogeneity. This dissertation provides new methodology showing how to rationally and properly incorporate surface features characteristics/properties, including the leaf area index, fraction of cover, vegetation height, and temperature, using different representations as well as identify the related effects on energy balance flux estimates including ET. The main research objectives were addressed in Chapters 2 through 4 with each presented in a separate paper format with Chapter 1 presenting an introduction and Chapter 5 providing summary and recommendations. Chapter 2 discusses a new approach of incorporating temporal and spatial variability of surface features. We coupled a remote sensing-based energy balance model with a traditional water balance method to provide improved estimates of ET. This approach was tested over rainfed agricultural fields ˜ 10 km by 30 km in Ames, Iowa. Before coupling, we modified the water balance method by incorporating a remote sensing-based estimate for one of its parameters to ameliorate its performance on a spatial basis. Promising results were obtained with indications of improved estimates of ET and soil moisture in the root zone. The effects of surface features heterogeneity on measurements of turbulence were investigated in Chapter 3. Scintillometer-based measurements/estimates of sensible heat flux (H) were obtained over the riparian zone of the Cibola National Wildlife Refuge (CNWR), California. Surface roughness including canopy height (hc), roughness length, and zero-plane displacement height were incorporated in different ways, to improve estimates of H. High resolution, 1-m maps of ground surface digital elevation model and canopy height, hc, were derived from airborne LiDAR sensor data

  11. Modeling the surface heat flux response to long-lived SST anomalies in the North Atlantic

    SciTech Connect

    Power, S.B.; Kleeman, R.; Colman, R.A.

    1995-09-01

    An atmospheric general circulation model (AGCM), a simplified atmospheric model (SAM) of surface heat flux, and various idealized analytic models have been used to investigate the atmospheric response over the North Atlantic to SST anomalies, including a general cooling associated with a weakened thermohaline circulation. Latent heating dominates the surface heat flux response, while sensible heating plays an important secondary role. The total heat flux response is weaker than presumed in recent studies using ocean models under highly idealized surface boundary conditions. This implies that stability of the thermohaline circulation to high-latitude freshening in more sophisticated coupled systems (that incorporate either AGCMs or models like SAM) will be increased. All three kinds of atmospheric models exhibit nonrestorative behavior away from the anomaly peak that is primarily associated with the advection of cooled air eastward. This simple picture is complicated in the AGCM by the fact that the winds weaken over the SST anomaly, which helps to moderate the response. Analytic models for atmospheric temperature forced using imposed surface temperature anomalies highlight conditions under which a nonrestorative response can arise. Previous work has shown that the length scale of spatially periodic anomalies partially determines the magnitude of the response in a diffusive atmosphere. Here the authors show that this scale dependence has much wider applicability by considering more localized anomalies and by the inclusion of advective transport processes. The modification of the response by sea ice changes and the absence of any statistically significant change in the basin-averaged hydrological cycle are also discussed. 62 refs., 19 figs.

  12. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.

    2016-06-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.

  13. European and Mediterranean mercury modelling: Local and long-range contributions to the deposition flux

    NASA Astrophysics Data System (ADS)

    Gencarelli, Christian N.; De Simone, Francesco; Hedgecock, Ian M.; Sprovieri, Francesca; Yang, Xin; Pirrone, Nicola

    2015-09-01

    Mercury (Hg) is a global pollutant that is known to have adverse effects on human health, and most human exposure to toxic methylmercury is through fish consumption. Soluble Hg compounds in the marine environment can be methylated in the water column and enter the base of the food chain. Atmospheric deposition is the most important pathway by which Hg enters marine ecosystems. The atmospheric chemistry of Hg has been simulated over Europe and the Mediterranean for the year 2009, using the WRF/Chem model and employing two different gas phase Hg oxidation mechanisms. The contributions to the marine deposition flux from dry deposition, synoptic scale wet deposition and convective wet deposition have been determined. The Hg deposition fluxes resulting from transcontinental transport and local/regional emission sources has been determined using both Br/BrO and O3/OH atmospheric oxidation mechanisms. The two mechanisms give significantly different annual deposition fluxes (129 Mg and 266 Mg respectively) over the modelling domain. Dry deposition is more significant using the O3/OH mechanism, while proportionally convective wet deposition is enhanced using the Br/BrO mechanism. The simulations using the Br/BrO oxidation compared best with observed Hg fluxes in precipitation. Local/regional Hg emissions have the most impact within the model domain during the summer. A comparison of simulations using the 2005 and 2010 AMAP/UNEP Hg emission inventories show that although there is a decrease of 33% in anthropogenic emissions between the two reference years, the total simulated deposition in the regions diminishes by only 12%. Simulations using the 2010 inventory reproduce observations somewhat better than those using the 2005 inventory for 2009.

  14. Measurement and modeling of atmospheric flux of ammonia from dairy milking cow housing

    NASA Astrophysics Data System (ADS)

    Rumburg, Brian; Mount, George H.; Filipy, Jenny; Lamb, Brian; Westberg, Hal; Yonge, David; Kincaid, Ron; Johnson, Kristen

    Atmospheric ammonia (NH3) measurements are needed to better understand the impacts of NH3 emissions on aerosol formation and concentrations and anthropogenic changes to the N cycle. This paper describes concentration measurements of NH3 using differential optical absorption spectroscopy (DOAS), tracer ratio flux experiments, and development of a NH3 emissions model from a dairy milking cow free stall house with concrete floors. An area source tracer gas ratio method was used to determine NH3 fluxes which involved releasing SF6 as the tracer gas from the upwind edge of the stalls and measuring the tracer concentration downwind along with the DOAS NH3 measurements. The flux is calculated from the ratio of the NH3 and SF6 concentrations and the SF6 release rate and taking into account the differences in area and dispersion. The measured stall flux for the summers averaged 29±19gNH3cow-1h-1 at an average temperature of 18±5C. The emissions model calculated liquid NH3 concentrations in urine puddles, NH3 volatilization, theoretical and empirical mass transfer to the bulk atmosphere, and NH3 transport. The predicted concentrations were within ±30% using an empirical mass transfer coefficient and within ±41% using a theoretical mass transfer coefficient. Total annual NH3 emissions for the dairy of 185 milking cows was 7400 kg or 40kgNH3cow-1year-1, estimated total N excretions are 180kgcow-1year-1. This agrees with a N mass balance of the dairy. The model was very sensitive to urine puddle pH and also showed that emissions are temperature dependent.

  15. Investigation of the impact of anthropogenic heat flux within an urban land surface model and PILPS-urban

    NASA Astrophysics Data System (ADS)

    Best, M. J.; Grimmond, C. S. B.

    2016-10-01

    Results from the first international urban model comparison experiment (PILPS-Urban) suggested that models which neglected the anthropogenic heat flux within the surface energy balance performed at least as well as models that include the source term, but this could not be explained. The analyses undertaken show that the results from PILPS-Urban were masked by the signal from including vegetation, which was identified in PILPS-Urban as being important. Including the anthropogenic heat flux does give improved performance, but the benefit is small for the site studied given the relatively small magnitude of this flux relative to other terms in the surface energy balance. However, there is no further benefit from including temporal variations in the flux at this site. The importance is expected to increase at sites with a larger anthropogenic heat flux and greater temporal variations.

  16. Estimation of Volatile Organic Compound Fluxes Using the Forest-Land-Atmosphere Model (FLAME).

    NASA Astrophysics Data System (ADS)

    Inclán, Maria G.; Schween, Jan; Dlugi, Ralph

    1999-07-01

    The prognostic one-dimensional Forest-Land-Atmosphere Model (FLAME) has been further extended to simulate diurnal cycles of volatile organic compound (VOC) fluxes inside and above an idealized mixed forest mainly composed of oaks and pines. The tree height is 12 m and the leaf area index is 4. The canopy crown is divided into five layers of equal leaf area increment. The algorithms developed by Guenther et al. are applied to predict the monoterpene emission from leaves in each canopy layer. The value of photosynthetic active radiation (PAR) and foliage temperature (Tleaf) required by these algorithms are provided by FLAME. The modeled PAR and Tleaf are used for different leaf angle classes i from sun to shaded leaves within each layer j in the canopy.In the present study the authors examine the VOC fluxes modeled at a reference level above the forest for two cases, A and B, for which the modeled canopy temperature Tc reaches a maximum of approximately 21° and 31°C, respectively. It is supposed that VOC fluxes above the canopy are related to Tc by a function of the form F(Tc) = Fs exp[c(Tc TS)]. The authors intend to study the temperature exponent at canopy level c by deriving best-fit slopes.The resulting mean values of c = 0.125 ± 0.002 K1 for the morning VOC fluxes, and c = 0.267 ± 0.004 K1 for the afternoon, are larger than those used to calculate the emission on leaf scale from cuvette data (1 = 0.124 K1 and 2 = 0.09 K1 for oaks and pines, respectively). A sensitivity study was carried out using the modeled mean values of Tleaf and PAR in a canopy layer instead of the angle dependence to simulate measurements by an infrared radiation thermometer. The authors also tested the importance of the basal emission rate Es on the total VOC fluxes and c above the canopy.

  17. A dynamic metabolic flux balance based model of fed-batch fermentation of Bordetella pertussis.

    PubMed

    Budman, Hector; Patel, Nilesh; Tamer, Melih; Al-Gherwi, Walid

    2013-01-01

    A mathematical model based on a dynamic metabolic flux balance (DMFB) is developed for a process of fed-batch fermentation of Bordetella pertussis. The model is based on the maximization of growth rate at each time interval subject to stoichiometric constraints. The model is calibrated and verified with experimental data obtained in two different bioreactor experimental systems. It was found that the model calibration was mostly sensitive to the consumption or production rates of tyrosine and, for high supplementation rates, to the consumption rate of glutamate. Following this calibration the model correctly predicts biomass and by-products concentrations for different supplementation rates. Comparisons of model predictions to oxygen uptake and carbon emission rates measurements indicate that the TCA cycle is fully functional.

  18. A model for the distribution of particle flux in the mid-water column controlled by subsurface biotic interactions

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Burd, Adrian B.

    The sub-euphotic zone water column is important in controlling the downward transport of material falling from the surface waters. Descriptions of the carbon flux as a function of depth have focused on empirical relationships that neglect biological processes that might control them. We develop here a series of simple models of the region that describe changes in flux in terms of the population dynamics of a particle feeder and its predator. One model predicts that the flux and predator concentration at steady state decrease exponentially with depth while the concentration of the particle feeders is constant; a second predicts that flux, particle feeder, and predator concentrations are proportional and decrease at rates that are approximately inversely proportional to depth. Away from steady state, variations in particle flux leaving the surface can induce oscillations in the near-surface animal populations but not the deeper populations. As a result of the animal oscillations associated with the surface flux variations, there can be large swings in the deep vertical particle flux that are not synchronized to the surface variations for one model formulation; a second formulation predicts that fluctuations in surface flux are damped out near the bottom. The differences in predictions for the various models make it possible to verify the utility of one or the other formulation.

  19. The Catchment Runoff Attenuation Flux Tool, a minimum information requirement nutrient pollution model

    NASA Astrophysics Data System (ADS)

    Adams, R.; Quinn, P. F.; Bowes, M. J.

    2015-04-01

    A model for simulating runoff pathways and water quality fluxes has been developed using the minimum information requirement (MIR) approach. The model, the Catchment Runoff Attenuation Flux Tool (CRAFT), is applicable to mesoscale catchments and focusses primarily on hydrological pathways that mobilise nutrients. Hence CRAFT can be used to investigate the impact of flow pathway management intervention strategies designed to reduce the loads of nutrients into receiving watercourses. The model can help policy makers meet water quality targets and consider methods to obtain "good" ecological status. A case study of the 414 km2 Frome catchment, Dorset, UK, has been described here as an application of CRAFT in order to highlight the above issues at the mesoscale. The model was primarily calibrated on 10-year records of weekly data to reproduce the observed flows and nutrient (nitrate nitrogen - N; phosphorus - P) concentrations. Data from 2 years with sub-daily monitoring at the same site were also analysed. These data highlighted some additional signals in the nutrient flux, particularly of soluble reactive phosphorus, which were not observable in the weekly data. This analysis has prompted the choice of using a daily time step as the minimum information requirement to simulate the processes observed at the mesoscale, including the impact of uncertainty. A management intervention scenario was also run to demonstrate how the model can support catchment managers investigating how reducing the concentrations of N and P in the various flow pathways. This mesoscale modelling tool can help policy makers consider a range of strategies to meet the European Union (EU) water quality targets for this type of catchment.

  20. Total solar irradiance reconstruction since 1700 using a flux transport model

    NASA Astrophysics Data System (ADS)

    Dasi Espuig, Maria; Krivova, Natalie; Solanki, Sami K.; Jiang, Jie

    Reconstructions of solar irradiance into the past are crucial for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic fields have been most successful in reproducing the measured irradiance variations. Daily magnetograms, such as those from MDI and HMI, provide the most detailed information on the changing distribution of the photospheric magnetic fields. Since such magnetograms are only available from 1974, we used a surface flux transport model to describe the evolution of the magnetic fields on the solar surface due to the effects of differential rotation, meridional circulation, and turbulent diffusivity, before 1974. In this model, the sources of magnetic flux are the active regions, which are introduced based on sunspot group areas, positions, and tilt angles. The RGO record is, however, only available since 1874. Here we present a model of solar irradiance since 1700, which is based on a semi-synthetic sunspot record. The semi-synthetic record was obtained using statistical relationships between sunspot group properties (areas, positions, tilt angles) derived from the RGO record on one hand, and the cycle strength and phase derived from the sunspot group number (Rg) on the other. These relationships were employed to produce daily records of sunspot group positions, areas, and tilt angles before 1874. The semi-synthetic records were fed into the surface flux transport model to simulate daily magnetograms since 1700. By combining the simulated magnetograms with a SATIRE-type model, we then reconstructed total solar irradiance since 1700.

  1. Multiwavelength Observations and Modeling of 1ES 1959+650 in a Low Flux State

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bird, R.; Böttcher, M.; Bouvier, A.; Bugaev, V.; Byrum, K.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Dumm, J.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Gillanders, G. H.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Kaaret, P.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Maier, G.; Majumdar, P.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nelson, T.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Saxon, D. B.; Schroedter, M.; Sembroski, G. H.; Skole, C.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Theiling, M.; Tyler, J.; Varlotta, A.; Vassiliev, V. V.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Welsing, R.; Williams, D. A.; Zitzer, B.

    2013-09-01

    We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (σ) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan γ-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of <~ 2 in the high energy (E > 1 MeV) and very high energy (E > 100 GeV) γ-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.

  2. Response of carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    NASA Astrophysics Data System (ADS)

    Jochum, M.; Peacock, S.; Moore, J. K.; Lindsay, K. T.

    2009-12-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea-ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net carbon fluxes are insignificant. This surprising result is due to several effects, two of which stand out: Firstly, colder sea surface temperature leads to a more effective solubility pump but also to increased sea-ice concentration which blocks air-sea exchange; and secondly, the weakening of Southern Ocean winds, which is predicted by some idealized studies, is small compared to its interannual variability.

  3. A New Framework to Compare Mass-Flux Schemes Within the AROME Numerical Weather Prediction Model

    NASA Astrophysics Data System (ADS)

    Riette, Sébastien; Lac, Christine

    2016-08-01

    In the Application of Research to Operations at Mesoscale (AROME) numerical weather forecast model used in operations at Météo-France, five mass-flux schemes are available to parametrize shallow convection at kilometre resolution. All but one are based on the eddy-diffusivity-mass-flux approach, and differ in entrainment/detrainment, the updraft vertical velocity equation and the closure assumption. The fifth is based on a more classical mass-flux approach. Screen-level scores obtained with these schemes show few discrepancies and are not sufficient to highlight behaviour differences. Here, we describe and use a new experimental framework, able to compare and discriminate among different schemes. For a year, daily forecast experiments were conducted over small domains centred on the five French metropolitan radio-sounding locations. Cloud base, planetary boundary-layer height and normalized vertical profiles of specific humidity, potential temperature, wind speed and cloud condensate were compared with observations, and with each other. The framework allowed the behaviour of the different schemes in and above the boundary layer to be characterized. In particular, the impact of the entrainment/detrainment formulation, closure assumption and cloud scheme were clearly visible. Differences mainly concerned the transport intensity thus allowing schemes to be separated into two groups, with stronger or weaker updrafts. In the AROME model (with all interactions and the possible existence of compensating errors), evaluation diagnostics gave the advantage to the first group.

  4. Technique for assessing vegetation-induced moisture flux, with implications for global climate modeling

    NASA Technical Reports Server (NTRS)

    Macari, Emir Jose

    1990-01-01

    The time between storms, the duration of storms, and the storm depths are studied in relation to vegetation controls on the disposition of rainfall. It is proposed that understanding the movement of water between the vegetation and soil (including evapotranspiration and infiltration) will be the gateway for modeling atmospheric flux and improving global climate models. The overall objective goal of the proposed research effort is to develop a field/lab methodology which will provide a better understanding of vegetation induced water movement. Water flow initiated from stem flow of wooded slopes feeds soil water pathways, which in turn feed the deeper ground water system and give rise to stream response. This is balanced by more water inputs via throughfall, where it percolates the soil matrix and allows much greater rates of evapotranspiration and atmospheric/soil moisture flux. This research study seeks to gain an understanding of the effect of vegetation on soil moisture, and the effect of this differential wetting on resulting evapotranspiration and atmospheric flux.

  5. Impact of Dust on Mars Surface Albedo and Energy Flux with LMD General Circulation Model

    NASA Astrophysics Data System (ADS)

    Singh, D.; Flanner, M.; Millour, E.; Martinez, G.

    2015-12-01

    Mars, just like Earth experience different seasons because of its axial tilt (about 25°). This causes growth and retreat of snow cover (primarily CO2) in Martian Polar regions. The perennial caps are the only place on the planet where condensed H2O is available at surface. On Mars, as much as 30% atmospheric CO2 deposits in each hemisphere depending upon the season. This leads to a significant variation on planet's surface albedo and hence effecting the amount of solar flux absorbed or reflected at the surface. General Circulation Model (GCM) of Laboratoire de Météorologie Dynamique (LMD) currently uses observationally derived surface albedo from Thermal Emission Spectrometer (TES) instrument for the polar caps. These TES albedo values do not have any inter-annual variability, and are independent of presence of any dust/impurity on surface. Presence of dust or other surface impurities can significantly reduce the surface albedo especially during and right after a dust storm. This change will also be evident in the surface energy flux interactions. Our work focuses on combining earth based Snow, Ice, and Aerosol Radiation (SNICAR) model with current state of GCM to incorporate the impact of dust on Martian surface albedo, and hence the energy flux. Inter-annual variability of surface albedo and planet's top of atmosphere (TOA) energy budget along with their correlation with currently available mission data will be presented.

  6. Modelling basin-scale effects of shrub expansion on snow distribution, turbulent fluxes and soil temperature

    NASA Astrophysics Data System (ADS)

    Ménard, Cécile; Essery, Richard; Pomeroy, John

    2013-04-01

    The interactions between shrubs, snow and soil are at the core of feedback loops affecting the water, energy and carbon budget at high latitude. Many studies, providing evidence from plot scale measurements to pan-Arctic satellite observations, have shown that shrubs are colonizing higher grounds, both latitudinally and altitudinally, in all countries circling the Arctic. It is therefore critical to understand how these changes may affect snow distribution, water equivalent and soil temperature. Given that shrubs colonize bare ground through the expansion of existing shrub patches, the potential effect of shrub expansion was investigated by selecting a site where shrubs are already in the landscape. Modelled snow distribution, water equivalent, turbulent fluxes and soil temperature under the current vegetation cover was compared to those of runs where cover was modified by 1/ removing all vegetation ("no-shrub") 2/ increasing shrub cover and height as a function of their respective neighbouring cell values ("shrub+"). The study was performed in the Granger Basin, Yukon Territory, Canada, which is situated within a sub-alpine ecozone and characterised by a shrub-tundra landscape. A distributed land surface model which calculates the energy balance over three sources (snow - shrub - ground) within each gridbox was used to investigate these processes. Although much of the snow distribution in the basin is topographically driven, increasing shrub cover and height reduced the spatial variability of snow depth and increased the snow cover fraction. Despite the heat advection from shrubs to snow patches, the basin became snow-free earlier in the control run than in the shrub+ run because of the shading effect of denser canopies. Removing shrubs caused higher latent heat fluxes across the basin both on snow and snow-free tiles whereas adding shrubs homogenized latent heat fluxes and soil temperatures across the basin, following the homogenization of the snow depth. The

  7. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    NASA Astrophysics Data System (ADS)

    Chason, E.; Karlson, M.; Colin, J. J.; Magnfält, D.; Sarakinos, K.; Abadias, G.

    2016-04-01

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on the grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.

  8. Impact of uncertainty in attributing modeled North American terrestrial carbon fluxes to anthropogenic forcings

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.

    2015-12-01

    Although much progress has been made in the past decade in constraining the net North American terrestrial carbon flux, considerable uncertainty remains in the sink magnitude and trend. Terrestrial carbon cycle models are increasing in spatial resolution, complexity and predictive skill, allowing for increased process-level understanding and attribution of net carbon fluxes to specific causes. Here we examine the various sources of uncertainty, including driver uncertainty, model parameter uncertainty, and structural uncertainty, and the contribution of each type uncertainty to the net sink, and the attribution of this sink to anthropogenic causes: Increasing CO2 concentrations, nitrogen deposition, land use change, and changing climate. To examine driver and parameter uncertainty, model simulations are performed using the Community Land Model version 4.5 (CLM4.5) with literature-based parameter ranges and three different reanalysis meteorological forcing datasets. We also examine structural uncertainty thorough analysis of the Multiscale Terrestrial Model Intercomparison (MsTMIP). Identififying major sources of uncertainty can help to guide future observations, experiments, and model development activities.

  9. Use of WRF result as meteorological input to DNDC model for greenhouse gas flux simulation

    NASA Astrophysics Data System (ADS)

    Grosz, B.; Horváth, L.; Gyöngyösi, A. Z.; Weidinger, T.; Pintér, K.; Nagy, Z.; André, K.

    2015-12-01

    Continuous evolution of biogeochemical models developed in the past decades makes possible the more and more accurate estimation of trace and greenhouse gas fluxes of soils. Due to the detailed meteorological, soil, biological and chemical processes the modeled fluxes are getting closer and closer to the real values. For appropriate evaluation models need large amount of input data. In this paper we have investigated how to build an easily accessible meteorological input data source for biogeochemical models, as it is one of the most important input data sets that is either missing or difficult to get from meteorological networks. The DNDC ecological model was used for testing the WRF numerical weather prediction system as a potential data source. The reference dataset was built by numerical interpolation based on measured data. The average differences between the modeled output data using WRF and observed meteorological data in 2009 and 2010 are less than 3.98 ± 1.6; 8.68 ± 6.72 and 6.5 ± 2.17 per cent for CO2, N2O and CH4, respectively, for the test years. Generalization of the results for other regions is restricted, however this work encourages others to examine the applicability of WRF data instead of observed climate parameters.

  10. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought.

    PubMed

    Powell, Thomas L; Galbraith, David R; Christoffersen, Bradley O; Harper, Anna; Imbuzeiro, Hewlley M A; Rowland, Lucy; Almeida, Samuel; Brando, Paulo M; da Costa, Antonio Carlos Lola; Costa, Marcos Heil; Levine, Naomi M; Malhi, Yadvinder; Saleska, Scott R; Sotta, Eleneide; Williams, Mathew; Meir, Patrick; Moorcroft, Paul R

    2013-10-01

    Considerable uncertainty surrounds the fate of Amazon rainforests in response to climate change. Here, carbon (C) flux predictions of five terrestrial biosphere models (Community Land Model version 3.5 (CLM3.5), Ecosystem Demography model version 2.1 (ED2), Integrated BIosphere Simulator version 2.6.4 (IBIS), Joint UK Land Environment Simulator version 2.1 (JULES) and Simple Biosphere model version 3 (SiB3)) and a hydrodynamic terrestrial ecosystem model (the Soil-Plant-Atmosphere (SPA) model) were evaluated against measurements from two large-scale Amazon drought experiments. Model predictions agreed with the observed C fluxes in the control plots of both experiments, but poorly replicated the responses to the drought treatments. Most notably, with the exception of ED2, the models predicted negligible reductions in aboveground biomass in response to the drought treatments, which was in contrast to an observed c. 20% reduction at both sites. For ED2, the timing of the decline in aboveground biomass was accurate, but the magnitude was too high for one site and too low for the other. Three key findings indicate critical areas for future research and model development. First, the models predicted declines in autotrophic respiration under prolonged drought in contrast to measured increases at one of the sites. Secondly, models lacking a phenological response to drought introduced bias in the sensitivity of canopy productivity and respiration to drought. Thirdly, the phenomenological water-stress functions used by the terrestrial biosphere models to represent the effects of soil moisture on stomatal conductance yielded unrealistic diurnal and seasonal responses to drought.

  11. Using an ensemble data set of turbulent air-sea fluxes to evaluate the IPSL climate model in tropical regions

    NASA Astrophysics Data System (ADS)

    Gainusa-Bogdan, Alina; Servonnat, Jerome; Braconnot, Pascale

    2014-05-01

    Low-latitude turbulent ocean-atmosphere fluxes play a major role in the ocean and atmosphere dynamics, heat distribution and availability for meridional transport to higher latitudes, as well as for the global freshwater cycle. Their representation in coupled ocean-atmosphere models is thus of chief importance in climate simulations. Despite numerous reports of important observational uncertainties in large-scale turbulent flux products, only few model flux evaluation studies attempt to quantify and directly consider these uncertainties. To address this problem for large-scale, climatological flux evaluation, we assemble a comprehensive database of 14 climatological surface flux products, including in situ-based, satellite, hybrid and reanalysis data sets. We develop an associated analysis protocol and use it together with this database to offer an observational ensemble approach to model flux evaluation. We use this approach to perform an evaluation of the representation of the intertropical turbulent air-sea fluxes in a suite of CMIP5 historical simulations run with different recent versions of the IPSL model. To enhance model understanding, we consider both coupled and forced atmospheric model configurations. For the same purpose, we not only analyze the surface fluxes, but also their associated meteorological state variables and inter-variable relationships. We identify an important, systematic underestimation of the near-surface wind speed and a significant exaggeration of the sea-air temperature contrast in all the IPSL model versions considered. Furthermore, the coupled model simulations develop important sea surface temperature and associated air humidity bias patterns. Counterintuitively, these biases do not systematically transfer to significant biases in the surface fluxes. This is due to a combination of compensation of effects and the large flux observational spread. Our analyses reveal several inconsistencies in inter-variable relationships between

  12. A Twisted Flux Rope Model for Coronal Mass Ejections and Two-Ribbon Flares.

    PubMed

    Amari; Luciani; Mikic; Linker

    2000-01-20

    We present a new approach to the theory of large-scale solar eruptive phenomena such as coronal mass ejections and two-ribbon flares, in which twisted flux tubes play a crucial role. We show that it is possible to create a highly nonlinear three-dimensional force-free configuration consisting of a twisted magnetic flux rope representing the magnetic structure of a prominence (surrounded by an overlaying, almost potential, arcade) and exhibiting an S-shaped structure, as observed in soft X-ray sigmoid structures. We also show that this magnetic configuration cannot stay in equilibrium and that a considerable amount of magnetic energy is released during its disruption. Unlike most previous models, the amount of magnetic energy stored in the configuration prior to its disruption is so large that it may become comparable to the energy of the open field.

  13. Ice-sheet driven enhancement of geothermal flux: preliminary model results

    NASA Astrophysics Data System (ADS)

    Stevens, N. T.; Parizek, B. R.; Alley, R. B.; Pollard, D.; Anandakrishnan, S.

    2013-12-01

    Previous observations in parts of West Antarctica and Greenland, including near the head of the Northeast Greenland Ice Stream, have indicated rapid basal melting, suggesting higher geothermal flux than typical for the expected geological setting. Growth and decay of ice sheets over ice-age cycles cause large and geologically rapid changes in loading and flexure beneath and nearby. Oscillating load will cause oscillating melt volume in deep rocks, and because melt extraction increases with melt volume more rapidly than linearly, ice-age cycling will tend to move melt upward. Melt motion may be greatly aided by fracturing promoted by flexural stresses from the varying ice sheets. Preliminary results from ice-sheet models coupled to lithosphere and asthenosphere will be presented, suggesting that ice-sheet changes may be affecting their basal heat flux.

  14. Meltwater flux and runoff modeling in the abalation area of jakobshavn Isbrae, West Greenland

    SciTech Connect

    Mernild, Sebastian Haugard; Chylek, Petr; Liston, Glen; Steffen, Konrad

    2009-01-01

    The temporal variability in surface snow and glacier melt flux and runoff were investigated for the ablation area of lakobshavn Isbrae, West Greenland. High-resolution meteorological observations both on and outside the Greenland Ice Sheet (GrIS) were used as model input. Realistic descriptions of snow accumulation, snow and glacier-ice melt, and runoff are essential to understand trends in ice sheet surface properties and processes. SnowModel, a physically based, spatially distributed meteorological and snow-evolution modeling system was used to simulate the temporal variability of lakobshavn Isbrre accumulation and ablation processes for 2000/01-2006/07. Winter snow-depth observations and MODIS satellite-derived summer melt observations were used for model validation of accumulation and ablation. Simulations agreed well with observed values. Simulated annual surface melt varied from as low as 3.83 x 10{sup 9} m{sup 3} (2001/02) to as high as 8.64 x 10{sup 9} m{sup 3} (2004/05). Modeled surface melt occurred at elevations reaching 1,870 m a.s.l. for 2004/05, while the equilibrium line altitude (ELA) fluctuated from 990 to 1,210 m a.s.l. during the simulation period. The SnowModel meltwater retention and refreezing routines considerably reduce the amount of meltwater available as ice sheet runoff; without these routines the lakobshavn surface runoff would be overestimated by an average of 80%. From September/October through May/June no runoff events were simulated. The modeled interannual runoff variability varied from 1.81 x 10{sup 9} m{sup 3} (2001/02) to 5.21 x 10{sup 9} m{sup 3} (2004/05), yielding a cumulative runoff at the Jakobshavn glacier terminus of {approx}2.25 m w.eq. to {approx}4.5 m w.eq., respectively. The average modeled lakobshavn runoff of {approx}3.4 km{sup 3} y{sup -1} was merged with previous estimates of Jakobshavn ice discharge to quantify the freshwater flux to Illulissat Icefiord. For both runoff and ice discharge the average trends are

  15. 34 CFR 674.59 - Cancellation for military service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false Cancellation for military service. 674.59 Section 674... Cancellation for military service. (a) Cancellation on a Defense loan. (1) An institution must cancel up to 50... fraction of a year beyond a complete year of service, does not qualify for military cancellation....

  16. 34 CFR 674.59 - Cancellation for military service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false Cancellation for military service. 674.59 Section 674... Cancellation for military service. (a) Cancellation on a Defense loan. (1) An institution must cancel up to 50... fraction of a year beyond a complete year of service, does not qualify for military cancellation....

  17. 34 CFR 674.59 - Cancellation for military service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false Cancellation for military service. 674.59 Section 674... Cancellation for military service. (a) Cancellation on a Defense loan. (1) An institution must cancel up to 50... fraction of a year beyond a complete year of service, does not qualify for military cancellation....

  18. Fluxes of atmospheric methane using novel instruments, field measurements, and inverse modeling

    NASA Astrophysics Data System (ADS)

    Santoni, Gregory Winn

    The atmospheric concentration of methane (CH4) -- the most significant non-CO2 anthropogenic long-lived greenhouse gas -- stabilized between 1999 and 2006 and then began to rise again. Explanations for this behavior differ but studies agree that more measurements and better modeling are needed to reliably explain the model-data discrepancies and predict future change. This dissertation focuses on measurements of CH4 and inverse modeling of atmospheric CH4 fluxes using field measurements at a variety of spatial scales. We first present a new fast-response instrument to measure the isotopic composition of CH4 in ambient air. The instrument was used to characterize mass fluxes and isofluxes (a isotopically-weighted mass flux) from a well-studied research fen in New Hampshire. Eddycovariance and automatic chamber techniques produced consistent estimates of both the CH4 fluxes and their isotopic composition at sub-hourly resolution. We then characterize fluxes of CH4 from aircraft engines using measurements made with the same instrument during the Alternative Aviation Fuel Experiment (AAFEX), a study that aimed to determine the atmospheric impacts of alternative fuel use in the growing aviation industry. Emissions of CO2, CH4, and N2O from different synthetic fuels were statistically indistinguishable from those of the widely used JP-8 jet fuel. We then present airborne observations of the long-lived greenhouse gas suite -- CO2, CH4, N2O, and CO -- during two aircraft campaigns, HIPPO and CalNex, made using a similar instrument built specifically for the NCAR HIAPER GV aircraft. These measurements are compared to data from other onboard sensors and show excellent agreement. We discuss the details of the end-to-end calibration procedures and the data quality-assurance and qualitycontrol (QA/QC). Lastly, we quantify a top-down estimate of California's CH4 emission inventory using the CalNex CH4 observations. Observed CH4 enhancements above background concentrations are

  19. A model of solar flux attenuation during eclipse passage and its effects on photoelectron emission from satellite surfaces

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Forbes, J. M.

    1981-01-01

    The basic theory of solar flux attenuation by the earth's atmosphere is reviewed and a model of the time-varying flux observed by a satellite during eclipse passage developed. The general model is applied to the specific problem of variations in photoelectron flux during penumbral passage and the effects of wavelength, solar activity, and atmospheric constituents on photoelectron emission investigated. Predictions of the photoelectron current expected from tungsten and aluminum surfaces are then successfully compared with actual observations from the ATS-5 and Injun 5 satellites confirming the validity of the model.

  20. Development of Solar Wind Model Driven by Empirical Heat Flux and Pressure Terms

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Ofman, L.; Selwa, M.; Kramar, M.

    2008-01-01

    We are developing a time stationary self-consistent 2D MHD model of the solar corona and solar wind as suggested by Sittler et al. (2003). Sittler & Guhathakurta (1999) developed a semiempirical steady state model (SG model) of the solar wind in a multipole 3-streamer structure, with the model constrained by Skylab observations. Guhathakurta et al. (2006) presented a more recent version of their initial work. Sittler et al. (2003) modified the SG model by investigating time dependent MHD, ad hoc heating term with heat conduction and empirical heating solutions. Next step of development of 2D MHD models was performed by Sittler & Ofman (2006). They derived effective temperature and effective heat flux from the data-driven SG model and fit smooth analytical functions to be used in MHD calculations. Improvements of the Sittler & Ofman (2006) results now show a convergence of the 3-streamer topology into a single equatorial streamer at altitudes > 2 R(sub S). This is a new result and shows we are now able to reproduce observations of an equatorially confined streamer belt. In order to allow our solutions to be applied to more general applications, we extend that model by using magnetogram data and PFSS model as a boundary condition. Initial results were presented by Selwa et al. (2008). We choose solar minimum magnetogram data since during solar maximum the boundary conditions are more complex and the coronal magnetic field may not be described correctly by PFSS model. As the first step we studied the simplest 2D MHD case with variable heat conduction, and with empirical heat input combined with empirical momentum addition for the fast solar wind. We use realistic magnetic field data based on NSO/GONG data, and plan to extend the study to 3D. This study represents the first attempt of fully self-consistent realistic model based on real data and including semi-empirical heat flux and semi-empirical effective pressure terms.

  1. Neutrino fluxes from constrained minimal supersymmetric standard model lightest supersymmetric particle annihilations in the Sun

    SciTech Connect

    Ellis, John; Olive, Keith A.; Savage, Christopher; Spanos, Vassilis C.

    2010-04-15

    We evaluate the neutrino fluxes to be expected from neutralino lightest supersymmetric particle (LSP) annihilations inside the Sun, within the minimal supersymmetric extension of the standard model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the grand unified theory scale [the constrained minimal supersymmetric standard model (CMSSM)]. We find that there are large regions of typical CMSSM (m{sub 1/2},m{sub 0}) planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM (m{sub 1/2},m{sub 0}) planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large m{sub 1/2} along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct cosmological relic density for tan{beta}=10 and 55 for {mu}>0, exploring their sensitivities to uncertainties in the spin-dependent and -independent scattering matrix elements. We also present detailed neutrino spectra for four benchmark models that illustrate generic possibilities within the CMSSM. Scanning the cosmologically favored parts of the parameter space of the CMSSM, we find that the IceCube/DeepCore detector can probe at best only parts of this parameter space, notably the focus-point region and possibly also at the low-mass tip of the coannihilation strip.

  2. Use of MODIS Vegetation Data in Dynamic SPARROW Modeling of Reactive Nitrogen Flux

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Brakebill, J.; Schwarz, G. E.; Nolin, A. W.; Shih, J.; Blomquist, J.; Alexander, R. B.; Macauley, M.

    2012-12-01

    SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models are steady-state in form, and describe the average relationship between sources and stream conditions based on non-linear regression of long-term water quality monitoring data on spatially-referenced explanatory information. But many watershed management issues involve intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions which cause a temporary imbalance between watershed inputs and outputs. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. We describe the results of dynamic statistical calibration of a SPARROW model of total reactive nitrogen flux in the Potomac River Basin based on seasonal water quality and watershed explanatory data for 80 monitoring stations over the period 2000 to 2008. One challenge in dynamic modeling of reactive nitrogen is obtaining frequently-reported, spatially-detailed input data on the phenology of agricultural production and growth of other terrestrial vegetation. In this NASA-funded research, we use the Enhanced Vegetation Index (EVI) and gross primary productivity (GPP) data from the Terra Satellite-borne MODIS sensor to parameterize seasonal uptake and release of nitrogen. The spatial reference frame of the model is a 16,000-reach, 1:100,000-scale stream network, and the computational time step is seasonal. Precipitation and temperature data are from PRISM. The model describes transient storage and transport of nitrogen from multiple nonpoint sources including fertilized cropland, pasture, urban/suburban land, and atmospheric deposition. Removal of nitrogen from watershed storage to stream channels and to "permanent" sinks (deep groundwater and the atmosphere) occurs as parallel first-order processes. Point

  3. DO3SE modelling of soil moisture to determine ozone flux to European forest trees

    NASA Astrophysics Data System (ADS)

    Büker, P.; Morrissey, T.; Briolat, A.; Falk, R.; Simpson, D.; Tuovinen, J.-P.; Alonso, R.; Barth, S.; Baumgarten, M.; Grulke, N.; Karlsson, P. E.; King, J.; Lagergren, F.; Matyssek, R.; Nunn, A.; Ogaya, R.; Peñuelas, J.; Rhea, L.; Schaub, M.; Uddling, J.; Werner, W.; Emberson, L. D.

    2011-12-01

    The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments so far has been the approximation that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto), and ultimately O3 flux. This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. The soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant-atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system. These methods are evaluated against field data describing a variety of soil water variables, gsto and transpiration data for Norway spruce (Picea abies), Scots pine (Pinus sylvestris), birch (Betula pendula), aspen (Populus tremuloides), beech (Fagus sylvatica) and holm oak (Quercus ilex) collected from ten sites across Europe and North America. Modelled estimates of these variables show consistency with observed data when applying the simple empirical methods, with the timing and magnitude of soil drying

  4. A Circular-cylindrical Flux-rope Analytical Model for Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M. G.; Hidalgo, M. A.; Vourlidas, A.; Savani, N. P.; Szabo, A.; Farrugia, C.; Yu, W.

    2016-05-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds (MCs). Our model extends the circular-cylindrical concept of Hidalgo et al. by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation. The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in situ observations. Four Earth-directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic field and plasma in situ observations and with a new parameter (EPP, the Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of the plasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical. An extension of our current modeling framework to account for such non-circular CMEs will be presented in a forthcoming publication.

  5. Measured and modelled carbon and water fluxes in hybrid willows grown for biofuel production

    NASA Astrophysics Data System (ADS)

    Wertin, T. M.; LeBauer, D.; Volk, T.; Long, S.; Leakey, A. D.

    2014-12-01

    Biofuels have the potential to meet future energy needs. Worldwide, up to 75% of biofuels produced are derived from woody sources. Coppiced hybrid willow is among the most promising woody biofuel sources due to its ability to rapidly regenerate after cutting, high biomass yields, low nutrient requirements and ability to be grown on marginal land, abandoned land and land easily erodible under annual cultivation. However, models used to assess the potential viability and sustainability of commercial biomass production by willow in the northeastern, northern and northwestern USA remain unsophisticated and lack key parameterization data. Most significantly, models do not explicitly represent the coppiced growth form. This study tests the ability of a canopy model to predict carbon and water fluxes in two highly productive, but structurally distinct hybrid willows (Salix miyabeana and Salix purpurea) grown in central NY. S. miyaneana has only a few, large diameter stems per stool prior to harvest, while S. purpurea maintains numerous, small diameter stems until harvest. Canopy structure also varies substantially within a growing season. For example, in S. miyabeana stem number decreased by 40% while total basal area increased by 50% within year 2 of the third coppice cycle. Model predictions of water use are compared with stand transpiration measured by sap flow. Model predictions of biomass production are compared to destructive harvest data. Sensitivity of predicted fluxes to variation between genotypes in key physiological parameters is also tested.

  6. Validation of the MCNP computational model for neutron flux distribution with the neutron activation analysis measurement

    NASA Astrophysics Data System (ADS)

    Tiyapun, K.; Chimtin, M.; Munsorn, S.; Somchit, S.

    2015-05-01

    The objective of this work is to demonstrate the method for validating the predication of the calculation methods for neutron flux distribution in the irradiation tubes of TRIGA research reactor (TRR-1/M1) using the MCNP computer code model. The reaction rate using in the experiment includes 27Al(n, α)24Na and 197Au(n, γ)198Au reactions. Aluminium (99.9 wt%) and gold (0.1 wt%) foils and the gold foils covered with cadmium were irradiated in 9 locations in the core referred to as CT, C8, C12, F3, F12, F22, F29, G5, and G33. The experimental results were compared to the calculations performed using MCNP which consisted of the detailed geometrical model of the reactor core. The results from the experimental and calculated normalized reaction rates in the reactor core are in good agreement for both reactions showing that the material and geometrical properties of the reactor core are modelled very well. The results indicated that the difference between the experimental measurements and the calculation of the reactor core using the MCNP geometrical model was below 10%. In conclusion the MCNP computational model which was used to calculate the neutron flux and reaction rate distribution in the reactor core can be used for others reactor core parameters including neutron spectra calculation, dose rate calculation, power peaking factors calculation and optimization of research reactor utilization in the future with the confidence in the accuracy and reliability of the calculation.

  7. Modelling regional scale surface fluxes, meteorology and CO2 mixing ratios for the Cabauw tower in the Netherlands

    NASA Astrophysics Data System (ADS)

    Tolk, L. F.; Peters, W.; Meesters, A. G. C. A.; Groenendijk, M.; Vermeulen, A. T.; Steeneveld, G. J.; Dolman, A. J.

    2009-10-01

    We simulated meteorology and atmospheric CO2 transport over the Netherlands with the mesoscale model RAMS-Leaf3 coupled to the biospheric CO2 flux model 5PM. The results were compared with meteorological and CO2 observations, with emphasis on the tall tower of Cabauw. An analysis of the coupled exchange of energy, moisture and CO2 showed that the surface fluxes in the domain strongly influenced the atmospheric properties. The majority of the variability in the afternoon CO2 mixing ratio in the middle of the domain was determined by biospheric and fossil fuel CO2 fluxes in the limited area domain (640×640 km). Variation of the surface CO2 fluxes, reflecting the uncertainty of the parameters in the CO2 flux model 5PM, resulted in a range of simulated atmospheric CO2 mixing ratios of on average 11.7 ppm in the well-mixed boundary layer. Additionally, we found that observed surface energy fluxes and observed atmospheric temperature and moisture could not be reconciled with the simulations. Including this as an uncertainty in the simulation of surface energy fluxes changed simulated atmospheric vertical mixing and horizontal advection, leading to differences in simulated CO2 of on average 1.7 ppm. This is an important source of uncertainty and should be accounted for to avoid biased calculations of the CO2 mixing ratio, but it does not overwhelm the signal in the CO2 mixing ratio due to the uncertainty range of the surface CO2 fluxes.

  8. Development of Solar Wind Model Driven by Empirical Heat Flux and Pressure Terms

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Ofman, L.; Selwa, M. A.; Kramar, M.

    2008-12-01

    We are developing a time stationary self-consistent 2D MHD model of the solar corona and solar wind as suggested by Sittler et al. (2003). Sittler & Guhathakurta (1999) developed a semi-empirical steady state model (SG model) of the solar wind in a multipole 3-streamer structure, with the model constrained by Skylab observations. Guhathakurta et al. (2006) presented a more recent version of their initial work. Sittler et al. (2003) modified the SG model by investigating time dependent MHD, ad hoc heating term with heat conduction and empirical heating solutions. Next step of development of 2D MHD models was performed by Sittler & Ofman (2006). They derived effective temperature and effective heat flux from the data-driven SG model and fit smooth analytical functions to be used in MHD calculations. Improvements of the Sittler & Ofman (2006) results now show a convergence of the 3-streamer topology into a single equatorial streamer at altitudes > 2 RS. This is a new result and shows we are now able to reproduce observations of an equatorially confined streamer belt. In order to allow our solutions to be applied to more general applications, we extend that model by using magnetogram data and PFSS model as a boundary condition. Initial results were presented by Selwa et al. [2008]. We choose solar minimum magnetogram data since during solar maximum the boundary conditions are more complex and the coronal magnetic field may not be described correctly by PFSS model. As the first step we studied the simplest 2D MHD case with variable heat conduction, and with empirical heat input combined with empirical momentum addition for the fast solar wind. We use realistic magnetic field data based on NSO/GONG data, and plan to extend the study to 3D. This study represents the first attempt of fully self-consistent realistic model based on real data and including semi-empirical heat flux and semi-empirical effective pressure terms. References: Sittler E. C. Jr. and Guhathakurta M

  9. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  10. Inversion of geothermal heat flux in a thermomechanically coupled nonlinear Stokes ice sheet model

    NASA Astrophysics Data System (ADS)

    Zhu, Hongyu; Petra, Noemi; Stadler, Georg; Isaac, Tobin; Hughes, Thomas J. R.; Ghattas, Omar

    2016-07-01

    We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using a steady-state thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations; together they determine the surface ice flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization term is added to render the problem well posed. We derive adjoint-based gradient and Hessian expressions for the resulting partial differential equation (PDE)-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two- and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations decreases and that short-wavelength variations in the geothermal heat flux are difficult to recover. We analyze the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems - i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian - we study the

  11. Prediction Model of the Geosynchronous Electron Fluxes at a Wide Energy Range Based on a Neural Network Scheme

    NASA Astrophysics Data System (ADS)

    Shin, D. K.; Lee, D. Y.; Kim, K. C.

    2014-12-01

    The orbit in the range 2 to 7 Re (earth radii), which include the geosynchronous orbit, is known to be filled with particles of various energies. High flux levels of energetic electrons can cause irreparable damage to the instruments and equipment on satellites. Significant problems in satellite systems due to flux enhancement have promoted development of electron flux prediction model. In this study, we adopted a neural network technique to prediction the electron flux in a geosynchronous orbit. Solar wind data and geomagnetic indices are used for input parameter of neural network. As a result, we present combinations of solar wind and geomagnetic indices that show highest prediction efficiency. Our prediction model can predict the typical substorm-associated energetic (~40-400 keV) and relativistic-energy (> 0.8 MeV, > 2 MeV) electron fluxes up to 24 hours ahead with a reasonably good prediction efficiency.

  12. Modelling stomatal conductance in Acacia caven: A two way approach to understand vapor fluxes

    NASA Astrophysics Data System (ADS)

    Raab, N.; Meza, F. J.

    2012-12-01

    Evapotranspiration fluxes from semi arid ecosystems show a strong interannual variability and dependence on water availability. Usually this variable is regarded as very small but at local scale could substantially affect water balance at basin level. Climate Change scenarios for these regions are a source of concern as they project an increase in temperature, leading to a greater atmospheric water demand. In addition, precipitation is expected to decrease, increasing pressure for this kind of ecosystems. At a plant level, a rise on the actual atmospheric CO2 concentration is expected to improve photosynthetic performance and water use efficiency. However, as stomatal conductance is the main pathway for water vapor flux, from the leaf to the atmosphere, and CO2 entrance to the substomatal cavity, a larger control of the stomatal opening, due to a severe water control lost from the plant, could lead to shortages in net assimilation, jeopardizing the behavior of Semi Arid ecosystems as natural carbon sinks. Stoma is also one of the main lock of the soil-plant-water continuum, thus finally controlling the rate of soil water depletion. Its modeling presents a key role in determining future groundwater availability and net ecosystem exchange. There are several approaches for stomatal conductance modeling, from mechanistic models, based on the physiological functioning of the stomata, to empirical models where the stomatal behavior is correlated with environmental conditions. We modeled stomatal conductance for a Chilean typical Mediterranean Savannanh, dominated by Acacia caven, comparing two different empirical approaches. We used a Shuttleworth and Wallace model for sparse canopies combined with an inversion of the Penman-Monteith equation. This model allowed us to link stomatal conductance to evapotranspiration. The second approach was based on a multiplicative model for stomatal conductance based on environmental limitation, following Jarvis's model

  13. Regional modelling of water and CO2-fluxes with a one-dimensional SVAT model

    NASA Astrophysics Data System (ADS)

    Kuhnert, M.; Köstner, B.

    2009-04-01

    Climate change affects site conditions for vegetation and may affect changes in the distribution of plant species. Investigations of these effects are difficult, because other influences on plant performance like land use and management also need to be considered. Carbon gain can be used as a sensitive indicator for changes in the vitality of the considered vegetation types that are affected by different climate and weather patterns. The objective of the presented study is the quantification of net photosynthesis rate, respiration and transpiration of different vegetation types on the regional scale. The study regions are the Weißeritz catchment in the Ore Mountains and the region Torgau-Oschatz in the Elbe basin both located in Saxony (East Germany) but significantly differing in elevation and site conditions. The carbon and water fluxes are simulated by an ecophysiological based Soil-Vegetation-Atmosphere-Transfer model for three periods (1996-2006, 2015-2025 and 2035-2045). The considered vegetation types are forest and grassland. The used model SVAT-CN is a multi-layer model, which enables the calculation of hourly carbon gain by coupling micrometerological data with ecophysiological processes. The calculations are based on the equations of Farquhar and Ball for net photosynthesis rate and stomata conductivity, respectively. It is a one-dimensional model which also considers soil water processes. The soil is coupled with the vegetation by one factor that depends on the matric potential and steers the calculation of the stomata conductivity. The equations of the soil water processes are based on a combination of bucket model and Richard's equation. Simulations are based on measured weather data (Dept. of Meteorology at Technische Universität Dresden and LfL Sachsen) with varying levels of atmospheric CO2 concentrations up to 580 ppm. Further, climate projections (ECHAM5-OM, IPCC emission scenario A1B), with downscaling to a 18x18km grid by the regional climate

  14. Effect of solar zenith angle specification in models on mean shortwave fluxes and stratospheric temperatures

    NASA Astrophysics Data System (ADS)

    Hogan, Robin J.; Hirahara, Shoji

    2016-01-01

    Many weather and climate models call their radiation schemes only every 3 h, which we show can lead to a stratospheric temperature overestimate of 3-5 K and wavenumber 8 fluctuations in top-of-atmosphere (TOA) net shortwave flux around the tropics of amplitude 1.6 W m-2. Solving this problem while retaining a 3h radiation time step requires careful treatment of the cosine of the solar zenith angle, μ0, which appears twice in the calculation of shortwave fluxes, scaling the following: (1) TOA incident flux and (2) the path length of the direct solar beam through the atmosphere. If μ0 is calculated as the average over the radiation time step, rather than at the central time, then the fluctuations are removed, but the stratosphere is still too warm by 2-3 K. It is only if the second μ0 is averaged only over the sunlit part of the radiation time step that the temperature bias is removed.

  15. Mathematical modeling of water fluxes in arable chernozems under different land use

    NASA Astrophysics Data System (ADS)

    Arkhangel'skaya, T. A.; Khokhlova, O. S.; Myakshina, T. N.

    2016-07-01

    The hydrologic regimes of arable chernozems were simulated for two plots located within a watershed. For the last fifty years continuous corn monoculture was practiced in one plot, and permanent bare fallow was practiced in the other plot. Carbonates are detected from a depth of 140-160 cm under corn and from 70-80 cm under bare fallow. The objective of the simulation study was to test the validity of the hypothesis that the shallower depth to carbonates under bare fallow is related to carbonate rise due to changes in the hydrologic regime of bare soil compared to soil under vegetation. Mathematical modeling using the HYDRUS-1D software and the FAO56 method confirmed that the hydrologic regimes of arable chernozems within the two plots are different. The soil water content under bare fallow is generally higher than that under corn. The downward soil water fluxes for the two plots are comparable. The upward soil water fluxes under bare fallow significantly exceed those under corn and affect a thicker soil layer. The changes in the hydrologic regimes of chernozems under bare fallow favor the upward movement of carbonates through both the direct transfer by upward water fluxes and the diffusion of ions.

  16. MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK

    SciTech Connect

    EVANS, TE,; MOYER, RA; MONAT, P

    2002-06-01

    OAK A271 MODELING OF STOCHASTIC MAGNETIC FLUX LOSS FROM THE EDGE OF A POOIDALLY DIVERTED TOKAMAK. A field line integration code is used to study the loss of edge poloidal magnetic flux due to stochastic magnetic fields produced by an error field correction coil (C-coil) in DIII-D for various plasma shapes, coil currents and edge magnetic shear profiles. The authors find that the boundary of a diverted tokamak is more sensitive to stochastic flux loss than a nondiverted tokamak. The C-coil has been used to produce a stochastic layer in an ohmic diverted discharge with characteristics similar to those seen in stochastic boundary experiments in circular limiter ohmic plasmas, including: (1) an overall increase in recycling, (2) a broadening of the recycling profile at the divertor, and (3) a flattening of the boundary profiles over the extent of the stochastic layer predicted by the field line integration code. Profile flattening consistent with field line integration results is also seen in some high performance discharges with edge transport barriers. The prediction of a significant edge stochastic layer even in discharges with high performance and edge radial transport barriers indicates that either the self-consistent plasma response heals the stochastic layer or that edge stochastic layers are compatible with edge radial transport barriers.

  17. Flux Collision Models of Prominence Formation, or Breaking Up is Hard to Do

    NASA Astrophysics Data System (ADS)

    Welsch, B. T.; DeVore, C. R.; Antiochos, S. K.

    2004-05-01

    To investigate the hypothesis that the prominences form by magnetic reconnection between initially distinct flux systems above the solar photosphere, we employ the ARMS code, a 3D, flux-corrected transport MHD code with adaptive mesh refinement, to simulate magnetic field evolution when two flux systems are driven to collide by photospheric boundary motions. In particular, we focus on driving configurations similar to the prominence model of Martens and Zwaan (2001). We find that: 1) reconnection proceeds only weakly, if at all, in typical active region configurations driven with differential-rotation-like shear, which leads to glancing collisions; 2) reconnection proceeds efficiently in configurations that are driven to collide directly, with converging motions along the neutral line; and 3) reconnected fields from this process can exhibit sheared, dipped field lines along the neutral line, consistent with prominence observations. As our field configurations do not posses the ``breakout'' topology, eruptions are not observed. This work was supported by ONR, NASA's SEC Theory program, and by a grant of computer time from the DOD High Performance Computing Modernization Program at the ERDC MSRC.

  18. Meteoric 10Be as a tool to investigate human induced soil fluxes: a conceptual model

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; De Vente, Joris; Boix-Fayos, Carolina; Minella, Jean; Baken, Stijn; Smolders, Erik

    2014-05-01

    The use of meteoric 10Be as a tool to understand long term landscape behavior is becoming increasingly popular. Due its high residence time, meteoric 10Be allows in principle to investigate in situ erosion rates over time scales exceeding the period studied with classical approaches such as 137Cs. The use of meteoric 10Be strongly contributes to the traditional interpretation of sedimentary archives which cannot be unequivocally coupled to sediment production and could provide biased information over longer time scales (Sadler, 1981). So far, meteoric 10Be has successfully been used in geochemical fingerprinting of sediments, to date soil profiles, to assess soil residence times and to quantify downslope soil fluxes using accumulated 10Be inventories along a hill slope. However, less attention is given to the potential use of the tracer to directly asses human induced changes in soil fluxes through deforestation, cultivation and reforestation. A good understanding of the processes governing the distribution of meteoric 10Be both within the soil profile and at landscape scale is essential before meteoric 10Be can be successfully applied to assess human impact. We developed a spatially explicit 2D-model (Be2D) in order to gain insight in meteoric 10Be movement along a hillslope that is subject to human disturbance. Be2D integrates both horizontal soil fluxes and vertical meteoric 10Be movement throughout the soil prolife. Horizontal soil fluxes are predicted using (i) well studied geomorphical laws for natural erosion and soil formation as well as (ii) human accelerated water and tillage erosion. Vertical movement of meteoric 10Be throughout the soil profile is implemented by inserting depth dependent retardation calculated using experimentally determined partition coefficients (Kd). The model was applied to different environments such as (i) the Belgian loess belt, characterized by aeolian deposits enriched in inherited meteoric 10Be, (ii) highly degraded and stony

  19. Ultradiscrete optimal velocity model: A cellular-automaton model for traffic flow and linear instability of high-flux traffic

    NASA Astrophysics Data System (ADS)

    Kanai, Masahiro; Isojima, Shin; Nishinari, Katsuhiro; Tokihiro, Tetsuji

    2009-05-01

    In this paper, we propose the ultradiscrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultradiscrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the modified Korteweg-de Vries (mkdV) equation, a soliton equation. Meanwhile, the ultradiscrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.

  20. Ion fluxes, transmembrane potential, and osmotic stabilization: a new dynamic electrophysiological model for eukaryotic cells.

    PubMed

    Poignard, Clair; Silve, Aude; Campion, Frederic; Mir, Lluis M; Saut, Olivier; Schwartz, Laurent

    2011-03-01

    Survival of mammalian cells is achieved by tight control of cell volume, while transmembrane potential has been known to control many cellular functions since the seminal work of Hodgkin and Huxley. Regulation of cell volume and transmembrane potential have a wide range of implications in physiology, from neurological and cardiac disorders to cancer and muscle fatigue. Therefore, understanding the relationship between transmembrane potential, ion fluxes, and cell volume regulation has become of great interest. In this paper we derive a system of differential equations that links transmembrane potential, ionic concentrations, and cell volume. In particular, we describe the dynamics of the cell within a few seconds after an osmotic stress, which cannot be done by the previous models in which either cell volume was constant or osmotic regulation instantaneous. This new model demonstrates that both membrane potential and cell volume stabilization occur within tens of seconds of changes in extracellular osmotic pressure. When the extracellular osmotic pressure is constant, the cell volume varies as a function of transmembrane potential and ion fluxes, thus providing an implicit link between transmembrane potential and cell volume. Experimental data provide results that corroborate the numerical simulations of the model in terms of time-related changes in cell volume and dynamics of the phenomena. This paper can be seen as a generalization of previous electrophysiological results, since under restrictive conditions they can be derived from our model. PMID:21079946

  1. The predictability of advection-dominated flux-transport solar dynamo models

    SciTech Connect

    Sanchez, Sabrina; Fournier, Alexandre; Aubert, Julien

    2014-01-20

    Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo. Interested in the forecast horizon of such studies, we quantify the predictability window of a representative, advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τ {sub e}. The e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average estimate for τ {sub e} equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After reviewing these, we discuss their implications for solar cycle prediction.

  2. Circular-cylindrical flux-rope analytical model for Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, Teresa; Linton, Mark; Hidalgo, Miguel A.; Vourlidas, Angelos; Savani, Neel P.; Szabo, Adam; Farrugia, Charlie; Yu, Wenyuan

    2016-05-01

    We present an analytical model to describe magnetic flux-rope topologies. When these structures are observed embedded in Interplanetary Coronal Mass Ejections (ICMEs) with a depressed proton temperature, they are called Magnetic Clouds ( MCs). The model extends the circular-cylindrical concept of Hidalgo et al. (2000) by introducing a general form for the radial dependence of the current density. This generalization provides information on the force distribution inside the flux rope in addition to the usual parameters of MC geometrical information and orientation.The generalized model provides flexibility for implementation in 3D MHD simulations. Here, we evaluate its performance in the reconstruction of MCs in in-situ observations. Four Earth directed ICME events, observed by the Wind spacecraft, are used to validate the technique. The events are selected from the ICME Wind list with the magnetic obstacle boundaries chosen consistently with the magnetic fi eld and plasma in situ observations and with a new parameter (EPP, Electron Pitch angle distribution Parameter) which quantifies the bidirectionally of theplasma electrons. The goodness of the fit is evaluated with a single correlation parameter to enable comparative analysis of the events. In general, at first glance, the model fits the selected events very well. However, a detailed analysis of events with signatures of significant compression indicates the need to explore geometries other than the circular-cylindrical.

  3. Numerical modeling evapotranspiration flux components in shrub-encroached grassland in Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Xiao-Yan; Huang, Jie-Yu; Yang, Wen-Xin; Wang, Qi-Dan; Xu, Kun; Zheng, Xiao-Ran

    2016-04-01

    Shrub encroachment into arid grasslands occurs around the world. However, few works on shrub encroachment has been conducted in China. Moreover, its hydrological implications remain poorly investigated in arid and semiarid regions. This study combined a two-source energy balanced model and Newton-Raphson iteration scheme to simulate the evapotranspiration (ET) and their components of shrub-encroached(with 15.4% shrub coverage) grassland in Inner Mongolia. Good agreements of ET flux between modelled and measured by Bowen ratio method with relatively insensitive to uncertainties/errors in the assigned models parameters or in measured input variables for its components illustrated that our model was feasible for simulating evapotranspiration flux components in shrub-encroached grassland. The transpiration fraction(T /ET)account for 58±17%during the growing season. With the designed shrub encroachment extreme scenarios (maximum and minimum coverage),the contribution of shrub to local plant transpiration (Tshrub/T) was 20.06±7%during the growing season. Canopy conductance was the main controlling factor of T /ET. In diurnal scale short wave solar radiation was the direct influential factor while in seasonal scale leaf area index (LAI) and soil water content were the direct influential factors. We find that the seasonal variation of Tshrub/T has a good relationship with ratio of LAIshrub/LAI, and rainfall characteristics widened the difference of contribution of shrub and herbs to ecosystem evapotranspiration.

  4. Modeling CO2 sediment-water flux variations connected with changes of redox conditions

    NASA Astrophysics Data System (ADS)

    Yakushev, Evgeniy; Protsenko, Elizaveta

    2013-04-01

    Changes of bottom redox conditions from oxic to hypoxic, suboxic and anoxic affect rates of sediment-water fluxes of chemical parameters, i.e. oxygen, nutrient (including carbon), redox metals. Chemosynthetic organic matter production in suboxic and anoxic conditions additionally affects transformation of carbon. This work aimed in estimation of a potential influence of changes of the bottom redox conditions on the sediment -water fluxes of carbon. We use a 1-dimensional C-N-P-Si-O-S-Mn-Fe vertical transport-reaction model describing both the sediments and bottom boundary layers coupled with biogeochemical block simulating changeable redox conditions, and the carbonate system processes block. A biogeochemical block is based on ROLM (RedOx Layer Model), that was constructed to simulate basic features of the water column biogeochemical structure changes in oxic, anoxic and changeable conditions (Yakushev et al., 2007). Organic matter formation and decay, reduction and oxidation of species of nitrogen, sulfur, manganese, iron, and the transformation of phosphorus species are parameterized in the model. The model includes blocks for phytoplankton, zooplankton, aerobic autotrophic and heterotrophic bacteria and anaerobic autotrophic and heterotrophic bacteria. In this study we additionally parameterized transformation of Si and C and forms of alkalinity. We simulate changes in the bottom boundary layer pH in different redox conditions under the same leakage scenario.

  5. Seasonally-Dynamic SPARROW Modeling of Nitrogen Flux Using Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Schwarz, G. E.; Brakebill, J. W.; Hoos, A. B.; Moore, R. B.; Shih, J.; Nolin, A. W.; Macauley, M.; Alexander, R. B.

    2013-12-01

    SPARROW models are widely used to identify and quantify the sources of contaminants in watersheds and to predict their flux and concentration at specified locations downstream. Conventional SPARROW models describe the average relationship between sources and stream conditions based on long-term water quality monitoring data and spatially-referenced explanatory information. But many watershed management issues stem from intra- and inter-annual changes in contaminant sources, hydrologic forcing, or other environmental conditions which cause a temporary imbalance between inputs and stream water quality. Dynamic behavior of the system relating to changes in watershed storage and processing then becomes important. In this study, we describe dynamically calibrated SPARROW models of total nitrogen flux in three sub-regional watersheds: the Potomac River Basin, Long Island Sound drainage, and coastal South Carolina drainage. The models are based on seasonal water quality and watershed input data for a total 170 monitoring stations for the period 2001 to 2008. Frequently-reported, spatially-detailed input data on the phenology of agricultural production, terrestrial vegetation growth, and snow melt are often challenging requirements of seasonal modeling of reactive nitrogen. In this NASA-funded research, we use Enhanced Vegetation Index (EVI), gross primary production and snow/ice cover data from MODIS to parameterize seasonal uptake and release of nitrogen from vegetation and snowpack. The spatial reference frames of the models are 1:100,000-scale stream networks, and the computational time steps are 0.25-year seasons. Precipitation and temperature data are from PRISM. The model formulation accounts for storage of nitrogen from nonpoint sources including fertilized cropland, pasture, urban land, and atmospheric deposition. Model calibration is by non-linear regression. Once calibrated, model source terms based on previous season export allow for recursive dynamic

  6. Quantifying global melt flux and degassing rate from global mantle convection models with plate motion history

    NASA Astrophysics Data System (ADS)

    Li, M.; Black, B. A.; Zhong, S.; Manga, M.; Rudolph, M. L.; Olson, P.

    2015-12-01

    How does the Earth's deep mantle convection affect surface climate change? Volcanism in various geological settings, including mid-ocean ridges, volcanic arcs, rift zones and sites with intraplate volcanism, releases volatiles to Earth's surface. The amount and composition of these volatiles influence the evolution Earth's ocean, crust and atmosphere, which in turn control the evolution of the biosphere. While there are constraints of Earth's degassing from the geochemistry of samples in some localized regions, a quantification of the time evolution of degassing on a global scale remains largely unknown.In this study, we run geodynamical calculations with a full 3D spherical geometry to explore the amount of partial melting in the shallow part of Earth's mantle and implied degassing at a global scale. The plate motion history for the last 200 Ma or longer is employed as time-dependent velocity boundary condition for mantle flow. Using the temperature, pressure and composition in mantle convection models, we calculate the degree of partial melting in different geological settings. We show that the melt flux at mid-ocean ridges generally increases linearly with the speed of plates, with some perturbations due to changes of length of mid-ocean ridges. Generally, this melt flux is about 2-3 times in the past 200 million years than that of the present-day Earth. The present-day melt flux is ~20 km3/year, but this value reaches ~40 km3/year at about 80Ma, and ~60 km3/year at about 120-160Ma. Given estimates of volatile content in the source regions where partial melting occurs and the melt flux we calculate, we quantify the evolution of degassing rate (of CO2) at mid-ocean ridges, hotspots, large igneous provinces, and subduction zones.

  7. Modeling evapotranspiration based on plant hydraulic theory can predict spatial variability across an elevation gradient and link to biogeochemical fluxes

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Frank, J.; Reed, D.; Whitehouse, F.; Ewers, B. E.; Pendall, E.; Massman, W. J.; Sperry, J. S.

    2012-04-01

    In woody plant systems transpiration is often the dominant component of total evapotranspiration, and so it is key to understanding water and energy cycles. Moreover, transpiration is tightly coupled to carbon and nutrient fluxes, and so it is also vital to understanding spatial variability of biogeochemical fluxes. However, the spatial variability of transpiration and its links to biogeochemical fluxes, within- and among-ecosystems, has been a challenge to constrain because of complex feedbacks between physical and biological controls. Plant hydraulics provides an emerging theory with the rigor needed to develop testable hypotheses and build useful models for scaling these coupled fluxes from individual plants to regional scales. This theory predicts that vegetative controls over water, energy, carbon, and nutrient fluxes can be determined from the limitation of plant water transport through the soil-xylem-stomata pathway. Limits to plant water transport can be predicted from measurable plant structure and function (e.g., vulnerability to cavitation). We present a next-generation coupled transpiration-biogeochemistry model based on this emerging theory. The model, TREEScav, is capable of predicting transpiration, along with carbon and nutrient flows, constrained by plant structure and function. The model incorporates tightly coupled mechanisms of the demand and supply of water through the soil-xylem-stomata system, with the feedbacks to photosynthesis and utilizable carbohydrates. The model is evaluated by testing it against transpiration and carbon flux data along an elevation gradient of woody plants comprising sagebrush steppe, mid-elevation lodgepole pine forests, and subalpine spruce/fir forests in the Rocky Mountains. The model accurately predicts transpiration and carbon fluxes as measured from gas exchange, sap flux, and eddy covariance towers. The results of this work demonstrate that credible spatial predictions of transpiration and related

  8. Three-dimensional Fast Flux Test Facility plenum model turbulent flow prediction and data comparison

    SciTech Connect

    Eyler, L.L.; Sawdye, R.W.

    1981-01-01

    Two- and three-dimensional numerical simulations of turbulent flow in a scaled Fast Flux Test Facility (FFTF) upper plenum model were performed using the TEMPEST hydrothermal code. A standard k-element of model was used to describe turbulence through an effective viscosity. Comparisons with previously reported mean velocity and turbulence field data measured in the plenum model and two-dimensional numerical simulations using the TEACH code were made. Predicted horizontal and vertical mean velocities and turbulent kinetic energy are shown to be in good agreement with available experimental data when inlet conditions of the dissipation of turbulent kinetic energy are appropriately prescribed. The three-dimensional quarter-symmetry simulation predicts the turbulent kinetic energy field significantly better than the two-dimensional centerplane simulations. These results lead to conclusions concerning deficiencies in the experimental data and the turbulence model.

  9. High Flux Isotope Reactor Core Analysis-Challenges and Recent Enhancements in Modeling and Simulation

    SciTech Connect

    Ilas, Germina

    2016-01-01

    A concerted effort over the past few years has focused on enhancing the core depletion models for the High Flux Isotope Reactor (HFIR) as part of a comprehensive study for designing a HFIR core that would use low-enriched uranium (LEU) fuel. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed for use as a reference for the design of an LEU fuel for HFIR and to improve the basis for analyses that support HFIR s current operation with high-enriched uranium (HEU) fuel. This paper summarizes the recent improvements in modeling and simulation for HFIR core analyses, with a focus on core depletion models.

  10. Magnetic flux rope versus the spheromak as models for interplanetary magnetic clouds

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Osherovich, V. A.; Burlaga, L. F.

    1995-01-01

    Magnetic clouds form a subset of interplanetary ejecta with well-defined magnetic and thermodynamic properties. Observationally, it is well established that magnetic clouds expand as they propagate antisunward. The aim of this paper is to compare and contrast two models which have been proposed for the global magnetic field line topology of magnetic clouds: a magnetic flux tube geometry, on the one hand, and a spheromak geometry (including possible higher multiples), on the other. Traditionally, the magnetic structure of magnetic clouds has been modeled by force-free configurations. In a first step, we therefore analyze the ability of static force-free models to account for the asymmetries observed in the magnetic field profiles of magnetic clouds. For a cylindrical flux tube the magnetic field remains symmetric about closest approach to the magnetic axis on all spacecraft orbits intersecting it, whereas in a spheromak geometry one can have asymmetries in the magnetic field signatures along some spacecraft trajectories. The duration of typical magnetic cloud encounters at 1 AU (1 to 2 days) is comparable to their travel time from the Sun to 1 AU and thus magnetic clouds should be treated as strongly nonstationary objects. In a second step, therefore, we abandon the static approach and model magnetic clouds as self-similarly evolving MHD configurations. In our theory, the interaction of the expanding magnetic cloud with the ambient plasma is taken into account by a drag force proportional to the density and the velocity of expansion. Solving rigorously the full set of MHD equations, we demonstrate that the asymmetry in the magnetic signature may arise solely as a result of expansion. Using asymptotic solutions of the MHD equations, we least squares fit both theoretical models to interplanetary data. We find that while the central part of the magnetic cloud is adequately described by both models, the 'edges' of the cloud data are modeled better by the magnetic flux

  11. Comparing linear and non-linear Force Free Models for Flux Rope-Type Small Transients During Solar Maximum

    NASA Astrophysics Data System (ADS)

    Farrugia, Charles; Moestl, Christian; Leitner, Martin; Galvin, Antoinette; Lugaz, Noé; Yu, Wenyuan

    2016-07-01

    This work is about modeling of those small solar wind transients (STs) which have a flux rope geometry. The two models used are: (i) the linear force free solution of Lundquist in terms of Bessel functions, and (ii) the non-linear Gold-Hoyle solution describing a uniformly-twisted flux tube. The first has been used almost exclusively in modeling of both large and small flux ropes in the solar wind. The second was applied to one small transient. In recent work there have been claims that variant (ii) is more appropriate than (i) for large transients, i.e. magnetic clouds. We select by eye six flux rope STs from STEREO and Wind data, chosen purely on the basis of having a large and smooth rotation. We also choose these during solar maximum activity conditions since our current work shows that only then are these models appropriate.

  12. Model testing for nitrous oxide (N2O) fluxes from Amazonian cattle pastures

    NASA Astrophysics Data System (ADS)

    Meurer, Katharina H. E.; Franko, Uwe; Spott, Oliver; Stange, C. Florian; Jungkunst, Hermann F.

    2016-10-01

    Process-oriented models have become important tools in terms of quantification of environmental changes, for filling measurement gaps, and building of future scenarios. It is especially important to couple model application directly with measurements for remote areas, such as Southern Amazonia, where direct measurements are difficult to perform continuously throughout the year. Processes and resulting matter fluxes may show combinations of steady and sudden reactions to external changes. The potent greenhouse gas nitrous oxide (N2O) is known for its sensitivity to e.g. precipitation events, resulting in intense but short-term peak events (hot moments). These peaks have to be captured for sound balancing. However, prediction of the effect of rainfall events on N2O peaks is not trivial, even for areas under distinct wet and dry seasons. In this study, we used process-oriented models in both a pre-and post-measurement manner in order to (a) determine important periods for N2O-N emissions under Amazonian conditions and (b) calibrate the models to Brazilian pastures based on measured data of environment conditions (soil moisture and Corg) and measured N2O-N fluxes. During the measurement period (early wet season), observed emissions from three cattle pastures did not react to precipitation events, as proposed by the models. Here both process understanding and models have to be improved by long-term data in high resolution in order to prove or disprove a lacking of N2O-N peaks. We strongly recommend the application of models as planning tools for field campaigns, but we still suggest model combinations and simultaneous usage.

  13. Remotely sensed latent heat fluxes for improving model predictions of soil moisture: a case study

    NASA Astrophysics Data System (ADS)

    Schuurmans, J. M.; van Geer, F. C.; Bierkens, M. F. P.

    2010-08-01

    This paper investigates whether the use of remotely sensed latent heat fluxes improves the accuracy of spatially-distributed soil moisture predictions by a hydrological model. By using real data we aim to show the potential and limitations in practice. We use (i) satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ETact and (ii) an operational physically based distributed (25 m×25 m) hydrological model of a small catchment (70 km2) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Firstly, model outcomes of ETact are compared to the processed satellite data. Secondly, we perform data assimilation that updates the modelled soil moisture. We show that remotely sensed ETact is useful in hydrological modelling for two reasons. Firstly, in the procedure of model calibration: comparison of modeled and remotely sensed ETact together with the outcomes of our data assimilation procedure points out potential model errors (both conceptual and flux-related). Secondly, assimilation of remotely sensed ETact results in a realistic spatial adjustment of soil moisture, except for the area with forest and deep groundwater levels. As both ASTER and MODIS images were available for the same days, this study provides also an excellent opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides much better insight in the spatial distribution of ETact due to its higher spatial resolution than MODIS, they appeared in this study just as useful.

  14. The analysis of two-dimensional two-phase flow in horizontal heated tube bundles using drift flux model

    NASA Astrophysics Data System (ADS)

    Yang, Ruichang; Zheng, Rongchuan; Wang, Yanwu

    This paper presents the experimental study and numerical simulation of two-dimensional two-phase flow in horizontal heated tube bundles. In the experiments, two advanced measuring systems with a single-fibre optical probe and a tri-fibre-optical-probe were developed to measure respectively the local void fraction and vapor bubble velocities among the heated tube bundles. In accordance with the internal circulation characteristics of two-phase flow in the tube bundles, a mathematical model of two-dimensional two-phase low Reynolds number turbulent flow based on the modified drift flux model and the numerical simulation method to analyze the two-phase flow structures have been developed. The modified drift flux model in which both the acceleration by gravity and the acceleration of the average volumetric flow are taken into account for the calculation of the drift velocities enables its application to the analysis of multi-dimensional two-phase flow. In the analysis the distributions of the vapor-phase velocity, liquid-phase velocity and void fraction were numerically obtained by using the modified drift flux model and conventional drift flux model respectively and compared with the experimental results. The numerical analysis results by using the modified drift flux model agree reasonably well with the experimental investigation. It is confirmed that the modified drift flux model has the capability of correctly simulating the two-dimensional two-phase flow.

  15. 29 CFR 4.190 - Contract cancellation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the contract is subject upon written notice to cancellation by the contracting agency, whereupon the... contract is similarly subject upon written notice to immediate cancellation by the contracting agency and... in paragraph (a). Such contract is without warrant of law and has no force and effect and is void...

  16. 25 CFR 214.19 - Cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Cancellation. 214.19 Section 214.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.19 Cancellation. When a lessee makes application for...

  17. 25 CFR 213.40 - Cancellations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Cancellations. 213.40 Section 213.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.40 Cancellations. (a) When, in the...

  18. 25 CFR 214.19 - Cancellation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Cancellation. 214.19 Section 214.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.19 Cancellation. When a lessee makes application for...

  19. 25 CFR 213.40 - Cancellations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Cancellations. 213.40 Section 213.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.40 Cancellations. (a) When, in the...

  20. 25 CFR 213.40 - Cancellations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Cancellations. 213.40 Section 213.40 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF RESTRICTED LANDS OF MEMBERS OF FIVE CIVILIZED TRIBES, OKLAHOMA, FOR MINING Operations § 213.40 Cancellations. (a) When, in the...

  1. 25 CFR 214.19 - Cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Cancellation. 214.19 Section 214.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.19 Cancellation. When a lessee makes application for...

  2. 25 CFR 214.19 - Cancellation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Cancellation. 214.19 Section 214.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.19 Cancellation. When a lessee makes application for...

  3. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall...

  4. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall...

  5. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall...

  6. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall...

  7. 25 CFR 227.28 - Cancellations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Cancellations. 227.28 Section 227.28 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF CERTAIN LANDS IN WIND RIVER INDIAN RESERVATION, WYOMING, FOR OIL AND GAS MINING Operations § 227.28 Cancellations. Leases shall...

  8. 34 CFR 674.52 - Cancellation procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... borrower's loan deferment under § 674.34(c) to run concurrently with any period for which cancellation... run concurrently with any period for which a cancellation under §§ 674.53, 674.56, 674.57, or 674.58 is granted. (e) National community service. No borrower who has received a benefit under subtitle...

  9. 25 CFR 23.53 - Cancellation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Cancellation. 23.53 Section 23.53 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR HUMAN SERVICES INDIAN CHILD WELFARE ACT General and Uniform Grant Administration Provisions and Requirements § 23.53 Cancellation. (a) The grants officer may...

  10. 43 CFR 3601.62 - Cancellation procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Contract and Permit Cancellation § 3601.62 Cancellation procedure. (a... notice under paragraph (a) of this section, or if delivery of the notice is refused, or not completed...

  11. 36 CFR 223.116 - Cancellation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DISPOSAL OF NATIONAL FOREST SYSTEM TIMBER Timber Sale Contracts Contract Administration § 223.116 Cancellation. (a) Timber sale contracts and permits may be canceled: (1) For serious or continued violation of... the value of the timber remaining to be cut is diminished materially because of catastrophic...

  12. 7 CFR 1942.12 - Loan cancellation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS (CONTINUED) ASSOCIATIONS Community Facility Loans § 1942.12 Loan cancellation. Loans which have... Development Manager or State Director may prepare and execute Form Rural Development 1940-10, Cancellation of... disbursement has been received or is subsequently received in the Area Office, the Rural Development...

  13. 34 CFR 674.52 - Cancellation procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... covered under the Family and Medical Leave Act of 1993 (FMLA) (29 U.S.C. 2601, et seq.), the borrower... cancellation based on a claim of simultaneous employment as a nurse or medical technician in two or more... of title I of the National and Community Service Act of 1990 may receive a cancellation under......

  14. 43 CFR 3601.62 - Cancellation procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Disposal; General Provisions Contract and Permit Cancellation § 3601.62 Cancellation procedure. (a... notice under paragraph (a) of this section, or if delivery of the notice is refused, or not completed...

  15. 44 CFR 206.376 - Loan cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Community Disaster Loans § 206.376 Loan cancellation. (a) FEMA shall cancel repayment of all or part of a Special Community Disaster Loan to the extent... Special Community Disaster loans issued from the dates of enactment of Public Law 109-88 and Public...

  16. 44 CFR 206.376 - Loan cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Community Disaster Loans § 206.376 Loan cancellation. (a) FEMA shall cancel repayment of all or part of a Special Community Disaster Loan to the extent... Special Community Disaster loans issued from the dates of enactment of Public Law 109-88 and Public...

  17. 44 CFR 206.366 - Loan cancellation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Community Disaster Loans § 206.366 Loan cancellation. (a) Policies. (1) FEMA shall cancel repayment of all or part of a Community Disaster Loan to the... incurred for general government purposes, such as police and fire protection, trash collection,...

  18. 44 CFR 206.366 - Loan cancellation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Community Disaster Loans § 206.366 Loan cancellation. (a) Policies. (1) FEMA shall cancel repayment of all or part of a Community Disaster Loan to the... incurred for general government purposes, such as police and fire protection, trash collection,...

  19. 44 CFR 206.376 - Loan cancellation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Community Disaster Loans § 206.376 Loan cancellation. (a) FEMA shall cancel repayment of all or part of a Special Community Disaster Loan to the extent... Special Community Disaster loans issued from the dates of enactment of Public Law 109-88 and Public...

  20. 44 CFR 206.366 - Loan cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Community Disaster Loans § 206.366 Loan cancellation. (a) Policies. (1) FEMA shall cancel repayment of all or part of a Community Disaster Loan to the... incurred for general government purposes, such as police and fire protection, trash collection,...

  1. 44 CFR 206.366 - Loan cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HOMELAND SECURITY DISASTER ASSISTANCE FEDERAL DISASTER ASSISTANCE Community Disaster Loans § 206.366 Loan cancellation. (a) Policies. (1) FEMA shall cancel repayment of all or part of a Community Disaster Loan to the... incurred for general government purposes, such as police and fire protection, trash collection,...

  2. Noise canceling in-situ detection

    SciTech Connect

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  3. 7 CFR 1956.70 - Cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS (CONTINUED) DEBT SETTLEMENT Debt Settlement-Farm Loan Programs and Multi-Family Housing § 1956.70 Cancellation. Nonjudgment debts may be canceled in the following instances: (a) With application. The debt or any extension thereof on Farmer Programs debts do not have to be due and payable under the terms...

  4. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    DOE PAGESBeta

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; Liu, Ying

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less

  5. On approaches to analyze the sensitivity of simulated hydrologic fluxes to model parameters in the community land model

    SciTech Connect

    Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; Liu, Ying

    2015-12-04

    Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalized linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.

  6. Regional Climate Modeling of Possible Changes in Precipitation, Soil Moisture and Surface Fluxes over the Amazon

    NASA Astrophysics Data System (ADS)

    Costa, Alexandre; Sales, Domingo; das Chagas Vasconcelos, Francisco, Jr.; Souza, Samuel; Guimarães, Sullyandro; Wender Marinho, Marcos; Araújo, Luiz, Jr.

    2013-04-01

    Dynamical downscaling simulations were performed over the Coordinated Regional Climate Downscaling Experiment (CORDEX) "Central America" domain (which also comprises southern North America, the Caribbean and northern South America), using the Regional Atmospheric Modeling System (RAMS), forced by data from the Hadley Centre Global Environmental Model, Earth System (HadGEM2-ES) for both the current climate and the Representative Concentration Pathway 8.5 (RCP 8.5). Projected changes include a generalized warming, more intense over land areas, as well as changes in precipitation patterns. Projected warming increases along the 21st century, being especially pronounced over the Amazon. Over South America, by the end of the century, the regional model projects changes in the annual cycle, with enhanced precipitation in most months over Southern Amazon (except for the SON season) and April-August over Northern Amazon (with rainfall reduction in the rest of the year). The relationships between temperature and precipitation changes and moisture flux, radiative and turbulence fluxes were also investigated. Over Eastern Amazon, especially in the 2079-2099 period, under the heavy-emission scenario, a coherent springtime (SON) reduction of soil moisture, evaporation and precipitation was found, along with increased sensible heat flux, and an increase in temperature that is greater than in the rest of the year. Such pattern is also accompanied by changes in the distribution of daily precipitation, with a reduction of the number of rainfall events below 20 mm and an increase in precipitation events with 24h total greater than 30 mm, as well as longer periods with consecutive dry days.

  7. Transversely isotropic elasticity imaging of cancellous bone.

    PubMed

    Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F

    2011-06-01

    To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally

  8. Modeling turbulent fluxes at a winter wheat stand -possibilities and limitations of ground-based thermography

    NASA Astrophysics Data System (ADS)

    Ahrends, H. E.; Haseneder-Lind, R.; Schickling, A.; Crewell, S.; Rascher, U.

    2013-12-01

    Aircraft and satellite sensors operating in the thermal infrared (TIR) region of the spectrum provide spatially comprehensive information on the radiometric surface temperature (TR), representing an integrated temperature based on the radiation emitted from different surface components. TR data are commonly applied as a proxy for the (theoretical) aerodynamic temperature, which satisfies the bulk resistance formulation for the sensible heat transport. The quantitative relation between the radiometric and the aerodynamic temperature is however complex and strongly affected by ambient conditions and surface characteristics. Consequently, TR-based estimates of the latent and sensible heat flux can have high levels of uncertainty. Ground-based studies for the validation of remotely sensed TR data and for the evaluation of TR-based models are crucial. Ground-based TIR cameras, allowing for a high observation frequency and for studying the spatial variability of temperatures, might provide a suitable tool for such studies. We aim at testing the limitations and the possibilities of passive ground-based thermography for the application in studies on the diurnal and seasonal changes of land-atmosphere interactions. Operating at a frequency of 5 min., a TIR camera is mounted at a height of 2m at a winter wheat stand (TR32 research site, Germany), capturing images of a 1m x 1m area (320 × 240 pixel) during spring and summer 2013. Radiometric temperatures are corrected for the influence of cloud cover and evaluated using observations from thermocouples (leaf temperature), RTDs (canopy temperature profile) and an IR radiometer (spatially integrated temperature). Simultaneous hyperspectral and sun-induced chlorophyll fluorescence measurements are used as a proxy for plant functioning and status. Spatial image information is integrated into the framework of different flux modeling approaches, ranging from established one-source to complex, multi-layer models. Modelled fluxes are

  9. Finite Element Modeling of Magnetic Flux Leakage Signals from Mechanical Damage Containing Corrosion Pits

    NASA Astrophysics Data System (ADS)

    Babbar, Vijay; Clapham, Lynann

    2009-03-01

    Steel pipeline defects such as mechanical damage (dents) and corrosion pits have been studied using the magnetic flux leakage (MFL) technique and finite element modeling (FEM). The nature of MFL signals from these defects is generally known. However, since a dented region is more susceptible to corrosion, a dent-pit defect combination may be formed, which adds complexity to signal interpretation. The present work employs FEM to investigate the change in dent signal in the presence of a pit of varying dimensions. It helps to infer if a pit located inside a dent is detectable.

  10. Reactive transport modeling of the impact of ocean acidification on global carbon fluxes in coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Krumins, Valdis; van Cappellen, Philippe; Regnier, Pierre

    2010-05-01

    Because of relatively high productivity of both calcifying and non-calcifying phytoplankton in coastal zones, coastal sediments can act as a significant carbon sink. Ocean acidification is likely to impact productivity of these groups differently, raising the question of the overall effect of ocean acidification on carbon burial in coastal sediments. We modeled the effect of varying depositional fluxes of particulate organic carbon (POC) and particulate inorganic carbon (PIC) on carbon cycling in coastal marine sediments using a one-dimensional reactive transport model. Transport processes include sediment burial, advection, diffusion, bioturbation and bioirrigation. The model incorporates the hydrolysis of macromolecular organic matter, the redox pathways of POC oxidation, re-oxidation reactions of the reduced compounds produced during POC decomposition, the acid-base chemical equilibria, and the dissolution of PIC (calcite, aragonite, and Mg-calcite) in the upper 50 cm of sediment. The following processes are also included: precipitation of iron sulfide and iron carbonate, sorption of Fe(II), ammonium and phosphate, sulfidization of organic matter, and pyritization. The global return fluxes of dissolved inorganic carbon (DIC) and alkalinity are estimated by modeling sediments at 25 m, 75 m, and 150 m depths, and multiplying by the global area of seafloor depths 0-50 m, 50-100 m, and 100-200 m, respectively. We determined the sensitivity of carbon and nutrient return fluxes to changes in pH, PIC and POC fluxes, as well as to poorly constrained Fe(III) deposition fluxes. Inorganic carbon return fluxes are influenced most by the particulate organic and inorganic carbon depositional fluxes; the seawater pH has a limited effect. Modeled sediment pH profiles and PIC dissolution are also sensitive to the iron deposition flux. The overreaching goal of the research is to forecast the global response of coastal sediment return fluxes as a result of anthropogenic ocean

  11. Nuclear plant cancellations: causes, costs, and consequences

    SciTech Connect

    Not Available

    1983-04-01

    This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

  12. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.

    PubMed

    Sato, Tatsuhiko

    2016-01-01

    A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS).

  13. Comparison of liquid rocket engine base region heat flux computations using three turbulence models

    NASA Astrophysics Data System (ADS)

    Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.

    1993-07-01

    The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.

  14. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes.

    PubMed

    Sato, Tatsuhiko

    2016-01-01

    A new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0" was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth's atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model's applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175

  15. Comparison of liquid rocket engine base region heat flux computations using three turbulence models

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.

    1993-01-01

    The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.

  16. Coupled modelling of subsurface water flux for an integrated flood risk management

    NASA Astrophysics Data System (ADS)

    Sommer, T.; Karpf, C.; Ettrich, N.; Haase, D.; Weichel, T.; Peetz, J.-V.; Steckel, B.; Eulitz, K.; Ullrich, K.

    2009-07-01

    Flood events cause significant damage not only on the surface but also underground. Infiltration of surface water into soil, flooding through the urban sewer system and, in consequence, rising groundwater are the main causes of subsurface damage. The modelling of flooding events is an important part of flood risk assessment. The processes of subsurface discharge of infiltrated water necessitate coupled modelling tools of both, surface and subsurface water fluxes. Therefore, codes for surface flooding, for discharge in the sewerage system and for groundwater flow were coupled with each other. A coupling software was used to amalgamate the individual programs in terms of mapping between the different model geometries, time synchronization and data exchange. The coupling of the models was realized on two scales in the Saxon capital of Dresden (Germany). As a result of the coupled modelling it could be shown that surface flooding dominates processes of any flood event. Compared to flood simulations without coupled modelling no substantial changes of the surface inundation area could be determined. Regarding sewerage, the comparison between the influx of groundwater into sewerage and the loading due to infiltration by flood water showed infiltration of surface flood water to be the main reason for sewerage overloading. Concurrent rainfalls can intensify the problem. The infiltration of the sewerage system by rising groundwater contributes only marginally to the loading of the sewerage and the distribution of water by sewerage has only local impacts on groundwater rise. However, the localization of risk areas due to rising groundwater requires the consideration of all components of the subsurface water fluxes. The coupled modelling has shown that high groundwater levels are the result of a multi-causal process that occurs before and during the flood event.

  17. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    SciTech Connect

    Travis, Adam R

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  18. Use of a three-dimensional model to predict heavy metal (copper) fluxes in the Oujiang estuary.

    PubMed

    Lu, Shasha; Li, Ruijie; Xia, Xiaoming; Zheng, Jun

    2014-01-01

    Measuring pollutant concentrations in major tributaries is the standard method for establishing pollutant fluxes to the sea. However, this method is costly and difficult, and may be subject to a great deal of uncertainty due to the presence of unknown sources. This uncertainty presents challenges to managers and scientists in reducing contaminant discharges to water bodies. As one less costly method, a three-dimensional model was developed and used to predict pollutant fluxes to the sea. The sorptive contaminant model was incorporated into hydrodynamic and sediment models. Adsorption-desorption of copper by sediments in the Oujiang estuary were described using Henry's law. The model was validated using measured data for water surface elevations, flow velocity/direction, suspended sediment concentrations, and the proportion of copper sorbed to sediment. The validated model was then applied to predict fluxes of copper. Combined with the measured data, the copper concentration in the Oujiang River discharge was calculated as 13.0 μg/L and copper fluxes were calculated as 52 t in 2010. This copper flux prediction was verified using measured dissolved copper concentrations. Comparisons between the modeled and measured results showed good agreement at most stations, demonstrating that copper flux prediction in the Oujiang estuary was reasonably accurate. PMID:24647202

  19. OpenFLUID: an open-source software environment for modelling fluxes in landscapes

    NASA Astrophysics Data System (ADS)

    Fabre, Jean-Christophe; Rabotin, Michaël; Crevoisier, David; Libres, Aline; Dagès, Cécile; Moussa, Roger; Lagacherie, Philippe; Raclot, Damien; Voltz, Marc

    2013-04-01

    Integrative landscape functioning has become a common concept in environmental management. Landscapes are complex systems where many processes interact in time and space. In agro-ecosystems, these processes are mainly physical processes, including hydrological-processes, biological processes and human activities. Modelling such systems requires an interdisciplinary approach, coupling models coming from different disciplines, developed by different teams. In order to support collaborative works, involving many models coupled in time and space for integrative simulations, an open software modelling platform is a relevant answer. OpenFLUID is an open source software platform for modelling landscape functioning, mainly focused on spatial fluxes. It provides an advanced object-oriented architecture allowing to i) couple models developed de novo or from existing source code, and which are dynamically plugged to the platform, ii) represent landscapes as hierarchical graphs, taking into account multi-scale, spatial heterogeneities and landscape objects connectivity, iii) run and explore simulations in many ways : using the OpenFLUID software interfaces for users (command line interface, graphical user interface), or using external applications such as GNU R through the provided ROpenFLUID package. OpenFLUID is developed in C++ and relies on open source libraries only (Boost, libXML2, GLib/GTK, OGR/GDAL, …). For modelers and developers, OpenFLUID provides a dedicated environment for model development, which is based on an open source toolchain, including the Eclipse editor, the GCC compiler and the CMake build system. OpenFLUID is distributed under the GPLv3 open source license, with a special exception allowing to plug existing models licensed under any license. It is clearly in the spirit of sharing knowledge and favouring collaboration in a community of modelers. OpenFLUID has been involved in many research applications, such as modelling of hydrological network

  20. Moment-flux models for bacterial chemotaxis in large signal gradients.

    PubMed

    Xue, Chuan; Yang, Xige

    2016-10-01

    Chemotaxis is a fundamental process in the life of many prokaryotic and eukaryotic cells. Chemotaxis of bacterial populations has been modeled by both individual-based stochastic models that take into account the biochemistry of intracellular signaling, and continuum PDE models that track the evolution of the cell density in space and time. Continuum models have been derived from individual-based models that describe intracellular signaling by a system of ODEs. The derivations rely on quasi-steady state approximations of the internal ODE system. While this assumption is valid if cell movement is subject to slowly changing signals, it is often violated if cells are exposed to rapidly changing signals. In the latter case current continuum models break down and do not match the underlying individual-based model quantitatively. In this paper, we derive new PDE models for bacterial chemotaxis in large signal gradients that involve not only the cell density and flux, but also moments of the intracellular signals as a measure of the deviation of cell's internal state from its steady state. The derivation is based on a new moment closure method without calling the quasi-steady state assumption of intracellular signaling. Numerical simulations suggest that the resulting model matches the population dynamics quantitatively for a much larger range of signals. PMID:26922437

  1. A system analysis computer model for the High Flux Isotope Reactor (HFIRSYS Version 1)

    SciTech Connect

    Sozer, M.C.

    1992-04-01

    A system transient analysis computer model (HFIRSYS) has been developed for analysis of small break loss of coolant accidents (LOCA) and operational transients. The computer model is based on the Advanced Continuous Simulation Language (ACSL) that produces the FORTRAN code automatically and that provides integration routines such as the Gear`s stiff algorithm as well as enabling users with numerous practical tools for generating Eigen values, and providing debug outputs and graphics capabilities, etc. The HFIRSYS computer code is structured in the form of the Modular Modeling System (MMS) code. Component modules from MMS and in-house developed modules were both used to configure HFIRSYS. A description of the High Flux Isotope Reactor, theoretical bases for the modeled components of the system, and the verification and validation efforts are reported. The computer model performs satisfactorily including cases in which effects of structural elasticity on the system pressure is significant; however, its capabilities are limited to single phase flow. Because of the modular structure, the new component models from the Modular Modeling System can easily be added to HFIRSYS for analyzing their effects on system`s behavior. The computer model is a versatile tool for studying various system transients. The intent of this report is not to be a users manual, but to provide theoretical bases and basic information about the computer model and the reactor.

  2. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  3. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption.

    PubMed

    Jiang, Chaowei; Wu, S T; Feng, Xuesheng; Hu, Qiang

    2016-05-16

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling.

  4. Data-driven magnetohydrodynamic modelling of a flux-emerging active region leading to solar eruption

    PubMed Central

    Jiang, Chaowei; Wu, S. T.; Feng, Xuesheng; Hu, Qiang

    2016-01-01

    Solar eruptions are well-recognized as major drivers of space weather but what causes them remains an open question. Here we show how an eruption is initiated in a non-potential magnetic flux-emerging region using magnetohydrodynamic modelling driven directly by solar magnetograms. Our model simulates the coronal magnetic field following a long-duration quasi-static evolution to its fast eruption. The field morphology resembles a set of extreme ultraviolet images for the whole process. Study of the magnetic field suggests that in this event, the key transition from the pre-eruptive to eruptive state is due to the establishment of a positive feedback between the upward expansion of internal stressed magnetic arcades of new emergence and an external magnetic reconnection which triggers the eruption. Such a nearly realistic simulation of a solar eruption from origin to onset can provide important insight into its cause, and also has the potential for improving space weather modelling. PMID:27181846

  5. Mesoscale model parameterizations for radiation and turbulent fluxes at the lower boundary

    NASA Astrophysics Data System (ADS)

    Somieski, Franz

    1988-11-01

    A radiation parameterization scheme for use in mesoscale models with orography and clouds was developed. Broadband parameterizations are presented for the solar and the terrestrial spectral ranges. They account for clear, turbid, or cloudy atmospheres. The scheme is one-dimensional in the atmosphere, but the effects of mountains (inclination, shading, elevated horizon) are taken into account at the surface. In the terrestrial brand, gray and black clouds are considered. The calculation of turbulent fluxes of sensible and latent heat and momentum at an inclined lower model boundary is described. Surface-layer similarity and the surface energy budget are used to evaluate the ground surface temperature. The total scheme is part of the mesoscale model MESOSCOP.

  6. Testing a solar coronal magnetic field extrapolation code with the Titov-Démoulin magnetic flux rope model

    NASA Astrophysics Data System (ADS)

    Jiang, Chao-Wei; Feng, Xue-Shang

    2016-01-01

    In the solar corona, the magnetic flux rope is believed to be a fundamental structure that accounts for magnetic free energy storage and solar eruptions. Up to the present, the extrapolation of the magnetic field from boundary data has been the primary way to obtain fully three-dimensional magnetic information about the corona. As a result, the ability to reliably recover the coronal magnetic flux rope is important for coronal field extrapolation. In this paper, our coronal field extrapolation code is examined with an analytical magnetic flux rope model proposed by Titov & Démoulin, which consists of a bipolar magnetic configuration holding a semi-circular line-tied flux rope in force-free equilibrium. By only using the vector field at the bottom boundary as input, we test our code with the model in a representative range of parameter space and find that the model field can be reconstructed with high accuracy. In particular, the magnetic topological interfaces formed between the flux rope and the surrounding arcade, i.e., the “hyperbolic flux tube” and “bald patch separatrix surface,” are also reliably reproduced. By this test, we demonstrate that our CESE-MHD-NLFFF code can be applied to recovering the magnetic flux rope in the solar corona as long as the vector magnetogram satisfies the force-free constraints.

  7. 78 FR 48456 - Notice of Cancellation of Customs Broker Licenses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... permits of certain customs brokers are being cancelled without prejudice. SUPPLEMENTARY INFORMATION... following customs broker licenses are cancelled without prejudice. ] Last/company name First name License...

  8. Development of a mixed-effect pharmacokinetic model for vehicle modulated in vitro transdermal flux of topically applied penetrants.

    PubMed

    Chittenden, Jason T; Brooks, James D; Riviere, Jim E

    2014-03-01

    Transient flux profiles from in vitro flow-through cell experiments exhibit different characteristics depending upon the properties of the penetrants and vehicle mixtures applied. To enable discrimination of the chemical properties contributing to these differences, a consistent mathematical model should first be developed. A mixed effects modeling framework was used so that models can be estimated with as few parameters as possible, while also quantifying variability and accounting for correlation in the data. The models account for diffusion and binding within the membrane as well as dynamics on the diffusion coefficient. The models explain key features of the data, such as: lag time, sharp peaks in flux, two terminal phases, and low flux profiles. The models with dynamic diffusivity fit the data better than those without-particularly the sharp peaks. The significance of changing diffusivity over time suggests that vehicle effects are transient and are more accurately estimated when dynamics are modeled.

  9. Modeling the gas flux from a Jupiter-family comet nucleus

    NASA Astrophysics Data System (ADS)

    Benkhoff, Johannes; Huebner, Walter F.

    1996-09-01

    Mixing ratios of sublimating gases from ices in porous bodies in the solar system are important, observable phenomena. Surface erosion and dust build-up on a comet nucleus and coma formation are processes attributable to the flux of sublimating gases. Our computer simulations focus on the gas flux from volatile, icy components in the surface layer of a porous, Jupiter-family comet in order to relate quantitatively the observed relative molecular abundances in the coma with those in the nucleus. We assume a porous body containing dust and up to four components of chemically different ices (e.g. H 2O, CO, CO 2, CH 4) and solve the mass and energy equations for the different volatiles simultaneously. The model includes inflowing and outflowing gas within the body, dust mantle build-up, depletion of the most volatile ices in outer layers, and recondensation of gases in deeper layers. The model calculations start with a homogeneously mixed body at a constant temperature and a constant mass density at aphelion of an orbit. Due to insolation and conduction the internal heat of the body increases, and as a result of sublimation of the minor, more volatile components, the initially homogeneous body differentiates into a multi-layered body. For example a dust, H 2O, CO 2, and CO ice body differentiates into a four-layer body in which the deepest layer has the original composition and the higher layers are successively more depleted of volatiles. The boundaries between the layers are sublimation fronts of the corresponding volatile phases. The depths of the sublimation fronts change with time and are on the order of tens of meters. From the calculations we obtain temperature, relative chemical abundance, porosity, and pore size distributions as a function of depth, and the gas flux into the interior and into the coma for each of the volatiles at various positions of the comet in its orbit. In this paper we explore some early steps on the way to a more comprehensive model for

  10. A Parametric Study of Erupting Flux Rope Rotation: Modeling the 'Cartwheel CME' on 9 April 2008

    NASA Technical Reports Server (NTRS)

    Kliem, B.; Toeroek, T.; Thompson, W. T.

    2012-01-01

    The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear-field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance, due to the field's simple structure. In the low-beta corona, the rotation is not guided by the changing orientation of the vertical field component's polarity inversion line with height. The model yields strong initial rotations which saturate in the corona and differ qualitatively from the profile of rotation vs. height obtained in a recent simulation of an eruption without preexisting flux rope. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar within a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the "Cartwheel CME" on 9 April 2008, which has shown a rotation of approximately 115 deg. up to a height of 1.5 Solar R above the photosphere. Out of a range of

  11. Brillouin scattering self-cancellation.

    PubMed

    Florez, O; Jarschel, P F; Espinel, Y A V; Cordeiro, C M B; Mayer Alegre, T P; Wiederhecker, G S; Dainese, P

    2016-01-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it. PMID:27283092

  12. Brillouin scattering self-cancellation

    NASA Astrophysics Data System (ADS)

    Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.

    2016-06-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.

  13. Brillouin scattering self-cancellation

    PubMed Central

    Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.

    2016-01-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon–phonon interaction, enhancing or suppressing it. PMID:27283092

  14. Background canceling surface alpha detector

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1996-01-01

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone.

  15. Background canceling surface alpha detector

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1996-06-11

    A background canceling long range alpha detector which is capable of providing output proportional to both the alpha radiation emitted from a surface and to radioactive gas emanating from the surface. The detector operates by using an electrical field between first and second signal planes, an enclosure and the surface or substance to be monitored for alpha radiation. The first and second signal planes are maintained at the same voltage with respect to the electrically conductive enclosure, reducing leakage currents. In the presence of alpha radiation and radioactive gas decay, the signal from the first signal plane is proportional to both the surface alpha radiation and to the airborne radioactive gas, while the signal from the second signal plane is proportional only to the airborne radioactive gas. The difference between these two signals is proportional to the surface alpha radiation alone. 5 figs.

  16. A soil diffusion-reaction model for surface COS flux: COSSM v1

    NASA Astrophysics Data System (ADS)

    Sun, W.; Maseyk, K.; Lett, C.; Seibt, U.

    2015-07-01

    Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments, but not explicitly resolved diffusion in the soil column. We developed a 1-D diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP), OK, USA) and an oak woodland (Stunt Ranch Reserve, CA, USA). The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled, and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  17. A soil diffusion-reaction model for surface COS flux: COSSM v1

    NASA Astrophysics Data System (ADS)

    Sun, W.; Maseyk, K.; Lett, C.; Seibt, U.

    2015-10-01

    Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions derived from laboratory experiments but not explicitly resolved diffusion in the soil column. We developed a mechanistic diffusion-reaction model for soil COS exchange that accounts for COS uptake and production, relates source-sink terms to environmental variables, and has an option to enable surface litter layers. We evaluated the model with field data from a wheat field (Southern Great Plains (SGP), OK, USA) and an oak woodland (Stunt Ranch Reserve, CA, USA). The model was able to reproduce all observed features of soil COS exchange such as diurnal variations and sink-source transitions. We found that soil COS uptake is strongly diffusion controlled and limited by low COS concentrations in the soil if there is COS uptake in the litter layer. The model provides novel insights into the balance between soil COS uptake and production: a higher COS production capacity was required despite lower COS emissions during the growing season compared to the post-senescence period at SGP, and unchanged COS uptake capacity despite the dominant role of COS emissions after senescence. Once there is a database of soil COS parameters for key biomes, we expect the model will also be useful to simulate soil COS exchange at regional to global scales.

  18. Effect of cancellation in neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Mitra, Manimala; Pascoli, Silvia; Wong, Steven

    2014-11-01

    In light of recent experimental results, we carefully analyze the effects of interference in neutrinoless double beta decay, when more than one mechanism is operative. If a complete cancellation is at work, the half-life of the corresponding isotope is infinite, and any constraint on it will automatically be satisfied. We analyze this possibility in detail assuming a cancellation in Xe 136 , and find its implications on the half-life of other isotopes, such as Ge 76 . For definiteness, we consider the role of light and heavy sterile neutrinos. In this case, the effective Majorana mass parameter can be redefined to take into account all contributions, and its value gets suppressed. Hence, larger values of neutrino masses are required for the same half-life. The canonical light neutrino contribution cannot saturate the present limits of half-lives or the positive claim of observation of neutrinoless double beta decay, once the stringent bounds from cosmology are taken into account. For the case of cancellation, where all the sterile neutrinos are heavy, the tension between the results from neutrinoless double beta decay and cosmology becomes more severe. We show that the inclusion of light sterile neutrinos in this setup can resolve this issue. Using the recent results from GERDA, we derive upper limits on the active-sterile mixing angles and compare them with the case of no cancellation. The required values of the mixing angles become larger, if a cancellation is at work. A direct test of destructive interference in Xe 136 is provided by the observation of this process in other isotopes, and we study in detail the correlation between their half-lives. Finally, we discuss the model realizations which can accommodate light and heavy sterile neutrinos and the cancellation. We show that sterile neutrinos of few hundred MeV or GeV mass range, coming

  19. Evaluation of regional isoprene emission factors and modeled fluxes in California

    NASA Astrophysics Data System (ADS)

    Misztal, Pawel K.; Avise, Jeremy C.; Karl, Thomas; Scott, Klaus; Jonsson, Haflidi H.; Guenther, Alex B.; Goldstein, Allen H.

    2016-08-01

    Accurately modeled biogenic volatile organic compound (BVOC) emissions are an essential input to atmospheric chemistry simulations of ozone and particle formation. BVOC emission models rely on basal emission factor (BEF) distribution maps based on emission measurements and vegetation land-cover data but these critical input components of the models as well as model simulations lack validation by regional scale measurements. We directly assess isoprene emission-factor distribution databases for BVOC emission models by deriving BEFs from direct airborne eddy covariance (AEC) fluxes (Misztal et al., 2014) scaled to the surface and normalized by the activity factor of the Guenther et al. (2006) algorithm. The available airborne BEF data from approx. 10 000 km of flight tracks over California were averaged spatially over 48 defined ecological zones called ecoregions. Consistently, BEFs used by three different emission models were averaged over the same ecoregions for quantitative evaluation. Ecoregion-averaged BEFs from the most current land cover used by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) v.2.1 resulted in the best agreement among the tested land covers and agreed within 10 % with BEFs inferred from measurement. However, the correlation was sensitive to a few discrepancies (either overestimation or underestimation) in those ecoregions where land-cover BEFs are less accurate or less representative for the flight track. The two other land covers demonstrated similar agreement (within 30 % of measurements) for total average BEF across all tested ecoregions but there were a larger number of specific ecoregions that had poor agreement with the observations. Independently, we performed evaluation of the new California Air Resources Board (CARB) hybrid model by directly comparing its simulated isoprene area emissions averaged for the same flight times and flux footprints as actual measured area emissions. The model simulation and the observed

  20. Diurnal variations in CO2 flux from peatland floodplains: Implications for models of ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Goulsbra, Claire; Rickards, Nathan; Brown, Sarah; Evans, Martin; Boult, Stephen; Alderson, Danielle

    2016-04-01

    Peatlands are important terrestrial carbon stores, and within these environments, floodplains have been identified as hotspots of carbon processing, potentially releasing substantial amounts of CO2 into the atmosphere. Previous monitoring campaigns have shown that such CO2 release from ecosystem respiration is linked not only to soil temperature and water table depth, but also to CO2 sequestration via primary productivity, thought to be because the root exudates produced during photosynthesis stimulate microbial activity. This suggests that extrapolation models that are parameterised on data collected during day light hours, when vegetation is photosynthesising, may overestimate ecosystem respiration rates at night, which has important implications for estimates of annual CO2 flux and carbon budgeting. To investigate this hypothesis, monitoring data is collected on the CO2 flux from UK peatland floodplains over the full diurnal cycle. This is done via ex-situ manual data collection from mesocosms using an infra-red gas analyser, and the in-situ automated collection of CO2 concentration data from boreholes within the peat using GasClams®. Preliminary data collected during the summer months suggest that night time respiration is suppressed compared to that during the day, and that the significant predictors of respiration are different when examining day and night time data. This highlights the importance of incorporating diurnal variations into models of ecosystem respiration.

  1. Development of Computational Tools for Metabolic Model Curation, Flux Elucidation and Strain Design

    SciTech Connect

    Maranas, Costas D

    2012-05-21

    An overarching goal of the Department of Energy mission is the efficient deployment and engineering of microbial and plant systems to enable biomass conversion in pursuit of high energy density liquid biofuels. This has spurred the pace at which new organisms are sequenced and annotated. This torrent of genomic information has opened the door to understanding metabolism in not just skeletal pathways and a handful of microorganisms but for truly genome-scale reconstructions derived for hundreds of microbes and plants. Understanding and redirecting metabolism is crucial because metabolic fluxes are unique descriptors of cellular physiology that directly assess the current cellular state and quantify the effect of genetic engineering interventions. At the same time, however, trying to keep pace with the rate of genomic data generation has ushered in a number of modeling and computational challenges related to (i) the automated assembly, testing and correction of genome-scale metabolic models, (ii) metabolic flux elucidation using labeled isotopes, and (iii) comprehensive identification of engineering interventions leading to the desired metabolism redirection.

  2. Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes

    PubMed Central

    Sato, Tatsuhiko

    2016-01-01

    A new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 4.0” was developed to facilitate instantaneous estimation of not only omnidirectional but also angular differential energy spectra of cosmic ray fluxes anywhere in Earth’s atmosphere at nearly any given time. It consists of its previous version, PARMA3.0, for calculating the omnidirectional fluxes and several mathematical functions proposed in this study for expressing their zenith-angle dependences. The numerical values of the parameters used in these functions were fitted to reproduce the results of the extensive air shower simulation performed by Particle and Heavy Ion Transport code System (PHITS). The angular distributions of ground-level muons at large zenith angles were specially determined by introducing an optional function developed on the basis of experimental data. The accuracy of PARMA4.0 was closely verified using multiple sets of experimental data obtained under various global conditions. This extension enlarges the model’s applicability to more areas of research, including design of cosmic-ray detectors, muon radiography, soil moisture monitoring, and cosmic-ray shielding calculation. PARMA4.0 is available freely and is easy to use, as implemented in the open-access EXcel-based Program for Calculating Atmospheric Cosmic-ray Spectrum (EXPACS). PMID:27490175

  3. The Buffering Balance: Modeling Arctic river total-, inorganic-, and organic-alkalinity fluxes

    NASA Astrophysics Data System (ADS)

    Hunt, C. W.; Salisbury, J.; Wollheim, W. M.; Mineau, M.; Stewart, R. J.

    2014-12-01

    River-borne inputs of alkalinity influence the pH and pCO2 of coastal ocean waters, and changes in alkalinity inputs also have implications for responses to climate-driven ocean acidification. Recent work has shown that alkalinity fluxes from rivers are not always dominated by inorganic carbon species, and can instead be composed somewhat or mostly of non-carbonate, presumably organic species. Concentrations and proportions of organic alkalinity (O-Alk) are correlated to dissolved organic carbon (DOC) concentrations and fluxes, which are predicted to rise as Arctic permafrost thaws and the hydrologic cycle intensifies. We have scaled results from watershed studies to develop a process-based model to simulate and aggregate Arctic river exports of total alkalinity, DOC, and O-Alk to the coastal sea. Total alkalinity, DOC, and O-Alk were loaded to a river network and routed through a 6-minute hydrologic model (FrAMES). We present results contrasting poorly buffered (e.g. the Kolyma river) and highly buffered (e.g. the Yukon river) systems, the impact of O-Alk on river pH and pCO2, and examine the seasonalities of inorganic and organic influences on coastal ocean carbonate chemistry.

  4. A Bayesian Deconvolution Approach to Partitioning Soil Respiration: Coupling Carbon Flux and Isotope Data with Process-based Flux and Mixing Models

    NASA Astrophysics Data System (ADS)

    Ogle, K.; Cable, J. M.; Huxman, T. E.

    2006-12-01

    The respiratory loss of carbon from terrestrial ecosystems is a major carbon flux affecting local, regional, and global carbon cycling. Such losses (e.g., soil CO2 efflux), however, are often overly simplified in biogeochemical models compared to processes such as photosynthesis. This discrepancy is partly due to the difficulty associated with partitioning soil respiration (or CO2 efflux) into its various components (e.g., autotrophic vs. heterotrophic). Different components operate at dissimilar temporal and spatial scales, thus estimation of their relative activity based on bulk soil efflux measurements is challenging. Hence, development of a robust, biophysically-inspired method for partitioning the different components is paramount to teasing- apart the mechanisms underlying carbon source-sink dynamics within and across diverse landscapes. Towards this goal, we developed a semi-mechanistic Bayesian deconvolution modeling approach for partitioning soil respiration into its component sources. While the sources can be broadly categorized as autotrophic or heterotrophic, the fundamental sources of biogenic CO2 efflux arises from specific interactions between plants, micro-organisms, and the soil environment. Potential sources have been identified based on their different turnover rates and functional roles, including, (1) activity of roots, (2) rhizomicrobial (e.g., mycorrhiza) respiration, (3) microbial decomposition of plant tissues, (4) microbial activity primed by root exudation, and (5) microbial decomposition of soil organic matter. The relative contribution of each source to soil CO2 efflux can vary within the soil matrix, depending on spatial and temporal variability in soil properties, resource and substrate availability, and microclimate. Our Bayesian deconvolution framework allows for simultaneous analysis of multiple data sources related to soil respiration dynamics, and the data are analyzed within the context of process-based models. The data include

  5. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.

  6. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  7. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Davis, G. M.; Feaster, T. D.; Journey, C. A.; Benedict, S. T.; Brigham, M. E.; Bradley, P. M.

    2012-03-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgTduring periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgTconcentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgTcomplexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgTloads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  8. Surface Radiative Fluxes from GOES-E over the Amazon Basin: Model Comparison

    NASA Astrophysics Data System (ADS)

    Ceballos, J. C.; Pinker, R. T.; Pereira, E. B.; Martins, F. R.; Kato, H.; de Miranda, R. M.; Wonsick, M.

    2006-12-01

    In this study reported are results from an algorithm intercomparison initiative aimed at the development of improved estimates of surface radiative fluxes from satellite observations over the Amazon Basin. Three algorithms are used: (UMD-SRB, University of Maryland; GL1.2, INPE, Brazil; and Brasil-SR, INPE and University of Santa Catarina, Brazil). The algorithms are physically based, yet differ in their implementation and the way they address issues specific to this region, such as aerosols from biomass burning. Two fifteen day periods in 2005 were selected representing the rainy and dry seasons. The same satellite observations from GOES E were used by all the models. Ground truth from existing stations in the Amazon as well as from a new solar monitoring network of high quality have been used in evaluation. Using daily mean values for the March rainy season, it was found that: 1) the Brasil-SR and UMD-SRB estimates bear a close resemblance; 2) higher irradiances for Petrolina (semi-arid region in Northeast Brazil) are best described by the UMD-SRB and Brasil-SR, probably due to better assessment of water vapor column and absorption parameterization; 3) the GL1.2 results shows a systematic deviation, underestimating daily mean by about 20 Wm-2, but have lower dispersion than UMD-SRB or Brasil-SR; 4) irradiance interval 180 < E < 250 Wm-2 seems better described by GL1.2. This last behavior may be related to better assessment of cloudiness under partial coverage situations. September is characterized by intensive biomass burning in several Brazilian regions, particularly in the Amazon. The Northeast region is not affected by aerosols and estimates from all three models are in close agreement and have similar characteristics to those of March. For the Amazon sites: 1) lower irradiances (for overcast days) are correctly assessed; 2) UMD-SRB and Brasil-SR overestimate solar radiation, especially for higher irradiances (lower cloudiness); 3) GL1.2 model does not include

  9. Modelling carbon stocks and fluxes in the wood product sector: a comparative review.

    PubMed

    Brunet-Navarro, Pau; Jochheim, Hubert; Muys, Bart

    2016-07-01

    In addition to forest ecosystems, wood products are carbon pools that can be strategically managed to mitigate climate change. Wood product models (WPMs) simulating the carbon balance of wood production, use and end of life can complement forest growth models to evaluate the mitigation potential of the forest sector as a whole. WPMs can be used to compare scenarios of product use and explore mitigation strategies. A considerable number of WPMs have been developed in the last three decades, but there is no review available analysing their functionality and performance. This study analyses and compares 41 WPMs. One surprising initial result was that we discovered the erroneous implementation of a few concepts and assumptions in some of the models. We further described and compared the models using six model characteristics (bucking allocation, industrial processes, carbon pools, product removal, recycling and substitution effects) and three model-use characteristics (system boundaries, model initialization and evaluation of results). Using a set of indicators based on the model characteristics, we classified models using a hierarchical clustering technique and differentiated them according to their increasing degrees of complexity and varying levels of user support. For purposes of simulating carbon stock in wood products, models with a simple structure may be sufficient, but to compare climate change mitigation options, complex models are needed. The number of models has increased substantially over the last ten years, introducing more diversity and accuracy. Calculation of substitution effects and recycling has also become more prominent. However, the lack of data is still an important constraint for a more realistic estimation of carbon stocks and fluxes. Therefore, if the sector wants to demonstrate the environmental quality of its products, it should make it a priority to provide reliable life cycle inventory data, particularly regarding aspects of time and

  10. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    SciTech Connect

    Ilas, Germina; Chandler, David; Ade, Brian J; Sunny, Eva E; Betzler, Benjamin R; Pinkston, Daniel

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the design of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.

  11. Modelling carbon stocks and fluxes in the wood product sector: a comparative review.

    PubMed

    Brunet-Navarro, Pau; Jochheim, Hubert; Muys, Bart

    2016-07-01

    In addition to forest ecosystems, wood products are carbon pools that can be strategically managed to mitigate climate change. Wood product models (WPMs) simulating the carbon balance of wood production, use and end of life can complement forest growth models to evaluate the mitigation potential of the forest sector as a whole. WPMs can be used to compare scenarios of product use and explore mitigation strategies. A considerable number of WPMs have been developed in the last three decades, but there is no review available analysing their functionality and performance. This study analyses and compares 41 WPMs. One surprising initial result was that we discovered the erroneous implementation of a few concepts and assumptions in some of the models. We further described and compared the models using six model characteristics (bucking allocation, industrial processes, carbon pools, product removal, recycling and substitution effects) and three model-use characteristics (system boundaries, model initialization and evaluation of results). Using a set of indicators based on the model characteristics, we classified models using a hierarchical clustering technique and differentiated them according to their increasing degrees of complexity and varying levels of user support. For purposes of simulating carbon stock in wood products, models with a simple structure may be sufficient, but to compare climate change mitigation options, complex models are needed. The number of models has increased substantially over the last ten years, introducing more diversity and accuracy. Calculation of substitution effects and recycling has also become more prominent. However, the lack of data is still an important constraint for a more realistic estimation of carbon stocks and fluxes. Therefore, if the sector wants to demonstrate the environmental quality of its products, it should make it a priority to provide reliable life cycle inventory data, particularly regarding aspects of time and

  12. Stratospheric O3 changes during 2001-2010: the small role of solar flux variations in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Dhomse, S. S.; Chipperfield, M. P.; Feng, W.; Ball, W. T.; Unruh, Y. C.; Haigh, J. D.; Krivova, N. A.; Solanki, S. K.; Smith, A. K.

    2013-10-01

    Solar spectral fluxes (or irradiance) measured by the SOlar Radiation and Climate Experiment (SORCE) show different variability at ultraviolet (UV) wavelengths compared to other irradiance measurements and models (e.g. NRL-SSI, SATIRE-S). Some modelling studies have suggested that stratospheric/lower mesospheric O3 changes during solar cycle 23 (1996-2008) can only be reproduced if SORCE solar fluxes are used. We have used a 3-D chemical transport model (CTM), forced by meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), to simulate middle atmospheric O3 using three different solar flux data sets (SORCE, NRL-SSI and SATIRE-S). Simulated O3 changes are compared with Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite data. Modelled O3 anomalies from all solar flux data sets show good agreement with the observations, despite the different flux variations. The off-line CTM reproduces these changes through dynamical information contained in the analyses. A notable feature during this period is a robust positive solar signal in the tropical middle stratosphere, which is due to realistic dynamical changes in our simulations. Ozone changes in the lower mesosphere cannot be used to discriminate between solar flux data sets due to large uncertainties and the short time span of the observations. Overall this study suggests that, in a CTM, the UV variations detected by SORCE are not necessary to reproduce observed stratospheric O3 changes during 2001-2010.

  13. A cytochrome C oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux.

    PubMed

    Collman, James P; Devaraj, Neal K; Decréau, Richard A; Yang, Ying; Yan, Yi-Long; Ebina, Wataru; Eberspacher, Todd A; Chidsey, Christopher E D

    2007-03-16

    We studied the selectivity of a functional model of cytochrome c oxidase's active site that mimics the coordination environment and relative locations of Fe(a3), Cu(B), and Tyr(244). To control electron flux, we covalently attached this model and analogs lacking copper and phenol onto self-assembled monolayer-coated gold electrodes. When the electron transfer rate was made rate limiting, both copper and phenol were required to enhance selective reduction of oxygen to water. This finding supports the hypothesis that, during steady-state turnover, the primary role of these redox centers is to rapidly provide all the electrons needed to reduce oxygen by four electrons, thus preventing the release of toxic partially reduced oxygen species. PMID:17363671

  14. Kinetic models of magnetic flux ropes observed in the Earth magnetosphere

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. A.; Vasko, I. Y.; Artemyev, A. V.; Yushkov, E. V.; Petrukovich, A. A.; Zelenyi, L. M.

    2016-07-01

    Magnetic flux ropes (MFR) are universal magnetoplasma structures (similar to cylindrical screw pinches) formed in reconnecting current sheets. In particular, MFR with scales from about the ion inertial length to MHD range are widely observed in the Earth magnetosphere. Typical MFR have force-free configuration with the axial magnetic field peaking on the MFR axis, whereas bifurcated MFR with an off-axis peak of the axial magnetic field are observed as well. In the present paper, we develop kinetic models of force-free and bifurcated MFR and determine consistent ion and electron distribution functions. The magnetic field configuration of the force-free MFR represents well-known Gold-Hoyle MFR (uniformly twisted MFR). We show that bifurcated MFR are characterized by the presence of cold and hot current-carrying electrons. The developed models are capable to describe MFR observed in the Earth magnetotail as well as MFR recently observed by Magnetospheric Multiscale Mission at the Earth magnetopause.

  15. Optimal cytoplasmatic density and flux balance model under macromolecular crowding effects.

    PubMed

    Vazquez, Alexei

    2010-05-21

    Macromolecules occupy between 34% and 44% of the cell cytoplasm, about half the maximum packing density of spheres in three dimension. Yet, there is no clear understanding of what is special about this value. To address this fundamental question we investigate the effect of macromolecular crowding on cell metabolism. We develop a cell scale flux balance model capturing the main features of cell metabolism at different nutrient uptakes and macromolecular densities. Using this model we show there are two metabolic regimes at low and high nutrient uptakes. The latter regime is characterized by an optimal cytoplasmatic density where the increase of reaction rates by confinement and the decrease by diffusion slow-down balance. More important, the predicted optim