NASA Astrophysics Data System (ADS)
Park, Kyu-Hyun
Various measurement methods to quantify greenhouse gas (GHG) emissions from manure storage or treatment facilities have been used. However, it is difficult to directly compare emission data measured with different methods, which causes uncertainties in national GHG inventories. In the micrometeorological mass balance (MMB) method, a gas flux consists of a horizontal mean flux (MF) and horizontal turbulent flux (TF) terms. In Chapter 2, methane (GH4 ) TF measurements obtained using a sonic anemometer and a tunable diode laser trace gas analyzer are presented. Contrary to previous studies in wind tunnels and flat-level field conditions, an overestimation of only 0.5% was observed by only considering the MF term. This means the MMB method without consideration of TF is suitable in complex field conditions with uneven topography, and farm buildings. In Chapter 3, the MMB method was compared to a floating chamber method. Of these, the floating chamber method has been extensively used for CH4 flux quantification. The MMB method, although providing advantages such as spatial integration of fluxes, requires fast response trace gas analyzers which are not widely available. The mean ratio of CH4 flux measured with the floating chamber method to that measured using the MMB method was 1.25, ranging from 1.07 to 1.83. Flux overestimation by the floating chamber could have been caused by location of the chamber and potential disturbances by the chamber. Frequent changes of the chamber location, use of several chambers, and/or avoiding chamber placement on 'hot spots' are recommended to decrease flux overestimation. In Chapter 4, CH4 fluxes measured with a mega chamber and eight small chambers during the in-vessel composting phase showed similar temporal variation, while nitrous oxide (N2O) fluxes were, significantly lower for the small chambers. The ratios of CH4 fluxes measured with a mega chamber to eight small chambers during the in-vessel composting phase were 0.72 and 1.01, while the ratios of N2O fluxes were 2.74 and 2.01 during two in-vessel composting batches, respectively. Positioning the small chambers on the center line of the composting channels was suitable for quantifying CH4 fluxes, but was not for N 2O. It is recommended to position some chambers in peripheral regions of the composting channel, in order to capture N2O emissions. Methane and N2O fluxes over the initial 50 d of the curing phase were higher than during the in-vessel composting phase. Methane and N2O emissions during the curing phase contributed 95% and 64%, respectively, to overall CH4 and N2O emissions during the composting process (in-vessel composting phase and curing phase). In comparison to liquid swine manure storage over an equivalent time period, composting was estimated to reduce emissions of GHG on a carbon dioxide equivalent (CO2-eq) basis by 35%, which was mainly contributed by a decrease of CH4 emissions. Composting of liquid swine manure with straw has potential for decreasing GHG emissions.
Portable automation of static chamber sample collection for quantifying soil gas flux
USDA-ARS?s Scientific Manuscript database
The collection of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled in a given time period is limited by the spacing between chambers and the availability of trained research technicians. However, the static chamber method can limit spatial ...
Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces
Gustin, M.S.; Lindberg, S.; Marsik, F.; Casimir, A.; Ebinghaus, R.; Edwards, G.; Hubble-Fitzgerald, C.; Kemp, R.; Kock, H.; Leonard, T.; London, J.; Majewski, M.; Montecinos, C.; Owens, J.; Pilote, M.; Poissant, L.; Rasmussen, P.; Schaedlich, F.; Schneeberger, D.; Schroeder, W.; Sommar, J.; Turner, R.; Vette, A.; Wallschlaeger, D.; Xiao, Z.; Zhang, H.
1999-01-01
Diffuse anthropogenic and naturally mercury-enriched areas represent long-lived sources of elemental mercury to the atmosphere. The Nevada Study and Tests of the Release of Mercury From Soils (STORMS) project focused on the measurement of mercury emissions from a naturally enriched area. During the project, concurrent measurements of mercury fluxes from naturally mercury-enriched substrate were made September 1-4, 1997, using four micrometeorological methods and seven field flux chambers. Ambient air mercury concentrations ranged from 2 to nearly 200 ng m-3 indicating that the field site is a source of atmospheric mercury. The mean daytime mercury fluxes, during conditions of no precipitation, measured with field chambers were 50 to 360 ng m-2 h-1, and with the micrometeorological methods were 230 to 600 ng m-2 h-1. This wide range in mercury emission rates reflects differences in method experimental designs and local source strengths. Mercury fluxes measured by many field chambers were significantly different (p < 0.05) but linearly correlated. This indicates that field chambers responded similarly to environmental conditions, but differences in experimental design and site heterogeneity had a significant influence on the magnitude of mercury fluxes. Data developed during the field study demonstrated that field flux chambers are ideal for assessment of the physicochemical processes driving mercury flux and development of an understanding of the magnitude of the influence of individual factors on flux. In general, mean mercury fluxes measured with micrometeorological methods during daytime periods were nearly 3 times higher than mean fluxes measured with field flux chambers. Micrometeorological methods allow for derivation of a representative mercury flux occurring from an unconstrained system and provide an assessment of the actual magnitude and variability of fluxes occurring from an area. Copyright 1999 by the American Geophysical Union.
Portable Automation of Static Chamber Sample Collection for Quantifying Soil Gas Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Morgan P.; Groh, Tyler A.; Parkin, Timothy B.
Quantification of soil gas flux using the static chamber method is labor intensive. The number of chambers that can be sampled is limited by the spacing between chambers and the availability of trained research technicians. An automated system for collecting gas samples from chambers in the field would eliminate the need for personnel to return to the chamber during a flux measurement period and would allow a single technician to sample multiple chambers simultaneously. This study describes Chamber Automated Sampling Equipment (FluxCASE) to collect and store chamber headspace gas samples at assigned time points for the measurement of soil gasmore » flux. The FluxCASE design and operation is described, and the accuracy and precision of the FluxCASE system is evaluated. In laboratory measurements of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) concentrations of a standardized gas mixture, coefficients of variation associated with automated and manual sample collection were comparable, indicating no loss of precision. In the field, soil gas fluxes measured from FluxCASEs were in agreement with manual sampling for both N2O and CO2. Slopes of regression equations were 1.01 for CO2 and 0.97 for N2O. The 95% confidence limits of the slopes of the regression lines included the value of one, indicating no bias. Additionally, an expense analysis found a cost recovery ranging from 0.6 to 2.2 yr. Implementing the FluxCASE system is an alternative to improve the efficiency of the static chamber method for measuring soil gas flux while maintaining the accuracy and precision of manual sampling.« less
NASA Astrophysics Data System (ADS)
Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai-Haase, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.
2015-12-01
Stream networks have recently been discovered to be major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross-comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams with different flow velocities. The study clearly shows that (1) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (2) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil collar to seal the chambers to the water surface, rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
NASA Astrophysics Data System (ADS)
Lorke, A.; Bodmer, P.; Noss, C.; Alshboul, Z.; Koschorreck, M.; Somlai, C.; Bastviken, D.; Flury, S.; McGinnis, D. F.; Maeck, A.; Müller, D.; Premke, K.
2015-09-01
Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG) sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1) drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2) anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3) the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4) there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.
NASA Astrophysics Data System (ADS)
Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.
2012-12-01
Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.
NASA Astrophysics Data System (ADS)
Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.
2007-07-01
Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach was justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatland sites in Finland and a tundra site in Siberia. The flux measurements were performed using transparent chambers on vegetated surfaces and opaque chambers on bare peat surfaces. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes and even lower for longer closure times. The degree of underestimation increased with increasing CO2 flux strength and is dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.
Small spatial variability in methane emission measured from a wet patterned boreal bog
NASA Astrophysics Data System (ADS)
Korrensalo, Aino; Männistö, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina
2018-03-01
We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Methane emissions ranged from -309 to 1254 mg m-2 d-1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.
Wu, Shuang; Chen, Jie; Li, Chen; Kong, Delei; Yu, Kai; Liu, Shuwei; Zou, Jianwen
2018-02-07
Agricultural nitrate leaching and runoff incurs high nitrogen loads in agricultural irrigation watersheds, constituting one of important sources of atmospheric nitrous oxide (N 2 O). Two independent sampling campaigns of N 2 O flux measurement over diel cycles and N 2 O flux measurements once a week over annual cycles were carried out in an agricultural irrigation watershed in southeast China using floating chamber (chamber-based) and gas transfer equation (model-based) methods. The diel and seasonal patterns of N 2 O fluxes did not differ between the two measurement methods. The diel variation in N 2 O fluxes was characterized by the pattern that N 2 O fluxes were greater during nighttime than daytime periods with a single flux peak at midnight. The diel variation in N 2 O fluxes was closely associated with water environment and chemistry. The time interval of 9:00-11:00 a.m. was identified to be the sampling time best representing daily N 2 O flux measurements in agricultural irrigation watersheds. Seasonal N 2 O fluxes showed large variation, with some flux peaks corresponding to agricultural irrigation and drainage episodes and heavy rainfall during the crop-growing period of May to November. On average, N 2 O fluxes calculated by model-based methods were 27% lower than those determined by the chamber-based techniques over diel or annual cycles. Overall, more measurement campaigns are highly needed to assess regional agricultural N 2 O budget with low uncertainties.
NASA Astrophysics Data System (ADS)
Yoshikawa, K.; Ueyama, M.; Takagi, K.; Kominami, Y.
2015-12-01
Methane (CH4) budget in forest ecosystems have not been accurately quantified due to limited measurements and considerable spatiotemporal heterogeneity. In order to quantify CH4 fluxes at temperate forest at various spatiotemporal scales, we have continuously measured CH4 fluxes at two upland forests based on the micrometeorological hyperbolic relaxed eddy accumulation (HREA) and automated dynamic closed chamber methods.The measurements have been conducted at Teshio experimental forest (TSE) since September 2013 and Yamashiro forest meteorology research site (YMS) since November 2014. Three automated chambers were installed on each site. Our system can measure CH4 flux by the micrometeorological HREA, vertical concentration profile at four heights, and chamber measurements by a laser-based gas analyzer (FGGA-24r-EP, Los Gatos Research Inc., USA).Seasonal variations of canopy-scale CH4 fluxes were different in each site. CH4 was consumed during the summer, but was emitted during the fall and winter in TSE; consequently, the site acted as a net annual CH4 source. CH4 was steadily consumed during the winter, but CH4 fluxes fluctuated between absorption and emission during the spring and summer in YMS. YMS acted as a net annual CH4 sink. CH4 uptake at the canopy scale generally decreased with rising soil temperature and increased with drying condition for both sites. CH4 flux measured by most of chambers showed the consistent sensitivity examined for the canopy scale to the environmental variables. CH4 fluxes from a few chambers located at a wet condition were independent of variations in soil temperature and moisture at both sites. Magnitude of soil CH4 uptake was higher than the canopy-scale CH4 uptake. Our results showed that the canopy-scale CH4 fluxes were totally different with the plot-scale CH4 fluxes by chambers, suggesting the considerable spatial heterogeneity in CH4 flux at the temperate forests.
NASA Astrophysics Data System (ADS)
Grant, Richard H.; Omonode, Rex A.
2018-04-01
Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities < 0.05 ms-1) averaged 1.16 µmol m-2 s-1 CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.
NASA Astrophysics Data System (ADS)
Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N. J.; Martikainen, P. J.; Alm, J.; Wilmking, M.
2007-11-01
Closed (non-steady state) chambers are widely used for quantifying carbon dioxide (CO2) fluxes between soils or low-stature canopies and the atmosphere. It is well recognised that covering a soil or vegetation by a closed chamber inherently disturbs the natural CO2 fluxes by altering the concentration gradients between the soil, the vegetation and the overlying air. Thus, the driving factors of CO2 fluxes are not constant during the closed chamber experiment, and no linear increase or decrease of CO2 concentration over time within the chamber headspace can be expected. Nevertheless, linear regression has been applied for calculating CO2 fluxes in many recent, partly influential, studies. This approach has been justified by keeping the closure time short and assuming the concentration change over time to be in the linear range. Here, we test if the application of linear regression is really appropriate for estimating CO2 fluxes using closed chambers over short closure times and if the application of nonlinear regression is necessary. We developed a nonlinear exponential regression model from diffusion and photosynthesis theory. This exponential model was tested with four different datasets of CO2 flux measurements (total number: 1764) conducted at three peatlands sites in Finland and a tundra site in Siberia. Thorough analyses of residuals demonstrated that linear regression was frequently not appropriate for the determination of CO2 fluxes by closed-chamber methods, even if closure times were kept short. The developed exponential model was well suited for nonlinear regression of the concentration over time c(t) evolution in the chamber headspace and estimation of the initial CO2 fluxes at closure time for the majority of experiments. However, a rather large percentage of the exponential regression functions showed curvatures not consistent with the theoretical model which is considered to be caused by violations of the underlying model assumptions. Especially the effects of turbulence and pressure disturbances by the chamber deployment are suspected to have caused unexplainable curvatures. CO2 flux estimates by linear regression can be as low as 40% of the flux estimates of exponential regression for closure times of only two minutes. The degree of underestimation increased with increasing CO2 flux strength and was dependent on soil and vegetation conditions which can disturb not only the quantitative but also the qualitative evaluation of CO2 flux dynamics. The underestimation effect by linear regression was observed to be different for CO2 uptake and release situations which can lead to stronger bias in the daily, seasonal and annual CO2 balances than in the individual fluxes. To avoid serious bias of CO2 flux estimates based on closed chamber experiments, we suggest further tests using published datasets and recommend the use of nonlinear regression models for future closed chamber studies.
NASA Astrophysics Data System (ADS)
Görres, Carolyn-Monika; Kammann, Claudia; Ceulemans, Reinhart
2015-04-01
Soil respiration fluxes are influenced by natural factors such as climate and soil type, but also by anthropogenic activities in managed ecosystems. As a result, soil CO2 fluxes show a large intra- and interannual as well as intra- and intersite variability. Most of the available soil CO2 flux data giving insights into this variability have been measured with manually closed static chambers, but technological advances in the past 15 years have also led to an increased use of automated closed chamber systems. The great advantage of automated chambers in comparison to manually operated chambers is the higher temporal resolution of the flux data. This is especially important if we want to better understand the effects of short-term events, e.g. fertilization or heavy rainfall, on soil CO2 flux variability. However, the chamber method is an invasive measurement method which can potentially alter soil CO2 fluxes and lead to biased measurement results. In the peer-reviewed literature, many papers compare the field performance and results of different closed static chamber designs, or compare manual chambers with automated chamber systems, to identify potential biases in CO2 flux measurements, and thus help to reduce uncertainties in the flux data. However, inter-comparisons of different automated closed dynamic chamber systems are still lacking. Here we are going to present a field comparison of the most-cited automated chamber system, the LI-8100A Automated Soil Flux System, with the also commercially available Greenhouse Gas Monitoring System AGPS. Both measurement systems were installed side by side at a recently harvested poplar bioenergy plantation (POPFULL, http://uahost.uantwerpen.be/popfull/) from April 2014 until August 2014. The plantation provided optimal comparison conditions with a bare field situation after the harvest and a regrowing canopy resulting in a broad variety of microclimates. Furthermore, the plantation was planted in a double-row system with the row width alternating between 1.50 m and 0.75 m, creating spatial differences in e.g. dry bulk density and soil organic carbon content. The soil CO2 flux data sets were split into four subsets each characterized by different environmental conditions, thus presenting different challenges for the measurement equipment, namely 1) daytime, calm conditions, 2) daytime, windy conditions, 3) nighttime, calm conditions, and 4) nighttime, windy conditions. In parallel to the chamber measurements, soil CO2 concentrations were manually measured in the topsoil. Soil CO2 fluxes calculated from this dataset were used as a reference range of soil CO2 fluxes at the field site. Funding support: ERC Advanced Grant agreement (# 233366) POPFULL under the EC 7th Framework Program (FP7/2007-2013), Flemish Hercules Foundation as Infrastructure contract # ZW09-06, and the Methusalem Program of the Flemish Government.
NASA Astrophysics Data System (ADS)
Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Chmura, Lukasz; Necki, Jaroslaw
2014-05-01
The presented work is a part of comprehensive study aimed at thorough characterization of carbon cycle in the urban environment of Krakow, southern Poland. In the framework of this study two independent methods were employed to quantify biogenic CO2 flux in the city: (i) closed chambers, and (ii) Relaxed Eddy Accumulation (REA). The results of a three-day intensive intercomparison campaign performed in July 2013 and utilizing both measurement methods are reported here. The chamber method is a widely used approach for measurements of gas exchange between the soil and the atmosphere. The system implemented in this study consisted of a single chamber operating in a closed-dynamic mode, combined with Vaisala CarboCAP infrared CO2 sensor in a mobile setup. An alternative flux measurement method, covering larger area is represented by REA, which is a modification of the eddy covariance method. It consists of a 3D anemometer (Gill Windmaster Pro) and the system collecting updraft and downdraft samples to 5-litre Tedlar bags. The CO2 mixing ratios in the collected samples are measured by Picarro G2101i analyzer. The setup consists of two sets of bags so that the sampling can be performed continuously with 15-min temporal resolution. A 48-hectares open meadow located close the city center was chosen as a test site for comparison of the two methods of CO2 flux measurements outlined above. In the middle of the meadow a 3-metre high tripod was installed with the anemometer and REA inlet system. For a period of 46 hours the system was measuring net CO2 flux from the surrounding area. A meteorological conditions and intensity of photosynthetically active radiation (PAR) were also recorded. In the same time, CO2 flux from several points around the REA inlet was measured with the chamber system, resulting in 93 values for both respiration and net CO2 flux. Chamber results show rather homogenous distribution of the soil CO2 flux (the mean value equal to 40.9 ± 2.2 mmol/m2h), with slight increase towards the city centre. Good agreement between the two measurement methods was obtained, with night-time flux ranging from around 10 to 80 mmol/m2h and day-time net flux reaching -88 mmol/m2h at peak PAR intensity. Positive correlation between the net CO2 flux and intensity of PAR was also observed. Acknowledgements: The study was supported by the Ministry of Science and Higher Education (817.N-COST/2010/0) and the statutory funds of the AGH University of Science and Technology (11.11.220.01).
Annual Net Ecosystem Productivity of Wetlands: A Comparison of Automated and Manual Chamber Methods
NASA Astrophysics Data System (ADS)
Burrows, E. H.; Bubier, J. L.; Mosedale, A.; Crill, P. M.
2001-05-01
Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) was measured in a minerotrophic poor fen in southeastern New Hampshire during the 2000 growing season using two types of chamber methods. Instantaneous CO2 flux was measured with transparent lexan and teflon static climate controlled chambers by calculating the change in headspace CO2 concentration in the chamber over time. Once per week the flux was sampled from ten manually operated chambers using a LI-COR 6200 portable photosynthesis system, which included a LI-6250 infrared gas analyzer, connected to the chambers. Ten automated chambers were installed in May of 2000, sampling CO2 flux every three hours over the diurnal cycle using a LI-COR 6262 infrared gas analyzer. The chambers and collars were placed throughout the fen in order to sample the range of plant communities. The manual sampling was done during the middle of the day, but the rate of photosynthesis changes depending on the amount of photosynthetically active radiation (PAR). In order to simulate varying light levels, shrouds blocking different amounts of light were placed over each manual chamber. An opaque shroud was used to measure respiration. NEE ranged from -13.0 to 12.5 μ mol CO2/m2/s in the manual chambers and -16.2 to 11.8 μ mol CO2/m2/s in the automated chambers for the mid-summer growing season. Manual respiration fluxes were measured under higher temperature regimes and the response of respiration to temperature will be factored in when comparing the two chamber techniques. Research during the summer of 2001 will also include diurnal measurements. Growing season net ecosystem productivity (NEP) will be estimated and compared for the two chamber systems. Several models will be used to estimate the flux when the manual chambers were not being sampled. The models will be based on biomass and dominant species in each chamber, and various environmental factors including water table, pH, relative humidity, PAR, air and peat temperature. These factors will also be used to compare differences in NEP among the chambers. Manual chambers provide greater spatial variability, but are more labor intensive. Automated chambers provide higher temporal resolution and sample more uniformly, but are more expensive and not feasible in isolated wetlands with no access to electricity. These complementary chamber techniques offer a unique opportunity to assess the variability and uncertainty in CO2 flux measurements.
NASA Astrophysics Data System (ADS)
Grossel, Agnes; Bureau, Jordan; Loubet, Benjamin; Laville, Patricia; Massad, Raia; Haas, Edwin; Butterbach-Bahl, Klaus; Guimbaud, Christophe; Hénault, Catherine
2017-04-01
The objective of this study was to develop and evaluate an attribution method based on a combination of Eddy Covariance (EC) and chamber measurements to map N2O emissions over a 3-km2 area of croplands and forests in France. During 2 months of spring 2015, N2O fluxes were measured (i) by EC at 15 m height and (ii) punctually with a mobile chamber at 16 places within 1-km of EC mast. The attribution method was based on coupling the EC measurements, information on footprints (Loubet et al., 20101) and emission ratios based on crops and fertilizations, calculated based on chamber measurements. The results were evaluated against an independent flux dataset measured by automatic chambers in a wheat field within the area. At the landscape scale, the method estimated a total emission of 114-271 kg N-N2O during the campaign. This new approach allowed estimating continuously N2O emission and better accounting for the spatial variability of N2O emission at the landscape scale.
NASA Astrophysics Data System (ADS)
Juszczak, R.; Pihlatie, M.; Christiansen, J. R.; Giebels, M.; Schreiber, P.; Aaltonen, H.; Korhonen, J.; Rasilo, T.; Chojnicki, B. H.; Urbaniak, M.
2009-04-01
Closed static chambers are often used for greenhouse gas flux measurements from soils. The type of chamber, chamber handling and sampling protocol can influence the measurements. In most cases the calculated fluxes are suspected to be underestimated mainly because of reduction of gas diffusion from the soil to chamber headspace due to changed trace gas concentration gradient. Thus, fans are often applied to obtain better mixing of the air inside the chamber headspace and in turn reduce the negative effect of decreased concentration gradient. The open question is, however, to which extent the fluxes are changed by fans and whether they still remain underestimated or may even be overestimated? On the other hand, different sampling protocols are used assuming that they do not affect the flux measurements. To test different types of static chambers and different sampling procedures applied for measurement of greenhouse gas (CH4 and N2O) fluxes a chamber calibration campaign was organized at Hyytiälä Forestry Field Station in Southern Finland during August-October 2008. The main aim of the campaign was to quantitatively assess the uncertaintities and errors related to static chamber measurements. During this campaign static chambers were tested for 5 different CH4 and N2O flux levels with 3 different soil conditions (moisture and porosity) in a calibration tank described by Pumpanen et al. (2004). Among the different experiments, several special tests were carried out with the closed static chambers. Here, results of two special tests are presented to document whether 1) the air mixing inside the chamber headspace, 2) different sampling procedures influence the CH4 fluxes, and 3) how different calculation methods lead to varying results. Two static chambers of different volumes (65.5 and 195 liters) but with the same circular shape and surface area were connected to a LOS GATOS fats methane analyzer. The CH4 concentration inside the chamber headspace was monitored continuously with 1Hz frequency. Additionally, two different manual samplings procedures were tested and gas samples from chamber headspace were taken for gas chromatograph (GC) and analysed in two different laboratories. Gas concentrations in the calibration tank were monitored with a GC and an automatic gas analyzer (INNOVA). The preliminary results showed that air mixing inside the chamber headspace, the way of chamber handling and sampling procedures could have pronounced influence on the trace gas concentration detection inside a chamber, and as a consequence the calculated chamber fluxes. The moment of chamber enclosure can lead to a rapid increase in CH4 concentration due to a pressure effect in the chambers without a vent tube. Thus, it is essential to critically estimate the time of the first sampling so that it is early enough after chamber enclosure, but not disturbed by the initial chamber handling. It was also observed that manual sampling of gas can change the CH4 concentration in the chamber headspace. When mixing the chamber headspace air by a syringe, the subsequent gas sampling in the syringe may affect the diffusion of gas between the soil and the chamber headspace, and hence affect the calculated fluxes. It was observed that mixing the chamber headspace with a fan instead of syringes, reduced this effect during the chamber enclosure. Overall, fluxes measured with chamber equipped with a fan always gave higher fluxes (up to 40%) as compared to fluxes measured from chambers without a fan. Results of our experiment lead to the assumption that these differences were generally larger the higher the chamber was, the less porous the soil was, and the higher the fluxes were. We conclude from our experiment that static chambers used for greenhouse gas flux measurements should be equipped with at least one fan and a vent tube to increase mixing and reduce pressure propagation in the chamber-soil system, and that special attention should be paid to the handling of the chamber and to the timing of the gas sampling. References: Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Curiel Yuste, J., Grünzweig, J. M., Reth, S., Subke, J.-A., Savage, K., Kutsch, W., Østreng, G., Ziegler, W., Anthoni, P., Lindroth, A. & Hari, P. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology 123, 159-176.
Tran, Huy N Q; Lyman, Seth N; Mansfield, Marc L; O'Neil, Trevor; Bowers, Richard L; Smith, Ann P; Keslar, Cara
2018-07-01
In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2-C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013-2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin. This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.
NASA Astrophysics Data System (ADS)
Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.
2016-12-01
The subtropical humid mid-south region produces nearly 75% of US rice. Rice cultivation contributes higher amounts of GHG emissions (CO2, CH4, and N2O) due to flooded field conditions. Accurate measurements of gas fluxes are important to regional and global climate models. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. These measurements were collected in two NE Arkansas commercial rice fields in 2015 and 2016 production seasons under two irrigation treatments: Alternate Wetting and Drying (AWD) and continuous flood (CF) irrigation. AWD can reduce GHG emissions and water use compared to CF by introducing aerobic conditions that reduce methanogen activity and drained conditions decrease water loss due to seepage or evapotranspiration. N2O was measured only with vented chambers, while CO2 and CH4 were measured with both techniques. In the vented flux chamber technique, headspace gas sampling occurred at least once a week every 20 minutes for one hour of chamber closure. Gas Chromatograph equipped with ECD and FID were used to analyze gas concentrations. Eddy covariance used high frequency measurements wind and concentration measurements to determine fluxes. Chamber measurements were found to be more sensitive during seedling and early vegetative growth while eddy covariance was more sensitive after canopy closure during mid-vegetative to reproductive growth. Unlike eddy covariance which measured net CO2 exchange, flux chamber method measured only CO2 ecosystem respiration because flux measurements occurred using an opaque chamber material.
NASA Astrophysics Data System (ADS)
Savage, K. E.; Shoemaker, J.; Hollinger, D. Y.
2017-12-01
Boreal-transition forests contain a range of soil moisture conditions, from drier "uplands" to embedded wetlands, with transitional soils in between. This creates a complex topography of methane (CH4) producing and consuming patches. Seasonally, CH4 production in wet environments can be orders of magnitude greater than methane uptake rates in drier soils, as well as being much more episodic. The spatial and temporal variability in flux magnitudes from these drainage conditions creates a challenge for constraining the contribution of these forests to the global CH4 cycle. Ground based chambers capture small-scale fluxes, and are often distributed to capture specific soil conditions. Soil chambers have been the primary tool for assessing CH4 fluxes from natural soils, with observations being scaled up to represent broader regions. The study of CH4 biogeochemistry lacked meso-scale measurements to provide checks between the global atmospheric data and the soil chambers. Recent advances in the technology of fast response CH4 analyzers have led to increased use of the eddy-flux covariance (EC) method to capture CH4 fluxes over a larger landscape-scale. The EC method captures net exchange at the top of the vegetation canopy, across a footprint of varying size, dependent on wind-speed, direction, surface roughness, turbulence, sensor height and atmospheric stability. Simultaneous deployment of EC and soil chambers provide a critical means to reconcile bottom up with top down approaches to quantify CH4 fluxes. Two years of CH4 flux data from an EC tower in Howland forest, a boreal-transition forest in north-central Maine, USA, are compared with concurrent automated soil chamber data collected within the tower footprint and distributed among soil drainage classes. An EC footprint model was used to determine a daily and sub-daily tower footprint. Using a published soil analysis of the Howland tower area, and Lidar imagery of tree canopy, we explore various strategies for upscaling chamber fluxes: footprint estimates, aerial weighting by drainage class, and canopy density; and compare to measurements from the EC tower. Analyzing simultaneous flux data from both scales over multiple years, will enable us to evaluate these methodologies and enhance our understanding of CH4 biogeochemistry at all scales.
NASA Astrophysics Data System (ADS)
Stella, P.; Loubet, B.; Laville, P.; Lamaud, E.; Cazaunau, M.; Laufs, S.; Bernard, F.; Grosselin, B.; Mascher, N.; Kurtenbach, R.; Mellouki, A.; Kleffmann, J.; Cellier, P.
2012-06-01
Tropospheric ozone (O3) is a known greenhouse gas responsible for impacts on human and animal health and ecosystem functioning. In addition, O3 plays an important role in tropospheric chemistry, together with nitrogen oxides. The determination of surface-atmosphere exchange fluxes of these trace gases is a prerequisite to establish their atmospheric budget and evaluate their impact onto the biosphere. In this study, O3, nitric oxide (NO) and nitrogen dioxide (NO2) fluxes were measured using the aerodynamic gradient method over a bare soil in an agricultural field. Ozone and NO fluxes were also measured using eddy-covariance and automatic chambers, respectively. The aerodynamic gradient measurement system, composed of fast response sensors, was capable to measure significant differences in NO and O3 mixing ratios between heights. However, due to local advection, NO2 mixing ratios were highly non-stationary and NO2 fluxes were, therefore, not significantly different from zero. The chemical reactions between O3, NO and NO2 led to little ozone flux divergence between the surface and the measurement height (less than 1% of the flux on average), whereas the NO flux divergence was about 10% on average. The use of fast response sensors allowed reducing the flux uncertainty. The aerodynamic gradient and the eddy-covariance methods gave comparable O3 fluxes. The chamber NO fluxes were down to 70% lower than the aerodynamic gradient fluxes, probably because of either the spatial heterogeneity of the soil NO emissions or the perturbation due to the chamber itself.
NASA Astrophysics Data System (ADS)
Koskinen, M.; Minkkinen, K.; Ojanen, P.; Kämäräinen, M.; Laurila, T.; Lohila, A.
2014-01-01
We built an automatic chamber system to measure greenhouse gas (GHG) exchange in forested peatland ecosystems. We aimed to build a system robust enough which would work throughout the year and could measure through a changing snowpack in addition to producing annual GHG fluxes by integrating the measurements without the need of using models. The system worked rather well throughout the year, but it was not service free. Gap filling of data was still necessary. We observed problems in carbon dioxide (CO2) respiration flux estimation during calm summer nights, when a CO2 concentration gradient from soil/moss system to atmosphere builds up. Chambers greatly overestimated the night-time respiration. This was due to the disturbance caused by the chamber to the soil-moss CO2 gradient and consequent initial pulse of CO2 to the chamber headspace. We tested different flux calculation and measurement methods to solve this problem. The estimated flux was strongly dependent on (1) the starting point of the fit after closing the chamber, (2) the length of the fit, (3) the type of the fit (linear and polynomial), (4) the speed of the fan mixing the air inside the chamber, and (5) atmospheric turbulence (friction velocity, u*). The best fitting method (the most robust, least random variation) for respiration measurements on our sites was linear fitting with the period of 120-240 s after chamber closure. Furthermore, the fan should be adjusted to spin at minimum speed to avoid the pulse-effect, but it should be kept on to ensure mixing. If night-time problems cannot be solved, emissions can be estimated using daytime data from opaque chambers.
NASA Astrophysics Data System (ADS)
Whidden, E.; Roulet, N.
2003-04-01
Interpretation of a site average terrestrial flux may be complicated in the presence of inhomogeneities. Inhomogeneity may invalidate the basic assumptions of aerodynamic flux measurement. Chamber measurement may miss or misinterpret important temporal or spatial anomalies. Models may smooth over important nonlinearities depending on the scale of application. Although inhomogeneity is usually seen as a design problem, many sites have spatial variance that may have a large impact on net flux, and in many cases a large homogeneous surface is unrealistic. The sensitivity and validity of a site average flux are investigated in the presence of an inhomogeneous site. Directional differences are used to evaluate the validity of aerodynamic methods and the computation of a site average tower flux. Empirical and modelling methods are used to interpret the spatial controls on flux. An ecosystem model, Ecosys, is used to assess spatial length scales appropriate to the ecophysiologic controls. A diffusion model is used to compare tower, chamber, and model data, by spatially weighting contributions within the tower footprint. Diffusion model weighting is also used to improve tower flux estimates by producing footprint averaged ecological parameters (soil moisture, soil temperature, etc.). Although uncertainty remains in the validity of measurement methods and the accuracy of diffusion models, a detailed spatial interpretation is required at an inhomogeneous site. Flux estimation between methods improves with spatial interpretation, showing the importance to an estimation of a site average flux. Small-scale temporal and spatial anomalies may be relatively unimportant to overall flux, but accounting for medium-scale differences in ecophysiological controls is necessary. A combination of measurements and modelling can be used to define the appropriate time and length scales of significant non-linearity due to inhomogeneity.
Karki, Sandhya; Elsgaard, Lars; Kandel, Tanka P; Lærke, Poul Erik
2015-03-01
Empirical greenhouse gas (GHG) flux estimates from diverse peatlands are required in order to derive emission factors for managed peatlands. This study on a drained fen peatland quantified the annual GHG balance (Carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and C exported in crop yield) from spring barley (SB) and reed canary grass (RCG) using static opaque chambers for GHG flux measurements and biomass yield for indirectly estimating gross primary production (GPP). Estimates of ecosystem respiration (ER) and GPP were compared with more advanced but costly and labor-intensive dynamic chamber studies. Annual GHG balance for the two cropping systems was 4.0 ± 0.7 and 8.1 ± 0.2 Mg CO2-Ceq ha(-1) from SB and RCG, respectively (mean ± standard error, n = 3). Annual CH4 emissions were negligible (<0.006 Mg CO2-Ceq ha(-1)), and N2O emissions contributed only 4-13 % of the full GHG balance (0.5 and 0.3 Mg CO2-Ceq ha(-1) for SB and RCG, respectively). The statistical significance of low CH4 and N2O fluxes was evaluated by a simulation procedure which showed that most of CH4 fluxes were within the range that could arise from random variation associated with actual zero-flux situations. ER measured by static chamber and dynamic chamber methods was similar, particularly when using nonlinear regression techniques for flux calculations. A comparison of GPP derived from aboveground biomass and from measuring net ecosystem exchange (NEE) showed that GPP estimation from biomass might be useful, or serve as validation, for more advanced flux measurement methods. In conclusion, combining static opaque chambers for measuring ER of CO2 and CH4 and N2O fluxes with biomass yield for GPP estimation worked well in the drained fen peatland cropped to SB and RCG and presented a valid alternative to estimating the full GHG balance by dynamic chambers.
Lovanh, Nanh; Warren, Jason; Sistani, Karamat
2010-03-01
In this study, the comparison and monitoring of the initial greenhouse gas (GHG) emissions using a flux chamber and gas analyzer from three different liquid manure application methods at a swine farm in Kentucky were carried out. Swine slurry was applied to farmland by row injection, surface spray, and Aerway injection. Ammonia and GHG concentrations were monitored immediately after application, 72 and 216h after application. The results showed that the initial ammonia flux ranged from 5.80 mg m(-2)h(-1) for the surface spray method to 1.80 mg m(-2)h(-1) for the row injection method. The initial fluxes of methane ranged from 8.75 mg m(-2)h(-1) for surface spray to 2.27 mg m(-2)h(-1) for Aerway injection, carbon dioxide ranged from 4357 mg m(-2)h(-1) for surface spray to 60 mg m(-2)h(-1) for row injection, and nitrous oxide ranged from 0.89 mg m(-2)h(-1) for surface spray to 0.22 mg m(-2)h(-1) for row injection. However, the Aerway injection method seemed to create the highest gas (GHG) concentrations inside the monitoring chambers at the initial application and produced the highest gas fluxes at subsequent sampling time (e.g., 72h after application). Nevertheless, the surface spray method appeared to produce the highest gas fluxes, and the row injection method appeared to emit the least amount of greenhouse gases into the atmosphere. Gas fluxes decreased over time and did not depend on the initial headspace concentration in the monitoring flux chambers. Published by Elsevier Ltd.
Coupling of N2O and CO2 fluxes from agriculture in Michigan
NASA Astrophysics Data System (ADS)
Cui, M.; Tang, J.; Hastings, M. G.; Gelfand, I.; Tao, L.; Sun, K.
2012-12-01
CO2 has been known to cause global warming, and N2O is the largest contributor to the greenhouse gas burden of cropping systems in the United States due to application of fertilizer. In our study, fluxes of N2O and CO2 were measured at two maize fields and one reference grassland from Kellogg Biological Station in Southwest Michigan. Here we compared two measuring systems, traditional GC method and LGR/Li-Cor system. Our initial results show that the two measuring systems are consistent (N2O slope=0.96, R2=0.96; and CO2 slope= 1.03, R2=0.86 measuring from the same chamber). Measurements done in pairs of chambers suggest great spatial variations, despite that the chambers were only 0.5 meter apart. The two systems are still comparable by averaging 8 pairs of chambers distributed within one site. Increase of CO2 fluxes were observed the second day after fertilization, but no significant change of N2O fluxes was shown. After artificial rainfall, boosting N2O fluxes and further increase in CO2 fluxes were demonstrated. Our result indicates that precipitation is necessary before a prominent N2O peak. In our LGR/Li-Cor system, CO was also measured from chambers. Interesting CO fluxes were shown in our experiment. Soil, which is usually considered as a CO sink, emits CO in some chambers during our measurement, which is probably related to the nationwide forest fires and lack of precipitation during the period.
Healy, Richard W.; Striegl, Robert G.; Russell, Thomas F.; Hutchinson, Gordon L.; Livingston, Gerald P.
1996-01-01
The exchange of gases between soil and atmosphere is an important process that affects atmospheric chemistry and therefore climate. The static-chamber method is the most commonly used technique for estimating the rate of that exchange. We examined the method under hypothetical field conditions where diffusion was the only mechanism for gas transport and the atmosphere outside the chamber was maintained at a fixed concentration. Analytical and numerical solutions to the soil gas diffusion equation in one and three dimensions demonstrated that gas flux density to a static chamber deployed on the soil surface was less in magnitude than the ambient exchange rate in the absence of the chamber. This discrepancy, which increased with chamber deployment time and air-filled porosity of soil, is attributed to two physical factors: distortion of the soil gas concentration gradient (the magnitude was decreased in the vertical component and increased in the radial component) and the slow transport rate of diffusion relative to mixing within the chamber. Instantaneous flux density to a chamber decreased continuously with time; steepest decreases occurred so quickly following deployment and in response to such slight changes in mean chamber headspace concentration that they would likely go undetected by most field procedures. Adverse influences of these factors were reduced by mixing the chamber headspace, minimizing deployment time, maximizing the height and radius of the chamber, and pushing the rim of the chamber into the soil. Nonlinear models were superior to a linear regression model for estimating flux densities from mean headspace concentrations, suggesting that linearity of headspace concentration with time was not necessarily a good indicator of measurement accuracy.
Comparison of ammonia emissions determined using different sampling methods
USDA-ARS?s Scientific Manuscript database
Dynamic, flow-through flux chambers are sometimes used to estimate ammonia emissions from livestock operations; however, ammonia emissions from the surfaces are affected by many factors which can be affected by the chamber. Ammonia emissions estimated using environmental flow-through chambers may be...
A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments
NASA Astrophysics Data System (ADS)
Lesmeister, Lukas; Koschorreck, Matthias
2017-06-01
Recent research indicates that greenhouse gas (GHG) emissions from dry aquatic sediments are a relevant process in the freshwater carbon cycle. However, fluxes are difficult to measure because of the often rocky substrate and the dynamic nature of the habitat. Here we tested the performance of different materials to seal a closed chamber to stony ground both in laboratory and field experiments. Using on-site material consistently resulted in elevated fluxes. The artefact was caused both by outgassing of the material and production of gas. The magnitude of the artefact was site dependent - the measured CO2 flux increased between 10 and 208 %. Errors due to incomplete sealing proved to be more severe than errors due to non-inert sealing material.Pottery clay as sealing material provided a tight seal between the chamber and the ground and no production of gases was detected. With this approach it is possible to get reliable gas fluxes from hard-substrate sites without using a permanent collar. Our test experiments confirmed that CO2 fluxes from dry aquatic sediments are similar to CO2 fluxes from terrestrial soils.
NASA Astrophysics Data System (ADS)
Brümmer, Christian; Lyshede, Bjarne; Lempio, Dirk; Delorme, Jean-Pierre; Rüffer, Jeremy J.; Fuß, Roland; Moffat, Antje M.; Hurkuck, Miriam; Ibrom, Andreas; Ambus, Per; Flessa, Heinz; Kutsch, Werner L.
2017-03-01
Recent advances in laser spectrometry offer new opportunities to investigate the soil-atmosphere exchange of nitrous oxide. During two field campaigns conducted at a grassland site and a willow field, we tested the performance of a quantum cascade laser (QCL) connected to a newly developed automated chamber system against a conventional gas chromatography (GC) approach using the same chambers plus an automated gas sampling unit with septum capped vials and subsequent laboratory GC analysis. Through its high precision and time resolution, data of the QCL system were used for quantifying the commonly observed nonlinearity in concentration changes during chamber deployment, making the calculation of exchange fluxes more accurate by the application of exponential models. As expected, the curvature values in the concentration increase was higher during long (60 min) chamber closure times and under high-flux conditions (FN2O > 150 µg N m-2 h-1) than those values that were found when chambers were closed for only 10 min and/or when fluxes were in a typical range of 2 to 50 µg N m-2 h-1. Extremely low standard errors of fluxes, i.e., from ˜ 0.2 to 1.7 % of the flux value, were observed regardless of linear or exponential flux calculation when using QCL data. Thus, we recommend reducing chamber closure times to a maximum of 10 min when a fast-response analyzer is available and this type of chamber system is used to keep soil disturbance low and conditions around the chamber plot as natural as possible. Further, applying linear regression to a 3 min data window with rejecting the first 2 min after closure and a sampling time of every 5 s proved to be sufficient for robust flux determination while ensuring that standard errors of N2O fluxes were still on a relatively low level. Despite low signal-to-noise ratios, GC was still found to be a useful method to determine the mean the soil-atmosphere exchange of N2O on longer timescales during specific campaigns. Intriguingly, the consistency between GC and QCL-based campaign averages was better under low than under high N2O efflux conditions, although single flux values were highly scattered during the low efflux campaign. Furthermore, the QCL technology provides a useful tool to accurately investigate the highly debated topic of diurnal courses of N2O fluxes and its controlling factors. Our new chamber design protects the measurement spot from unintended shading and minimizes disturbance of throughfall, thereby complying with high quality requirements of long-term observation studies and research infrastructures.
Soil CO2 Flux in the Amargosa Desert, Nevada, during El Nino 1998 and La Nina 1999
Riggs, Alan C.; Stannard, David I.; Maestas, Florentino B.; Karlinger, Michael R.; Striegl, Robert G.
2009-01-01
Mean annual soil CO2 fluxes from normally bare mineral soil in the Amargosa Desert in southern Nevada, United States, measured with clear and opaque soil CO2-flux chambers (autochambers) were small - <5 millimoles per square meter per day - during both El Nino 1998 and La Nina 1999. The 1998 opaque-chamber flux exceeded 1999 opaque-chamber flux by an order of magnitude, whereas the 1998 clear-chamber flux exceeded 1999 clear-chamber flux by less than a factor of two. These data suggest that above-normal soil moisture stimulated increased metabolic activity, but that much of the extra CO2 produced was recaptured by plants. Fluxes from warm moist soil were the largest sustained fluxes measured, and their hourly pattern is consistent with enhanced soil metabolic activity at some depth in the soil and photosynthetic uptake of a substantial portion of the CO2 released. Flux from cool moist soil was smaller than flux from warm moist soil. Flux from hot dry soil was intermediate between warm-moist and cool-moist fluxes, and clear-chamber flux was more than double the opaque-chamber flux, apparently due to a chamber artifact stemming from a thermally controlled CO2 reservoir near the soil surface. There was no demonstrable metabolic contribution to the very small flux from cool dry soil, which was dominated by diffusive up-flux of CO2 from the water table and temperature-controlled CO2-reservoir up- and down-fluxes. These flux patterns suggest that transfer of CO2 across the land surface is a complex process that is difficult to accurately measure.
Design and performance of a dynaniic gas flux chamber.
Reichman, Rivka; Rolston, Dennis E
2002-01-01
Chambers are commonly used to measure the emission of many trace gases and chemicals from soil. An aerodynamic (flow through) chamber was designed and fabricated to accurately measure the surface flux of trace gases. Flow through the chamber was controlled with a small vacuum at the outlet. Due to the design using fans, a partition plate, and aerodynamic ends, air is forced to sweep parallel and uniform over the entire soil surface. A fraction of the air flowing inside the chamber is sampled in the outlet. The air velocity inside the chamber is controlled by fan speed and outlet suction flow rate. The chamber design resulted in a uniform distribution of air velocity at the soil surface. Steady state flux was attained within 5 min when the outlet air suction rate was 20 L/min or higher. For expected flux rates, the presence of the chamber did not affect the measured fluxes at outlet suction rates of around 20 L/min, except that the chamber caused some cooling of the surface in field experiments. Sensitive measurements of the pressure deficit across the soil layer in conjunction with measured fluxes in the source box and chamber outlet show that the outflow rate must be controlled carefully to minimize errors in the flux measurements. Both over- and underestimation of the fluxes are possible if the outlet flow rate is not controlled carefully. For this design, the chamber accurately measured steady flux at outlet air suction rates of approximately 20 L/min when the pressure deficit within the chamber with respect to the ambient atmosphere ranged between 0.46 and 0.79 Pa.
Gillis, A; Miller, D R
2000-10-09
A series of controlled environment experiments were conducted to examine the use of a dynamic flux chamber to measure soil emission and absorption of total gaseous mercury (TGM). Uncertainty about the appropriate airflow rates through the chamber and chamber exposure to ambient wind are shown to be major sources of potential error. Soil surface mercury flux measurements over a range of chamber airflow rates showed a positive linear relationship between flux rates and airflow rate through the chamber. Mercury flux measurements using the chamber in an environmental wind tunnel showed that exposure of the system to ambient winds decreased the measured flux rates by 40% at a wind speed of 1.0 m s(-1) and 90% at a wind speed of 2 m s(-1). Wind tunnel measurements also showed that the chamber footprint was limited to the area of soil inside the chamber and there is little uncertainty of the footprint size in dry soil.
Verginelli, Iason; Pecoraro, Roberto; Baciocchi, Renato
2018-04-01
In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m 2 . These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xingchang; Wang, Chuankuan; Bond-Lamberty, Benjamin
Carbon dioxide (CO 2) fluxes between terrestrial ecosystems and the atmosphere are primarily measured with eddy covariance (EC), biometric, and chamber methods. However, it is unclear why the estimates of CO 2-fluxes, when measured using these different methods, converge at some sites but diverge at others. We synthesized a novel global dataset of forest CO 2-fluxes to evaluate the consistency between EC and biometric or chamber methods for quantifying CO 2 budget in forests. The EC approach, comparing with the other two methods, tended to produce 25% higher estimate of net ecosystem production (NEP, 0.52Mg C ha-1 yr-1), mainly resultingmore » from lower EC-estimated Re; 10% lower ecosystem respiration (Re, 1.39Mg C ha-1 yr-1); and 3% lower gross primary production (0.48 Mg C ha-1 yr-1) The discrepancies between EC and the other methods were higher at sites with complex topography and dense canopies versus those with flat topography and open canopies. Forest age also influenced the discrepancy through the change of leaf area index. The open-path EC system induced >50% of the discrepancy in NEP, presumably due to its surface heating effect. These results provided strong evidence that EC produces biased estimates of NEP and Re in forest ecosystems. A global extrapolation suggested that the discrepancies in CO 2 fluxes between methods were consistent with a global underestimation of Re, and overestimation of NEP, by the EC method. Accounting for these discrepancies would substantially improve the our estimates of the terrestrial carbon budget .« less
NASA Astrophysics Data System (ADS)
Sakabe, A.; Kosugi, Y.; Ueyama, M.; Hamotani, K.; Takahashi, K.; Iwata, H.; Itoh, M.
2013-12-01
Forests are generally assumed to be an atmospheric methane (CH4) sink (Le Mer and Roger, 2001). However, under Asian monsoon climate, forests are subject to wide spatiotemporal range in soil water status, where forest soils often became water-saturated condition heterogeneously. In such warm and humid conditions, forests may act as a CH4 source and/or sink with considerable spatiotemporal variations. Micrometeorological methods such as eddy covariance (EC) method continuously measure spatially-representative flux at a canopy scale without artificial disturbance. In this study, we measured CH4 fluxes over a temperate forest during four-year period using a CH4 analyzer based on tunable diode laser spectroscopy detection with a relaxed eddy accumulation (REA) method (Hamotani et al., 1996, 2001). We revealed the amplitude and seasonal variations of canopy-scale CH4 fluxes. The REA method is the attractive alternative to the EC method to measure trace-gas flux because it allows the use of analyzers with an optimal integration time. We also conducted continuous chamber measurements on forest floor to reveal spatial variations in soil CH4 fluxes and its controlling processes. The observations were made in an evergreen coniferous forest in central Japan. The site has a warm temperate monsoon climate with wet summer. Some wetlands were located in riparian zones along streams within the flux footprint area. For the REA method, the sonic anemometer (SAT-550, Kaijo) was mounted on top of the 29-m-tall tower and air was sampled from just below the sonic anemometer to reservoirs according to the direction of vertical wind velocity (w). After accumulating air for 30 minutes, the air in the reservoirs was pulled into a CO2/H2O gas analyzer (LI-840, Li-Cor) and a CH4 analyzer (FMA-200, Los Gatos Research). Before entering the analyzers, the sampled air was dried using a gas dryer (PD-50 T-48; Perma Pure Inc.). The REA flux is obtained from the difference in the mean concentrations of the reservoirs. In the chamber method, automated dynamic-closed chambers were located at three points of water-unsaturated forest floor. Soil CO2 and CH4 fluxes were measured using the same analyzers with the REA method. CH4 fluxes showed seasonal variations at both canopy and plot scales. Based on the chamber measurements, water-unsaturated forest floor mostly consumed CH4 throughout a year. In contrast, canopy-scale CH4 fluxes by the REA method seasonally fluctuated between emission and absorption. The seasonal variation of canopy-scale CH4 fluxes varied at years to years. Every year, no notable emission nor absorption was observed during winter when daily average air temperature was less than about 10°C. In this forest, the canopy-scale CH4 fluxes could be determined by a balance between sources by methanogens and sinks by methanotrophs. Since these two processes were influenced by soil conditions (e.g., soil temperature and soil moisture), canopy-scale CH4 fluxes were influenced by CH4 fluxes from wetlands within the forest, because magnitude of wetland emission was a few order larger than those of absorption. We will discuss the factors of interannual variation of the canopy- and plot-scale CH4 fluxes in terms of precipitation patterns.
A method for measuring the atmospheric flux of the antiandrogenic dicarboxirnide, vinclozolin, and its degradation products was investigated. A nitric oxide laboratory chamber was modified to measure the flux of semi-volatile compounds. Pesticide application systems and soil in...
NASA Astrophysics Data System (ADS)
Stella, P.; Loubet, B.; Laville, P.; Lamaud, E.; Cazaunau, M.; Laufs, S.; Bernard, F.; Grosselin, B.; Mascher, N.; Kurtenbach, R.; Mellouki, A.; Kleffmann, J.; Cellier, P.
2011-08-01
Tropospheric ozone (O3) is a known greenhouse gas responsible for impacts on human and animal health and ecosystem functioning. In addition, O3 plays an important role in tropospheric chemistry, together with nitrogen oxides. Flux measurements of these trace gases are a major issue to establish their atmospheric budget and evaluate the ozone impact onto the biosphere. In this study, ozone, nitric oxide (NO) and nitrogen dioxide (NO2) fluxes were measured using the aerodynamic gradient method over a bare soil in an agricultural field. Vertical mixing ratio profile measurements were performed with fast response sensors. It was demonstrated that corrections of the aerodynamic gradient for chemical reactions between O3-NO-NO2 appeared to be negligible for O3 fluxes, whereas they accounted for about 10 % on average of the NO and NO2 fluxes. The flux uncertainties were mainly due to uncertainties of the friction velocity. In addition, the use of fast response sensors allowed to reduce the remaining part of the flux uncertainty. The aerodynamic gradient and eddy-covariance methods gave similar O3 fluxes (within 4 %). The chamber NO fluxes were up to 70 % lower than the aerodynamic gradient fluxes probably caused by either the spatial heterogeneity of the soil NO emissions or the environmental perturbation due to the chamber.
Tillman, Fred D; Smith, James A
2004-11-01
To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.
Relating chamber measurements to eddy correlation measurements of methane flux
R.J. Clement; S.B. Verma; E.S. Verry
1995-01-01
Methane fluxes were measured using eddy correlation and chamber techniques during 1991 and 1997 at a peatland in north central Minnesota. Comparisons of the two techniques were made using averages of methane flux data available during 1-week periods. The seasonal patterns of fluxes measured by the two techniques compared well. Chamber flux, in 1991, was about 1.8 mg m...
Szyłak-Szydłowski, Mirosław
2017-09-01
The basic principle of odor sampling from surface sources is based primarily on the amount of air obtained from a specific area of the ground, which acts as a source of malodorous compounds. Wind tunnels and flux chambers are often the only available, direct method of evaluating the odor fluxes from small area sources. There are currently no widely accepted chamber-based methods; thus, there is still a need for standardization of these methods to ensure accuracy and comparability. Previous research has established that there is a significant difference between the odor concentration values obtained using the Lindvall chamber and those obtained by a dynamic flow chamber. Thus, the present study compares sampling methods using a streaming chamber modeled on the Lindvall cover (using different wind speeds), a static chamber, and a direct sampling method without any screens. The volumes of chambers in the current work were similar, ~0.08 m 3 . This study was conducted at the mechanical-biological treatment plant in Poland. Samples were taken from a pile covered by the membrane. Measured odor concentration values were between 2 and 150 ou E /m 3 . Results of the study demonstrated that both chambers can be used interchangeably in the following conditions: odor concentration is below 60 ou E /m 3 , wind speed inside the Lindvall chamber is below 0.2 m/sec, and a flow value is below 0.011 m 3 /sec. Increasing the wind speed above the aforementioned value results in significant differences in the results obtained between those methods. In all experiments, the results of the concentration of odor in the samples using the static chamber were consistently higher than those from the samples measured in the Lindvall chamber. Lastly, the results of experiments were employed to determine a model function of the relationship between wind speed and odor concentration values. Several researchers wrote that there are no widely accepted chamber-based methods. Also, there is still a need for standardization to ensure full comparability of these methods. The present study compared the existing methods to improve the standardization of area source sampling. The practical usefulness of the results was proving that both examined chambers can be used interchangeably. Statistically similar results were achieved while odor concentration was below 60 ou E /m 3 and wind speed inside the Lindvall chamber was below 0.2 m/sec. Increasing wind speed over these values results in differences between these methods. A model function of relationship between wind speed and odor concentration value was determined.
Improving mercury flux chamber measurements over water surface.
Lanzillotra, E; Ceccarini, C; Ferrara, R
2003-07-01
A modified floating flux chamber was designed and used to measure mercury evasional fluxes in a coastal area of the Mediterranean Sea in different meteo-marine conditions during the hours of maximum insolation (PAR intensity 360-430 W m(-2)) in the summer season. The chamber has been modified providing a flap at the inlet port preventing the back-flow of air from the interior of the chamber. Results demonstrate that the modified flux chamber gives flux values noticeably higher both in rippled sea conditions (mean value 7.88 +/- 1.45 ng m(-2) h(-1)) and in rough sea conditions (mean value 21.71 +/- 2.17 ng m(-2) h(-1)) with respect to those obtained by using the unmodified chamber (respectively 5.23 +/- 0.67 and 14.15 +/- 1.03 ng m(-2) h(-1)).
Role of plant-generated water vapor and VOC fluxes in shoot chamber measurements of O3 and NOx
NASA Astrophysics Data System (ADS)
Joensuu, J.; Altimir, N.; Raivonen, M.; Kolari, P.; Keronen, P.; Vesala, T.; Bäck, J.; Hari, P.; Järvinen, E.; Nikinmaa, E.
2012-04-01
One of the processes underlying the atmospheric balance of O3 and NOx is their interaction with vegetation. Both are removed, absorbed, and NOx potentially also emitted by foliage. Uncertainties remain on relevant factors controlling O3 and NOx interactions with foliage as well as on including them in large-scale models. One reason for the uncertainty is that chamber measurements of O3 and NOx fluxes are complicated. These reactive gases are adsorbed and desorbed on the chamber walls, depending on the conditions (i.e. humidity). These artefact gas fluxes (chamber blank) must also be quantified and taken into account in the data analysis. Their importance increases when measuring in clean air, where the fluxes are generally small. At near-zero concentrations, the fluxes may not pass the detection limit of the instrumentation, which usually means it is not possible to separate the plant-related fluxes from the chamber blank. The long-term field measurements at the SMEAR II station in Hyytiälä, Southern Finland, have provided valuable insights into O3 and NOx exchange (i.e. Raivonen & al. 2009, Altimir & al. 2006). This project builds up on the expertise and conclusions from these works. The aim of this study was to improve the reliability of the measuring system by checking the role of potential measuring artefact(s). A live shoot, enclosed in a chamber, creates a water vapor in the chamber flux by transpiring. There are also biogenic VOC emissions from the shoot. In principle, these may affect the reactions of O3 and possibly NOx in the chamber. The potential interference of these fluxes created naturally during chamber closure is a main concern. Their effect on the O3 and NOx flux measurements has been tested with field calibrations in 2010-2011. In these calibrations, a controlled water vapor /VOC flux was fed into an empty shoot measurement chamber, and the H2O, CO2, O3 and NOx fluxes created in the chamber were measured. The created water vapor flux pattern was modified to either simulate shoot transpiration or to break the close connection of natural daily variation in transpiration, radiation and temperature. We will present results of this experiment. The project is funded by the Maj and Tor Nessling Foundation and the Ella and Georg Ehnrooth Foundation.
BOREAS TF-3 Automated Chamber CO2 Flux Data from the NSA-OBS
NASA Technical Reports Server (NTRS)
Goulden, Michael L.; Crill, Patrick M.; Hall, Forrest G. (Editor); Conrad, Sara (Editor)
2000-01-01
The BOReal Ecosystem Atmosphere Study Tower Flux (BOREAS TF-3) and Trace Gas Biogeochemistry (TGB-1) teams collected automated CO2 chamber flux data in their efforts to fully describe the CO2 flux at the Northern Study Area-Old Black Spruce (NSA-OBS) site. This data set contains fluxes of CO2 at the NSA-OBS site measured using automated chambers. In addition to reporting the CO2 flux, it reports chamber air temperature, moss temperature, and light levels during each measurement. The data set covers the period from 23-Sep-1995 through 26-Oct-1995 and from 28-May-1996 through 21-Oct-1996. The data are stored in tabular ASCII files.
Speckman, Heather N.; Frank, John M.; Bradford, John B.; Miles, Brianna L.; Massman, William J.; Parton, William J.; Ryan, Michael G.
2015-01-01
Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence (summer night mean friction velocity (u*) = 0.7 m s−1), during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber-based estimates of ecosystem respiration during the growth season, developed from foliage, wood and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ±0.22 μmol m−2 s−1 in 2005 to 4.6 ±0.16 μmol m−2 s−1 in 2011). Soil efflux remained at ~3.3 μmol m−2 s−1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m−2 s−1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18-0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of > 0.7 m s−1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2=0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.
SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES
A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...
NASA Astrophysics Data System (ADS)
Green, Sophie M.; Baird, Andy J.
2016-04-01
There is growing interest in estimating annual budgets of peatland-atmosphere carbon dioxide (CO2) and methane (CH4) exchanges. Such budgeting is required for calculating peatland carbon balance and the radiative forcing impact of peatlands on climate. There have been multiple approaches used to estimate CO2 budgets; however, there is a limited literature regarding the modelling of annual CH4 budgets. Using data collected from flux chamber tests in an area of blanket peatland in North Wales, we compared annual estimates of peatland-atmosphere CH4 emissions using an interpolation approach and an additive and multiplicative modelling approach. Flux-chamber measurements represent a snapshot of the conditions on a particular site. In contrast to CO2, most studies that have estimated the time-integrated flux of CH4 have not used models. Typically, linear interpolation is used to estimate CH4 fluxes during the time periods between flux-chamber measurements. It is unclear how much error is involved with such a simple integration method. CH4 fluxes generally show a rise followed by a fall through the growing season that may be captured reasonably well by interpolation, provided there are sufficiently frequent measurements. However, day-to-day and week-to-week variability is also often evident in CH4 flux data, and will not necessarily be properly represented by interpolation. Our fits of the CH4 flux models yielded r2 > 0.5 in 38 of the 48 models constructed, with 55% of these having a weighted rw2 > 0.4. Comparison of annualised CH4 fluxes estimated by interpolation and modelling reveals no correlation between the two data sets; indeed, in some cases even the sign of the flux differs. The difference between the methods seems also to be related to the size of the flux - for modest annual fluxes there is a fairly even scatter of points around the 1:1 line, whereas when the modelled fluxes are high, the corresponding interpolated fluxes tend to be low. We consider the implications of these results for the calculation of the radiative forcing effect of peatlands.
NASA Astrophysics Data System (ADS)
Brümmer, C.; Moffat, A. M.; Huth, V.; Augustin, J.; Herbst, M.; Kutsch, W. L.
2016-12-01
Manual carbon dioxide flux measurements with closed chambers at scheduled campaigns are a versatile method to study management effects at small scales in multiple-plot experiments. The eddy covariance technique has the advantage of quasi-continuous measurements but requires large homogeneous areas of a few hectares. To evaluate the uncertainties associated with interpolating from individual campaigns to the whole vegetation period, we installed both techniques at an agricultural site in Northern Germany. The presented comparison covers two cropping seasons, winter oilseed rape in 2012/13 and winter wheat in 2013/14. Modeling half-hourly carbon fluxes from campaigns is commonly performed based on non-linear regressions for the light response and respiration. The daily averages of net CO2 modeled from chamber data deviated from eddy covariance measurements in the range of ± 5 g C m-2 day-1. To understand the observed differences and to disentangle the effects, we performed four additional setups (expert versus default settings of the non-linear regressions based algorithm, purely empirical modeling with artificial neural networks versus non-linear regressions, cross-validating using eddy covariance measurements as campaign fluxes, weekly versus monthly scheduling of campaigns) to model the half-hourly carbon fluxes for the whole vegetation period. The good agreement of the seasonal course of net CO2 at plot and field scale for our agricultural site demonstrates that both techniques are robust and yield consistent results at seasonal time scale even for a managed ecosystem with high temporal dynamics in the fluxes. This allows combining the respective advantages of factorial experiments at plot scale with dense time series data at field scale. Furthermore, the information from the quasi-continuous eddy covariance measurements can be used to derive vegetation proxies to support the interpolation of carbon fluxes in-between the manual chamber campaigns.
NASA Astrophysics Data System (ADS)
Donis, D.; Janssen, F.; Böttcher, M.; McGinnis, D.; Holtappels, M.; Wenzhöfer, F.
2012-04-01
Measurements of solute exchange across the sediment-water interface are crucial for marine environment monitoring. This interface has fundamental filter functions for the mass exchange between the seafloor and the water column. Being a non-invasive technique, the eddy correlation method, is probably the most accurate measurement for benthic fluxes. It does not interfere with local hydrodynamics and integrates over large areas, showing considerable advantages compared to traditional methods, i.e., microprofiles and benthic chambers. One of the most important exchange processes across the sediment-water interface is flux of oxygen, which is a predominant control factor for the biogeochemical activity in the sediment, carbon processing and the composition of benthic communities. The eddy correlation method performs simultaneous recordings of vertical velocities and oxygen concentrations at a specific distance to the seafloor and is becoming a standard method for resolving dissolved oxygen fluxes in aquatic systems. However, data treatment and interpretation, especially in shallow environments, is still challenging. One major concern in eddy correlation studies of coastal environments is how to consider surface wave motions that can dominate the turbulence range and that may bias flux calculations. A critical part of the data treatment thus is the removal of wave biases from the vertical velocity component, by separating the wave frequency oscillations (due to a tilted or miss-aligned sensor) from those containing meaningful flux contributions. Here we present in situ benthic oxygen exchange rates as determined by an eddy correlation system (ECS) and simultaneously deployed stirred benthic chambers. The study was carried out in a coastal ecosystem of the southern Baltic Sea that was impacted by low salinity groundwater discharge (Hel peninsula, Poland). Oxygen fluxes determined with ECS compared well with results from benthic chambers. Flux data and seepage rates are discussed in the context of groundwater and their importance for benthic biogeochemical processes in shallow sandy sediments. This work was supported by 7th framework EU ITN-project SENSEnet and BONUS+ project AMBER.
NASA Astrophysics Data System (ADS)
Beekkerk van Ruth, Joran; Moureaux, Christine; Degré, Aurore; Jérome, Elisabeth; Beckers, Yves; Bodson, Bernard; Aubinet, Marc
2013-04-01
This work presents preliminary results of nitrous oxide (N2O) fluxes measured by dynamic closed chambers from a fertilized grassland grazed by the Belgian Blue breed of cattle. It is part of a project funded by the public service of Wallonia (SPW-DGARNE), whose objectives are to make a carbon/CO2 balance of the grassland (Jérôme et al., 2013) and to quantify CH4 (Dumortier et al., 2013) and N2O fluxes. The site is located in Dorinne (Dorinne Terrestrial Observatory), Belgium (50° 18' 44" N; 4° 58' 07" E; 248 m al.). It is a permanent grassland of ca. 4.2 ha with a moderate slope of 1 to 2 %. Mineral fertilisation took place in March and May 2012. Two cylindrical chambers of 19,2 cm diameter and 11,5 cm height were placed inside a protected area around a micrometeorological station. An infrared gas analyser (Thermofischer 46i) was used in order to measure the N2O concentrations inside of the chambers, closed by automatically controlled lids and ventilated by a constant air flow of 1liter/min. These devices were completed by adjacent soil humidity and temperature sensors. The first measurement campaign took place during June and July 2012. The chambers were installed in the field and N2O fluxes were followed without manipulation. N2O fluxes were characterised by a background emission (between 2 and 10 ngN.m2s-1) on which intense but time limited peaks (between 50 and 300 ngN.m2s-1) superimposed. Peaks were found to be mainly linked to fertilisation and driven by precipitation. Background fluxes were found to correlate positively with soil temperature. Secondly, a manipulation experiment took place in November 2012: two different fertilizer treatments were applied to the chambers. Doses of respectively 100 and 200 kg N/ha of ammonium nitrate were sprayed in the chambers (equivalent to a 8 mm precipitation). N2O fluxes peaked shortly after fertiliser application (respectively 300 and 550 ngN.m2s-1), as well as after a posterior rain event (respectively 800 and 1500 ngN.m2s-1). The peak dynamics suggests a complex interaction between soil humidity and nitrogen availability, which is under study. Dumortier et al., Geophysical Research Abstracts, Vol. 15, EGU2013-2083-1, 2013 Jérôme et al., Geophysical Research Abstracts Vol. 15, EGU2013-6989, 2013 Keywords: grassland, N2O, chamber method, fertilizer
NASA Astrophysics Data System (ADS)
Molodovskaya, M. S.; Svensson, T.; Pitts, A.; Delmonte, J.; Nesic, Z.; Oberg, G.
2010-12-01
The volatile organic chlorinated compounds (VOCl) are important components of the global chlorine budget. The origin of VOCl in the environment was for decades thought to be strictly anthropogenic. Over the past decade, a number of studies have however shown that VOCls are naturally formed in soil, and nowadays this source is recognized as a crucial part of the global biogeochemical chlorine cycle. The relative contribution of soil VOCl to the global chlorine cycle is however unclear, a key reason being that monitoring of soil VOCl is complicated by low concentrations and high variability of emission rates. Static chamber deployments coupled with canister gas sampling and gas chromatography (GC) analysis is the most commonly used method for quantifying VOCl emissions. Static chambers are however of limited use for estimating larger scale fluxes since the method is highly labor intensive (leading low sampling frequency). The poor data resolution resulting from these limitations can strongly bias the data extrapolation. Here, we report a method that would allow more continuous and precise VOCl flux measurements. The study has been carried out in a forest in British Columbia, Canada, using automated dynamic chambers and advanced GC technique. The chamber setup is based on a design that previously has been employed and proven successful for carbon dioxide and soil respiration measurements. The method includes a collar permanently inserted into the ground and an attached dome-shaped cover. The air from the closed chamber is pumped through the on-site sampling device. The cover opens and closes automatically between deployments (40 min in average), which helps to minimize the chamber supervision and obtain more continuous data. Soil VOCl concentrations are commonly at the ppt-level, much lower than atmospheric carbon dioxide, so necessary adjustments were made to the chamber system to pre-concentrate the compounds of interest. During each deployment, soil air from the automated chamber was continuously pumped through the glass tubes filled with carbon-based absorbent (Carbotrap 300) to capture and retain VOCl. At the end of each measurement period, the tubes are brought back to the lab, and the content is analyzed by Agilent 7890 GC/micro-ECD coupled with the Gerstel Thermal Desorption System (TDS) and Cooled Injection System (CIS). The ultra sensitive micro-ECD detection and high-efficiency capillary column (Rtx®-VMS, 20m x 0.18mm ID x 1.0µm) allows rapid separation and quantification of the mid-weight VOCl such as chloroform, carbon tetrachloride, 1,1,1-trichloroethane and bromochloromethane. The GC-method dynamic range is linear within 0.1-200.0ng, and the analytical precision is determined to be 4%. The described system can be used for the analysis of soil/atmosphere exchange of VOCl at the detection limit of 1.9ng m-2 h-1, which is far below previously reported average soil emission levels from forest soils. The high precision GC analysis combined with the automatic chambers makes it possible to study the high spatial and temporal variability of soil VOCl fluxes.
A method for measuring the atmospheric flux of a dicarboximide and its degradation products was investigated. A volatile gas laboratory chamber was modified to measure the flux of semi-volatile fungicides. Pesticide application systems and soil incorporation systems were desig...
Heather N. Speckman; John M. Frank; John B. Bradford; Brianna L. Miles; William J. Massman; William J. Parton; Michael G. Ryan
2015-01-01
Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high...
Development of an electronic seepage chamber for extended use in a river.
Fritz, Brad G; Mendoza, Donaldo P; Gilmore, Tyler J
2009-01-01
Seepage chambers have been used to characterize the flux of water across the water-sediment interface in a variety of settings. In this work, an electronic seepage chamber was developed specifically for long-term use in a large river where hydraulic gradient reversals occur frequently with river-stage variations. A bidirectional electronic flowmeter coupled with a seepage chamber was used to measure temporal changes in the magnitude and direction of water flux across the water-sediment interface over an 8-week period. The specific discharge measured from the seepage chamber compared favorably with measurements of vertical hydraulic gradient and previous specific discharge calculations. This, as well as other supporting data, demonstrates the effectiveness of the electronic seepage chamber to accurately quantify water flux in two directions over a multimonth period in this setting. The ability to conduct multimonth measurements of water flux at a subhourly frequency in a river system is a critical capability for a seepage chamber in a system where hydraulic gradients change on a daily and seasonal basis.
NASA Astrophysics Data System (ADS)
Tao, L.; Pan, D.; Gelfand, I.; Abraha, M.; Moyer, R.; Poe, A.; Sun, K.; Robertson, P.; Zondlo, M. A.
2015-12-01
Nitrous oxide (N2O) is important greenhouse and ozone-depleting gase. Although many efforts have been paid to N2O emissions, the spatial and temporal variability of N2O emissions still subject to large uncertainty. Application of the eddy covariance method for N2O emissions research would allow continuous ecosystem level flux measurements. The caveat, however, is need for high precision and high frequency measurements in field. In this study, an open-path, quantum cascade-laser-based eddy covariance N2O sensor has been deployed nearly continuously since May 2015 over a corn field at the W.K. Kellogg Biological Station site in SW Michigan. The field precision of the N2O sensor was assessed to be 0.1 ppbv at 10 Hz, and the total consumption was ~ 40 W, allowing the system to be powered solely by solar panels. The stability of the sensor under different temperature and humidity was tested within an environmental chamber. Spectroscopic experiments and cospectra analyses were carried out to study specific corrections associated with the sensor for eddy covariance techniques, including the line broadening effect due to water vapor and high frequency flux attenuation owning to sample path averaging. Ogive analyses indicated that the high-frequency N2O flux loss due to various damping effects was comparable to those of the CO2 flux. The detection limit of flux was estimated to be 0.3 ng N s-1 m-2 with a flux averaging interval of 30 minutes. The results from the EC system were also compared with ground measurements by standard static chambers (SC). Overall, more than 150 individual chamber measurements were taken within the footprint of the EC system. We found good correlation between the EC and SC methods given the spatiotemporal differences between the two techniques (R2 = 0.75). Both methods detected increased emissions during afternoon as compared to morning and night hours. Differences between EC and SC were also studied by investigating spatial variability with a footprint model. Our results indicate diurnality of ecosystem level N2O emissions may have important consequences for both field and global scale budgets and highlight the need of more continuous measurements for future investigation.
Modeling Gas Exchange in a Closed Plant Growth Chamber
NASA Technical Reports Server (NTRS)
Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.
1994-01-01
Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant a growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.
Modeling gas exchange in a closed plant growth chamber
NASA Technical Reports Server (NTRS)
Cornett, J. D.; Hendrix, J. E.; Wheeler, R. M.; Ross, C. W.; Sadeh, W. Z.
1994-01-01
Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.
NASA Astrophysics Data System (ADS)
Nickerson, Nick; Kim-Hak, David; McArthur, Gordon
2017-04-01
Preservation and restoration of wetlands has the potential to help sequester large amounts of carbon due to the naturally high primary productivity and slow turnover of stored soil carbon. However, the anoxic environmental conditions present in wetland soils are also the largest natural contributor to global methane emissions. While it is well known that wetlands are net carbon sinks over long time scales, given the high global warming potential of methane, the short-term balances between C uptake and storage and loss as CO2 and CH4 need to be carefully considered when evaluating the climate effects of land-use change. It is relatively difficult to measure methane emissions from wetlands with currently available techniques given the temporally and spatially sporadic nature of the processes involved (methanogenesis, methane oxidation, ebullition, etc.). For example, using manual soil flux chambers can often only capture a portion of either the spatial or temporal variability, and often have other disadvantages associated with soil atmosphere disturbance during deployment in these relatively compressible wetland soils. Automated chamber systems offer the advantage of collecting high-resolution time series of gaseous fluxes while reducing some human and method induced biases. Additionally, new laser-based analyzers that can be used in situ alongside automated chambers offer a greater minimum detectable flux than can be achieved using alternative methods such as Gas Chromatography. Until recently these types of automated measurements were limited to areas that had good power coverage, as laser based systems were power intensive and could not easily be supplemented with power from field-available sources such as solar. Recent advances in laser technology has reduced the power needed and made these systems less power intensive and more field portable in the process. Here we present data using an automated chamber system coupled to a portable laser based greenhouse gas analyzer (Picarro G4301). We will present on the methodological and field deployment benefits of the system with a strong emphasis on the enhanced minimum detectable flux limits offered by this fully automated design. These advantages will be demonstrated through two deployments of the system in wetland and peatland ecosystems in Nova Scotia, Canada.
Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers
NASA Technical Reports Server (NTRS)
Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.
1985-01-01
The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.
NASA Astrophysics Data System (ADS)
Tengberg, A.; Stahl, H.; Gust, G.; Müller, V.; Arning, U.; Andersson, H.; Hall, P. O. J.
2004-01-01
The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u ∗) , and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u ∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u ∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u ∗ were found to correlate according to the following empirical formula: DBL=76.18(u ∗) -0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the “hydrodynamic characterizations” these mixing rates corresponded to average DBL thickness from 120 to 550 μm, to u ∗ from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a “real” sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 ± 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 ± 3.0 mmol m -2 day -1. This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Fellows, A.; Flerchinger, G. N.; Seyfried, M. S.
2017-12-01
The spatial and temporal variation of carbon dioxide effluxes and their environmental controls are poorly constrained in cold shrub steppe ecosystems. The objectives of this study were to 1) analyze environmental parameters in determining soil CO2 efflux, 2) assess the level of agreement between manual chambers and force diffusion (FD) soil CO2 efflux chambers, when both measurements are extrapolated across the growing season, and lastly to compare respiration fluxes to modeled ecosystem respiration fluxes. We installed FD chambers at four sites co-located with eddy covariance (EC) towers and soil moisture and temperature sensors along an elevation gradient in the Reynolds Creek Critical Zone Observatory in SW Idaho. FD chamber fluxes were collected continuously at 15-minute intervals. We sampled soil CO2 efflux with manual chambers at plant and interplant spaces in five plots at each site biweekly to monthly during the growing season. The sites included a Wyoming big sagebrush site, a low sagebrush site, a post-fire mountain big sagebrush site, and a mountain big sagebrush site located at elevations of 1425, 1680, 1808 and 2111 m. Climate variation followed the montane elevation gradient; mean annual precipitation (MAP) at the sites is 290, 337, 425, and 795 mm, respectively, and mean annual temperature is 8.9, 8.4, 6.1, 5.4°C. Automated force diffusion chambers detected large differences in carbon dioxide pulse dynamics along the elevation gradient. Growing season carbon dioxide fluxes were 3 times higher at the 425 mm MAP site compared than the lowest elevation sites at 290 and 337 MAP sites and >1.5 higher than the 795 mm MAP site over the same period. Manual fluxes showed similar seasonal patterns as FD chamber fluxes but often higher and greater spatial variability in fluxes than FD chamber fluxes. Plant and interplant flux differences were surprisingly similar, especially at higher elevations. Soil respiration ranged from 0.2-0.48 of ecosystem respiration suggesting that aboveground maintenance costs were relatively high at all of these sites. We conclude that coupled FD chamber, EC tower, and manual estimates hold promise in helping to partition and scale carbon fluxes from the plot to landscape scale.
Dual-throat thruster thermal model
NASA Technical Reports Server (NTRS)
Ewen, R. L.; Obrien, C. J.; Matthews, L. W.
1986-01-01
The dual-throat engine is one of the dual nozzle engine concepts studied for advanced space transportation applications. It provides a thrust change and an in-flight area ratio change through the use of two concentric combustors with their throats arranged in series. Test results are presented for a dual throat thruster burning gaseous oxygen and hydrogen at primary (inner) chamber pressures from 380 to 680 psia. Heat flux profiles were obtained from calorimetric cooling channels in the inner nozzle, outer or secondary chamber and the tip of the inner nozzle. Data were obtained for two nozzle spacings over a chamber pressure ratio (secondary/primary) range of 0.45 to 0.83 with both chambers firing (Mode I). Fluxes near the end of the inner nozzle were significantly higher than in Mode II when only the inner chamber was fired, due to the flow separation and recirculation caused by the back pressure imposed by the secondary chamber. As the pressure ratio increased, these heat fluxes increased and the region of high heat flux relative to Mode II extended farther upstream. The use of the gaseous hydrogen bleed flow in the secondary chamber to control heat fluxes in the primary plume attachment region was investigated in Mode II testing. A thermal model of a dual throat thruster was developed and upgraded using the experimental data.
Static Vented Chamber and Eddy Covariance Methane Flux Comparisons in Mid-South US Rice
NASA Astrophysics Data System (ADS)
Reba, M. L.; Fong, B.; Adviento-Borbe, A.; Runkle, B.; Suvocarev, K.; Rival, I.
2017-12-01
Rice cultivation contributes higher amounts of GHG emissions (CO2 and CH4) due to flooded field conditions. A comparison between eddy covariance and static vented flux chamber measurement techniques is presented. Rice GHG emissions originating from plot level chambers may not accurately describe the aggregate effects of all the soil and micrometeorological variations across a production field. Eddy covariance (EC) is a direct, integrated field measurement of field scale trace gases. Flux measurements were collected in NE Arkansas production size rice fields (16 ha, 40 ac) during the 2015 and 2016 production seasons (June-August) in continuous flood (CF) irrigation. The study objectives included quantifying the difference between chamber and EC measurements, and categorizing flux behavior to growth stage and field history. EC daily average emissions correlated with chamber measurements (R2=0.27-0.54) more than average from 09:00-12:00 which encompassed chamber measurement times (R2=0.23-0.32). Maximum methane emissions occurred in the late afternoon from 14:00-18:00 which corresponded with maximum soil heat flux and air temperature. The total emissions from the study fields ranged from 27-117 kg CH4-C ha-1 season-1. The emission profile was lower in 2015, most likely due to higher rainfall and cooler temperatures during the growing season compared to 2016. These findings improve our understanding of GHG emissions at the field scale under typical production practices and validity of chamber and EC flux measurement techniques.
Pettibone, Joseph S.; Wheeler, Paul C.
1983-01-01
An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.
Pettibone, J.S.; Wheeler, P.C.
1981-06-08
An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.
Comparing simple respiration models for eddy flux and dynamic chamber data
Andrew D. Richardson; Bobby H. Braswell; David Y. Hollinger; Prabir Burman; Eric A. Davidson; Robert S. Evans; Lawrence B. Flanagan; J. William Munger; Kathleen Savage; Shawn P. Urbanski; Steven C. Wofsy
2006-01-01
Selection of an appropriate model for respiration (R) is important for accurate gap-filling of CO2 flux data, and for partitioning measurements of net ecosystem exchange (NEE) to respiration and gross ecosystem exchange (GEE). Using cross-validation methods and a version of Akaike's Information Criterion (AIC), we evaluate a wide range of...
NASA Astrophysics Data System (ADS)
Erkkilä, Kukka-Maaria; Ojala, Anne; Bastviken, David; Biermann, Tobias; Heiskanen, Jouni J.; Lindroth, Anders; Peltola, Olli; Rantakari, Miitta; Vesala, Timo; Mammarella, Ivan
2018-01-01
Freshwaters bring a notable contribution to the global carbon budget by emitting both carbon dioxide (CO2) and methane (CH4) to the atmosphere. Global estimates of freshwater emissions traditionally use a wind-speed-based gas transfer velocity, kCC (introduced by Cole and Caraco, 1998), for calculating diffusive flux with the boundary layer method (BLM). We compared CH4 and CO2 fluxes from BLM with kCC and two other gas transfer velocities (kTE and kHE), which include the effects of water-side cooling to the gas transfer besides shear-induced turbulence, with simultaneous eddy covariance (EC) and floating chamber (FC) fluxes during a 16-day measurement campaign in September 2014 at Lake Kuivajärvi in Finland. The measurements included both lake stratification and water column mixing periods. Results show that BLM fluxes were mainly lower than EC, with the more recent model kTE giving the best fit with EC fluxes, whereas FC measurements resulted in higher fluxes than simultaneous EC measurements. We highly recommend using up-to-date gas transfer models, instead of kCC, for better flux estimates. BLM CO2 flux measurements had clear differences between daytime and night-time fluxes with all gas transfer models during both stratified and mixing periods, whereas EC measurements did not show a diurnal behaviour in CO2 flux. CH4 flux had higher values in daytime than night-time during lake mixing period according to EC measurements, with highest fluxes detected just before sunset. In addition, we found clear differences in daytime and night-time concentration difference between the air and surface water for both CH4 and CO2. This might lead to biased flux estimates, if only daytime values are used in BLM upscaling and flux measurements in general. FC measurements did not detect spatial variation in either CH4 or CO2 flux over Lake Kuivajärvi. EC measurements, on the other hand, did not show any spatial variation in CH4 fluxes but did show a clear difference between CO2 fluxes from shallower and deeper areas. We highlight that while all flux measurement methods have their pros and cons, it is important to carefully think about the chosen method and measurement interval, as well as their effects on the resulting flux.
Benchmark Wall Heat Flux Data for a GO2/GH2 Single Element Combustor
NASA Technical Reports Server (NTRS)
Marshall, William M.; Pal, Sibtosh; Woodward, Roger d.; Santoro, Robert J.
2005-01-01
Wall heat flux measurements in a 1.5 in. diameter circular cross-section rocket chamber for a uni-element shear coaxial injector element operating on gaseous oxygen (GOz)/gaseous hydrogen (GH,) propellants are presented. The wall heat flux measurements were made using arrays of Gardon type heat flux gauges and coaxial thermocouple instrumentation. Wall heat flux measurements were made for two cases. For the first case, GOZ/GHz oxidizer-rich (O/F=l65) and fuel-rich preburners (O/F=1.09) integrated with the main chamber were utilized to provide vitiated hot fuel and oxidizer to the study shear coaxial injector element. For the second case, the preburners were removed and ambient temperature gaseous oxygen/gaseous hydrogen propellants were supplied to the study injector. Experiments were conducted at four chamber pressures of 750, 600, 450 and 300psia for each case. The overall mixture ratio for the preburner case was 6.6, whereas for the ambient propellant case, the mixture ratio was 6.0. Total propellant flow was nominally 0.27-0.29 Ibm/s for the 750 psia case with flowrates scaled down linearly for lower chamber pressures. The axial heat flux profile results for both the preburner and ambient propellant cases show peak heat flux levels a t axial locations between 2.0 and 3.0 in. from the injector face. The maximum heat flux level was about two times greater for the preburner case. This is attributed to the higher injector fuel-to-oxidizer momentum flux ratio that promotes mixing and higher initial propellant temperature for the preburner case which results in a shorter reaction zone. The axial heat flux profiles were also scaled with respect to the chamber pressure to the power 0.8. The results at the four chamber pressures for both cases collapsed to a single profile indicating that at least to first approximation, the basic fluid dynamic structures in the flow field are pressure independent as long as the chamber/njector/nozzle geometry and injection velocities remain the same.
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, G.T.; Jackson, J.W.
1990-03-19
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.
Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers
Danby, Gordon T.; Jackson, John W.
1991-01-01
A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.
Year-round measurements of CH4 exchange in a forested drained peatland using automated chambers
NASA Astrophysics Data System (ADS)
Korkiakoski, Mika; Koskinen, Markku; Penttilä, Timo; Arffman, Pentti; Ojanen, Paavo; Minkkinen, Kari; Laurila, Tuomas; Lohila, Annalea
2016-04-01
Pristine peatlands are usually carbon accumulating ecosystems and sources of methane (CH4). Draining peatlands for forestry increases the thickness of the oxic layer, thus enhancing CH4 oxidation which leads to decreased CH4 emissions. Closed chambers are commonly used in estimating the greenhouse gas exchange between the soil and the atmosphere. However, the closed chamber technique alters the gas concentration gradient making the concentration development against time non-linear. Selecting the correct fitting method is important as it can be the largest source of uncertainty in flux calculation. We measured CH4 exchange rates and their diurnal and seasonal variations in a nutrient-rich drained peatland located in southern Finland. The original fen was drained for forestry in 1970s and now the tree stand is a mixture of Scots pine, Norway spruce and Downy birch. Our system consisted of six transparent polycarbonate chambers and stainless steel frames, positioned on different types of field and moss layer. During winter, the frame was raised above the snowpack with extension collars and the height of the snowpack inside the chamber was measured regularly. The chambers were closed hourly and the sample gas was sucked into a cavity ring-down spectrometer and analysed for CH4, CO2 and H2O concentration with 5 second time resolution. The concentration change in time in the beginning of a closure was determined with linear and exponential fits. The results show that linear regression systematically underestimated the CH4 flux when compared to exponential regression by 20-50 %. On the other hand, the exponential regression seemed not to work reliably with small fluxes (< 3.5 μg CH4 m-2 h-1): using exponential regression in such cases typically resulted in anomalously large fluxes and high deviation. Due to these facts, we recommend first calculating the flux with the linear regression and, if the flux is high enough, calculate the flux again using the exponential regression and use this value in later analysis. The forest floor at the site (including the ground vegetation) acted as a CH4 sink most of the time. CH4 emission peaks were occasionally observed, particularly in spring during the snow melt, and during rainfall events in summer. Diurnal variation was observed mainly in summer. The net CH4 exchange for the two year measurement period in the six chambers varied from -31 to -155 mg CH4 m-2 yr-1, the average being -67 mg CH4 m-2 yr-1. However, this does not include the ditches which typically act as a significant source for CH4.
BOREAS TGB-1 NSA SF6 Chamber Flux Data
NASA Technical Reports Server (NTRS)
Crill, Patrick; Varner, Ruth K.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOREAS TGB-1 team made several chamber and tower measurements of trace gases at sites in the BOREAS NSA. This data set contains sulfur hexafluoride (SF6) dark chamber flux measurements at the NSA-OJP and NSA-YJP sites from 16-May through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models
NASA Astrophysics Data System (ADS)
Saha, Debasish; Kemanian, Armen R.; Rau, Benjamin M.; Adler, Paul R.; Montes, Felipe
2017-04-01
Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (corn-soybean rotation), College Station, TX (corn-vetch rotation), Fort Collins, CO (irrigated corn), and Pullman, WA (winter wheat), representing diverse agro-ecoregions of the United States. Fertilization source, rate, and timing were site-specific. These simulated fluxes surrogated daily measurements in the analysis. We ;sampled; the fluxes using a fixed interval (1-32 days) or a rule-based (decision tree-based) sampling method. Two types of decision trees were built: a high-input tree (HI) that included soil inorganic nitrogen (SIN) as a predictor variable, and a low-input tree (LI) that excluded SIN. Other predictor variables were identified with Random Forest. The decision trees were inverted to be used as rules for sampling a representative number of members from each terminal node. The uncertainty of the annual N2O flux estimation increased along with the fixed interval length. A 4- and 8-day fixed sampling interval was required at College Station and Ames, respectively, to yield ±20% accuracy in the flux estimate; a 12-day interval rendered the same accuracy at Fort Collins and Pullman. Both the HI and the LI rule-based methods provided the same accuracy as that of fixed interval method with up to a 60% reduction in sampling events, particularly at locations with greater temporal flux variability. For instance, at Ames, the HI rule-based and the fixed interval methods required 16 and 91 sampling events, respectively, to achieve the same absolute bias of 0.2 kg N ha-1 yr-1 in estimating cumulative N2O flux. These results suggest that using simulation models along with decision trees can reduce the cost and improve the accuracy of the estimations of cumulative N2O fluxes using the discrete chamber-based method.
Refining Field Measurements of Methane Flux Rates from Abandoned Oil and Gas Wells
NASA Astrophysics Data System (ADS)
Lagron, C. S.; Kang, M.; Riqueros, N. S.; Jackson, R. B.
2015-12-01
Recent studies in Pennsylvania demonstrate the potential for significant methane emissions from abandoned oil and gas wells. A subset of tested wells was high emitting, with methane flux rates up to seven orders of magnitude greater than natural fluxes (up to 105 mg CH4/hour, or about 2.5LPM). These wells contribute disproportionately to the total methane emissions from abandoned oil and gas wells. The principles guiding the chamber design have been developed for lower flux rates, typically found in natural environments, and chamber design modifications may reduce uncertainty in flux rates associated with high-emitting wells. Kang et al. estimate errors of a factor of two in measured values based on previous studies. We conduct controlled releases of methane to refine error estimates and improve chamber design with a focus on high-emitters. Controlled releases of methane are conducted at 0.05 LPM, 0.50 LPM, 1.0 LPM, 2.0 LPM, 3.0 LPM, and 5.0 LPM, and at two chamber dimensions typically used in field measurements studies of abandoned wells. As most sources of error tabulated by Kang et al. tend to bias the results toward underreporting of methane emissions, a flux-targeted chamber design modification can reduce error margins and/or provide grounds for a potential upward revision of emission estimates.
NASA Astrophysics Data System (ADS)
Tao, L.; Sun, K.; Cavigelli, M. A.; Gelfand, I.; Zenone, T.; Cui, M.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.
2012-12-01
The ambient concentration of nitrous oxide (N2O), the fourth most abundant greenhouse gas, is rapidly increasing with emissions from both natural and anthropogenic sources [1]. Soil and aquatic areas are important sources and sinks for N2O due to complicated biogenic processes. However, N2O emissions are poorly constrained in space and time, despite its importance to global climate change and ozone depletion. We report our recent N2O emission measurements with an open-path quantum cascade laser (QCL)-based sensor for ecological systems. The newly emergent QCLs have been used to build compact, sensitive trace gas sensors in the mid-IR spectral region. A compact open-path QCL based sensor was developed to detect atmospheric N2O and CO at ~ 4.5 μm using wavelength modulation spectroscopy (WMS) to achieve a sensitivity of 0.26 ppbv of N2O and 0.24 ppbv of CO in 1 s with a power consumption of ~50 W [2]. This portable sensor system has been used to perform N2O emission flux measurement both with a static flux chamber and on an eddy covariance (EC) flux tower. In the flux chamber measurements, custom chambers were used to host the laser sensor, while gas samples for gas chromatograph (GC) were collected at the same time in the same chamber for validation and comparison. Different soil treatments have been applied in different chambers to study the relationship between N2O emission and the amount of fertilizer (and water) addition. Measurements from two methods agreed with each other (95% or higher confidence interval) for emission flux results, while laser sensor gave measurements with a much high temporal resolution. We have also performed the first open-path eddy covariance N2O flux measurement at Kellogg research station, Michigan State University for a month in June, 2012. Our sensor was placed on a 4-meter tower in a corn field and powered by batteries (connected with solar panels). We have observed the diurnal cycle of N2O flux. During this deployment, an inter-comparison between our sensor and a commercial gas sensor was done to check the sensor's performance. Overall, our sensor showed a good performance with both static chamber measurement and EC flux measurement of N2O. Its open-path, compact and portable design with low power consumption provides lots of advantages for N2O emission flux measurement in the ecological systems. [1] S. A. Montzka, E. J. Dlugokencky, and J. H. Butler, "Non-CO2 greenhouse gases and climate change," Nature 476, 43-50 (2011). [2] L. Tao, K, Sun, D. J. Miller, M. A. Khan and M.A. Zondlo, "Optimizations for simultaneous detection of atmospheric N2O and CO with a quantum cascade laser," CLEO, 2012
A guide to Ussing chamber studies of mouse intestine
Clarke, Lane L.
2009-01-01
The Ussing chamber provides a physiological system to measure the transport of ions, nutrients, and drugs across various epithelial tissues. One of the most studied epithelia is the intestine, which has provided several landmark discoveries regarding the mechanisms of ion transport processes. Adaptation of this method to mouse intestine adds the dimension of investigating genetic loss or gain of function as a means to identify proteins or processes affecting transepithelial transport. In this review, the principles underlying the use of Ussing chambers are outlined including limitations and advantages of the technique. With an emphasis on mouse intestinal preparations, the review covers chamber design, commercial equipment sources, tissue preparation, step-by-step instruction for operation, troubleshooting, and examples of interpretation difficulties. Specialized uses of the Ussing chamber such as the pH stat technique to measure transepithelial bicarbonate secretion and isotopic flux methods to measure net secretion or absorption of substrates are discussed in detail, and examples are given for the adaptation of Ussing chamber principles to other measurement systems. The purpose of the review is to provide a practical guide for investigators who are new to the Ussing chamber method. PMID:19342508
BOREAS TGB-1/TGB-3 CH4 Chamber Flux Data over the NSA Fen
NASA Technical Reports Server (NTRS)
Bubier, Jill L.; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOREAS TGB-3 team collected methane (CH4) chamber flux measurements at the NSA fen site during May-September 1994 and June-October 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
USDA-ARS GRACEnet Project Protocols, Chapter 3. Chamber-based trace gas flux measurements4
USDA-ARS?s Scientific Manuscript database
This protocol addresses N2O, CO2 and CH4 flux measurement by soil chamber methodology. The reactivities of other gasses of interest such as NOx O3, CO, and NH3 will require different chambers and associated instrumentation. Carbon dioxide is included as an analyte with this protocol; however, when p...
NASA Astrophysics Data System (ADS)
Osterwalder, S.; Sommar, J.; Åkerblom, S.; Jocher, G.; Fritsche, J.; Nilsson, M. B.; Bishop, K.; Alewell, C.
2018-01-01
Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon® dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 ± 8 ng g-1, average ± SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, α = 0.05). Even though the correlation between the Teflon® DFC and Aero-DFC was significant (r = 0.76, p < 0.05) the cumulative flux of the Aero-DFC was a factor of three larger. The average flux of the Aero-DFC (1.9 ng m-2 h-1) and REA (2 ng m-2 h-1) were in good agreement. The results indicate that the novel REA design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers (<0.2 m2) makes for large coefficients of variation. Thus many chamber measurement replications are needed to establish a credible biome GEM flux estimate, even for a single point in time. Dynamic flux chambers will, however, be able to resolve systematic differences between small scale features, such as experimentally manipulated plots or small scale spatial heterogeneity.
Analysis of the readout of a high rate MWPC
NASA Astrophysics Data System (ADS)
Camerini, P.; Grion, N.; Rui, R.; Sheffer, G.; Openshaw, R.
1990-06-01
An analytical method to reduce the raw data supplied by a high-speed multiwire proportional chamber (MWPC) is presented. The results obtained with the MWPC and the associated readout system, LeCroy PCOS III, when monitoring a high-intensity flux of positive pions delivered by the M11 channel at TRIUMF are discussed. The method allows the flux intensity, the beam envelope and the detector efficiency to be determined with little uncertainty (few %) at intense particle beams ( > 10 7 particles/s).
Conventionally cast and forged copper alloy for high-heat-flux thrust chambers
NASA Technical Reports Server (NTRS)
Kazaroff, John M.; Repas, George A.
1987-01-01
The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.
Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance.
Imhof, R E; De Jesus, M E P; Xiao, P; Ciortea, L I; Berg, E P
2009-04-01
The importance of transepidermal water loss (TEWL) as a measure of the skin barrier is well recognized. Currently, the open-chamber method is dominant, but it is increasingly challenged by newer closed-chamber technologies. Whilst there is familiarity with open-chamber characteristics, there is uncertainty about the capabilities of the challengers. The main issues are related to how microclimate affects TEWL measurements. The aim of this paper is to provide a framework for understanding the effects of microclimate on TEWL measurement. Part of the problem is that TEWL measurement is indirect. TEWL is the diffusion of condensed water through the stratum corneum (SC), whereas TEWL methods measure water vapour flux in the air above the SC. This vapour flux depends on (i) the rate of supply of water to the skin surface and (ii) the rate of evaporation of water from the skin surface. Rate (i) is a skin property (TEWL), rate (ii) is a microclimate property. The controlling rate for the combined process is the lower of the above two rates. Therefore, TEWL instruments measure TEWL only when TEWL is the rate-limiting process. Another problem is that SC barrier property and SC hydration are affected by the microclimate adjacent to the skin surface. This is discussed insofar as it affects the measurement of TEWL. The conclusion is that such changes occur on a timescale that is long compared with TEWL measurement times. An important aspect of TEWL measurement is calibration. We present an analysis of the traditional wet-cup method and a new droplet method that is traceable and has been independently verified by a standards laboratory. Finally, we review performance indicators of commercial closed-chamber instruments with reference to open-chamber instruments. The main findings are that TEWL readings correlate well, but there are significant differences in the other aspects of performance.
Partitioning of net carbon dioxide flux measured by automatic transparent chamber
NASA Astrophysics Data System (ADS)
Dyukarev, EA
2018-03-01
Mathematical model was developed for describing carbon dioxide fluxes at open sedge-sphagnum fen during growing season. The model was calibrated using the results of observations from automatic transparent chamber and it allows us to estimate autotrophic, heterotrophic and ecosystem respiration fluxes, gross and net primary vegetation production, and the net carbon balance.
Measuring ammonia concentrations and emissions from agricultural land and liquid surfaces: a review.
Shah, Sanjay B; Westerman, Philip W; Arogo, Jactone
2006-07-01
Aerial ammonia concentrations (Cg) are measured using acid scrubbers, filter packs, denuders, or optical methods. Using Cg and wind speed or airflow rate, ammonia emission rate or flux can be directly estimated using enclosures or micrometeorological methods. Using nitrogen (N) recovery is not recommended, mainly because the different gaseous N components cannot be separated. Although low cost and replicable, chambers modify environmental conditions and are suitable only for comparing treatments. Wind tunnels do not modify environmental conditions as much as chambers, but they may not be appropriate for determining ammonia fluxes; however, they can be used to compare emissions and test models. Larger wind tunnels that also simulate natural wind profiles may be more useful for comparing treatments than micrometeorological methods because the latter require larger plots and are, thus, difficult to replicate. For determining absolute ammonia flux, the micrometeorological methods are the most suitable because they are nonintrusive. For use with micrometeorological methods, both the passive denuders and optical methods give comparable accuracies, although the latter give real-time Cg but at a higher cost. The passive denuder is wind weighted and also costs less than forced-air Cg measurement methods, but it requires calibration. When ammonia contamination during sample preparation and handling is a concern and separating the gas-phase ammonia and aerosol ammonium is not required, the scrubber is preferred over the passive denuder. The photothermal interferometer, because of its low detection limit and robustness, may hold potential for use in agriculture, but it requires evaluation. With its simpler theoretical basis and fewer restrictions, the integrated horizontal flux (IHF) method is preferable over other micrometeorological methods, particularly for lagoons, where berms and land-lagoon boundaries modify wind flow and flux gradients. With uniform wind flow, the ZINST method requiring measurement at one predetermined height may perform comparably to the IHF method but at a lower cost.
NASA Astrophysics Data System (ADS)
Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A.
2011-12-01
Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10-12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 g CH4 m-2 measured with chambers and EC respectively) and even greater differences are found if shorter periods with high chamber sampling frequency are compared. The differences may be a result of the combined effect of overestimation with the chambers and of the possible underestimation by the EC technique.
NASA Astrophysics Data System (ADS)
Meijide, A.; Manca, G.; Goded, I.; Magliulo, V.; di Tommasi, P.; Seufert, G.; Cescatti, A.
2011-09-01
Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in an eddy-covariance field set-up in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season, both with EC and with manually operated closed chambers. Methane fluxes were strongly influenced by the presence of the water table, with emissions peaking when it was above 10-12 cm. Further studies are required to evaluate if water table management could decrease CH4 emissions. The development of rice plants and soil temperature were also responsible of the seasonal variation on the fluxes. The EC measured showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between both measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30 % higher seasonal estimations with the chambers than with the EC (41.1 and 31.8 g CH4 m-2 measured with chambers and EC respectively). The differences may be a result of the combined effect of overestimation with the chambers, the possible underestimation by the EC technique and of not having considered the daily course of the fluxes for the calculation of seasonal emissions from chambers.
The normalization of solar X-ray data from many experiments.
NASA Technical Reports Server (NTRS)
Wende, C. D.
1972-01-01
A conversion factor is used to convert Geiger (GM) tube count rates or ion chamber currents into units of the incident X-ray energy flux in a specified passband. A method is described which varies the passband to optimize these conversion factors such that they are relatively independent of the spectrum of the incident photons. This method was applied to GM tubes flown on Explorers 33 and 35 and Mariner 5 and to ion chambers flown on OSO 3 and OGO 4. Revised conversion factors and passbands are presented, and the resulting absolute solar X-ray fluxes based on these are shown to improve the agreement between the various experiments. Calculations have shown that, although the GM tubes on Explorer 33 viewed the Sun off-axis, the effective passband did not change appreciably, and the simple normalization of the count rates to the count rates of a similar GM tube on Explorer 35 was justified.
Methane emissions measured at two California landfills by OTM-10 and an acetylene tracer method
Methane emissions were measured at two municipal solid waste landfills in California using static flux chambers, an optical remote sensing approach known as vertical radial plume mapping (VRPM) using a tunable diode laser (TDL) and a novel acetylene tracer method. The tracer meth...
Orbital transfer vehicle 3000 LBF thrust chamber assembly hot fire test program
NASA Technical Reports Server (NTRS)
Schneider, Judy; Hayden, Warren R.
1988-01-01
The Aerojet Orbital Transfer Vehicle (OTV) Thrust Chamber Assembly (TCA) concept consists of a hydrogen cooled chamber, and annular injector, and an oxygen cooled centerbody. The hot fire testing of a heat sink version of the chamber with only the throat section using hydrogen cooling is documented. Hydraulic performance of the injector and cooled throat were verified by water flow testing prior to TCA assembly. The cooled throat was proof tested to 3000 psia to verify the integrity of the codeposited EF nickel-cobalt closeout. The first set of hot fire tests were conducted with a heat sink throat to obtain heat flux information. After demonstration of acceptable heat fluxes, the heat sink throat was replaced with the LH2 cooled throat section. Fourteen tests were conducted with a heat sink chamber and throat at chamber pressures of 85 to 359 psia. The injector face was modified at this time to add more face coolant flow. Ten tests were then conducted at chamber pressures of 197 to 620 psia. Actual heat fluxes at the higher chamber pressure range were 23 percent higher than the average of 10 Btu/in 2 predicted.
H2O and CO2 fluxes at the floor of a boreal pine forest
NASA Astrophysics Data System (ADS)
Kulmala, Liisa; Launiainen, Samuli; Pumpanen, Jukka; Lankreijer, Harry; Lindroth, Anders; Hari, Pertti; Vesala, Timo
2008-04-01
We measured H2O and CO2 fluxes at a boreal forest floor using eddy covariance (EC) and chamber methods. Maximum evapotranspiration measured with EC ranged from 1.5 to 2.0mmol m-2 s-1 while chamber estimates depended substantially on the location and the vegetation inside the chamber. The daytime net CO2 exchange measured with EC (0-2μmol m-2 s-1) was of the same order as measured with the chambers. The nocturnal net CO2 exchange measured with the chambers ranged from 4 to 7μmol m-2 s-1 and with EC from ~4 to ~5μmol m-2 s-1 when turbulent mixing below the canopy was sufficient and the measurements were reliable. We studied gross photosynthesis by measuring the light response curves of the most common forest floor species and found the saturated rates of photosynthesis (Pmax) to range from 0.008 (mosses) to 0.184μmol g-1 s-1 (blueberry). The estimated gross photosynthesis at the study site based on average leaf masses and the light response curves of individual plant species was 2-3μmol m-2 s-1. At the same time, we measured a whole community with another chamber and found maximum gross photosynthesis rates from 4 to 7μmol m-2 s-1.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
1997-01-01
A set of analyses was conducted to determine the heat transfer characteristics of metallized gelled liquid propellants in a rocket engine. The analyses used the data from experiments conducted with a small 30- to 40-lbf thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-wt %, 5-wt%, and 55-wt% loadings of aluminum with silicon dioxide gellant, and gaseous oxygen as the oxidizer. Heat transfer was computed based on measurements using calorimeter rocket chamber and nozzle hardware with a total of 31 cooling channels. A gelled fuel coating formed in the 0-, 5- and 55-wt% engines, and the coating was composed of unburned gelled fuel and partially combusted RP-1. The coating caused a large decrease in calorimeter engine heat flux in the last half of the chamber for the 0- and 5-wt% RP-1/Al. This heat flux reduction effect was analyzed by comparing engine runs and the changes in the heat flux during a run as well as from run to run. Heat transfer and time-dependent heat flux analyses and interpretations are provided. The 5- and 55-wt% RP-1/Al fueled engines had the highest chamber heat fluxes, with the 5-wt% fuel having the highest throat flux. This result is counter to the predicted result, where the 55 wt% fuel has the highest combustion and throat temperature, and therefore implies that it would deliver the highest throat heat flux. The 5-wt% RP-1/Al produced the most influence on the engine heat transfer and the heat flux reduction was caused by the formation of a gelled propellant layer in the chamber and nozzle.
NASA Astrophysics Data System (ADS)
Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai
2018-02-01
Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.
NOx emissions from a Central California dairy
NASA Astrophysics Data System (ADS)
Hasson, Alam S.; Ogunjemiyo, Segun O.; Trabue, Steven; Ashkan, Shawn; Scoggin, Kenwood; Steele, Julie; Olea, Catalina; Middala, Srikar; Vu, Kennedy; Scruggs, Austen; Addala, Laxmi R.; Nana, Lucien
2013-05-01
Concentrations of NOx (NO + NO2) were monitored downwind from a Central California dairy facility during 2011 and 2012. NOx concentrations at the dairy were significantly higher than the background levels during August 2011 primarily due to the presence of elevated NO, but were indistinguishable from background concentrations during January and April 2012. A Gaussian plume model (AERMOD) and a Lagrangian back trajectory model (Wind Trax) were used to estimate the flux of NO from the dairy during August 2011 with the assumption that emissions were primarily from animal feed. NO emissions from silage were also directly measured from feed to provide additional insight into the sources. Isolation flux chamber measurements imply an NO flux from the feed of about 1.3 × 10-3 g m-2 h-1, but these relatively low fluxes are inconsistent with the elevated NO concentrations observed during August 2011. This implies that either the flux chamber method grossly underestimates the true NO emissions from feed, or that most of the ambient NO measured at the dairy is from other sources. Emissions from farm machinery may account for the NO concentrations observed. Animal feed thus appears to be a small contributor to NOx emissions within Central California.
BOREAS TGB-1 NSA CH4 and CO2 Chamber Flux Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.
2000-01-01
The BOREAS TGB-1 team made methane (CH4) and carbon dioxide (CO2) dark chamber flux measurements at the NSA-OJP, NSA-OBS, NSA-BP, and NSA-YJP sites from 16-May-1994 through 13-Sep-1994. Gas samples were extracted approximately every 7 days from dark chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
Spectrophotometric Attachment for the Vacuum Ultraviolet
NASA Technical Reports Server (NTRS)
Axelrod, Norman N.
1961-01-01
An absorption spectrophotometric attachment to a vacuum ultraviolet monochromator has been built and tested. With an empty sample chamber, the ratio of the radiant flux through the sample chamber to the radiant flux through the reference chamber was measured. By optimizing conditions at the entrance slit, the ratio was constant within experimental error over the region 1000-1600 A. The transmittance of thin celluloid films was measured with the attachment.
High-frequency pressure variations in the vicinity of a surface CO2 flux chamber
Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice
2003-01-01
We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...
BOREAS TF-4 CO2 and CH4 Chamber Flux Data from the SSA
NASA Technical Reports Server (NTRS)
Anderson, Dean; Striegl, Robert; Wickland, Kimberly; Hall, Forrest G. (Editor); Conrad, Sara (Editor)
2000-01-01
The BOREAS TF-4 team measured fluxes of CO2 and CH4 across the soil-air interface in four ages of jack pine forest at the BOREAS SSA during August 1993 to March 1995. Gross and net flux of CO2 and flux of CH4 between soil and air are presented for 24 chamber sites in mature jack pine forest, 20-year-old, 4-year-old, and clear cut areas. The data are stored in tabular ASCII files.
Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver
Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less
Sniffle: a step forward to measure in situ CO 2 fluxes with the floating chamber technique
Ribas-Ribas, Mariana; Kilcher, Levi F.; Wurl, Oliver
2018-01-09
Understanding how the ocean absorbs anthropogenic CO 2 is critical for predicting climate change. We designed Sniffle, a new autonomous drifting buoy with a floating chamber, to measure gas transfer velocities and air-sea CO 2 fluxes with high spatiotemporal resolution. Currently, insufficient in situ data exist to verify gas transfer parameterizations at low wind speeds (<4 m s -1), which leads to underestimation of gas transfer velocities and, therefore, of air-sea CO 2 fluxes. The Sniffle is equipped with a sensor to consecutively measure aqueous and atmospheric pCO 2 and to monitor increases or decreases of CO 2 inside themore » chamber. During autonomous operation, a complete cycle lasts 40 minutes, with a new cycle initiated after flushing the chamber. The Sniffle can be deployed for up to 15 hours at wind speeds up to 10 m s -1. Floating chambers often overestimate fluxes because they create additional turbulence at the water surface. We correct fluxes by measuring turbulence with two acoustic Doppler velocimeters, one positioned directly under the floating chamber and the other positioned sideways, to compare artificial disturbance caused by the chamber and natural turbulence. The first results of deployment in the North Sea during the summer of 2016 demonstrate that the new drifting buoy is a useful tool that can improve our understanding of gas transfer velocity with in situ measurements. At low and moderate wind speeds and different conditions, the results obtained indicate that the observed tidal basin was acting as a source of atmospheric CO 2. Wind speed and turbulence alone could not fully explain the variance in gas transfer velocity. We suggest therefore, that other factors like surfactants, rain or tidal current will have an impact on gas transfer parameterizations.« less
Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA
NASA Astrophysics Data System (ADS)
Lewicki, J. L.; Hilley, G. E.
2014-09-01
One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June-October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24-25 October soil CO2 flux surveys were 165, 172, and 231 t d- 1, respectively. The average (June-October) CO2 emission rate estimated for this area was 123 t d- 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time-frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July-August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d- 1, which may suggest that emissions returned to 1998-2009 levels, following an increase from 2009 to 2011.
Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA
Lewicki, Jennifer L.; Hilley, George E.
2014-01-01
One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June–October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24–25 October soil CO2 flux surveys were 165, 172, and 231 t d− 1, respectively. The average (June–October) CO2 emission rate estimated for this area was 123 t d− 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time–frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July–August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d− 1, which may suggest that emissions returned to 1998–2009 levels, following an increase from 2009 to 2011.
The truth is out there: measured, calculated and modelled benthic fluxes.
NASA Astrophysics Data System (ADS)
Pakhomova, Svetlana; Protsenko, Elizaveta
2016-04-01
In a modern Earth science there is a great importance of understanding the processes, forming the benthic fluxes as one of element sources or sinks to or from the water body, which affects the elements balance in the water system. There are several ways to assess benthic fluxes and here we try to compare the results obtained by chamber experiments, calculated from porewater distributions and simulated with model. Benthic fluxes of dissolved elements (oxygen, nitrogen species, phosphate, silicate, alkalinity, iron and manganese species) were studied in the Baltic and Black Seas from 2000 to 2005. Fluxes were measured in situ using chamber incubations (Jch) and at the same time sediment cores were collected to assess the porewater distribution at different depths to calculate diffusive fluxes (Jpw). Model study was carried out with benthic-pelagic biogeochemical model BROM (O-N-P-Si-C-S-Mn-Fe redox model). It was applied to simulate biogeochemical structure of the water column and upper sediment and to assess the vertical fluxes (Jmd). By the behaviour at the water-sediment interface all studied elements can be divided into three groups: (1) elements which benthic fluxes are determined by the concentrations gradient only (Si, Mn), (2) elements which fluxes depend on redox conditions in the bottom water (Fe, PO4, NH4), and (3) elements which fluxes are strongly connected with organic matter fate (O2, Alk, NH4). For the first group it was found that measured fluxes are always higher than calculated diffusive fluxes (1.5
NASA Astrophysics Data System (ADS)
Görres, Carolyn-Monika; Kammann, Claudia; Chesmore, David; Müller, Christoph
2017-04-01
The influence of land-use associated pest insects on net soil CH4 fluxes has received little attention thus far, although e.g. soil-dwelling Scarabaeidae larvae are qualitatively known to emit CH4. The project "CH4ScarabDetect" aims to provide the first quantitative estimate of the importance of soil-dwelling larvae of two important European agricultural and forest pest insect species - the common cockchafer (Melolontha melolontha) and the forest cockchafer (M. hippocastani) - for net soil CH4 fluxes. Here we present a mesocosm study within "CH4ScarabDetect" which tests the influence of different abundances of common cockchafer larvae on net soil CH4 fluxes under different vegetation types. In August 2016, 27 PVC boxes with a base area of 50 cm x 50 cm and a height of 40 cm were buried in planting beds previously used for cultivating vegetables. The bottom of each box was filled with a 10 cm thick layer of loam which was then covered with a 25 cm thick layer of loamy sand. The soil was hand-sieved prior to filling the boxes to remove any macrofauna. The mesocosms were planted with either turf, carrots or a combination of both. Of the resulting nine replicates per vegetation type, six were infested with one cockchafer larvae each in November 2016. In three of these infested mesocosms, the larvae abundance will be further increased to three in May 2017. This mesocosm study will continue until October 2017 during which measurements of net soil CH4 fluxes will be conducted with the chamber flux method twice per month. For the in situ separation of gross CH4 production and gross CH4 oxidation, the chamber method will be combined with a 13CH4 isotope pool dilution technique. Methane concentrations and their isotopic signatures in the collected gas samples will be analysed with a state-of-the-art CRDS analyzer (cavity ring-down spectroscopy, G2201-i) equipped with the Small Sample Isotope Module 2 - A0314 (Picarro Inc., USA). Different combinations of larvae abundance and depth distribution might yield the same net CH4 flux rates. To account for this non-invasively, the chamber measurements are additionally combined with acoustic measurements of larvae activity in the soil. For this purpose, an acoustice sensor is installed in the middle of each mesocom. This is the first time that a 13CH4 isotope pool dilution technique, the chamber method, and acoustic measurements are combined to study non-invasively the influence of soil-dwelling larve on net soil CH4 fluxes in the field. This novel approach will not only further our understanding of the role of cockchafer larvae in the terrestrial CH4 cycle and provide a new tool for soil CH4 flux and soil insect studies, but promises to also improve our knowledge on cockchafer ecology as well as the monitoring of cockchafer infestations in agricultural and forest soils. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 703107.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bytnerowicz, A.; Olszyk, D.M.; Dawson, P.J.
Concentrations of gaseous and particulate air pollutants, and deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup {minus}2}{sub 4}, and NH{sup +}{sub 4} ions to branches of California lilac (Ceanothus crassifolius Torr.), Coulter pine (Pinus coulteri D. Don.), ponderosa pine (P. ponderosa Dougl. ex P. C. Lawson), nylon filters, and paper filters were measured in open-top field chambers with different filtration materials and in chamberless outside plots. Additionally, concentrations of O{sub 3}, NO{sub 2}, NO, SO{sub 2} and total S compounds also were determined in the chambers. Effects of different air filtrations were more evident for deposition fluxes to plant and surrogatemore » surfaces. On the average, in the CHARCOAL chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} to the surfaces were reduced to 21, 38, and 26% of the outside values, respectively. In the DUST 1 DUST 2 chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} were reduced to about 50, 56, and 75% of the outside levels, respectively. Deposition fluxes of the studied ions to plants were much lower than to nylon and paper filters.« less
CO2 and CH4 fluxes in a Spartina salt marsh and brackish Phragmites marsh in Massachusetts
NASA Astrophysics Data System (ADS)
Tang, J.; Wang, F.; Kroeger, K. D.; Gonneea, M. E.
2017-12-01
Coastal salt marshes play an important role in global and regional carbon cycling. Tidally restricted marshes reduce salinity and provide a habitat suitable for Phragmites invasion. We measured greenhouse gas (GHG) emissions (CO2 and CH4) continuously with the eddy covariance method and biweekly with the static chamber method in a Spartina salt marsh and a Phragmites marsh on Cape Cod, Massachusetts, USA. We did not find significant difference in CO2 fluxes between the two sites, but the CH4 fluxes were much higher in the Phragmites site than the Spartina marsh. Temporally, tidal cycles influence the CO2 and CH4 fluxes in both sites. We found that the salt marsh was a significant carbon sink when CO2 and CH4 fluxes were combined. Restoring tidally restricted marshes will significantly reduce CH4 emissions and provide a strong ecosystem carbon service.
Materials screening chamber for testing materials resistance to atomic oxygen
NASA Technical Reports Server (NTRS)
Pippin, H. G.; Carruth, Ralph
1989-01-01
A unique test chamber for exposing material to a known flux of oxygen atoms is described. The capabilities and operating parameters of the apparatus include production of an oxygen atom flux in excess of 5 x 10 to the 16th atoms/sq cm-sec, controlled heating of the sample specimen, RF circuitry to contain the plasma within a small volume, and long exposure times. Flux measurement capabilities include a calorimetric probe and a light titration system. Accuracy and limitations of these techniques are discussed. An extension to the main chamber to allow simultaneous ultraviolet and atomic oxygen exposure is discussed. The oxygen atoms produced are at thermal energies. Sample specimens are maintained at any selected temperature between ambient and 200 C, to within + or - 2 C. A representative example of measurements made using the chamber is presented.
LBA-ECO TG-07 Soil CO2 Flux by Automated Chamber, Para, Brazil: 2001-2003
R.K. Varner; M.M. Keller
2009-01-01
Measurements of the soil-atmosphere flux of CO2 were made at the km 67 flux tower site in the Tapajos National Forest, Santarem, Para, Brazil. Eight chambers were set up to measure trace gas exchange between the soil and atmosphere about 5 times a day (during daylight and night) at this undisturbed forest site from April 2001 to April 2003. CO2 soil efflux data are...
Nuclear instrumentation in VENUS-F
NASA Astrophysics Data System (ADS)
Wagemans, J.; Borms, L.; Kochetkov, A.; Krása, A.; Van Grieken, C.; Vittiglio, G.
2018-01-01
VENUS-F is a fast zero power reactor with 30 wt% U fuel and Pb/Bi as a coolant simulator. Depending on the experimental configuration, various neutron spectra (fast, epithermal, and thermal islands) are present. This paper gives a review of the nuclear instrumentation that is applied for reactor control and in a large variety of physics experiments. Activation foils and fission chambers are used to measure spatial neutron flux profiles, spectrum indices, reactivity effects (with positive period and compensation method or the MSM method) and kinetic parameters (with the Rossi-alpha method). Fission chamber calibrations are performed in the standard irradiation fields of the BR1 reactor (prompt fission neutron spectrum and Maxwellian thermal neutron spectrum).
NASA Astrophysics Data System (ADS)
He, Yonggang; Jacobson, Gloria; Alexander, Chris; Fleck, Derek; Hoffnagel, John; Del Campo, Bernardo; Rella, Chris
2013-04-01
Studying the emission and uptake of greenhouse gases from soil is essential for understanding, adapting to and ultimately mitigating the effects of climate change. To-date, majority of such studies have been focused on carbon dioxide (CO2 ) , however, in 2006 the EPA estimated that "Agricultural activities currently generate the largest share, 63 percent, of the world's anthropogenic non-carbon dioxide (non-CO2) emissions (84 percent of nitrous oxide [N2O] and 52 percent of methane[CH4]), and make up roughly 15 percent of all anthropogenic greenhouse gas emissions" (Prentice et al., 2001). Therefore, enabling accurate N2O and CH4 flux measurements in the field are clearly critical to our ability to better constrain carbon and nitrogen budgets, characterize soil sensitivities, agricultural practices, and microbial processes like denitrification and nitrification. To aide in these studies, Picarro has developed a new analyzer based on its proven, NIR technology platform, which is capable of measuring both N2O and CH4 down to ppb levels in a single, field-deployable analyzer. This analyzer measures N2O with a 1-sigma, precision of 3.5 ppb and CH4 with a 1-sigma precision of 3ppb on a 5 minute average. The instrument also has extremely low drift to enable accurate measurements with infrequent calibrations. The data rate of the analyzer is on the order of 5 seconds in order to capture fast, episodic emission events. One of the keys to making accurate CRDS measurements is to thoroughly characterize and correct for spectral interfering species. This is especially important for closed system soil chambers used on agricultural soils where a variety of soil amendments may be applied and gases not usually present in ambient air could concentrate to high levels. In this work, we present the results of analyzer interference testing and corrections completed for the interference of carbon dioxide, methane, ammonia, ethane, ethylene, acetylene, and water on N2O. In addition, we will present the results of testing done with the analyzer attached to both closed and open chamber systems to quantify fluxes of N2O and CH4 from active soil samples. The soil samples were collected by the University of Iowa from soil test sites used for studying the application of biochar as a soil amendment. Results will compare the two chamber methodologies and results from several soil sample types, garden, agricultural and natural. Preliminary results from laboratory measurements of soil core samples taken from a garden soil sample using the closed-system chamber method show N2O emission to be on the order of 5.67 x 10-2 μg/cm3*hr, which is in good agreement with the open-system chamber method tested on the same soil sample, which yielded fluxes of 6.01 x 10-2 μg/cm3*hr . Additional work presented will verify these initial results and will be compared to literature such as Hutchinsion and Livingston 1993 assessment of the bias of different chamber flux methodologies.
NASA Astrophysics Data System (ADS)
Hishida, Manabu; Hayashi, A. Koichi
1992-12-01
Pulsed Jet Combustion (PJC) is numerically simulated using time-dependent, axisymmetric, full Navier-Stokes equations with the mass, momentum, energy, and species conservation equations for a hydrogen-air mixture. A hydrogen-air reaction mechanism is modeled by nine species and nineteen elementary forward and backward reactions to evaluate the effect of the chemical reactions accurately. A point implicit method with the Harten and Yee's non-MUSCL (Monotone Upstream-centerd Schemes for Conservation Laws) modified-flux type TVD (Total Variation Diminishing) scheme is applied to deal with the stiff partial differential equations. Furthermore, a zonal method making use of the Fortified Solution Algorithm (FSA) is applied to simulate the phenomena in the complicated shape of the sub-chamber. The numerical result shows that flames propagating in the sub-chamber interact with pressure waves and are deformed to be wrinkled like a 'tulip' flame and a jet passed through the orifice changes its mass flux quasi-periodically.
In situ baking method for degassing of a kicker magnet in accelerator beam line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Ogiwara, Norio; Yanagibashi, Toru
In this study, the authors propose a new in situ degassing method by which only kicker magnets in the accelerator beam line are baked out without raising the temperature of the vacuum chamber to prevent unwanted thermal expansion of the chamber. By simply installing the heater and thermal radiation shield plates between the kicker magnet and the chamber wall, most of the heat flux from the heater directs toward the kicker magnet. The result of the verification test showed that each part of the kicker magnet was heated to above the target temperature with a small rise in the vacuummore » chamber temperature. A graphite heater was selected in this application to bake-out the kicker magnet in the beam line to ensure reliability and easy maintainability of the heater. The vacuum characteristics of graphite were suitable for heater operation in the beam line. A preliminary heat-up test conducted in the accelerator beam line also showed that each part of the kicker magnet was successfully heated and that thermal expansion of the chamber was negligibly small.« less
BOREAS TF-11 SSA-Fen 1996 Water Surface Film Capping Data
NASA Technical Reports Server (NTRS)
Billesbach, David P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor)
2000-01-01
The BOREAS TF-11 team gathered a variety of data to complement its tower flux measurements collected at the SSA-Fen site. The data described in this document were made by the TF-11 team at the SSA-Fen site to quantify the effect that the films observed to form on open water surfaces had on the transfer of carbon dioxide and methane from the water to the air. Measurements of fluxes of carbon dioxide and methane were made in 1994 and in 1996 using the chamber flux method. A gas chromatograph and a LI-COR LI-6200 were used to measure concentrations and to calculate the fluxes. The data are stored in tabular ASCII files.
Consumption of methane by soils.
Dueñas, C; Fernández, M C; Carretero, J; Pérez, M; Liger, E
1994-05-01
Measurements of the methane flux and methane concentration profiles in soil air are presented. The flux of methane from the soil is calculated by two methods: a) Direct by placing a static open chamber at the soil surface. b) Indirect, using the (222)Rn concentrations profile and the (222)Rn flux in the soil surface in parallel with the methane concentration ((222)Rn calibrated fluxes). The methane flux has been determined in two kinds of soils (sandy and loamy) in the surroundings of Málaga (SPAIN). The directly measured methane fluxes at all investigated sites is higher than methane fluxes derived from "Rn calibrated fluxes". Atmospheric methane is consumed by soils, mean direct flux to the atmosphere were - 0.33 g m(-2)yr-1. The direct methane flux is the same within the measuring error in sandy and loamy soils. The influence of the soil parameters on the methane flux indicates that microbial decomposition of methane is primarily controlled by the transport of methane.
Metallized Gelled Propellants: Oxygen/RP-1/Aluminum Rocket Heat Transfer and Combustion Measurements
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan; Zakany, James S.
1996-01-01
A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted. These experiments used a small 20- to 40-lb/f thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-percentage by weight loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Three different injectors were used during the testing: one for the baseline O(2)/RP-1 tests and two for the gelled and metallized gelled fuel firings. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each chamber used a water flow to carry heat away from the chamber and the attached thermocouples and flow meters allowed heat flux estimates at each of the 31 stations. The rocket engine Cstar efficiency for the RP-1 fuel was in the 65-69 percent range, while the gelled 0 percent by weight RP-1 and the 5-percent by weight RP-1 exhibited a Cstar efficiency range of 60 to 62% and 65 to 67%, respectively. The 55-percent by weight RP-1 fuel delivered a 42-47% Cstar efficiency. Comparisons of the heat flux and temperature profiles of the RP-1 and the metallized gelled RP-1/A1 fuels show that the peak nozzle heat fluxes with the metallized gelled O2/RP-1/A1 propellants are substantially higher than the baseline O2/RP-1: up to double the flux for the 55 percent by weight RP-1/A1 over the RP-1 fuel. Analyses showed that the heat transfer to the wall was significantly different for the RP-1/A1 at 55-percent by weight versus the RP-1 fuel. Also, a gellant and an aluminum combustion delay was inferred in the 0 percent and 5-percent by weight RP-1/A1 cases from the decrease in heat flux in the first part of the chamber. A large decrease in heat flux in the last half of the chamber was caused by fuel deposition in the chamber and nozzle. The engine combustion occurred well downstream of the injector face based on the heat flux estimates from the temperature measurements.
Spatio-temporal variability of lake CH4 fluxes and its influence on annual estimates
NASA Astrophysics Data System (ADS)
Natchimuthu, S.; Sundgren, I.; Gålfalk, M.; Klemedtsson, L.; Crill, P. M.; Danielsson, Å.; Bastviken, D.
2014-12-01
Lakes are major sources of methane (CH4) to the atmosphere and it has been shown that lakes contribute significantly to the global CH4 budget. However, the data behind these global estimates are snapshots in time and space only and they typically lack information on spatial and temporal variability of fluxes which can potentially lead to biased estimates. Recent studies have shown that diffusive flux, gas exchange velocity (k), ebullition and concentration of CH4 in the surface water can vary significantly in space within lakes. CH4 fluxes can also change at a broad range of temporal scales in response to seasons, temperature, lake mixing events, short term weather events like pressure variations, shifting winds and diel cycles. We sampled CH4 fluxes and surface water concentrations from three lakes of differing characteristics in southwest Sweden over two annual cycles, approximately every 14 days from April to October 2012 and from April to November 2013. CH4 fluxes were measured using floating chambers distributed in the lakes based on depth categories and dissolved CH4 concentrations were determined by a headspace equilibration method. We observed significant differences in CH4 concentration, diffusion, ebullition and total fluxes between and within the lakes. The fluxes increased exponentially with temperature in all three lakes and water temperature, for example, explained 53-78% of variations in total fluxes in the lakes. Based on our data which relied on improved spatial and temporal information, we demonstrate that measurements which do not take into account of the spatial variability in the lakes could substantially bias the whole lake estimates. For instance, in one of the lakes, measurements from the central parts of the lake represented only 58% of our estimates from all chambers on an average. In addition, we consider how intensive sampling in one season of the year may affect the annual estimates due to the complex interaction of temperature, air pressure and lake mixing events on CH4 fluxes. For example, samples collected when the average air temperatures during chamber deployments were above 15 °C overestimated the total fluxes by 17-157% in all lakes when compared to averages from all measurement times.
An encoding readout method used for Multi-gap Resistive Plate Chambers (MRPCs) for muon tomography
NASA Astrophysics Data System (ADS)
Yue, X.; Zeng, M.; Wang, Y.; Wang, X.; Zeng, Z.; Zhao, Z.; Cheng, J.
2014-09-01
A muon tomography facility has been built in Tsinghua University. Because of the low flux of cosmic muon, an encoding readout method, based on the fine-fine configuration, was implemented for the 2880 channels induced signals from the Multi-gap Resistive Plate Chamber (MRPC) detectors. With the encoding method, the number of the readout electronics was dramatically reduced and thus the complexity and the cost of the facility was reduced, too. In this paper, the details of the encoding method, and the overall readout system setup in the muon tomography facility are described. With the commissioning of the facility, the readout method works well. The spatial resolution of all MRPC detectors are measured with cosmic muon and the preliminary imaging result are also given.
Emissions of organic compounds from produced water ponds I: Characteristics and speciation.
Lyman, Seth N; Mansfield, Marc L; Tran, Huy N Q; Evans, Jordan D; Jones, Colleen; O'Neil, Trevor; Bowers, Ric; Smith, Ann; Keslar, Cara
2018-04-01
We measured fluxes of methane, a suite of non-methane hydrocarbons (C2-C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013-2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions. Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6-C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Ryhti, Kira; Rannik, Üllar; Pihlatie, Mari
2017-04-01
Methane (CH4) is an important and strong greenhouse gas of which atmospheric concentration is rising. While boreal forests are considered as an important sink of CH4 due to soil CH4 oxidation, the soils have also a capacity to emit CH4. Moreover, vegetation is shown to contribute to the ecosystem-atmosphere CH4 flux, and it has been estimated to be the least well known natural sources of CH4. In addition to well-known CH4 emissions from wetland plants, even boreal trees have been discovered to emit CH4. At the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) II station in Hyytiälä, southern Finland (61° 51' N, 24°17' E; 181 m asl), we have detected small CH4 emissions from above the canopy of a Scots pine (Pinus sylvestris) dominated forest. To assess the origin of the observed emissions, we conducted forest floor CH4 flux measurements with 54 soil chambers at the footprint area of the above canopy flux measurements during two growing seasons. In addition, we measured the soil volumetric water content (VWC) every time next to the forest floor chamber measurements, and estimated vegetation coverages inside the chambers. In order to model the forest floor CH4 flux at the whole footprint area, we combined lidar (light detection and ranging) data with the field measurements. To predict the soil water content and thus the potential CH4 flux, we used local elevation, slope, and ground return intensity (GRI), calculated from the lidar data (National Land Survey of Finland). We categorized the soil chambers into four classes based on the VWC so that the class with the highest VWC values includes all the soil chambers with a potential to emit CH4. Based on a statistically significant correlation between the VWC and the forest floor CH4 flux (r = 0.30, p < 0.001), we modelled the potential forest floor CH4 flux of the whole area. The results of the soil chamber measurements show a few areas of the forest floor with significant CH4 emissions. The modelled map of the potential CH4 flux is consistent with the measurements of the flux and the VWC, indicating that the wetter areas have potential for CH4 emissions, while the drier areas have potential for CH4 uptake. Preliminary results of the vegetation coverage show a positive correlation between the first year forest floor CH4 flux and the coverage of Sphagnum spp. mosses (r = 0.55, p < 0.001). Furthermore, we will include the vegetation coverage to the analysis, and compare the modelled forest floor CH4 flux with the measured above canopy flux. This ongoing research will give valuable information about the CH4 sources and dynamics in boreal forests.
Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
2005-10-01
The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less
Towards a consistent approach of measuring and modelling CO2 exchange with manual chambers
NASA Astrophysics Data System (ADS)
Huth, Vytas; Vaidya, Shrijana; Hoffmann, Mathias; Jurisch, Nicole; Günther, Anke; Gundlach, Laura; Hagemann, Ulrike; Elsgaard, Lars; Augustin, Jürgen
2016-04-01
Determining ecosystem CO2 exchange with the manual closed chamber method has been applied in the past for e.g. plant, soil or treatment on a wide range of terrestrial ecosystems. Its major limitation is the discontinuous data acquisation challenging any gap-filling procedures. In addition, both data acquisition and gap-filling of closed chamber data have been carried out in different ways in the past. The reliability and comparability of the derived results from different closed chamber studies has therefore remained unclear. Hence, this study compares two different approaches of obtaining fluxes of gross primary production (GPP) either via sunrise to noon or via gradually-shaded mid-day measurements of transparent chamber fluxes (i.e. net ecosystem exchange, NEE) and opaque chamber fluxes (i.e., ecosystem respiration, RECO) on a field experiment plot in NE Germany cropped with a lucerne-clover-grass mix. Additionally, we compare three approaches of pooling RECO data for consecutive modelling of annual balances of NEE, i.e. campaign-wise (single measurement day RECO models), seasonal-wise (one RECO model for the entire study period), and cluster-wise (two RECO models representing low-/high-vegetation-stage data) modelling. The annual NEE balances of the sunrise to noon measurements are insensitive towards differing RECO modelling approaches (-101 to -131 g C m-2), whereas the choice of modelling annual NEE balances with the shaded mid-day measurements must be taken carefully (-200 to 425 g C m-2). In addition, the campaign-wise RECO modelling approach is very sensitive to daily data pooling (sunrise vs. mid-day) and only advisable when the diurnal variability of CO2 fluxes and environmental parameters (i.e. photosynthetically active radiation, temperature) is sufficiently covered. The seasonal- and cluster-wise approaches lead to robust NEE balances with only little variation in terms of daily data collection. We therefore recommend sunrise to noon measurements and data pooling from adjacent measurement campaigns as long as pooling over e.g. harvest events and significant changes in plant development can be omitted. If, e.g. for extensive treatment comparisons, the sunrise to noon measurements are not feasible due to their higher workload, data pooling accounting for plant development is necessary.
Aerodynamic performance of a low-speed wind tunnel.
Frechen, F-B; Frey, M; Wett, M; Löser, C
2004-01-01
The determination of the odour mass flow emitted from a source is a very important step and forms the basis for all subsequent considerations and calculations. Wastewater treatment plants, as well as waste treatment facilities, consist of different kinds of odour sources. Unfortunately, most of the sources are passive sources, where no outward air flow-rate can be measured, but where odorants are obviously emitted. Thus, a type of sampling is required that allows to measure the emitted odour flow-rate (OFR). To achieve this, different methods are in use worldwide. Besides indirect methods, such as micrometeorological atmospheric dispersion models, which have not been used in Germany (in other countries due to different problems, direct methods are also used). Direct measurements include hood methods, commonly divided into static flux chambers, dynamic flux chambers and wind tunnels. The wind tunnel that we have been operating in principle since 1983 is different from all subsequent presented wind tunnels, in that we operate it at a considerably lower wind speed than the others. To describe the behaviour of this wind tunnel, measurement of the flow pattern in this low-speed tunnel are under way, and some initial results are presented here.
NASA Astrophysics Data System (ADS)
Ammann, Christof; Voglmeier, Karl; Jocher, Markus
2017-04-01
Grazed pastures are considered as strong sources of the greenhouse gas nitrous oxide (N2O) with local hot-spots resulting from the uneven spatial distribution of the excretion of the grazing animals. Especially urine patches can result in a high local nitrogen (N) surplus, which can cause large deviations from average soil conditions. The strong spatial and temporal variability of the gaseous emissions represents an inherent problem for the quantification, interpretation and modelling. Micrometeorological methods integrating over a larger domain like the eddy covariance method are well suited to quantify the integrated ecosystem emissions of N2O. In contrast, chamber methods are more useful to investigate specific underlying processes and their dependences on driving parameters. We present results of a pasture experiment in western Switzerland where eddy covariance and chamber measurements of N2O fluxes have been performed using a very sensitive and fast response quantum cascade laser (QCL) instrument. Small scale emissions of N2O from dung and urine patches as well as from other "background" pasture surface areas were quantified using an optimized 'fast-box' chamber system. Variable and partly high N2O emissions of the pasture were observed during all seasons. Beside management factors (grazing phases, fertiliser application), temperature and soil moisture showed a large effect on the fluxes. Fresh urine patches from grazing cows were found to be main emission sources and their temporal dynamics was studied in detail. We present a first approach to up-scale the chamber measurements to the field-scale and compare the results with the eddy covariance measurements.
NASA Astrophysics Data System (ADS)
Lopes de Gerenyu, Valentin; Anichkin, Alexander
2016-04-01
Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the wet season, the CO2 emission rate was considerably higher and reached 266±40 and 520 ± 39 mg C/m2/h in SurAr and TerPl, respectively. The highest rates of CO2 fluxes (730-880 mg C/m2/h) were observed in the wet season in some of the chambers installed on TerPl. In the tropical forest, termites are the factor of the significant spatial variability in the CO2 fluxes from the soils. On the plots populated by termites, the coefficient of variation of CO2 emission rates reached 79%, while it rarely exceeded 45% on the surrounding area. The termite mounds occupy about 4% of the area of tropical forest ecosystems. However, the overall effect of termites on the carbon budget was more significant and, according to our estimates, it reached up to 10% of the total annual CO2 flux from the soils. Thus, underestimation of the influence of termites may lead to significant errors in the assessment of the organic carbon budget in the semi-deciduous tropical forests.
Zago, C; Capodaglio, G; Ceradini, S; Ciceri, G; Abelmoschi, L; Soggia, F; Cescon, P; Scarponi, G
2000-02-10
Trace heavy metal (Cd, Pb and Cu) and nitrogen species (N-NO3, N-NO2 and N-NH4) fluxes between sediment and water were examined for approximately 4 days, in a coastal marine station located in the northern Adriatic Sea in front of the River Po outflow. An in situ benthic chamber, equipped with electronic devices for monitoring and adjustment of oxygen and pH and with a temperature detector, was used. The benthic chamber experiment enabled study of the temporal trend of metals and nutrients when oxygen concentration varied in a controlled environment. Although particular care was devoted to chamber deposition and parameter control, sediment resuspension occurred at the beginning of the experiment and O2 fluctuations were observed during the course of the experiment. Pb concentration was affected by both resuspension and oxic conditions in bottom water, which prevented determination of any reasonable Pb flux value. Cd and Cu, not influenced by oxygen fluctuations, reached an equilibrium phase in a short period with initial positive fluxes from sediment of 0.68 (S.D. = 0.07) and 6.9 (S.D. = 5.6) pmol cm(-2) h(-1), respectively. With regard to nitrogen species, the highest positive flux was that of N-NH4 (10.5, S.D. = 2.4, nmol cm(-2) h(-1)) whose concentration increased in the chamber, while nitrate concentration (initial flux of -5.7, S.D. = 1.5, nmol cm(-2) h(-1)) immediately decreased after the beginning of the experiment. Nitrite concentration was almost constant throughout the experiment and its flux was generally low (initial flux 0.1, S.D. = 0.9, nmol cm(-2) h(-1)).
NASA Astrophysics Data System (ADS)
Korkiakoski, Mika; Tuovinen, Juha-Pekka; Aurela, Mika; Koskinen, Markku; Minkkinen, Kari; Ojanen, Paavo; Penttilä, Timo; Rainne, Juuso; Laurila, Tuomas; Lohila, Annalea
2017-04-01
We measured methane (CH4) exchange rates with automatic chambers at the forest floor of a nutrient-rich drained peatland in 2011-2013. The fen, located in southern Finland, was drained for forestry in 1969 and the tree stand is now a mixture of Scots pine, Norway spruce, and pubescent birch. Our measurement system consisted of six transparent chambers and stainless steel frames, positioned on a number of different field and moss layer compositions. Gas concentrations were measured with an online cavity ring-down spectroscopy gas analyzer. Fluxes were calculated with both linear and exponential regression. The use of linear regression resulted in systematically smaller CH4 fluxes by 10-45 % as compared to exponential regression. However, the use of exponential regression with small fluxes ( < 2.5 µg CH4 m-2 h-1) typically resulted in anomalously large absolute fluxes and high hour-to-hour deviations. Therefore, we recommend that fluxes are initially calculated with linear regression to determine the threshold for low
fluxes and that higher fluxes are then recalculated using exponential regression. The exponential flux was clearly affected by the length of the fitting period when this period was < 190 s, but stabilized with longer periods. Thus, we also recommend the use of a fitting period of several minutes to stabilize the results and decrease the flux detection limit. There were clear seasonal dynamics in the CH4 flux: the forest floor acted as a CH4 sink particularly from early summer until the end of the year, while in late winter the flux was very small and fluctuated around zero. However, the magnitude of fluxes was relatively small throughout the year, ranging mainly from -130 to +100 µg CH4 m-2 h-1. CH4 emission peaks were observed occasionally, mostly in summer during heavy rainfall events. Diurnal variation, showing a lower CH4 uptake rate during the daytime, was observed in all of the chambers, mainly in the summer and late spring, particularly in dry conditions. It was attributed more to changes in wind speed than air or soil temperature, which suggest that physical rather than biological phenomena are responsible for the observed variation. The annual net CH4 exchange varied from -104 ± 30 to -505 ± 39 mg CH4 m-2 yr-1 among the six chambers, with an average of -219 mg CH4 m-2 yr-1 over the 2-year measurement period.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Van, Luong
1992-01-01
The objective of this paper are to develop a multidisciplinary computational methodology to predict the hot-gas-side and coolant-side heat transfer and to use it in parametric studies to recommend optimized design of the coolant channels for a regeneratively cooled liquid rocket engine combustor. An integrated numerical model which incorporates CFD for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels, was developed. This integrated CFD/thermal model was validated by comparing predicted heat fluxes with those of hot-firing test and industrial design methods for a 40 k calorimeter thrust chamber and the Space Shuttle Main Engine Main Combustion Chamber. Parametric studies were performed for the Advanced Main Combustion Chamber to find a strategy for a proposed combustion chamber coolant channel design.
Du, Ping; Wang, Shi-Jie; Zhao, Huan-Huan; Wu, Bin; Han, Chun-Mei; Fang, Ji-Dun; Li, Hui-Ying; Hosomi, Masaaki; Li, Fa-Sheng
2013-12-01
The influencing factors of benzene diffusion fluxes from sand and black soil to atmosphere were investigated using a flux chamber (30.0 cm x 17.5 cm x 29.0 cm). In this study, the benzene diffusion fluxes were estimated by measuring the benzene concentrations both in the headspace of the chamber and in the soils of different layers. The results indicated that the soil water content played an important role in benzene diffusion fluxes. The diffusion flux showed positive correlation with the initial benzene concentration and the benzene dissolution concentration for both soil types. The changes of air flow rate from 300 to 900 mL x min(-1) and temperature from 20 degrees C to 40 degrees C resulted in increases of the benzene diffusion flux. Our study of benzene diffusion fluxes from contaminated soils will be beneficial for the predicting model, and emergency management and precautions.
BOREAS TGB-3 CH4 and CO2 Chamber Flux Data over NSA Upland Sites
NASA Technical Reports Server (NTRS)
Savage, Kathleen; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected methane and carbon dioxide (CH4, CO2) chamber flux measurements at the Northern Study Area (NSA) Fen, Old Black Spruce (OBS), Young Jack Pine (YJP), and auxiliary sites along Gillam Road and the 1989 burn site. Gas samples were extracted from chambers and analyzed at the NSA lab facility approximately every 7 days during May to September 1994 and June to October 1996. The data are provided in tabular ASCII files.
Eddy-covariance methane flux measurements over a European beech forest
NASA Astrophysics Data System (ADS)
Gentsch, Lydia; Siebicke, Lukas; Knohl, Alexander
2015-04-01
The role of forests in global methane (CH4) turnover is currently not well constrained, partially because of the lack of spatially integrative forest-scale measurements of CH4 fluxes. Soil chamber measurements imply that temperate forests generally act as CH4 sinks. Upscaling of chamber observations to the forest scale is however problematic, if the upscaling is not constrained by concurrent 'top-down' measurements, such as of the eddy-covariance type, which provide sufficient integration of spatial variations and of further potential CH4 flux components within forest ecosystems. Ongoing development of laser absorption-based optical instruments, resulting in enhanced measurement stability, precision and sampling speed, has recently improved the prospects for meaningful eddy-covariance measurements at sites with presumably low CH4 fluxes, hence prone to reach the flux detection limit. At present, we are launching eddy-covariance CH4 measurements at a long-running ICOS flux tower site (Hainich National Park, Germany), located in a semi natural, unmanaged, beech dominated forest. Eddy-covariance measurements will be conducted with a laser spectrometer for parallel CH4, H2Ov and CO2 measurements (FGGA, Los Gatos Research, USA). Independent observations of the CO2 flux by the FGGA and a standard Infrared Gas Analyser (LI-7200, LI-COR, USA) will allow to evaluate data quality of measured CH4 fluxes. Here, we want to present first results with a focus on uncertainties of the calculated CH4 fluxes with regard to instrument precision, data processing and site conditions. In future, we plan to compare eddy-covariance flux estimates to side-by-side turbulent flux observations from a novel eddy accumulation system. Furthermore, soil CH4 fluxes will be measured with four automated chambers situated within the tower footprint. Based on a previous soil chamber study at the same site, we expect the Hainich forest site to act as a CH4 sink. However, we hypothesize that our measurements might also reveal short CH4 emission periods when soils become water-saturated. Nonetheless, CH4 emissions by plants could also result in a close to neutral net CH4 flux.
Zheng, Ze-Mei; Yu, Gui-Rui; Sun, Xiao-Min; Cao, Guang-Min; Wang, Yue-Si; Du, Ming-Yuan; Li, Jun; Li, Ying-Nian
2008-02-01
Based on the measurement of carbon flux by the methods of eddy covariance and static chamber/gas chromatogram, a comparison was made between the two methods in evaluating ecosystem respiration over winter wheat (Triticum aestivum)--summer maize (Zea mays) double cropland and Kobresia humilis alpine meadow. The results showed that under the conditions of obtained data having good quality, nighttime ecosystem respiration from eddy covariance measurement was significantly agreed with that from static chamber/gas chromatogram measurement, with the correlation coefficients ranging from 0.95 to 0.98, and the daytime ecosystem respiration from these two measurements also had a good consistency though the static chamber/gas chromatogram measurement often produced higher values. The daily mean value of ecosystem respiration was significantly different between these two measurements, but the seasonal pattern was similar. For winter wheat-summer maize double cropland, the difference of mean air temperature inside and outside the chamber was 1.8 degrees C, and the daily mean value of ecosystem respiration across the whole study period was 30.3% lower in eddy covariance measurement than in static chamber/gas chromatogram measurement; while for alpine meadow, the difference of the mean air temperature was 1.9 degrees C, and the daily mean value of ecosystem respiration was 31.4% lower in eddy covariance measurement than in static chamber/gas chromatogram measurement. The variance between the daily mean values of ecosystem respiration obtained from the two measurements was higher in growing season than in dormant season.
Ionization chamber correction factors for MR-linacs
NASA Astrophysics Data System (ADS)
Pojtinger, Stefan; Steffen Dohm, Oliver; Kapsch, Ralf-Peter; Thorwarth, Daniela
2018-06-01
Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B. The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0–2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.
Ionization chamber correction factors for MR-linacs.
Pojtinger, Stefan; Dohm, Oliver Steffen; Kapsch, Ralf-Peter; Thorwarth, Daniela
2018-06-07
Previously, readings of air-filled ionization chambers have been described as being influenced by magnetic fields. To use these chambers for dosimetry in magnetic resonance guided radiotherapy (MRgRT), this effect must be taken into account by introducing a correction factor k B . The purpose of this study is to systematically investigate k B for a typical reference setup for commercially available ionization chambers with different magnetic field strengths. The Monte Carlo simulation tool EGSnrc was used to simulate eight commercially available ionization chambers in magnetic fields whose magnetic flux density was in the range of 0-2.5 T. To validate the simulation, the influence of the magnetic field was experimentally determined for a PTW30013 Farmer-type chamber for magnetic flux densities between 0 and 1.425 T. Changes in the detector response of up to 8% depending on the magnetic flux density, on the chamber geometry and on the chamber orientation were obtained. In the experimental setup, a maximum deviation of less than 2% was observed when comparing measured values with simulated values. Dedicated values for two MR-linac systems (ViewRay MRIdian, ViewRay Inc, Cleveland, United States, 0.35 T/ 6 MV and Elekta Unity, Elekta AB, Stockholm, Sweden, 1.5 T/7 MV) were determined for future use in reference dosimetry. Simulated values for thimble-type chambers are in good agreement with experiments as well as with the results of previous publications. After further experimental validation, the results can be considered for definition of standard protocols for purposes of reference dosimetry in MRgRT.
Numerical analysis of the transient flow in a scroll refrigeration compressor
NASA Astrophysics Data System (ADS)
Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi
2017-08-01
In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.
Small hydrogen/oxygen rocket flowfield behavior from heat flux measurements
NASA Technical Reports Server (NTRS)
Reed, Brian D.
1993-01-01
The mixing and heat transfer phenomena in small rocket flow fields with fuel film cooling is not well understood. An instrumented, water-cooled chamber with a gaseous hydrogen/gaseous oxygen injector was used to gather steady-state inner and outer wall temperature profiles. The chamber was tested at 414 kPa (60 psia) chamber pressure, from mixture ratios of 3.41 to 8.36. Sixty percent of the fuel was used for film cooling. These temperature profiles were used as boundary conditions in a finite element analysis program, MSC/NASTRAN, to calculate the local radial and axial heat fluxes in the chamber wall. The normal heat fluxes were then calculated and used as a diagnostic of the rocket's flow field behavior. The normal heat fluxes determined were on the order of 1.0 to 3.0 MW/meters squared (0.6 to 1.8 Btu/sec-inches squared). In the cases where mixture ratio was 5 or above, there was a sharp local heat flux maximum in the barrel section of the chamber. This local maximum seems to indicate a reduction or breakdown of the fuel film cooling layer, possibly due to increased mixing in the shear layer between the film and core flows. However, the flow was thought to be completely laminar, as the throat Reynolds numbers were below 50,000 for all the cases. The increased mixing in the shear layer in the higher mixture ratio cases appeared not to be due to the transition of the flow from laminar to turbulent, but rather due to increased reactions between the hydrogen film and oxidizer-rich core flows.
NASA Astrophysics Data System (ADS)
de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette
2016-04-01
In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the effect of tree shading on these fluxes, and discuss the applicability of isotopic data to partition understory evapotranspiration in soil evaporation and plant transpiration.
Verification of flux measurements made with in situ benthic chambers
NASA Astrophysics Data System (ADS)
Devol, Allan H.
1987-06-01
Exchange of solutes between the sediments and overlying water was measured in situ at two locations where the overlying waters were devoid of dissolved oxygen (Skan Bay, Alaska and the Tres Marias depression on the Mexican continental shelf). Measurements were made with a tripod capable of collecting eight sequential samples for analysis of dissolved gases and ions. The tripod also permitted tracer injection and the retrieval of sediments underlying the flux chambers. Because of the absence of oxygen, sediments from these areas did not contain benthic faunal populations, and it was possible to compare the benthic fluxes measured with the tripod with those calculated from pore water profiles. For solutes for which exchange was not limited by resistance in the diffuse sublayer (alkalinity, Si(OH) 4+, NH 4+, and PO 43-), tje 11 tirpod-measured fluxes agreed with those calculated from pore water gradients to within 25%. Benthic boundary layer thickness within the chambers as calculated from the initial rate of radiotracer uptake (tritiated water) varied from 405 to 605 μm in stirred chambers. Measured rates of NO 3- uptake were concordant with a boundary layer thickness of 600 μm.
Geslot, B; Vermeeren, L; Filliatre, P; Lopez, A Legrand; Barbot, L; Jammes, C; Bréaud, S; Oriol, L; Villard, J-F
2011-03-01
Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 10(20) n∕cm(2). A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.
NASA Astrophysics Data System (ADS)
Geslot, B.; Vermeeren, L.; Filliatre, P.; Lopez, A. Legrand; Barbot, L.; Jammes, C.; Bréaud, S.; Oriol, L.; Villard, J.-F.
2011-03-01
Flux monitoring is of great interest for experimental studies in material testing reactors. Nowadays, only the thermal neutron flux can be monitored on line, e.g., using fission chambers or self-powered neutron detectors. In the framework of the Joint Instrumentation Laboratory between SCK-CEN and CEA, we have developed a fast neutron detector system (FNDS) capable of measuring on line the local high-energy neutron flux in fission reactor core and reflector locations. FNDS is based on fission chambers measurements in Campbelling mode. The system consists of two detectors, one detector being mainly sensitive to fast neutrons and the other one to thermal neutrons. On line data processing uses the CEA depletion code DARWIN in order to disentangle fast and thermal neutrons components, taking into account the isotopic evolution of the fissile deposit. The first results of FNDS experimental test in the BR2 reactor are presented in this paper. Several fission chambers have been irradiated up to a fluence of about 7 × 1020 n/cm2. A good agreement (less than 10% discrepancy) was observed between FNDS fast flux estimation and reference flux measurement.
Concerning neutral flux shielding in the U-3M torsatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreval, N. B., E-mail: mdreval@kipt.kharkov.ua
2015-03-15
The volume of the torsatron U-3M vacuum chamber is about 70 m{sup 3}, whereas the plasma volume is about 0.3 m{sup 3}. The large buffer volume of the chamber serves as a source of a substantial neutral flux into the U-3M plasma. A fraction of this flux falls onto the torsatron helical coils located in front of the plasma, due to which the dynamics of neutral influx into the plasma modifies. The shielding of the molecular flux from the buffer volume into the plasma is estimated using numerical calculations. Only about 10% of the incident flux reaches the plasma volume.more » Estimates show that about 20% of atoms escape beyond the helical coils without colliding with them. Under these conditions, the helical coils substantially affect the neutral flux. A discharge regime with a hot low-density plasma produced by a frame antenna is considered. The spatial distribution of the molecular density produced in this regime by the molecular flux from the chamber buffer volume after it has passed between the helical coils is calculated. The contributions of the fluxes emerging from the side and inner surfaces of the helical coils are considered. The calculations show that the shape of the spatial distribution of the molecular density differs substantially from the shape of the magnetic surfaces.« less
NASA Astrophysics Data System (ADS)
Thompson, H. A.; Stern, J. C.; Graham, H. V.; Pratt, L. M.; White, J. R.
2014-12-01
The emission of CH4 from Arctic landscapes under warming climate is an important feedback in Earth's climate system. Studies of CH4 flux from Arctic wetlands have been growing in recent years, but few provide details on biogeochemical controls. Stable isotopic measurements help elucidate methane production and consumption pathways and offer important understanding about dynamics of CH4 cycling in Arctic systems. In order to demonstrate the possible instrumental approaches to measuring methane dynamics of wetlands in the Arctic, a fringing wetland of a small lake near the Russell Glacier in Southwestern Greenland was outfitted with static flux chambers and instrumented with a field-deployable Cavity Ring Down Spectrometer (CRDS) to measure real-time concentrations of CH4 and CO2 and their stable carbon isotopes. Several different wetland plant communities were included in the flux chamber experiments and field tests were conducted during several weeks in July 2014. Analytical measurements by CRDS were compared to batch samples analyzed in the laboratory using both Off-Axis Integrated Cavity Output Spectroscopy (ICOS) and Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) with cryogenic pre-concentration. Results from flux chamber deployments will be presented and comparisons between the real-time field measurements and laboratory instrumental techniques will be evaluated.
NASA Astrophysics Data System (ADS)
Fleck, D.; Gannon, L.; Kim-Hak, D.; Ide, T.
2016-12-01
Understanding methane emissions is of utmost importance due to its greenhouse warming potential. Methane emissions can occur from a variety of natural and anthropogenic sources which include wetlands, landfills, oil/gas/coal extraction activities, underground coal fires, and natural gas distribution systems. Locating and containing these emissions are critical to minimizing their environmental impacts and economically beneficial when retrieving large fugitive amounts. In order to design a way to mitigate these methane emissions, they must first be accurately quantified. One such quantification method is to measure methane fluxes, which is a measurement technique that is calculated based on rate of gas accumulation in a known chamber volume over methane seepages. This allows for quantification of greenhouse gas emissions at a localized level (sub one meter) that can complement remote sensing and other largescale modeling techniques to further paint the picture of emission points. High performance analyzers are required to provide both sufficient temporal resolution and precise concentration measurements in order to make these measurements over only minutes. A method of measuring methane fluxes was developed using the latest portable, battery-powered Cavity Ring-Down Spectroscopy analyzer from Picarro (G4301). In combination with a mobile accumulation chamber, the instrument allows for rapid measurement of methane and carbon dioxide fluxes over wide areas. For this study, methane fluxes that were measured at an underground coal fire near the Four Corners region using the Picarro analyzer are presented. The flux rates collected demonstrate the ability for the analyzer to detect methane fluxes across many orders of magnitude. Measurements were accompanied by simultaneously geotagging the measurements with GPS to georeferenced the data. Methane flux data were instrumental in our ability to characterize the extent and the migration of the underground fire. In the future, examining the tradeoffs and dynamics between methane and carbon dioxide emissions will allow us to further understand the propagation and evolution of these large greenhouse gas emitters.
NASA Technical Reports Server (NTRS)
Berdahl, C. M.; Thiele, C. L. (Inventor)
1979-01-01
For use in combination with a heat engine, a thermal energy transformer is presented. It is comprised of a flux receiver having a first wall defining therein a radiation absorption cavity for converting solar flux to thermal energy, and a second wall defining an energy transfer wall for the heat engine. There is a heat pipe chamber interposed between the first and second walls having a working fluid disposed within the chamber and a wick lining the chamber for conducting the working fluid from the second wall to the first wall. Thermal energy is transferred from the radiation absorption cavity to the heat engine.
Energy spectrum of medium energy gamma-rays from the galactic center region. [experimental design
NASA Technical Reports Server (NTRS)
Palmeira, R. A. R.; Ramanujarao, K.; Dutra, S. L. G.; Bertsch, D. L.; Kniffen, D. A.; Morris, D. J.
1978-01-01
A balloon-borne magnetic core digitized spark chamber with two assemblies of spark-chambers above and below the scintillation counters was used to measure the medium energy gamma ray flux from the galactic center region. Gamma ray calculations are based on the multiple scattering of the pair electrons in 15 aluminum plates interleaved in the spark chamber modules. Counting rates determined during ascent and at ceiling indicate the presence of diffuse component in this energy range. Preliminary results give an integral flux between 15 and 70 MeV compared to the differential points in other results.
USDA-ARS?s Scientific Manuscript database
Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3) and odorous volatile organic compound (VOC) emissions associated with animal production is a critical need. Current methods utilizing wind tunnels and flux chambers for measurements of gaseous emissions from area sources such as f...
Multimodal optical imaging of microvessel network convective oxygen transport dynamics.
Dedeugd, Casey; Wankhede, Mamta; Sorg, Brian S
2009-04-01
Convective oxygen transport by microvessels depends on several parameters, including red blood cell flux and oxygen saturation. We demonstrate the use of intravital microscopy techniques to measure hemoglobin saturations, red blood cell fluxes and velocities, and microvessel cross-sectional areas in regions of microvascular networks containing multiple vessels. With these methods, data can be obtained at high spatial and temporal resolution and correlations between oxygen transport and hemodynamic parameters can be assessed. In vivo data are presented for a mouse mammary adenocarcinoma grown in a dorsal skinfold window chamber model.
NASA Astrophysics Data System (ADS)
Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.
2015-12-01
Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.
Near-Continuous Isotopic Characterization of Soil N2O Fluxes from Maize Production
NASA Astrophysics Data System (ADS)
Anex, R. P.; Francis Clar, J.
2015-12-01
Isotopomer ratios of N2O and especially intramolecular 15N site preference (SP) have been proposed as indicators of the sources of N2O and for providing insight into the contributions of different microbial processes. Current knowledge, however, is mainly based on pure culture studies and laboratory flask studies using mass spectrometric analysis. Recent development of laser spectroscopic methods has made possible high-precision, in situ measurements. We present results from a maize production field in Columbia County, Wisconsin, USA. Data were collected from the fertilized maize phase of a maize-soybean rotation. N2O mole fractions and isotopic composition were determined using an automatic gas flux measurement system comprising a set of custom-designed automatic chambers, circulating gas paths and an OA-ICOS N2O Isotope Analyzer (Los Gatos Research, Inc., Model 914-0027). The instrument system allows for up to 15 user programmable soil gas chambers. Wide dynamic range and parts-per-billion precision of OA-ICOS laser absorption instrument allows for extremely rapid estimation of N2O fluxes. Current operational settings provide measurements of N2O and its isotopes every 20 seconds with a precision of 0.1 ± 0.050 PPB. Comparison of measurements from four chambers (two between row and two in-row) show very different aggregate N2O flux, but SP values suggest similar sources from nitrifier denitrification and incomplete bacterial denitrification. SP values reported are being measured throughout the current growing season. To date, the majority of values are consistent with an origin from bacterial denitrification and coincide with periods of high water filled pore space.
NASA Astrophysics Data System (ADS)
Klosterhalfen, Anne; Moene, Arnold; Schmidt, Marius; Ney, Patrizia; Graf, Alexander
2017-04-01
Source partitioning of eddy covariance (EC) measurements of CO2 into respiration and photosynthesis is routinely used for a better understanding of the exchange of greenhouse gases, especially between terrestrial ecosystems and the atmosphere. The most frequently used methods are usually based either on relations of fluxes to environmental drivers or on chamber measurements. However, they often depend strongly on assumptions or invasive measurements and do usually not offer partitioning estimates for latent heat fluxes into evaporation and transpiration. SCANLON and SAHU (2008) and SCANLON and KUSTAS (2010) proposed an promising method to estimate the contributions of transpiration and evaporation using measured high frequency time series of CO2 and H2O fluxes - no extra instrumentation necessary. This method (SK10 in the following) is based on the spatial separation and relative strength of sources and sinks of CO2 and water vapor among the sub-canopy and canopy. Assuming that air from those sources and sinks is not yet perfectly mixed before reaching EC sensors, partitioning is estimated based on the separate application of the flux-variance similarity theory to the stomatal and non-stomatal components of the regarded fluxes, as well as on additional assumptions on stomatal water use efficiency (WUE). The CO2 partitioning method after THOMAS et al. (2008) (TH08 in the following) also follows the argument that the dissimilarities of sources and sinks in and below a canopy affect the relation between H2O and CO2 fluctuations. Instead of involving assumptions on WUE, TH08 directly screens their scattergram for signals of joint respiration and evaporation events and applies a conditional sampling methodology. In spite of their different main targets (H2O vs. CO2), both methods can yield partitioning estimates on both fluxes. We therefore compare various sub-methods of SK10 and TH08 including own modifications (e.g., cluster analysis) to each other, to established source partitioning methods, and to chamber measurements at various agroecosystems. Further, profile measurements and a canopy-resolving Large Eddy Simulation model are used to test the assumptions involved in SK10. Scanlon, T.M., Kustas, W.P., 2010. Partitioning carbon dioxide and water vapor fluxes using correlation analysis. Agricultural and Forest Meteorology 150 (1), 89-99. Scanlon, T.M., Sahu, P., 2008. On the correlation structure of water vapor and carbon dioxide in the atmospheric surface layer: A basis for flux partitioning. Water Resources Research 44 (10), W10418, 15 pp. Thomas, C., Martin, J.G., Goeckede, M., Siqueira, M.B., Foken, T., Law, B.E., Loescher H.W., Katul, G., 2008. Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agricultural and Forest Meteorology 148 (8-9), 1210-1229.
Gas exchange rates across the sediment-water and air-water interfaces in south San Francisco Bay
Hartman, Blayne; Hammond, Douglas E.
1984-01-01
Radon 222 concentrations in the water and sedimentary columns and radon exchange rates across the sediment-water and air-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water exchange rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon exchange across the air-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas exchange is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas exchange rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas exchange models.
NASA Astrophysics Data System (ADS)
Steenberg Larsen, Klaus; Riis Christiansen, Jesper
2016-04-01
Soil-atmosphere exchange of greenhouse gases (GHGs) is commonly measured with closed static chambers (Pihlatie et al., 2013) with off-site gas chromatographic (GC) analysis for CH4 and N2O. Static chambers are widely used to observe in detail the effect of experimental manipulations, like climate change experiments, on GHG exchange (e.g. Carter et al., 2012). However, the low sensitivity of GC systems necessitates long measurement times and manual sampling, which increases the disturbance of the exchange of GHGs and leads to potential underestimation of fluxes (Christiansen et al., 2011; Creelman et al., 2013). The recent emergence of field proof infrared lasers using cavity ring-down spectroscopy (CRDS) have increased frequency and precision of concentration measurements and enabled better estimates of GHG fluxes (Christiansen et al., 2015) due to shorter chamber enclosure times. This minimizes the negative impact of the chamber enclosure on the soil-atmosphere gas exchange rate. Secondly, an integral aspect of understanding GHG exchange in terrestrial ecosystem is to achieve high temporal coverage. This is needed to capture the often dynamic behavior where fluxes can change rapidly over the course of days or even a few hours in response to e.g. rain events. Consequently, low temporal coverage in measurements of GHG exchange have in many past investigations led to highly uncertain annual budgets which severely limits our understanding of the ecosystem processes interacting with the climate system through GHG exchange. Real-time field measurements at high temporal resolution are needed to obtain a much more detailed understanding of the processes governing ecosystem CH4 exchange as well as for better predicting the effects of climate and environmental changes. We combined a state-of-the-art field applicable CH4 sensor (Los Gatos UGGA) with a newly developed ecosystem-level automatic chamber controlled by a LI-COR 8100/8150 system. The chamber is capable of switching automatically between transparent and darkened mode enabling for separation of light-sensitive and light-indifferent processes in chambers. In a pilot study we measured hourly fluxes of CO2, H2O and CH4 continuously for two weeks in Danish Calluna vulgaris (common heather) heathland (Larsen et al. 2011). We will present an analysis of the novel, high-frequency data of CH4 fluxes under light and dark conditions, assess the advantages and limitations of the experimental setup and recommend future improvements of the technology involved. References: Carter, M.S., Larsen, K.S., et al. 2012. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands: responses to climatic and environmental changes. Biogeosciences 3739-3755. Christiansen, J.R., Korhonen, J.F.J., et al. 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant and Soil 343, 171-185. Christiansen, J.R., Outhwaite, J., et al. 2015. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agricultural and Forest Meteorology 211-212, 48-57. Creelman, C., Nickerson, N., Risk, D., 2013. Quantifying Lateral Diffusion Error in Soil Carbon Dioxide Respiration Estimates using Numerical Modeling. Soil Science Society of America Journal 77, 699-708. Larsen, K.S., Andresen, L.C., et al. 2011. Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Global Change Biology 17, 1884-1899. Pihlatie, M.K., Christiansen, J.R., et al. 2013. Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology 171-172, 124-136.
Benthic long-term Observatories based on Lander Technology
NASA Astrophysics Data System (ADS)
Linke, P.; Pfannkuche, O.; Sommer, S.; Gubsch, S.; Gust, G.
2003-04-01
Landers are autonomous carrier systems for a wide range of scientific applications. The GEOMAR Lander System is based on a tripod-shaped platform for various scientific payloads to monitor, measure and experiment at the deep sea floor. These landers can be deployed using hybrid fibre optical or coaxial cables with a special launching device or in the conventional free falling mode. The launcher enables accurate positioning on meter scale, soft deployment and rapid disconnection of lander and launcher by an electric release. The bi-directional video and data telemetry provides on line video transmission, power supply and surface control of various relay functions. Within the collaborative project LOTUS novel long-term observatories have been developed and integrated into the GEOMAR Lander System. An overview of the recent developments is presented. Two new observatories are presented in detail to study the temporal variability of physico-chemical and biogeochemical mechanisms, flux- and turnover rates related to the decomposition and formation of near surface gas hydrates embedded in their original sedimentary matrix. With the Biogeochemical Observatory, BIGO, the temporal variability of the biologically facilitated methane turnover in the sediment and fluxes across the sediment water interface is studied in two mesocosms. Inside the mesocosms the oxygen content can be maintained by a chemostat. The in situ flow regime is measured outside the mesocosms and is reproduced within the chamber with an intelligent stirring system. This approach represents a major step in the development of benthic chambers from stationary to dynamic systems. The Fluid-Flux Observatory (FLUFO) measures the different types of fluid fluxes at the benthic boundary layer of sediments overlying near surface gas hydrates and monitors relevant environmental parameters as temperature, pressure and near bottom currents. FLUFO consists of two chamber units. Both units separate the gas phase from the aqueous phase and measure their individual contribution to the total fluid flux. Whereas the first (reference) chamber measures the aqueous flux without obtaining information about their direction, the second (FLUFO) chamber measures the aqueous flux including the direction discriminating between outward flow, stagnation and inward flow.
Absolute photon-flux measurements in the vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Haddad, G. N.
1974-01-01
Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.
Evans, William C.; Sorey, M.L.; Kennedy, B.M.; Stonestrom, David A.; Rogie, J.D.; Shuster, D.L.
2001-01-01
Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was constructed in the laboratory where known fluxes could be maintained through dry sand. Steady-state gas concentration profiles and fractionation effects observed in the 30-cm sand column nearly match those predicted by the Stefan-Maxwell equations, indicating that the test system was functioning successfully as a uniform porous medium. Eight groups of investigators tested their accumulation chamber equipment, all configured with continuous infrared gas analyzers (IRGA), in this system. Over a flux range of ~ 200-12,000 g m-2 day-1, 90% of their 203 flux measurements were 0-25% lower than the imposed flux with a mean difference of - 12.5%. Although this difference would seem to be within the range of acceptability for many geologic investigations, some potential sources for larger errors were discovered. A steady-state pressure gradient of -20 Pa/m was measured in the sand column at a flux of 11,200 g m-2 day-1. The derived permeability (50 darcies) was used in the dusty-gas model (DGM) of transport to quantify various diffusive and viscous flux components. These calculations were used to demonstrate that accumulation chambers, in addition to reducing the underlying diffusive gradient, severely disrupt the steady-state pressure gradient. The resultant diversion of the net gas flow is probably responsible for the systematically low flux measurements. It was also shown that the fractionating effects of a viscous CO2 efflux against a diffusive influx of air will have a major impact on some important geochemical indicators, such as N2/Ar, ??15N-N2, and 4He/22Ne. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Birtok-Băneasă, C.; Raţiu, S.; Puţan, V.; Josan, A.
2018-01-01
The present paper focuses on calculation of thermal conductivity for a new materials developed by the authors, using the heat flux plate method. This experimental method consists in placing the sample of the new material in a calorimetric chamber and heating from underside. As the heat flux which passes through the sample material is constant and knowing the values of the temperatures for the both sides of sample, the sample material thermal conductivity is determined. Six types of different materials were tested. Based on the experimental data, the values of the thermal conductivity according to the material and the average temperature were calculated and plotted.
Minimizing field time to get reasonable greenhouse gas flux estimates from many chambers
USDA-ARS?s Scientific Manuscript database
Greenhouse gas measurements from soil are typically derived from static chambers placed in several replicate field plots and in multiple locations within a plot. Inherent variability in emissions is due to a number of known and unknown factors. Getting robust emission estimates from numerous chamber...
NASA Astrophysics Data System (ADS)
Ibrom, Andreas; Brümmer, Christian; Hensen, Arjan; van Asperen, Hella; Carter, Mette S.; Gasche, Rainer; Famulari, Daniela; Kutsch, Werner; Pilegaard, Kim; Ambus, Per
2014-05-01
Nitrous oxide (N2O) fluxes from soils are characterised by their high spatial and temporal variability. The fluxes depend on the availability of the substrates for nitrification and denitrification and soil physical and chemical conditions that control the metabolic microbial activity. The sporadic nature of the fluxes and their high sensitivity to alterations of the soil climate put very high demands on measurement approaches. Laser spectroscopy enables accurate and fast response detection of atmospheric N2O concentrations and is used for eddy covariance (EC) flux measurements. Alternatively N2O fluxes can be measured with chambers together with high precision analysers. Differences in the measurement approaches and system designs are expected to have a considerable influence on the accuracy of the flux estimation. This study investigates how three different eddy covariance systems perform in a situation of low N2O fluxes from a flat surface. Chamber flux measurements with differing chamber and analyser designs are used for comparison. In April 2013, the EU research infrastructure project InGOS (http://www.ingos-infrastructure.eu/) organised a campaign of N2O flux measurements in a willow plantation close to the Risø Campus of the Technical University of Denmark. The willow field was harvested in February 2013 and received mineral fertiliser equivalent to 120 kg N ha-1 before the campaign started. Three different eddy covariance systems took part in the campaign: two Aerodyne quantum cascade laser (QCL) based systems and one Los Gatos Research off-axis integrated-cavity-output spectroscopy (ICOS) system for N2O and CO. The sonic anemometers were all installed at 2 m height above the bare ground. Gill R3 type sonic anemometers were used with QCL systems and a Gil HS-50 with the ICOS system. The 10 Hz raw data were analysed with group specific softwares and procedures. The local conditions in the exceptionally cold and dry spring 2013 did not lead to large N2O flux rates. All three EC systems showed 30 min. flux values varying around zero nmol m-2 s-1. This noise was considerably lower in the EC systems that used QCL analysers. The maximum daily averages of the uncorrected fluxes from two of the EC systems reached 0.26 (ICOS/HS50) and 0.28 (QCL/R3) nmol m-2 s-1.Spectral correction increased the flux estimates up to, e.g., 180% equivalent to 0.54 nmol m-2 s-1. The flux estimates from the soil chambers were with one exception higher than the flux estimates obtained from the EC systems with highest daily averages ranging from 0.1 up to 2 nmol m-2 s-1. These large differences were unexpected, because at least two of the EC systems were shown to accurately measure fluxes at such higher levels at another InGOS campaign in a fertilised Scottish grazed meadow. We use spectral analysis to examine the raw data for the effects of sensor noise on the flux estimates and discuss strategies on how to correct or account for it. Furthermore possible causes for the observed differences between the observed EC and chamber flux estimates will be discussed.
Semiconductor etching by hyperthermal neutral beams
NASA Technical Reports Server (NTRS)
Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)
1999-01-01
An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.
NASA Astrophysics Data System (ADS)
Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.
2000-04-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.
2000-01-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
Garcia, C. Amanda; Johnson, Michael J.; Andraski, Brian J.; Halford, Keith J.; Mayers, C. Justin
2008-01-01
Portable chamber measurements of evapotranspiration (ET) were made at the U.S. Geological Survey's Amargosa Desert Research Site in southern Nevada to help quantify component- and landscape-scale contributions to ET in an arid environment. Evapotranspiration data were collected approximately every 3 months from 2003 to 2006. Chamber measurements of ET were partitioned into bare-soil evaporation and mixed-species transpiration components. The component-scale ET fluxes from native shrubs typically surpassed those from bare soil by as much as a factor of four. Component-scale ET fluxes were extrapolated to landscape-scale ET using a one-layer, multi-component canopy model. Landscape-scale ET fluxes predominantly were controlled by bare-soil evaporation. Bare soil covered 94 percent of the landscape on average and contributed about 70 percent of the landscape-scale vapor flux. Creosote bush, an evergreen shrub, accounted for about 90 percent of transpiration on average due to its dominance across the landscape (80 percent of the 6 percent shrub cover) and evergreen character.
Increased wintertime CO2 loss as a result of sustained tundra warming
NASA Astrophysics Data System (ADS)
Webb, Elizabeth E.; Schuur, Edward A. G.; Natali, Susan M.; Oken, Kiva L.; Bracho, Rosvel; Krapek, John P.; Risk, David; Nickerson, Nick R.
2016-02-01
Permafrost soils currently store approximately 1672 Pg of carbon (C), but as high latitudes warm, this temperature-protected C reservoir will become vulnerable to higher rates of decomposition. In recent decades, air temperatures in the high latitudes have warmed more than any other region globally, particularly during the winter. Over the coming century, the arctic winter is also expected to experience the most warming of any region or season, yet it is notably understudied. Here we present nonsummer season (NSS) CO2 flux data from the Carbon in Permafrost Experimental Heating Research project, an ecosystem warming experiment of moist acidic tussock tundra in interior Alaska. Our goals were to quantify the relationship between environmental variables and winter CO2 production, account for subnivean photosynthesis and late fall plant C uptake in our estimate of NSS CO2 exchange, constrain NSS CO2 loss estimates using multiple methods of measuring winter CO2 flux, and quantify the effect of winter soil warming on total NSS CO2 balance. We measured CO2 flux using four methods: two chamber techniques (the snow pit method and one where a chamber is left under the snow for the entire season), eddy covariance, and soda lime adsorption, and found that NSS CO2 loss varied up to fourfold, depending on the method used. CO2 production was dependent on soil temperature and day of season but atmospheric pressure and air temperature were also important in explaining CO2 diffusion out of the soil. Warming stimulated both ecosystem respiration and productivity during the NSS and increased overall CO2 loss during this period by 14% (this effect varied by year, ranging from 7 to 24%). When combined with the summertime CO2 fluxes from the same site, our results suggest that this subarctic tundra ecosystem is shifting away from its historical function as a C sink to a C source.
[Comparison of air/soil mercury exchange between warm and cold season in Hongfeng Reservoir region].
Wang, Shao-feng; Feng, Xin-bin; Qiu, Guang-le; Fu, Xue-wu
2004-01-01
In July 2002 and March 2003, the mercury exchange flux between soil and air was measured using dynamic flux chamber method in Hongfeng Reservoir region. Mercury exchange flux is (27.4 +/- 40.1) ng x (m2 x h)(-1) (n = 255) and (5.6 +/- 19.4) ng x (m2 x h)(-1) (n = 192) in summer and winter respectively. The correlation coefficient between mercury flux and solar radiation, air temperature, soil temperature is 0.74, 0.83 and 0.80 in summer, and 0.88, 0.56 and 0.59 in winter. From the data, it was found that the mercury emission is stronger in summer than that in winter, and compared to winter, mercury exchange between soil and air depends more on meteorological conditions in summer.
Partitioning autotrophic and heterotrophic respiration at Howland Forest
NASA Astrophysics Data System (ADS)
Carbone, Mariah; Hollinger, Dave; Davidson, Eric; Savage, Kathleen; Hughes, Holly
2015-04-01
Terrestrial ecosystem respiration is the combined flux of CO2 to the atmosphere from above- and below-ground, plant (autotrophic) and microbial (heterotrophic) sources. Flux measurements alone (e.g., from eddy covariance towers or soil chambers) cannot distinguish the contributions from these sources, which may change seasonally and respond differently to temperature and moisture. The development of improved process-based models that can predict how plants and microbes respond to changing environmental conditions (on seasonal, interannual, or decadal timescales) requires data from field observations and experiments to distinguish among these respiration sources. We tested the viability of partitioning of soil and ecosystem respiration into autotrophic and heterotrophic components with different approaches at the Howland Forest in central Maine, USA. These include an experimental manipulation using the classic root trenching approach and targeted ∆14CO2 measurements. For the isotopic measurements, we used a two-end member mass balance approach to determine the fraction of soil respiration from autotrophic and heterotrophic sources. When summed over the course of the growing season, the trenched chamber flux (heterotrophic) accounted for 53 ± 2% of the total control chamber flux. Over the four different 14C sampling periods, the heterotrophic component ranged from 35-55% and the autotrophic component ranges 45-65% of the total flux. Next steps will include assessing the value of the flux partitioning for constraining a simple ecosystem model using a model-data fusion approach to reduce uncertainties in estimates of NPP and simulation of future soil C stocks and fluxes.
Visual monitoring of the melting front propagation in a paraffin-based PCM
NASA Astrophysics Data System (ADS)
Charvát, Pavel; Štětina, Josef; Mauder, Tomáš; Klimeš, Lubomír
Experiments were carried out in an environmental chamber with the aim to monitor the melting front propagation in a rectangular cavity filled with a paraffin-based Phase Change Material (PCM). The PCM was contained in transparent containers with the heat flux introduced by means of an electric heating element. The stabilized power source was used to maintain the constant heat output of the heating elements. The experiments were performed for the heat flux introduced at the side wall of the container and at the upper surface of the PCM. The paraffin-based PCM RT28HC with the phase change temperature of 28 °C was used in the experiments. The temperature in the environmental chamber was maintained at the melting temperature of the PCM. The propagation of the melting front was monitored with a digital camera and temperatures at several locations were monitored with RTDs and thermocouples. Significant natural convection was observed for the heat flux introduced at the side wall of the container. As a result the melting front propagated much faster at the top of the container than at its bottom. The heat flux introduced at the upper-surface of the PCM resulted in almost one-dimensional propagation of the melting front. The acquired data are to be used for validation of an in-house developed numerical model based on the front-tracking method.
Improved chamber systems for rapid, real-time nitrous oxide emissions from manure and soil
USDA-ARS?s Scientific Manuscript database
Nitrous oxide (N2O) emission rates have traditionally been measured using non-flow-through, non-steady-state (NFT-NSS) chambers, which rely on measuring the increase in N2O concentration in the sealed chamber headspace over time. These flux measurements are very labor and time intensive, requiring ...
USDA-ARS?s Scientific Manuscript database
Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...
Nitrous oxide fluxes from a claypan soil overlying nitrate-enriched glacial drift
Pomes, M.L.; Wilkison, D.H.; McMahon, P.B.
1998-01-01
The closed chamber method was used to assess nitrous oxide (N2O) fluxes from corn (Zea mays, L.) fields during the 1995 growing season. The study area was characterized by a claypan soil overlying a nitrate (NO31-)-enriched glacial-drift aquifer. Denitrification produced N2O fluxes of 0.2-6.9 g ha-1 hr-1 early in the growing season. Fluxes increased with increasing soil temperature, soil water potential, and soil saturation. However, greatly diminished N2O fluxes (0.001-0.09 gha-1 hr-1) occurred when soil saturation increased to 94 percent. Losses of N2O increased linearly during the day and decreased at night, probably because of declining soil temperatures. Declines in soil saturation (less than 80 percent) and soil moisture potential (less than -10 kPa) produced late season N2O fluxes (0.03-0.8 g ha-1 hr-1) attributable to nitrification. Results indicate that denitrification would not significantly reduce claypan soil NO31- concentrations.
Impact of rapeseed cropping on the soil carbon balance
NASA Astrophysics Data System (ADS)
Moffat, Antje Maria; Herbst, Mathias; Huth, Vytas; Andres, Monique; Augustin, Jürgen
2015-04-01
Winter oilseed rape is the dominant biofuel crop in the young moraine landscape in Northern Germany. Since the cultivation of biofuel crops requires sustainability compared to fossil fuels by law, detailed knowledge about their green house gas (GHG) balance is necessary. The soil carbon balance is one of the key contributors to the total GHG balance and also very important for the assessment of soil fertility. However, the knowledge about the impact of different management practices on the soil carbon balance is very limited up to now. Therefore, we investigated the carbon fluxes of winter oilseed rape at field plots near Dedelow/Uckermark in NE Germany with different treatments of fertilization (mineral versus organic) and tillage (no-till and mulch-till versus ploughing). The dynamics of the carbon fluxes are mainly driven by the current climatic conditions but the overall response depends strongly on the ecosystem state (with its physiological and microbiological properties) which is affected by management. To get the full carbon flux dynamics but also the impact of the different management practices, two different approaches were used: The eddy covariance technique to get continuous fluxes throughout the year and the manual chamber technique to detect flux differences between specific management practices. The manual chamber measurements were conducted four-weekly as all-day campaigns using a flow-through non-steady-state closed chamber system. The fluxes in-between campaigns were gap-filled based on functional relationships with soil and air temperature (for the ecosystem respiration) and photosynthetic active radiation (for the gross primary production). All results presented refer to the cropping season 2012-2013. The combination of the two measurement techniques allows the evaluation of chamber fluxes including an independent estimate of the error on the overall balances. Despite the considerable errors, there are significant differences in the soil carbon balance between the tillage and fertilization treatments - ranging from net losses to net gains in the soil carbon stock.
Measuring herbicide volatilization from bare soil.
Yates, S R
2006-05-15
A field experiment was conducted to measure surface dissipation and volatilization of the herbicide triallate after application to bare soil using micrometeorological, chamber, and soil-loss methods. The volatilization rate was measured continuously for 6.5 days and the range in the daily peak values for the integrated horizontal flux method was from 32.4 (day 5) to 235.2 g ha(-1) d(-1) (day 1), for the theoretical profile shape method was from 31.5 to 213.0 g ha(-1) d(-1), and for the flux chamber was from 15.7 to 47.8 g ha(-1) d(-1). Soil samples were taken within 30 min after application and the measured mass of triallate was 8.75 kg ha(-1). The measured triallate mass in the soil at the end of the experiment was approximately 6 kg ha(-1). The triallate dissipation rate, obtained by soil sampling, was approximately 334 g ha(-1) d(-1) (98 g d(-1)) and the average rate of volatilization was 361 g ha(-1) d(-1). Soil sampling at the end of the experiment showed that approximately 31% (0.803 kg/2.56 kg) of the triallate mass was lost from the soil. Significant volatilization of triallate is possible when applied directly to the soil surface without incorporation.
High-pressure calorimeter chamber tests for liquid oxygen/kerosene (LOX/RP-1) rocket combustion
NASA Technical Reports Server (NTRS)
Masters, Philip A.; Armstrong, Elizabeth S.; Price, Harold G.
1988-01-01
An experimental program was conducted to investigate the rocket combustion and heat transfer characteristics of liquid oxygen/kerosene (LOX/RP-1) mixtures at high chamber pressures. Two water-cooled calorimeter chambers of different combustion lengths were tested using 37- and 61-element oxidizer-fuel-oxidizer triplet injectors. The tests were conducted at nominal chamber pressures of 4.1, 8.3, and 13.8 MPa abs (600, 1200, and 2000 psia). Heat flux Q/A data were obtained for the entire calorimeter length for oxygen/fuel mixture ratios of 1.8 to 3.3. Test data at 4.1 MPa abs compared favorably with previous test data from another source. Using an injector with a fuel-rich outer zone reduced the throat heat flux by 47 percent with only a 4.5 percent reduction in the characteristic exhaust velocity efficiency C* sub eff. The throat heat transfer coefficient was reduced approximately 40 percent because of carbon deposits on the chamber wall.
Advanced high performance vertical hybrid synthetic jet actuator
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2011-01-01
The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.
Magnetron with flux switching cathode and method of operation
Aaron, D.B.; Wiley, J.D.
1989-09-12
A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness. 5 figs.
Magnetron with flux switching cathode and method of operation
Aaron, David B.; Wiley, John D.
1989-01-01
A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness.
Contamination control and plume assessment of low-energy thrusters
NASA Technical Reports Server (NTRS)
Scialdone, John J.
1993-01-01
Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.
NASA Astrophysics Data System (ADS)
Sollberger, S.; Perez, K.; Schubert, C. J.; Eugster, W.; Wehrli, B.; Del Sontro, T.
2013-12-01
Currently, carbon dioxide (CO2) and methane (CH4) emissions from lakes, reservoirs and rivers are readily investigated due to the global warming potential of those gases and the role these inland waters play in the carbon cycle. However, there is a lack of high spatiotemporally-resolved emission estimates, and how to accurately assess the gas transfer velocity (K) remains controversial. In anthropogenically-impacted systems where run-of-river reservoirs disrupt the flow of sediments by increasing the erosion and load accumulation patterns, the resulting production of carbonic greenhouse gases (GH-C) is likely to be enhanced. The GH-C flux is thus counteracting the terrestrial carbon sink in these environments that act as net carbon emitters. The aim of this project was to determine the GH-C emissions from a medium-sized river heavily impacted by several impoundments and channelization through a densely-populated region of Switzerland. Estimating gas emission from rivers is not trivial and recently several models have been put forth to do so; therefore a second goal of this project was to compare the river emission models available with direct measurements. Finally, we further validated the modeled fluxes by using a combined approach with water sampling, chamber measurements, and highly temporal GH-C monitoring using an equilibrator. We conducted monthly surveys along the 120 km of the lower Aare River where we sampled for dissolved CH4 (';manual' sampling) at a 5-km sampling resolution, and measured gas emissions directly with chambers over a 35 km section. We calculated fluxes (F) via the boundary layer equation (F=K×(Cw-Ceq)) that uses the water-air GH-C concentration (C) gradient (Cw-Ceq) and K, which is the most sensitive parameter. K was estimated using 11 different models found in the literature with varying dependencies on: river hydrology (n=7), wind (2), heat exchange (1), and river width (1). We found that chamber fluxes were always higher than boundary layer results based on ';manual' sampling. The closest flux approximation was obtained using the river width-dependent model. The higher fluxes obtained by the chambers could partially be explained by an enhanced turbulence created in the chambers themselves, especially because the ratio between the water surface area and chamber volume was rather small. The high resolution combined sampling approach helped constrain K and determine which river model best fits Aare River emissions. This experimental setup ultimately allows us to (1) define the dependence of K, (2) measure CH4 and CO2 fluxes from the main river and different tributaries more accurately, (3) estimate more spatially-resolved fluxes via either models or water sampling and the newly found K, and (4) determine one of the fates of carbon in the Aare River.
NASA Astrophysics Data System (ADS)
Ruan, L.; Kahmark, K.; Robertson, G.
2012-12-01
Snow cover has decreased in many regions of the northern hemisphere and is projected to decrease further in most. The reduced snow cover may enhance soil freezing and increase the depth of frost. The frequency of freeze-thaw cycles is likely to increase due to the reduction of snowpack thickness. Freeze and thaw cycles can strongly affect soil C and N dynamics. The pulses of N2O and CO2 emissions from soil after thawing have been reported in various studies. However, most studies were based on the controlled laboratory conditions or low resolution static chamber methods in situ. Near-continuous automated chambers provide the temporal resolution needed for capturing short-lived pulses of greenhouse gases after intermittent melting events. We investigated the winter and spring response of soil greenhouse gas emissions (CO2, CH4 and N2O) to changes of snow depth using an automated chamber system. This study was established in 2010 at the Kellogg Biological Station (KBS) in southwest Michigan. The plot was no till rotational (corn-soybean-wheat) cropland, most recently in corn. The experiment was a completely randomized design (CRD) with three levels of snow depth: ambient, double, and no snow. Each level had four replicates. Twelve automated chambers were randomly assigned to treatments and greenhouse gas fluxes measured 4 times per day in each plot. There were more freeze-thaw cycles in the no snow treatment than in the ambient and double snow treatments. Soil temperature at 5 cm depth was more variable in the no snow treatment than in the ambient and double snow treatments. CH4 fluxes were uniformly low with no significant difference across three treatments. CO2 showed expected seasonal changes with the highest emission in spring and lowest emissions through the winter. N2O peaks were higher in spring due to freeze thaw effects and cumulative N2O fluxes were substantially higher in the no snow treatment than in the ambient and double snow treatments.
Flux measurements of benzene and toluene from landfill cover soils.
Tassi, Franco; Montegrossi, Giordano; Vaselli, Orlando; Morandi, Andrea; Capecchiacci, Francesco; Nisi, Barbara
2011-01-01
Carbon dioxide and CH(4), C(6)H(6) and C(7)H(8) fluxes from the soil cover of Case Passerini landfill site (Florence, Italy) were measured using the accumulation and static closed chamber methods, respectively. Results show that the CH(4)/CO(2), CH(4)/C(6)H(6) and CH(4)/C(7)H(8) ratios of the flux values are relatively low when compared with those of the 'pristine' biogas produced by degradation processes acting on the solid waste material disposed in the landfill. This suggests that when biogas transits through the cover soil, CH(4) is affected by degradation processes activated by oxidizing bacteria at higher extent than both CO(2) and mono-aromatics. Among the investigated hydrocarbons, C(6)H(6) has shown the highest stability in a wide range of redox conditions. Toluene behaviour only partially resembles that of C(6)H(6), possibly because de-methylation processes require less energy than that necessary for the degradation of C(6)H(6), the latter likely occurring via benzoate at anaerobic conditions and/or through various aerobic metabolic pathways at relatively shallow depth in the cover soil where free oxygen is present. According to these considerations, aromatics are likely to play an important role in the environmental impact of biogas released into the atmosphere from such anthropogenic emission sites, usually only ascribed to CO(2) and CH(4). In this regard, flux measurements using accumulation and static closed chamber methods coupled with gas chromatography and gas chromatography-mass spectrometry analysis may properly be used to obtain a dataset for the estimation of the amount of volatile organic compounds dispersed from landfills.
Soil Respiration in Eddy Covariance Footprints: A Critical Look at Researcher Needs
NASA Astrophysics Data System (ADS)
Gabriel, Carrie-Ellen; Nickerson, Nick; Creelman, Chance
2017-04-01
Eddy covariance (EC) systems have been widely used across the globe for more than 20 years, offering researchers invaluable measurements of parameters including Net Ecosystem Exchange and ecosystem respiration. However, recent research suggests that EC assumptions and technical obstacles may cause biased gas exchange estimates. Measurements of soil respiration (RS) at the ground level may help alleviate these biases; for example, by allowing researchers to reconcile nocturnal EC flux data with soil respiration or by providing a means to inform gap-filling models. RS measurements have been used sparingly alongside EC towers because of the large cost required to scale chamber systems to the EC footprint, as well as data integration and processing burdens. Here we present how the Forced Diffusion (FD) method is ideal for the measurement of RS at EC sites. The FD method allows for inexpensive and autonomous measurements, providing a scalable approach to matching the EC footprint compared to other RS systems. Here, we briefly present the methodology and results from a pilot study at the Howland Forest AmeriFlux site (Maine), carried out during the summer and fall of 2016, measuring soil respiration using the FD chamber technique. The emphasis of the remainder of the research is on gathering, interpreting and actualizing feedback from soil scientists and eddy covariance researchers and technicians on aspects of the FD methodology, deployment style, integration with existing infrastructure and data quality. Our goal is to eventually provide a framework for "ideal soil respiration measurements" that can be used by researchers, engineers and companies to develop functional and reliable soil respiration data sets that are easily coupled with data measured by EC users, and larger EC networks such as AmeriFlux and EuroFlux.
Experimental results on the influence of fluxes on partial discharge onset in PCB solder joints
NASA Astrophysics Data System (ADS)
Bulletti, Andrea; Capineri, Lorenzo; Materassi, Maurizio
2003-09-01
This work concerns the development of an experimental set-up for assessing the influence of fluxes on Partial Discharge (PD) onset in High Voltage (HV) devices soldered on Printed Circuit Boards (PCBs). In particular, the work considered the effects of three types of fluxes chosen in agreement with the directions of the Materials and Processes Division at ESA/ESTEC. Contaminated samples are formed by a standard FR-4 PCB board with a pair of copper electrodes and a protocol of contamination has been applied for all samples. The measuring system is placed inside a shielded chamber and provides measurements of Corona Inception Voltage (CIV), Corona Extinction Voltage (CEV) and PD amplitudes collected in a vacuum chamber with controlled temperature fixture. The results shows that flux Alpha 850-33 has the mean CIV smaller than other types of fluxes and the same result is observed for the mean CEV. Also the PD amplitudes are greater for samples contaminated with flux Alpha 850-33 than the other two types and similar in value for samples without flux.
A field robot for autonomous laser-based N2O flux measurements
NASA Astrophysics Data System (ADS)
Molstad, Lars; Reent Köster, Jan; Bakken, Lars; Dörsch, Peter; Lien, Torgrim; Overskeid, Øyvind; Utstumo, Trygve; Løvås, Daniel; Brevik, Anders
2014-05-01
N2O measurements in multi-plot field trials are usually carried out by chamber-based manual gas sampling and subsequent laboratory-based gas chromatographic N2O determination. Spatial and temporal resolution of these measurements are commonly limited by available manpower. However, high spatial and temporal variability of N2O fluxes within individual field plots can add large uncertainties to time- and area-integrated flux estimates. Detailed mapping of this variability would improve these estimates, as well as help our understanding of the factors causing N2O emissions. An autonomous field robot was developed to increase the sampling frequency and to operate outside normal working hours. The base of this system was designed as an open platform able to carry versatile instrumentation. It consists of an electrically motorized platform powered by a lithium-ion battery pack, which is capable of autonomous navigation by means of a combined high precision real-time kinematic (RTK) GPS and an inertial measurement unit (IMU) system. On this platform an elevator is mounted, carrying a lateral boom with a static chamber on each side of the robot. Each chamber is equipped with a frame of plastic foam to seal the chamber when lowered onto the ground by the elevator. N2O flux from the soil covered by the two chambers is sequentially determined by circulating air between each chamber and a laser spectrometer (DLT-100, Los Gatos Research, Mountain View, CA, USA), which monitors the increase in N2O concentration. The target enclosure time is 1 - 2 minutes, but may be longer when emissions are low. CO2 concentrations are determined by a CO2/H2O gas analyzer (LI-840A, LI-COR Inc., Lincoln, NE, USA). Air temperature and air pressure inside both chambers are continuously monitored and logged. Wind speed and direction are monitored by a 3D sonic anemometer on top of the elevator boom. This autonomous field robot can operate during day and night time, and its working hours are only limited by the recharge time of the battery pack. It is therefore suited for field studies requiring high temporal and/or spatial resolution.
NASA Astrophysics Data System (ADS)
Laville, Patricia; Volpi, Iride; Bosco, Simona; Virgili, Giorgio; Neri, Simone; Continanza, Davide; Bonari, Enrico
2016-04-01
Nitrous oxide (N2O) flux measurements from agricultural soil surface still accounts for the scientific community as major challenge. The evaluations of integrated soil N2O fluxes are difficult because these emissions are lower than for the other greenhouse gases sources (CO2, CH4). They are also sporadic, because highly dependent on few environmental conditions acting as limiting factors. Within a LIFE project (IPNOA: LIFE11 ENV/IT/00032) a station prototype was developed to integrate annually N2O and CO2 emissions using automatically chamber technique. Main challenge was to develop a device enough durable to be able of measuring in continuous way CO2 and N2O fluxes with sufficient sensitivity to allow make reliable assessments of soil GHG measurements with minimal technical field interventions. The IPNOA station prototype was developed by West System SRL and was set up during 2 years (2014 -2015) in an experimental maize field in Tuscan. The prototype involved six automatic chambers; the complete measurement cycle was of 2 hours. Each chamber was closing during 20 min and biogas accumulations were monitoring in line with IR spectrometers. Auxiliary's measurements including soil temperatures and water contents as weather data were also monitoring. All data were managed remotely with the same acquisition software installed in the prototype control unit. The operation of the prototype during the two cropping years allowed testing its major features: its ability to evaluate the temporal variation of N2O soil fluxes during a long period with weather conditions and agricultural managements and to prove the interest to have continuous measurements of fluxes. The temporal distribution of N2O fluxes indicated that emissions can be very large and discontinuous over short periods less ten days and that during about 70% of the time N2O fluxes were around detection limit of the instrumentation, evaluated to 2 ng N ha-1 day-1. N2O emission factor assessments were 1.9% in 2014 and 1.7 % in 2015, in the range of IPCC ones. The instrumentation was working almost permanently during these two years. The proximity sensors fitted on the chambers allowed showing that the chambers were functioning normally for about 90% of the time. A cross-comparison carried out in September 2015 with the "mobile IPNOA prototype"; a high-sensibility transportable instrument (previously validated), allowed showing a good agreement between the 2 instrumentations.
NASA Astrophysics Data System (ADS)
Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Wrighton, K. C.; Bohrer, G.
2016-12-01
Wetlands are important carbon dioxide (CO2) sinks but also the largest source of methane (CH4), a powerful greenhouse gas. Wetlands are often heterogeneous landscapes with highly diverse land covers and different paths of CH4 release and CO2 uptake. Understanding the ecosystem level greenhouse gas budget of a wetland involves understanding several carbon fluxes associated with each of the different land cover patches. We studied CO2 and CH4 fluxes from different land cover types at the Old Woman Creek (OWC) National Estuarine Research Reserve, at the Lake Erie shore in Northern Ohio. OWC is composed of four main types of land cover: open water, emergent cattail vegetation (Typha spp), floating vegetation (Nelimbo spp), and mud flats. CH4 and CO2 gas exchange was measured in each patch type using enclosed chambers monthly during the growing seasons of 2015 and 2016. During the same period of time, an eddy covariance tower was deployed in a representative section of the wetland to measure continuous site-level CO2 and CH4 fluxes. A footprint model was used to account for the relative contributions of each patch type to the flux measured by the tower. The chamber measurements were used to constrain the contributions of each patch within the flux tower footprint, and to correct the flux measurements to the whole-wetland total flux. We analyzed the spatial and temporal variability of methane and carbon dioxide and related this variation to some of the most important environmental drivers at the site. We used these data to analyze the implications of different arrangements of land cover types on the carbon balance and greenhouse-gas budget in wetlands.
Vacuum Compatibility of Flux-Core Arc Welding (FCAW)
NASA Astrophysics Data System (ADS)
Arose, Dana; Denault, Martin; Jurcznski, Stephan
2010-11-01
Typically, vacuum chambers are welded together using gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW). This is demonstrated in the vacuum chamber of Princeton Plasma Physics Lab's (PPPL) National Spherical Torus Experiment (NSTX). These processes are slow and apply excess heat to the base metal, which may cause the vacuum chamber to deform beyond designed tolerance. Flux cored arc welding (FCAW) avoids these problems, but may produce an unacceptable amount of outgasing due to the flux shielding. We believe impurities due to outgasing from FCAW will not greatly exceed those found in GTAW and GMAW welding. To test this theory, samples welded together using all three welding processes will be made and baked in a residual gas analyzer (RGA). The GTAW and GMAW welds will be tested to establish a metric for permissible outgasing. By testing samples from all three processes we hope to demonstrate that FCAW does not significantly outgas, and is therefore a viable alternative to GTAW and GMAW. Results from observations will be presented.
Minimizing Artifacts and Biases in Chamber-Based Measurements of Soil Respiration
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Savage, K.
2001-05-01
Soil respiration is one of the largest and most important fluxes of carbon in terrestrial ecosystems. The objectives of this paper are to review concerns about uncertainties of chamber-based measurements of CO2 emissions from soils, to evaluate the direction and magnitude of these potential errors, and to explain procedures that minimize these errors and biases. Disturbance of diffusion gradients cause underestimate of fluxes by less than 15% in most cases, and can be partially corrected for with curve fitting and/or can be minimized by using brief measurement periods. Under-pressurization or over-pressurization of the chamber caused by flow restrictions in air circulating designs can cause large errors, but can also be avoided with properly sized chamber vents and unrestricted flows. Somewhat larger pressure differentials are observed under windy conditions, and the accuracy of measurements made under such conditions needs more research. Spatial and temporal heterogeneity can be addressed with appropriate chamber sizes and numbers and frequency of sampling. For example, means of 8 randomly chosen flux measurements from a population of 36 measurements made with 300 cm2 chambers in tropical forests and pastures were within 25% of the full population mean 98% of the time and were within 10% of the full population mean 70% of the time. Comparisons of chamber-based measurements with tower-based measurements of total ecosystem respiration require analysis of the scale of variation within the purported tower footprint. In a forest at Howland, Maine, the differences in soil respiration rates among very poorly drained and well drained soils were large, but they mostly were fortuitously cancelled when evaluated for purported tower footprints of 600-2100 m length. While all of these potential sources of measurement error and sampling biases must be carefully considered, properly designed and deployed chambers provide a reliable means of accurately measuring soil respiration in terrestrial ecosystems.
A new model is described for computing in-chamber actinic flux using site specific conditions that include time of day, air pressure, total column ozone, total column water vapor, relative humidity, aerosol type, aerosol optical density at 500 nm, and the spectral albedo of the g...
Harthcock, Colin; Jahanbekam, Abdolreza; Eskelsen, Jeremy R; Lee, David Y
2016-11-01
We describe an example of a piecewise gas chamber that can be customized to incorporate a low flux of gas-phase radicals with an existing surface analysis chamber for in situ and stepwise gas-surface interaction experiments without any constraint in orientation. The piecewise nature of this gas chamber provides complete angular freedom and easy alignment and does not require any modification of the existing surface analysis chamber. In addition, the entire gas-surface system is readily differentially pumped with the surface chamber kept under ultra-high-vacuum during the gas-surface measurements. This new design also allows not only straightforward reconstruction to accommodate the orientation of different surface chambers but also for the addition of other desired features, such as an additional pump to the current configuration. Stepwise interaction between atomic oxygen and a highly ordered pyrolytic graphite surface was chosen to test the effectiveness of this design, and the site-dependent O-atom chemisorption and clustering on the graphite surface were resolved by a scanning tunneling microscope in the nm-scale. X-ray photoelectron spectroscopy was used to further confirm the identity of the chemisorbed species on the graphite surface as oxygen.
Transpiring Cooling of a Scram-Jet Engine Combustion Chamber
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Scotti, Stephen J.; Song, Kyo D.; Ries,Heidi
1997-01-01
The peak cold-wall heating rate generated in a combustion chamber of a scram-jet engine can exceed 2000 Btu/sq ft sec (approx. 2344 W/sq cm). Therefore, a very effective heat dissipation mechanism is required to sustain such a high heating load. This research focused on the transpiration cooling mechanism that appears to be a promising approach to remove a large amount of heat from the engine wall. The transpiration cooling mechanism has two aspects. First, initial computations suggest that there is a reduction, as much as 75%, in the heat flux incident on the combustion chamber wall due to the transpirant modifying the combustor boundary layer. Secondly, the heat reaching the combustor wall is removed from the structure in a very effective manner by the transpirant. It is the second of these two mechanisms that is investigated experimentally in the subject paper. A transpiration cooling experiment using a radiant heating method, that provided a heat flux as high as 200 Btu/sq ft sec ( approx. 234 W/sq cm) on the surface of a specimen, was performed. The experiment utilized an arc-lamp facility (60-kW radiant power output) to provide a uniform heat flux to a test specimen. For safety reasons, helium gas was used as the transpirant in the experiments. The specimens were 1.9-cm diameter sintered, powdered-stainless-steel tubes of various porosities and a 2.54cm square tube with perforated multi-layered walls. A 15-cm portion of each specimen was heated. The cooling effectivenes and efficiencies by transpiration for each specimen were obtained using the experimental results. During the testing, various test specimens displayed a choking phenomenon in which the transpirant flow was limited as the heat flux was increased. The paper includes a preliminary analysis of the transpiration cooling mechanism and a scaling conversion study that translates the results from helium tests into the case when a hydrogen medium is used.
NASA Astrophysics Data System (ADS)
Ali, Nur Syazwani Mohd; Hamzah, Khaidzir; Mohamad Idris, Faridah; Hairie Rabir, Mohamad
2018-01-01
The thermal neutron flux measurement has been conducted at the out-core location using self-powered neutron detectors (SPNDs). This work represents the first attempt to study SPNDs as neutron flux sensor for developing the fault detection system (FDS) focusing on neutron flux parameters. The study was conducted to test the reliability of the SPND’s signal by measuring the neutron flux through the interaction between neutrons and emitter materials of the SPNDs. Three SPNDs were used to measure the flux at four different radial locations which located at the fission chamber cylinder, 10cm above graphite reflector, between graphite reflector and tank liner and fuel rack. The measurements were conducted at 750 kW reactor power. The outputs from SPNDs were collected through data acquisition system and were corrected to obtain the actual neutron flux due to delayed responses from SPNDs. The measurements showed that thermal neutron flux between fission chamber location near to the tank liner and fuel rack were between 5.18 × 1011 nv to 8.45 × 109 nv. The average thermal neutron flux showed a good agreement with those from previous studies that has been made using simulation at the same core configuration at the nearest irradiation facilities with detector locations.
Forest Floor CO2 Flux From Two Contrasting Ecosystems in the Southern Appalachians
James M. Vose; Barton D. Clinton; Verl Emrick
1995-01-01
We measured forest floor CO2 flux in two contrasting ecosystems (white pine plantation and northern hardwood ecosystems at low and high elevations, respectively) in May and September 1993 to quantify differences and determine factors regulating CO2 fluxes. An automated IRGA based, flow through system was used with chambers...
A Modern Automatic Chamber Technique as a Powerful Tool for CH4 and CO2 Flux Monitoring
NASA Astrophysics Data System (ADS)
Mastepanov, M.; Christensen, T. R.; Lund, M.; Pirk, N.
2014-12-01
A number of similar systems were used for monitoring of CH4 and CO2 exchange by the automatic chamber method in a range of different ecosystems. The measurements were carried out in northern Sweden (mountain birch forest near Abisko, 68°N, 2004-2010), southern Sweden (forest bog near Hässleholm, 56°N, 2007-2014), northeastern Greenland (arctic fen in Zackenberg valley, 74°N, 2005-2014), southwestern Greenland (fen near Nuuk, 64°N, 2007-2014), central Svalbard (arctic fen near Longyearbyen, 78°N, 2011-2014). Those in total 37 seasons of measurements delivered not only a large amount of valuable flux data, including a few novel findings (Mastepanov et al., Nature, 2008; Mastepanov et al., Biogeosciences, 2013), but also valuable experience with implementation of the automatic chamber technique using modern analytical instruments and computer technologies. A range of high resolution CH4 analysers (DLT-100, FMA, FGGA - Los Gatos Research), CO2 analyzers (EGM-4, SBA-4 - PP Systems; Li-820 - Li-Cor Biosciences), as well as Methane Carbon Isotope Analyzer (Los Gatos Research) has shown to be suitable for precise measurements of fluxes, from as low as 0.1 mg CH4 m-1 d-1 (wintertime measurements at Zackenberg, unpublished) to as high as 2.4 g CH4 m-1 d-1 (autumn burst 2007 at Zackenberg, Mastepanov et al., Nature, 2008). Some of these instruments had to be customized to accommodate 24/7 operation in harsh arctic conditions. In this presentation we will explain some of these customizations. High frequency of concentration measurements (1 Hz in most cases) provides a unique opportunity for quality control of flux calculations; on the other hand, this enormous amount of data can be analyzed only using highly automated algorithms. A specialized software package was developed and improved through the years of measurements and data processing. This software automates the data flow from raw concentration data of different instruments and sensors and various status records, through a single database with all recorded parameters, to a visualized flux calculation module, which suggests the optimized flux calculation while allowing for manual correction of all parameters. In this presentation we will communicate the most recent versions of this software package and demonstrate it with different kinds of sample data.
Guide for the Assessment of the Vapor Intrusion Pathway
2006-02-01
variability. There are two basic types of flux chambers: the static chamber and the dynamic chamber. The static chamber does not use "sweep" gas to maintain...DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED I February 2006 FINAL 4. TITLE AND SUBTITLE 5. FUNDING...sites, the problem is typically limited to a handful of chemicals. This guidance will be most useful for two groups of Air Force environmental managers
Analysis of cell flux in the parallel plate flow chamber: implications for cell capture studies.
Munn, L L; Melder, R J; Jain, R K
1994-01-01
The parallel plate flow chamber provides a controlled environment for determinations of the shear stress at which cells in suspension can bind to endothelial cell monolayers. By decreasing the flow rate of cell-containing media over the monolayer and assessing the number of cells bound at each wall shear stress, the relationship between shear force and binding efficiency can be determined. The rate of binding should depend on the delivery of cells to the surface as well as the intrinsic cell-surface interactions; thus, only if the cell flux to the surface is known can the resulting binding curves be interpreted correctly. We present the development and validation of a mathematical model based on the sedimentation rate and velocity profile in the chamber for the delivery of cells from a flowing suspension to the chamber surface. Our results show that the flux depends on the bulk cell concentration, the distance from the entrance point, and the flow rate of the cell-containing medium. The model was then used in a normalization procedure for experiments in which T cells attach to TNF-alpha-stimulated HUVEC monolayers, showing that a threshold for adhesion occurs at a shear stress of about 3 dyn/cm2. Images FIGURE 1 FIGURE 2 PMID:7948702
Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare
NASA Astrophysics Data System (ADS)
Unverferth, John; Longcope, Dana
2018-06-01
Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.
Analytical methods for quantifying greenhouse gas flux in animal production systems.
Powers, W; Capelari, M
2016-08-01
Given increased interest by all stakeholders to better understand the contribution of animal agriculture to climate change, it is important that appropriate methodologies be used when measuring greenhouse gas (GHG) emissions from animal agriculture. Similarly, a fundamental understanding of the differences between methods is necessary to appropriately compare data collected using different approaches and design meaningful experiments. Sources of carbon dioxide, methane, and nitrous oxide emissions in animal production systems includes the animals, feed storage areas, manure deposition and storage areas, and feed and forage production fields. These 3 gases make up the primary GHG emissions from animal feeding operations. Each of the different GHG may be more or less prominent from each emitting source. Similarly, the species dictates the importance of methane emissions from the animals themselves. Measures of GHG flux from animals are often made using respiration chambers, head boxes, tracer gas techniques, or in vitro gas production techniques. In some cases, a combination of techniques are used (i.e., head boxes in combination with tracer gas). The prominent methods for measuring GHG emissions from housing include the use of tracer gas techniques or direct or indirect ventilation measures coupled with concentration measures of gases of interest. Methods for collecting and measuring GHG emissions from manure storage and/or production lots include the use of downwind measures, often using photoacoustic or open path Fourier transform infrared spectroscopy, combined with modeling techniques or the use of static chambers or flux hood methods. Similar methods can be deployed for determining GHG emissions from fields. Each method identified has its own benefits and challenges to use for the stated application. Considerations for use include intended goal, equipment investment and maintenance, frequency and duration of sampling needed to achieve desired representativeness of emissions over time, accuracy and precision of the method, and environmental influences on the method. In the absence of a perfect method for all situations, full knowledge of the advantages and disadvantages of each method is extremely important during the development of the experimental design and interpretation of results. The selection of the suitable technique depends on the animal production system, resource availability, and objective for measurements.
Sane, Pooja; Varma, Nikhil; Ganguly, Arnab; Pikal, Michael; Alexeenko, Alina; Bogner, Robin H
2017-02-01
Product temperature during the primary drying step of freeze-drying is controlled by a set point chamber pressure and shelf temperature. However, recent computational modeling suggests a possible variation in local chamber pressure. The current work presents an experimental verification of the local chamber pressure gradients in a lab-scale freeze-dryer. Pressure differences between the center and the edges of a lab-scale freeze-dryer shelf were measured as a function of sublimation flux and clearance between the sublimation front and the shelf above. A modest 3-mTorr difference in pressure was observed as the sublimation flux was doubled from 0.5 to 1.0 kg·h -1 ·m -2 at a clearance of 2.6 cm. Further, at a constant sublimation flux of 1.0 kg·h -1 ·m -2 , an 8-fold increase in the pressure drop was observed across the shelf as the clearance was decreased from 4 to 1.6 cm. Scale-up of the pressure variation from lab- to a manufacturing-scale freeze-dryer predicted an increased uniformity in drying rates across the batch for two frequently used pharmaceutical excipients (mannitol and sucrose at 5% w/w). However, at an atypical condition of shelf temperature of +10°C and chamber pressure of 50 mTorr, the product temperature in the center vials was calculated to be a degree higher than the edge vial for a low resistance product, thus reversing the typical edge and center vial behavior. Thus, the effect of local pressure variation is more significant at the manufacturing-scale than at a lab-scale and accounting for the contribution of variations in the local chamber pressures can improve success in scale-up.
Methane heat transfer investigation
NASA Technical Reports Server (NTRS)
1984-01-01
Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.
In situ soil COS exchange of a temperate mountain grassland under simulated drought.
Kitz, Florian; Gerdel, Katharina; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M; Wohlfahrt, Georg
2017-03-01
During recent years, carbonyl sulfide (COS), a trace gas with a similar diffusion pathway into leaves as carbon dioxide (CO 2 ), but with no known "respiration-like" leaf source, has been discussed as a promising new approach for partitioning net ecosystem-scale CO 2 fluxes into photosynthesis and respiration. The utility of COS for flux partitioning at the ecosystem scale critically depends on the understanding of non-leaf sources and sinks of COS. This study assessed the contribution of the soil to ecosystem-scale COS fluxes under simulated drought conditions at temperate grassland in the Central Alps. We used transparent steady-state flow-through chambers connected to a quantum cascade laser spectrometer to measure the COS and CO 2 gas exchange between the soil surface and the atmosphere. Soils were a source of COS during the day, emissions being mainly driven by incoming solar radiation and to a lesser degree soil temperature. Soil water content had a negligible influence on soil COS exchange and thus the drought and control treatment were statistically not significantly different. Overall, daytime fluxes were large (12.5 ± 13.8 pmol m -2 s -1 ) in their magnitude and consistently positive compared to the previous studies, which predominantly used dark chambers. Nighttime measurements revealed soil COS fluxes around zero, as did measurements with darkened soil chambers during daytime reinforcing the importance of incoming solar radiation. Our results suggest that abiotic drivers play a key role in controlling in situ soil COS fluxes of the investigated grassland.
NASA Technical Reports Server (NTRS)
Schoenman, L.
1983-01-01
A data base which relates candidate design variables, such as injector type, acoustic cavity configuration, chamber length, fuel film-cooling, etc., to operational characteristics such as combustion efficiency, combustion stability, carbon deposition, and chamber gas-side heat flux was generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morin, T. H.; Bohrer, G.; Stefanik, K. C.
Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less
Morin, T. H.; Bohrer, G.; Stefanik, K. C.; ...
2017-02-17
Methane (CH 4) emissions and carbon uptake in temperate freshwater wetlands act in opposing directions in the context of global radiative forcing. Large uncertainties exist for the rates of CH 4 emissions making it difficult to determine the extent that CH 4 emissions counteract the carbon sequestration of wetlands. Urban temperate wetlands are typically small and feature highly heterogeneous land cover, posing an additional challenge to determining their CH 4 budget. The data analysis approach we introduce here combines two different CH 4 flux measurement techniques to overcome scale and heterogeneity problems and determine the overall CH 4 budget ofmore » a small, heterogeneous, urban wetland landscape. Temporally intermittent point measurements from non-steady-state chambers provided information about patch-level heterogeneity of fluxes, while continuous, high temporal resolution flux measurements using the eddy-covariance (EC) technique provided information about the temporal dynamics of the fluxes. Patch-level scaling parameterization was developed from the chamber data to scale eddy covariance data to a ‘fixed-frame’, which corrects for variability in the spatial coverage of the eddy covariance observation footprint at any single point in time. Finally, by combining two measurement techniques at different scales, we addressed shortcomings of both techniques with respect to heterogeneous wetland sites.« less
NASA Astrophysics Data System (ADS)
Wright, William J.
Peat soils are known to be a significant source of atmospheric greenhouse gasses. However, the releases of methane and carbon dioxide gasses from peat soils are currently not well understood, particularly since the timing of the releases are poorly constrained. Furthermore, most research work performed on peatlands has been focused on temperate to sub-arctic peatlands, while recent works have suggested that gas production rates from low-latitude peat soils are higher than those from colder climates. The purpose of the work proposed here is to introduce an autonomous Ground Penetrating Radar (GPR) method for investigating the timing of gas releases from peat soils at the lab scale utilizing samples originating from Maine and the Florida Everglades, and at the field scale in a Maine peatland. Geophysical data are supported by direct gas flux measurements using the flux chamber method enhanced by timelapse photography, and terrestrial LiDAR (TLS) monitoring surface deformation.
Radon isotope measurements as a monitoring tool for CO2 leakage in geological storage
NASA Astrophysics Data System (ADS)
Grandia, F.; Mazadiego, L. F.; de Elío, J.; Ortega, M.; Bruno, J.
2011-12-01
Early detection of the failure of the seal integrity is fundamental in the monitoring plan of a deep geological CO2 storage. A number of methods of leakage control are based on changes in fluid geochemistry (shallow water, soil gases) providing valuable indicators. Among them, the measurement of CO2 fluxes in the soil-atmosphere interface is commonly used since it can be easily done using portable infra-red analyzers (i.e., accumulation chambers). However, initial emission of CO2 from storage horizon could be masked by fluxes from biological activity, limiting its applicability as an early alarm system. The measurement of fluxes of trace gas (Rn, He, VOC) that are virtually absent in the pre-injection baseline turns out a promising complementary method. The measurement of radon isotopes has been long used for the observation of mass transport from deep reservoirs to surface despite the flux of 222Rn and 220Rn is usually very limited in sedimentary basins due to the short half-life of these isotopes. The enhanced transport of radon in CO2 fluxes has been reported from natural systems, resulting in concentration in air up to several thousands of Bq/m3. In the frame of the Compostilla pilot plant project in Spain, a number of methodologies to measure radon emission are being tested in natural systems to select of the most reliable and cost-effective method to be used in leakage control. These methods are (1) Scintillation detector EDA RD-200, (2) Track Etch °, (3) Ionization Chamber and (4) alpha spectroscopy SARAD RTM 200. Some of them are capable of measuring the isotopes separately (SARAD) whereas others just detect the bulk radon concentration. Also, these methods follow distinct procedures and acquisition times. The studied natural sites are located in central and NE Spain (Campo de Calatrava and La Selva basins), and in central Italy (Arezzo basin). Apparently, radon isotopes (up 200000 Bq/m3) are measured far from parent isotopes, and they are coupled to moderate to high CO2 fluxes (from 1×10-7 to 5×10-5 kg/m-2/s), along with other minor and trace gases (H2S, VOC, helium). The results in some sites show that not all Rn isotopes behave in the same way. In some cases, thoron (220Rn) does not flow with CO2 and 222Rn and, consequently, it appears to be a need to use methods capable of discriminating isotopes to avoid masking of unbounded radon to CO2 flux. The highest radon-thoron ratio is then related to CO2 flow. The behavior of radon isotopes could be caused by different rocks at depth. In addition, travel time for thoron could be too long compared to its very short half life (few hours). The methods tested provide similar radon data although some of them need further data refinement. SARAD alpha spectroscopy appears to be effective in the sites studied so far, which are characterized by high radon fluxes. Future work in the project is the testing of these techniques in areas with smaller radon fluxes and the determination of the gases that may interact with radon in some methods.
NASA Astrophysics Data System (ADS)
Mastepanov, Mikhail; Christensen, Torben
2014-05-01
Methane emissions have been monitored by an automatic chamber method in Zackenberg valley, NE Greenland, since 2006 as a part of Greenland Ecosystem Monitoring (GEM) program. During most of the seasons the measurements were carried out from the time of snow melt (June-July) until freezing of the active layer (October-November). Several years of data, obtained by the same method, instrumentation and at exactly the same site, provided a unique opportunity for the analysis of interannual methane flux patterns and factors affecting their temporal variability. The start of the growing season emissions was found to be closely related to a date of snow melt at the site. Despite a large between year variability of this date (sometimes more than a month), methane emission started within a few days after, and was increasing for the next about 30 days. After this peak of emission, it slowly decreased and stayed more or less constant or slightly decreasing during the rest of the growing season (Mastepanov et al., Biogeosciences, 2013). During the soil freezing, a second peak of methane emission was found (Mastepanov et al., Nature, 2008); its amplitude varied a lot between the years, from almost undetectable to comparable with total growing season emissions. Analysis of the multiyear emission patterns (Mastepanov et al., Biogeosciences, 2013) led to hypotheses of different sources for the spring, summer and autumn methane emissions, and multiyear cycles of accumulation and release of these components to the atmosphere. For the further investigation of this it was decided to complement the monitoring system with a methane carbon isotope analyzer (Los Gatos Research, USA). The instrument was installed during 2013 field season and was successfully operating until the end of the measurement campaign (27 October). Detecting both 12C-CH4 and 13C-CH4 concentrations in real time (0.5 Hz) during automatic chamber closure (15 min), the instrument was providing data for determination of δ13C of the emitting methane (by a relation between 12C-CH4 and 13C-CH4 fluxes). Unfortunately, the beginning of the season was missed due to a delay in the instrument shipment; the summer fluxes were lower than any of the 7 previous years due to an exceptional drought; the autumn burst was not detected due to both exceptionally slow soil freezing and a low soil methane content. However, the data obtained from the most productive chambers confirm the feasibility of the chosen method and give good expectations for the following field campaign 2014.
Magma differentiation rates from ( 226Ra / 230Th) and the size and power output of magma chambers
NASA Astrophysics Data System (ADS)
Blake, Stephen; Rogers, Nick
2005-08-01
We present a mathematical model for the evolution of the ( 226Ra / 230Th) activity ratio during simultaneous fractional crystallization and ageing of magma. The model is applied to published data for four volcanic suites that are independently known to have evolved by fractional crystallization. These are tholeiitic basalt from Ardoukoba, Djibouti, MORB from the East Pacific Rise, alkali basalt to mugearite from Vestmannaeyjar, Iceland, and basaltic andesites from Miyakejima, Izu-Bonin arc. In all cases ( 226Ra / 230Th) correlates with indices of fractional crystallization, such as Th, and the data fall close to model curves of constant fractional crystallization rate. The best fit rates vary from 2 to 6 × 10 - 4 yr - 1 . Consequently, the time required to generate moderately evolved magmas ( F ≤ 0.7) is of the order of 500 to 1500 yrs and closed magma chambers will have lifetimes of 1700 to 5000 yrs. These rates and timescales are argued to depend principally on the specific power output (i.e., power output per unit volume) of the magma chambers that are the sites of fractional crystallization. Equating the heat flux at the EPR to the heat flux from the sub-axial magma chamber that evolves at a rate of ca. 3 × 10 - 4 yr - 1 implies that the magma body is a sill of ca. 100 m thickness, a value which coincides with independent estimates from seismology. The similarity of the four inferred differentiation rates suggests that the specific power output of shallow magma chambers in a range of tectonic settings covers a similarly narrow range of ca. 10 to 50 MW km - 3 . Their differentiation rates are some two orders of magnitude slower than that of the basaltic Makaopuhi lava lake, Hawaii, that cooled to the atmosphere. This is consistent with the two orders of magnitude difference in heat flux between Makaopuhi and the East Pacific Rise. ( 226Ra / 230Th) data for magma suites related by fractional crystallization allow the magma differentiation rate to be estimated and, from this, the thermal budget of the magma chamber addressed, and where an independent measurement of heat flux exists, to place constraints on the size of the magma chamber. Such results have the potential to constrain the likely timescale and size of future eruptions of evolved magmas.
DMPP-added nitrogen fertilizer affects soil N2O emission and microbial activity in Southern Italy
NASA Astrophysics Data System (ADS)
Vitale, Luca; De Marco, Anna; Maglione, Giuseppe; Polimeno, Franca; Di Tommasi, Paul; Magliulo, Vincenzo
2014-05-01
Arable sites contributes to global N2O emission due to massive utilization of nitrogen fertilizers. N2O derives from the biological processes such as nitrification and denitrification influenced by soil nitrogen availability. The use of nitrogen fertilizers added with nitrification inhibitors represents one among the proposed strategy to reduce soil N2O emission form arable sites. The aim of this work was to evaluate the effects of 3,4-dimethylphyrazole phosphate (DMPP), a nitrification inhibitor, on N2O emission and microbial activity of a soil cropped to potato in Southern Italy. The experiment was a randomized block design with two treatments applied and three replicates: control (C) and DMPP (Entec®, K+S Nitrogen) plots, both supplied with the same amount of ammonium nitrate. The nitrogen fertilizer was supplied in three events: at 0 Day After Sowing (DAS; 100 kg N ha-1), at 57 DAS (30 kg N ha-1), and at 71 DAS (30 kg N ha-1). Soil N2O emission was monitored by both dynamic and static chambers. Static chambers were located both on hills and furrows whereas dynamic chambers were located on furrows. Air samples were collected from chambers at different times and analysed by a gas chromatograph (SRI 8610C, Gas Chromatograph). Fluxes were estimated as a linear interpolation of N2O changes over a 30 min time. Microbial biomass and basal respiration were determined as CO2 evolution, analysed by means of an IRGA (Li6200, Licor), on 2 g of fresh soil over a 4h incubation time. Microbial biomass was determined by Substrate Induced Respiration method. Data show no statistical differences in N2O fluxes measured with either dynamic chambers between C and DMPP plots in studied period. However, after the first fertilization event, when the fertilizer was applied as 100 kg N ha-1, the average N2O fluxes measured with static chambers were higher in DMPP plots compared to C plots. In the same period, the microbial biomass significantly decreased in DMPP plots as compared to C plots, whereas an opposite trend for basal respiration was observed, thus evidencing a stressful condition for nitrifying microbial population. After 57 and 71 DAS, when fertilizer was applied as 30 kg N ha-1, the microbial biomass was similar between C and DMPP plots, whereas basal respiration resulted statistically lower in DMPP plots than C plots. During these periods, average DMPP N2O fluxes were also comparable or lower. In conclusion, our data evidence a stressful condition for soil microbes and in particular for nitrifiers when a higher DMPP quantity is supplied. On the contrary, when lower quantities of DMPP-added fertilizers are supplied (e.s. 30 kg N ha-1) effectiveness of DMPP in reducing soil N2O emission is guaranteed by reducing the nitrifiers activity without negatively affecting their growth.
TRANSFORMATION AND TRANSPORT OF VINCLOZOLIN FROM SOIL TO AIR
A laboratory chamber was designed and used to determine the headspace flux of the fungicide vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2.4-dione) and its three degradation products from chamber surfaces, 20-30 mesh Ottawa sand, and sterilized and nonsteril...
Role of advection for the ecosystem-atmosphere CO2 exchange of alpine grasslands
NASA Astrophysics Data System (ADS)
Zhao, Peng; Wohlfahrt, Georg
2017-04-01
The neglect of the advection contribution could bring uncertainties to the estimation of the net ecosystem CO2 exchange (NEE) between ecosystems and the atmosphere, especially in complex terrain and stable atmospheric conditions. In order to quantify the advection flux of CO2, we carried out four monthly field campaigns at different grasslands in the mountainous areas of Italy, Austria, and Germany in 2015 and 2016. The measurement was based on the advection completed mass balance (ACMB) concept. A home-assembled solenoid valve system, together with multiple sampling inlets and a gas analyser, was used to measure CO2 concentration online at three heights on the four sides of a control volume of 20 m by 20 m. Advection of CO2 was then calculated from the measurement of wind components and CO2 gradients. The turbulent flux of CO2 was measured by the eddy-covariance technique. Three clear automatic chambers measured NEE as reference. Results showed that both the horizontal and vertical advection contributed more significantly to CO2 flux at night time than at daytime. At most sites, the horizontal advection played a more important role than the vertical advection. The above-canopy advection contributed more CO2 flux than within-canopy advection due to the short canopy heights. Large variability of NEE measured by the three chambers indicates the challenge of comparing chamber and micrometeorological fluxes resulting from the heterogeneity of the surface.
NASA Astrophysics Data System (ADS)
Mazirov, Ilya; Vasenev, Ivan; Meshalkina, Joulia; Yaroslavtsev, Alexis; Berezovskiy, Egor; Djancharov, Turmusbek
2015-04-01
The problem of greenhouse gases' concentrations increasing becomes more and more important due to global changes issues. The main component of greenhouse gases is carbon dioxide. The researches focused on its fluxes in natural and anthropogenic modified landscapes can help in this problem solution. Our research has been done with support of the RF Government grants # 11.G34.31.0079 and # 14.120.14.4266 and of FP7 Grant # 603542 LUC4C in the representative for Central Region of Russia field agroecosystems at the Precision Farming Experimental Field of Russian Timiryazev State Agrarian University with cultivated sod podzoluvisols, barley and oats - vetch grass mix (Moscow station of the RusFluxNet). The daily and seasonal dynamics of the carbon dioxide have been studied at the ecosystem level by the Eddy covariance method (2 stations) and at the soil level by the exposition chamber method (40 chambers) with mobile infra red gas analyzer (Li-Cor 820). The primary Eddy covariance monitoring data on CO2 fluxes and water vapor have been processed by EddyPro software developed by LI-COR Biosciences. According to the two-year monitoring data the daily CO2 sink during the vegetation season is usually approximately two times higher than its emission at night. Seasonal CO2 fluxes comparative stabilization has been fixed in case the plants height around 10-12 cm and it usually persist until the wax ripeness phase. There is strong dependence between the soil CO2 emission and the air temperature with the correlation coefficient 0.86 in average (due to strong input of the soil thin top functional subhorizon), but it drops essentially at the end of the season - till 0.38. The soil moisture impact on CO2 fluxes dynamics was less, with negative correlation at the end of the season. High daily dynamics of CO2 fluxes determines the protocol requirements for seasonal soil monitoring investigation with less limitation at the end of the season. The accumulated monitoring data will be very useful for verification the current regional assessments of the organic C balances, investigated crops' C-footprint calculations and better understanding the soil organic matter dynamics in these soils with different crops and farming practices.
BOREAS TGB-5 CO2, CH4 and CO Chamber Flux Data Over the NSA
NASA Technical Reports Server (NTRS)
Burke, Roger; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Zepp, Richard
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-5) team collected a variety of trace gas concentration and flux measurements at several NSA sites. This data set contains carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) chamber flux measurements conducted in 1994 at upland forest sites that experienced stand-replacement fires. These measurements were acquired to understand the impact of fires on soil biogeochemistry and related changes in trace gas exchange in boreal forest soils. Relevant ancillary data, including data concerning the soil temperature, solar irradiance, and information from nearby un-burned control sites, are included to provide a basis for modeling the regional impacts of fire and climate changes on trace gas biogeochemistry. The data are provided in tabular ASCII files.
Redman, W.C.; Shonka, F.R.
1958-02-18
This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.
Divertor, scrape-off layer and pedestal particle dynamics in the ELM cycle on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Laggner, F. M.; Keerl, S.; Gnilsen, J.; Wolfrum, E.; Bernert, M.; Carralero, D.; Guimarais, L.; Nikolaeva, V.; Potzel, S.; Cavedon, M.; Mink, F.; Dunne, M. G.; Birkenmeier, G.; Fischer, R.; Viezzer, E.; Willensdorfer, M.; Wischmeier, M.; Aumayr, F.; the EUROfusion MST1 Team; the ASDEX Upgrade Team
2018-02-01
In addition to the relaxation of the pedestal, edge localised modes (ELMs) introduce changes to the divertor and scrape-off layer (SOL) conditions. Their impact on the inter-ELM pedestal recovery is investigated, with emphasis on the electron density (n e) evolution. The typical ELM cycle occurring in an exemplary ASDEX Upgrade discharge interval at moderate applied gas puff and heating power is characterised, utilising several divertor, SOL and pedestal diagnostics. In the studied discharge interval the inner divertor target is detached before the ELM crash, while the outer target is attached. The particles and power expelled by the ELM crash lead to a re-attachment of the inner target plasma. After the ELM crash, the outer divertor target moves into a high recycling regime with large n e in front of the plate, which is accompanied by high main chamber neutral fluxes. On similar timescales, the inner target fully detaches and the high field side high density region (HFSHD) is formed reaching up to the high field side midplane. This state evolves again to the pre-ELM state, when the main chamber neutral fluxes are reduced later in the ELM cycle. Neither the timescale of the appearance of the HFSHD nor the increase of the main chamber neutral fluxes fit the timescale of the n e pedestal, which is faster. It is found that during the n e pedestal recovery, the magnetic activity at the low field side midplane is strongly reduced indicating a lower level of fluctuations. A rough estimation of the particle flux across the pedestal suggests that the particle flux is reduced in this period. In conclusion, the evolution of the n e pedestal is determined by a combination of neutral fluxes, HFSHD and reduced particle flux across the pedestal. A reduced particle flux explains the fast, experimentally observed re-establishment of the n e pedestal best, whereas neutrals and HFSHD impact on the evolution of the SOL and separatrix conditions.
Scaling study of the combustion performance of gas—gas rocket injectors
NASA Astrophysics Data System (ADS)
Wang, Xiao-Wei; Cai, Guo-Biao; Jin, Ping
2011-10-01
To obtain the key subelements that may influence the scaling of gas—gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas—gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas—gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multielement injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.
Densitometric tomography using the measurement of muon flux
NASA Astrophysics Data System (ADS)
Hivert, F.; Busto, J.; Brunner, J.; Salin, P.; Gaffet, S.
2013-12-01
The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g. seismic imaging, electric prospection or gravimetry. The present work develops a recent method to investigate the in situ density of rocks using atmospheric the muon flux measurement , its attenuation depending on the rock density and thickness. This new geophysical technique have been mainly applied in volcanology (Lesparre N., 2011) using scintillator detectors. The present project (T2DM2) aims to realize underground muons flux measurements in order to characterizing the rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measure with a new Muon telescope instrumentation using Micromegas detectors in Time Projection Chambers (TPC) configuration. The first step of the work presented considers the muon flux simulation using the Gaisser model, for the interactions between muons and atmospheric particles, and the MUSIC code (Kudryavtsev V. A., 2008) for the muons/rock interactions. The results show that the muon flux attenuation caused by density variations are enough significant to be observed until around 500 m depth and for period of time in the order of one month. Such a duration scale and depth of investigation is compatible with the duration of the water transfer processes involved within the Karst unsaturated zone where LSBB is located. Our work now concentrates on the optimization of the spatial distribution of detectors that will be deployed in future.
Muon tomography of rock density using Micromegas-TPC telescope
NASA Astrophysics Data System (ADS)
Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier
2014-05-01
The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.
Advanced high performance horizontal piezoelectric hybrid synthetic jet actuator
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2012-01-01
The present invention comprises a high performance, horizontal, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a horizontal piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The present invention is capable of installation in the wing surface as well as embedding in the wetted surfaces of a supersonic inlet. The jet velocity and mass flow rate for the SJA-H will be several times higher than conventional piezoelectric actuators.
Best Practices for In-Situ Sediment-Water Incubations with Benthic Landers
NASA Astrophysics Data System (ADS)
Tengberg, Anders; Kononets, Mikhail; Hall, Per; Nilsson, Madeleine; Ekeroth, Nils
2017-04-01
Biological, chemical, physical and geological processes that take place at the seafloor are crucial in influencing and regulating many aquatic environments. One method to estimate exchange rates, fluxes, between the sediment and the overlying water is in-situ sediment-water incubations using autonomous chamber landers. As for all field sampling and measurements best practices methods are needed to obtain high quality data. With experiences form many years usage of the Gothenburg autonomous bottom lander systems this presentation will describe some of the experimental work that has been done with focus on quality control and data evaluation methods.
Ethanol emission from loose corn silage and exposed silage particles
NASA Astrophysics Data System (ADS)
Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank
2010-11-01
Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.
Nitrous oxide emissions from corn-soybean systems in the midwest.
Parkin, Timothy B; Kaspar, Thomas C
2006-01-01
Soil N2O emissions from three corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems in central Iowa were measured from the spring of 2003 through February 2005. The three managements systems evaluated were full-width tillage (fall chisel plow, spring disk), no-till, and no-till with a rye (Secale cereale L. 'Rymin') winter cover crop. Four replicate plots of each treatment were established within each crop of the rotation and both crops were present in each of the two growing seasons. Nitrous oxide fluxes were measured weekly during the periods of April through October, biweekly during March and November, and monthly in December, January, and February. Two polyvinyl chloride rings (30-cm diameter) were installed in each plot (in and between plant rows) and were used to support soil chambers during the gas flux measurements. Flux measurements were performed by placing vented chambers on the rings and collecting gas samples 0, 15, 30, and 45 min following chamber deployment. Nitrous oxide fluxes were computed from the change in N2O concentration with time, after accounting for diffusional constraints. We observed no significant tillage or cover crop effects on N2O flux in either year. In 2003 mean N2O fluxes were 2.7, 2.2, and 2.3 kg N2O-N ha(-1) yr(-1) from the soybean plots under chisel plow, no-till, and no-till + cover crop, respectively. Emissions from the chisel plow, no-till, and no-till + cover crop plots planted to corn averaged 10.2, 7.9, and 7.6 kg N2O-N ha(-1) yr(-1), respectively. In 2004 fluxes from both crops were higher than in 2003, but fluxes did not differ among the management systems. Fluxes from the corn plots were significantly higher than from the soybean plots in both years. Comparison of our results with estimates calculated using the Intergovernmental Panel on Climate Change default emission factor of 0.0125 indicate that the estimated fluxes underestimate measured emissions by a factor of 3 at our sites.
Accelerator system and method of accelerating particles
NASA Technical Reports Server (NTRS)
Wirz, Richard E. (Inventor)
2010-01-01
An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.
Performance of a transpiration-regenerative cooled rocket thrust chamber
NASA Technical Reports Server (NTRS)
Valler, H. W.
1979-01-01
The analysis, design, fabrication, and testing of a liquid rocket engine thrust chamber which is gas transpiration cooled in the high heat flux convergent portion of the chamber and water jacket cooled (simulated regenerative) in the barrel and divergent sections of the chamber are described. The engine burns LOX-hydrogen propellants at a chamber pressure of 600 psia. Various transpiration coolant flow rates were tested with resultant local hot gas wall temperatures in the 800 F to 1400 F range. The feasibility of transpiration cooling with hydrogen and helium, and the use of photo-etched copper platelets for heat transfer and coolant metering was successfully demonstrated.
Zheng, Xunhua; Xu, Zhongjun; Wang, Yuesi; Han, Shenghui; Huang, Yao; Cai, Zucong; Zhu, Jianguo
2002-10-01
We firstly introduced the method for determining the net ecosystem exchange fluxes of CO2 (NEE) between croplands and atmosphere, based on field measurements using static opaquechamber/gas chromatography methods was introduced, and the application of this method in the FACE (free-air CO2 enrichment) study to examine the effects of elevated CO2 on the NEE over a typical paddy ecosystem was carried out, because of lacking in observation data for some necessary parameters, e.g., dark maintenance respiration coefficient, only the minimum value of NEE (NEEmin) was calculated based on opaque-chamber measurements. The NEEmin data indicate that CO2 elevated by 200 +/- 40 mumol.mol-1 significantly increased the ecosystem uptake of atmospheric CO2 by a factor ca. 3. To accurately determine the NEE based on opaquechamber measurements, dark maintenance respiration coefficient, above-ground biomass and root: shoot, i.e. R:S, ratio of root to shoot should be observed over the whole growing season.
Anderson, D.E.; Farrar, C.D.
2001-01-01
Three pilot studies were performed to assess application of the eddy covariance micrometeorological method in the measurement of carbon dioxide (CO2) flux of volcanic origin. The selected study area is one of high diffuse CO2 emission on Mammoth Mountain, CA. Because terrain and source characteristics make this a complex setting for this type of measurement, added consideration was given to source area and upwind fetch. Footprint analysis suggests that the eddy covariance measurements were representative of an upwind elliptical source area (3.8 ?? 103 m2) which can vary with mean wind direction, surface roughness, and atmospheric stability. CO2 flux averaged 8-16 mg m-2 s-1 (0.7-1.4 kg m-2 day-1). Eddy covariance measurements of flux were compared with surface chamber measurements made in separate studies [Geophys. Res. Lett. 25 (1998a) 1947; EOS Trans. 79 (1998) F941.] and were found to be similar. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Heumann, Holger; Rapetti, Francesca
2017-04-01
Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.
Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models
Debasish Saha; Armen R. Kemanian; Benjamin M. Rau; Paul R. Adler; Felipe Montes
2017-01-01
Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (...
Development and validation of inexpensive, automated, dynamic flux chambers
We developed and validated an automated, inexpensive, and continuous multiple-species gas-flux monitoring system that can provide data for a variety of relevant atmospheric pollutants, including O3, CO2, and NOx. Validation consisted of conducting concurrent gas-phase dry deposit...
BOREAS TE-1 CH4 Flux Data Over The SSA-OA
NASA Technical Reports Server (NTRS)
Anderson, Darwin; Papagno, Andrea; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor)
2000-01-01
The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall transect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains methane flux and soil profile methane concentration values from the SSA-OA site. The data were collected from 29-May to 17-Sep-1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
BOREAS TE-1 CO2 and CH4 Flux Data Over the SSA-OBS Site
NASA Technical Reports Server (NTRS)
Anderson, Darwin; Papagno, Andrea; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor)
2000-01-01
The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall transect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains carbon dioxide and methane flux values from the SSA-OBS site. The data were collected from 09-Jun to 04-Sep-1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collier, Sarah M.; Dean, Andrew P.; Oates, Lawrence G.
One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either bemore » trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. For this study, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass (Panicum virgatum L.) and alfalfa (Medicago sativa L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies.« less
Does Plant Biomass Manipulation in Static Chambers Affect Nitrous Oxide Emissions from Soils?
Collier, Sarah M.; Dean, Andrew P.; Oates, Lawrence G.; ...
2016-01-22
One of the most widespread approaches for measurement of greenhouse gas emissions from soils involves the use of static chambers. This method is relatively inexpensive, is easily replicated, and is ideally suited to plot-based experimental systems. Among its limitations is the loss of detection sensitivity with increasing chamber height, which creates challenges for deployment in systems including tall vegetation. It is not always possible to avoid inclusion of plants within chambers or to extend chamber height to fully accommodate plant growth. Thus, in many systems, such as perennial forages and biomass crops, plants growing within static chambers must either bemore » trimmed or folded during lid closure. Currently, data on how different types of biomass manipulation affect measured results is limited. For this study, we compare the effects of cutting vs. folding of biomass on nitrous oxide measurements in switchgrass (Panicum virgatum L.) and alfalfa (Medicago sativa L.) systems. We report only limited evidence of treatment effects during discrete sampling events and little basis for concern that effects may intensify over time as biomass manipulation is repeatedly imposed. However, nonsignificant treatment effects that were consistently present amounted to significant overall trends in three out of the four systems studied. Such minor disparities in flux could amount to considerable quantities over time, suggesting that caution should be exercised when comparing cumulative emission values from studies using different biomass manipulation strategies.« less
Utilizing Chamber Data for Developing and Validating Climate Change Models
NASA Technical Reports Server (NTRS)
Monje, Oscar
2012-01-01
Controlled environment chambers (e.g. growth chambers, SPAR chambers, or open-top chambers) are useful for measuring plant ecosystem responses to climatic variables and CO2 that affect plant water relations. However, data from chambers was found to overestimate responses of C fluxes to CO2 enrichment. Chamber data may be confounded by numerous artifacts (e.g. sidelighting, edge effects, increased temperature and VPD, etc) and this limits what can be measured accurately. Chambers can be used to measure canopy level energy balance under controlled conditions and plant transpiration responses to CO2 concentration can be elucidated. However, these measurements cannot be used directly in model development or validation. The response of stomatal conductance to CO2 will be the same as in the field, but the measured response must be recalculated in such a manner to account for differences in aerodynamic conductance, temperature and VPD between the chamber and the field.
Measurement of air and VOC vapor fluxes during gas-driven soil remediation: bench-scale experiments.
Kim, Heonki; Kim, Taeyun; Shin, Seungyeop; Annable, Michael D
2012-09-04
In this laboratory study, an experimental method was developed for the quantitative analyses of gas fluxes in soil during advective air flow. One-dimensional column and two- and three-dimensional flow chamber models were used in this study. For the air flux measurement, n-octane vapor was used as a tracer, and it was introduced in the air flow entering the physical models. The tracer (n-octane) in the gas effluent from the models was captured for a finite period of time using a pack of activated carbon, which then was analyzed for the mass of n-octane. The air flux was calculated based on the mass of n-octane captured by the activated carbon and the inflow concentration. The measured air fluxes are in good agreement with the actual values for one- and two-dimensional model experiments. Using both the two- and three-dimensional models, the distribution of the air flux at the soil surface was measured. The distribution of the air flux was found to be affected by the depth of the saturated zone. The flux and flux distribution of a volatile contaminant (perchloroethene) was also measured by using the two-dimensional model. Quantitative information of both air and contaminant flux may be very beneficial for analyzing the performance of gas-driven subsurface remediation processes including soil vapor extraction and air sparging.
NASA Astrophysics Data System (ADS)
Kunz, M.; Lavric, J. V.; Grant, R. H.; Gerbig, C.; Heimann, M.; Flatt, J. E.; Zeeman, M. J.; Wolf, B.
2016-12-01
The exchange of carbon between biosphere and atmosphere is a topic of high interest, particularly because the magnitude of biospheric climate feedback is uncertain. Soil chambers and eddy covariance systems, the traditional tools for the measurement of exchange fluxes, are subject to inherent limitations: chambers cover only small areas of typically less than on square meter, and eddy covariance is not applicable under very low wind conditions. Complementary methods can help to deal with these limitations and provide more confidence in up-scaling. During the ScaleX 2016 campaign an ecosystem was studied with a combination of multiple measurement approaches, including soil chambers, an eddy covariance station, a weather station, quasi-continuous CO2 measurements on a 10 m tower, multiple UAS with different sensors and remote sensing of temperature, humidity and wind profiles. The campaign took place at Fendt in Southern Germany on a flat valley floor covered by grass. We deployed COCAP, a compact carbon dioxide analyser for airborne platforms developed at the Max Planck Institute for Biogeochemistry in Jena, on a commercial multicopter (DJI S1000). COCAP measures carbon dioxide dry air mole fraction to an accuracy of 2 ppm as well as ambient pressure, temperature and relative humidity. At a total mass of 1 kg it contains a GPS receiver, on-board data logging capabilities and a radio transmitter which allows for real-time data visualisation on a ground station computer. In consecutive vertical profile measurements at night-time, reaching up to a maximum height of 150 m, we see a strong build-up of CO2 close to the ground which we attribute to exchange fluxes from the surface into the atmosphere that are trapped below a nocturnal inversion. We estimate these fluxes from the change in observed column amount of CO2 over time and compare our results to other methods. Challenges in the measurement and data analysis as well as the influence of wind, rotor downwash and valley drainage flows are discussed.
SEASONAL SOIL FLUXES OF CARBON MONOXIDE IN BURNED AND UNBURNED BRAZILIAN SAVANNAS
Soil-atmosphere fluxes of carbon monoxide (CO) were measured from September 1999 through November 2000 in savanna areas in central Brazil (Cerrado) under different fire regimes using transparent and opaque static chambers. Studies focused on two vegetation types, cerrado stricto...
Laboratory experiments of heat and moisture fluxes through supraglacial debris
NASA Astrophysics Data System (ADS)
Nicholson, Lindsey; Mayer, Christoph; Wirbel, Anna
2014-05-01
Inspired by earlier work (Reznichenko et al., 2010), we have carried out experiments within a climate chamber to explore the best ways to measure the heat and moisture fluxes through supraglacial debris. Sample ice blocks were prepared with debris cover of varying lithology, grain size and thickness and were instrumented with a combination of Gemini TinyTag temperature/relative humidity sensors and Decagon soil moisture sensors in order to monitor the heat and moisture fluxes through the overlying debris material when the experiment is exposed to specified solar lamp radiation and laminar airflow within the temperature-controlled climate chamber. Experimental results can be used to determine the optimal set up for numerical models of heat and moisture flux through supraglacial debris and also indicate the performance limitations of such sensors that can be expected in field installations. Reznichenko, N., Davies, T., Shulmeister, J. and McSaveney, M. (2010) Effects of debris on ice-surface melting rates: an experimental study. Journal of Glaciology, Volume 56, Number 197, 384-394.
Huang, Wen-Min; Zhu, Kong-Xian; Zhao, Wei; Yu, Bo-Shi; Yuan, Xi-Gong; Feng, Rui-Jie; Bi, Yong-Hong; Hu, Zheng-Yu
2013-04-01
With the closed chamber and gas chromatography method, a 24-hour continuous monitoring was carried out to understand the greenhouse gases fluxes across the water-air interface of the Xiangxi River Bay, the Three-Gorges Reservoir in Autumn. Results indicated that the fluxes of CO2, CH4 and N2O across the water-air interface showed an obvious diurnal variation. The absorption and emission process of CH4 showed strong diurnal variation during the experimental period, reaching the highest emission at 1 am, whereas CO2 and N2O were emitted all day. The fluxes of CO2 ranged from 20.1-97.5 mg x (m2 x h)(-1) at day and 32.7-42.5 mg x (m2 x h)(-1) at night, the fluxes of N2O ranged from 18.4-133.7 microg x (m2 x h)(-1) at day and 42.1-102.6 microg x (m2 x h)(-1) at night. The fluxes of CO2 had positive correlation with wind speed and negative correlation with pH. The fluxes of N2O had positive correlation with pH.
Three chamber negative ion source
Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.
1985-01-01
A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.
Design and performance of vacuum system for high heat flux test facility
NASA Astrophysics Data System (ADS)
Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.
2017-04-01
High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.
NASA Technical Reports Server (NTRS)
West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin
2006-01-01
A robust rocket engine combustor design and development process must include tools which can accurately predict the multi-dimensional thermal environments imposed on solid surfaces by the hot combustion products. Currently, empirical methods used in the design process are typically one dimensional and do not adequately account for the heat flux rise rate in the near-injector region of the chamber. Computational Fluid Dynamics holds promise to meet the design tool requirement, but requires accuracy quantification, or validation, before it can be confidently applied in the design process. This effort presents the beginning of such a validation process for the Loci- CHEM CPD code. The model problem examined here is a gaseous oxygen (GO2)/gaseous hydrogen (GH2) shear coaxial single element injector operating at a chamber pressure of 5.42 MPa. The GO2/GH2 propellant combination in this geometry represents one the simplest rocket model problems and is thus foundational to subsequent validation efforts for more complex injectors. Multiple steady state solutions have been produced with Loci-CHEM employing different hybrid grids and two-equation turbulence models. Iterative convergence for each solution is demonstrated via mass conservation, flow variable monitoring at discrete flow field locations as a function of solution iteration and overall residual performance. A baseline hybrid grid was used and then locally refined to demonstrate grid convergence. Solutions were also obtained with three variations of the k-omega turbulence model.
BOREAS TGB-1 CH4 Concentration and Flux Data from NSA Tower Sites
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Crill, Patrick; Varner, Ruth K.
2000-01-01
The BOREAS TGB-1 team made numerous measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains half-hourly averages of ambient methane (CH4) measurements and calculated fluxes for the NSA-Fen in 1996 and the NSA-BP and NSA-OJP tower sites in 1994. The purpose of this study was to determine the CH4 flux from the study area by measuring ambient CH 4 concentrations. This flux can then be compared to the chamber flux measurements taken at the same sites. The data are provided in tabular ASCII files.
NASA Astrophysics Data System (ADS)
Leger, E.; Dafflon, B.; Thorpe, M.; Kreitinger, A.; Laura, D.; Haivala, J.; Peterson, J.; Spangler, L.; Hubbard, S. S.
2016-12-01
While subsurface storage of CO2 in geological formations offers significant potential to mitigate atmospheric greenhouse gasses, approaches are needed to monitor the efficacy of the strategy as well as possible negative consequences, such as leakage of CO2 or brine into groundwater or release of fugitive gaseous CO2. Groundwater leakages can cause subsequent reactions that may also be deleterious. For example, a release of dissolved CO2 into shallow groundwatersystems can decrease groundwater pH which can potentiallymobilize naturally occurring trace metals and ions. In this perspective, detecting and assessing potential leak requires development of novel monitoring techniques.We present the results of using surface electrical resistivity tomography (ERT) and a novel CO2 sensitive Lidar-based sensor to monitor a controlled CO2 release at the ZeroEmission Research and Technology Center (Bozeman, Montana). Soil temperature and moisture sensors, wellbore water quality measurements as well as chamber-based CO2 flux measurements were used in addition to the ERT and a novel Lidar-based sensor to detect and assess potential leakage into groundwater, vadose zone and atmosphere. The three-week release wascarried out in the vadose and the saturated zones. Well sampling of pH and conductivity and surface CO2 fluxes and concentrations measurements were acquired during the release and are compared with complex electricalresistivity time-lapse measurements. The novel Lidar-based image of the CO2 plume were compared to chamber-based CO2 flux and concentration measurements. While a continuous increase in subsurface ERT and above ground CO2 was documented, joint analysis of the above and below ground data revealed distinct transport behavior in the vadose and saturated zones. Two type of transport were observed, one in the vadoze zone, monitored by CO2 flux chamber and ERT, and the other one in the saturated zone, were ERT and wellsampling were carried. The experiment suggests how a range of geophysical, remote sensing, hydrological and geochemical measurement approaches can be optimally configured to detect the distribution and explore behavior of possible CO2 leakages in distinct compartments, including groundwater, vadose zone, and atmosphere.
Reporting central tendencies of chamber measured surface emission and oxidation.
Abichou, Tarek; Clark, Jeremy; Chanton, Jeffery
2011-05-01
Methane emissions, concentrations, and oxidation were measured on eleven MSW landfills in eleven states spanning from California to Pennsylvania during the three year study. The flux measurements were performed using a static chamber technique. Initial concentration samples were collected immediately after placement of the flux chamber. Oxidation of the emitted methane was evaluated using stable isotope techniques. When reporting overall surface emissions and percent oxidation for a landfill cover, central tendencies are typically used to report "averages" of the collected data. The objective of this study was to determine the best way to determine and report central tendencies. Results showed that 89% of the data sets of collected surface flux have lognormal distributions, 83% of the surface concentration data sets are also lognormal. Sixty seven percent (67%) of the isotope measured percent oxidation data sets are normally distributed. The distribution of data for all eleven landfills provides insight of the central tendencies of emissions, concentrations, and percent oxidation. When reporting the "average" measurement for both flux and concentration data collected at the surface of a landfill, statistical analyses provided insight supporting the use of the geometric mean. But the arithmetic mean can accurately represent the percent oxidation, as measured with the stable isotope technique. We examined correlations between surface CH(4) emissions and surface air CH(4) concentrations. Correlation of the concentration and flux values using the geometric mean proved to be a good fit (R(2)=0.86), indicating that surface scans are a good way of identifying locations of high emissions. Copyright © 2010 Elsevier Ltd. All rights reserved.
HYDROLOGIC CONDITIONS AFFECTING THE TROPOSPHERIC FLUX OF VINCLOZOLIN AND ITS DEGRADATION PRODUCTS
A laboratory chamber was used to determine hydrologic conditions that lead to the tropospheric flux of a suspected anti-androgenic dicarboximide fungicide, vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2,4-dione) and three degradation products from sterilized...
SPRUCE S1 Bog Sphagnum CO2 Flux Measurements and Partitioning into Re and GPP
Walker, A. P. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Carter, K. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Nettles, W. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Philips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Sebestyen, S. D. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Weston, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2015-06-01
This data set provides (1) the results of in-situ Sphagnum-peat hourly net ecosystem exchange (NEE) measured using a LICOR 8100 gas exchange system and (2) the component fluxes -- gross primary production (GPP) and ecosystem respiration (Re), derived using empirical regressions.NEE measurements were made from 6 June to 6 November 2014 and 20 March to 10 May 2015. Three 8100 chambers per dominant species (S. magellanicum or S. fallax) were placed in the S1 Bog in relatively open ground where there was no obvious hummock-hollow microtopography. The 8100 chambers were not located in the SPRUCE experimental enclosures.
Experimental Design of a Magnetic Flux Compression Experiment
NASA Astrophysics Data System (ADS)
Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.
2007-06-01
Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.
Tidal influence on subtropical estuarine methane emissions
NASA Astrophysics Data System (ADS)
Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo
2014-05-01
The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period. Although dissolved methane surface water concentrations were highest in the upper reaches of the estuary, experiencing the lowest tidal currents, fluxes measured using chambers were lower relative to middle and lower reaches. This supports the tidal study findings as higher tidal currents were experienced in the middle and lower reaches. The dominant driver behind estuarine methane water-air fluxes in this system was tidal current speed. Future studies need to take into account flux rates during both transition and slack tide periods to quantify total flux rates.
A digital wide range neutron flux measuring system for HL-2A
NASA Astrophysics Data System (ADS)
Yuan, Chen; Wu, Jun; Yin, Zejie
2017-08-01
To achieve wide-range, high-integration, and real-time performance on the neutron flux measurement on the HL-2A tokamak, a digital neutron flux measuring (DNFM) system based on the peripheral component interconnection (PCI) eXtension for Instrumentation express (PXIe) bus was designed. This system comprises a charge-sensitive preamplifier and a field programmable gate array (FPGA)-based main electronics plug-in. The DNFM totally covers source-range and intermediate-range neutron flux measurements, and increases system integration by a large margin through joining the pulse-counting mode and Campbell mode. Meanwhile, the neutron flux estimation method based on pulse piling proportions is able to choose and switch measuring modes in accordance with current flux, and this ensures the accuracy of measurements when the neutron flux changes suddenly. It has been demonstrated by simulated signals that the DNFM enhances the full-scale measuring range up to 1.9 × 108 cm-2 s-1, with relative error below 6.1%. The DNFM has been verified to provide a high temporal sensitivity at 10 ms time intervals on a single fission chamber on HL-2A. Contributed paper, published as part of the Proceedings of the 3rd Domestic Electromagnetic Plasma Diagnostics Workshop, September 2016, Hefei, China.
Transpiration Cooling Experiment
NASA Technical Reports Server (NTRS)
Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.
1997-01-01
The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.
NASA Astrophysics Data System (ADS)
Drollinger, Simon; Maier, Andreas; Karer, Jasmin; Glatzel, Stephan
2017-04-01
Peatlands are the only type of ecosystems which have the ability to accumulate significant amounts of carbon (C) under undisturbed conditions. The amount of C sequestered in peatlands depends on the balance between gross primary production, ecosystem respiration and decomposition of plant material. Sphagnum-dominated bogs possess the greatest peat accumulation potential of all peatlands, thus in turn, feature highest C release potentials. Many studies report about the C balances of undisturbed northern peat bogs, however, little is known about the effects of peatland degradation on the C balance between different plant compositions within peat bog ecosystems. Particularly in the Alpine region, where temperature increase during the last century has been almost twice as high as the global mean. The investigated peat bog is located in the inner Alpine Enns valley in the Eastern Alps, Austria (N 47˚ 34.873' E 14˚ 20.810'). It is a pine peat bog covered by Sphagnum mosses and a present extent of about 62 ha. Due to increasing differences in surface height of the peatland compared to the surrounding areas and related lowered water retention capacity attributed to the subsidence of the adjacent intensively managed meadows on deeply drained peat soils, the function of the peatland as a carbon sink is strongly endangered. Hence, the current mean water table depth of the central peat bog area is about -12 cm. To reveal differences in peatland-atmosphere C exchanges within the peatland ecosystem, we investigated CO2 and CH4 fluxes of four different vegetation compositions (PM1-PM4) at the treeless central peat bog area. PM1 is dominated by the graminoids Rhynchospora alba and Eriophorum vaginatum. PM2 is inhabited by small individuals (< 35 cm) of the conifer Pinus mugo, whereas PM3 is dominated by the ericaceous plant Calluna vulgaris. PM4 again is populated by Pinus mugo, but higher growing (35 - 60 cm) and with corresponding higher amount of biomass. Fluxes were measured for at least 120 seconds with the closed dynamic chamber method using infrared gas analysers (UGGA, Los Gatos Research and LI-802, LI-COR Biosciences) at four study sites with three replicates each. Net ecosystem exchange was measured using transparent chambers, whereas soil respiration was revealed using opaque chambers. Measurements were conducted seasonally during the last two years with eight sampling periods. Here, we demonstrate the seasonal variations in CO2 and CH4 fluxes, evaluate the underlying factors being responsible for these variations, examine the differences in diurnal pattern during the seasons and compute the global warming potentials of the released greenhouse gases. Moreover, we estimate the annual C balance per site and revise the seasonal C fluxes by comparing the results with fluxes derived by eddy covariance method.
NASA Astrophysics Data System (ADS)
Zhongjie, Y.; Schafer, K. V.; Slater, L. D.; Varner, R. K.; Amante, J.; Comas, X.; Reeve, A. S.; Alcivar, W.; Gonzalez, D.
2012-12-01
Northern peatlands are an important source of methane (CH4) release to the atmosphere, estimated at between 20 and 50 Tg/yr. Recent work on CH4 emissions from peatlands has demonstrated that ebullition can be a more important emission pathway than previously assumed. However, accurate quantification of the atmospheric CH4 burden due to ebullition is still very limited because ebullition exhibits high spatiotemporal variability such that sudden episodic events are difficult to capture and quantify with existing experimental methods. We have initiated a novel measurement program to better quantify the spatiotemporal variability in CH4 flux in peatlands, and to examine potential effects of vegetation and environmental factors, e.g. atmospheric pressure, water table, etc on these releases. A flow-through system was designed, consisting of a closed static chamber and a fast methane analyzer (FMA) (LI-COR model 7700) that has been employed at both the field and laboratory scale. The CH4 concentration in the air flowing through the chamber is continuously measured by the analyzer and used to reconstruct continuous CH4 emission fluxes. The high sampling rate of the FMA makes it sensitive to both ebullition and diffusion of gaseous CH4, capturing short duration, episodic ebullition fluxes. Non-steady static chamber measurements were also conducted to cross-validate the continuous measurements. Results acquired during summer 2011 show that episodic ebullition occurred more frequently at the pool site where previous studies indicate extensive wood layers at depth and the vegetation was a mix of Sphagnum and wooded heath. During a 3 day period of continuous measurements captured the passage of a tropical storm Irene, where short term episodic releases of CH4, ranging from 113 mg CH4/m2/d to 202 mg CH4/m2/d, were observed at the time of lowest atmospheric pressure, providing new evidence that atmospheric pressure is an important factor to controlling CH4 ebullition from peatlands. While traditional techniques, e.g. static chamber measurement can only occasionally detect the occurrence of ebullition, the continuous measurement by using a flow-through system is able to resolve spatiotemporal complexity of episodic CH4 ebullition events. These continuous CH4 measurements provide new insights into the timing of CH4 ebullition from peatlands to the atmosphere as climate changes and the role of environmental variables in regulating these CH4 releases.
NASA Astrophysics Data System (ADS)
Mazirov, Ilya; Vizirskaya, Mariya; Epikhina, Anna; Vasenev, Ivan; Valentini, Riccardo; Meshalkina, Julia
2014-05-01
The Global Change problem has obvious interaction with greenhouse gases (GHG) emission. The principal GHG is carbon dioxide. There is a lot of data on its fluxes but the Central Region of Russia is still one of less investigated area especially in case of agroecosystem carbon dioxide fluxes monitoring by chambers and eddy covariance methods combined application. Our research has been at the representative key plots of cultivated sod-podzoluvosols located at the Precision Farming Experimental Field of the Russian Timiryazev State Agricultural University (Moscow) in 2012-2013 in frame of RF Government grant 11.G34.31.0079 and RFBR grant 11-04-01376 activities. The research include the detailed soil cover patterns morphogenetic investigation, soil C pools dynamic analysis, soil CO2 flux decade-based monitoring by method of exposition chambers with IRGA (infra red gas analyzer) and agroecosystem CO2 flux seasonal monitoring by two eddy covariance stations in frame of 4 ha experimental plot. There were two crop versions (barley and grass mixture), and in case of chamber analysis - also two agrotecnology versions (traditional and no-till ones) with soil temperature and moisture analysis too. The results have shown high daily and seasonal dynamic of soil and agroecosystem CO2 emission. The beginning of vegetation period (until plant height of 10-12 cm) is characterized by high average soil CO2 emission and adsorption at the same time. The adsorption is significantly higher. The resulted CO2 absorption during the day is approximately two times higher than emissions at night. After harvesting CO2 emission is becoming essentially higher than adsorption. In 2012 data have shown for barley the small predominance of CO2 emissions over the absorption. The daily dynamics of soil CO2 emissions depends on the air temperature dynamics with the correlation coefficient changes from 0.86 at the beginning of the season to 0.52 and 0.38 at the middle and at the end of one. Soil moisture has stronger influence on the seasonal dynamics of soil and agroecosystem CO2 emissions. The crop factor input is stronger that the agro technology one. According to the obtained results it is especially important to carry out the soil CO2 emission measurement at the same time period during the day (the best one is between 11 and 15) due to high changes in CO2 emission during the 24 hours period - especially at the beginning of the summer. At the end of the season the influence of the temperature daily dynamics is becoming not so significant for CO2 emission monitoring.
Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models
USDA-ARS?s Scientific Manuscript database
Cumulative nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. This study used an agroecosystems simulation model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2...
CARBON MONOXIDE FLUXES OF DIFFERENT SOIL LAYERS IN UPLAND CANADIAN BOREAL FORESTS
Dark or low-light carbon monoxide fluxes at upland Canadian boreal forest sites were measured on-site with static chambers and with a laboratory incubation technique using cores from different depths at the same sites. Three different upland black spruce sites, burned in 1987,199...
Hazardous air pollutant (HAP) emission characterization of sewage treatment facilities in Korea.
Kang, Kyoung-Hee; Dong, Jong-In
2010-04-01
Until recently, nearly all sewage treatment-related regulations and researches have focused on the removal of the conventional and toxic pollutants from liquid effluents. The discharge of toxic compounds to the atmosphere has been implicitly regarded as a way of removal or destruction. During sewage treatment, the fate mechanism of volatilization/stripping, sorption and biotransformation primarily determines the fate of volatile HAPs. The objectives of this study are to investigate the emission characteristics of HAPs, which are generated from the liquid surface of sewage treatment facilities, by using an emission isolation flux chamber. HAP emissions increased at the inlet of the aerobic chamber during summer due to the relatively high atmospheric temperature. The percent ratio of flux for toluene reached its peak in winter, accounting for 33.6-34.2% of the total, but decreased to 25.1-28.6% in summer. In autumn, trichloroethene (TCE) was the highest, recording 17.6-18.1%, with chloroform and toluene showing similar levels. It seems that the ratio of chlorinated hydrocarbons increases in both summer and autumn because the chamber temperature during that time is higher than winter. This study is the initial study to investigate the emission characteristics of volatile HAPs emitted from domestic sewage treatment facilities to the air in Korea. Therefore, the isolation flux chamber will be used as an emission estimations tool to measure HAPs from sewage treatment facilities and may be applied to develop the emission factor and national source inventory of HAPs.
NASA Astrophysics Data System (ADS)
Kudryavtsev, A. A.; Serditov, K. Yu.
2012-07-01
This study presents 2D simulations of the two-chamber inductively coupled plasma source where power is supplied in the small discharge chamber and extends by electron thermal conductivity mechanism to the big diffusion chamber. Depending on pressure, two main scenarios of plasma density and its spatial distribution behavior were identified. One case is characterized by the localization of plasma in the small driver chamber where power is deposed. Another case describes when the diffusion chamber becomes the main source of plasma with maximum of the electron density. The differences in spatial distribution are caused by local or non-local behavior of electron energy transport in the discharge volume due to different characteristic scale of heat transfer with electronic conductivity.
Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Wilkman, E.; Oechel, W. C.; Zona, D.
2013-12-01
Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and consumption, whereas chamber and eddy covariance methodologies only document net production from the surface. Also, the capability to measure spring, summer and fall chamber fluxes, and to continuously determine year-round CO2 and CH4 fluxes under even the most extreme weather conditions, allows an unprecedented level of data continuity and local spatial coverage. Comparison to a nearby eddy covariance tower measuring CO2 and CH4 fluxes with an LGR Fast Greenhouse Gas Analyzer add additional power to this set of measurements. Thus, inter-comparison between diffusive, chamber, and tower-based carbon fluxes should lend much insight into the spatial and temporal controls on carbon cycling in this ecosystem.
Field Evaluation of Open System Chambers for Measuring Whole Canopy Gas Exchanges
USDA-ARS?s Scientific Manuscript database
The ability to monitor whole canopy CO2 and H2O fluxes of crop plants in the field is needed for many research efforts ranging from plant breeding to the study of Climate Change effects on crops. Four portable, transparent, open system chambers for measuring canopy gas exchanges were field tested on...
West, Michael D; Charles, Christine; Boswell, Rod W
2009-05-01
A high sensitivity momentum flux measuring instrument based on a compound pendulum has been developed for use with electric propulsion devices and radio frequency driven plasmas. A laser displacement system, which builds upon techniques used by the materials science community for surface stress measurements, is used to measure with high sensitivity the displacement of a target plate placed in a plasma thruster exhaust. The instrument has been installed inside a vacuum chamber and calibrated via two different methods and is able to measure forces in the range of 0.02-0.5 mN with a resolution of 15 microN. Measurements have been made of the force produced from the cold gas flow and with a discharge ignited using argon propellant. The plasma is generated using a Helicon Double Layer Thruster prototype. The instrument target is placed about 1 mean free path for ion-neutral charge exchange collisions downstream of the thruster exit. At this position, the plasma consists of a low density ion beam (10%) and a much larger downstream component (90%). The results are in good agreement with those determined from the plasma parameters measured with diagnostic probes. Measurements at various flow rates show that variations in ion beam velocity and plasma density and the resulting momentum flux can be measured with this instrument. The instrument target is a simple, low cost device, and since the laser displacement system used is located outside the vacuum chamber, the measurement technique is free from radio frequency interference and thermal effects. It could be used to measure the thrust in the exhaust of other electric propulsion devices and the momentum flux of ion beams formed by expanding plasmas or fusion experiments.
Environmental chamber measurements of mercury flux from coal utilization by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekney, Natalie J.; Martello, Donald; Schroeder, Karl
2009-05-01
An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7- day experiment averages ranging from -6.8 to 73 ng/m(2) h for the fly ash samples and -5.2 to 335 ng/m(2) h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples,more » the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.« less
Environmental chamber measurements of mercury flux from coal utilization by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekney, N.J.; Martello, D.V.; Schroeder, K.T.
2009-05-01
An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, themore » effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.« less
Gallego, E; Perales, J F; Roca, F J; Guardino, X
2014-02-01
Closed landfills can be a source of VOC and odorous nuisances to their atmospheric surroundings. A self-designed cylindrical air flux chamber was used to measure VOC surface emissions in a closed industrial landfill located in Cerdanyola del Vallès, Catalonia, Spain. The two main objectives of the study were the evaluation of the performance of the chamber setup in typical measurement conditions and the determination of the emission rates of 60 different VOC from that industrial landfill, generating a valuable database that can be useful in future studies related to industrial landfill management. Triplicate samples were taken in five selected sampling points. VOC were sampled dynamically using multi-sorbent bed tubes (Carbotrap, Carbopack X, Carboxen 569) connected to SKC AirCheck 2000 pumps. The analysis was performed by automatic thermal desorption coupled with a capillary gas chromatograph/mass spectrometry detector. The emission rates of sixty VOC were calculated for each sampling point in an effort to characterize surface emissions. To calculate average, minimum and maximum emission values for each VOC, the results were analyzed by three different methods: Global, Kriging and Tributary area. Global and Tributary area methodologies presented similar values, with total VOC emissions of 237 ± 48 and 222 ± 46 g day(-1), respectively; however, Kriging values were lower, 77 ± 17 gd ay(-1). The main contributors to the total emission rate were aldehydes (nonanal and decanal), acetic acid, ketones (acetone), aromatic hydrocarbons and alcohols. Most aromatic hydrocarbon (except benzene, naphthalene and methylnaphthalenes) and aldehyde emission rates exhibited strong correlations with the rest of VOC of their family, indicating a possible common source of these compounds. B:T ratio obtained from the emission rates of the studied landfill suggested that the factors that regulate aromatic hydrocarbon distributions in the landfill emissions are different from the ones from urban areas. Environmental conditions (atmospheric pressure, temperature and relative humidity) did not alter the pollutant emission fluxes. © 2013.
NASA Astrophysics Data System (ADS)
Wilkman, E.; Zona, D.; Oechel, W. C.
2014-12-01
In recent years, Arctic peatlands have released approximately 35 Tg (3.5 x 1012g) of CH4 annually, corresponding to around 1/3 of the aggregate wetland CH4 fluxes and 16% of all natural emissions. As climate models increasingly suggest that current warming trends in the Arctic (4-8 °C higher annual surface air temperatures) will continue by century's end, carbon (C) cycling in these northern climes may be further amplified. Although much has been learned in recent decades, uncertainty remains in regard to the spatial and temporal extent of CO2 and CH4 emissions from these systems. Chamber based carbon flux measurements were gathered for three growing seasons from June 2007 to September 2013 in Barrow, Alaska to investigate the diurnal, weekly, and monthly patterns of CO2 and CH4 flux in the North American Arctic. For the 2007 and 2008 growing seasons, high temporal frequency auto-chambers (LI-8100A Automated Soil Flux System, LI-COR Biosciences) were used to gather over 18,000 individual flux measurements. From July to September 2013 an Ultraportable Greenhouse Gas Analyzer (Los Gatos Research Inc.) was deployed in concert with this soil flux system to gather high temporal frequency soil CO2 and CH4 fluxes. Nearby eddy covariance towers provided auxiliary meteorological and environmental data, while weekly transects amassed further surficial hydrological measures (pH, thaw depth, water table). For earlier periods of data, respiratory fluxes were partitioned into five microtopographic classes (polygon rims and troughs, low centered basins, high ridges, and flat mesic terrain). Conversely, for the later periods of data covered chamber fluxes were partitioned into three 'habitat' types (High, Medium, Wet) based on corresponding aboveground average water table extent. Marked dissimilarities were noted across habitat types and microtopographic classes. In general more mesic, waterlogged regions released greater quantities of CO2 across the growing season, while intermediate (Medium) water table regimes dominated CH4 release in the fall. Additionally, temperature generally delimited CO2 release throughout the growing season, while CH4 release was strongly tied to thaw depth expansion. This large dataset thus greatly underscores the importance of microscale heterogeneity on C flux in the Arctic.
Effect of land use on methane flux from soil.
Chan, A S; Parkin, T B
2001-01-01
The precise effects of natural and disturbed terrestrial systems on the atmospheric CH4 pool are uncertain. This study was conducted to quantify and compare CH4 fluxes from a variety of ecosystems in central Iowa. We investigated agricultural systems under different management practices, a hardwood forest site, native and restored prairies, and a municipal landfill. Flux measurements were obtained using a closed-chamber method, and measurements were compiled by sampling over the 1993 and 1994 growing seasons. In 1993, most of the agricultural sites were net CH4 producers with cumulative CH4 fluxes ranging from -0.02 to 3.19 g m(-2) over the 258-d sampling season, while the natural ecosystems were net CH4 consumers, with cumulative seasonal fluxes ranging from -0.27 to -0.07 g m-2 258 d(-1). In 1994, only the landfill and the agricultural site treated with broadcast liquid swine manure (LSM) were net CH4 producers, while the remainder of the natural and agricultural ecosystems were net CH4 consumers, with mean seasonal flux rates ranging from -0.43 to -0.008 g m(-2) 271 d(-1). We hypothesize that the differences in CH4 fluxes between the two years are due to differences in rainfall. To illustrate the integration between land use and CH4 flux, we computed an area-weighted soil CH4 flux for the state of Iowa. Our calculations yielded a net average soil CH4 flux of 139,000 Mg CH4 for 1993 and 1994.
Development of high flux thermal neutron generator for neutron activation analysis
NASA Astrophysics Data System (ADS)
Vainionpaa, Jaakko H.; Chen, Allan X.; Piestrup, Melvin A.; Gary, Charles K.; Jones, Glenn; Pantell, Richard H.
2015-05-01
The new model DD110MB neutron generator from Adelphi Technology produces thermal (<0.5 eV) neutron flux that is normally achieved in a nuclear reactor or larger accelerator based systems. Thermal neutron fluxes of 3-5 · 107 n/cm2/s are measured. This flux is achieved using four ion beams arranged concentrically around a target chamber containing a compact moderator with a central sample cylinder. Fast neutron yield of ∼2 · 1010 n/s is created at the titanium surface of the target chamber. The thickness and material of the moderator is selected to maximize the thermal neutron flux at the center. The 2.5 MeV neutrons are quickly thermalized to energies below 0.5 eV and concentrated at the sample cylinder. The maximum flux of thermal neutrons at the target is achieved when approximately half of the neutrons at the sample area are thermalized. In this paper we present simulation results used to characterize performance of the neutron generator. The neutron flux can be used for neutron activation analysis (NAA) prompt gamma neutron activation analysis (PGNAA) for determining the concentrations of elements in many materials. Another envisioned use of the generator is production of radioactive isotopes. DD110MB is small enough for modest-sized laboratories and universities. Compared to nuclear reactors the DD110MB produces comparable thermal flux but provides reduced administrative and safety requirements and it can be run in pulsed mode, which is beneficial in many neutron activation techniques.
Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David
2016-01-01
Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.
NASA Astrophysics Data System (ADS)
Eckley, C.; Tate, M.; Lin, C. J.; Gustin, M. S.; Dent, S.; Eagles-Smith, C.; Lutz, M.; Wickland, K.; Wang, B.; Gray, J.; Edwards, G. C.; Krabbenhoft, D. P.; Smith, D. B.
2016-12-01
Mercury (Hg) emission and deposition can occur to and from soils and are an important component of the global atmospheric Hg budget. This presentation focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.
Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James
2006-01-01
To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.
Challenges and benefits on long-term eddy covariance measurements over lakes
NASA Astrophysics Data System (ADS)
Vesala, Timo; Golub, Malgorzata; Desai, Ankur; Heiskanen, Jouni; Provenzale, Maria; Rantakari, Miitta; Ojala, Anne; Mammarella, Ivan
2017-04-01
Eddy Covariance (EC) data on carbon dioxide fluxes is presently available on about 30 lakes but the time series are mostly short, order of one year. Longer EC series together with chamber measurements and appropriate auxiliary data on water column allow for more accurate estimates of the aquatic component in terrestrial carbon balance and analysis of the environmental controls. We discuss on challenges for long-term EC measurements over freshwater ecosystems and demonstrate the benefits of EC data for carbon cycle studies via examples from long-term sites EC sites in Finland. We discuss on the auxiliary measurements needed and the general design of the whole measurement set-up to get representative information. We discuss on challenges related to the CO2 flux partitioning for freshwater ecosystems and introduce a new method to estimate the net primary productivity (NPP) on EC data, which is superior to more traditional methods (bottle incubations, 14C technique) with a poor temporal resolution. Finally, we collected and analyzed CO2 fluxes from 19 globally distributed lakes and reservoirs representing six climate zones. The mean flux was c. 0.3 micro mole / m2 s. We applied a simple upscaling to the direct observations and ended up to the estimate which is about half of the current emission estimate for lentic systems.
Discovering the Importance of Bi-directional Water Fluxes in Leaves
NASA Astrophysics Data System (ADS)
Kayler, Z. E.; Saurer, M.; Siegwolf, R.
2007-12-01
The stable isotope ratio 18O/16O is used for constraining climate change models, partitioning ecosystem water fluxes and for studies of plant ecophysiology. Leaf water enrichment is an essential starting point for each of these applications. In order to obtain a complete picture of the role leaf water plays, not only the 18O values from leaf water but also the signature of transpired water must be accurately predicted for plants under varying environmental conditions. We used a novel chamber approach using highly depleted water (-330 ‰) as a vapor source to leaves of the velvet bean (Mucuna pruriens). We used a Walz gas exchange system consisting of a chamber that is controlled for humidity, light, and temperature. Water and carbon dioxide fluxes were measured by an infrared gas analyzer and chamber vapor was collected in cold traps chilled to - 60°C. Three leaves were collected after 2 hours to insure isotopic steady-state followed by leaf water extraction and isotope analysis. From this experiment we were able to measure the outward flux of soil source water and the inward flux of ambient vapor over a range of environments that varied in relative humidity (80%, 45%, 20%), light (50, 1000 μmolm-2s-1) and CO2 (50, 800 ppm). Leaf water isotopic values were below the source water values reflecting the influx of the labeled vapor. The degree to which leaf water values were depleted was strongly related to the relative humidity. The Craig-Gordon model overestimated depletion of leaf water under high relative humidity and predictions were improved with the Péclet correction. However, our initial analysis indicates that these models may not fully account for stomatal conductance in predicting leaf water isotopic values.
NASA Astrophysics Data System (ADS)
Wu, S.; Zou, J.; Liu, S.; Chen, J.; Kong, D.; Geng, Y.
2017-12-01
Agricultural irrigation watershed covers a large area in southeast of China and is a potentially important source of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). However, the flux magnitudes contribution to the overall catchment greenhouse gas (GHGs) fluxes and their drivers of seasonal variability are limited in agricultural irrigation watersheds. An in-situ observation was performed to measure annual CO2, CH4 and N2O fluxes from an agricultural irrigation watershed in southeast of China from September 2014 to September 2016. GHGs fluxes were measured using floating chambers and a gas exchange model was also used to predict CH4 and N2O fluxes. All GHGs showed varied seasonally with highest fluxes in early summer (July) and lowest in winter. Estimated seasonal CH4-C fluxes (11.5-97.6 mg m-2 hr-1) and N2O-N fluxes (2.8-80.8μg m-2 hr-1) were in relative agreement with measured CH4-C fluxes (0.05-74.9mg m-2 hr-1) and N2O-N fluxes (3.9-68.7μg m-2 hr-1) fluxes using floating chambers. Both CH4 and N2O fluxes were positively related to water temperature. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to sediment dissolved organic carbon (DOC). The N2O fluxes were positively related to water NH4+ and NO3-. The calculated EF5-r value in this study (mean = 0.0016; range = 0.0013-0.0018) was below the current IPCC (2006) default value of 0.0025. This implied that IPCC methodology may over estimates of N2O emissions associated with nitrogen leaching and runoff from agriculture.
Changes in CO2 diffuse degassing induced by the passing of seismic waves
NASA Astrophysics Data System (ADS)
Gresse, M.; Vandemeulebrouck, J.; Byrdina, S.; Chiodini, G.; Bruno, P. P.
2016-06-01
Solfatara crater, located in the Campi Flegrei caldera, is a volcano with one of the highest degassing rates on Earth, more than 1500 t of CO2 released by diffusion or through vents. Here, we investigated how this gas release can be disrupted by the passage of seismic waves. We performed continuous soil CO2 flux measurements during the propagation of seismic vibrations in the range of 5 Hz to 200 Hz induced by a vibroseis truck. The CO2 flux was continuously recorded using the accumulation chamber method. The data show a temporary and drastic (up to two-fold) increase in CO2 flux exclusively during the vibrations, before returning to the initial flux values. These transient variations are interpreted as fluidization of the surficial granular layer that releases the stored gas. Similar degassing processes might occur at a larger scale during earthquakes, to cause temporary increases in the total gas outflow in volcanic or tectonic areas. Our findings are useful to better assess and monitor the potential hazard from sudden CO2 flux release during earthquakes as several cases of intoxication or death have already been related to volcanic degassing.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.
NASA Technical Reports Server (NTRS)
King, Stagg L.; Quay, Paul D.; Lansdown, John M.
1989-01-01
During a survey of the Alaskan North Slope to estimate the isotopic composition and fluxes of methane (CH4) from the tundra, two sites were encountered that showed net methane consumption within flux chambers. Methane concentrations decreased from ambient (1.78 ppmv) by up to 50 percent, and the delta C-13 increased by up to 10 percent in the two chamber deployments showing CH4 consumption. CH4 consumption rates were measured to be 1.2 and 0.6 mg CH4/sq m per day; the corresponding carbon kinetic isotope effects (k13/k12) were 0.974 and 0.984, respectively.
NASA Astrophysics Data System (ADS)
Detweiler, D. J.; Loh, A. N.
2016-02-01
Spartina alterniflora salt marshes are among the most productive and biogeochemically active ecosystems on Earth. While they have been shown to be sources of dissolved organic carbon (DOC) and nutrient export to the coastal ocean via tidal processes, it has not been well quantified experimentally. The purpose of this study was to quantify DOC and nutrient fluxes from a fringing S. alterniflora salt marsh in North Carolina. The experiment was conducted using in situ benthic microcosm chambers filled with seawater during a flooding tide; the chambers were then plugged, and samples were collected during an ebbing tide over the course of 270 minutes while simulating light and dark conditions. Water samples were filtered and analyzed for DOC and nutrient concentrations over time and used to calculate fluxes from vegetated (S. alterniflora) and non-vegetated marsh sediments. Preliminary daily flux calculations show that fluxes from vegetated sediments have a higher magnitude when compared to fluxes from non-vegetated sediments. Daily flux calculations also suggest that vegetated sediments act as a DOC source while non-vegetated sediments act as a DOC sink. Additional flux data for dissolved inorganic and organic nitrogen (DIN, DON) and dissolved inorganic and organic phosphorus (DIP, DOP) as well as marsh sediment characterization will also be presented. Ultimately, these data will provide seasonal daily flux calculations for S. alterniflora salt marshes and insight as to how changing environmental conditions such as wetland modification, wetland destruction, nutrient input, and climate change are affecting coastal biogeochemical cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jammes, C.; Filliatre, P.; De Izarra, G.
The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. (authors)
SEASONAL VARIATIONS OF NITRIC OXIDE FLUX FROM AGRICULTURAL SOILS IN THE SOUTHEAST UNITED STATES
Fluxes of nitric oxide (NO) were measured from the summer of 1994 to the spring of 1995 from an intensively managed agricultural soil using a dynamic flow through chamber technique in order to study the seasonal variability in the emissions of NO. The measurements were made on a ...
Interpreting diel hysteresis between soil respiration and temperature
C. Phillips; N. Nickerson; D. Risk; B.J. Bond
2011-01-01
Increasing use of automated soil respiration chambers in recent years has demonstrated complex diel relationships between soil respiration and temperature that are not apparent from less frequent measurements. Soil surface flux is often lagged from soil temperature by several hours, which results in semielliptical hysteresis loops when surface flux is plotted as a...
Investigation of gaseous propellant combustion and associated injector/chamber design guidelines
NASA Technical Reports Server (NTRS)
Calhoon, D. F.; Ito, J. I.; Kors, D. L.
1973-01-01
Injector design criteria are provided for gaseous hydrogen-gaseous oxygen propellants. Design equations and procedures are presented which will allow an injector-chamber designer to a priori estimate of the performance, compatibility and stability characteristics of prototype injectors. The effects of chamber length, element geometry, thrust per element, mixture ratio, impingement angle, and element spacing were evaluated for four element concepts and their derivatives. The data from this series of tests were reduced to a single valued mixing function that describes the mixing potential of the various elements. Performance, heat transfer and stability data were generated for various mixture ratios, propellant temperatures, chamber pressures, contraction ratios, and chamber lengths. Applications of the models resulted in the design of procedures, whereby the performance and chamber heat flux can be calculated directly, and the injector stability estimated in conjunction with existing models.
Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations
NASA Astrophysics Data System (ADS)
Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.
2012-04-01
Methane is an important greenhouse gas with a warming potential 23 times that of carbon dioxide over a 100-year cycle. The permafrost regions of the world store significant amounts of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over the coming decades and centuries. Presently, most measurements of methane fluxes in permafrost regions have been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for permafrost research. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hours to annual estimates). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump and analyzer system. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path approach allows methane flux measurements at ambient pressure without the need for a pump. As a result, the measurements can be done with very low-power (e.g. 5-10 Watts), light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance stations is important for a number of ecosystems (rice fields, landfills, wetlands, cattle yards), but it is especially important for permafrost regions where grid power and access roads are generally not available, and the logistics of running the experiments are particularly expensive. Emerging research on methane flux measurements using low-power stations equipped with LI-7700 open-path methane analyzer (LI-COR Biosciences) are presented from several permafrost ecosystems with contrasting setups, and weather conditions. Principles of operation, station characteristics and requirements are also discussed.
NASA Astrophysics Data System (ADS)
Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Kochendorfer, J.; Wilkerson, J.; Anderson, J. G.
2017-12-01
The Arctic contains a large reservoir of organic matter stored in permafrost and clathrates. Varying geology and hydrology across the Arctic, even on small scales, can cause large variability in surface carbon fluxes and partitioning between methane and carbon dioxide. This makes upscaling from point source measurements such as small flux towers or chambers difficult. Ground based measurements can yield high temporal resolution and detailed information about a specific location, but due to the inaccessibility of most of the Arctic to date have only made measurements at very few sites. In August 2013, a small aircraft, flying low over the surface (5-30 m), and carrying an air turbulence probe and spectroscopic instruments to measure methane, carbon dioxide, nitrous oxide, water vapor and their isotopologues, flew over the North Slope of Alaska. During the six flights multiple comparisons were made with a ground based Eddy Covariance tower as well as three region surveys flights of fluxes over three areas each approximately 2500 km2. We present analysis using the Flux Fragment Method and surface landscape classification maps to relate the fluxes to different surface land types. We show examples of how we use the aircraft data to upscale from a eddy covariance tower and map spatial variability across different ecotopes.
Hadron-rich cosmic-ray families detected by emulsion chamber.
NASA Astrophysics Data System (ADS)
Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.
1995-11-01
Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.
A Geant Study of the Scintillating Optical Fiber (SOFCAL) Cosmic Ray Detector
NASA Technical Reports Server (NTRS)
Munroe, Ray B., Jr.
1998-01-01
Recent energy measurements by balloon-borne passive emulsion chambers indicate that the flux ratios of protons to helium nuclei and of protons to all heavy nuclei decrease as the primary cosmic ray energy per nucleon increases above approx. 200 GeV/n, and suggest a "break" in the proton spectrum between 200 GeV and 5 TeV. However, these passive emulsion chambers are limited to a lower energy threshold of approx. 5 TeV/n, and cannot fully explore this energy regime. Because cosmic ray flux and composition details may be significant to acceleration models, a hybrid detector system called the Scintillating Optical Fiber Calorimeter (SOFCAL) has been designed and flown. SOFCAL incorporates both conventional passive emulsion chambers and an active calorimeter utilizing scintillating plastic fibers as detectors. These complementary types of detectors allow the balloon-borne SOFCAL experiment to measure the proton and helium spectra from approx. 400 GeV/n to approx. 20 TeV. The fundamental purpose of this study is to use the GEANT simulation package to model the hadronic and electromagnetic shower evolution of cosmic rays incident on the SOFCAL detector. This allows the interpretation of SOFCAL data in terms of charges and primary energies of cosmic rays, thus allowing the determinations of cosmic ray flux and composition as functions of primary energy.
Radiological characterization of the pressure vessel internals of the BNL High Flux Beam Reactor.
Holden, Norman E; Reciniello, Richard N; Hu, Jih-Perng
2004-08-01
In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, measurements and calculations of the decay gamma-ray dose-rate were performed in the reactor pressure vessel and on vessel internal structures such as the upper and lower thermal shields, the Transition Plate, and the Control Rod blades. Measurements of gamma-ray dose rates were made using Red Perspex polymethyl methacrylate high-dose film, a Radcal "peanut" ion chamber, and Eberline's RO-7 high-range ion chamber. As a comparison, the Monte Carlo MCNP code and MicroShield code were used to model the gamma-ray transport and dose buildup. The gamma-ray dose rate at 8 cm above the center of the Transition Plate was measured to be 160 Gy h (using an RO-7) and 88 Gy h at 8 cm above and about 5 cm lateral to the Transition Plate (using Red Perspex film). This compares with a calculated dose rate of 172 Gy h using Micro-Shield. The gamma-ray dose rate was 16.2 Gy h measured at 76 cm from the reactor core (using the "peanut" ion chamber) and 16.3 Gy h at 87 cm from the core (using Red Perspex film). The similarity of dose rates measured with different instruments indicates that using different methods and instruments is acceptable if the measurement (and calculation) parameters are well defined. Different measurement techniques may be necessary due to constraints such as size restrictions.
NASA Astrophysics Data System (ADS)
Pohl, M.; Hagemann, U.; Liebe, M.; Sommer, M.; Augustin, J.
2012-04-01
The hilly young moraine landscape of north-eastern Germany is dominated by the cultivation of energy crops like maize. It is suspected that this cultivation can increase erosion effects and lead to the release of soil carbon (C). Therefore, in an interdisciplinary approach, the CarboZALF project investigates the impact of various factors such as erosion on greenhouse gas (GHG) fluxes and C dynamics on the site and the landscape level. From the CarboZalf-D project site located in the Uckermark, we present measured and modeled GHG fluxes (CO2 and CH4) and C dynamics of maize on four erosion-related soil types: a) haplic luvisol, b) eroded haplic luvisol, c) haplic regosol (calcaric) and d) endogleyic colluvic regosol. CO2 flux measurements of ecosystem respiration (Reco) and net ecosystem exchange (NEE) were conducted every four weeks by using a non-flow-through non-steady-state closed chamber system (Livingston and Hutchinson 1995) based on Drösler (2005). Measurement gaps of NEE were filled by modeling the Reco fluxes using the Lloyd-Taylor (Lloyd and Taylor 1994) method and the gross primary production (GPP) fluxes using Michaelis-Menten (Michaelis and Menten 1913) modeling approach. Annual NEE balances were then calculated based on the modeled Reco and GPP fluxes. CH4 fluxes were measured bi-weekly using a static chamber system with interval sampling. The system C budget is the sum of annual NEE, C export and CH4-C values. The endogleyic colluvic regosol featured the highest uptake of CH4 (< 1 kg C ha-1 yr-1), but the impact of erosion on the cumulative CH4 fluxes was very small. However, erosion and deposition had a significant impact on GPP, NEE and the C export, but with little differences between the resulting annual C balances. All investigated soil types were C sinks, storing 620 - 2600 kg C ha-1 yr-1. We conclude that i) maize cultivation must not be accompanied by soil organic carbon loss; ii) erosion seems to cause spatial variability of GHG fluxes and soil organic carbon budgets at least at the site level. Due to the temporal variability of GHG fluxes, generalized conclusions are only possible after long term investigations. This also applies to the question concerning the degree to which erosion influences C dynamics at the landscape scale. Drösler, M. 2005. Trace Gas Exchange and climatic relevance of bog ecosystems, Southern Germany, phD-thesis, TU München, München Livingston, G.P. & Hutchinson, G.L. 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of error. p. 14-51. In P.A. Matson & Harriss, R.C. (ed.) Methods in ecology - Biogenic trace gases: Measuring emissions from soil and water. Blackwell Science, Oxford, England
High-sensitivity Leak-testing Method with High-Resolution Integration Technique
NASA Astrophysics Data System (ADS)
Fujiyoshi, Motohiro; Nonomura, Yutaka; Senda, Hidemi
A high-resolution leak-testing method named HR (High-Resolution) Integration Technique has been developed for MEMS (Micro Electro Mechanical Systems) sensors such as a vibrating angular-rate sensor housed in a vacuum package. Procedures of the method to obtain high leak-rate resolution were as follows. A package filled with helium gas was kept in a small accumulation chamber to accumulate helium gas leaking from the package. After the accumulation, the accumulated helium gas was introduced into a mass spectrometer in a short period of time, and the flux of the helium gas was measured by the mass spectrometer as a transient phenomenon. The leak-rate of the package was calculated from the detected transient waveform of the mass spectrometer and the accumulation time of the helium gas in the accumulation chamber. Because the density of the helium gas in the vacuum chamber increased and the accumulated helium gas was measured in a very short period of time with the mass spectrometer, the peak strength of the transient waveform became high and the signal to noise ratio was much improved. The detectable leak-rate resolution of the technique reached 1×10-15 (Pa·m3/s). This resolution is 103 times superior to that of the conventional helium vacuum integration method. The accuracy of the measuring system was verified with a standard helium gas leak source. The results were well matched between theoretical calculation based on the leak-rate of the source and the experimental results within only 2% error.
Space environment simulation and sensor calibration facility
NASA Astrophysics Data System (ADS)
Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest
2018-02-01
The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.
Space environment simulation and sensor calibration facility.
Engelhart, Daniel P; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V; McGarity, John; Holeman, Ernest
2018-02-01
The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.
Krauss, Ken W.; Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Cormier, Nicole; Moss, Rebecca; Johnson, Darren; Neubauer, Scott C; Raynie, Richard C
2016-01-01
Coastal marshes take up atmospheric CO2 while emitting CO2, CH4, and N2O. This ability to sequester carbon (C) is much greater for wetlands on a per-area basis than from most ecosystems, facilitating scientific, political, and economic interest in their value as greenhouse gas sinks. However, the greenhouse gas balance of Gulf of Mexico wetlands is particularly understudied. We describe the net ecosystem exchange (NEEc) of CO2 and CH4 using eddy covariance (EC) in comparison with fluxes of CO2, CH4, and N2O using chambers from brackish and freshwater marshes in Louisiana, USA. From EC, we found that 182 g C m-2 y-1 was lost through NEEc from the brackish marsh. Of this, 11 g C m-2 y-1 resulted from net CH4 emissions and the remaining 171 g C m-2 y-1 resulted from net CO2 emissions. In contrast, -290 g C m2 y-1 was taken up through NEEc by the freshwater marsh, with 47 g C m-2 y-1 emitted as CH4 and -337 g C m-2 y-1 taken up as CO2. From chambers, we discovered that neither site had large fluxes of N2O. Sustained-flux greenhouse gas accounting metrics indicated that both marshes had a positive (warming) radiative balance, with the brackish marsh having a substantially greater warming effect than the freshwater marsh. That net respiratory emissions of CO2 and CH4 as estimated through chamber techniques were 2-4 times different from emissions estimated through EC requires additional understanding of the artifacts created by different spatial and temporal sampling footprints between techniques.
NASA Astrophysics Data System (ADS)
Pleijel, H.; Danielsson, H.; Emberson, L.; Ashmore, M. R.; Mills, G.
Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat ( r2=0.83) and potato ( r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AF st6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m -2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.
NASA Astrophysics Data System (ADS)
Desai, A. R.; Reed, D. E.; Dugan, H. A.; Loken, L. C.; Schramm, P.; Golub, M.; Huerd, H.; Baldocchi, A. K.; Roberts, R.; Taebel, Z.; Hart, J.; Hanson, P. C.; Stanley, E. H.; Cartwright, E.
2017-12-01
Freshwater ecosystems are hotspots of regional to global carbon cycling. However, significant sample biases limit our ability to quantify and predict these fluxes. For lakes, scaled flux estimates suffer biased sampling toward 1) low-nutrient pristine lakes, 2) infrequent temporal sampling, 3) field campaigns limited to the growing season, and 4) replicates limited to near the center of the lake. While these biases partly reflect the realities of ecological sampling, there is a need to extend observations towards the large fraction of freshwater systems worldwide that are impaired by human activities and those facing significant interannual variability owing to climatic change. Also, for seasonally ice-covered lakes, much of the annual budget of carbon fluxes is thought to be explained by variation in the shoulder seasons of spring ice melt and fall turnover. Recent advances in automated, continuous multi-year temporal sampling coupled with rapid methods for spatial mapping of CO2 fluxes has strong potential to rectify these sampling biases. Here, we demonstrate these advances in an eutrophic seasonally-ice covered lake with an urban shoreline and agricultural watershed. Multiple years of half-hourly eddy covariance flux tower observations from two locations are coupled with frequent spatial samples of these fluxes and drivers by speedboat, floating chamber fluxes, automated buoy-based monitoring of lake nutrient and physical profiles, and ensemble of physical-ecosystem models. High primary productivity in the water column leads to an average net carbon sink during the growing season in much of the lake, but annual net carbon fluxes show the lake can act as an annual source or a sink of carbon depending the timing of spring and fall turnover. Trophic interactions and internal waves drive shorter-term variation while nutrients and biology drive seasonal variation. However, discrepancies remain among methods to quantify fluxes, requiring further investigation.
Kofler, Markus; Lenninger, Margit; Mayer, Gert; Neuwirt, Hannes; Grimm, Michael; Bechtold, Thomas
2016-01-20
Renal replacement therapy options are limited to hemodialysis and peritoneal dialysis (70% of US patients) or renal transplantation. Diffusion processes are the main physico-chemical principle behind hemodialysis. An alternative way to achieve liquid flow through membranes bases on the electroosmotic flow which is observed as electrokinetic phenomenon in porous membranes which bear surface charges. Agar consists of the non-ionic agarose and the negatively charged agaropectine thus an electroosmotic flux is observed in analytical electrophoresis. In this study the potential electroosmosis on textile reinforced agar membranes as separation method was investigated. Using a five-chamber electrolysis cell and an agar membrane/cellulose fabric composite an intensive electroosmotic flow of 1-2 ml cm(2) h(-1) at 100 mA cell current could be observed. The movement of cations in the negatively charged agar structure led to an intensive electroosmotic flux, which also transported uncharged molecules such as urea, glucose through the membrane. Separation of uncharged low molecular weight molecules is determined by the membrane characteristic. The transport of ions (K(+), PO4(3-), creatinine) and uncharged molecules (urea, glucose) in electroosmotic separation experiments was monitored using a pH 5.5 phosphate electrolyte with the aim to assess the overall transport processes in the electrochemical cell. The results demonstrate the potential of the method for filtration of biological fluids in the absence of external pressure or high shear rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
John R. Butnor; Kurt H. Johnsen
2004-01-01
Measurement of soil respiration to quantify ecosystem carbon cyclingrequires absolute, not relative, estimates of soil CO2 efflux. We describe a novel, automated efflux apparatus that can be used to test the accuracy of chamber-based soil respiration measurements by generating known CO2 fluxes. Artificial soil is supported...
NEET Micro-Pocket Fission Detector. Final Project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unruh, T.; Rempe, Joy; McGregor, Douglas
2014-09-01
A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Alternative Energies and Atomic Energy Commission, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), is funded by the Nuclear Energy Enabling Technologies (NEET) program to develop and test Micro-Pocket Fission Detectors (MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When deployed, these sensors will significantly advance flux detection capabilities for irradiation tests in US Material Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, andmore » longer lifetime flux sensor for critical mock-ups, and high performance reactors, allowing several Department of Energy Office of Nuclear Energy (DOE-NE) programs to obtain higher accuracy/higher resolution data from irradiation tests of candidate new fuels and materials. Specifically, deployment of MPFDs will address several challenges faced in irradiations performed at MTRs: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe; MPFDs offer this option. MPFD construction is very different than current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions encountered in-core of high performance MTRs. The higher accuracy, high fidelity data available from the compact MPFD will significantly enhance efforts to validate new high-fidelity reactor physics codes and new multi-scale, multi-physics codes. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs, allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be deployed, offering the potential to accurately measure the flux and temperature profiles in the reactor. This report summarizes the status at the end of year two of this three year project. As documented in this report, all planned accomplishments for developing this unique new, compact, multipurpose sensor have been completed.« less
Liquid Methane/Oxygen Injector Study for Mars Ascent Engines
NASA Technical Reports Server (NTRS)
Trinh, Huu Phuoc
1999-01-01
As a part of the advancing technology of the cryogenic propulsion system for the Mars exploration mission, this effort aims at evaluating propellant injection concepts for liquid methane/liquid oxygen (LOX) rocket engines. Split-triplet and unlike impinging injectors were selected for this study. A total of four injector configurations were tested under combustion conditions in a modular combustor test article (MCTA), equipped with optically accessible windows, at MSFC. A series of forty hot-fire tests, which covered a wide range of engine operating conditions with the chamber pressure ranging from 320 to 510 and the mixture ratio from 1.5 to 3.5, were conducted. The test matrix also included a variation in the combustion chamber length for the purpose of investigating its effects on the combustion performance and stability. Initial assessments of the test results showed that the injectors provided stable combustion and there were no injector face overheating problems under all operating conditions. The Raman scattering signal measurement method was successfully demonstrated for the hydrocarbon/oxygen reactive flow field. The near-injector face flow field was visually observed through the use of an infrared camera. Chamber wall temperature, high frequency chamber pressure, and average throat section heat flux were also recorded throughout the test series. Assessments of the injector performance are underway.
NASA Astrophysics Data System (ADS)
Soong, J.; Stewart, C.; Reuss, D.; Pinney, C.; Cotrufo, F. M.
2010-12-01
The use of stable isotope enriched plant material can provide an unobstructed method of studying ecosystem nutrient dynamics between plants, soil, and atmosphere. However, the production of uniformly labeled perennial plant material is challenging due to plant physiological constraints and the mechanics of building and operating an isotope labeling system. In this study we present the design of a novel dual 13C and 15N continuous isotope labeling chamber located at Colorado State University. The chamber is equipped with automatic controls for CO2 concentration, temperature, and humidity, and has successfully been used to grow and label the tallgrass perennial Andropogon gerardii in pots from rhizomes. Three different nitrogen fertilization levels were applied to assess how substrate availability may alter growth and overall performance in the system. The efficiency of the 13C and 15N labeling chamber, its design and overall performance, as well as a full C, N, 13C, and 15N budget of the aboveground biomass, belowground biomass, and soil will be presented. Solid samples were analyzed on an EA-IRMS, while air samples from the chamber were analyzed using a precon-GC-IRMS system. The dual stable isotope labeled A. gerardii produced from this chamber will be used in a decomposition experiment to quantify the relative contribution of aboveground litter derived C to soil respiration, dissolved organic carbon, and various soil organic matter pools. Based on the results of our A. gerardii 13C and 15N labeling experiment we believe that this chamber design can be used to successfully produce dual stable isotope labeled plants for a wide variety of terrestrial nutrient flux experiments.
Effects of open-top chambers on Valencia' orange trees. [Citrus sinensis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olszyk, D.M.; Takemoto, B.K.; Kats, G.
Open-top field chambers are the most widely used technology for evaluating the impacts of air pollutants on vegetation. This study was conducted to evaluate the long-term effects of chambers on Valencia orange trees (Citrus sinensis (L.) Osbeck). The trees were exposed to ambient ozone (O{sub 3}) for 51 months in large (4.3-m diam. by 2.9-m high) nonfiltered open-top chambers (NF) and in ambient air without chambers (AA). Results suggest that the yield increases for NF compared to AA trees could, in part, be accounted for by decreased flux of O{sub 3} into leaves (based on decreased O{sub 3} exposure andmore » leaf conductance). However, other factors, i.e., increased tree growth, altered leaf C allocation, and lack of wind stress occurring only in chambers, likely contributed to higher NF tree yields.« less
Potential for using remote sensing to estimate carbon fluxes across northern peatlands - A review.
Lees, K J; Quaife, T; Artz, R R E; Khomik, M; Clark, J M
2018-02-15
Peatlands store large amounts of terrestrial carbon and any changes to their carbon balance could cause large changes in the greenhouse gas (GHG) balance of the Earth's atmosphere. There is still much uncertainty about how the GHG dynamics of peatlands are affected by climate and land use change. Current field-based methods of estimating annual carbon exchange between peatlands and the atmosphere include flux chambers and eddy covariance towers. However, remote sensing has several advantages over these traditional approaches in terms of cost, spatial coverage and accessibility to remote locations. In this paper, we outline the basic principles of using remote sensing to estimate ecosystem carbon fluxes and explain the range of satellite data available for such estimations, considering the indices and models developed to make use of the data. Past studies, which have used remote sensing data in comparison with ground-based calculations of carbon fluxes over Northern peatland landscapes, are discussed, as well as the challenges of working with remote sensing on peatlands. Finally, we suggest areas in need of future work on this topic. We conclude that the application of remote sensing to models of carbon fluxes is a viable research method over Northern peatlands but further work is needed to develop more comprehensive carbon cycle models and to improve the long-term reliability of models, particularly on peatland sites undergoing restoration. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
50-500 MeV observations of LMC supernova 1987A
NASA Astrophysics Data System (ADS)
Summer, T. J.; Rochester, G. K.; Sood, R. K.; Thomas, J.; Waldron, L.; Manchanda, R. K.; Frye, G.; Jenkins, T.; Koga, R.; Staubert, R.; Kendziorra, E.; Ubertini, P.; Bazzano, A.; La Padula, C.
Since the discovery of the supernova outburst in the LMC in 1987, two attempts (on day 55 and day 407) have been made to measure the high energy gamma-ray flux in the range 50-500 MeV, by using a balloon-borne spark chamber telescope. On day 55, no positive signal was seen from the source. A 3 sigma upper limit of 2.9 x 10 to the -5th ph/sq cm s was obtained after the analysis of the spark chamber data. Preliminary analysis of the quick look data obtained in the second flight shows that the gamma-ray flux even on day 407 was less than 9 x 10 to the -4th ph/sq cm s (3 sigma).
NO gas loss from biologically crusted soils in Canyonlands National Park, Utah
Barger, N.N.; Belnap, J.; Ojima, D.S.; Mosier, A.
2005-01-01
In this study, we examined N gas loss as nitric oxide (NO) from N-fixing biologically crusted soils in Canyonlands National Park, Utah. We hypothesized that NO gas loss would increase with increasing N fixation potential of the biologically crusted soil. NO fluxes were measured from biologically crusted soils with three levels of N fixation potential (Scytonema-Nostoc-Collema spp. (dark)>Scytonema-Nostoc-Microcoleus spp. (medium)>Microcoleus spp. (light)) from soil cores and field chambers. In both cores and field chambers there was a significant effect of crust type on NO fluxes, but this was highly dependent on season. NO fluxes from field chambers increased with increasing N fixation potential of the biologically crusted soils (dark>medium>light) in the summer months, with no differences in the spring and autumn. Soil chlorophyllasis Type a content (an index of N fixation potential), percent N, and temperature explained 40% of the variability in NO fluxes from our field sites. Estimates of annual NO loss from dark and light crusts was 0.04-0.16 and 0.02-0.11-N/ha/year. Overall, NO gas loss accounts for approximately 3-7% of the N inputs via N fixation in dark and light biologically crusted soils. Land use practices have drastically altered biological soil crusts communities over the past century. Livestock grazing and intensive recreational use of public lands has resulted in a large scale conversion of dark cyanolichen crusts to light cyanobacterial crusts. As a result, changes in biologically crusted soils in arid and semi-arid regions of the western US may subsequently impact regional NO loss. ?? Springer 2005.
NASA Technical Reports Server (NTRS)
Martin, Heath T.
2015-01-01
Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.
In-Pile Qualification of the Fast-Neutron-Detection-System
NASA Astrophysics Data System (ADS)
Fourmentel, D.; Villard, J.-F.; Destouches, C.; Geslot, B.; Vermeeren, L.; Schyns, M.
2018-01-01
In order to improve measurement techniques for neutron flux assessment, a unique system for online measurement of fast neutron flux has been developed and recently qualified in-pile by the French Alternative Energies and Atomic Energy Commission (CEA) in cooperation with the Belgian Nuclear Research Centre (SCK•ECEN). The Fast-Neutron-Detection-System (FNDS) has been designed to monitor accurately high-energy neutrons flux (E > 1 MeV) in typical Material Testing Reactor conditions, where overall neutron flux level can be as high as 1015 n.cm-2.s-1 and is generally dominated by thermal neutrons. Moreover, the neutron flux is coupled with a high gamma flux of typically a few 1015 γ.cm-2.s-1, which can be highly disturbing for the online measurement of neutron fluxes. The patented FNDS system is based on two detectors, including a miniature fission chamber with a special fissile material presenting an energy threshold near 1 MeV, which can be 242Pu for MTR conditions. Fission chambers are operated in Campbelling mode for an efficient gamma rejection. FNDS also includes a specific software that processes measurements to compensate online the fissile material depletion and to adjust the sensitivity of the detectors, in order to produce a precise evaluation of both thermal and fast neutron flux even after long term irradiation. FNDS has been validated through a two-step experimental program. A first set of tests was performed at BR2 reactor operated by SCK•CEN in Belgium. Then a second test was recently completed at ISIS reactor operated by CEA in France. FNDS proved its ability to measure online the fast neutron flux with an overall accuracy better than 5%.
Nitrous oxide emissions from soils in southern Poland under various tillage conditions.
NASA Astrophysics Data System (ADS)
Galkowski, Michal; Zieba, Damian; Ciaciek, Klaudia; Necki, Jaroslaw; Rozanski, Kazimierz
2015-04-01
Due to close ties of nitrogen cycle with the production of food, appropriate mitigation policies need to be considered in order to reduce the impact of reactive N compounds on both human health and the environment. These policies strongly rely on quantitative information with respect to fluxes of reactive nitrogen compounds to the atmosphere and mechanisms controlling those fluxes on a various time and space scales. One of these compounds is nitrous oxide - currently the most important human-emitted ozone depleting substance and one of the most important greenhouse gases. In this study, which is a part of broader, regional (Southern Poland) analysis of nitrous oxide circulation, we present the results of field measurements performed at the Institute of Plant Acclimatization and Husbandry (ZDHAR) in Grodkowice (Malopolska). Several representative sites have been selected for measurements of N2O emissions during two campaigns - in spring (March) and autumn (October) 2014. The investigated crops were chosen to represent the regional agriculture and included wheat, canola and maize under various tillage conditions (with and without tilling), as well as an uncultivated grassland as a control site. The static chamber method was chosen to quantify soil-atmosphere N2O fluxes. Chamber enclosures have been performed every 3-5 days, depending on the conditions prevailing at the sites during the intermediate periods (e.g. rainfall or fertilization events). From each enclosure, five 50-ml air samples have been collected for subsequent analysis of nitrous oxide concentrations. Well-established gas chromatography methods, with a precision of a single N2O measurement better than 0.5 ppb were employed. The measured concentrations were then used in a linear emission model to calculate N2O fluxes. Other trace gases (CH4, CO2, SF6) were also measured in each sample for quality control purposes. Result for both campaigns show large variability of N2O emissions, with maximum fluxes in the order of 40 kg N-N2O ha-1 yr-1, driven mainly by availability of nitrogen in soil (fertilization events) and water (measurements of soil water content were performed and analysed). For fertilized sites, largest emissions value were observed several days after the rainfall events, while the control site remained stable throughout the campaign period and not exceeding 0.5 kg N-N2O ha-1 yr-1.
Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.
1987-08-28
Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.
NASA Astrophysics Data System (ADS)
Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Sörgel, Matthias; Kesselmeier, Jürgen
2016-02-01
We present a dynamic twin-cuvette system for quantifying the trace-gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. Compared with a single-cuvette system, the twin-cuvette system is insensitive to disturbing background effects such as wall deposition. In combination with a climate chamber, we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS), we are able to regulate the relative humidity inside both cuvettes between 40 and 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1), a temperature-regulated humidification system such as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32 and 105 ppb and PAN mixing ratios between 100 and 350 ppt, a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors. Using this modified leaf wetness sensor measuring the electrical surface conductance on the leaves, an exponential relationship between the ambient humidity and the electrical surface conductance could be determined.
NASA Astrophysics Data System (ADS)
Sun, S.; Moravek, A.; von der Heyden, L.; Held, A.; Sörgel, M.; Kesselmeier, J.
2015-11-01
We present a dynamic twin-cuvette system for quantifying the trace gas exchange fluxes between plants and the atmosphere under controlled temperature, light and humidity conditions. Compared with a single cuvette system, the twin-cuvette system is insensitive for disturbing background effects such as wall deposition. In combination with a climate chamber we can perform flux measurements under constant and controllable environmental conditions. With an Automatic Temperature Regulated Air Humidification System (ATRAHS) we are able to regulate the relative humidity inside both cuvettes between 40 to 90 % with a high precision of 0.3 %. Thus, we could demonstrate that for a cuvette system operated with a high flow rate (> 20 L min-1) such a temperature regulated humidification system as ATRAHS is an accurate method for air humidification of the flushing air. Furthermore, the fully automatic progressive fill-up of ATRAHS based on a floating valve improved the performance of the entire measurement system and prevented data gaps. Two reactive gas species, ozone (O3) and peroxyacetyl nitrate (PAN), were used to demonstrate the quality and performance of the twin-cuvette system. O3 and PAN exchange with Quercus ilex was investigated over a 14 day measurement period under controlled climate chamber conditions. By using O3 mixing ratios between 32-105 ppb and PAN mixing ratios between 100-350 ppt a linear dependency of the O3 flux as well as the PAN flux in relation to its ambient mixing ratio could be observed. At relative humidity (RH) of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the deposition of O3 to the plant leaves was found to be only controlled by the leaf stomata. For PAN an additional resistance inhibited the uptake of PAN by the leaves. Furthermore, the formation of water films on the leaf surface of plants inside the chamber could be continuously tracked with our custom built leaf wetness sensors. Using this modified leaf wetness sensor measuring the electrical surface conductance on the leaves, an exponential relationship between the ambient humidity and the electrical surface conductance could be determined.
NASA Astrophysics Data System (ADS)
Van Haren, J. L. M.; Cadillo-Quiroz, H.
2015-12-01
Methane (CH4) emissions through plants have long been known in wetlands. However, most measurements have focused on stem tops and leaves. Recently, measurements at the lower parts of stems have shown that stem emissions can exceed soil CH4 emissions in Asian peatlands (Pangala et al. 2013). The addition of stem fluxes to soil fluxes for total ecosystem fluxes has the potential to bridge the discrepancy between modeled to measured and bottom-up to top-down flux estimates. Our measurements in peatlands of Peru show that especially Mauritia flexuosa, a palm species, can emit very large quantities of CH4, although most trees emitted at least some CH4. We used flexible stem chambers to adapt to stems of any size above 5cm in diameter. The chambers were sampled in closed loop with a Gasmet DX4015 for flux measurements, which lasted ~5 minutes after flushing with ambient air. We found that M. flexuosa stem fluxes decrease with height along the stem and were positively correlated with soil fluxes. Most likely CH4 is transported up the stem with the xylem water. Measured M. flexuosa stem fluxes below 1.5m averaged 11.2±1.5 mg-C m-2 h-1 (±95% CI) with a maximum of 123±3.5 mg-C m-2 h-1 (±SE), whereas soil fluxes averaged 6.7±1.7 mg-C m-2 h-1 (±95% CI) with a maximum of 31.6±0.4 mg-C m-2 h-1 (±SE). Significant CH4 fluxes were measured up to 5 m height along the stems. Combined with the high density of ~150 M. flexuosa individuals per hectare in these peatlands and the consistent diameter of ~30cm, the high flux rates add ~20% to the soil flux. With anywhere between 1 and 5 billion M. flexuosa stems across Amazon basin wetlands, stem fluxes from this palm species could represent a major addition to the overall Amazon basin CH4 flux.
NASA Astrophysics Data System (ADS)
Kaduk, Jörg; Pan, Gong; Cumming, Alex; Evans, Jon; Kelvin, Jon; Peacock, Mike; Gauci, Vincent; Hughes, John; Page, Susan; Balzter, Heiko
2015-04-01
Methane is the second most important greenhouse gas after carbon dioxide, although the current atmospheric concentration is only about two parts per million. This results from a radiative forcing of 0.48 +/-0.05 Wm-2, about 26 times that of carbon dioxide. Atmospheric concentrations as well as emissions to the atmosphere have been increasing strongly over the last decades. Emissions are to a large extent biogenic where the largest biogenic source, wetlands, has the largest uncertainty. This precludes the construction of a reliable global methane budget, as well as meaningful predictions, as results from wetland models are uncertain and there are insufficient data for model improvement. We measured evapotranspiration and methane flux of a near-pristine temperate lowland fen in East Anglia in the United Kingdom from July 2013 to June 2014 by eddy covariance, which represents the first annual cycle of eddy covariance measurements of methane flux in this category of wetland. Methane fluxes from vegetation and ditches were additionally measured separately with static chambers. Annual evapotranspiration was 720.4 to 732.6 mm yr-1. Annual methane release was 3.77 to 4.03 g CH4 m-2 yr-1. Water table and methane fluxes were very different in the two half years: an average of -0.63 nmol CH4 m-2s-1 (a net uptake) for July-December 2013 and 16.2 nmol CH4 m-2s-1 (a net release) for January-June 2014 with a data range of -99 to 410 nmol CH4 m-2s-1 over the full year. Water table has the dominant role in determining methane flux and, under a very low water table, methane uptake was observed. Temperature has a clear impact on fluxes at high water tables. Eddy covariance and chamber measurements show the same annual pattern flux magnitude throughout the year. The fen can switch from being a source to a sink if the water table changes over a small critical depth range. Our measurements have implications for large scale wetland restoration plans in the eastern UK and potential options for the management of methane emissions from wetlands.
Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases
NASA Astrophysics Data System (ADS)
Snell, H. S. K.; Robinson, D.; Midwood, A. J.
2014-12-01
Measurements of δ13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the δ13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render δ13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux δ13CO2 and flux or temperature, or that efflux δ13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux δ13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the δ13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux δ13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, δ13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of δ13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source δ13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle biologically driven changes in soil δ13CO2 from physical controls, particularly as they occur on similar timescales and are driven by the same environmental variables, such as temperature, moisture and daylight.
Quantifying nitrous oxide fluxes on multiple spatial scales in the Upper Midwest, USA
USDA-ARS?s Scientific Manuscript database
This study seeks to quantify the roles of soybean and corn plants and the cropland ecosystem in the regional N2O budget of the Upper Midwest, USA. The N2O flux was measured at three scales (plant, the soil-plant ecosystem, and region) using newly designed steady-state flow-through plant chambers, a ...
Beyond CO2 - Tackling the full greenhouse gas budget of a sub-alpine forest ecosystem
NASA Astrophysics Data System (ADS)
Burri, Susanne; Merbold, Lutz; Meier, Philip; Eugster, Werner; Hörtnagl, Lukas; Buchmann, Nina
2017-04-01
In order to tackle the full greenhouse gas (GHG) budgets of forest ecosystems, it is desirable but challenging to quantify the three major GHGs, i.e. CO2, CH4 and N2O simultaneously in-situ. At the long-term forest research site Davos (Candidate Class I Ecosystem Station within the Integrated Carbon Observation System - ICOS), we have recently installed a state-of-the-art measuring system simultaneously to observe the three GHGs on a high temporal resolution and both within and above the forest canopy. Thereby, we combine above-canopy eddy covariance flux measurements and forest floor chamber flux measurements (using five custom-made fully automated chambers). Both systems are connected to a quantum cascade laser absorption spectrometer (QCL, Aerodyne) and measurements are switched between three hours of above-canopy and one hour of forest floor GHG flux measurements. Using this approach, we will be able to study the full GHG budget as well as the dynamics of the individual fluxes on two vertical levels within the forest using a single instrument. The first results presented here will highlight the suitability of this promising tool for quantifying the full GHG budget of forest ecosystems.
Production of fullerenes with concentrated solar flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, M. J.; Fields, C.; Lewandowski, A.
1994-01-01
Research at the National Renewable Energy Laboratory (NREL) has demonstrated that fullerenes can be produced using highly concentrated sunlight from a solar furnace. Since they were first synthesized in 1989, fullerenes have been the subject of intense research. They show considerable commercial potential in advanced materials and have potential applications that include semiconductors, superconductors, high-performance metals, and medical technologies. The most common fullerene is C{sub 60}, which is a molecule with a geometry resembling a soccer ball. Graphite vaporization methods such as pulsed-laser vaporization, resistive heating, and carbon arc have been used to produce fullerenes. None of these, however, seemsmore » capable of producing fullerenes economically on a large scale. The use of concentrated sunlight may help avoid the scale-up limitations inherent in more established production processes. Recently, researchers at NREL made fullerenes in NREL`s 10 kW High Flux Solar Furnace (HFSF) with a vacuum reaction chamber designed to deliver a solar flux of 1200 W/cm{sup 2} to a graphite pellet. Analysis of the resulting carbon soot by mass spectrometry and high-pressure liquid chromatography confirmed the existence of fullerenes. These results are very encouraging and we are optimistic that concentrated solar flux can provide a means for large-scale, economical production of fullerenes. This paper presents our method, experimental apparatus, and results of fullerene production research performed with the HFSF.« less
Graydon, J.A.; St. Louis, V.L.; Lindberg, S.E.; Hintelmann, H.; Krabbenhoft, D.P.
2006-01-01
This paper presents the design of a dynamic chamber system that allows full transmission of PAR and UV radiation and permits enclosed intact foliage to maintain normal physiological function while Hg(0) flux rates are quantified in the field. Black spruce and jack pine foliage both emitted and absorbed Hg(0), exhibiting compensation points near atmospheric Hg(0) concentrations of ???2-3 ng m-3. Using enriched stable Hg isotope spikes, patterns of spike Hg(II) retention on foliage were investigated. Hg(0) evasion rates from foliage were simultaneously measured using the chamber to determine if the decline of foliar spike Hg(II) concentrations overtime could be explained by the photoreduction and re-emission of spike Hg to the atmosphere. This mass balance approach suggested that spike Hg(0) fluxes alone could not account for the measured decrease in spike Hg(II) on foliage following application, implying that either the chamber underestimates the true photoreduction of Hg(II) to Hg(0) on foliage, or other mechanisms of Hg(II) loss from foliage, such as cuticle weathering, are in effect. The radiation spectrum responsible for the photoreduction of newly deposited Hg(II) on foliage was also investigated. Our spike experiments suggest that some of the Hg(II) in wet deposition retained by the forest canopy may be rapidly photoreduced to Hg(0) and re-emitted back to the atmosphere, while another portion may be retained by foliage at the end of the growing season, with some being deposited in litterfall. This finding has implications for the estimation of Hg dry deposition based on throughfall and litterfall fluxes. ?? 2006 American Chemical Society.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig
1986-02-04
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Toroidal midplane neutral beam armor and plasma limiter
Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig
1986-01-01
For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.
Yuan, Ye; Liu, Chang-hong; Dai, Xiao-qin; Wang, Hui-min
2015-01-01
In this study, the CO2 and CH4 fluxes in the first year after land use conversion from paddy rice to vegetables were measured by static opaque chamber and gas-chromatograph (GC) method to investigate the land conversion effects on soil CO2 and CH4 emissions. Our results showed that the differences in CO2 fluxes depended on the vegetable types, growing status and seasons. The CO2 flux from the vegetable field was greater than that from the paddy rice field when cowpea was planted, but was lower when pepper was planted. The CH4 flux significantly decreased from 6.96 mg C . m-2 . h-1 to -0.004 mg C . m-2 . h-1 with the land use conversion from rice to vegetables.The net carbon absorption ( CO2 + CH4) of the vegetable fields was 543 kg C . hm-2, significantly lower than that (3641 kg C . hm-2) of the rice paddies. However, no significant difference was found in their global warming impact. In addition, soil carbon content increased in vegetable fields compared to the paddy rice fields after a year of conversion, especially in the 10-20 cm soil layer.
Evaluation of the smoke density chamber as an apparatus for fire toxicity screening tests
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Labossiere, L. A.
1976-01-01
The smoke density chamber is perhaps the most widely used apparatus for smoke measurements. Because of its availability, it has been proposed as an apparatus for evaluating fire toxicity. The standard apparatus and procedure were not found suitable for toxicity screening tests using laboratory animals, because not enough materials of interest produced animal mortality or even incapacitation under standard test conditions. With modifications, the chamber offers greater promise as a screening tool, but other tests specifically designed to measure relative toxicity may be more cost-effective. Where one-dimensional heat flux is a requirement, the chamber is the most suitable apparatus available. It should be improved in regard to visibility of animals and ease of cleaning.
Temporal integration of soil N2O fluxes: validation of IPNOA station automatic chamber prototype.
Laville, P; Bosco, S; Volpi, I; Virgili, G; Neri, S; Continanza, D; Bonari, E
2017-09-04
The assessment of nitrous oxide (N 2 O) fluxes from agricultural soil surfaces still poses a major challenge to the scientific community. The evaluations of integrated soil fluxes of N 2 O are difficult owing to their lower emissions when compared with CO 2 . These emissions are also sporadic as environmental conditions act as a limiting factor. A station prototype was developed to integrate annual N 2 O and CO 2 emissions using an automatic chamber technique and infrared spectrometers within the LIFE project (IPNOA: LIFE11 ENV/IT/00032). It was installed from June 2014 to October 2015 in an experimental maize field in Tuscany. The detection limits for the fluxes were evaluated up to 1.6 ng N-N 2 O m 2 s -1 and 0.3 μg C-CO 2 m 2 s -1 . A cross-comparison carried out in September 2015 with the "mobile IPNOA prototype"; a high-sensibility transportable instrument already validated provided evidence of very similar values and highlighted flux assessment limitations according to the gas analyzers used. The permanent monitoring device showed that temporal distribution of N 2 O fluxes can be very large and discontinuous over short periods of less than 10 days and that N 2 O fluxes were below the detection limit of the instrumentation during approximately 70% of the measurement time. The N 2 O emission factors were estimated to 1.9% in 2014 and 1.7% in 2015, within the range of IPCC assessments.
NASA Astrophysics Data System (ADS)
Carloganu, Cristina; Le Ménédeu, Eve
2016-04-01
High energy atmospheric muons have high penetration power that renders them appropriate for geophysical studies. Provided the topography is known, the measurement of the muon flux transmittance leads in an univoque way to 2D density mapping (so called radiographic images) revealing spatial and possibly also temporal variations. Obviously, several radiographic images could be combined into 3D tomographies, though the inverse 3D problem is generally ill-posed. The muography has a high potential for imaging remotely (from kilometers away) and with high resolution (better than 100 mrad2) volcanoes. The experimental and methodological task is however not straightforward since atmospheric muons have non trivial spectra that fall rapidly with muon energy. As shown in [Ambrosino 2015] successfully imaging km-scale volcanoes remotely requires state-of-the art, high-resolution and large-scale muon detectors. This contribution presents the geophysical motivation for muon imaging as well as the first quantitative density radiographies of Puy de Dôme volcano obtained by the TOMUVOL collaboration using a highly segmented muon telescope based on Glass Resistive Plate Chambers. In parallel with the muographic studies, the volcano was imaged through standard geophysical methods (gravimetry, electrical resistivity) [Portal 2013] allowing in depth comparisons of the different methods. Ambrosino, F., et al. (2015), Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB011969 A. Portal et al (2013) , "Inner structure of the Puy de Dme volcano: cross-comparison of geophysical models (ERT, gravimetry, muon imaging)", Geosci. Instrum. Method. Data Syst., 2, 47-54, 2013
NASA Astrophysics Data System (ADS)
Burba, George; Sturtevant, Cove; Peltola, Olli; Schreiber, Peter; Zulueta, Rommel; Haapanala, Sami; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; McDermitt, Dayle; Oechel, Walt
2013-04-01
The permafrost regions store significant amount of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over following decades and centuries. Present measurements of methane fluxes in permafrost regions have mostly been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hourly to annual). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump, climate control, and analyzer systems. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements in cold regions remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path instrumentation allows methane flux measurements at normal pressure without a need for a pump. As a result, the measurements can be done with very low-power (e.g., 7-10 Watts) light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance station is important for number of ecosystems (rice fields, landfills, wetlands, cattle yards, etc.), but it is especially important for permafrost and other cold regions where grid power and access roads are generally not available, and logistics of running the experiment is particularly expensive. Emerging research using low-power laser-based instrumentation to measure CH4 emissions are presented from several permafrost ecosystems with contrasting setups, weather, and moisture conditions. Principles of open-path instrument operation, station characteristics and requirements are also discussed, as well as concurrent measurements of CO2 and H2O emissions using open-path and enclosed instrumentation.
Mind the gap: non-biological processes contributing to soil CO2 efflux.
Rey, Ana
2015-05-01
Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non-biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global carbon budget. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Turetsky, M. R.; Euskirchen, E. S.; Czimczik, C. I.; Waldrop, M. P.; Olefeldt, D.; Fan, Z.; Kane, E. S.; McGuire, A. D.; Harden, J. W.
2014-12-01
Wetlands are the largest natural source of atmospheric methane. Static chambers have been used to quantify variation in wetland CH4 flux for many decades. Regional to global scale synthesis studies of static chamber measurements show that relationships between temperature, water availability and CH4 emissions depend on wetland type (bog, fen, swamp), region (tropical, temperate, arctic) and disturbance. For example, while water table position and temperature serve as the dominant controls on bog and swamp CH4 flux, vegetation is an important control on emissions from fens. These studies highlight the fact that wetland types have distinct controls on CH4 emissions; however, it is unlikely that modeling of wetland CH4 flux will improve without a better mechanistic understanding of the processes underlying CH4 production, transport, and oxidation. At the Alaska Peatland Experiment, we are quantifying CH4 emission using static chambers, automated chambers, and towers. Our sites vary in permafrost regime, including groundwater fens without permafrost, forested peat plateaus with intact permafrost, and collapse scar bogs formed through permafrost thaw. Experimental studies that examine plant and microbial responses to altered water table position and soil temperature are complemented by a gradient approach, where we use a space-for-time substitutions to examine the consequences of thaw on time-scales of decades to centuries. Our results thus far have documented the importance of soil rewetting in governing large CH4 fluxes from northern wetland soils. Accounting for CH4, our collapse scar bog significantly contributed to the global warming potential of the landscape. A major objective of our work is to explore the role of permafrost C release in greenhouse gas fluxes from wetland soils, which we are assessing using radiocarbon as a natural tracer. We have shown, for example, that ebullition of CH4 is dominated by recently fixed C, but a significant fraction of CH4 in bubbles is derived from old C released during thaw. The APEX time series datasets are being used in a variety of modeling studies, from small-scale soil pore and microbial controls on gas production and transport to regional scale assessments of how carbon cycle feedbacks to climate vary with wetland type and abundance.
ATRC Neutron Detector Testing Quick Look Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy C. Unruh; Benjamin M. Chase; Joy L. Rempe
2013-08-01
As part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program, a joint Idaho State University (ISU) / French Alternative Energies and Atomic Energy Commission (CEA) / Idaho National Laboratory (INL) project was initiated in FY-10 to investigate the feasibility of using neutron sensors to provide online measurements of the neutron flux and fission reaction rate in the ATR Critical Facility (ATRC). A second objective was to provide initial neutron spectrum and flux distribution information for physics modeling and code validation using neutron activation based techniques in ATRC as well as ATR during depressurized operations. Detailed activationmore » spectrometry measurements were made in the flux traps and in selected fuel elements, along with standard fission rate distribution measurements at selected core locations. These measurements provide additional calibration data for the real-time sensors of interest as well as provide benchmark neutronics data that will be useful for the ATR Life Extension Program (LEP) Computational Methods and V&V Upgrade project. As part of this effort, techniques developed by Prof. George Imel will be applied by Idaho State University (ISU) for assessing the performance of various flux detectors to develop detailed procedures for initial and follow-on calibrations of these sensors. In addition to comparing data obtained from each type of detector, calculations will be performed to assess the performance of and reduce uncertainties in flux detection sensors and compare data obtained from these sensors with existing integral methods employed at the ATRC. The neutron detectors required for this project were provided to team participants at no cost. Activation detectors (foils and wires) from an existing, well-characterized INL inventory were employed. Furthermore, as part of an on-going ATR NSUF international cooperation, the CEA sent INL three miniature fission chambers (one for detecting fast flux and two for detecting thermal flux) with associated electronics for assessment. In addition, Prof. Imel, ISU, has access to an inventory of Self-Powered Neutron Detectors (SPNDs) with a range of response times as well as Back-to-Back (BTB) fission chambers from prior research he conducted at the Transient REActor Test Facility (TREAT) facility and Neutron RADiography (NRAD) reactors. Finally, SPNDs from the National Atomic Energy Commission of Argentina (CNEA) were provided in connection with the INL effort to upgrade ATR computational methods and V&V protocols that are underway as part of the ATR LEP. Work during fiscal year 2010 (FY10) focussed on design and construction of Experiment Guide Tubes (EGTs) for positioning the flux detectors in the ATRC N-16 locations as well as obtaining ATRC staff concurrence for the detector evaluations. Initial evaluations with CEA researchers were also started in FY10 but were cut short due to reactor reliability issues. Reactor availability issues caused experimental work to be delayed during FY11/12. In FY13, work resumed; and evaluations were completed. The objective of this "Quick Look" report is to summarize experimental activities performed from April 4, 2013 through May 16, 2013.« less
On Use of Multi-Chambered Fission Detectors for In-Core, Neutron Spectroscopy
NASA Astrophysics Data System (ADS)
Roberts, Jeremy A.
2018-01-01
Presented is a short, computational study on the potential use of multichambered fission detectors for in-core, neutron spectroscopy. Motivated by the development of very small fission chambers at CEA in France and at Kansas State University in the U.S., it was assumed in this preliminary analysis that devices can be made small enough to avoid flux perturbations and that uncertainties related to measurements can be ignored. It was hypothesized that a sufficient number of chambers with unique reactants can act as a real-time, foilactivation experiment. An unfolding scheme based on maximizing (Shannon) entropy was used to produce a flux spectrum from detector signals that requires no prior information. To test the method, integral, detector responses were generated for singleisotope detectors of various Th, U, Np, Pu, Am, and Cs isotopes using a simplified, pressurized-water reactor spectrum and fluxweighted, microscopic, fission cross sections, in the WIMS-69 multigroup format. An unfolded spectrum was found from subsets of these responses that had a maximum entropy while reproducing the responses considered and summing to one (that is, they were normalized). Several nuclide subsets were studied, and, as expected, the results indicate inclusion of more nuclides leads to better spectra but with diminishing improvements, with the best-case spectrum having an average, relative, group-wise error of approximately 51%. Furthermore, spectra found from minimum-norm and Tihkonov-regularization inversion were of lower quality than the maximum entropy solutions. Finally, the addition of thermal-neutron filters (here, Cd and Gd) provided substantial improvement over unshielded responses alone. The results, as a whole, suggest that in-core, neutron spectroscopy is at least marginally feasible.
NASA Astrophysics Data System (ADS)
Ueyama, Masahito; Yoshikawa, Kota; Takagi, Kentaro
2018-07-01
Upland forests are thought to be methane (CH4) sinks due to oxidation by methanotrophs in aerobic soils. However, CH4 budget for upland forests are not well quantified at the ecosystem scale, when possible CH4 sources, such as small wet areas, exists in the ecosystem. Here, we quantified CH4 fluxes in a cool-temperate larch plantation based on four-year continuous measurements using the hyperbolic relaxed eddy accumulation (HREA) method and dynamic closed chambers with a laser-based analyzer. After filling data gaps for half-hourly data using machine-learning-based regressions, we found that the forest acted as a net CH4 source at the canopy scale: 30 ± 11 mg CH4 m-2 yr-1 in 2014, 56 ± 8 mg CH4 m-2 yr-1 in 2015, 154 ± 5 mg CH4 m-2 yr-1 in 2016, and 132 ± 6 mg CH4 m-2 yr-1 in 2017. Hotspot emissions from the edge of the pond could strongly contribute to the canopy-scale emissions. The magnitude of the hotspot emissions was 10-100 times greater than the order of the canopy-scale and chamber-based CH4 fluxes at the dry soils. The high temperatures with wet conditions stimulated the hotspot emissions, and thus induced canopy-scale CH4 emissions in the summer. Understanding and modeling the dynamics of hotspot emissions are important for quantifying CH4 budgets of upland forests. Micrometeorological measurements at various forests are required for revisiting CH4 budget of upland forests.
Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.
Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi
2018-06-01
Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2 h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2 h -1 ; no coal-fire area 19 and 32 ng m -2 h -1 ; and backfilling area 53 ng m -2 h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.
Scaling up carbonyl sulfide (COS) fluxes from leaf and soil to the canopy
NASA Astrophysics Data System (ADS)
Yang, Fulin; Yakir, Dan
2016-04-01
Carbonyl sulfide (COS) with atmospheric concentrations around 500 ppt is an analog of CO2 which can potentially serve as powerful and much needed tracer of photosynthetic CO2 uptake, and global gross primary production (GPP). However, questions remain regarding the application of this approach due to uncertainties in the contributions of different ecosystem components to the canopy scale fluxes of COS. We used laser quantum cascade spectroscopy in combination with soil and branch chambers, and eddy covariance measurements of net ecosystem exchange fluxes of COS and CO2 (NEE) in citrus orchard during the driest summer month to test our ability to integrate the chamber measurements into the ecosystem fluxes. The results indicated that: 1) Soil fluxes showed clear gradient from continuous uptake under the trees in wet soil of up to -4 pmol m-2s-1 (CO2 emission of ~0.5 umol m-2s-1) to emission in dry hot and exposed soil between rows of trees of up to +3 pmol m-2s-1 (CO2 emission of ~11 umol m-2s-1). In all cases a clear correlation between fluxes and soil temperature was observed. 2) At the leaf scale, midday uptake was ~5.5 pmol m-2s-1 (CO2 uptake of ~1.8 umol m-2s-1). Some nighttime COS uptake was observed in the citrus leaves consistent with nocturnal leaf stomatal conductance. Leaf relative uptake (LRU) of COS vs. CO2 was not constant over the diurnal cycle, but showed exponential correlation with photosynthetically active radiation (PAR) during the daytime. 3) At the canopy scale mid-day summer flux reached -12.0 pmol m-2s-1 (NEE ~6 umol m-2s-1) with the diurnal patterns of COS fluxes following those of CO2 fluxes during the daytime, but with small COS uptake fluxes maintained also during the night when significant CO2 emission fluxes were observed. The canopy-scale fluxes always indicated COS uptake, irrespective of the soil emission effects. GPP estimates were consistent with conventional indirect estimates based on NEE and nocturnal measurements. Scaling up from soil and leaf chamber to canopy scale was possible by estimating LAI, and differential consideration of soil surface components (shaded vs. exposed fractions). 4) Diurnal changes in the atmospheric concentrations of COS and CO2 above the canopy showed complex patterns with opposite trends after sunrise that could be explain by the development of the planetary boundary layer 5) COS-based estimate of GPP can be improved by adopting light dependent LRU, around the mean value of ~1.6, and correcting for soil COS fluxes based on soil temperature and canopy cover estimates, and coupled COS/CO2 concentration measurements provide useful information on boundary layer dynamics.
Identification of biogeochemical hot spots using time-lapse hydrogeophysics
NASA Astrophysics Data System (ADS)
Franz, T. E.; Loecke, T.; Burgin, A.
2016-12-01
The identification and monitoring of biogeochemical hot spots and hot moments is difficult using point based sampling techniques and sensors. Without proper monitoring and accounting of water, energy, and trace gas fluxes it is difficult to assess the environmental footprint of land management practices. One key limitation is optimal placement of sensors/chambers that adequately capture the point scale fluxes and thus a reasonable integration to landscape scale flux. In this work we present time-lapse hydrogeophysical imaging at an old agricultural field converted into a wetland mitigation bank near Dayton, Ohio. While the wetland was previously instrumented with a network of soil sensors and surface chambers to capture a suite of state variables and fluxes, we hypothesize that time-lapse hydrogeophysical imaging is an underutilized and critical reconnaissance tool for effective network design and landscape scaling. Here we combine the time-lapse hydrogeophysical imagery with the multivariate statistical technique of Empirical Orthogonal Functions (EOF) in order to isolate the spatial and temporal components of the imagery. Comparisons of soil core information (e.g. soil texture, soil carbon) from around the study site and organized within like spatial zones reveal statistically different mean values of soil properties. Moreover, the like spatial zones can be used to identify a finite number of future sampling locations, evaluation of the placement of existing sensors/chambers, upscale/downscale observations, all of which are desirable techniques for commercial use in precision agriculture. Finally, we note that combining the EOF analysis with continuous monitoring from point sensors or remote sensing products may provide a robust statistical framework for scaling observations through time as well as provide appropriate datasets for use in landscape biogeochemical models.
Experiments of Transient Condensation Heat Transfer on the Heat Flux Senor
NASA Astrophysics Data System (ADS)
Wang, Xuwen; Liu, Qiusheng; Zhu, Zhiqiang; Chen, Xue
2015-09-01
The influence of transient heat transfer in different condensation condition was investigated experimentally in the present paper. Getting condensation heat and mass transfer regularity and characteristics in space can provide theoretical basis for thermodynamic device such as heat pipes, loop heat pipes and capillary pumped loops as well as other fluid management engineering designing. In order to study the condensation process in space, an experimental study has been carried out on the ground for space experiment. The results show that transit heat transfer coefficient of film condensation is related to the condensation film width, the flow condition near the two phase interface and the pressure of the vapor and non-condensable gas in chamber. On the ground, the condensation heat flux on vertical surface is higher than it on horizontal surface. The transit heat flux of film condensation is affected by the temperature of superheated vapor, the temperature of condensation surface and non-condensable gas pressure. Condensation heat flux with vapor forced convection is many times more than it with natural convection. All of heat flux for both vapor forced convection and natural convection condensation in limited chamber declines dramatically over time. The present experiment is preliminary work for our future space experiments of the condensation and heat transfer process onboard the Chinese Spacecraft "TZ-1" to be launched in 2016.
NASA Astrophysics Data System (ADS)
Rey Sanchez, C.; Morin, T. H.; Stefanik, K. C.; Angle, J.; Wrighton, K. C.; Bohrer, G.
2017-12-01
Wetland soils store a great amount of carbon, but also accumulate and emit methane (CH4), a powerful greenhouse gas. To better understand the vertical and horizontal spatial variability of CH4 emissions, we monitored production and fluxes of CH4 in Old Woman Creek, an estuarine wetland of Lake Erie, Ohio, during the growing seasons of 2015 and 2016. Our combined observation methods targeted three different scales: 1) the eddy covariance technique provided continuous high frequency observations integrated over a large spatial footprint; 2) monthly chamber measurements provided sparse point measurements of fluxes in four distinct land-cover types in the wetland: open water, emergent vegetation (Typha spp.), floating vegetation (Nelumbo spp.) and mud flats; and 3) in-situ porewater dialysis samplers, "peepers", provided vertical CH4 concentration data in the soil at the same locations and temporal time steps as the chambers. In addition, we studied gene transcripts to quantify methanogenesis activity along the vertical soil profile. Using integrated chamber and EC measurements, we found an average surface emission rate from Typha, the most abundant vegetated land cover, of 219.4 g CH4-C m-2 y-1, which was much higher than rates reported in similar emergent vegetation types in other wetlands. There was large spatial variation of flux rates, with mud flats having the highest rates of CH4 emission, followed by Nelumbo and Typha patches, and with open water having the lowest emissions. Within the soil column, we applied a numerical model to convert soil methane concentrations to emissions rates. We found that, contrary to current ideas of methane production, most methane was being produced in the well-oxygenated surface soils, probably in anoxic microsites within the oxic layer. Our metatranscriptomic data supported these findings, clearly showing nine times greater methanogenic activity in oxic surface soils relative to deeper anoxic soils. Combined, our results provide important insights for the representation of processes of methane production and consumption in models, which can largely affect the estimates of methane emission from wetlands.
Soil methane and CO2 fluxes in rainforest and rubber plantations
NASA Astrophysics Data System (ADS)
Lang, Rong; Blagodatsky, Sergey; Goldberg, Stefanie; Xu, Jianchu
2017-04-01
Expansion of rubber plantations in South-East Asia has been a land use transformation trend leading to losses of natural forest cover in the region. Besides impact on ecosystem carbon stocks, this conversion influences the dynamics of greenhouse gas fluxes from soil driven by microbial activity, which has been insufficiently studied. Aimed to understand how land use change affects the soil CO2 and CH4 fluxes, we measured surface gas fluxes, gas concentration gradient, and 13C signature in CH4 and soil organic matter in profiles in a transect in Xishuangbanna, including a rainforest site and three rubber plantation sites with age gradient. Gas fluxes were measured by static chamber method and open chamber respiration system. Soil gases were sampled from installed gas samplers at 5, 10, 30, and 75cm depth at representative time in dry and rainy season. The soil CO2 flux was comparable in rainforest and old rubber plantations, while young rubber plantation had the lowest rate. Total carbon content in the surface soil well explained the difference of soil CO2 flux between sites. All sites were CH4 sinks in dry season and uptake decreased in the order of rainforest, old rubber plantations and young rubber plantation. From dry season to rainy season, CH4 consumption decreased with increasing CH4 concentration in the soil profile at all depths. The enrichment of methane by 13CH4 shifted towards to lowerδ13C, being the evidence of enhanced CH4 production process while net surface methane flux reflected the consumption in wet condition. Increment of CH4 concentration in the profile from dry to rainy season was higher in old rubber plantation compared to rainforest, while the shifting of δ13CH4 was larger in rainforest than rubber sites. Turnover rates of soil CO2 and CH4 suggested that the 0-5 cm surface soil was the most active layer for gaseous carbon exchange. δ13C in soil organic matter and soil moisture increased from rainforest, young rubber plantation to old rubber plantations. Conversion the forest into rubber plantation decreased soil respiration in young plantation and it recovered during rubber development. However, the CH4consumption by tropical upland forest soil decreased in converted rubber plantations of all ages, with more decrement in old plantation. Change forest into rubber plantations weakened the soil function as CH4 sink.
Above- and belowground fluxes of CH4 from boreal shrubs and Scots pine
NASA Astrophysics Data System (ADS)
Halmeenmäki, Elisa; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Pihlatie, Mari
2016-04-01
Boreal upland forests are considered as an important sink for the greenhouse gas methane (CH4) due to CH4 oxidizing microbes in the soil. However, recent evidence suggests that vegetation can act as a significant source of CH4. Also, preliminary measurements indicate occasional emissions of CH4 above the tree canopies of a boreal forest. Nevertheless, the sources and the mechanisms of the observed CH4 emissions are still mostly unknown. Furthermore, the majority of CH4 flux studies have been conducted with the soil chamber method, thus not considering the role of the vegetation itself. We conducted a laboratory experiment to study separately the above- and belowground CH4 fluxes of bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), heather (Calluna vulgaris), and Scots pine (Pinus sylvestris), which were grown in microcosms. The above- and belowground fluxes of the plants were measured separately, and these fluxes were compared to fluxes of microcosms containing only humus soil. In addition to the flux measurements, we analysed the CH4 producing archaea (methanogens) and the CH4 consuming bacteria (methanotrophs) with the qPCR method to discover whether these microbes contribute to the CH4 exchange from the plant material and the soil. The results of the flux measurements indicate that the humus soil with roots of lingonberry, heather, and Scots pine consume CH4 compared to bare humus soil. Simultaneously, the shoots of heather and Scots pine emit small amounts of CH4. We did not find detectable amounts of methanogens from any of the samples, suggesting the produced CH4 could be of non-microbial origin, or produced by very small population of methanogens. Based on the first preliminary results, methanotrophs were present in all the studied plant species, and especially in high amounts in the rooted soils, thus implying that the methanotrophs could be responsible of the CH4 uptake in the root-soil systems.
Phillips, John R.; Halbig, James K.; Menlove, Howard O.; Klosterbuer, Shirley F.
1985-01-01
A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.
Cyclic hot firing results of tungsten-wire-reinforced, copper-lined thrust chambers
NASA Technical Reports Server (NTRS)
Kazaroff, John M.; Jankovsky, Robert S.
1990-01-01
An advanced thrust liner material for potential long life reusable rocket engines is described. This liner material was produced with the intent of improving the reusable life of high pressure thrust chambers by strengthening the chamber in the hoop direction, thus avoiding the longitudinal cracking due to low cycle fatigue that is observed in conventional homogeneous copper chambers, but yet not reducing the high thermal conductivity that is essential when operating with high heat fluxes. The liner material produced was a tungsten wire reinforced copper composite. Incorporating this composite into two hydrogen-oxygen test rocket chambers was done so that its performance as a reusable liner material could be evaluated. Testing results showed that both chambers failed prematurely, but the crack sites were perpendicular to the normal direction of cracking indicating a degree of success in containing the tremendous thermal strain associated with high temperature rocket engines. The failures, in all cases, were associated with drilled instrumentation ports and no other damages or deformations were found elsewhere in the composite liners.
The heartbeat of the volcano: The discovery of episodic activity at Prometheus on Io
Davies, A.G.; Wilson, L.; Matson, D.; Leone, G.; Keszthelyi, L.; Jaeger, W.
2006-01-01
The temporal signature of thermal emission from a volcano is a valuable clue to the processes taking place both at and beneath the surface. The Galileo Near Infrared Mapping Spectrometer (NIMS) observed the volcano Prometheus, on the jovian moon Io, on multiple occasions between 1996 and 2002. The 5 micron (??m) brightness of this volcano shows considerable variation from orbit to orbit. Prometheus exhibits increases in thermal emission that indicate episodic (though non-periodic) effusive activity in a manner akin to the current Pu'u 'O'o-Kupaianaha (afterwards referred to as the Pu'u 'O'o) eruption of Kilauea, Hawai'i. The volume of material erupted during one Prometheus eruption episode (defined as the interval from minimum thermal emission to peak and back to minimum) from 6 November 1996 to 7 May 1997 is estimated to be ???0.8 km3, with a peak instantaneous volumetric flux (effusion rate) of ???140 m3 s-1, and an averaged volumetric flux (eruption rate) of ???49 m3 s-1. These quantities are used to model subsurface structure, magma storage and magma supply mechanisms, and likely magma chamber depth. Prometheus appears to be supplied by magma from a relatively shallow magma chamber, with a roof at a minimum depth of ???2-3 km and a maximum depth of ???14 km. This is a much shallower depth range than sources of supply proposed for explosive, possibly ultramafic, eruptions at Pillan and Tvashtar. As Prometheus-type effusive activity is widespread on Io, shallow magma chambers containing magma of basaltic or near-basaltic composition and density may be common. This analysis strengthens the analogy between Prometheus and Pu'u 'O'o, at least in terms of eruption style. Even though the style of eruption appears to be similar (effusive emplacement of thin, insulated, compound pahoehoe flows) the scale of activity at Prometheus greatly exceeds current activity at Pu'u 'O'o in terms of volume erupted, area covered, and magma flux. Whereas the estimated magma chamber at Prometheus dwarfs the Pu'u 'O'o magma chamber, it fits within expectations if the Pu'u 'O'o chamber were scaled for the greater volumetric flux and lower gravity of Io. Recent volumetric eruption rates derived from Galileo data for Prometheus were considerably smaller than the rate that produced the extensive flows formed in the ???17 years between the Voyager and Galileo missions. These smaller eruption rates, coupled with the fact that flows are not expanding laterally, may mean that the immediate heat source that generates the Prometheus plume is simultaneously running out of available volatiles and the thermal energy that drives mobilization of volatiles. This raises the question of whether the current Prometheus eruption is in its last throes. ?? 2006 Elsevier Inc.
Investigation of combustion characteristics of methane-hydrogen fuels
NASA Astrophysics Data System (ADS)
Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.
2015-01-01
Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.
Investigation on the electron flux to the wall in the VENUS ion source
NASA Astrophysics Data System (ADS)
Thuillier, T.; Angot, J.; Benitez, J. Y.; Hodgkinson, A.; Lyneis, C. M.; Todd, D. S.; Xie, D. Z.
2016-02-01
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.
Mercury Emission From Phragmites in a Contaminated Wetland
NASA Astrophysics Data System (ADS)
Bubb, M.; Peters, S.
2008-12-01
Characterizing the role of vegetation has been an elusive component to a complete understanding of the mercury cycle. Defining this contribution is of ecological and environmental significance as it pertains to contaminated industrial sites. Various studies have demonstrated that foliar exchange of gaseous mercury is bi-directional and may depend on atmospheric concentrations of mercury as well as other environmental parameters. In particular emergent aquatic vegetation such as Typha, Cladium, and Phragmites, in areas of elevated mercury soil concentrations have been shown to generate relatively high daytime fluxes of ~30ng/m2/hr, ~20ng/m2/hr, and in one case 90ng/m2/hr, respectively. For this research mercury fluxes were measured from foliar surfaces of Phragmites australis in a highly contaminated portion of the New Jersey Hackensack Meadowlands using a dynamic flux chamber. The chamber is constructed from UV transparent acrylic sheets sized to average Phragmites leaves and employs a sheath-like design so that it may be easily slid over foliage with minimal interference. The design also circumvents the use of foams or silicone as sealant which in the past have been shown to emit or absorb mercury. Laboratory and field tests have shown good agreement between ambient air and chamber blank mercury levels. During field excursions generally 5-7 adjacent plants would be sampled for 20-30 min each.Over one 6-hour sampling period in late summer 2008 mean Phragmites flux was - 0.12ng/m2/hr±0.25 with a maximum negative flux of -0.64ng/m2/hr. Another sampling period showed a positive average of 0.07ng/m2/hr±0.07 with a maximum of 0.11ng/m2/hr. These values, as well as those observed in earlier literature, are likely the result of significant environmental parameters operating on the mechanism by which foliar flux is produced. Such parameters include, incoming solar radiation, wind velocity, air temperature, air quality, humidity, sediment pore water mercury concentrations, as well as internal leaf properties such as transpiration and relative humidity. It is the ongoing goal of this study to relate the magnitude of mercury flux with said parameters in order to better understand the controls by which emission is enhanced or diminished.
Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)
NASA Astrophysics Data System (ADS)
Wollenberg, J. L.; Peters, S. C.
2007-12-01
Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Ehlers, Robert C.
1961-01-01
Local experimental heat-transfer coefficients were measured in the chamber and throat of a 2400-pound-thrust ammonia-oxygen rocket engine with a nominal chamber pressure of 600 pounds per square inch absolute. Three injector configurations were used. The rocket engine was run over a range of oxidant-fuel ratio and chamber pressure. The injector that achieved the best performance also produced the highest rates of heat flux at design conditions. The heat-transfer data from the best-performing injector agreed well with the simplified equation developed by Bartz at the throat region. A large spread of data was observed for the chamber. This spread was attributed generally to the variations of combustion processes. The spread was least evident, however, with the best-performing injector.
NASA Astrophysics Data System (ADS)
Larson, T.; Young, M.; Caldwell, T. G.; Abolt, C.
2014-12-01
Substantial attention is being devoted to soil organic carbon (SOC) dynamics in Polar Regions, given the potential impacts of CO2 and methane (CH4) release into the atmosphere. In this study, which is part of a broader effort to quantify carbon loss pathways in patterned Arctic permafrost soils, CH4 and CO2 flux measurements were recorded from a site approximately 30 km south of Deadhorse, Alaska and 1 km west of the Dalton Highway. Samples were collected in late July, 2014 using six static flux chambers that were located within a single low-centered ice-wedge polygon. Three flux chambers were co-located (within a 1 m triangle of each other) near the center of the polygon and three were co-located (along a 1.5 m line) on the ridge adjacent to a trough. Soil in the center of the polygon was 100% water saturated, whereas water saturation measured on the ridge ranged between 25-50%. Depth to ice table was approximately 50 cm near the center of the polygon and 40 cm at the ridge. Temperature depth probes were installed within the center and ridge of the polygon. Nine gas measurements were collected from each chamber over a 24 h period, stored in helium-purged Exetainer vials, shipped to a laboratory, and analyzed using gas chromatography. Measured cumulative methane fluxes were linear over the 24 h period demonstrating constant methane production, but considerable spatial variability in flux was observed (0.1 to 4.7 mg hr-1 m-2 in polygon center, and 0.003 to 0.36 mg hr-1m-2 on polygon ridge). Shallow soil temperatures varied between 1.3 and 9.8oC in the center and 0.6 to 7.5oC in the rim of the polygon. Air temperatures varied between 1.3 and 4.6oC. CO2 fluxes were greater than methane fluxes and more consistent at each co-location; ranging from 21.7 to 36.6 mg hr-1 m-2 near the polygon centers and 3.5 to 29.1 mg hr-1 m-2 in the drier polygon ridge. Results are consistent with previous observations that methanogenesis is favored in a water saturated active layer. The independence of CH4 and CO2 fluxes suggests that different mechanisms may affect their formation and transport. Ongoing work on DOC and acetate concentrations may further elucidate the source of CH4 and CO2 flux. Results will be used to benchmark vertical SOC transport and active layer dynamics models, and then integrated into a Lidar-based geomorphic model for ice wedge polygon terrain.
Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface.
Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter
2016-08-01
Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3-5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bachri, A.; Elmhamdi, A.; Hawron, M.; Grant, P.; Zazoum, B.; Martin, C.
2017-10-01
The xenon time projection chamber (TPC) promises a novel detection method for neutrinoless double-beta decay (0ν β β ) experiments. The TPC is capable of discovering the rare 0ν β β ionization signal of a distinct topological signature, with a decay energy Qββ = 2.458 MeV . However, more frequent internal (within TPC) and external events are also capable of depositing energy in the range of the Qβ β -value inside the chamber, thus mimicking 0ν β β or interfering with its direct observation. In the following paper, we illustrate a methodology for background radiation evaluation, assuming a basic cylindrical design for a toy titanium TPC that is capable of containing 100 kg of xenon gas at 20 atm pressure; we estimate the background budget and analyze the most prominent problematic events via theoretical calculation. Gamma rays emitted from nuclei of 214Bi and 208Tl present in the outer-shell titanium housing of the TPC are an example of such events for which we calculate probabilities of occurrences. We also study the effect of alpha-neutron (α-n)-induced neutrons and calculate their rate. Alpha particles which are created by the decay of naturally occurring uranium and thorium present in most materials, can react with the nucleus of low Z elements, prompting the release of neutrons and leading to thermal neutron capture. Our calculations suggest that the typical polytetrafluoroethylene (PTFE) inner coating of the chamber would constitute the primary material for neutron production, specifically; we find that the fluorine component of Teflon is much more likely to undergo an (α-n) reaction. From known contamination, we calculate an alpha production rate to be 5.5 × 107 alpha/year for the highest-purity titanium vessel with a Teflon lining. Lastly, using measurements of neutron flux from alpha bombardment, we estimate the expected neutron flux from the materials of the proposed toy TPC and identify all gamma rays (prompt or delayed, of energies comparable to the Qβ β -value) originating from thermal neutron capture with all stable elemental isotopes present in the TPC. We show that to limit the most probable reactions to a rate of one event per year or less, the neutron flux would have to be reduced to (3-6) × 10-10 cm-2ṡs-1. The predictions of our crude theoretical calculation are in good agreement with full simulation of TPC radiation background by existing experimental collaboration using xenon for 0ν β β experiment.
NASA Astrophysics Data System (ADS)
Keane, James Benjamin; Ineson, Phil; Toet, Sylvia; Stockdale, James; Vallack, Harry; Blei, Emanuel; Bentley, Mark; Howarth, Steve
2016-04-01
With combustion of fossil fuels driving anthropogenic climate change, allied to a diminishing global reserve of these resources it is vital for alternative sources of energy production to be investigated. One alternative is biomass; ethanol fermented from corn (Zea mays) or sugar cane (Saccharum spp.) has long been used as a petroleum substitute, and oilseed rape (OSR, Brassica napus) is the principal feedstock for biodiesel production in Germany, the third biggest producer of this fuel globally. Diverting food crops into energy production would seem counter-productive, given there exists genuine concern regarding our ability to meet future global food demand, thus attention has turned to utilising lignocellulosic material: woody tissue and non-food crop by-products such as corn stover. For this reason species such as the perennial grass Miscanthus (Miscanthus x giganteus) are being cultivated for energy production, and these are referred to as second generation energy crops. They are attractive since they do not deplete food supplies, have high yields, require less fertiliser input than annual arable crops, and can be grown on marginal agricultural land. To assess the effectiveness of a crop for bioenergy production, it is vital that accurate quantification of greenhouse gas (GHG) fluxes is obtained for their cultivation in the field. We will present data from a series of studies investigating the GHG fluxes from the energy crops OSR and Miscanthus under various nutrient additions in a comparison with conventional arable cropping at the same site in the United Kingdom (UK). A combination of methods were employed to measure fluxes of CO2, CH4 and N2O from both soil and vegetation, at various temporal and spatial scales. Conventional manual chambers were deployed on a monthly regime to quantify soil GHG fluxes, and were supplemented with automated soil flux chambers measuring soil respiration at an hourly frequency. Additionally, two novel automated chamber systems allowed, for the first time, continuous ecosystem exchange of all three biogenic GHGs to be measured from OSR and Miscanthus at high spatial resolution (< 1 m2). Highest GHG emissions were seen from arable crops, but despite low fertiliser input, tillage caused Miscanthus to be a net carbon source, and compost addition increased N2O emissions. OSR represented a net carbon sink during its growth, but N2O emissions resulting from application of mineral nitrogen fertiliser reduced this sink by 50%. Automated measurements revealed a hitherto unreported temperature-independent diurnal pattern in soil respiration under Miscanthus, which was in stark contrast to an adjacent barley (Hordeum vulgare) crop. Consequently, the time of day at which any comparison of soil respiration between these two crops is made strongly biases the findings. Our data highlight the delicate balance which energy crops must maintain in order to ensure carbon-neutrality, and suggest that crops requiring fertiliser input will potentially become a net GHG source once indirect emissions (e.g. from fertiliser production) are accounted for. Furthermore, diurnal patterns of GHG flux should be assessed and used to guide suitable future manual measurement regimes.
Vasanth, Muthuraman; Muralidhar, Moturi; Saraswathy, Ramamoorthy; Nagavel, Arunachalam; Dayal, Jagabattula Syama; Jayanthi, Marappan; Lalitha, Natarajan; Kumararaja, Periyamuthu; Vijayan, Koyadan Kizhakkedath
2016-12-01
Global warming/climate change is the greatest environmental threat of our time. Rapidly developing aquaculture sector is an anthropogenic activity, the contribution of which to global warming is little understood, and estimation of greenhouse gases (GHGs) emission from the aquaculture ponds is a key practice in predicting the impact of aquaculture on global warming. A comprehensive methodology was developed for sampling and simultaneous analysis of GHGs, carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) from the aquaculture ponds. The GHG fluxes were collected using cylindrical acrylic chamber, air pump, and tedlar bags. A cylindrical acrylic floating chamber was fabricated to collect the GHGs emanating from the surface of aquaculture ponds. The sampling methodology was standardized and in-house method validation was established by achieving linearity, accuracy, precision, and specificity. GHGs flux was found to be stable at 10 ± 2 °C of storage for 3 days. The developed methodology was used to quantify GHGs in the Pacific white shrimp Penaeus vannamei and black tiger shrimp Penaeus monodon culture ponds for a period of 4 months. The rate of emission of carbon dioxide was found to be much greater when compared to other two GHGs. Average GHGs emission in gha -1 day -1 during the culture was comparatively high in P.vannamei culture ponds.
Cross sections of the {sup 67}Zn(n,{alpha}){sup 64}Ni reaction at 4.0, 5.0, and 6.0 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Guohui; Liu Jiaming; Wu Hao
2010-11-15
Experimental cross section data of the {sup 67}Zn(n,{alpha}){sup 64}Ni reaction are very scanty because the residual nucleus {sup 64}Ni is stable and the commonly used activation method is not feasible. As a result, very large deviations (about 10 times) exist among different nuclear data libraries. In the present work, cross sections of the partial {sup 67}Zn(n,{alpha}{sub 0}){sup 64}Ni and total {sup 67}Zn(n,{alpha}){sup 64}Ni reactions are measured at neutron energies of 4.0 and 5.0 MeV for the first time, and those of 6.0 MeV are remeasured for consistency checking. A twin-gridded ionization chamber was used as the charged-particle detector and twomore » enriched back-to-back-set {sup 67}Zn samples were adopted. Experiments were performed at the 4.5 MV Van de Graaff Accelerator of Peking University. Neutrons were produced through the {sup 2}H(d,n){sup 3}He reaction using a deuterium gas target. Absolute neutron flux was determined by counting the fission fragments from a {sup 238}U sample placed inside the gridded ionization chamber while a BF{sub 3} long counter was employed as neutron flux monitor. Present data are compared with results of previous measurements, evaluations, and talys code calculations.« less
CFD Analysis of Spray Combustion and Radiation in OMV Thrust Chamber
NASA Technical Reports Server (NTRS)
Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.; Gross, K.
1993-01-01
The Variable Thrust Engine (VTE), developed by TRW, for the Orbit Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The propellants are pressure fed into the combustion chamber through a single pintle injection element. The performance of this engine is dependent on the pintle geometry and a number of complex physical phenomena and their mutual interactions. The most important among these are (1) atomization of the liquid jets into fine droplets; (2) the motion of these droplets in the gas field; (3) vaporization of the droplets (4) turbulent mixing of the fuel and oxidizer; and (5) hypergolic reaction between MMH and NTO. Each of the above phenomena by itself poses a considerable challenge to the technical community. In a reactive flow field of the kind occurring inside the VTE, the mutual interactions between these physical processes tend to further complicate the analysis. The objective of this work is to develop a comprehensive mathematical modeling methodology to analyze the flow field within the VTE. Using this model, the effect of flow parameters on various physical processes such as atomization, spray dynamics, combustion, and radiation is studied. This information can then be used to optimize design parameters and thus improve the performance of the engine. The REFLEQS CFD Code is used for solving the fluid dynamic equations. The spray dynamics is modeled using the Eulerian-Lagrangian approach. The discrete ordinate method with 12 ordinate directions is used to predict the radiative heat transfer in the OMV combustion chamber, nozzle, and the heat shield. The hypergolic reaction between MMH and NTO is predicted using an equilibrium chemistry model with 13 species. The results indicate that mixing and combustion is very sensitive to the droplet size. Smaller droplets evaporate faster than bigger droplets, leading to a well mixed zone in the combustion chamber. The radiative heat flux at combustion chamber and nozzle walls are an order of negligible less than the conductive heat flux. Simulations performed with the heat shield show that a negligible amount of fluid is entrained into the heat shield region. However, the heat shield is shown to be effective in protecting the OMV structure surrounding the engine from the radiated heat.
Nitrogen recovery from pig slurry in a two-chambered bioelectrochemical system.
Sotres, A; Cerrillo, M; Viñas, M; Bonmatí, A
2015-10-01
Abiotic batch experiments showed that ammonia migration from anode to cathode was favored by an increase in voltage, from 39.9% to 44.6%, using synthetic media. A slight increase in ammonia migration was observed when using pig slurry, reaching a maximum of 49.9%. In a continuously MFC fed with pig slurry with a stripping/absorption unit coupled to the cathode chamber, the highest nitrogen flux (7.2 g N d(-1) m(-2)) was achieved using buffer as catholyte. Nitrogen flux increased to 10.3 g N d(-1) m(-2) when shifting to MEC mode. A clear improvement in nitrogen flux (25.5 g N d(-1) m(-2)) was observed when using NaCl as catholyte. Besides, ammonia stripping was favored, reaching a nitrogen recovery of 94.3% in the absorption column, due to the high pH reached in the cathode. The microbial community analysis revealed an enrichment of certain taxonomic Eubacterial and Archaeal groups when the system shifted from MFC to MEC mode. Copyright © 2015 Elsevier Ltd. All rights reserved.
Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Bernert, M.; Eich, T.; Fuchs, J. C.; Giannone, L.; Herrmann, A.; Schweinzer, J.; Treutterer, W.; the ASDEX Upgrade Team
2012-12-01
A double radiative feedback technique has been developed on the ASDEX Upgrade tokamak for optimization of power exhaust with a standard vertical target divertor. The main chamber radiation is measured in real time by a subset of three foil bolometer channels and controlled by argon injection in the outer midplane. The target heat flux is in addition controlled by nitrogen injection in the divertor private flux region using either a thermoelectric sensor or the scaled divertor radiation obtained by a bolometer channel in the outer divertor. No negative interference of the two radiation controllers has been observed so far. The combination of main chamber and divertor radiative cooling extends the operational space of a standard divertor configuration towards high values of P/R. Pheat/R = 14 MW m-1 has been achieved so far with nitrogen seeding alone as well as with combined N + Ar injection, with the time-averaged divertor peak heat flux below 5 MW m-2. Good plasma performance can be maintained under these conditions, namely H98(y,2) = 1 and βN = 3.
BOREAS TE-1 SSA-Fen Soil Profile Nutrient Data
NASA Technical Reports Server (NTRS)
Papagno, Andrea; Anderson, Darwin; Newcomer, Jeffrey A. (Editor); Hall, Forrest G. (Editor)
2000-01-01
The BOREAS TE-1 team collected various data to characterize the soil-plant systems in the BOREAS SSA. Particular emphasis was placed on nutrient biochemistry, the stores and transfers of organic carbon, and how the characteristics were related to measured methane fluxes. The overall traniect in the Prince Albert National Park (Saskatchewan, Canada) included the major plant communities and related soils that occurred in that section of the boreal forest. Soil physical, chemical, and biological measurements along the transect were used to characterize the static environment, which allowed them to be related to methane fluxes. Chamber techniques were used to provide a measure of methane production/uptake. Chamber measurements coupled with flask sampling were used to determine the seasonality of methane fluxes. This particular data set contains soil profile measurements of various nutrients at the SSA-Fen site. The data were collected from 23-May to 21-Oct- 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Methane emissions and uptake in temperate and tropical forest trees on free-draining soils.
NASA Astrophysics Data System (ADS)
Welch, Bertie; Sayer, Emma; Siegenthaler, Andy; Gauci, Vincent
2016-04-01
Forests play an important role in the exchange of radiatively important gases with the atmosphere. Previous studies have shown that in both temperate and tropical wetland forests tree stems are significant sources of methane (CH4), yet little is known about trace greenhouse gas dynamics in free-draining soils that dominate global forested areas. We examined trace gas (CH4 and N2O) fluxes from both soils and tree stems in a lowland tropical forest on free-draining soils in Panama, Central America and from a deciduous woodland in the United Kingdom. The tropical field site was a long-term experimental litter manipulation experiment in the Barro Colorado Nature Monument within the Panama Canal Zone, fluxes were sampled over the dry to wet season transition (March-August) in 2014 and November 2015. Temperate fluxes were sampled at Wytham Woods, Oxfordshire, over 12 months from February 2015 to January 2016. Tree stem samples were collected via syringe from temporary chambers strapped to the trees (as per Siegenthaler et al. (2015)) and the soil fluxes were sampled from permanently installed collars inserted to a 3cm depth. We found that seasonality (precipitation) is a significant driver of changing soil exchange from methane uptake to emission at the Panama sites. Experimental changes to litter quantity only become significant when coupled with seasonal change. Seasonal variability is an important control of the fluxes at out temperate forest site with changes in temperature and soil water content leading to changes in soil and tree stem trace gas fluxes from Wytham Woods. Siegenthaler, A., Welch, B., Pangala, S. R., Peacock, M., and Gauci, V.: Technical Note: Semi-rigid chambers for methane gas flux measurements on tree-stems, Biogeosciences Discuss., 12, 16019-16048, doi:10.5194/bgd-12-16019-2015, 2015.
Field measurements of del13C in ecosystem respiration
NASA Astrophysics Data System (ADS)
van Asperen, Hella; Sabbatini, Simone; Nicolini, Giacomo; Warneke, Thorsten; Papale, Dario; Notholt, Justus
2014-05-01
Stable carbon isotope del13C-measurements are extensively used to study ecological and biogeochemical processes in ecosystems. Above terrestrial ecosystems, atmospheric del13C can vary largely due to photosynthetic fractionation. Photosynthetic processes prefer the uptake of the lighter isotope 12C (in CO2), thereby enriching the atmosphere in 13C and depleting the ecosystem carbon. At night, when ecosystem respiratory fluxes are dominant, 13C-depleted CO2 is respired and thereby depletes the atmospheric del13C-content. Different ecosystems and different parts of one ecosystem (type of plant, leaves, and roots) fractionate and respire with a different del13C-ratio signature. By determining the del13C-signature of ecosystem respiration in temporal and spatial scale, an analysis can be made of the composition of respiratory sources of the ecosystem. A field study at a dry cropland after harvest (province of Viterbo, Lazio, Italy) was performed in the summer of 2013. A FTIR (Fourier Transform Infrared Spectrometer) was set up to continuously measure CO2-, CH4-, N2O-, CO- and del13C-concentrations. The FTIR was connected to 2 different flux measurements systems: a Flux Gradient system (sampling every half hour at 1.3m and 4.2m) and 2 flux chambers (measured every hour), providing a continuous data set of the biosphere-atmosphere gas fluxes and of the gas concentrations at different heights. Keeling plot intercept values of respiratory CO2, measured by the Flux Gradient system at night, were determined to be between -25‰ and -20‰. Keeling plot intercept values of respiratory CO2, measured by the flux chamber system, varied between -24‰ and -29‰, and showed a clear diurnal pattern, suggesting different (dominant) respiratory processes between day and night.
Heat Transfer Coefficient Distribution in the Furnace of a 300MWe CFB Boiler
NASA Astrophysics Data System (ADS)
Zhang, P.; Lu, J. F.; Yang, H. R.; Zhang, J. S.; Zhang, H.; Yue, G. X.
Properly understanding and calculating the distributions of heat flux and heat transfer coefficient (α) in the furnace is important in designing a circulating fluidized bed (CFB) boiler, especially with supercritical parameters. Experimental study on the heat transfer in a commercial 300MWe CFB boiler was conducted. The α from the bed to the water wall was measured by the finite element method (FEM), at five different heights. The influence of suspension density and bed temperature on α was analyzed. It was found that the pressure difference between the inlet and exit of the three cyclones, and the chamber pressure of the corresponding loop seal were not equal. The results indicated the suspension solid density was non-uniform in the cross section at a certain height. Consequently, the distributions of heat flux and α in the horizontal plane in the furnace was non-uniform. The furnace can divided into three sections according to the arrangement of the platen superheaters hanging in the upper CFB furnace. In each section, the heat flux near the center showed increasing trend.
Methane fluxes during the cold season: distribution and mass transfer in the snow cover of bogs
NASA Astrophysics Data System (ADS)
Smagin, A. V.; Shnyrev, N. A.
2015-08-01
Fluxes and profile distribution of methane in the snow cover and different landscape elements of an oligotrophic West-Siberian bog (Mukhrino Research Station, Khanty-Mansiisk autonomous district) have been studied during a cold season. Simple models have been proposed for the description of methane distribution in the inert snow layer, which combine the transport of the gas and a source of constant intensity on the soil surface. The formation rates of stationary methane profiles in the snow cover have been estimated (characteristic time of 24 h). Theoretical equations have been derived for the calculation of small emission fluxes from bogs to the atmosphere on the basis of the stationary profile distribution parameters, the snow porosity, and the effective methane diffusion coefficient in the snow layer. The calculated values of methane emission significantly (by 2-3 to several tens of times) have exceeded the values measured under field conditions by the closed chamber method (0.008-0.25 mg C/(m2 h)), which indicates the possibility of underestimating the contribution of the cold period to the annual emission cycle of bog methane.
NASA Astrophysics Data System (ADS)
Chai, J.; Miller, D. J.; Guo, F.; Dell, C. J.; Karsten, H.; Hastings, M. G.
2017-12-01
Nitrous acid (HONO) is a major source of atmospheric hydroxyl radical (OH), which greatly impacts air quality and climate. Fertilized soils may be important sources of HONO in addition to nitric oxide (NO). However, soil HONO emissions are especially challenging to quantify due to huge spatial and temporal variation as well as unknown HONO chemistry. With no in-situ measurements available, soil HONO emissions are highly uncertain. Isotopic analysis of HONO may provide a tool for tracking these sources. We characterize in situ soil HONO and NO fluxes and their nitrogen isotopic composition (δ15N) across manure management and meteorological conditions during a sustainable dairy cropping study in State College, Pennsylvania. HONO and NO were simultaneously collected at hourly resolution from a custom-coated dynamic soil flux chamber ( 3 LPM) using annular denuder system (ADS) coupled with an alkaline-permanganate NOx collection system for offline isotopic analysis of δ15N with ±0.6 ‰ (HONO) and ±1.5 ‰ (NO) precision. The ADS method was tested using laboratory generated HONO flowing through the chamber to verify near 100% collection (with no isotopic fractionation) and suitability for soil HONO collection. Corn-soybean rotation plots (rain-fed) were sampled following dairy manure application with no-till shallow-disk injection (112 kg N ha-1) and broadcast with tillage incorporation (129 kg N ha-1) during spring 2017. Soil HONO fluxes (n=10) ranged from 0.1-0.6 ng N-HONO m-2 s-1, 4-28% of total HONO+NO mass fluxes. HONO and NO fluxes were correlated, with both declining during the measurement period. The soil δ15N-HONO flux weighted mean ±1σ of -15 ± 6‰ was less negative than δ15N of simultaneously collected NO (-29 ± 8‰). This can potentially be explained by fractionations associated with microbial conversion of nitrite, abiotic production of HONO from soil nitrite, and uptake and release with changing soil moisture. Our results have implications for constraining total oxidized reactive N losses associated with fertilizer management strategies, improving HONO emission inventories, and enabling future studies using N isotopic composition to distinguish various HONO sources and chemistry.
NASA Astrophysics Data System (ADS)
Johansson, A. E.; Kasimir Klemedtsson, Å.; Klemedtsson, L.; Svensson, B. H.
2003-07-01
Static chamber measurements of N2O fluxes were taken during the 1998 and 1999 growth seasons in a Swedish constructed wetland receiving wastewater. The dominating plant species in different parts of the wetland were Lemna minor L., Typha latifolia L., Spirogyra sp. and Glyceria maxima (Hartm.) and Phalaris arundinacea (L.), respectively. There were large temporal and spatial variations in N2O fluxes, which ranged from consumption at -350 to emissions at 1791 μg N2O m-2 h-1. The largest positive flux occurred in October 1999 and the lowest in the middle of July 1999. The average N2O flux for the two years was 130 μg N2O m-2 h-1 (SD = 220). No significant differences in N2O fluxes were found between the years, even though the two growing seasons differed considerably with respect to both air temperature and precipitation. 15% of the fluxes were negative, showing a consumption of N2O. Consumption occurred on a few occasions at most measurement sites and ranged from 1-350 μg N2O m-2 h-1. 13-43% of the variation in N2O fluxes was explained by multiple linear regression analysis including principal components. Emission factors were calculated according to IPCC methods from the N2O fluxes in the constructed wetland. The calculated emission factors were always lower (0.02-0.27%) compared to the default factor provided by the IPCC (0.75%). Thus, direct application of the IPCC default factor may lead to overestimation of N2O fluxes from constructed wastewater-treating wetlands.
Experimental study of combustion in hydrogen peroxide hybrid rockets
NASA Astrophysics Data System (ADS)
Wernimont, Eric John
Combustion behavior in a hydrogen peroxide oxidized hybrid rocket motor is investigated with a series of experiments. Hybrid chemical rocket propulsion is presently of interest due to reduced system complexity compared to classical chemical propulsion systems. Reduced system complexity, by use of a storable oxidizer and a hybrid configuration, is expected to reduce propulsive costs. The fuel in this study is polyethylene which has the potential of continuous manufacture leading to further reduced system costs. The study investigated parameters of interest for nominal design of a full scale hydrogen peroxide oxidized hybrid rocket. Amongst these parameters is the influence of chamber pressure, mass flux, fuel molecular weight and fuel density on fuel regression rate. Effects of chamber pressure and aft combustion length on combustion efficiency and non-acoustic combustion oscillations are also examined. The fuel regression behavior is found to be strongly influenced by both chamber pressure and mass flux. Combustion efficiencies in the upper 90% range are attained by simple changes to the aft combustion chamber length as well as increased combustion pressure. Fuel burning surface is found to be influenced by the density of the polyethylene polymer as well as molecular weight. The combustion is observed to be exceptionally smooth (oscillations less than 5% zero-to-peak of mean) in all motors tested in this program. Tests using both a single port fuel gain and a novel radial flow hybrid are also performed.
Soils in seasonally flooded forests as methane sources: A case study of West Siberian South taiga
NASA Astrophysics Data System (ADS)
Mochenov, S. Yu; Churkina, A. I.; Sabrekov, S. F.; Glagolev, M. V.; Il’yasov, D. V.; Terentieva, I. E.; Maksyutov, S. S.
2018-03-01
In this study, we measured the methane and carbon dioxide fluxes by static chamber method from the soil of periodically flooded forests under different water table levels (WTL) in West Siberian south taiga (Tomsk oblast, Russia) in summer seasons of 2016 and 2017 years. The study shows that seasonally flooded forests may become a methane source when the WTL increases up to 15-45 cm below the surface. The fluxes of methane from soil were from -0.08±0.07 to 9.3±0.8 mg·m-2·h-1, from 0.05±0. 04 to 0.14±0.13 mg·m-2·h-1, from - 0.03±0.02 to 5.4±0.2 mg·m-2·h-1 depending on variou s WTL in different seasonally flooded forests in 2017.
Soil emission and uptake of carbonyl sulfide at a temperate mountain grassland
NASA Astrophysics Data System (ADS)
Kitz, Florian; Hammerle, Albin; Laterza, Tamara; Spielmann, Felix M.; Wohlfahrt, Georg
2016-04-01
Flux partitioning, i.e. inferring gross primary productivity (GPP) and ecosystem respiration from the measured net ecosystem carbon dioxide (CO2) exchange, is one uncertainty in modelling the carbon cycle and in times where robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive GPP by measuring carbonyl sulfide (COS), the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite to use COS as a proxy for canopy photosynthesis is a robust estimation of COS sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on properties like soil temperature and soil water content. The main aim of this study was to quantify the soil COS exchange and its drivers of a temperate mountain grassland in order to aid the use of COS as tracer for canopy CO2 and water vapor exchange. We conducted a field campaign with a Quantum cascade laser at a temperate mountain grassland to estimate the soil COS fluxes under ambient conditions and while simulating a drought. We used self-built fused silica (i.e. light-transparent) soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. Vegetation was removed within the chambers, therefor more radiation reached the soil surface compared to natural conditions. This might be the reason for highly positive fluxes during daytime more similar to agricultural study sites. To further investigate this large soil COS source we conducted within canopy concentration measurements near the soil surface and still recorded fluxes confirming the soil as a COS source during daytime. Results from the drought experiment suggested a strong impact of incoming radiation on soil COS fluxes followed by soil temperature, whereas the influence of soil water content (SWC) seemed to be negligible, even though the SWC dropped significantly due to rain exclusion. These results were bolstered by soil nighttime fluxes around zero and measurements with non-transparent chambers exhibiting much smaller fluxes compared to transparent ones. In the case that other ecosystems react in a similar fashion and biotic processes are negligible when parameterizing soil COS fluxes, we are a step closer to using COS as a proxy for GPP.
NASA Astrophysics Data System (ADS)
Burba, George; Budishchev, Artem; Gioli, Beniamino; Haapanala, Sami; Helbig, Manuel; Losacco, Salvatore; Mammarella, Ivan; Moreaux, Virginie; Murphy, Patrick; Oechel, Walter; Peltola, Olli; Rinne, Janne; Sonnentag, Oliver; Sturtevant, Cove; Vesala, Timo; Zona, Donatella; Zulueta, Rommel
2014-05-01
Flux stations have been widely used to monitor release and uptake rates of CO2, CH4, H2O and other gases from various ecosystems for climate research for over 30 years. The stations provide accurate and continuous measurements of gas exchange at time scales ranging from 15 or 30 minutes to multiple years, and at spatial scales ranging from thousands m2 to multiple km2, depending on the measurement height. The stations can nearly instantaneously detect rapid changes in gas release due to weather or man-triggered events (pressure changes, ice breakage and melts, ebullition events, etc.). They can also detect slow changes related to seasonal dynamics and man-triggered processes (seasonal freeze and thaw, long-term permafrost degradation, etc.). From 1980s to mid-2000s, station configuration, data collection and processing were highly-customized, site-specific and greatly dependent on "school-of-thought" practiced by a particular researcher. In the past 3-5 years, due to significant efforts of global and regional flux networks and technological developments, the methodology became fairly standardized. Majority of current stations compute gas emission and uptake rates using eddy covariance method, as one of the most direct micrometeorological techniques. Over 600 such flux stations operate in over 120 countries, using permanent and mobile towers or moving platforms (e.g., automobiles, helicopters, airplanes, ships, etc.). With increasing atmospheric temperatures in the Arctic likely resulting in a higher rate of permafrost degradation, measurements of gas exchange dynamics become particularly important. The permafrost regions store a significant amount of organic materials under anaerobic conditions, leading to large CH4 production and accumulation in the upper layers of bedrock, soil and ice. These regions may become a significant potential source of global CH4 release under a warming climate over the following decades and centuries. Present measurements of CH4 release in permafrost regions have mostly been made with static chamber techniques, and few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active soil layer. Closed-path gas analyzers for measuring CH4 eddy fluxes require climate control, employ high-power pumps, and generally require grid power and infrastructure. As a result, spatial coverage of eddy covariance CH4 flux measurements in cold regions remains limited. Existing stations are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into manpower and infrastructure. In this presentation, basic principles of eddy covariance flux measurements are explained, along with details on the CH4, CO2 and H2O exchange measurements using low-power flux stations. Also included are latest updates on the emerging research utilizing such stations in remote permafrost regions, and on the 2013-2014 development of fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CH4 release rates.
Solar-induced chemical vapor deposition of diamond-type carbon films
Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.
1994-09-13
An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.
Solar-induced chemical vapor deposition of diamond-type carbon films
Pitts, J. Roland; Tracy, C. Edwin; King, David E.; Stanley, James T.
1994-01-01
An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.
New PSA high concentration solar furnace SF40
NASA Astrophysics Data System (ADS)
Rodriguez, Jose; Cañadas, Inmaculada; Zarza, Eduardo
2016-05-01
A new solar furnace has been designed and built at Plataforma Solar de Almería. In this work, its main components such as heliostat, concentrator, attenuator and test table, and the method used to align them are described. Other equipment like the auxiliary systems necessary for the solar operation, vacuum chamber and gas system are outlined too. Finally, the thermal characteristics of the focus were measured during a test campaign, where different planes along the optical axis were scanned with a radiometer, and the peak flux was obtained and is presented in the last section of this report.
Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998
Wickland, K.P.; Striegl, Robert G.; Mast, M.A.; Clow, D.W.
2001-01-01
Carbon dioxide (CO2) and methane (CH4) exchange between the atmosphere and a subalpine wetland located in Rocky Mountain National Park, Colorado, at 3200 m elevation were measured during 1996-1998. Respiration, net CO2 flux, and CH4 flux were measured using the closed chamber method during snow-free periods and using gas diffusion calculations during snow-covered periods. The ranges of measured flux were 1.2-526 mmol CO2 m-2 d-1 (respiration), -1056-100 mmol CO2 m-2 d-1 (net CO2 exchange), and 0.1-36.8 mmol CH4 m-2 d-1 (a positive value represents efflux to the atmosphere). Respiration and CH4 emission were significantly correlated with 5 cm soil temperature. Annual respiration and CH4 emission were modeled by applying the flux-temperature relationships to a continuous soil temperature record during 1996-1998. Gross photosynthesis was modeled using a hyperbolic equation relating gross photosynthesis, photon flux density, and soil temperature. Modeled annual flux estimates indicate that the wetland was a net source of carbon gas to the atmosphere each of the three years: 8.9 mol C m-2 yr-1 in 1996, 9.5 mol C m-2 yr-1 in 1997, and 9.6 mol C m-2 yr-1 in 1998. This contrasts with the long-term carbon accumulation of ???0.7 mol m-2 yr-1 determined from 14C analyses of a peat core collected from the wetland.
Nitrous oxide fluxes from upland soils in central Hokkaido, Japan.
Mu, Zhijian; Kimura, Sonoko D; Toma, Yo; Hatano, Ryusuke
2008-01-01
Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November), for three years, in a total of 11 upland crop fields in central Hokkaido, Japan. The annual mean N2O fluxes ranged from 2.95 to 164.17 microgN/(m2 x h), with the lowest observed in a grassland and the highest in an onion field. The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall events around harvesting in autumn. No clear common factor regulating instantaneous N2O fluxes was found at any of the study sites. Instead, instantaneous N2O fluxes at different sites were affected by different soil variables. The cumulative N2O emissions during the study period within each year varied from 0.15 to 7.05 kgN/hm2 for different sites, which accounted for 0.33% to 5.09% of the applied fertilizer N. No obvious relationship was observed between cumulative N2O emission and applied fertilizer N rate (P > 0.4). However, the cumulative N2O emission was significantly correlated with gross mineralized N as estimated by CO2 emissions from bare soils divided by C/N ratios of each soil, and with soil mineral N pool (i.e., the sum of gross mineralized N and fertilizer N) (P < 0.001).
NASA Astrophysics Data System (ADS)
Felber, R.; Münger, A.; Neftel, A.; Ammann, C.
2015-06-01
Methane (CH4) from ruminants contributes one-third of global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analyzers, the instrumentation at many flux sites has been amended for these gases. However, the application of EC over pastures is challenging due to the spatially and temporally uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to 2 orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best estimate from this study) correspond well to animal respiration chamber measurements reported in the literature. However, a systematic effect of the distance between source and EC tower on cow emissions was found, which is attributed to the analytical footprint model used. We show that the EC method allows one to determine CH4 emissions of cows on a pasture if the data evaluation is adjusted for this purpose and if some cow distribution information is available.
NASA Astrophysics Data System (ADS)
Felber, R.; Münger, A.; Neftel, A.; Ammann, C.
2015-02-01
Methane (CH4) from ruminants contributes one third to global agricultural greenhouse gas emissions. Eddy covariance (EC) technique has been extensively used at various flux sites to investigate carbon dioxide exchange of ecosystems. Since the development of fast CH4 analysers the instrumentation at many flux sites have been amended for these gases. However the application of EC over pastures is challenging due to the spatial and temporal uneven distribution of CH4 point sources induced by the grazing animals. We applied EC measurements during one grazing season over a pasture with 20 dairy cows (mean milk yield: 22.7 kg d-1) managed in a rotational grazing system. Individual cow positions were recorded by GPS trackers to attribute fluxes to animal emissions using a footprint model. Methane fluxes with cows in the footprint were up to two orders of magnitude higher than ecosystem fluxes without cows. Mean cow emissions of 423 ± 24 g CH4 head-1 d-1 (best guess of this study) correspond well to animal respiration chamber measurements reported in the literature. However a systematic effect of the distance between source and EC tower on cow emissions was found which is attributed to the analytical footprint model used. We show that the EC method allows to determine CH4 emissions of grazing cows if the data evaluation is adjusted for this purpose and if some cow distribution information is available.
Multi-year net ecosystem carbon balance at a horticulture-extracted restored peatland
NASA Astrophysics Data System (ADS)
Nugent, Kelly; Strachan, Ian; Strack, Maria
2017-04-01
Restoration of previously extracted peatlands is essential to minimize the impact of drainage and peat removal. Best practices restoration methods have been developed that include ditch blocking, site leveling and reintroducing bog vegetation using the moss layer transfer technique. A long term goal of restoration is the return to a peat accumulating ecosystem. Bois-des-Bel is a cool-temperate bog, located in eastern Quebec, Canada, that was vacuum harvested until 1980 and restored in 1999. While several studies have used discrete (chamber) methods to determine the net carbon exchange from rewetted or restored peatlands, ours appears to be the first to have multiple complete years of net ecosystem carbon exchange from a restored northern peatland. An eddy covariance flux tower instrumented with a sonic anemometer and open-path CO2/H2O and CH4 analyzers was operated continuously over three years to produce a robust estimate of net carbon sequestration. Our initial results indicate that this restored peatland was a consistent moderate annual net sink for CO2, a moderate source of CH4 and had low losses of dissolved organic carbon compared to undisturbed northern latitude peatlands. Closed chambers combined with a fast response CO2/H2O/CH4 analyzer were used to investigate ecohydrological controls on net ecosystem exchange of CO2 (NEE) and CH4 flux from the restored fields and remnant ditches at the site. CH4 release was found to be an order of magnitude higher in the ditches compared to the fields, with non-vegetated ditch showing a greater range in flux compared to areas invaded by Typha latifolia. Bubble magnitude and count were highest in the non-vegetated ditch, followed by Typha plots and were undetectable in the restored fields. The latter may be partially attributed to the high cover of Eriophorum vaginatum in the restored fields, plants that have aerenchymous tissue, as well as a much deeper water table level. While the non-vegetated ditch areas were a steady small source of CO2, NEE in the Typha plots showed significantly greater CO2 uptake capacity relative to any other restored plant community. High productivity combined with reduced CH4 flux suggests that Typha may be playing a key role in reducing the overall impact of the remnant ditches on the net ecosystem carbon balance. A preliminary footprint analysis suggests that ecosystem-level CH4 flux is being primarily driven by release from hotspots while the majority of the tower source area is a very small source of methane.
Characteristics of urban-ecosystem atmosphere fluxes of CO2, CH4, N2O, and et over Denver, Colorado
Anderson, D.E.; Alvarez, C.; Thienelt, T.
2004-01-01
The characteristics of urban ecosystems fluxes of carbon dioxide, methane, nitrous oxide, and evapotranspiration (ET) over Denver, Colorado were discussed. These atmospheric fluxes were measured using a methodology that included a combination of eddy covariance sensors at two levels on a tall tower and chamber measurements at 33 locations on the soil surface. There was both strong temporal and spatial heterogeneity of fluxes owing to characteristics of natural and anthropogenic ecosystem components. Although the urban ecosystem was a net carbon dioxide source, tower-based eddy covariance measurements showed it to be a net vegetative sink during the majority of mid-say summer hours.
Carbon fluxes of Kobresia pygmaea pastures on the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Foken, T.; Biermann, T.; Babel, W.; Ma, Y.
2013-12-01
With an approximate cover of 450,000 km2 on the Tibetan Plateau (TP), the Cyperaceae Kobresia pygmaea forms he world's largest alpine ecosystem. This species, especially adapted to grazing pressure, grows to a height of only 2-6 cm and can be found in an altitudinal range of 4000 to 5960 m a.s.l. A special characteristic of this ecosystem is the stable turf layer, which is built up from roots and plays a significant role in protecting soil from erosion. This is of great importance since soils on the TP store 2.5 % of the global soil organic carbon stocks. The aim of the investigation was the study of the carbon storage and the impact of human-induced land use change on these Kobresia pygmaea pastures. We therefore applied eddy-covariance measurements and modelling as a long-term control of the fluxes between the atmosphere and the pastures and 13C labelling for the investigation of flux partitioning, and chamber measurements to investigate the degradation of the pastures. Combining CO2 budgets observed in 2010 with eddy-covariance measurements and relative partitioning of Carbon fluxes estimated with 13C labelling enabled us to characterise the C turnover for the vegetation period with absolute fluxes within the plant-soil-atmosphere continuum. These results revealed that this ecosystem indeed stores a great amount of C in below-ground pools, especially in the root turf layer. To further investigate the importance of the root layer, the experiments in 2012 focused on flux measurements over the different surface types which make up the heterogeneity of the Kobresia pygmaea pastures and might result from degradation due to extensive grazing. The three surface types investigated with a LiCOR long-term monitoring chamber system include Kobresia pygmaea with intact turf layer (IRM), a surface type where the turf layer is still present but the vegetation is sparse and mainly consists of Cryptogam crusts (DRM) and finally areas without the turf layer (BS). According to the vegetation cover, net ecosystem exchange and respiration decreased from IRM over DRM to BS while ratio respiration/assimilation increased. Since measurements were conducted in succession and not parallel, a direct comparison would need further investigation. On the basis of the eddy-covariance data set measured in 2010, two models were applied and tested for Kobresia pastures: one for sensible and latent heat flux and one for carbon dioxide flux. Therefore continuously modelled fluxes were available for the chamber experiment in 2012. Significant differences were found in the carbon uptake and evapotranspiration, with the highest values on IRM and the lowest on BS. But higher fluxes were also found on IRM in September and not in the measuring period in August. It could be shown that this was in agreement with the modelled fluxes, and a different water vapour deficit was indicated as the reason.
NASA Astrophysics Data System (ADS)
Sgouridis, F.; Ullah, S.
2014-12-01
Whilst data and understanding of the controls of denitrification process and the subsequent emission of N2O at microbial and plot scale exist, quantification of in situ annual denitrification rates at catchment scales is scarce due to methodological constraints in measuring in situ denitrification in large temporal and spatial scales. In situ denitrification (DNT) was measured monthly (April 2013 - October 2014) in organic (peat bog, heathland, acid grassland), forest (mixed and deciduous), and grassland (improved and semi-improved) land use types in the Ribble-Wyre and Conwy River catchments in the UK. A static chamber technique according to the 15N-Gas Flux method1 was employed for quantifying the fluxes of 15N-N2 and 15N-N2O gases after labelling the soil with 98 at% K15NO3- at tracer level amounts (10% of the ambient nitrate concentration) and sampling the chamber headspace at 0, 1, 2 and 20 hour intervals. The DNT rates ranged between 0 and 2.3 mg N m-2 h-1 and were significantly influenced by land use type (p<0.05). The annual denitrification rate of organic and forest soils (4 kg N ha-1 y-1) was 3 and 6 times less than that of semi-improved (12 kg N ha-1 y-1) and improved (23 kg N ha-1 y-1) grassland soils, respectively. The N2O emission, due to denitrification, followed a similar trend with lower fluxes from organic and higher from improved grassland soils (range: 0 - 0.04 mg N m-2 h-1), whilst the N2O:N2 ratio ranged between 0.2 and 4%. The relative contribution of denitrification to net N2O flux varied temporally and across the different land use types and ranged from 0.2 to 75%. The 15N-Gas Flux method can be successfully applied in a variety of land use types for relatively high temporal and spatial resolution measurement of in situ denitrification and the simultaneous quantification of N2 and N2O fluxes due to denitrification. Therefore the ratio of N2O:N2 and also the source apportionment for N2O can be estimated more accurately. The results suggested a difference in DNT rates between unmanaged/ low nitrate content versus managed/ high nitrate content land use types, which was further supported by the significant positive correlation between DNT and soil nitrate content. 1R. Stevens and R. Laughlin, Nutr. Cycling Agroecosyst., 1998, 52, 131-139.
NASA Astrophysics Data System (ADS)
He, Baonan; He, Jiangtao; Wang, Jian; Li, Jie; Wang, Fei
2018-01-01
To understand greenhouse gas (GHG) flux in reclaimed water intake area impact on urban climate, 'static chamber' method was used to investigate the spatio-diurnal variations and the influence factors of GHG fluxes at water-air interface from Jian River to Chaobai River. Results showed that the average fluxes of CO2 from the Jian River and the Chaobai River were 73.46 mg(m2·h)-1 and -64.75 mg(m2·h)-1, respectively. CO2 was emitted the most in the Jian River, but it was absorbed from the atmosphere in the Chaobai River. Unary linear regression analyses demonstrated that Chlorophyll a (Chl a) and pH variation controlled the carbon source and sink from the Jian River to the Chaobai River. The diurnal variation of CO2 fluxes was higher at night than in the daytime in the Jian River, and it was the inverse in the Chaobai River, which highly correlated with dissociative CO2 and HCO3- transformation to CO32-. The average fluxes of CH4 from the Jian River and Chaobai River were 0.973 mg(m2·h)-1 and 5.556 mg(m2·h)-1, respectively, which increased along the water flow direction. Unary and multiple linear regression analyses demonstrated that Chl a and total organic carbon (TOC) controlled the increase of CH4 along the flow direction. The diurnal variation of CH4 fluxes was slightly higher in the daytime than at night due to the effect of water temperature.
NASA Astrophysics Data System (ADS)
Miller, M. B.
2015-12-01
Gaseous elemental and oxidized mercury (Hg) fluxes were measured in a laboratory setting from substrate materials derived from industrial-scale open pit gold mining operations in Nevada, USA. Mercury is present in these substrates at a range of concentrations (10 - 40000 ng g-1), predominantly of local geogenic origin in association with the mineralized gold ores, but altered and redistributed to a varying degree by subsequent ore extraction and processing operations, including deposition of Hg recently emitted to the atmosphere from large point sources on the mines. Waste rock, heap leach, and tailings material usually comprise the most extensive and Hg emission relevant substrate surfaces. All three of these material types were collected from active Nevada mine sites in 2010 for previous research, and have since been stored undisturbed at the University of Nevada, Reno. Gaseous elemental Hg (GEM) flux was previously measured from these materials under a variety of conditions, and was re-measured in this study, using Teflon® flux chambers and Tekran® 2537A automated ambient air analyzers. GEM flux from dry undisturbed materials was comparable between the two measurement periods. Gaseous oxidized Hg (GOM) flux from these materials was quantified using an active filter sampling method that consisted of polysulfone cation-exchange membranes deployed in conjunction with the GEM flux apparatus. Initial measurements conducted within greenhouse laboratory space indicate that in dry conditions GOM is deposited to relatively low Hg cap and leach materials, but may be emitted from the much higher Hg concentration tailings material.
NASA Astrophysics Data System (ADS)
Comas, Xavier; Wright, William
2014-08-01
The spatial and temporal variability in accumulation and release of greenhouse gases (mainly methane and carbon dioxide) to the atmosphere from peat soils remains very uncertain. The use of near-surface geophysical methods such as ground penetrating radar (GPR) has proven useful during the last decade to expand scales of measurement as related to in situ gas distribution and dynamics beyond traditional methods (i.e., gas chambers). However, this approach has focused exclusively on boreal peatlands, while no studies in subtropical systems like the Everglades using these techniques exist. In this paper GPR is combined with gas traps, time-lapse cameras, gas chromatography, and surface deformation measurements to explore biogenic gas dynamics (mainly gas buildup and release) in two locations in the Everglades. Similar to previous studies in northern peatlands, our data in the Everglades show a statistically significant correlation between the following: (1) GPR-estimated gas content and gas fluxes, (2) GPR-estimated gas content and surface deformation, and (3) atmospheric pressure and both GPR-estimated gas content and gas flux. From these results several gas-releasing events ranging between 33.8 and 718.8 mg CH4 m-2 d-1 were detected as identified by the following: (1) decreases in GPR-estimated gas content within the peat matrix, (2) increases in gas fluxes captured by gas traps and time-lapse cameras, and (3) decreases in surface deformation. Furthermore, gas-releasing events corresponded to periods of high atmospheric pressure. Changes in gas accumulation and release were attributed to differences in seasonality and peat soil type between sites. These results suggest that biogenic gas releases in the Everglades are spatially and temporarily variable. For example, flux events measured at hourly scales were up to threefold larger when compared to daily fluxes, therefore suggesting that flux measurements decline when averaged over longer time spans. This research therefore questions what the appropriate spatial and temporal scale of measurement is necessary to properly capture the dynamics of biogenic gas release in subtropical peat soils.
NASA Astrophysics Data System (ADS)
Hawthorne, I.; Johnson, M. S.; Jassal, R. S.; Black, T. A.
2013-12-01
Rising atmospheric concentrations of greenhouse gases (GHGs), carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), linked to current climate change has stimulated a scientific response to provide robust accounting of sources and sinks of these gases. There is an urgent need to increase awareness of land management impacts on GHG flux dynamics to facilitate the development of management strategies that minimize GHG emissions. Biochar (pyrolyzed organic matter) has been identified as a strategy to reduce net GHG fluxes from soils. This is due to its potential to sequester large amounts of carbon for significant time periods, as well as its modification of biotic and abiotic soil conditions, which in turn can alter the GHG balance. This study describes the effect of biochar and urea-N application on soil surface CO2, CH4 and N2O fluxes in a Pacific Northwest Douglas-fir forest on Vancouver Island, BC, Canada (49o 52' N, 125o 20' W). We used a randomized complete-block design with four replicates of the following treatments: i) control, ii) 5 Mg ha-1 biochar surface application, iii) 200 kg N ha-1 urea pellets surface application, and iv) 5 Mg ha-1 biochar plus 200 kg N ha-1 urea. Soil GHG flux measurements were made biweekly for two years beginning in September 2011 using a non-steady-state non-flow through chamber technique. Biochar was added in February 2012, with urea applied in March 2013. A collar made from 21-cm diameter x 11-cm long PVC piping was installed in each of the 16 plots between two large trees on the forest floor, penetrating the organic layer to the mineral soil at the 5-8 cm depth. A clear Plexiglas lid, equipped with a 10-cm long vent tube and 9-V fan, was placed on each collar when making measurements, with 20-mL samples of chamber headspace air collected at 0, 3, 6, 9 and 12 min using a medical syringe with 21-gauge needle inserted through a rubber septum in the chamber lid. Samples were injected into and transported in previously evacuated 12-mL vials and analyzed by gas chromatography. Chamber headspace GHG mixing ratios vs. time data were fit to linear and exponential models in R (Version 2.14.0) and fluxes were calculated. Results showed high variability in GHG fluxes over time in all treatments. Higher CO2 emissions were observed during early summer (119 μg CO2 m-2 s-1 in the control plots), decreasing with drought (19 μg CO2 m-2 s-1 in the control plots). CH4 uptake by soil increased during summer months from -0.004 μg CH4 m-2 s-1 to -0.089 μg CH4 m-2 s-1 in the control plots, in response to drying conditions in the upper soil profile. N2O was both consumed and emitted in all treatments, with fluxes ranging from -0.0009 to 0.0019 μg N2O m-2 s-1 in the control plots. Analysis of variance indicated that there were significant differences in GHG fluxes between treatments over time. We also investigated the potential effects of large volume headspace removal, and H2O vapour saturation leading to a dilution effect by using a closed-path infra-red gas analyzer with an inline humidity sensor.
National Synchrotron Light Source II storage ring vacuum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei
2016-05-15
The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less
$pi$$sup +-$ TRACKS IN A FILAMENT SCINTILLATION CHAMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, G.T.; Swanson, R.A.; Scarl, D.B.
1960-09-01
The performance of a filament scintillation chamber system designed for studies on stopping mesons was studied by exposing it to the 90-Mev pi/sup plus or minus/ beam of the Nevis cyclotron and taking a total of 16,000 photographs. THe results indicate that (1) except for meson tracks, the chamber appears clean even without the 200-mu sec gating and the iron blockhouse, (2) the magnetic field has no effect on the performance and resolution, (3) three or four tracks can appear in a single picture of the 1-in.-diameter chamber without confusion, and (4) even at the highest beam fluxes, the gatingmore » restricts the tracks to those selected by the counter system. Pictures of the distinguishable stopping of pi/ sup +/ and pi/sup -/ mesons are included. (D.L.C.)« less
BOREAS TGB-1/TGB-3 NEE Data over the NSA Fen
NASA Technical Reports Server (NTRS)
Bellisario, Lianne; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Moore, Tim R.
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-1) and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains Net Ecosystem Exchange of CO2 (NEE) measurements collected with chambers at the NSA fen in 1994 and 1996. Gas samples were extracted approximately every 7 days from chambers and analyzed at the NSA lab facility. The data are provided in tabular ASCII files.
Status of NSLS-II Storage Ring Vacuum Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doom,L.; Hseuh,H.; Ferreira, M.
2009-05-04
National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.
Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch
2008-01-01
Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....
Rocket thrust chamber thermal barrier coatings
NASA Technical Reports Server (NTRS)
Batakis, A. P.; Vogan, J. W.
1985-01-01
A research program was conducted to generate data and develop analytical techniques to predict the performance and reliability of ceramic thermal barrier coatings in high heat flux environments. A finite element model was used to analyze the thermomechanical behavior of coating systems in rocket thrust chambers. Candidate coating systems (using a copper substrate, NiCrAlY bond coat and ZrO2.8Y2O3 ceramic overcoat) were selected for detailed study based on photomicrographic evaluations of experimental test specimens. The effects of plasma spray application parameters on the material properties of these coatings were measured and the effects on coating performance evaluated using the finite element model. Coating design curves which define acceptable operating envelopes for seleted coating systems were constructed based on temperature and strain limitations. Spray gun power levels was found to have the most significant effect on coating structure. Three coating systems were selected for study using different power levels. Thermal conductivity, strain tolerance, density, and residual stress were measured for these coatings. Analyses indicated that extremely thin coatings ( 0.02 mm) are required to accommodate the high heat flux of a rocket thrust chamber and ensure structural integrity.
Microbial Abundances Predict Methane and Nitrous Oxide Fluxes from a Windrow Composting System
Li, Shuqing; Song, Lina; Gao, Xiang; Jin, Yaguo; Liu, Shuwei; Shen, Qirong; Zou, Jianwen
2017-01-01
Manure composting is a significant source of atmospheric methane (CH4) and nitrous oxide (N2O) that are two potent greenhouse gases. The CH4 and N2O fluxes are mediated by methanogens and methanotrophs, nitrifying and denitrifying bacteria in composting manure, respectively, while these specific bacterial functional groups may interplay in CH4 and N2O emissions during manure composting. To test the hypothesis that bacterial functional gene abundances regulate greenhouse gas fluxes in windrow composting systems, CH4 and N2O fluxes were simultaneously measured using the chamber method, and molecular techniques were used to quantify the abundances of CH4-related functional genes (mcrA and pmoA genes) and N2O-related functional genes (amoA, narG, nirK, nirS, norB, and nosZ genes). The results indicate that changes in interacting physicochemical parameters in the pile shaped the dynamics of bacterial functional gene abundances. The CH4 and N2O fluxes were correlated with abundances of specific compositional genes in bacterial community. The stepwise regression statistics selected pile temperature, mcrA and NH4+ together as the best predictors for CH4 fluxes, and the model integrating nirK, nosZ with pmoA gene abundances can almost fully explain the dynamics of N2O fluxes over windrow composting. The simulated models were tested against measurements in paddy rice cropping systems, indicating that the models can also be applicable to predicting the response of CH4 and N2O fluxes to elevated atmospheric CO2 concentration and rising temperature. Microbial abundances could be included as indicators in the current carbon and nitrogen biogeochemical models. PMID:28373862
Forest soil CO2 fluxes as a function of understory removal and N-fixing species addition.
Li, Haifang; Fu, Shenglei; Zhao, Hongting; Xia, Hanping
2011-01-01
We report on the effects of forest management practices of understory removal and N-fixing species (Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation (EUp), Acacia crassicarpa plantation (ACp), 10-species-mixed plantation (Tp), and 30-species-mixed plantation (THp) using the static chamber method in southern China. Four forest management treatments, including (1) understory removal (UR); (2) C. alata addition (CA); (3) understory removal and replacement with C. alata (UR+CA); and (4) control without any disturbances (CK), were applied in the above four forest plantations with three replications for each treatment. The results showed that soil CO2 fluxes rates remained at a high level during the rainy season (from April to September), followed by a rapid decrease after October reaching a minimum in February. Soil CO2 fluxes were significantly higher (P < 0.01) in EUp (132.6 mg/(m2 x hr)) and ACp (139.8 mg/(m2 x hr)) than in Tp (94.0 mg/(m2 x hr)) and THp (102.9 mg/(m2 x hr)). Soil CO2 fluxes in UR and CA were significantly higher (P < 0.01) among the four treatments, with values of 105.7, 120.4, 133.6 and 112.2 mg/(m2 x hr) for UR+CA, UR, CA and CK, respectively. Soil CO2 fluxes were positively correlated with soil temperature (P < 0.01), soil moisture (P < 0.01), NO3(-)-N (P < 0.05), and litterfall (P < 0.01), indicating that all these factors might be important controlling variables for soil CO2 fluxes. This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices.
Hybrid Rocket Performance Prediction with Coupling Method of CFD and Thermal Conduction Calculation
NASA Astrophysics Data System (ADS)
Funami, Yuki; Shimada, Toru
The final purpose of this study is to develop a design tool for hybrid rocket engines. This tool is a computer code which will be used in order to investigate rocket performance characteristics and unsteady phenomena lasting through the burning time, such as fuel regression or combustion oscillation. When phenomena inside a combustion chamber, namely boundary layer combustion, are described, it is difficult to use rigorous models for this target. It is because calculation cost may be too expensive. Therefore simple models are required for this calculation. In this study, quasi-one-dimensional compressible Euler equations for flowfields inside a chamber and the equation for thermal conduction inside a solid fuel are numerically solved. The energy balance equation at the solid fuel surface is solved to estimate fuel regression rate. Heat feedback model is Karabeyoglu's model dependent on total mass flux. Combustion model is global single step reaction model for 4 chemical species or chemical equilibrium model for 9 chemical species. As a first step, steady-state solutions are reported.
A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements
NASA Astrophysics Data System (ADS)
Palonen, V.
2015-12-01
We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.
A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements.
Palonen, V
2015-12-01
We have developed a field-capable sampling system for the collection of CO2 samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO2 concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO2 selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO2 from chambers prior to the CO2 build-up phase and sampling. In addition, both the CO2 and H2O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO2 and the determination of CO2 flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogle, Kiona; Pendall, Elise
Isotopic methods offer great potential for partitioning trace gas fluxes such as soil respiration into their different source contributions. Traditional partitioning methods face challenges due to variability introduced by different measurement methods, fractionation effects, and end-member uncertainty. To address these challenges, we describe in this paper a hierarchical Bayesian (HB) approach for isotopic partitioning of soil respiration that directly accommodates such variability. We apply our HB method to data from an experiment conducted in a shortgrass steppe ecosystem, where decomposition was previously shown to be stimulated by elevated CO 2. Our approach simultaneously fits Keeling plot (KP) models to observationsmore » of soil or soil-respired δ 13C and [CO 2] obtained via chambers and gas wells, corrects the KP intercepts for apparent fractionation (Δ) due to isotope-specific diffusion rates and/or method artifacts, estimates method- and treatment-specific values for Δ, propagates end-member uncertainty, and calculates proportional contributions from two distinct respiration sources (“old” and “new” carbon). The chamber KP intercepts were estimated with greater confidence than the well intercepts and compared to the theoretical value of 4.4‰, our results suggest that Δ varies between 2 and 5.2‰ depending on method (chambers versus wells) and CO 2 treatment. Because elevated CO 2 plots were fumigated with 13C-depleted CO 2, the source contributions were tightly constrained, and new C accounted for 64% (range = 55–73%) of soil respiration. The contributions were less constrained for the ambient CO 2 treatments, but new C accounted for significantly less (47%, range = 15–82%) of soil respiration. Finally, our new HB partitioning approach contrasts our original analysis (higher contribution of old C under elevated CO 2) because it uses additional data sources, accounts for end-member bias, and estimates apparent fractionation effects.« less
Eddy covariance flux measurements of gaseous elemental mercury using cavity ring-down spectroscopy.
Pierce, Ashley M; Moore, Christopher W; Wohlfahrt, Georg; Hörtnagl, Lukas; Kljun, Natascha; Obrist, Daniel
2015-02-03
A newly developed pulsed cavity ring-down spectroscopy (CRDS) system for measuring atmospheric gaseous elemental mercury (GEM) concentrations at high temporal resolution (25 Hz) was used to successfully conduct the first eddy covariance (EC) flux measurements of GEM. GEM is the main gaseous atmospheric form, and quantification of bidirectional exchange between the Earth's surface and the atmosphere is important because gas exchange is important on a global scale. For example, surface GEM emissions from natural sources, legacy emissions, and re-emission of previously deposited anthropogenic pollution may exceed direct primary anthropogenic emissions. Using the EC technique for flux measurements requires subsecond measurements, which so far has not been feasible because of the slow time response of available instrumentation. The CRDS system measured GEM fluxes, which were compared to fluxes measured with the modified Bowen ratio (MBR) and a dynamic flux chamber (DFC). Measurements took place near Reno, NV, in September and October 2012 encompassing natural, low-mercury (Hg) background soils and Hg-enriched soils. During nine days of measurements with deployment of Hg-enriched soil in boxes within 60 m upwind of the EC tower, the covariance of GEM concentration and vertical wind speed was measured, showing that EC fluxes over an Hg-enriched area were detectable. During three separate days of flux measurements over background soils (without Hg-enriched soils), no covariance was detected, indicating fluxes below the detection limit. When fluxes were measurable, they strongly correlated with wind direction; the highest fluxes occurred when winds originated from the Hg-enriched area. Comparisons among the three methods showed good agreement in direction (e.g., emission or deposition) and magnitude, especially when measured fluxes originated within the Hg-enriched soil area. EC fluxes averaged 849 ng m(-2) h(-1), compared to DFC fluxes of 1105 ng m(-2) h(-1) and MBR fluxes of 1309 ng m(-2) h(-1). This study demonstrated that a CRDS system can be used to measure GEM fluxes over Hg-enriched areas, with a conservative detection limit estimate of 32 ng m(-2) h(-1).
Investigation on the electron flux to the wall in the VENUS ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thuillier, T.; Angot, J.; Benitez, J. Y.
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. Here, a burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines aremore » presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
Investigation on the electron flux to the wall in the VENUS ion source
Thuillier, T.; Angot, J.; Benitez, J. Y.; ...
2015-12-01
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. Here, a burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines aremore » presented. The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
Investigation on the electron flux to the wall in the VENUS ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Benitez, J. Y.
The long-term operation of high charge state electron cyclotron resonance ion sources fed with high microwave power has caused damage to the plasma chamber wall in several laboratories. Porosity, or a small hole, can be progressively created in the chamber wall which can destroy the plasma chamber over a few year time scale. A burnout of the VENUS plasma chamber is investigated in which the hole formation in relation to the local hot electron power density is studied. First, the results of a simple model assuming that hot electrons are fully magnetized and strictly following magnetic field lines are presented.more » The model qualitatively reproduces the experimental traces left by the plasma on the wall. However, it is too crude to reproduce the localized electron power density for creating a hole in the chamber wall. Second, the results of a Monte Carlo simulation, following a population of scattering hot electrons, indicate a localized high power deposited to the chamber wall consistent with the hole formation process. Finally, a hypervapotron cooling scheme is proposed to mitigate the hole formation in electron cyclotron resonance plasma chamber wall.« less
NASA Astrophysics Data System (ADS)
Rassmann, Jens; Eitel, Eryn; Bombled, Bruno; Lansard, Bruno; Taillefert, Martial; Rabouille, Christophe
2016-04-01
Despite their small surface compared to the global oceans, continental shelf regions play a significant role in the global carbon cycle. Whereas shelf regions are seen as a sink for atmospheric CO2, estuarine regions are seen as a source. These regions are caracterized by the export of allochthonous terrigenous organic matter (OM) and the production of autochthonous marine organic carbon. An important fraction of this OM is mineralized in the sediments close to the river mouth. As a result, high exchange fluxes of dissolved inorganic carbon (DIC), total alkalinity (TA), oxygen and nutriments cross the sediment-water interface (SWI) and cause acidification of the bottom waters. Potentially, primary production in the water column is enhanced by these fluxes. Therefore, OM mineralisation in estuarine regions plays a key role in the carbon cycle as a direct producer of DIC and as a potential control factor for primary production. This work aims to quantify chemical fluxes through the SWI at the prodelta of the Rhone River (Mediterranen). In September 2015, a benthic chamber has been deployed at several stations in the prodelta to measure directly (in situ) fluxes of DIC, TA, ammonium and dissolved calcium at the SWI. At the same stations, in situ microprofiles of oxygen and pH have been recorded and sediment cores were taken for pore water extraction and analysis (DIC, TA, NH4+ and Ca2+). The results show a strong decrease of the fluxes in offshore direction indicating a strong variation of respiration rates in this direction. From pore water profiles, diffusive fluxes have been calculated and compared with the fluxes measured by the benthic chamber. This comparison enables us to include pore water profiles from previous investigations to calculate a carbon mass budget of this region.
Jiang, Huan-Huan; Sun, Zhi-Gao; Wang, Ling-Ling; Mou, Xiao-Jie; Sun, Wan-Long; Song, Hong-Li; Sun, Wen-Guang
2012-02-01
The characteristics of methane (CH4) fluxes from tidal wetlands of the Yellow River estuary were observed in situ with static-chamber and GC methods in September and October 2009, and the key factors affecting CH4 fluxes were discussed. From the aspect of space, the CH4 flux ranges in high tidal wetland, middle tidal wetland, low tidal wetland, bare flat are - 0.206-1.264, -0.197-0.431, -0.125-0.659 and -0.742-1.767 mg x (m2 x h)(-1), the day average fluxes are 0.089, 0.038, 0.197 and 0.169 mg x (m2 x h)(-1), respectively, indicating that the tidal wetlands are the sources of CH4 and the source function of CH4 differed among the four study sites, in the order of low tidal wetland > bare flat > high tidal wetland > middle tidal wetland. From the aspect of time, the ranges of CH4 fluxes from the tidal wetland ecosystems are -0.444-1.767 and - 0.742- 1.264 mg x (m2 x h)(-1), and the day average fluxes are 0.218 and 0.028 mg x (m2 x h)(-1) in September and October, respectively. The CH4 fluxes in each tidal wetland in September are higher than those in October except that the high tidal wetland acts as weak sink in September. Further studies indicate that the changes of environmental factors in the Yellow River estuary are complicated, and the CH4 fluxes are affected by multiple factors. The differences of CH4 fluxes characteristics among different tidal wetlands in autumn are probably related to temperature (especially atmospheric temperature) and vegetation growth status, while the effects of water or salinity condition and tide status on the CH4 flux characteristics might not be ignored.
NASA Astrophysics Data System (ADS)
Gonzalez, P. J.; Tiampo, K. F.
2010-12-01
Multitemporal space radar interferometry analysis between 1992 and 2000 revealed significantly deforming areas with a magnitude of 4-6 mm/yr of lengthening in the radar line of sight at Timanfaya volcano (Lanzarote, Canary Island). Timanfaya volcano erupted almost 300 years ago (1730-1736), along a 15 km-long fissure-feeding magmatic system, resulting in the longest and largest historical eruption of the Canarian archipelago to date, with >1 km3 of erupted basaltic lavas covering 200 km2. High surficial temperature (600 degrees-C at 13 m) and high heat flux measurements (150 mW/m2) suggest that the remnants of the magmatic chamber that fed the 1730-1736 are still partly molten. Here, we present preliminary models of the subsidence taking into account all available data, including geophysical data (heat flux, seismic, magnetotelluric and gravity), the geochemistry of freshly erupted lavas, upper mantle and crustal xenoliths, and structural geology.
Absolute measurement of the extreme UV solar flux
NASA Technical Reports Server (NTRS)
Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.
1984-01-01
A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.
Liu, Shuai; Wang, Jim J; Tian, Zhou; Wang, Xudong; Harrison, Stephen
2017-07-01
Minimizing soil ammonia (NH 3 ) and nitrous oxide (N 2 O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH 3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH 3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N 2 O, carbon dioxide (CO 2 ), and methane (CH 4 ) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH 3 -N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N 2 O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH 3 -N and N 2 O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO 2 -C flux but had no effect on CH 4 -C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH 3 and N 2 O emissions in subtropical wheat production in Southern USA. Copyright © 2017. Published by Elsevier B.V.
Hammerle, Albin; Haslwanter, Alois; Schmitt, Michael; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander; Wohlfahrt, Georg
2014-01-01
Carbon dioxide, latent and sensible energy fluxes were measured by means of the eddy covariance method above a mountain meadow situated on a steep slope in the Stubai Valley/Austria, based on the hypothesis that, due to the low canopy height, measurements can be made in the shallow equilibrium layer where the wind field exhibits characteristics akin to level terrain. In order to test the validity of this hypothesis and to identify effects of complex terrain in the turbulence measurements, data were subjected to a rigorous testing procedure using a series of quality control measures established for surface layer flows. The resulting high-quality data set comprised 36 % of the original observations, the substantial reduction being mainly due to a change in surface roughness and associated fetch limitations in the wind sector dominating during nighttime and transition periods. The validity of the high-quality data set was further assessed by two independent tests: i) a comparison with the net ecosystem carbon dioxide exchange measured by means of ecosystem chambers and ii) the ability of the eddy covariance measurements to close the energy balance. The net ecosystem CO2 exchange measured by the eddy covariance method agreed reasonably with ecosystem chamber measurements. The assessment of the energy balance closure showed that there was no significant difference in the correspondence between the meadow on the slope and another one situated on flat ground at the bottom of the Stubai Valley, available energy being underestimated by 28 and 29 %, respectively. We thus conclude that, appropriate quality control provided, the eddy covariance measurements made above a mountain meadow on a steep slope are of similar quality as compared to flat terrain. PMID:24465032
NASA Astrophysics Data System (ADS)
Hoffmann, Mathias; Albiac Borraz, Elisa; Garcia Alba, Juana; Augustin, Jürgen; Sommer, Michael
2015-04-01
Agriculture in the hummocky ground moraine landscape of NE-Germany is characterized by an increase in energy crop cultivation, like maize or sorghum. Both enhance lateral C fluxes by erosion and induce feedbacks on C dynamics of agroecosystems as a result of reduced wintertime plant cover and vigorous crop growth during summer. However, the actual impact of these phenomena on the CO2-sink/-source function of agricultural landscapes, is still not clear. Therefore, the interdisciplinary project "CarboZALF" was established in Dedelow/Prenzlau (NE-Germany) in 2009. Within the field experiment CarboZALF-D, CO2 fluxes for the soil-plant systems were monitored, covering typical landscape relevant soil states in respect to erosion and deposition, like Calcic Cutanic Luvisol and Endogleyic Colluvic Regosol. Automated chamber systems, each consisting of four transparent chambers (2.5 m height, basal area 2.25 m2), were placed along gradients at both measurement sites. Monitored CO2 fluxes were gap-filled on a high-temporal resolution by modelling ecosystem respiration (Reco), gross primary productivity (GPP) and net ecosystem exchange (NEE) based on parallel and continuous measurements of the CO2 exchange, soil and air temperatures as well as photosynthetic active radiation (PAR). Gap-filling was e.g. needed in case of chamber malfunctions and abrupt disturbances by farming practice. The monitored crop rotation was corn-winter wheat (2 a), sorghum-winter triticale and alfalfa (1.5 a). In our presentation we would like to show insights from a 4 years observation period, with prounounced differences between the eroded and the colluvial soil: The Endogleyic Colluvic Regosol showed higher flux rates for Reco, GPP and NEE compared to the Calcic Cutanic Luvisol. Site-specific NEE and C-balances were positively related to soil C-stocks as well as biomass production, and generated a minor C-sink in case of the Calcic Cutanic Luvisol and a highly variable C-source in case of the Endogleyic Colluvic Regosol. Moreover, obtained high local variability in CO2 fluxes and C-balances at both sites, can be interpreted in terms of relevant drivers.
An inverted micro-mixer based on a magnetically-actuated cilium made of Fe doped PDMS
NASA Astrophysics Data System (ADS)
Liu, Fengli; Zhang, Jun; Alici, Gursel; Yan, Sheng; Mutlu, Rahim; Li, Weihua; Yan, Tianhong
2016-09-01
In this paper, we report a new micromixer based on a flexible artificial cilium activated by an external magnetic field. The cilium is fabricated from Polydimethylsiloxane doped with Fe microparticles. The fabrication method is based on the standard sacrificial layer technology. The cilium was built on a glass slide, and then was bonded on the top of the micro-mixer chamber in a microfluidic chip. This fabrication process for the miniaturized active mixers is simple and cost effective. An electromagnetic system was used to drive the cilium and induce strong convective flows of the fluid in the chamber. In the presence of an alternating magnetic field, the cilium applied a corresponding alternating force on the surrounding fluids. The performance of the electromagnetically activated cilium was quantified and optimized in order to obtain maximum mixing performance. In addition, the mixing performance of the cilium in a circular micro-chamber was compared with pure diffusion. Up to 80% of a 60 ul liquid in the chamber can be fully mixed after 2 min using a cilium mixer under a magnetic flux density of 22 mT in contrast to the 20 min which were needed to obtain the same mixing percentage under pure diffusion. Furthermore, for a mixing degree of 80%, the mixing speed for the cilia micromixer proposed in this study was 9 times faster than that of the diffusion-based micro-mixers reported in the literature.
NASA Technical Reports Server (NTRS)
Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.
1994-01-01
We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.
NASA Astrophysics Data System (ADS)
Rasheed, Mohammed; Wild, Christian; Franke, Ulrich; Huettel, Markus
2004-01-01
In order to investigate benthic photosynthesis and oxygen demand in permeable carbonate sands and the impact of benthic boundary layer flow on sedimentary oxygen consumption, in situ and laboratory chamber experiments were carried out at Heron Island, Great Barrier Reef, Australia. Total photosynthesis, net primary production and respiration were estimated to be 162.9±43.4, 98.0±40.7, and 64.9±15.0 mmol C m -2 d -1, respectively. DIN and DIP fluxes for these sands reached 0.34 and 0.06 mmol m -2 d -1, respectively. Advective pore water exchange had a strong impact on oxygen consumption in the permeable sands. Consumption rates in the chamber with larger pressure gradient (20 rpm, 1.2 Pa between centre and rim) simulating a friction velocity of 0.6 cm s -1 were approximately two-fold higher than in the chambers with slow stirring (10 rpm, 0.2 Pa between centre and rim, friction velocity of 0.3 cm s -1). In the laboratory chamber experiments with stagnant water column, oxygen consumption was eight times lower than in the chamber with fast stirring. Laboratory chamber experiments with Br - tracer revealed solute exchange rates of 2.6, 2.2, 0.7 ml cm -2 d -1 at stirring rates of 20, 10, and 0 rpm, respectively. In a laboratory experiment investigating the effect of sediment permeability on oxygen and DIC fluxes, a three-fold higher permeability resulted in two- to three-fold higher oxygen consumption and DIC release rates. These experiments demonstrate the importance of boundary flow induced flushing of the upper layer of permeable carbonate sediment on oxygen uptake in the coral sands. The high filtration and oxidation rates in the sub-tropical permeable carbonate sediments and the subsequent release of nutrients and DIC reveal the importance of these sands for the recycling of matter in this oligotrophic environment.
Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroth, M.H., E-mail: martin.schroth@env.ethz.ch; Eugster, W.; Gomez, K.E.
2012-05-15
Highlights: Black-Right-Pointing-Pointer We quantify above- and below-ground CH{sub 4} fluxes in a landfill-cover soil. Black-Right-Pointing-Pointer We link methanotrophic activity to estimates of CH{sub 4} loading from the waste body. Black-Right-Pointing-Pointer Methane loading and emissions are highly variable in space and time. Black-Right-Pointing-Pointer Eddy covariance measurements yield largest estimates of CH{sub 4} emissions. Black-Right-Pointing-Pointer Potential methanotrophic activity is high at a location with substantial CH{sub 4} loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH{sub 4}). However, much of the CH{sub 4} produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganismsmore » during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH{sub 4} fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH{sub 4} ingress (loading) from the waste body at selected locations. Fluxes of CH{sub 4} into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH{sub 4} concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH{sub 4} fluxes and CH{sub 4} loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH{sub 4} oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH{sub 4} emissions from the test section (daily mean up to {approx}91,500 {mu}mol m{sup -2} d{sup -1}), whereas flux-chamber measurements and CH{sub 4} concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH{sub 4} (uptake up to -380 {mu}mol m{sup -2} d{sup -1}) during the experimental period. Methane concentration profiles also indicated strong variability in CH{sub 4} loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v{sub max} {approx} 13 mmol L{sup -1}(soil air) h{sup -1}) at a location with substantial CH{sub 4} loading. Our results provide a basis to assess spatial and temporal variability of CH{sub 4} dynamics in the complex terrain of a landfill-cover soil.« less
Grazing-induced BVOC fluxes from a managed grassland
NASA Astrophysics Data System (ADS)
Mozaffar, Ahsan; Schoon, Niels; Bachy, Aurelie; Digrado, Anthony; Heinesch, Bernard; Aubinet, Marc; Fauconnier, Marie-laure; Delaplace, Pierre; Dujardin, Patrick; Amelynck, Crist
2017-04-01
Grassland ecosystems cover one fourth of the Earth's land surface and are both sources and sinks of Biogenic Volatile Organic Compounds (BVOCs) which play an important role in atmospheric chemistry and air pollution. The use of grassland for cattle breeding is a common practice in many parts of the world. As it has been widely demonstrated that plants emit large bursts of BVOCs when they are mechanically damaged, grass tearing and trampling during grazing are expected to induce large BVOC emissions as well. Nevertheless, to the best of our knowledge, no study has been performed on BVOC fluxes from grazed grassland yet. Therefore investigations were performed using automated dynamic chambers in a managed grassland in Belgium over the 2015 and 2016 growing season. BVOC fluxes, together with carbon dioxide (CO2) and water vapor (H2O) fluxes from grazed and undisturbed grassland were followed simultaneously using PTR-MS (Proton Transfer Reaction-Mass Spectrometry) and a LI-840 non-dispersive IR gas analyzer. In addition, air in the chamber was sampled occasionally for GC-MS (Gas Chromatography-Mass Spectrometry) analysis to assist compound identification. Significant differences between grazed and undisturbed grassland patches were observed in terms of BVOC, CO2 and H2O vapor fluxes. Grazing by cows was found to result in enhanced emissions of several BVOCs such as methanol, acetaldehyde, acetone, acetic acid and Green Leaf Volatiles (GLVs), and induced BVOC emissions generally lasted for around 5 days following a grazing event. Quantitative data on the impact of grazing on BVOC, CO2 and H2O exchange between grassland and the atmosphere will be presented, and correlations between BVOC fluxes and environmental conditions will be discussed.
Resurgent beaver ponds in the northeastern United States: implications for greenhouse gas emissions.
Lazar, Julia G; Addy, Kelly; Welsh, Molly K; Gold, Arthur J; Groffman, Peter M
2014-11-01
Beaver ponds, a wetland type of increasing density in the northeastern United States, vary spatially and temporally, creating high uncertainty in their impact to greenhouse gas (GHG) emissions. We used floating static gas chambers to assess diffusive fluxes of methane (CH), carbon dioxide (CO), and nitrous oxide (NO) from the air-water interface of three beaver ponds (0.05-8 ha) in Rhode Island from fall 2012 to summer 2013. Gas flux was based on linear changes of gas concentrations in chambers over 1 h. Our results show that these beaver ponds generated considerable CH and CO emissions. Methane flux (18-556 mg m d) showed no significant seasonal differences, but the shallowest pond generated significantly higher CH flux than the other ponds. Carbon dioxide flux (0.5-22.0 g m d) was not significantly different between sites, but it was significantly higher in the fall, possibly due to the degradation of fresh leaves. Nitrous oxide flux was low (0-2.4 mg m d). Overall, CH and CO comprised most of the global warming potential, 61 and 38%, respectively. The shallowness of the beaver ponds may have limited the time needed for CH oxidation to CO before CH escaped to the atmosphere. Beaver dams also increase the aerial extent of hydric soils, which may transform riparian areas from upland GHG sinks to wetland GHG sources thereby changing the net global warming potential. Further studies tracking the pattern and conditions of beaver pond creation and abandonment will be essential to understanding their role as GHG sources. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Examining urea flux across the intestine of the spiny dogfish, Squalus acanthias.
Gary Anderson, W; McCabe, Chris; Brandt, Catherine; Wood, Chris M
2015-03-01
Recent examination of urea flux in the intestine of the spiny dogfish shark, Squalus acanthias, has shown that feeding significantly enhances urea uptake across the intestine, and this was significantly inhibited following mucosal addition of phloretin. The present study examined potential mechanisms of urea uptake across the dogfish intestine in starved and fed dogfish. Unidirectional flux chambers were used to examine the kinetics of urea uptake, and to determine the influence of sodium, ouabain, competitive urea analogues, and phloretin on urea uptake across the gut of fed dogfish. Intestinal epithelial preparations from starved and fed dogfish were mounted in Ussing chambers to examine the effect of phloretin on bidirectional solute transport across the intestine. In the unidirectional studies, the maximum uptake rate of urea was found to be 35.3±6.9 μmol.cm(-2).h(-1) and Km was found to be 291.8±9.6 mM in fed fish, and there was a mild inhibition of urea uptake following mucosal addition of competitive agonists. Addition of phloretin, Na-free Ringers and ouabain to the mucosal side of intestinal epithelia also led to a significant reduction in urea uptake in fed fish. In the Ussing chamber studies there was a net influx of urea in fed fish and a small insignificant efflux in starved fish. Addition of phloretin blocked urea uptake in fed fish when added to the mucosal side. Furthermore, phloretin had no effect on ion transport across the intestinal epithelia with the exception of the divalent cations, magnesium and calcium. Copyright © 2015 Elsevier Inc. All rights reserved.
Detection of Chamber Conditioning Through Optical Emission and Impedance Measurements
NASA Technical Reports Server (NTRS)
Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, Meyya
2001-01-01
During oxide etch processes, buildup of fluorocarbon residues on reactor sidewalls can cause run-to-run drift and will necessitate some time for conditioning and seasoning of the reactor. Though diagnostics can be applied to study and understand these phenomena, many of them are not practical for use in an industrial reactor. For instance, measurements of ion fluxes and energy by mass spectrometry show that the buildup of insulating fluorocarbon films on the reactor surface will cause a shift in both ion energy and current in an argon plasma. However, such a device cannot be easily integrated into a processing system. The shift in ion energy and flux will be accompanied by an increase in the capacitance of the plasma sheath. The shift in sheath capacitance can be easily measured by a common commercially available impedance probe placed on the inductive coil. A buildup of film on the chamber wall is expected to affect the production of fluorocarbon radicals, and thus the presence of such species in the optical emission spectrum of the plasma can be monitored as well. These two techniques are employed on a GEC (Gaseous Electronics Conference) Reference Cell to assess the validity of optical emission and impedance monitoring as a metric of chamber conditioning. These techniques are applied to experimental runs with CHF3 and CHF3/O2/Ar plasmas, with intermediate monitoring of pure argon plasmas as a reference case for chamber conditions.
Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation
Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro
2014-01-01
‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530
Morrey, John R.
1978-01-01
Methods of enhancing selected chemical reactions. The population of a selected high vibrational energy state of a reactant molecule is increased substantially above its population at thermal equilibrium by directing onto the molecule a beam of radiant energy from a laser having a combination of frequency and intensity selected to pump the selected energy state, and the reaction is carried out with the temperature, pressure, and concentrations of reactants maintained at a combination of values selected to optimize the reaction in preference to thermal degradation by transforming the absorbed energy into translational motion. The reaction temperature is selected to optimize the reaction. Typically a laser and a frequency doubler emit radiant energy at frequencies of .nu. and 2.nu. into an optical dye within an optical cavity capable of being tuned to a wanted frequency .delta. or a parametric oscillator comprising a non-centrosymmetric crystal having two indices of refraction, to emit radiant energy at the frequencies of .nu., 2.nu., and .delta. (and, with a parametric oscillator, also at 2.nu.-.delta.). Each unwanted frequency is filtered out, and each desired frequency is focused to the desired radiation flux within a reaction chamber and is reflected repeatedly through the chamber while reactants are fed into the chamber and reaction products are removed therefrom.
Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Changguo
2003-09-19
The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation andmore » its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement.« less
Removing Wave Artifacts from Eddy Correlation Data
NASA Astrophysics Data System (ADS)
Neumann, Andreas; Brand, Andreas
2017-04-01
The German Wadden Sea is an extensive system of back-barrier tidal basins along the margin of the southern North Sea. Due to their high productivity and the strong retention potential of labile organic carbon high mineralization rates are expected in this system. Since the sediment bed is sandy, the oxygen fluxes across the sediment-water interface (SWI) may be enhanced by strong tidal currents as well as by wind-induced surface waves. In order to measure oxygen fluxes in-situ without disturbance of the sediment, the Eddy Correlation method (ECM) was introduced to aquatic geoscience by Berg et al. (2003). The method is based on correlating turbulent fluctuations of oxygen concentration and vertical velocity measured at high frequency above the SWI. The method integrates over spatial heterogeneities and allows the observation of total benthic oxygen fluxes in complex systems where other methods like flux chamber deployments and oxygen profile measurements in the sediment fail. Therefore, the method should also reflect effects like the enhancement of oxygen fluxes by porewater advection driven by waves and currents over sandy sediments. Unfortunately the ECM suffers from wave contamination due to stirring sensitivity of the electrodes, spatial separation between the oxygen electrode and the location of velocity measurement as well as by a tilt of the measurement setup at the deployment side. In order to correct for this wave contamination we tested the method of spectral reconstruction initially introduced by Bricker and Monismith (2007) for the determination of Reynolds-stresses in wave-affected environments. In short, this method attempts to remove the wave signal from the Power spectral densities of oxygen concentration and vertical velocity fluctuations by cutting off the wave peak in these spectra. The wave contribution to the co-spectrum between both quantities is then reconstructed by assuming that the phasing in the wave band is dominated by the waves. Based on the example of the North-Frisian Wadden Sea we will discuss the potentials and limits of this method. References: Berg, P., H. Roy, F. Janssen, V. Meyer, B. Jorgensen, M. Huettel, and D. de Beer (2003), Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique, Marine Ecology-Progress Series, 261, 75-83, doi:10.3354/meps261075. Bricker, J. D., and S. G. Monismith (2007), Spectral wave turbulence decomposition, J. Atmos. Oceanic Technol., 24(8), 1479-1487, doi:10.1175/JTECH2066.1.
National Synchrotron Light Source II storage ring vacuum systems
Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...
2016-04-05
The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less
Toroidal midplane neutral beam armor and plasma limiter
Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.
1985-05-31
This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.
Exchange of nitrous oxide within the Hudson Bay lowland
NASA Technical Reports Server (NTRS)
Schiller, C. L.; Hastie, D. R.
1994-01-01
The source strength of atmospheric trace gases from natural ecosystems must be quantified in order to assess the effect of such inputs on the background tropospheric chemistry. A static chamber technique and a gas exchange technique were used to determine the emissions of nitrous oxide from five sites within the Hudson Bay Lowland, as part of the Northern Wetland Study. Two mechanisms, one diffusive and the other episodic, were found likely to be responsible for the emissions of nitrous oxide. The annual diffusive flux ranged from -3.8 mg(N2O)/sq m in a treed bog to 7.9 mg(N2O)/sq m in an open fen. The addition of the episodic flux, increased this range to -2.1 mg(N2O)/sq m and 18.5 mg(N2O)/sq m respectively. These episodic emissions occurred in from 2.5% to 16.7% of the samples during the late summer peak emission period. Since the gas exchange rate could not detect the episodic emissions, it was found to be a poor method for water emission rate determination within the wetland. LANDSAT-Thermatic Mapper (TM) imagery was used to scale the emissions, from the chamber level to an integrated average over the entire Hudson Bay Lowland. The total emission rate of N2O from the Hudson Bay Lowland, was determined to be 1.2 Gg(N2O)/year, of which 80% was attributed to episodic emissions.
Improving understanding of controls on spatial variability in methane fluxes in Arctic tundra
NASA Astrophysics Data System (ADS)
Davidson, Scott J.; Sloan, Victoria; Phoenix, Gareth; Wagner, Robert; Oechel, Walter; Zona, Donatella
2015-04-01
The Arctic is experiencing rapid climate change relative to the rest of the globe, and this increase in temperature has feedback effects across hydrological and thermal regimes, plant community distribution and carbon stocks within tundra soils. Arctic wetlands account for a significant amount of methane emissions from natural ecosystems to the atmosphere and with further permafrost degradation under a warming climate, these emissions are expected to increase. Methane (CH4) is an extremely important component of the global carbon cycle with a global warming potential 28.5 times greater than carbon dioxide over a 100 year time scale (IPCC, 2013). In order to validate carbon cycle models, modelling methane at broader landscape scales is needed. To date direct measurements of methane have been sporadic in time and space which, while capturing some key controls on the spatial heterogeneity, make it difficult to accurately upscale methane emissions to the landscape and regional scales. This study investigates what is controlling the spatial heterogeneity of methane fluxes across Arctic tundra. We combined over 300 portable chamber observations from 13 micro-topographic positions (with multiple vegetation types) across three locations spanning a 300km latitudinal gradient in Northern Alaska from Barrow to Ivotuk with synchronous measurements of environmental (soil temperature, soil moisture, water table, active layer thaw depth, pH) and vegetation (plant community composition, height, sedge tiller counts) variables to evaluate key controls on methane fluxes. To assess the diurnal variation in CH4 fluxes, we also performed automated chamber measurements in one study site (Barrow) location. Multiple statistical approaches (regression tree and multiple linear regression) were used to identify key controlling variables and their interactions. Methane emissions across all sites ranged from -0.08 to 15.3 mg C-CH4 m-2 hr-1. As expected, soil moisture was the main control determining the direction and magnitude of methane flux, with methane emissions occurring in saturated micro-topographic locations and drier sites showing low rates of uptake. An interesting exception was in tussock sedge vegetation, which had a deep water table (approximately 20cm - 40cm below the soil surface) but which emitted methane in comparable quantities to saturated communities late in the growing season. This highlights the importance of plant transport and of understanding temporal variation in fluxes. Automated chamber measurements from peak and late growing season showed minimal diurnal trends in methane fluxes, indicating that short-term chamber measurements are representative of average diurnal CH4 fluxes. The breadth of environmental and vegetation variables measured across a wide spatial extent of arctic tundra vegetation communities within this study highlights the overriding controls on methane emissions and will significantly help with upscaling methane emissions from the plot scale to the landscape scale. Reference: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO97811074153
In-core flux sensor evaluations at the ATR critical facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy Unruh; Benjamin Chase; Joy Rempe
2014-09-01
Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by themore » Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.« less
Greenhouse gas emissions from a created brackish marsh in eastern North Carolina
Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, François; Broome, Stephen W.
2016-01-01
Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.
NASA Astrophysics Data System (ADS)
Smidt, J.; Schmid, H. P. E.
2016-12-01
The terrestrial biosphere represents the world's second-largest stock of carbon, after the oceans, estimated to be 2300 Gt carbon with 1500 Gt of organic carbon (Kirkels et al., 2014). In agricultural landscapes, erosion and deposition caused by tillage and subsequent heavy precipitation redistribute large amounts of soil and therefore carbon (Van Oost et al., 2007). Erosion rates in areas of agricultural production are 1-2 magnitudes larger than in areas covered with native vegetation (Montgomery, 2007). Landscapes in the German state of Bavaria have been used for agricultural production for thousands of years. Within the framework of the project "Bavarian Landscapes Under Climate Change," a multi-method approach is taken. At two distinct watersheds in Bavaria, we attempt to quantify the effect of soil displacement on the fluxes of CO2, N2O and CH4 using continuous eddy covariance (EC) data, small manual gas chamber measurements and a soil laboratory incubation experiment designed to simulate an erosion event. The pre-alpine site of Rottenbuch, part of the TERENO network, is located at 690 masl and characterized by molasses and carbonic/dolomitic fluvioglacial sediments. The Otterbach site, part of the Bavarian Forest, lies at 350 masl and is dominated by granite and gneiss rock. The sites have an annual precipitation of 1200 and 700 mm, respectively. In Rottenbuch, the downslope area is managed grassland and the upslope area is grazed part of the year. In Otterbach, the downslope field is organic grassland, and the upslope area is used for agricultural production. There is a standard EC station at each site, as well as automatic chambers (Rottenbuch) and manual chambers (Otterbach). The data collected will be used to calibrate, run and verify numerical models to ascertain the sensitivity of the fluxes to biological, biochemical and physical processes and ultimately bring light to the question of agricultural landscapes as sinks or sources of greenhouse gases.
Methane Production and Transport within the Marsh Biome of Biosphere 2
NASA Technical Reports Server (NTRS)
Molnar, Jennifer; Goodridge, Kelven
1997-01-01
In recent decades, the concentration of methane in the earth's atmosphere increased 1-2% annually. It's rate of increases, combined with methane's effectiveness as a greenhouse gas, has led to an intensive research effort to determine the sources and sinks of the gas in the environment. Biosphere 2 offers a unique opportunity to contribute to the effort because it lacks a major photochemical sink present in the Earth's atmosphere. Researchers can therefore concentrate on biological processes involved in methane cycles. Wetlands are a large source of atmospheric methane, due to anoxic conditions in the sediments and the abundance of organic materials. In order to determine if these conditions in Biosphere 2 also promote methane production, this study looked for the fluxes of methane and methods of transport of the gas from from the water and sediments to the atmosphere in the Marsh Biome. Fluxes of methane from the sediments and waters were measured using static chambers, peepers, and leaf bags. Fluxes and vertical profiles of methane in the sediments show that substantial amounts of methane are being produced in the marsh and are being transported into the Biosphere 2 environment.
Multi-channel Auto-dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes
NASA Astrophysics Data System (ADS)
Barr, J. L.; Amonette, J. E.
2008-12-01
We describe a novel field instrument that takes input from up to 27 soil flux chambers and measures flux using the steady-state method. CO2 concentrations are determined with an infrared gas analyzer (IRGA, 0- 3000 ppmv range) with corrections for temperature, barometric pressure, and moisture content. The concentrations are monitored during data collection and, if they exceed the range of the IRGA, a stepped dilution program is automatically implemented that allows up to 50-fold dilution of the incoming gas stream with N2 supplied by boil-off from a large dewar. The upper concentration limit of the system with dilution is extended to at least 150,000 ppmv CO2. The data are stored on a datalogger having a cellular modem connection that allows remote control of the system as well as transmittal of data. The system is designed to operate for six weeks with no on-site maintenance required. Longer periods are possible with modifications to allow on-site generation of N2 from air. Example data from a recent CO2 test injection at the Zero- Emission Research and Technology (ZERT) field site in Bozeman, MT are presented.
NASA Astrophysics Data System (ADS)
Schmidt, Marius; Graf, Alexander; Carsten, Montzka; Vereecken, Harry
2017-04-01
In 2015 the European Commission introduced new greening payments as part of their common agricultural practices to address environmental and sustainability issues. The payment is worth about 30% of the total subsidies for European farmers. Sowing nitrogen fixing catch/cover crops in the off season (generally in fall and winter) is one way to achieve the prerequisite for the greening payments. Therefore it is expected that the proportion of catch/cover crops will increase from 2015 onwards at the expense of bare soil fields. In particular, with regard to more frequently occurring mild weather conditions during fall and winter, we assume that the extensive shift to catch/cover crops will have a significant impact on the carbon cycle of agricultural areas. In this study we aim to evaluate this change in agricultural practice on local and regional CO2 fluxes and carbon budgets of the intensively used northern Rur catchment in Germany. In a preliminary study, we observed the daily courses of net CO2 flux and soil respiration of three different catch/cover crops: greening mix, oil radish, and white mustard (Sinapis alba), by means of a net flux chamber and a soil respiration chamber and compared them against Eddy covariance flux data from fields cultivated with (i) winter barley (Hordeum vulgare), and (ii) without vegetation. In the main study, we compare multi-year measurements of carbon fluxes from a regional network of Eddy Covariance sites, partly included in larger networks like Fluxnet, European Fluxes Database Cluster or ICOS. We especially used site data where comparisons of catch crop seasons and conventional seasons between different sites or years were possible. To allow an assessment of the change in carbon fluxes and budgets on regional scale, a land use comparison based on satellite images for the years 2014 to 2016 was applied. With these results, a first regional evaluation of the impact of the new greening policies on carbon fluxes and budgets for the northern Rur catchment will be carried out.
Primary cosmic ray spectra in the range 20-60 GeV/n
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fuki, M.; Fountain, W. F.; Gregory, J. C.; Hayashi, T.; Hayashi, T.; Holynski, R.; Iwai, J.;
1985-01-01
Energy spectra for primary cosmic rays C-Fe above 20 GeV/n were measured on a balloon flight from Greenville S.C. in June 1982 with a hybrid electronic counter-emulsion chamber experiment. Fluxes above the atmosphere appear in general agreement with previously published values. The heavy events included in this data will be used along with the JACEE passive chamber data to provide a heavy composition direct measurement from 10 to the 12th power to approximately 10 to the 15th power eV total energy.
Efficiency of the rocket engines with a supersonic afterburner
NASA Astrophysics Data System (ADS)
Sergienko, A. A.
1992-08-01
The paper is concerned with the problem of regenerative cooling of the liquid-propellant rocket engine combustion chamber at high pressures of the working fluid. It is shown that high combustion product pressures can be achieved in the liquid-propellant rocket engine with a supersonic afterburner than in a liquid-propellant rocket engine with a conventional subsonic combustion chamber for the same allowable heat flux density. However, the liquid-propellant rocket engine with a supersonic afterburner becomes more economical than the conventional engine only at generator gas temperatures of 1700 K and higher.
Dosimetry in Thermal Neutron Irradiation Facility at BMRR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, J. P.; Holden, N. E.; Reciniello, R. N.
Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; includingmore » (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D 2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7 % lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6 - 10 % lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.« less
Dosimetry in Thermal Neutron Irradiation Facility at BMRR
NASA Astrophysics Data System (ADS)
Hu, J.-P.; Holden, N. E.; Reciniello, R. N.
2016-02-01
Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than the statistical mean derived from the Monte-Carlo modeling (5% uncertainty). The dose rate measured by ion chambers was 6-10% lower than the output tallies (7% uncertainty). The detailed dosimetry that was performed at the TNIF for the NCT will be described.
Search for 1/3e and 2/3e charged quarks in the cosmic radiation at 2750-m altitude.
NASA Technical Reports Server (NTRS)
Cox, A. J.; Beauchamp, W. T.; Bowen, T.; Kalbach, R. M.
1972-01-01
A scintillation counter telescope consisting of eight liquid scintillation counters and four wide-gap spark chambers was used to search for particles with electric charge 1/3e and 2/3e in cosmic rays at 2750 m above sea level. No such particles were detected during the 1500-hr experimental run. Upper limits on the vertical fluxes are established, and estimates of the corresponding sea-level fluxes are made for comparison with previous results.
NASA Astrophysics Data System (ADS)
Morin, T. H.; Rey Sanchez, C.; Bohrer, G.; Riley, W. J.; Angle, J.; Mekonnen, Z. A.; Stefanik, K. C.; Wrighton, K. C.
2016-12-01
Estimates of wetland greenhouse gas (GHG) budgets currently have large uncertainties. While wetlands are the largest source of natural methane (CH4) emissions worldwide, they are also important carbon dioxide (CO2) sinks. Determining the GHG budget of a wetland is challenging, particularly because wetlands have intrinsically temporally and spatially heterogeneous land cover patterns and complex dynamics of CH4 production and emissions. These issues pose challenges to both measuring and modeling GHG budgets from wetlands. To improve wetland GHG flux predictability, we utilized the ecosys model to predict CH4 fluxes from a natural temperate estuarine wetland in northern Ohio. Multiple patches of terrain (that included Typha spp. and Nelumbo lutea) were represented as separate grid cells in the model. Cells were initialized with measured values but were allowed to dynamically evolve in response to meteorological, hydrological, and thermodynamic conditions. Trace gas surface emissions were predicted as the end result of microbial activity, physical transport, and plant processes. Corresponding to each model gridcell, measurements of dissolved gas concentrations were conducted with pore-water dialysis samplers (peepers). The peeper measurements were taken via a series of tubes, providing an undisturbed observation of the pore water concentrations of in situ dissolved gases along a vertical gradient. Non-steady state chambers and a flux tower provided both patch level and integrated site-level fluxes of CO2 and CH4. New Typha chambers were also developed to enclose entire plants and segregate the plant fluxes from soil/water fluxes. We expect ecosys to predict the seasonal and diurnal fluxes of CH4 from within each land cover type and to resolve where CH4 is generated within the soil column and its transmission mechanisms. We demonstrate the need for detailed information at both the patch and site level when using models to predict whole wetland ecosystem-scale GHG budgets.
From COS ecosystem fluxes to GPP: integrating soil, branch and ecosystem fluxes.
NASA Astrophysics Data System (ADS)
Kooijmans, L.; Maseyk, K. S.; Vesala, T.; Mammarella, I.; Baker, I. T.; Seibt, U.; Sun, W.; Aalto, J.; Franchin, A.; Kolari, P.; Keskinen, H.; Levula, J.; Chen, H.
2016-12-01
The close coupling of Carbonyl Sulfide (COS) and CO2 due to a similar uptake pathway into plant stomata makes COS a promising new tracer that can potentially be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. Although ecosystem-scale measurements have been made at several sites, the contribution of different ecosystem components to the total COS budget is often unknown. Besides that, the average Leaf Relative Uptake (LRU) ratio needs to be better determined to accurately translate COS ecosystem fluxes into GPP estimates when the simple linear correlation between GPP estimates and COS plant uptake is used. We performed two campaigns in the summer of 2015 and 2016 at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests. A combination of COS measurements were made during both years, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes. In addition to these, branch chamber measurements were done in 2016 in an attempt to observe the LRU throughout the whole season. The LRU ratio shows an exponential correlation with photosynthetic active radiation (PAR) but is constant for PAR levels above 500 µmol m-2 s-1. Mid-day LRU values are 1.0 (aspen) and 1.5 (pine). The correlation between LRU and PAR can be explained by the fact that COS is hydrolyzed with the presence of the enzyme carbonic anhydrase, and is not light dependent, whereas the photosynthetic uptake of CO2 is. We observed nighttime fluxes on the order of 25-30 % of the daily maximum COS uptake. Soils are a small sink of COS and contribute to 3 % of the total ecosystem COS flux during daytime. In a comparison between observed and simulated fluxes from the Simple Biosphere (SiB) model, the modelled COS and CO2 ecosystem fluxes are on average 40 % smaller than the observed fluxes, however, the Ecosystem Relative Uptake (ERU) ratios are identical at a value of 1.9 ± 0.2, which can be explained by 40 % smaller modelled stomatal conductance. The full budget of COS will be considered by scaling up the soil and branch measurements to the ecosystem level.
Emissions of biogenic sulfur gases from Alaskan tundra
NASA Technical Reports Server (NTRS)
Hines, Mark E.; Morrison, Michael C.
1992-01-01
Fluxes of the biogenic sulfur gases carbonyl sulfide (COS), dimethyl sulfide (DMS), methyl mercaptan (MeSH), and carbon disulfide (CS2) were determined for several freshwater and coastal marine tundra habitats using a dynamic enclosure method and gas chromatography. In the freshwater tundra sites, highest emissions, with a mean of 6.0 nmol/m(sup -2)H(sup -1) (1.5-10) occurred in the water-saturated wet meadow areas inhabited by grasses, sedges, and Sphagnum mosses. In the drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/m(sup -2)h(sup -1) (0-8.3) and lowest fluxes were from lichen-dominated areas at 0.9 nmol/m(sup -2)h(sup -1). Sulfur emissions from a lake surface were also low at 0.8 nmol/m(sup -2)h(sup -1). Of the compounds measured, DMS was the dominant gas emitted from all of these sites. Sulfure emissions from the marine sites were up to 20-fold greater than fluxes in the freshwater habitats and were also dominated by DMS. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea (150-250 nmol/m(sup -2)h(sup -1)). This Carex sp. was grazed thoroughly by geese and DMS fluxes doubled when goose feces were left within the flux chamber. Emissions were much lower from other types of vegetation which were more spatially dominant. Sulfure emissions from tundra were among the lowest reported in the literature. When emission data were extrapolated to include all tundra globally, the global flux of biogenic sulfur from this biome is 2-3 x 10(exp 8) g/yr. This represents less than 0.001 percent of the estimated annual global flux (approximately 50 Tg) of biogenic sulfur and less than 0.01 percent of the estimated terrestrial flux. The low emissions are attributed to the low availability of sulfate, certain hydrological characteristics of tundra, and the tendency for tundra to accumulate organic matter.
Pulse labelling for carbon turnover measurements with a CRDS for wetlands - challenges and solutions
NASA Astrophysics Data System (ADS)
Strozecki, Marcin; Samson, Mateusz; Chojnicki, Bogdan H.; Leśny, Jacek; Moni, Christophe; Urbaniak, Marek; Olejnik, Janusz; Juszczak, Radosław; Silvennoinnen, Hanna
2016-04-01
Carbon turnover in peatlands has commonly been studied by estimating carbon allocation and decomposition rates by litterbags, assessing changes in carbon stocks and by measuring the biosphere-atmosphere exchange of carbon gases with various chamber methods or by eddy covariance. In addition, C turnover rates have been measured with pulse labelling methods using 13C and 14C (e.g. Bahn et al. 2009). Pulse labeling (PL) studies in wetlands are, however, sparse (e.g. Gao et al. 2015), presumably as descriptive high water table levels and relatively low productivity render successful tracing difficult. Quite low cost fast-gas-analyzers (Cavity Ring Down Spectrometry, CRDS) make PL experiments more cost-worthy, but their applicability at wetland field and further for measuring elevated 13C - levels is challenging. We carried out a PL as a pre-experiment for a larger labelling campaign of the Wetman-project at Rzecin wetland in Poland. We aimed at defining 1) The optimum labeling for the peatland site, 2) The importance of dissolved 13CO2 both for the loss of the pulse label and for the potential bias to respiratory flux, 3) The reliability of the 13CO2 and 13CH4 measurements when using dynamic closed chambers with a factory calibrated CRDS. We labelled the study area by a transparent chamber combined to Picarro CRDS G2201-i (C input during labelling 4.9 μg 13C). After labelling, we monitored the respiratory 13CO2 flux and the 13CO2 content in the peat water over a 10d- period. In addition, we measured the vegetation13C before labelling and 10 days after. Plants assimilated 2.1 μg C of the added 13C. Half of the recovered 13CO2 (3.6 μg C) originated from respiration. Nearly one third of added 13CO2 immediately dissolved in the water, which at the end of the experiment retained 0.5 μg 13C. Finally, 127 % of the added label was recovered. The high recovery was mainly caused by overestimation in the δ13C. The results of our pre-experiment indicate that 1) Measuring dissolved gases is required for correcting the biases to the respiratory flux 2) the Picarro CRDS has to be thoroughly calibrated for linearity and for δ13C at different signatures. As a result, we developed calibration methods suitable for field conditions and for higher labels. The Research was co-founded by the Polish National Centre for Research and Development within the Polish-Norwegian Research Programme within the project WETMAN (Central European Wetland Ecosystem Feedbacks to Changing Climate - Field Scale Manipulation, Project ID: 203258, contract No. Pol-Nor/203258/31/2013 (www.wetman.pl). Bahn, M. et al., 2009. The New phytologist, Gao, J. et al., 2015. Scientific Reports,
Benthic incubation chambers for estimating nitrogen flux at the sediment water interface
USEPA’s Sustainable and Healthy Communities (SHC) research program seeks to better understand how ecosystem functions produce ecosystem goods and services (EGS) in order to develop quantitative tools for informing decisions that lead to more sustainable results. Our incompl...
Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains
NASA Astrophysics Data System (ADS)
Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.
2016-12-01
Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.
NASA Technical Reports Server (NTRS)
West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin
2006-01-01
All solutions with Loci-CHEM achieved demonstrated steady state and mesh convergence. Preconditioning had no effect on solution accuracy and typically yields a 3-5times solution speed-up. The SST turbulence model has superior performance, relative to the data in the head end region, for the rise rate and peak heat flux. It was slightly worse than the others in the downstream region where all over-predicted the data by 30-100%.There was systematic mesh refinement in the unstructured volume and structured boundary layer areas produced only minor solution differences. Mesh convergence was achieved. Overall, Loci-CHEM satisfactorily predicts heat flux rise rate and peak heat flux and significantly over predicts the downstream heat flux.
NASA Astrophysics Data System (ADS)
Eickenscheidt, T.; Freibauer, A.; Heinichen, J.; Augustin, J.; Drösler, M.
2014-04-01
The change in the German energy policy resulted in a strong development of biogas plants in Germany. As a consequence, huge amounts of nutrient rich residues remain from the fermentative process, which are used as organic fertilizers. Drained peatlands are increasingly used to satisfy the huge demand for fermentative substrates and the digestate is returned to the peatlands. However, drained organic soils are considered as hot spots for nitrous oxide (N2O) emissions and organic fertilization is additionally known to increase N2O emissions from managed grasslands. Our study addressed the questions (a) to what extent biogas digestate and cattle slurry application increase N2O, methane (CH4) and ammonia (NH3) fluxes as well as the mineral nitrogen use efficiency (NUEmin), and (b) how different soil organic matter contents (SOM) promote the production of N2O. The study was conducted at two areas within a grassland parcel, which differed in their soil organic carbon (SOC) contents. At each area (named Corg-medium and Corg-high) two sites were established, one was fertilized five times with biogas digestate and one with cattle slurry. For each treatment, fluxes of N2O and CH4 were measured over two years using the closed chamber method. For NH3 measurements we used the calibrated dynamic chamber method. On an annual basis the application of biogas digestate significantly enhanced the N2O fluxes compared to the application of cattle slurry and additionally increased the NUEmin. Furthermore, N2O fluxes from the Corg-high site significantly exceeded N2O fluxes from the Corg-medium sites. Annual cumulative emissions ranged from 0.91 ± 0.49 kg N ha-1 yr-1 to 3.14 ± 0.91 kg N ha-1 yr-1. Significantly different CH4 fluxes between the investigated treatments or the different soil types were not observed. Cumulative annual CH4 exchange rates varied between -0.21 ± 0.19 kg C ha-1 yr-1 and -1.06 ± 0.46 kg C ha-1 yr-1. Significantly higher NH3 losses from treatments fertilized with biogas digestate compared to those fertilized with cattle slurry were observed. The total NH3 losses following splash plate application were 18.17 kg N ha-1 for the digestate treatments and 3.48 kg N ha-1 for the slurry treatments (36% and 15% of applied NH4+-N). The observed linear increase of 16 days cumulative N2O-N exchange or rather annual N2O emissions, due to a higher mean groundwater level and a higher application rate of NH4+-N, reveal the importance of site adapted N fertilization and the avoidance of N surpluses in Corg rich grasslands.
New approach to statistical description of fluctuating particle fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenko, V. V.
2009-01-15
The probability density functions (PDFs) of the increments of fluctuating particle fluxes are investigated. It is found that the PDFs have heavy power-law tails decreasing as x{sup -{alpha}-1} at x {yields} {infinity}. This makes it possible to describe these PDFs in terms of fractionally stable distributions (FSDs) q(x; {alpha}, {beta}, {theta}, {lambda}). The parameters {alpha}, {beta}, {gamma}, and {lambda} were estimated statistically using as an example the time samples of fluctuating particle fluxes measured in the edge plasma of the L-2M stellarator. Two series of fluctuating fluxes measured before and after boronization of the vacuum chamber were processed. It ismore » shown that the increments of fluctuating fluxes are well described by DSDs. The effect of boronization on the parameters of FSDs is analyzed. An algorithm for statistically estimating the FSD parameters and a procedure for processing experimental data are described.« less
A preliminary analysis of low frequency pressure oscillations in hybrid rocket motors
NASA Technical Reports Server (NTRS)
Jenkins, Rhonald M.
1994-01-01
Past research with hybrid rockets has suggested that certain motor operating conditions are conducive to the formation of pressure oscillations, or flow instabilities, within the motor combustion chamber. These combustion-related vibrations or pressure oscillations may be encountered in virtually any type of rocket motor and typically fall into three frequency ranges: low frequency oscillations (0-300 Hz); intermediate frequency oscillations (400-1000 Hz); and high frequency oscillations (greater than 1000 Hz). In general, combustion instability is characterized by organized pressure oscillations occurring at well-defined intervals with pressure peaks that may maintain themselves, grow, or die out. Usually, such peaks exceed +/- 5% of the mean chamber pressure. For hybrid motors, these oscillations have been observed to grow to a limiting amplitude which may be dependent on factors such as fuel characteristics, oxidizer injector characteristics, average chamber pressure, oxidizer mass flux, combustion chamber length, and grain geometry. The approach taken in the present analysis is to develop a modified chamber length, L, instability theory which accounts for the relationship between pressure and oxidizer to fuel concentration ratio in the motor.
NASA Astrophysics Data System (ADS)
Mullet, B.; Segall, P.
2017-12-01
Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including cessation of eruption.
Influence of plankton metabolism and mixing depth on CO2 dynamics in an Amazon floodplain lake.
Amaral, João Henrique F; Borges, Alberto V; Melack, John M; Sarmento, Hugo; Barbosa, Pedro M; Kasper, Daniele; de Melo, Michaela L; De Fex-Wolf, Daniela; da Silva, Jonismar S; Forsberg, Bruce R
2018-07-15
We investigated plankton metabolism and its influence on carbon dioxide (CO 2 ) dynamics in a central Amazon floodplain lake (Janauacá, 3°23' S, 60°18' W) from September 2015 to May 2016, including a period with exceptional drought. We made diel measurements of CO 2 emissions to the atmosphere with floating chambers and depth profiles of temperature and CO 2 partial pressure (pCO 2 ) at two sites with differing wind exposure and proximity to vegetated habitats. Dissolved oxygen (DO) concentrations were monitored continuously during day and night in clear and dark chambers with autonomous optical sensors to evaluate plankton metabolism. Overnight community respiration (CR), and gross primary production (GPP) rates were higher in clear chambers and positively correlated with chlorophyll-a (Chl-a). CO 2 air-water fluxes varied over 24-h periods with changes in thermal structure and metabolism. Most net daily CO 2 fluxes during low water and mid-rising water at the wind exposed site were into the lake as a result of high rates of photosynthesis. All other measurements indicated net daily release to the atmosphere. Average GPP rates (6.8gCm -2 d -1 ) were high compared with other studies in Amazon floodplain lakes. The growth of herbaceous plants on exposed sediment during an exceptional drought led to large carbon inputs when these areas were flooded, enhancing CR, pCO 2 , and CO 2 fluxes. During the period when the submerged herbaceous vegetation decayed phytoplankton abundance increased and photosynthetic uptake of CO 2 occurred. While planktonic metabolism was often autotrophic (GPP:CR>1), CO 2 out-gassing occurred during most periods investigated indicating other inputs of carbon such as sediments or soils and wetland plants. Copyright © 2018 Elsevier B.V. All rights reserved.
Beyond Ussing's chambers: contemporary thoughts on integration of transepithelial transport
Herrmann, Jeremy R.
2016-01-01
In the mid-20th century, Hans Ussing developed a chamber that allowed for the simultaneous measurement of current and labeled probe flux across epithelia. Using frog skin as a model, Ussing used his results to propose mechanisms of transcellular Na+ and K+ transport across apical (exterior/luminal) and basolateral (interior) membranes that is essentially unchanged today. Others took advantage of Ussing's chambers to study mucosal tissues, including bladder and intestines. It quickly became clear that, in some tissues, passive paracellular flux, i.e., across the tight junction, was an important component of overall transepithelial transport. Subsequent work demonstrated that activation of the apical Na+-glucose cotransporter SGLT1 regulated paracellular permeability such that intestinal paracellular transport could coordinate with and amplify transcellular transport. Intermediates in this process include activation of p38 MAPK, the apical Na+/H+ exchanger NHE3, and myosin light chain kinase (MLCK). Investigators then focused on these processes in disease. They found that TNF induces barrier dysfunction via MLCK activation and downstream caveolin-1-dependent endocytosis of the tight junction protein occludin. TNF also inhibited NHE3, and both barrier loss and PKCα-dependent NHE3 inhibition were required for TNF-induced acute diarrhea, emphasizing the interplay between transcellular and paracellular transport. Finally, studies using immune-mediated inflammatory bowel disease models showed that mice lacking epithelial MLCK were initially protected, but became ill as epithelial damage progressed and provided a tight junction-independent means of barrier loss. None of these advances would have been possible without the insights provided by Ussing and others using Ussing's ingenious, and still useful, chambers. PMID:26702131
EUPHORE: Research facility to study tropospheric transformation processes
NASA Astrophysics Data System (ADS)
Wirtz, K.
2003-04-01
The EUPHORE simulation chamber consists of two half-spherical Teflon bags, each with a volume of 200 m^3 and a base diameter of 9.2 m. The FEP Teflon has a transmission of about 75% at 280 nm and of more than 80% above 300 nm. Purified and dried ambient air is used to fill the chamber and flush it between experiments. The humidity in the chamber is measured by a dew point hygrometer, and the temperature is monitored by several thermocouples located at different positions inside the chamber. The solar flux is monitored with spectral resolution in the photochemically active spectral region. The simulation chamber is equipped with a number of analytical instruments for the measurement of single VOC components, NO, NO_2, O_3 and other species. In-situ measurements in the ppb range are performed using long-path absorption spectroscopy, in the UV/VIS by DOAS and in the IR by FT-IR. A GC-MS system is used for the sensitive analysis of a variety of reaction products. A newly installed LIF technique allows the in situ measurement of OH and HO_2 radicals during the reaction processes. The technological concept and the organisation structure of the EUPHORE facility will be presented. The integration of quality control measures is an obvious and necessary second step for the successful exploitation of the technically advanced outdoor smog chamber EUPHORE as a research tool. This will underline the leadership of the European scientific community in the important research areas of investigating transformation processes in the troposphere and tracking the influence of human activities on photooxidant formation and its interaction with processes related to global change. In the coming years the main scientific focus will be on testing chemical mechanisms in order to improve the models which describe the atmospheric processes of complex chemical systems. The collaborative work at the EUPHORE outdoor simulation chamber will provide all the users of the installation with a basic platform to exchange analytical technology, sampling procedures, methods of data treatment, and know-how that can also be applied in field campaigns.
USDA-ARS?s Scientific Manuscript database
For the last 30 years static chamber methodologies have been most commonly used to measure N2O fluxes from agricultural soils. The main advantages of this technique are that it is relatively inexpensive, versatile in the field, and the technology is very easy to adopt. Consequently, the majority of ...
Construction and testing of a simple and economical soil greenhouse gas automatic sampler
Ginting, D.; Arnold, S.L.; Arnold, N.S.; Tubbs, R.S.
2007-01-01
Quantification of soil greenhouse gas emissions requires considerable sampling to account for spatial and/or temporal variation. With manual sampling, additional personnel are often not available to sample multiple sites within a narrow time interval. The objectives were to construct an automatic gas sampler and to compare the accuracy and precision of automatic versus manual sampling. The automatic sampler was tested with carbon dioxide (CO2) fluxes that mimicked the range of CO2 fluxes during a typical corn-growing season in eastern Nebraska. Gas samples were drawn from the chamber at 0, 5, and 10 min manually and with the automatic sampler. The three samples drawn with the automatic sampler were transferred to pre-vacuumed vials after 1 h; thus the samples in syringe barrels stayed connected with the increasing CO2 concentration in the chamber. The automatic sampler sustains accuracy and precision in greenhouse gas sampling while improving time efficiency and reducing labor stress. Copyright ?? Taylor & Francis Group, LLC.
High-Frequency Measurements of Methane Ebullition Over a Growing Season at a Temperate Peatland Site
NASA Technical Reports Server (NTRS)
Goodrich, Jordan P.; Varner, Ruth K.; Frolking, Steve; Duncan, Bryan N.; Crill, Patrick M.
2011-01-01
Bubbles can contribute a significant fraction of methane emissions fr om wetlands; however the range of reported fractions is very large an d accurate characterization of this pathway has proven difficult. Her e we show that continuous automated flux chambers combined with an in tegrated cavity output spectroscopy (ICOS) instrument allow us to qua ntify both CH4 ebullition rate and magnitude. For a temperate poor f en in 2009, ebullition rate varied on hourly to seasonal time scales. A diel pattern in ebullition was identified with peak release occurr ing between 20:00 and 06:00 local time, though steady fluxes (i.e., t hose with a linear increase in chamber headspace CH4 concentration) d id not exhibit diel variability. Seasonal mean ebullition rates peake d at 843.5 +/- 384.2 events m(exp -2)/d during the summer, with a me an magnitude of 0.19 mg CH4 released in each event.
Kotrappa, Payasada; Stieff, Frederick
2009-08-01
An electret ion chamber (EIC) radon monitor in a sealed accumulator measures the integrated average radon concentration at the end of the accumulation duration. Theoretical equations have been derived to relate such radon concentrations (Bq m(-3) ) to the radon emanation rate (Bq d(-1)) from building materials enclosed in the accumulator. As an illustration, a 4-L sealable glass jar has been used as an accumulator to calculate the radon emanation rate from different granite samples. The radon emanation rate was converted into radon flux (Bq mm(-2) d(-1)) by dividing the emanation rate by surface area of the sample. Fluxes measured on typical, commercially available granites ranged from 20-30 Bq m(-2) d(-1). These results are similar to the results reported in the literature. The lower limit of detection for a 2-d measurement works out to be 7 Bq m(-2) d(-1). Equations derived can also be used for other sealable accumulators and other integrating detectors, such as alpha track detectors.
RTE: A computer code for Rocket Thermal Evaluation
NASA Technical Reports Server (NTRS)
Naraghi, Mohammad H. N.
1995-01-01
The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.
Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach.
Hartley, Iain P; Hill, Timothy C; Wade, Thomas J; Clement, Robert J; Moncrieff, John B; Prieto-Blanco, Ana; Disney, Mathias I; Huntley, Brian; Williams, Mathew; Howden, Nicholas J K; Wookey, Philip A; Baxter, Robert
2015-10-01
Quantifying landscape-scale methane (CH4 ) fluxes from boreal and arctic regions, and determining how they are controlled, is critical for predicting the magnitude of any CH4 emission feedback to climate change. Furthermore, there remains uncertainty regarding the relative importance of small areas of strong methanogenic activity, vs. larger areas with net CH4 uptake, in controlling landscape-level fluxes. We measured CH4 fluxes from multiple microtopographical subunits (sedge-dominated lawns, interhummocks and hummocks) within an aapa mire in subarctic Finland, as well as in drier ecosystems present in the wider landscape, lichen heath and mountain birch forest. An intercomparison was carried out between fluxes measured using static chambers, up-scaled using a high-resolution landcover map derived from aerial photography and eddy covariance. Strong agreement was observed between the two methodologies, with emission rates greatest in lawns. CH4 fluxes from lawns were strongly related to seasonal fluctuations in temperature, but their floating nature meant that water-table depth was not a key factor in controlling CH4 release. In contrast, chamber measurements identified net CH4 uptake in birch forest soils. An intercomparison between the aerial photography and satellite remote sensing demonstrated that quantifying the distribution of the key CH4 emitting and consuming plant communities was possible from satellite, allowing fluxes to be scaled up to a 100 km(2) area. For the full growing season (May to October), ~ 1.1-1.4 g CH4 m(-2) was released across the 100 km(2) area. This was based on up-scaled lawn emissions of 1.2-1.5 g CH4 m(-2) , vs. an up-scaled uptake of 0.07-0.15 g CH4 m(-2) by the wider landscape. Given the strong temperature sensitivity of the dominant lawn fluxes, and the fact that lawns are unlikely to dry out, climate warming may substantially increase CH4 emissions in northern Finland, and in aapa mire regions in general. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Maui Gravity and Soil Gas Surveys
John Akerley
2010-04-01
Contains a ground-based gravity survey of South Maui and a series of soil CO2 flux and temperature surveys encompassing Maui and the Big Island. The gravity survey was collected from approximately 284 km2 and consisted of 400 gravity stations with 400 m spacing. Locations were derived with full DGPS. Station and line location, Complete Bouger Anomaly, first vertical derivative and horizontal gradient maps were calculated and produced. The soil CO2 flux and temperature surveys were conducted on the islands of Hawaii and Maui in April and July 2010. Average soil temperatures were measured over 10 cm depth using a hand-held thermocouple. Soil CO2 fluxes were measured using a portable accumulation chamber instrument.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabbagh, A.; Lardy, M.
Temperature measurements on shallow vertical profiles undertaken on Matthews and Hunter volcanoes of the New Hebrides arc (SW Pacific) demonstrate the absence of both unsteady and steady conductive abnormal flux at the location of the studied profiles. The reasons for this absence are explained in terms of limits in depth or magnitude for possible sources of heat inside the volcanoes. It implies that the magma chamber is of rather limited extent. This type of flux measurement has a low cost and it will be possible to implant a series of such temperature profiles on an edifice in order to obtainmore » a map of the flux that could be widely used for the location of heat sources.« less
Landscape-level terrestrial methane flux observed from a very tall tower
Desai, Ankur R.; Xu, Ke; Tian, Hanqin; Weishampel, Peter; Thom, Jonthan; Baumann, Daniel D.; Andrews, Arlyn E.; Cook, Bruce D.; King, Jennifer Y.; Kolka, Randall
2015-01-01
Simulating the magnitude and variability of terrestrial methane sources and sinks poses a challenge to ecosystem models because the biophysical and biogeochemical processes that lead to methane emissions from terrestrial and freshwater ecosystems are, by their nature, episodic and spatially disjunct. As a consequence, model predictions of regional methane emissions based on field campaigns from short eddy covariance towers or static chambers have large uncertainties, because measurements focused on a particular known source of methane emission will be biased compared to regional estimates with regards to magnitude, spatial scale, or frequency of these emissions. Given the relatively large importance of predicting future terrestrial methane fluxes for constraining future atmospheric methane growth rates, a clear need exists to reduce spatiotemporal uncertainties. In 2010, an Ameriflux tower (US-PFa) near Park Falls, WI, USA, was instrumented with closed-path methane flux measurements at 122 m above ground in a mixed wetland–upland landscape representative of the Great Lakes region. Two years of flux observations revealed an average annual methane (CH4) efflux of 785 ± 75 mg CCH4 m−2 yr−1, compared to a mean CO2 sink of −80 g CCO2 m−2 yr−1, a ratio of 1% in magnitude on a mole basis. Interannual variability in methane flux was 30% of the mean flux and driven by suppression of methane emissions during dry conditions in late summer 2012. Though relatively small, the magnitude of the methane source from the very tall tower measurements was mostly within the range previously measured using static chambers at nearby wetlands, but larger than a simple scaling of those fluxes to the tower footprint. Seasonal patterns in methane fluxes were similar to those simulated in the Dynamic Land Ecosystem Model (DLEM), but magnitude depends on model parameterization and input data, especially regarding wetland extent. The model was unable to simulate short-term (sub-weekly) variability. Temperature was found to be a stronger driver of regional CH4flux than moisture availability or net ecosystem production at the daily to monthly scale. Taken together, these results emphasize the multi-timescale dependence of drivers of regional methane flux and the importance of long, continuous time series for their characterization.
NASA Astrophysics Data System (ADS)
Windham-Myers, Lisamarie; Bergamaschi, Brian; Anderson, Frank; Knox, Sara; Miller, Robin; Fujii, Roger
2018-04-01
High productivity temperate wetlands that accrete peat via belowground biomass (peatlands) may be managed for climate mitigation benefits due to their global distribution and notably negative emissions of atmospheric carbon dioxide (CO2) through rapid storage of carbon (C) in anoxic soils. Net emissions of additional greenhouse gases (GHG)—methane (CH4) and nitrous oxide (N2O)—are more difficult to predict and monitor due to fine-scale temporal and spatial variability, but can potentially reverse the climate mitigation benefits resulting from CO2 uptake. To support management decisions and modeling, we collected continuous 96 hour high frequency GHG flux data for CO2, CH4 and N2O at multiple scales—static chambers (1 Hz) and eddy covariance (10 Hz)—during peak productivity in a well-studied, impounded coastal peatland in California’s Sacramento Delta with high annual rates of C fluxes, sequestering 2065 ± 150 g CO2 m‑2 y‑1 and emitting 64.5 ± 2.4 g CH4 m‑2 y‑1. Chambers (n = 6) showed strong spatial variability along a hydrologic gradient from inlet to interior plots. Daily (24 hour) net CO2 uptake (NEE) was highest near inlet locations and fell dramatically along the flowpath (‑25 to ‑3.8 to +2.64 g CO2 m‑2 d‑1). In contrast, daily net CH4 flux increased along the flowpath (0.39 to 0.62 to 0.88 g CH4 m‑2 d‑1), such that sites of high daily CO2 uptake were sites of low CH4 emission. Distributed, continuous chamber data exposed five novel insights, and at least two important datagaps for wetland GHG management, including: (1) increasing dominance of CH4 ebullition fluxes (15%–32% of total) along the flowpath and (2) net negative N2O flux across all sites as measured during a 4 day period of peak biomass (‑1.7 mg N2O m‑2 d‑1 0.51 g CO2 eq m‑2 d‑1). The net negative emissions of re-established peat-accreting wetlands are notably high, but may be poorly estimated by models that do not consider within-wetland spatial variability due to water flowpaths.
NASA Astrophysics Data System (ADS)
Ambrosino, F.; Anastasio, A.; Bross, A.; Béné, S.; Boivin, P.; Bonechi, L.; Cârloganu, C.; Ciaranfi, R.; Cimmino, L.; Combaret, Ch.; D'Alessandro, R.; Durand, S.; Fehr, F.; Français, V.; Garufi, F.; Gailler, L.; Labazuy, Ph.; Laktineh, I.; Lénat, J.-F.; Masone, V.; Miallier, D.; Mirabito, L.; Morel, L.; Mori, N.; Niess, V.; Noli, P.; Pla-Dalmau, A.; Portal, A.; Rubinov, P.; Saracino, G.; Scarlini, E.; Strolin, P.; Vulpescu, B.
2015-11-01
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy threshold of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m-2 d-1 deg-2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m-2 d-1 deg-2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. The MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.
NASA Astrophysics Data System (ADS)
Migné, Aline; Trigui, Rima Jihane; Davoult, Dominique; Desroy, Nicolas
2018-01-01
The effect of an invasive infaunal suspension-feeding bivalve, the Manila clam Ruditapes philippinarum, on benthic inorganic carbon and nutrient fluxes was examined through in situ incubations. Measurements were performed in spring and summer on a tidal sandflat of the Rance estuary (south part of the Western English Channel) colonized by the Manila clam after its deliberate introduction in the 1990's. Benthic inorganic carbon fluxes were measured using light and dark benthic chambers both at emersion and immersion. Benthic nutrient fluxes were measured using dark benthic chambers at immersion. Inorganic carbon (IC) and ammonium sediment release under darkness at immersion reached 5.60 mmol m-2 h-1 and 441 μmol m-2 h-1 respectively for a clam density of 291 ind m-2. The sediment IC-release under darkness was lower during emersion than during immersion, probably due to the reduced activity of infauna at low tide. Under ambient light, a sediment IC-uptake was systematically measured at emersion, indicating a net autotrophy under the condition of measurements (125 < surface PAR < 1670 μmol m-2 s-1), while either sediment IC-uptake or release was measured at immersion according to light variation (20 < underwater PAR < 990 μmol m-2 s-1). The highest gross community primary production, calculated from highest IC-fluxes at light (i.e. net community production) and highest IC-fluxes at dark (i.e. community respiration), was similar at emersion and immersion and reached 6.2 mmolC m-2 h-1. These results suggest that the metabolic activity of the invasive Manila clam Ruditapes philippinarum contributes to increase inorganic C and ammonium sediment release. These regenerated nutrients may support microphytobenthic production which appeared particularly high on this intertidal sand flat.
Ambrosino, F.; Anastasio, A.; Bross, A.; ...
2015-11-14
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m 2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy thresholdmore » of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m –2 d –1 deg –2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m –2 d –1 deg –2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. As a result, the MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosino, F.; Anastasio, A.; Bross, A.
The muographic imaging of volcanoes relies on the measured transmittance of the atmospheric muon flux through the target. An important bias affecting the result comes from background contamination mimicking a higher transmittance. The MU-RAY and TOMUVOL collaborations measured independently in 2013 the atmospheric muon flux transmitted through the Puy de Dôme volcano using their early prototype detectors, based on plastic scintillators and on Glass Resistive Plate Chambers, respectively. These detectors had three (MU-RAY) or four (TOMUVOL) detection layers of 1 m 2 each, tens (MU-RAY) or hundreds (TOMUVOL) of nanosecond time resolution, a few millimeter position resolution, an energy thresholdmore » of few hundreds MeV, and no particle identification capabilities. The prototypes were deployed about 1.3 km away from the summit, where they measured, behind rock depths larger than 1000 m, remnant fluxes of 1.83±0.50(syst)±0.07(stat) m –2 d –1 deg –2 (MU-RAY) and 1.95±0.16(syst)±0.05(stat) m –2 d –1 deg –2 (TOMUVOL), that roughly correspond to the expected flux of high-energy atmospheric muons crossing 600 meters water equivalent (mwe) at 18° elevation. This implies that imaging depths larger than 500 mwe from 1 km away using such prototype detectors suffer from an overwhelming background. These measurements confirm that a new generation of detectors with higher momentum threshold, time-of-flight measurement, and/or particle identification is needed. As a result, the MU-RAY and TOMUVOL collaborations expect shortly to operate improved detectors, suitable for a robust muographic imaging of kilometer-scale volcanoes.« less
Groh, Tyler A; Gentry, Lowell E; David, Mark B
2015-05-01
Loss of nitrate from agricultural lands to surface waters is an important issue, especially in areas that are extensively tile drained. To reduce these losses, a wide range of in-field and edge-of-field practices have been proposed, including constructed wetlands. We re-evaluated constructed wetlands established in 1994 that were previously studied for their effectiveness in removing nitrate from tile drainage water. Along with this re-evaluation, we measured the production and flux of greenhouse gases (GHGs) (CO, NO, and CH). The tile inlets and outlets of two wetlands were monitored for flow and N during the 2012 and 2013 water years. In addition, seepage rates of water and nitrate under the berm and through the riparian buffer strip were measured. Greenhouse gas emissions from the wetlands were measured using floating chambers (inundated fluxes) or static chambers (terrestrial fluxes). During this 2-yr study, the wetlands removed 56% of the total inlet nitrate load, likely through denitrification in the wetland. Some additional removal of nitrate occurred in seepage water by the riparian buffer strip along each berm (6.1% of the total inlet load, for a total nitrate removal of 62%). The dominant GHG emitted from the wetlands was CO, which represented 75 and 96% of the total GHG emissions during the two water years. The flux of NO contributed between 3.7 and 13% of the total cumulative GHG flux. Emissions of NO were 3.2 and 1.3% of the total nitrate removed from wetlands A and B, respectively. These wetlands continue to remove nitrate at rates similar to those measured after construction, with relatively little GHG gas loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Efficient computation of coherent synchrotron radiation in a rectangular chamber
NASA Astrophysics Data System (ADS)
Warnock, Robert L.; Bizzozero, David A.
2016-09-01
We study coherent synchrotron radiation (CSR) in a perfectly conducting vacuum chamber of rectangular cross section, in a formalism allowing an arbitrary sequence of bends and straight sections. We apply the paraxial method in the frequency domain, with a Fourier development in the vertical coordinate but with no other mode expansions. A line charge source is handled numerically by a new method that rids the equations of singularities through a change of dependent variable. The resulting algorithm is fast compared to earlier methods, works for short bunches with complicated structure, and yields all six field components at any space-time point. As an example we compute the tangential magnetic field at the walls. From that one can make a perturbative treatment of the Poynting flux to estimate the energy deposited in resistive walls. The calculation was motivated by a design issue for LCLS-II, the question of how much wall heating from CSR occurs in the last bend of a bunch compressor and the following straight section. Working with a realistic longitudinal bunch form of r.m.s. length 10.4 μ m and a charge of 100 pC we conclude that the radiated power is quite small (28 W at a 1 MHz repetition rate), and all radiated energy is absorbed in the walls within 7 m along the straight section.
Clarys, P; Clijsen, R; Barel, A O; Schouteden, R; van Olst, B; Aerenhouts, D
2017-02-01
Knowledge of local sweating patterns is of importance in occupational and exercise physiology settings. The recently developed closed chamber condenser technology (Biox Aquaflux ® ) allows the measurement of evaporative skin water loss with a greater measurement capacity (up to 1325 g/h/m 2 ) compared to traditional evaporimeters. The aim of this study was to evaluate the applicability of the Biox Aquaflux ® to estimate sweat production during exercise. Fourteen healthy subjects performed a 20-min cycle ergometer trial at respectively 55% heart rate (HR reserve and 75% HR reserve . Sweat production was estimated by measuring body weight before and after exercise, by calculating the amount of sweat collected in a patch, and by measuring the water flux (in g/h/m 2 ) with the Biox Aquaflux ® instrument. The Biox Aquaflux ® instrument allowed the follow up of sweat kinetics at both intensities. Correlations between the measurement methods were all significant for the 75% HR reserve trial (with r ranging from 0.68 to 0.76) whilst for the 55% HR reserve a significant relation was detected between the patch method and the Biox Aquaflux ® only (with r ranging from 0.41 to 0.79). The Biox Aquaflux ® instrument is a practical and direct method for the estimation of local sweat rates under field conditions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Symptoms of change in multi-scale observations of arctic ecosystem carbon cycling
NASA Astrophysics Data System (ADS)
Stoy, P. C.; Williams, M. D.; Hartley, I. P.; Street, L.; Hill, T. C.; Prieto-Blanco, A.; Wayolle, A.; Disney, M.; Evans, J.; Fletcher, B.; Poyatos, R.; Wookey, P.; Merbold, L.; Wade, T. J.; Moncrieff, J.
2009-12-01
Arctic ecosystems are responding rapidly to observed climate change. Quantifying the magnitude of these changes, and their implications for the climate system, requires observations of their current structure and function, as well as extrapolation and modelling (i.e. ‘upscaling’) across time and space. Here, we describe the major results of the International Polar Year (IPY) ABACUS project, a multi-scale investigation across arctic Fennoscandia that couples plant and soil process studies, isotope analyses, flux and micrometeorological measurements, process modelling, and aircraft and satellite observations to improve predictions of the response of the arctic terrestrial biosphere to global change. We begin with a synthesis of eddy covariance observations from the global FLUXNET database. We demonstrate that a simple model parameterized using pan-arctic chamber measurements explains over 80% of the variance of half-hourly CO2 fluxes during the growing season across most arctic and montane tundra ecosystems given accurate measurements of leaf area index (LAI), which agrees with the recently proposed ‘functional convergence’ paradigm for tundra vegetation. The ability of MODIS to deliver accurate LAI estimates is briefly discussed and an adjusted algorithm is presented and validated using direct observations. We argue for an Information Theory-based framework for upscaling in Earth science by conceptualizing multi-scale research as a transfer of information across scales. We then demonstrate how error in upscaled arctic C flux estimates can be reduced to less than 4% from their high-resolution counterpart by formally preserving the information content of high spatial and spectral resolution aircraft and satellite imagery. Jaynes’ classic Maximum Entropy (MaxEnt) principle is employed to incorporate logical, biological and physical constraints to reduce error in downscaled flux estimates. Errors are further reduced by assimilating flux, biological and remote sensing data into the DALEC ecosystem model using the ensemble Kalman filter. We use a flux footprint analysis to demonstrate that the ABACUS study ecosystems display functional convergence at chamber, tower and aircraft scales. The importance of the rapidly changing cold and ‘shoulder’ seasons to annual CO2 flux is emphasized; these represent over 20% of annual C exchange at our field sites. The role of moss in determining non-growing season C uptake and loss is highlighted using direct chamber-based observations. We demonstrate ‘priming’ of the decomposition of older forest soil during the period of vegetative activity using 14CO2 observations, and show that tundra ecosystems paradoxically store more C than birch forests in the region. This biological priming of older C stocks is not included in current models of the arctic C cycle.
NASA Technical Reports Server (NTRS)
Bloom, Gordon E. (Inventor)
1998-01-01
Disclosure is made of an integrated-magnetic apparatus, comprising: winding structure for insulatingly carrying at least two generally flat, laterally offset and spaced apart electrical windings of a power converter around an aperture; a core having a flat exterior face, an interior cavity and an un-gapped core-column that is located within the cavity and that passes through the aperture of the winding structure; flat-sided surface carried by the core and forming an interior chamber that is located adjacent to the flat face of the core and forming a core-column that has a gap and that is located within the chamber; and structure, located around the gapped core-column, for carrying a third electrical winding of the power converter. The first two electrical windings are substantially located within the cavity and are adapted to be transformingly coupled together through the core. The third electrical winding is adapted to be inductively coupled through the gapped core-column to the other electrical windings, and is phased to have the magnetic flux passing through the gapped core-column substantially in the same direction as the magnetic flux passing through the un-gapped core-column and to have substantially the same AC components of flux in the gapped core-column and in the un-gapped core-column.
Impact of Cubic Pin Finned Surface Structure Geometry upon Spray Cooling Heat Transfer
NASA Technical Reports Server (NTRS)
Silk, Eric A.; Kim, Jungho; Kiger, Ken
2005-01-01
Experiments were conducted to study the effects of enhanced surface structures on heat flux using spray cooling. The surface enhancements consisted of cubic pin fins machined on the top surface of copper heater blocks. The structure height, pitch, and width were parametrically vaned. Each copper block had a projected cross-sectional area of 2.0 sq cm. Measurements were also obtained on a heater block with a flat surface for baseline comparison purposes. A 2 x 2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data were obtained under nominally degassed (chamber pressure of 41.4 kPa) and gassy conditions (chamber with N2 gas at 100.7 kPa) with a bulk fluid temperature of 20.5 C. Results for both the degassed and gassy cases show that structure width and separation distance have a dominant effect upon the heat transfer for the size ranges used. Cubic pin fin height had little impact upon heat flux. The maximum critical heat flux (CHF) attained for any of the surfaces was 121 W/sq cm, giving an enhancement of 51% relative to the flat surface case under nominally degassed conditions. The gassy case had a maximum CHF of 149 W/sq cm, giving an enhancement of 38% relative to the flat surface case.
Ishikawa, Akira; Hattori, Mayuko; Ishii, Ken-Ichiro; Kulis, David M.; Anderson, Donald M.; Imai, Ichiro
2014-01-01
Temporal changes in the in situ germination flux of cysts and the abundance of vegetative cells of the toxic dinoflagellate Alexandrium catenella were investigated in Ago Bay, central Japan from July 2003 to December 2004. The in situ germination flux (cells m−2 day−1) was measured using ‘plankton emergence trap/chambers (PET chambers)’. Germination of the cysts in the sediments occurred continuously during the study, ranging from 52 to 1753 cells m−2 day−1, with no temporal trend. This germination pattern appeared to be promoted by a short mandatory dormancy period for newly formed cysts coupled with a broad temperature window for germination. For the vegetative populations, high abundances (>105 cells m−2) were recorded in the water column from spring to summer and from autumn to early winter. The size of the vegetative populations did not correlate with the cyst germination flux but rather larger vegetative populations were often observed when the water temperature was around 20°C, indicating that bloom development was mainly regulated by the temperature. Nonetheless, the continuous germination pattern of A. catenella is advantageous enabling the germinated cells to immediately exploit favorable bloom conditions. PMID:25221373
A portable molecular-sieve-based CO{sub 2} sampling system for radiocarbon measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palonen, V., E-mail: vesa.palonen@helsinki.fi
We have developed a field-capable sampling system for the collection of CO{sub 2} samples for radiocarbon-concentration measurements. Most target systems in environmental research are limited in volume and CO{sub 2} concentration, making conventional flask sampling hard or impossible for radiocarbon studies. The present system captures the CO{sub 2} selectively to cartridges containing 13X molecular sieve material. The sampling does not introduce significant under-pressures or significant losses of moisture to the target system, making it suitable for most environmental targets. The system also incorporates a significantly larger sieve container for the removal of CO{sub 2} from chambers prior to the CO{submore » 2} build-up phase and sampling. In addition, both the CO{sub 2} and H{sub 2}O content of the sample gas are measured continuously. This enables in situ estimation of the amount of collected CO{sub 2} and the determination of CO{sub 2} flux to a chamber. The portable sampling system is described in detail and tests for the reliability of the method are presented.« less
Estimating surface temperature in forced convection nucleate boiling: A simplified method
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Papell, S. S.
1977-01-01
During a test program to investigate low-cycle thermal fatigue, 21 of 22 cylindrical test sections of a cylindrical rocket thrust chamber were thermally cycled to failure. Cylinder liners were fabricated from OFHC copper, Amzirc, and NARloy-Z. The cylinders were fabricated by milling cooling channels into the liner and closing out the backside with electrodeposited copper. The tests were conducted at a chamber pressure of 4.14 MN/sq m (600 psia) and an oxidant-fuel ratio of 6.0 using hydrogen-oxygen as propellants. The average throat heat flux was 54 MW/sq m (33 Btu/sq in./sec). All of the failures were characterized by a thinning of the cooling channel wall and eventual failure by tensile rupture. The 1/2-hard Amzirc material showed little improvement in cyclic life when compared with OFHC copper; while the NARloy-Z and aged Amzirc materials had the best cyclic life characteristics. One OFHC copper cylinder was thermall cycled 2044 times at a steady-state hot-gas-side wall temperature of 514 K (925 R) without failing.
NASA Astrophysics Data System (ADS)
Lees, K.; Khomik, M.; Clark, J. M.; Quaife, T. L.; Artz, R.
2017-12-01
Peatlands are an important part of the Earth's carbon cycle, comprising approximately a third of the global terrestrial carbon store. However, peatlands are sensitive to climatic change and human mismanagement, and many are now degraded and acting as carbon sources. Restoration work is being undertaken at many sites around the world, but monitoring the success of these schemes can be difficult and costly using traditional methods. A landscape-scale alternative is to use satellite data in order to assess the condition of peatlands and estimate carbon fluxes. This work focuses on study sites in Northern Scotland, where parts of the largest blanket bog in Europe are being restored from forest plantations. A combination of laboratory and fieldwork has been used to assess the Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and respiration of peatland sites in different conditions, and the climatic vulnerability of key peat-forming Sphagnum species. The results from these studies have been compared with spectral data in order to evaluate the extent to which remote sensing can function as a source of information for peatland health and carbon flux models. This work considers particularly the effects of scale in calculating peatland carbon flux. Flux data includes chamber and eddy covariance measurements of carbon dioxide, and radiometric observations include both handheld spectroradiometer results and satellite images. Results suggest that despite the small-scale heterogeneity and unique ecosystem factors in blanket bogs, remote sensing can be a useful tool in monitoring peatland health and carbon sequestration. In particular, this study gives unique insights into the relationships between peatland vegetation, carbon flux and spectral reflectance.
Sequential changes in biliary lipids and gallbladder ion transport during gallstone formation.
Giurgiu, D I; Saunders-Kirkwood, K D; Roslyn, J J; Abedin, M Z
1997-01-01
OBJECTIVE: This study sought to correlate gallbladder (GB) Na+ and Cl-) fluxes with biliary lipid composition during the various stages of gallstone (GS) formation. SUMMARY BACKGROUND DATA: GS formation is associated with altered GB ion transport and increased biliary lipid and Ca2+ concentrations. Nonetheless, the longitudinal relationship between ion transport and biliary lipid changes during GS formation has not been defined. METHODS: Prairie dogs were fed standard (n = 18) or 1.2% cholesterol-enriched (n = 30) diets for 4 to 21 days. Hepatic and GB bile were analyzed for lipids and Ca2+. Animals were designated either Pre-Crystal, Crystal, or GS based on absence or presence of crystals or GS, respectively. GBs were mounted in Ussing chambers, electrophysiologic parameters were recorded, and unidirectional Na+ and Cl- fluxes measured. RESULTS: Short-circuit current and potential difference were similar during Pre-Crystal and Crystal stages but significantly reduced during GS stage compared to controls and Pre-Crystals. Transepithelial resistance was similar in all groups. Net Na+ absorption was increased during Pre-Crystal but decreased during GS stage due to increased mucosa-to-serosa and serosa-to-mucosa flux, respectively. Increased serosa-to-mucosa flux of both Na+ and Cl- characterized the Crystal stage. Biliary lipids and Ca2+ increased progressively during various stages of GS formation and correlated positively with unidirectional fluxes of Na+ and Cl-. CONCLUSION: GB epithelial ion transport changes sequentially during GS formation, with the early Pre-Crystal stage characterized by increased Na+ absorption, and the later Crystal stage accompanied by prosecretory stimuli on Na+ and Cl- fluxes, which may be due to elevated GB bile Ca2+ and total bile acids. Images Figure 1. Figure 3. Figure 4. PMID:9114797
The temperature response of methane emission in Arctic wet sedge tundra
NASA Astrophysics Data System (ADS)
Lim, Edward; Zona, Donatella
2015-04-01
Since the last glacial maximum Arctic tundra soils have acted as an important carbon sink, having accumulated carbon under cold, anaerobic conditions (Zona et al. 2009). Several studies indicate that recent climate warming has altered this balance, with the Arctic tundra now posited to be a significant annual source of atmospheric methane (CH4) (McGuire et al. 2012). Nonetheless, the response of Arctic tundra CH4 fluxes to continued climate warming remains uncertain. Laboratory and field studies indicate that CH4 fluxes are temperature sensitive, thus accurate calculation of the temperature sensitivity is vital for the prediction of future CH4 emission. For this, the increase in reaction rate over a 10°C range (Q10) is frequently used, with single fixed Q10 values (between 2 and 4) commonly incorporated into climate-carbon cycle models. However, the temperature sensitivity of CH4 emission can vary considerably depending on factors such as vegetation composition, water table and season. This promotes the use of spatially and seasonally variable Q10 values for accurate CH4 flux estimation under different future climate change scenarios. This study investigates the temperature sensitivity (Q10) of Arctic tundra methane fluxes, using an extensive number of soil cores (48) extracted from wet sedge polygonal tundra (Barrow Experimental Observatory, Alaska). 'Wet' and 'dry' cores were taken from the centre and raised perimeter of ice-wedge polygons, where the water tables are 0cm and -15cm respectively. Cores were incubated in two controlled environment chambers (University of Sheffield, UK) for 12 weeks under different thaw depth treatments (control and control + 6.8cm), water tables (surface and -15cm), and CO2 concentrations (400ppm and 850ppm) in a multifactorial manner. Chamber temperature was gradually increased from -5°C to 20°C, then gradually decreased to -5°C, with each temperature stage lasting one week. Average CH4 fluxes from 'dry' cores were consistently low and did not change significantly with temperature, indicating that CH4 emission from drier Arctic tundra soils is not particularly temperature sensitive. Average CH4 emission from 'wet' cores increased with increasing temperature between -5°C and 20°C. Interestingly, continued increases in average CH4 emission as chamber temperature decreased (20°C to 0°C) were observed. Importantly, when chamber temperature was increased (-5°C to 20°C), average CH4 emission in the 'wet' cores was consistently lower at the end of each week-long temperature stage compared to at the start. This suggests that the response of CH4 emission to climate warming might acclimate. Overall, this study is critical for refining the temperature sensitivity of Arctic tundra CH4 emission, and thus improving model predictions of the response of CH4 fluxes to climate change. References McGuire, AD; Christensen, TR; Hayes, D. et al. (2012). An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences. Vol.9, p.3185-3204, doi:10.5194/bg-9-3185-2012. Zona, D; Oechel, WC; Kochendorfer, J. et al. (2009). Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra. Global Biogeochemical Cycles. Vol.23, GB2013, doi:10.1029/2009GB003487.
High pressure liquid chromatographic gradient mixer
Daughton, Christian G.; Sakaji, Richard H.
1985-01-01
A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".
High-pressure liquid chromatographic gradient mixer
Daughton, C.G.; Sakaji, R.H.
1982-09-08
A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.
Apparatus for measuring charged particle beam
NASA Technical Reports Server (NTRS)
Gregory, D. A.; Stocks, C. D. (Inventor)
1984-01-01
An apparatus to measure the incident charged particle beam flux while effectively eliminating losses to reflection and/or secondary emission of the charged particle beam being measured is described. It comprises a sense cup through which the charged particle beam enters. A sense cone forms the rear wall of the interior chamber with the cone apex adjacent the entry opening. An outer case surrounds the sense cup and is electrically insulated therefrom. Charged particles entering the interior chamber are trapped and are absorbed by the sense cup and cone and travel through a current measuring device to ground.
A 'breadboard' biomass production chamber for CELSS
NASA Technical Reports Server (NTRS)
Prince, Ralph P.; Knott, William M., III; Hilding, Suzanne E.; Mack, Tommy L.
1987-01-01
The Breadboard Project of the Controlled Ecological Life Support System (CELSS) Program is the first attempt by NASA to integrate the primary components of a bioregenerative life support system into a functioning system. The central component of this project is a Biomass Production Chamber (BPC). The BPC is under construction, and when finished will be sealed for the study of the flux of gases, liquids, and solids through the production module of a CELSS. Features of the CELSS breadboard facility will be covered as will design requirements for the BPC. Cultural practices developed for wheat for the BPC wil be discussed.
Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.
1998-01-01
Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.
Modeling the pyrolysis study of non-charring polymers under reduced pressure environments
NASA Astrophysics Data System (ADS)
Zong, Ruowen; Kang, Ruxue; Hu, Yanghui; Zhi, Youran
2018-04-01
In order to study the pyrolysis of non-charring polymers under reduced pressure environments, a series of experiments based on black acrylonitrile butadiene styrene (ABS) was conducted in a reduced pressure chamber under different external heat fluxes. The temperatures of the top surface and the bottom of the sample and the mass loss during the whole process were measured in real time. A one-dimensional numerical model was developed to predict the top surface and the bottom surface temperatures of ABS during the pyrolysis at different reduced pressures and external heat fluxes, and the model was validated by the experimental data. The results of the study indicate that the profiles of the top surface and the bottom surface temperatures are different at different pressures and heat fluxes. The temperature and the mass loss rate of the sample under a lower heat flux decreased significantly as the pressure was increased. However, under a higher heat flux, the temperature and the mass loss rate showed little sensitivity to the pressure. The simulated results fitted the experimental results better at the higher heat flux than at the lower heat flux.
Polarization of electron-beam irradiated LDPE films: contribution to charge generation and transport
NASA Astrophysics Data System (ADS)
Banda, M. E.; Griseri, V.; Teyssèdre, G.; Le Roy, S.
2018-04-01
Electron-beam irradiation is an alternative way to generate charges in insulating materials, at controlled position and quantity, in order to monitor their behaviour in regard to transport phenomena under the space charge induced electric field or external field applied. In this study, low density polyethylene (LDPE) films were irradiated by a 80 keV electron-beam with a flux of 1 nA cm‑2 during 10 min in an irradiation chamber under vacuum conditions, and were then characterized outside the chamber using three experimental methods. The electrical behaviour of the irradiated material was assessed by space charge measurements using the pulsed electro-acoustic (PEA) method under dc stress. The influence of the applied electric field polarity and amplitude has been tested in order to better understand the charge behaviour after electron-beam irradiation. Fourier transform infra-red spectroscopy (FTIR) and photoluminescence (PL) measurements were performed to evaluate the impact of the electron beam irradiation, i.e. deposited charges and energy, on the chemical structure of the irradiated samples. The present results show that the electrical behaviour in LDPE after irradiation is mostly driven by charges, i.e. by physical process functions of the electric field, and that changes in the chemical structure seems to be mild.
NASA Astrophysics Data System (ADS)
Kulkarni, R. D.; Agarwal, Vivek
2008-08-01
An ion chamber amplifier (ICA) is used as a safety device for neutronic power (flux) measurement in regulation and protection systems of nuclear reactors. Therefore, performance reliability of an ICA is an important issue. Appropriate quality engineering is essential to achieve a robust design and performance of the ICA circuit. It is observed that the low input bias current operational amplifiers used in the input stage of the ICA circuit are the most critical devices for proper functioning of the ICA. They are very sensitive to the gamma radiation present in their close vicinity. Therefore, the response of the ICA deteriorates with exposure to gamma radiation resulting in a decrease in the overall reliability, unless desired performance is ensured under all conditions. This paper presents a performance enhancement scheme for an ICA operated in the nuclear environment. The Taguchi method, which is a proven technique for reliability enhancement, has been used in this work. It is demonstrated that if a statistical, optimal design approach, like the Taguchi method is used, the cost of high quality and reliability may be brought down drastically. The complete methodology and statistical calculations involved are presented, as are the experimental and simulation results to arrive at a robust design of the ICA.
Constraining Night Time Ecosystem Respiration by Inverse Approaches
NASA Astrophysics Data System (ADS)
Juang, J.; Stoy, P. C.; Siqueira, M. B.; Katul, G. G.
2004-12-01
Estimating nighttime ecosystem respiration remains a key challenge in quantifying ecosystem carbon budgets. Currently, nighttime eddy-covariance (EC) flux measurements are plagued by uncertainties often attributed to poor mixing within the canopy volume, non-turbulent transport of CO2 into and out of the canopy, and non-stationarity and intermittency. Here, we explore the use of second-order closure models to estimate nighttime ecosystem respiration by mathematically linking sources of CO2 to mean concentration profiles via the continuity and the CO2 flux budget equation modified to include thermal stratification. By forcing this model to match, in a root-mean squared sense, the nighttime measured mean CO2 concentration profiles within the canopy the above ground CO2 production and forest floor respiration can be estimated via multi-dimensional optimization techniques. We show that in a maturing pine and a mature hardwood forest, these optimized CO2 sources are (1) consistently larger than the eddy covariance flux measurements above the canopy, and (2) agree well with chamber-based measurements. We also show that by linking the optimized nighttime ecosystem respiration to temperature measurements, the estimated annual ecosystem respiration from this approach agrees well with biometric estimates, at least when compared to eddy-covariance methods conditioned on a friction velocity threshold. The difference between the annual ecosystem respiration obtained by this optimization method and the friction-velocity thresholded night-time EC fluxes can be as large as 700 g C m-2 (in 2003) for the maturing pine forest, which is about 40% of the ecosystem respiration. For 2001 and 2002, the annual ecosystem respiration differences between the EC-based and the proposed approach were on the order of 300 to 400 g C m-2.
Measuring nutrient flux in Pacific Coast salt marshes using fluctuating water-level chambers
Nutrient removal from the water column is an important ecosystem function that contributes to the production of clean water, a final valued ecosystem service of wetlands. However, little data is currently available for nutrient exchange in Pacific Northwest tidal ecosystems. We h...
Integrated sUAS Greenhouse Gas Measurements and Imagery for Land Use Emissions Monitoring
NASA Astrophysics Data System (ADS)
Barbieri, L.; Wyngaard, J.; Galford, G. L.; Adair, C.
2016-12-01
Agriculture, Forestry and Other Land Uses (AFOLU) constitute the second largest anthropogenic source of greenhouse gas (GHG) emissions globally. Agriculture is the dominant source of emissions within that sector. There are a variety of agricultural land management strategies that can be implemented to reduce GHG emissions, but determining the best strategies is challenging. Emissions estimates are currently derived from GHG monitoring methods (e.g., static chambers, eddy flux towers) that are time and labor intensive, expensive, and use in-situ equipment. These methods lack the flexible, spatio-temporal monitoring necessary to reduce the high uncertainty in regional GHG emissions estimates. Small Unmanned Aerial Systems (sUAS) provide the rapid response data collection needed to monitor important field management events (e.g., manure spreading). Further, the ease of deployment of sUAS makes monitoring large regional extents over full-seasons more viable. To our knowledge, we present the first integration of sUAS remotely sensed imagery and GHG concentrations in agriculture and land use monitoring. We have developed and tested open-source hardware and software utilizing low-cost equipment (e.g., NDIR gas sensors and Canon cameras). Initial results show agreement with more traditional, proprietary equipment but at a fraction of the costs. Here we present data from test flights over agricultural areas under various management practices. The suite of data includes sUAS overpasses for imagery and CO2 concentration measurements, paired with field-based GHG measurements (static chambers). We have developed a set of best practices for sUAS data collection (e.g., time of day effects variability in localized atmospheric GHG concentrations) and discuss currently known challenges (e.g., accounting for external environmental factors such as wind speed). We present results on all sUAS GHG sampling methods paired with imagery and simultaneous static chamber monitoring for a comprehensive assessment of methods for use in GHG emission hotspot detection across landscapes.
Strip casting with fluxing agent applied to casting roll
Williams, R.S.; O`Malley, R.J.; Sussman, R.C.
1997-07-29
A strip caster for producing a continuous strip includes a tundish for containing a melt, a pair of horizontally disposed water cooled casting rolls and devices for electrostatically coating the outer peripheral chill surfaces of the casting rolls with a powder flux material. The casting rolls are juxtaposed relative to one another for forming a pouting basin for receiving the melt through a teeming tube thereby establishing a meniscus between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line to a sealing chamber. A preferred flux is boron oxide having a melting point of about 550 C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll. 3 figs.
NASA Astrophysics Data System (ADS)
Wittebol, Laura A.
Measuring greenhouse gas (GHG) emissions directly at the farm scale is most relevant to the agricultural sector and has the potential to eliminate some of the uncertainty arising from scaling up from plot or field studies or down from regional or national levels. The stable nighttime atmosphere acts as a chamber within which sequentially-measured GHG concentration profiles determine the flux of GHGs. With the overall goal of refining the nocturnal boundary layer (NBL) budget method to obtain reliable flux estimates at a scale representative of the typical eastern Canadian farm (approximately 1 km2), fluxes of CO2, N2O, and CH4 were measured at two agricultural farms in Eastern Canada. Field sites in 1998 and 2002 were located on an experimental farm adjacent to a suburb southwest of the city of Ottawa, ON, a relatively flat area with corn, hay, and soy as the dominant crops. The field site in 2003 was located in the rural community of Coteau-du-Lac, QC, about 20 km southwest of the island of Montreal, a fairly flat area bordered by the St. Lawrence River to the south, consisting mainly of corn and hay with a mixture of soy and vegetable crops. A good agreement was obtained between the overall mean NBL budget-measured CO2 flux at both sites, near-in-time windy night eddy covariance data and previously published results. The mean NBL-measured N2O flux from all wind directions and farming management was of the same order of magnitude as, but slightly higher than, previously published baseline N2O emissions from agroecosystems. Methane fluxes results were judged to be invalid as they were extremely sensitive to wind direction change. Spatial sampling of CO 2, N2O, and CH4 around the two sites confirmed that [CH4] distribution was particularly sensitive to the nature of the emission source, field conditions, and wind direction. Optimal NBL conditions for measuring GHG fluxes, present approximately 60% of the time in this study, consisted of a very stable boundary layer in which GHG profiles converged at the top of the layer allowing a quick determination of the NBL flux integration height. For suboptimal NBL conditions consisting of intermittent turbulence where GHG profiles did not converge, a flux integration method was developed which yielded estimates similar to those obtained during optimal conditions. Eighty percent of the GHG flux in optimal NBL conditions corresponded to a footprint-modelled source area of approximately 2 km upwind, slightly beyond the typical length of a farm in Coteau-du-Lac. A large portion (50%) of the flux came from within 1 km upwind of the measurement site, showing the influence of local sources. 'Top-down' NBL-measured flux values were compared with aggregated field, literature and IPCC flux values for four footprint model-defined areas across both sites, with results indicating that in baseline climatic and farm management conditions, with no apparent intermittent NBL phenomena, the aggregated flux was a good approximation of the NBL-measured flux.
Scaling behavior of columnar structure during physical vapor deposition
NASA Astrophysics Data System (ADS)
Meese, W. J.; Lu, T.-M.
2018-02-01
The statistical effects of different conditions in physical vapor deposition, such as sputter deposition, have on thin film morphology has long been the subject of interest. One notable effect is that of column development due to differential chamber pressure in the well-known empirical model called the Thornton's Structure Zone Model. The model is qualitative in nature and theoretical understanding with quantitative predictions of the morphology is still lacking due, in part, to the absence of a quantitative description of the incident flux distribution on the growth front. In this work, we propose an incident Gaussian flux model developed from a series of binary hard-sphere collisions and simulate its effects using Monte Carlo methods and a solid-on-solid growth scheme. We also propose an approximate cosine-power distribution for faster Monte Carlo sampling. With this model, it is observed that higher chamber pressures widen the average deposition angle, and similarly increase the growth of column diameters (or lateral correlation length) and the column-to-column separation (film surface wavelength). We treat both the column diameter and the surface wavelength as power laws. It is seen that both the column diameter exponent and the wavelength exponent are very sensitive to changes in pressure for low pressures (0.13 Pa to 0.80 Pa); meanwhile, both exponents saturate for higher pressures (0.80 Pa to 6.7 Pa) around a value of 0.6. These predictions will serve as guides to future experiments for quantitative description of the film morphology under a wide range of vapor pressure.
Development and test of combustion chamber for Stirling engine heated by natural gas
NASA Astrophysics Data System (ADS)
Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu
2014-04-01
The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Lin, Che-Jen; Wang, Xun; Sommar, Jonas; Fu, Xuewu; Feng, Xinbin
2016-04-01
Reliable quantification of air-surface fluxes of elemental Hg vapor (Hg0) is crucial for understanding mercury (Hg) global biogeochemical cycles. There have been extensive measurements and modeling efforts devoted to estimating the exchange fluxes between the atmosphere and various surfaces (e.g., soil, canopies, water, snow, etc.) in the past three decades. However, large uncertainties remain due to the complexity of Hg0 bidirectional exchange, limitations of flux quantification techniques and challenges in model parameterization. In this study, we provide a critical review on the state of science in the atmosphere-surface exchange of Hg0. Specifically, the advancement of flux quantification techniques, mechanisms in driving the air-surface Hg exchange and modeling efforts are presented. Due to the semi-volatile nature of Hg0 and redox transformation of Hg in environmental media, Hg deposition and evasion are influenced by multiple environmental variables including seasonality, vegetative coverage and its life cycle, temperature, light, moisture, atmospheric turbulence and the presence of reactants (e.g., O3, radicals, etc.). However, the effects of these processes on flux have not been fundamentally and quantitatively determined, which limits the accuracy of flux modeling. We compile an up-to-date global observational flux database and discuss the implication of flux data on the global Hg budget. Mean Hg0 fluxes obtained by micrometeorological measurements do not appear to be significantly greater than the fluxes measured by dynamic flux chamber methods over unpolluted surfaces (p = 0.16, one-tailed, Mann-Whitney U test). The spatiotemporal coverage of existing Hg0 flux measurements is highly heterogeneous with large data gaps existing in multiple continents (Africa, South Asia, Middle East, South America and Australia). The magnitude of the evasion flux is strongly enhanced by human activities, particularly at contaminated sites. Hg0 flux observations in East Asia are comparatively larger in magnitude than the rest of the world, suggesting substantial re-emission of previously deposited mercury from anthropogenic sources. The Hg0 exchange over pristine surfaces (e.g., background soil and water) and vegetation needs better constraints for global analyses of the atmospheric Hg budget. The existing knowledge gap and the associated research needs for future measurements and modeling efforts for the air-surface exchange of Hg0 are discussed.
The atmosphere simulation chamber SAPHIR: a tool for the investigation of photochemistry.
NASA Astrophysics Data System (ADS)
Brauers, T.; Bohn, B.; Johnen, F.-J.; Rohrer, R.; Rodriguez Bares, S.; Tillmann, R.; Wahner, A.
2003-04-01
On the campus of the Forschungszentrum Jülich we constructed SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) which was accomplished in fall 2001. The chamber consists of a 280-m^3 double-wall Teflon bag of cylindrical shape that is held by a steel frame. Typically 75% of the outside actinic flux (290~nm~--~420~nm) is available inside the chamber. A louvre system allows switching between full sun light and dark within 40 s giving the opportunity to study relaxation processes of the photo chemical system. The SAPHIR chamber is equipped with a comprehensive set of sensitive instruments including the measurements of OH, HO_2, CO, hydrocarbons, aldehydes, nitrogen-oxides and solar radiation. Moreover, the modular concept of SAPHIR allows fast and flexible integration of new instruments and techniques. In this paper we will show the unique and new features of the SAPHIR chamber, namely the clean air supply and high purity water vapor supply providing a wide range of trace gas concentrations being accessible through the experiments. We will also present examples from the first year of SAPHIR experiment showing the scope of application from high quality instrument inter-comparison and kinetic studies to the simulation of complex mixtures of trace gases at ambient concentrations.
Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O
Moseman-Valtierra, Serena; Gonzalez, Rosalinda; Kroeger, Kevin D.; Tang, Jianwu; Chao, Wei Chun; Crusius, John; Bratton, John F.; Green, Adrian; Shelton, James
2011-01-01
Coastal salt marshes sequester carbon at high rates relative to other ecosystems and emit relatively little methane particularly compared to freshwater wetlands. However, fluxes of all major greenhouse gases (N2O, CH4, and CO2) need to be quantified for accurate assessment of the climatic roles of these ecosystems. Anthropogenic nitrogen inputs (via run-off, atmospheric deposition, and wastewater) impact coastal marshes. To test the hypothesis that a pulse of nitrogen loading may increase greenhouse gas emissions from salt marsh sediments, we compared N2O, CH4 and respiratory CO2fluxes from nitrate-enriched plots in a Spartina patens marsh (receiving single additions of NaNO3 equivalent to 1.4 g N m−2) to those from control plots (receiving only artificial seawater solutions) in three short-term experiments (July 2009, April 2010, and June 2010). In July 2009, we also compared N2O and CH4 fluxes in both opaque and transparent chambers to test the influence of light on gas flux measurements. Background fluxes of N2O in July 2009 averaged −33 μmol N2O m−2 day−1. However, within 1 h of nutrient additions, N2O fluxes were significantly greater in plots receiving nitrate additions relative to controls in July 2009. Respiratory rates and CH4 fluxes were not significantly affected. N2O fluxes were significantly higher in dark than in transparent chambers, averaging 108 and 42 μmol N2O m−2 day−1 respectively. After 2 days, when nutrient concentrations returned to background levels, none of the greenhouse gas fluxes differed from controls. In April 2010, N2O and CH4 fluxes were not significantly affected by nitrate, possibly due to higher nitrogen demands by growing S. patens plants, but in June 2010 trends of higher N2O fluxes were again found among nitrate-enriched plots, indicating that responses to nutrient pulses may be strongest during the summer. In terms of carbon equivalents, the highest average N2O and CH4 fluxes observed, exceeded half the magnitude of typical daily net carbon sequestration rates by salt marshes. Thus, anthropogenic additions of nitrate to coasts can substantially alter N2O fluxes from marshes, although substantial temporal variation in these fluxes was observed. To better assess the climatic roles of salt marshes, greenhouse gas emissions need to be studied in the context of chronic nitrogen loads that impact many coastal ecosystems.
NASA Astrophysics Data System (ADS)
Dinsmore, Kerry J.; Drewer, Julia; Levy, Peter E.; George, Charles; Lohila, Annalea; Aurela, Mika; Skiba, Ute M.
2017-02-01
Subarctic and boreal emissions of CH4 are important contributors to the atmospheric greenhouse gas (GHG) balance and subsequently the global radiative forcing. Whilst N2O emissions may be lower, the much greater radiative forcing they produce justifies their inclusion in GHG studies. In addition to the quantification of flux magnitude, it is essential that we understand the drivers of emissions to be able to accurately predict climate-driven changes and potential feedback mechanisms. Hence this study aims to increase our understanding of what drives fluxes of CH4 and N2O in a subarctic forest/wetland landscape during peak summer conditions and into the shoulder season, exploring both spatial and temporal variability, and uses satellite-derived spectral data to extrapolate from chamber-scale fluxes to a 2 km × 2 km landscape area.From static chamber measurements made during summer and autumn campaigns in 2012 in the Sodankylä region of northern Finland, we concluded that wetlands represent a significant source of CH4 (3.35 ± 0.44 mg C m-2 h-1 during the summer campaign and 0.62 ± 0.09 mg C m-2 h-1 during the autumn campaign), whilst the surrounding forests represent a small sink (-0.06 ± < 0.01 mg C m-2 h-1 during the summer campaign and -0.03 ± < 0.01 mg C m-2 h-1 during the autumn campaign). N2O fluxes were near-zero across both ecosystems.We found a weak negative relationship between CH4 emissions and water table depth in the wetland, with emissions decreasing as the water table approached and flooded the soil surface and a positive relationship between CH4 emissions and the presence of Sphagnum mosses. Temperature was also an important driver of CH4 with emissions increasing to a peak at approximately 12 °C. Little could be determined about the drivers of N2O emissions given the small magnitude of the fluxes.A multiple regression modelling approach was used to describe CH4 emissions based on spectral data from PLEIADES PA1 satellite imagery across a 2 km × 2 km landscape. When applied across the whole image domain we calculated a CH4 source of 2.05 ± 0.61 mg C m-2 h-1. This was significantly higher than landscape estimates based on either a simple mean or weighted by forest/wetland proportion (0.99 ± 0.16, 0.93 ± 0.12 mg C m-2 h-1, respectively). Hence we conclude that ignoring the detailed spatial variability in CH4 emissions within a landscape leads to a potentially significant underestimation of landscape-scale fluxes. Given the small magnitude of measured N2O fluxes a similar level of detailed upscaling was not needed; we conclude that N2O fluxes do not currently comprise an important component of the landscape-scale GHG budget at this site.
Gaseous fluxes from subsurface flow constructed wetlands for wastewater treatment.
Mander, Ulo; Lõhmus, Krista; Teiter, Sille; Nurk, Kaspar; Mauring, Tõnu; Augustin, Jürgen
2005-01-01
We measured nitrous oxide (N2O), dinitrogen (N2), and methane (CH4) fluxes in two constructed wetlands (CW) in Estonia using the closed chamber method and the He-O method in the period from October 2000 to March 2003. Emission rates of N2O-N, N2-N and CH4-C from both CWs varied significantly on a both spatial and temporal scale, ranging from 1 to 2,600, 170 to 130,000, and -1.7 to 87,200 microg m(-2) h(-1) respectively. The average flux of N2O from the microsites in the Kodijärve horizontal subsurface flow (HSSF) CW and Kõo hybrid CW ranged from 27 to 370 and from 72 to 500 microg N2O-N m(-2) h(-1), respectively, whereas the average dinitrogen flux from the microsites in the HSSF CW in Kodijärve was 2-3 magnitudes higher than the N2O flux, ranging from 19,500 to 33,300 microg N2-N m(-2) h(-1). The average methane emissions from the microsites in the Kodijärve HSSF CW and the Kõo hybrid CW ranged from 31 to 12,100 and from 950 to 5,750 microg CH4-C m(-2) h(-1), respectively. The highest emission values for all three gases were observed in the warm period. There was a significant relationship between emission rates and water table depth: CH4 and N2 emission increased and N2O emission decreased when the water table did rise. Although the emission of N2O and CH4 from CWs was found to be relatively high, their global warming potential (GWP) in the time horizon of 100 years is not significant, ranging from 4.5 to 16.3 tonnes of CO2 equivalents per ha per year in Kodijärve and from 12.1 to 17.3 t CO2 equivalents ha(-1) yr(-1) in Kõo.
NASA Technical Reports Server (NTRS)
Aprile, Elena
1992-01-01
In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.
Examination of various turbulence models for application in liquid rocket thrust chambers
NASA Technical Reports Server (NTRS)
Hung, R. J.
1991-01-01
There is a large variety of turbulence models available. These models include direct numerical simulation, large eddy simulation, Reynolds stress/flux model, zero equation model, one equation model, two equation k-epsilon model, multiple-scale model, etc. Each turbulence model contains different physical assumptions and requirements. The natures of turbulence are randomness, irregularity, diffusivity and dissipation. The capabilities of the turbulence models, including physical strength, weakness, limitations, as well as numerical and computational considerations, are reviewed. Recommendations are made for the potential application of a turbulence model in thrust chamber and performance prediction programs. The full Reynolds stress model is recommended. In a workshop, specifically called for the assessment of turbulence models for applications in liquid rocket thrust chambers, most of the experts present were also in favor of the recommendation of the Reynolds stress model.
Dynamically controlled crystallization method and apparatus and crystals obtained thereby
NASA Technical Reports Server (NTRS)
Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)
2003-01-01
A method and apparatus for dynamically controlling the crystallization of molecules including a crystallization chamber (14) or chambers for holding molecules in a precipitant solution, one or more precipitant solution reservoirs (16, 18), communication passages (17, 19) respectively coupling the crystallization chamber(s) with each of the precipitant solution reservoirs, and transfer mechanisms (20, 21, 22, 24, 26, 28) configured to respectively transfer precipitant solution between each of the precipitant solution reservoirs and the crystallization chamber(s). The transfer mechanisms are interlocked to maintain a constant volume of precipitant solution in the crystallization chamber(s). Precipitant solutions of different concentrations are transferred into and out of the crystallization chamber(s) to adjust the concentration of precipitant in the crystallization chamber(s) to achieve precise control of the crystallization process. The method and apparatus can be used effectively to grow crystals under reduced gravity conditions such as microgravity conditions of space, and under conditions of reduced or enhanced effective gravity as induced by a powerful magnetic field.
CO2 and CH4 fluxes of contrasting pristine bogs in southern Patagonia (Tierra del Fuego, Argentina)
NASA Astrophysics Data System (ADS)
Münchberger, Wiebke; Blodau, Christian; Kleinebecker, Till; Pancotto, Veronica
2015-04-01
South Patagonian peatlands cover a wide range of the southern terrestrial area and thus are an important component of the terrestrial global carbon cycle. These extremely southern ecosystems have been accumulating organic material since the last glaciation up to now and are - in contrast to northern hemisphere bogs - virtually unaffected by human activities. So far, little attention has been given to these pristine ecosystems and great carbon reservoirs which will potentially be affected by climate change. We aim to fill the knowledge gap in the quantity of carbon released from these bogs and in what controls their fluxes. We study the temporal and spatial variability of carbon fluxes in two contrasting bog ecosystems in southern Patagonia, Tierra del Fuego. Sphagnum-dominated bog ecosystems in Tierra del Fuego are similar to the ones on the northern hemisphere, while cushion plant-dominated bogs can almost exclusively be found in southern Patagonia. These unique cushion plant-dominated bogs are found close to the coast and their occurrence changes gradually to Sphagnum-dominated bogs with increasing distance from the coast. We conduct closed chamber measurements and record relevant environmental variables for CO2 and CH4 fluxes during two austral vegetation periods from December to April. Chamber measurements are performed on microforms representing the main vegetation units of the studied bogs. Gas concentrations are measured with a fast analyzer (Los Gatos Ultraportable Greenhouse Gas Analyzer) allowing to accurately record CH4 fluxes in the ppm range. We present preliminary results of the carbon flux variability from south Patagonian peat bogs and give insights into their environmental controls. Carbon fluxes of these two bog types appear to be highly different. In contrast to Sphagnum-dominated bogs, cushion plant-dominated bogs release almost no CH4 while their CO2 flux in both, photosynthesis and respiration, can be twice as high as for Sphagnum-dominated bogs. Water table fluctuations in the cushion plant-dominated bog seem to be negligible and CH4 is mainly released from Sphagnum lawns suggesting the importance of the vegetation type for CH4 fluxes in these special ecosystems. Our results will help to understand which conditions favor the development of either a cushion plant-dominated or Sphagnum-dominated bog which is not yet known.
USDA-ARS?s Scientific Manuscript database
Precipitation and irrigation induce pulses of N2O emissions in agricultural soils, but the magnitude, duration, and timing of these pulses remain uncertain. This uncertainty makes it difficult to accurately extrapolate emissions from unmeasured time periods using static chambers sampled manually. Fu...
Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi
2013-02-01
Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange flux is remarkably negatively linearly correlated to air mercury concentration and positively linearly correlated to air temperature. Furthermore, there is a general positive linear correlation between mercury exchange flux and soil temperature on the surface of earth after snow melting.
NASA Astrophysics Data System (ADS)
Point, D.; Monperrus, M.; Tessier, E.; Amouroux, D.; Chauvaud, L.; Thouzeau, G.; Jean, F.; Amice, E.; Grall, J.; Leynaert, A.; Clavier, J.; Donard, O. F. X.
2007-04-01
In situ benthic chamber experiments were conducted in the Thau Lagoon that allowed the simultaneous determination of the benthic exchanges of trace metals (Cd, Co, Cu, Mn, Pb and U) and mercury species (iHg and MMHg). Fluxes of organotin compounds (MBT, DBT and TBT) were also investigated for the first time. The benthic incubations were performed during two campaigns at four stations that presented different macrobenthic and macrophytic species distribution and abundance (see [Thouzeau, G., Grall, J., Clavier, J., Chauvaud, L., Jean, F., Leynaert, A., Longpuirt, S., Amice, E., Amouroux, D., 2007. Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science 72 (3), 432 446.]). The results indicate that most of the flux intensity as well as the temporal and spatial variability can be explained by the combined influence of microscale and macroscale processes. Microscale changes were identified using Mn flux as a good indicator of the redox conditions at the sediment water interface, and by extension, as an accurate proxy of benthic fluxes for most trace metals and mercury species. We also observed that the redox gradient at the interface is promoted by both microbial and macrobenthic species activity that governs O2 budgets. Macroscale processes have been investigated considering macrobenthic organisms activity (macrofauna and macroalgal cover). The density of such macroorganisms is able to explain most of the spatial and temporal variability of the benthic metal fluxes within a specific site. A tentative estimation of the flux of metals and organometals associated with deposit feeder and suspension feeder activity was found to be in the range of the flux determined within the chambers for most considered elements. Furthermore, a light/dark incubation investigating a dense macroalgal cover present at the sediment surface illustrates the role of photosynthetic activity in controlling benthic exchanges. Significant changes in benthic flux intensity and/or direction were reported for all redox sensitive elements (Cd, Co, Cu, Mn, Pb, U, and iHg). For MMHg and organotin species, other complimentary processes such as photodegradation/uptake and hydrophobic absorption/desorption need to be considered. This work demonstrates that the processes governing benthic exchanges are complex and that benthic organisms play a major role in the significant seasonal, diurnal and spatial variability of trace metals and organometals benthic fluxes in the lagoon.
Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T
2012-02-01
The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.
Design and experimental study of an integrated vapor chamber-thermal energy storage system
NASA Astrophysics Data System (ADS)
Kota, Krishna M.
Future defense, aerospace and automotive technologies involve electronic systems that release high pulsed waste heat like during high power microwave and laser diode applications in tactical and combat aircraft, and electrical and electronic systems in hybrid electric vehicles, which will require the development of an efficient thermal management system. A key design issue is the need for fast charging so as not to overheat the key components. The goal of this work is to study the fabrication and technology implementation feasibility of a novel high energy storage, high heat flux passive heat sink. Key focus is to verify by theory and experiments, the practicability of using phase change materials as a temporary storage of waste heat for heat sink applications. The reason for storing the high heat fluxes temporarily is to be able to reject the heat at the average level when the heat source is off. Accordingly, a concept of a dual latent heat sink intended for moderate to low thermal duty cycle electronic heat sink applications is presented. This heat sink design combines the features of a vapor chamber with rapid thermal energy storage employing graphite foam inside the heat storage facility along with phase change materials and is attractive owing to its passive operation unlike some of the current thermal management techniques for cooling of electronics employing forced air circulation or external heat exchangers. In addition to the concept, end-application dependent criteria to select an optimized design for this dual latent heat sink are presented. A thermal resistance concept based design tool/model has been developed to analyze and optimize the design for experiments. The model showed that it is possible to have a dual latent heat sink design capable of handling 7 MJ of thermal load at a heat flux of 500 W/cm2 (over an area of 100 cm 2) with a volume of 0.072 m3 and weighing about 57.5 kg. It was also found that with such high heat flux absorption capability, the proposed conceptual design could have a vapor-to-condenser temperature difference of less than 10°C with a volume storage density of 97 MJ/m 3 and a mass storage density of 0.122 MJ/kg. The effectiveness of this heat sink depends on the rapidness of the heat storage facility in the design during the pulse heat generation period of the duty cycle. Heat storage in this heat sink involves transient simultaneous laminar film condensation of vapor and melting of an encapsulated phase change material in graphite foam. Therefore, this conjugate heat transfer problem including the wall inertia effect is numerically analyzed and the effectiveness of the heat storage mechanism of the heat sink is verified. An effective heat capacity formulation is employed for modeling the phase change problem and is solved using finite element method. The results of the developed model showed that the concept is effective in preventing undue temperature rise of the heat source. Experiments are performed to investigate the fabrication and implementation feasibility and heat transfer performance for validating the objectives of the design, i.e., to show that the VCTES heat sink is practicable and using PCM helps in arresting the vapor temperature rise in the heat sink. For this purpose, a prototype version of the VCTES heat sink is fabricated and tested for thermal performance. The volume foot-print of the vapor chamber is about 6"X5"X2.5". A custom fabricated thermal energy storage setup is incorporated inside this vapor chamber. A heat flux of 40 W/cm2 is applied at the source as a pulse and convection cooling is used on the condenser surface. Experiments are done with and without using PCM in the thermal energy storage setup. It is found that using PCM as a second latent system in the setup helps in lowering the undue temperature rise of the heat sink system. It is also found that the thermal resistance between the vapor chamber and the thermal energy storage setup, the pool boiling resistance at the heat source in the vapor chamber, the condenser resistance during heat discharging were key parameters that affect the thermal performance. Some suggestions for future improvements in the design to ease its implementation and enhance the heat transfer of this novel heat sink are also presented.
Beyond Ussing's chambers: contemporary thoughts on integration of transepithelial transport.
Herrmann, Jeremy R; Turner, Jerrold R
2016-03-15
In the mid-20th century, Hans Ussing developed a chamber that allowed for the simultaneous measurement of current and labeled probe flux across epithelia. Using frog skin as a model, Ussing used his results to propose mechanisms of transcellular Na(+) and K(+) transport across apical (exterior/luminal) and basolateral (interior) membranes that is essentially unchanged today. Others took advantage of Ussing's chambers to study mucosal tissues, including bladder and intestines. It quickly became clear that, in some tissues, passive paracellular flux, i.e., across the tight junction, was an important component of overall transepithelial transport. Subsequent work demonstrated that activation of the apical Na(+)-glucose cotransporter SGLT1 regulated paracellular permeability such that intestinal paracellular transport could coordinate with and amplify transcellular transport. Intermediates in this process include activation of p38 MAPK, the apical Na(+)/H(+) exchanger NHE3, and myosin light chain kinase (MLCK). Investigators then focused on these processes in disease. They found that TNF induces barrier dysfunction via MLCK activation and downstream caveolin-1-dependent endocytosis of the tight junction protein occludin. TNF also inhibited NHE3, and both barrier loss and PKCα-dependent NHE3 inhibition were required for TNF-induced acute diarrhea, emphasizing the interplay between transcellular and paracellular transport. Finally, studies using immune-mediated inflammatory bowel disease models showed that mice lacking epithelial MLCK were initially protected, but became ill as epithelial damage progressed and provided a tight junction-independent means of barrier loss. None of these advances would have been possible without the insights provided by Ussing and others using Ussing's ingenious, and still useful, chambers. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Khripounoff, A.; Caprais, J. C.; Decker, C.; Le Bruchec, J.; Noel, P.; Husson, B.
2017-08-01
We studied bivalves (vesicomyids and mytilids) inhabiting four different areas of high sulfide and methane production: (1) in the Gulf of Guinea, two pockmarks (650 m and 3150 m depth) and one site rich in organic sediments in the deepest zone (4950 m average depth), (2) at the Azores Triple Junction on the Mid-Atlantic Ridge, one hydrothermal site (Lucky Strike vent field, 1700 m depth). Two types of Calmar benthic chambers were deployed, either directly set into the sediment (standard Calmar chamber) or fitted with a tank to isolate organisms from the sediment (modified Calmar chamber), to assess gas and solute exchanges in relation to bivalve bed metabolism. Fluxes of oxygen, total carbon dioxide, ammonium and methane were measured. At the site with organic-rich sediments, oxygen consumption by clams measured in situ with the standard benthic chamber was variable (1.3-6.7 mmol m-2 h-1) as was total carbon dioxide production (1-9.6 mmol m-2 h-1). The observed gas and solute fluxes were attributed primarily to bivalve respiration (vesicomyids or mytilids), but microbial and geochemical processes in the sediment may be also responsible for some of variations in the deepest stations. The respiration rate of isolated vesicomyids (16.1-0.25.7 μmol g-1 dry weight h-1) was always lower than that of mytilids (33 μmol g-1 dry weight h-1). This difference was attributed to the presence of a commensal scaleworm in the mytilids. The respiratory coefficient (QR) ≥1 indicated high levels of anaerobic metabolism. The O:N index ranged from 5 to 25, confirming that vesicomyids and mytilids, living in symbiosis with bacteria, have a protein-based food diet.
Thermal Vacuum Integrated System Test at B-2
NASA Technical Reports Server (NTRS)
Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.
High Time Resolution Measurements of Methane Fluxes From Enteric Fermentation in Cattle Rumen
NASA Astrophysics Data System (ADS)
Floerchinger, C. R.; Herndon, S.; Fortner, E.; Roscioli, J. R.; Kolb, C. E.; Knighton, W. B.; Molina, L. T.; Zavala, M.; Castelán, O.; Ku Vera, J.; Castillo, E.
2013-12-01
Methane accounts for roughly 20% of the global radiative climate forcing in the last two and a half centuries. Methane emissions arise from a number of anthropogenic and biogenic sources. In some areas enteric fermentation in livestock produces over 90% of agricultural methane. In the spring of 2013, as a part of the Short Lived Climate Forcer-Mexico field campaign, the Aerodyne Mobile Laboratory in partnership with the Molina Center for the Environment studied methane production associated with enteric fermentation in the rumen of cattle. A variety of different breeds and stocks being raised in two agricultural and veterinary research facilities located in different areas of Mexico were examined. Methane fluxes were quantified using two methods: 1) an atmospherically stable gaseous tracer release was collocated with small herds in a pasture, allowing tracer ratio flux measurements; 2) respiratory CO2 was measured in tandem with methane in the breath of individual animals allowing methane production to be related to metabolism. The use of an extensive suite of very high time response instruments allows for differentiation of individual methane producing rumination events and respiratory CO2 from possible background interferences. The results of these studies will be presented and compared to data from traditional chamber experiments.
Smith, James A.; Tisdale, Amy K.; Cho, H. Jean
1996-01-01
The upward flux of trichloroethene (TCE) vapor through the unsaturated zone above a contaminated, water-table aquifer at Picatinny Arsenal, New Jersey, has been studied under natural conditions over a 12-month period. Vertical gas-phase diffusion fluxes were estimated indirectly by measuring the TCE vapor concentration gradient in the unsaturated zone and using Fick's law to calculate the flux. The total gas-phase flux (e.g., the sum of diffusion and advection fluxes) was measured directly with a vertical flux chamber (VFC). In many cases, the upward TCE vapor flux was several orders of magnitude greater than the upward TCE diffusion flux, suggesting that mechanisms other than steady-state vapor diffusion are contributing to the vertical transport of TCE vapors through the unsaturated zone. The measured total flux of TCE vapor from the subsurface to the atmosphere is approximately 50 kg/yr and is comparable in magnitude to the removal rate of TCE from the aquifer by an existing pump-and-treat system and by discharge into a nearby stream. The net upward flux of TCE is reduced significantly during a storm event, presumably due to the mass transfer of TCE from the soil gas to the infiltrating rainwater and its subsequent downward advection. Several potential problems associated with the measurement of total gas-phase fluxes are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A. A.; Hesjedal, T.; Diamond Light Source, Didcot OX11 0DE
We present a miniaturized molecular beam epitaxy (miniMBE) system with an outer diameter of 206 mm, optimized for flexible and high-throughput operation. The three-chamber system, used here for oxide growth, consists of a sample loading chamber, a storage chamber, and a growth chamber. The growth chamber is equipped with eight identical effusion cell ports with linear shutters, one larger port for either a multi-pocket electron beam evaporator or an oxygen plasma source, an integrated cryoshroud, retractable beam-flux monitor or quartz-crystal microbalance, reflection high energy electron diffraction, substrate manipulator, main shutter, and quadrupole mass spectrometer. The system can be combined withmore » ultrahigh vacuum (UHV) end stations on synchrotron and neutron beamlines, or equivalently with other complex surface analysis systems, including low-temperature scanning probe microscopy systems. Substrate handling is compatible with most UHV surface characterization systems, as the miniMBE can accommodate standard surface science sample holders. We introduce the design of the system, and its specific capabilities and operational parameters, and we demonstrate the epitaxial thin film growth of magnetoelectric Cr{sub 2}O{sub 3} on c-plane sapphire and ferrimagnetic Fe{sub 3}O{sub 4} on MgO (001)« less
Plasma Propulsion Testing Capabilities at Arnold Engineering Development Center
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Dawbarn, Albert; Moeller, Trevor
2007-01-01
This paper describes the results of a series of experiments aimed at quantifying the plasma propulsion testing capabilities of a 12-ft diameter vacuum facility (12V) at USAF-Arnold Engineering Development Center (AEDC). Vacuum is maintained in the 12V facility by cryogenic panels lining the interior of the chamber. The pumping capability of these panels was shown to be great enough to support plasma thrusters operating at input electrical power >20 kW. In addition, a series of plasma diagnostics inside the chamber allowed for measurement of plasma parameters at different spatial locations, providing information regarding the chamber's effect on the global plasma thruster flowfield. The plasma source used in this experiment was Hall thruster manufactured by Busek Co. The thruster was operated at up to 20 kW steady-state power in both a lower current and higher current mode. The vacuum level in the chamber never rose above 9 x 10(exp -6) torr during the course of testing. Langmuir probes, ion flux probes, and Faraday cups were used to quantify the plasma parameters in the chamber. We present the results of these measurements and estimates of pumping speed based on the background pressure level and thruster propellant mass flow rate.