Science.gov

Sample records for flux climatologies derived

  1. The HOAPS-II climatology - Release II of the satellite-derived freshwater flux climatology

    NASA Astrophysics Data System (ADS)

    Fennig, K.; Klepp, C.; Bakan, S.; Schulz, J.; Graßl, H.

    2003-04-01

    HOAPS-II (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) is the improved global climatology of sea surface parameters and surface energy and freshwater fluxes derived from satellite radiances for the time period July 1987 until the recent dates. Data from polar orbiting radiometers, all available Special Sensor Microwave/Imager (SSM/I) radiometers and the Advanced Very High Resolution Radiometer (AVHRR), have been used to get global fields of surface meteorological and oceanographic parameters but also latent heat flux, evaporation, precipitation and net freshwater flux as well as the wind speed, water vapor- and total water content over ice free ocean areas for various averaging periods and grid sizes including scan orientated data in the NetCDF data format. All retrieval methods have been validated with in situ data on a global scale with a focus on precipitation validation. The new release of the data base is freely available to the community. Additionally, applications of the HOAPS-II data base will demonstrate its ability to detect ground validated High Impact Weather over global oceans that the Global Precipitation Climatology Project (GPCP) climatology and the ECMWF model is frequently missing. Nowcasting of model-unpredicted storms is a high potential application of this new data base.

  2. Uncertainties in global ocean surface heat flux climatologies derived from ship observations

    SciTech Connect

    Gleckler, P.J.; Weare, B.C.

    1995-08-01

    A methodology to define uncertainties associated with ocean surface heat flux calculations has been developed and applied to a revised version of the Oberhuber global climatology, which utilizes a summary of the COADS surface observations. Systematic and random uncertainties in the net oceanic heat flux and each of its four components at individual grid points and for zonal averages have been estimated for each calendar month and the annual mean. The most important uncertainties of the 2{degree} x 2{degree} grid cell values of each of the heat fluxes are described. Annual mean net shortwave flux random uncertainties associated with errors in estimating cloud cover in the tropics yield total uncertainties which are greater than 25 W m{sup {minus}2}. In the northern latitudes, where the large number of observations substantially reduce the influence of these random errors, the systematic uncertainties in the utilized parameterization are largely responsible for total uncertainties in the shortwave fluxes which usually remain greater than 10 W m{sup {minus}2}. Systematic uncertainties dominate in the zonal means because spatial averaging has led to a further reduction of the random errors. The situation for the annual mean latent heat flux is somewhat different in that even for grid point values the contributions of the systematic uncertainties tend to be larger than those of the random uncertainties at most all latitudes. Latent heat flux uncertainties are greater than 20 W m{sup {minus}2} nearly everywhere south of 40{degree}N, and in excess of 30 W m{sup {minus}2} over broad areas of the subtropics, even those with large numbers of observations. Resulting zonal mean latent heat flux uncertainties are largest ({approximately}30 W m{sup {minus}2}) in the middle latitudes and subtropics and smallest ({approximately}10--25 W m{sup {minus}2}) near the equator and over the northernmost regions.

  3. Deriving ocean climatologies with multivariate coupling

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Alvera Azcarate, Aida; Beckers, Jean-Marie

    2016-04-01

    In situ measurements of ocean properties are generally sparsely distributed and thus undersample the ocean variability. Deriving ocean climatologies is a challenging task especially for biological and chemical parameters where the number of data is, by an order of magnitude, smaller than for physical parameters. However, physical and biogeochemical parameters are related through the ocean dynamics. In particular fronts visible in physical parameters are often related to gradients in biogeochemical parameters. Ocean climatologies are generally derived for different variables independently. For biogeochemical parameters, only the very large-scale variability can be derived for poorly sampled areas. Here we present a method to derive multivariate analysis taking the relationship between physical and biogeochemical variables into account. The benefit of this procedure is showed by using model data for salinity, nitrate and phosphate of the Mediterranean Sea. The model fields are sampled at the locations of true observations (extracted from the World Ocean Database 2013) and the analysed fields are compared to the original model fields. The multivariate analysis result in a reduction of the RMS error and to a better representation of the gradients.

  4. Assessment of North Atlantic Precipitation and Freshwater Flux from the HOAPS-3 satellite climatology

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Klepp, C.; Bakan, S.; Schulz, J.

    2009-04-01

    To attain a better understanding and modeling of climate processes attaining a proper knowledge of global water cycle components is essential. For the assessment of the freshwater flux at the ocean surface on global scale, exchange processes at the air-sea interface play a key-role. With the ability to derive ocean latent heat flux and precipitation from satellite data with acceptable accuracy, and frequent global coverage, a climatological assessment of the crucial processes has become possible. The HOAPS-3 climatology (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data) contains fields of precipitation, surface fluxes and atmospheric parameters over the global ice-free ocean between 1987 and 2005. Except for the NOAA Pathfinder SST, all basic state variables needed for the derivation of the fluxes are calculated from SSM/I passive microwave radiometer measurements. Multi-satellite averages, inter-sensor calibration, and an efficient sea ice detection procedure make HOAPS a suitable data set for climatological applications as well as for case studies. Gridded 0.5 degree monthly, pentad and twice daily data products are freely available from www.hoaps.org. For the precipitation parameter, quasi-global coverage is achieved by complementing HOAPS-3 over land areas using the rain gauge based "Full Data Reanalysis Product Version 4", which is provided by the Global Precipitation Climatology Centre (GPCC). North Atlantic intra-decadal precipitation variability is investigated using this combined data set. The mutual response of the two independent precipitation data sources to the North Atlantic Oscillation (NAO) reveals coherent patterns and a detailed view on the structural changes in precipitation during the high and low states of the NAO. A second focus will be put on the evaluation of HOAPS-3 ocean surface freshwater fluxes and their interaction with the NAO.

  5. Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan

    2002-01-01

    This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.

  6. Climatology of sediment flux and composition in the subarctic Northeast Pacific Ocean with biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Timothy, D. A.; Wong, C. S.; Barwell-Clarke, J. E.; Page, J. S.; White, L. A.; Macdonald, R. W.

    2013-09-01

    similar to estimates of export production at OSP made from global modeling, but it is double estimates of NCPOC based on mass balance of mixed-layer tracers. The estimate of NCPOC and a CaCO3:OC export ratio of 0.18 determined from trap data gives a net community production of CaCO3 (NCPIC) of 0.65-0.95 mol m-2 y-1 in agreement with water-column CaCO3 dissolution plus deep CaCO3 flux. The similarity between the CaCO3:POC flux ratio at 50 m and the CaCO3:POC production ratio from bottle incubations (Lipsen et al., 2007) requires that ∼70% of CaCO3 production must dissolve in the euphotic zone to match the rate of POC recycling at OSP. Flux climatologies at 1000 m and 3800 m imply sediments caught at 3800 m include a component sinking rapidly (the primary flux; ∼120-350 m d-1) and another component sinking slowly (the secondary flux; ∼10-20 m d-1). A mass-balance model finds that secondary fluxes contribute ∼40% to the annual mass flux at 3800 m. Based on compositional evidence and on the arrival times at 3800 m, the secondary flux likely derives from disaggregated primary fluxes with an additional lithogenic component transported horizontally to the bathypelagic zone at OSP. Remineralization of BSi, CaCO3, OC and N estimated from decreasing flux with depth in the bathypelagic zone agrees with estimates for the Pacific Ocean based on water-column tracers provided trapping efficiency at 1000 m is 0.6-0.8 and at 3800 m is 1. Alternatively, the estimates based on tracers may include a component of seafloor remineralization. In this case, remineralization in the water column at OSP is at least 30-45% of the remineralization determined by tracers, with the remainder occurring at the seafloor.

  7. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  8. Model-Derived Global Aerosol Climatology for MISR Analysis ("Clim-Likely" Data Set)

    Atmospheric Science Data Center

    2017-06-05

    Model-Derived Global Aerosol Climatology for MISR Analysis Multi-angle Imaging ... (MISR) monthly, global 1° x 1° "Clim-Likely" aerosol climatology, derived from 'typical-year' aerosol transport model results are available for individual 1° x 1° boxes or ...

  9. A 40-year retrospective European radon flux inventory including climatological variability

    NASA Astrophysics Data System (ADS)

    López-Coto, I.; Mas, J. L.; Bolivar, J. P.

    2013-07-01

    In this work, a 40-year retrospective European radon flux inventory has been calculated. Average values of the radon exhalation rate, probability distributions and seasonal fluctuations have been obtained. To achieve this, a numerical model of radon transport through finite, heterogeneous and porous media has been implemented, enabling us to calculate the radon exhalation rate of European soils with a horizontal resolution of 0.5' (˜1 km). Geological, geochemical and climatological parameters derived from European and international databases (FOREGS, HWSD, ERA-40) have been coupled to the model. The theoretical model is based on the fundamental equation of radon transport in porous media, taking into account the dependency of the transport coefficient on temperature and humidity. It also includes a simple model that evaluates the effect of snow cover. In general, the results show wide variations depending on location and season of the year, with a spatial standard deviation close to the annual average value (30 Bq m-2 h-1) In turn, the seasonal deviation is about 25% of the annual average value. The inventory can be easily integrated into atmospheric transport models acting as baseline that could be used for policy decisions regarding the identification of areas with a high risk of exposure to radon. The gridded data are available for the scientific community upon request. The limitations and sources of errors and uncertainties of the model are also discussed in detail.

  10. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  11. 3D aerosol climatology over East Asia derived from CALIOP observations

    NASA Astrophysics Data System (ADS)

    Zhou, Yongbo; Sun, Xuejin; Zhang, Chuanliang; Zhang, Riwei; Li, Yan; Li, Haoran

    2017-03-01

    The seasonal mean extinction coefficient profile (ECP), single scattering albedo (SSA), and scattering phase function (SPF) derived from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) version 3 Level 2 5-km aerosol profile product (2011-2014) were compiled into a three-dimensional (3D) aerosol climatology for East Asia. The SSA and SPF were calculated as the weighted averages of the scattering properties of the CALIOP aerosol subtypes. The weights were set to the occurrence frequencies of the subtypes. The single scattering properties of each subtype were extrapolated from the volume-based size distribution and complex refractive indexes based on Mie calculations. For the high-loading episodes (aerosol optical depth ≥ 0.6), the exponential ECP structures were most frequently observed over the farmland and desert areas, along with the uplifted ECP structures over the marine and coastal areas. Besides the desert areas, high-loading episodes also occurred over areas with frequent agricultural and industry activities. Unlike the conventional half-3D aerosol climatology (vertically constant SSA and SPF), this newly generated climatology specified SSA and SPF in the full-3D space (full-3D aerosol climatology). Errors on the shortwave radiative heating rate (SW RHR) due to the half-3D aerosol climatology approximation were quantified. The SW RHR errors were around ±1 K/day, implying that the half-3D aerosol climatology should be used with caution in climate modeling. This study is among the first to generate a full-3D aerosol climatology from the CALIOP data. This full-3D aerosol climatology is potentially useful for aerosol remote sensing and climate modeling.

  12. Comparison of global precipitation climatology products derived from ground- and satellite-based measurements

    NASA Astrophysics Data System (ADS)

    Liu, Zhong

    2014-11-01

    Satellite-based products increasingly take an important role in filling data gaps in data sparse regions around the world. In recent years, precipitation products that utilize multi-satellite and multi-sensor datasets have been gaining more popularity than products from a single sensor or satellite. Adjusted with gauge and ground radar data, satellitebased products have been significantly improved. However the history of satellite-based precipitation products is relatively short compared to the length of 30 years in the definition for climatology from the World Meteorological Organization (WMO). For example, the NASA/JAXA Tropical Rainfall Measuring Mission (TRMM) has been in operation for over 16 years since 1997. The length of TRMM is far shorter than those from ground observations, raising a question whether TRMM climatology products are good enough for research and applications. In this study, three climatologies derived from ground observations (Global Precipitation Climatology Centre (GPCC) and Willmott and Matsuura (WM)) and a blended product (the TRMM Multi-Satellite Precipitation Analysis (TMPA) monthly product or 3B43) are compared on a global scale to assess the performance and weaknesses of the TMPAderived climatology. Results show that the 3B43 climatology matches well with the two gauge-based climatologies in all seasons in terms of spatial distribution, zonal means as well as seasonal variations. However, high variations in rain rates are found in light rain regions such as the Sahara Desert. Large negative biases (3B43

  13. A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    NASA Technical Reports Server (NTRS)

    Ziemke, J.R.; Chandra, S.; Labow, G.; Bhartia, P. K.; Froidevaux, L.; Witte, J. C.

    2011-01-01

    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere.

  14. Air-sea heat flux climatologies in the Mediterranean Sea: Surface energy balance and its consistency with ocean heat storage

    NASA Astrophysics Data System (ADS)

    Song, Xiangzhou; Yu, Lisan

    2017-05-01

    This study provides an analysis of the Mediterranean Sea surface energy budget using nine surface heat flux climatologies. The ensemble mean estimation shows that the net downward shortwave radiation (192 ± 19 W m-2) is balanced by latent heat flux (-98 ± 10 W m-2), followed by net longwave radiation (-78 ± 13 W m-2) and sensible heat flux (-13 ± 4 W m-2). The resulting net heat budget (Qnet) is 2 ± 12 W m-2 into the ocean, which appears to be warm biased. The annual-mean Qnet should be -5.6 ± 1.6 W m-2 when estimated from the observed net transport through the Strait of Gibraltar. To diagnose the uncertainty in nine Qnet climatologies, we constructed Qnet from the heat budget equation by using historic hydrological observations to determine the heat content changes and advective heat flux. We also used the Qnet from a data-assimilated global ocean state estimation as an additional reference. By comparing with the two reference Qnet estimates, we found that seven products (NCEP 1, NCEP 2, CFSR, ERA-Interim, MERRA, NOCSv2.0, and OAFlux+ISCCP) overestimate Qnet, with magnitude ranging from 6 to 27 W m-2, while two products underestimate Qnet by -6 W m-2 (JRA55) and -14 W m-2 (CORE.2). Together with the previous warm pool work of Song and Yu (2013), we show that CFSR, MERRA, NOCSv2.0, and OAFlux+ISCCP are warm-biased not only in the western Pacific warm pool but also in the Mediterranean Sea, while CORE.2 is cold-biased in both regions. The NCEP 1, 2, and ERA-Interim are cold-biased over the warm pool but warm-biased in the Mediterranean Sea.

  15. A 10-Year Climatology of Amazonian Rainfall Derived from Passive Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Anagnostou, Emmanouil N.; Adler, Robert F.

    1998-01-01

    In this study we present and describe a satellite-derived precipitation climatology over northern South America using a passive microwave technique, the Goddard Profiling Algorithm. A period of data slightly longer than 10 years is examined. The climatologies take the form of the mean estimated (adjusted) rainfall for a 10-year (+) period, with sub-divisions by month and meteorological season. For the six-year period 1992-1997, when two satellites were in operation, diurnal variability (to the extent it is discerned by four unequally spaced observations) is presented. We find an alternating pattern of morning and maxima stretching from the northeast (Atlantic coast) clear across the continent to the Pacific. The effects of topography, coastlines and geography (river valleys) on the rainfall patterns are clear. Interannual variability is examined by computing the deviations of yearly and warm season (DJF) rainfall from their respective long-term means. Interannual variability of the diurnal nature of the rainfall is presented, and the strong El Nino event of 1997-1998 is discussed.

  16. Regional surface fluxes from satellite-derived surface temperatures (AVHRR) and radiosonde profiles

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Sugita, Michiaki

    1992-01-01

    Radiometric surface temperatures, derived from measurements by the AVHRR instrument aboard the NOAA-9 and the NOAA-11 polar orbiting satellites, were used in combination with wind velocity and temperature profiles measured by radiosondes, to calculate surface fluxes of sensible heat. The measurements were made during FIFE, the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment, in a hilly tall grass prairie area of northeastern Kansas. The method of calculation was based on turbulent similarity formulations for the atmospheric boundary layer. Good agreement (r = 0.7) was obtained with reference values of sensible heat flux, taken as arithmetric means of measurements with the Bowen ratio method at six ground stations. The values of evaporation (latent heat fluxes), derived from these sensible heat fluxes by means of the energy budget, were also in good agreement (r = 0.94) with the corresponding reference values from the ground stations.

  17. Unexpected climatological behavior of MLT gravity wave momentum flux in the lee of the Southern Andes hot spot

    NASA Astrophysics Data System (ADS)

    de Wit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.

    2017-01-01

    The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7°S, 67.7°W), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.

  18. Unexpected climatological behavior of MLT gravity wave momentum flux in the lee of the Southern Andes hot spot

    NASA Astrophysics Data System (ADS)

    Wit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.

    2017-01-01

    The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7°S, 67.7°W), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.

  19. Unexpected Climatological Behavior of MLT Gravity Wave Momentum Flux in the Lee of the Southern Andes Hot Spot

    NASA Technical Reports Server (NTRS)

    DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.

    2017-01-01

    The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.

  20. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Miao, Yucong; Zhang, Yong; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; He, Jing; Lou, Mengyun; Yan, Yan; Bian, Lingen; Zhai, Panmao

    2016-10-01

    The important roles of the planetary boundary layer (PBL) in climate, weather and air quality have long been recognized, but little is known about the PBL climatology in China. Using the fine-resolution sounding observations made across China and reanalysis data, we conducted a comprehensive investigation of the PBL in China from January 2011 to July 2015. The boundary layer height (BLH) is found to be generally higher in spring and summer than that in fall and winter. The comparison of seasonally averaged BLHs derived from observations and reanalysis, on average, shows good agreement, despite the pronounced inconsistence in some regions. The BLH, derived from soundings conducted three or four times daily in summer, tends to peak in the early afternoon, and the diurnal amplitude of BLH is higher in the northern and western subregions of China than other subregions. The meteorological influence on the annual cycle of BLH is investigated as well, showing that BLH at most sounding sites is negatively associated with the surface pressure and lower tropospheric stability, but positively associated with the near-surface wind speed and temperature. In addition, cloud tends to suppress the development of PBL, particularly in the early afternoon. This indicates that meteorology plays a significant role in the PBL processes. Overall, the key findings obtained from this study lay a solid foundation for us to gain a deep insight into the fundamentals of PBL in China, which helps to understand the roles that the PBL plays in the air pollution, weather and climate of China.

  1. A Geospatial Database that Supports Derivation of Climatological Features of Severe Weather

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Ansari, S.; Del Greco, S.

    2007-12-01

    The Severe Weather Data Inventory (SWDI) at NOAA's National Climatic Data Center (NCDC) provides user access to archives of several datasets critical to the detection and evaluation of severe weather. These datasets include archives of: · NEXRAD Level-III point features describing general storm structure, hail, mesocyclone and tornado signatures · National Weather Service Storm Events Database · National Weather Service Local Storm Reports collected from storm spotters · National Weather Service Warnings · Lightning strikes from Vaisala's National Lightning Detection Network (NLDN) SWDI archives all of these datasets in a spatial database that allows for convenient searching and subsetting. These data are accessible via the NCDC web site, Web Feature Services (WFS) or automated web services. The results of interactive web page queries may be saved in a variety of formats, including plain text, XML, Google Earth's KMZ, standards-based NetCDF and Shapefile. NCDC's Storm Risk Assessment Project (SRAP) uses data from the SWDI database to derive gridded climatology products that show the spatial distributions of the frequency of various events. SRAP also can relate SWDI events to other spatial data such as roads, population, watersheds, and other geographic, sociological, or economic data to derive products that are useful in municipal planning, emergency management, the insurance industry, and other areas where there is a need to quantify and qualify how severe weather patterns affect people and property.

  2. Sensitivity of Global Sea-Air CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of Sea Surface Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio

    2002-01-01

    Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.

  3. Neutral Winds through the Mesosphere and Thermosphere derived from Incoherent Scatter Radar: Variability and Climatology

    NASA Astrophysics Data System (ADS)

    Nicolls, M. J.

    2014-12-01

    Incoherent Scatter Radar (ISR) measurements of ion drifts in the ionosphere are sensitive to neutral motions through ion-neutral collisions. At D-region / mesospheric altitudes, the plasma is collisional on scales of the radar wavelength and thus ion drifts can be used as a direct proxy for neutral motions. At E-region / lower-thermospheric altitudes, the ions undergo a transition whereby the mean free path approaches the scale of the Bragg-scattering wavelength. In the F-region / upper thermosphere, the ions are collisionless and drift at the ExB velocity. The sensing of ion motions is thus extremely useful for the assessment of ionospheric electrodynamics. We utilize case studies from the Poker Flat and Arecibo ISRs to illustrate the utility of this feature of ion motions by showing (a) examples of neutral wind measurements from the mesosphere through the thermosphere, (b) the impact of derived neutral winds on the interpretation of gravity wave dissipation and forcing, and (c) climatological variations of the lower thermospheric winds and the response of the high-latitude lower thermospheric winds to forcing.

  4. Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Nelkin, Eric J.; Huffman, George J.

    1994-01-01

    Climatologies of convective precipitation were derived from passive microwave observations from the Special Sensor Microwave Imager using a scattering-based algorithm of Adler et al. Data were aggregated over periods of 3-5 months using data from 4 to 5 years. Data were also stratified by satellite overpass times (primarily 06 00 and 18 00 local time). Four regions (Mexico, Amazonia, western Africa, and the western equatorial Pacific Ocean (TOGA COARE area) were chosen for their meteorological interest and relative paucity of conventional observations. The strong diurnal variation over Mexico and the southern United States was the most striking aspect of the climatologies. Pronounced morning maxima occured offshore, often in concativities in the coastline, the result of the increased convergence caused by the coastline shape. The major feature of the evening rain field was a linear-shaped maximum along the western slope of the Sierra Madre Occidental. Topography exerted a strong control on the rainfall in other areas, particularly near the Nicaragua/Honduras border and in Guatemala, where maxima in excess of 700 mm/month were located adjacent to local maxima in terrain. The correlation between the estimates and monthly gage data over the southern United States was low (0.45), due mainly to poor temporal sampling in any month and an inadequate sampling of the diurnal cycle. Over the Amazon Basin the differences in morning versus evening rainfall were complex, with an alternating series of morning/evening maxima aligned southwest to northeast from the Andes to the northeast Brazilian coast. A real extent of rainfall in Amazonia was slightly higher in the evening, but a maximum in morning precipitation was found on the Amazon River just east of Manaus. Precipitation over the water in the intertropical convergence zone (ITCZ) north of Brazil was more pronounced in the morning, and a pronounced land-/sea-breeze circulation was found along the northeast coast of Brazil

  5. Micropulse lidar-derived aerosol optical depth climatology at ARM sites worldwide

    NASA Astrophysics Data System (ADS)

    Kafle, D. N.; Coulter, R. L.

    2013-07-01

    This paper focuses on climatology of the vertical distribution of aerosol optical depth (AOD (z)) from micropulse lidar (MPL) observations for climatically different locations worldwide. For this, a large data set obtained by MPL systems operating at 532 nm during the 4 year period 2007-2010 was used to derive vertical profiles of AOD (z) by combining the corresponding AOD data as an input from an independent measurement using nearly colocated multifilter rotating shadowband radiometer (MFRSR) systems at five different U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program sites—three permanent sites (SGP in north-central Oklahoma, at 36.6°N, 97.5°W, 320 m; TWP-Darwin in the tropical western Pacific, at 12.4°S, 130.9°E, 30 m; and NSA at Barrow on the North Slope of Alaska, at 71.3°N, 156.6°W, 8 m) and two mobile facility sites (GRW at Graciosa Island in the Azores, at 39°N, 28°W, 15 m; and FKB in the Black Forest of Germany, at 48.5°N, 8.4°E, 511 m). Therefore, amount of data used in this study is constrained by the availability of the MFRSR data. The MPL raw data were averaged for 30 s in time and 30 m in altitude. The diurnally averaged AOD (z) profiles from 4 years were combined to obtain a multiyear vertical profile of AOD (z) climatology at various ARM sites, including diurnal, day-to-day, and seasonal variabilities. Most aerosols were found to be confined to 0-2 km (approximately the planetary boundary layer region) at all sites; however, all sites exhibited measurable aerosols well above the mixed layer, with different height maxima. The entire data set demonstrates large day-to-day variability at all sites. However, there is no significant diurnal variation in AOD (z) at all sites. Significant interannual variability was observed at the SGP site. Clear seasonal variations in AOD (z) profiles exist for all five sites, but seasonal behavior was distinct. Moreover, the different seasonal variability for the lower level (0 to ~2

  6. Oceanographic and climatologic controls on the compositions and fluxes of biogenic materials in the water column and sediments of the Cariaco Basin over the Late Holocene

    NASA Astrophysics Data System (ADS)

    Goni, M. A.; Aceves, H.; Benitez-Nelson, B.; Tappa, E.; Thunell, R.; Black, D. E.; Muller-Karger, F.; Astor, Y.; Varela, R.

    2009-04-01

    Materials collected by sediment traps over a 3-y period and sedimentary horizons from a gravity core covering the last 6000 y were used to investigate the effects of climate-related processes such as wind-driven upwelling and regional rainfall on the production, export and burial of particulate organic matter in the Cariaco Basin. A variety of chemical analyses, including organic carbon and nitrogen, biogenic opal, calcite, lithogenic contents, stable carbon isotopic ratios of organic matter and the yields of CuO reaction products derived from distinct biochemicals such as amino acids, fatty acids and lignins, were carried out for this purpose. Principal component analyses were used to investigate the trends in this multivariate data set. These analyses reveal marked temporal differences in the composition of the materials sinking through the water column, which were related to distinct oceanographic and climatic forcings. For example, autochthonous fluxes, characterized by elevated contents of organic carbon and opal as well as high yields of amino acid and fatty acid reaction products, displayed peaks during periods of intense wind-driven upwelling. In contrast, allochthonous materials, characterized by elevated lithogenic contents and elevated yields of lignin-derived products, were more important during periods of high rainfall, low wind and enhanced stratification. In addition to the strong seasonal contrasts, there was significant temporal variability at both shorter (monthly) and longer (inter-annual) time scales. Hence, other factors, such as zooplankton grazing and El Niño effects on local climatology, may also be important. Examination of the gravity core record yielded several significant trends. For example, there was a marked increase in sediment accumulation rates from 5000 to ca. 700 y before present with concomitant increases in the concentrations of organic carbon, opal and most biomarkers. These results suggest that the Cariaco Basin experienced

  7. Preliminary climatology of aerosol optical properties over North-center Spain derived from AERONET, MODIS and OMI remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bennouna, Yasmine S.; Rodrigo, Ruben; Cachorro, Victoria E.; Toledano, Carlos; Berjon, Alberto J.; Torres, Benjamin; Fuertes, David; Gonzalez, Ramiro; de Frutos, Angel

    Although natural and anthropogenic aerosols are known to play a significant role in the Earth's radiation budget, due to their high variability in both space and time, the magnitude of their impact remains one of the largest uncertainties in our understanding of the climate system. Field measurements of aerosols can provide accurate and detailed description of aerosols, but are usually limited in temporal or spatial coverage. Global aerosol networks, as AERONET, although today not sufficient to cover all countries, give relevant information for regional aerosol characterization, in order to establish climatologies. In contrast, satellite is the only tool capable to continuously monitoring the high variability of aerosols in both space and time. However, aerosol retrievals based on satellite data suffer from a number of recognized uncertainties, e.g. associated with cloud screening, aerosol models, surface properties, and are generally limited due to polar orbital constraints. The Iberian Peninsula undergoes the influence of different air masses, and thus is a key area for the study of aerosol properties and for addressing climate and air quality issues. The present study focuses on the seasonal variability of remotely sensed aerosol optical properties, in par-ticular: the Aerosol Optical Depth (AOD) and Angstrom exponent (Alpha) properties, over the north of the Iberian Peninsula. As ground truth, a climatology of these parameters in the representative area of the north-center of Spain was built based on data from the AERONET-RIMA station of Palencia (Spain, 42N, 4.5W) over the 7 year period between 2003 and 2009. Aiming at assessing the ability of satellite to reproduce the seasonal patterns of ground truth, satellite derived climatologies were also created from the data of two standard satellite aerosol retrieval algorithms, namely the MODIS (Moderate Resolution Imaging Radiometer) and the OMI (Ozone Monitoring Instru-ment) OMAERUV (OMI Near-UV) algorithms for

  8. Satellite derived precipitation and freshwater flux variability and its dependence on the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Andersson, Axel; Bakan, Stephan; Graßl, Hartmut

    2010-08-01

    The variability of satellite retrieved precipitation and freshwater flux from the `Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data' (HOAPS) is assessed with special emphasis on the `North Atlantic Oscillation' (NAO). To cover also land areas, a novel combination of the satellite derived precipitation climatology with the rain gauge based `Full Data Reanalysis Product Version 4', of the `Global Precipitation Climatology Centre' (GPCC) is used. This yields unique high-resolution, quasi-global precipitation fields compiled from two independent data sources. Over the ocean, the response of the freshwater balance and the related parameters to the NAO is investigated for the first time by using a purely satellite based data set. A strong dependence of precipitation patterns to the state of the NAO is found. On synoptic scale this is in accordance with earlier findings by other satellite based and reanalysis products. Furthermore, the consistency of the combined HOAPS-3/GPCC data set allows also detailed regional analyses of precipitation patterns. The response of HOAPS-3 freshwater flux to the NAO is dominated by precipitation at mid and high latitudes, while for the subtropical regions the feedback of the evaporation is stronger.

  9. Climatology of low latitude ionosphere under effect of varying solar flux during solar cycle 23 and 24

    NASA Astrophysics Data System (ADS)

    Dashora, Nirvikar; Suresh, Sunanda

    2016-07-01

    The characteristics of quiet time equatorial and low latitude total electron content (TEC) over the Indian sector using GIM data (1998-2014) is obtained. For the first time the analysis is carried filtering out the solar flare and storm effects and time series of quiet time VTEC data from three locations namely dip equator and two low latitude conjugate locations in Indian sector are obtained. It is well known that a complex interplay among drivers of equatorial electrodynamics like Solar flux, dynamo electric field and meridional winds determine the daytime ionization and distribution in equatorial ionization anomaly zone. In this study, we have critically examined the role of varying solar flux and response of low latitude ionosphere with new and standardized definitions. The results are examined and interpreted in the context of large number of previous studies. The newly found features from this study are as follows. Marked difference in nature of equinoctial asymmetry is noted between solar cycle 23 and 24. Long absence of winter anomaly both during low and high solar activity (HSA) in LL (low latitude) regions is found. Climatology of the diurnal cycle is provided in four categories using new criteria for demarcation of solar activity levels. Highest correlation (~77%) between GIM ionospheric electron content (IEC) and PI (solar EUV proxy index) is noted over equator in contrast to previous studies. The minimum positive contribution of PI in variation of IEC requires minimum of 2 years of data and if more than 7-8 years of data is used, it saturates. RMS (root mean square) width of PI can be used to define the HSA. Strong QBO (quasi biennial oscillations) in IEC is noted in tune with the one in PI over both the LL location but QBO remains surprisingly subdued over equator. The semi-annual oscillations in GIM-IEC are found to be stronger at all locations during high solar activity and weaker between 2005 and 2011, whereas, the annual oscillations are found to

  10. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    climatological analyses of fluxes derived from ship observations.

  11. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    climatological analyses of fluxes derived from ship observations.

  12. Stratospheric aerosol, climatology derived from satellite solar occultation and infrared emission measurements

    NASA Astrophysics Data System (ADS)

    Bauman, Jill J.

    A global climatology has been produced on the stratospheric aerosol that spans nearly 15 years, from December 1984 to August 1999. The climatology includes values and uncertainties of measured extinction and optical depth from 0.385 μm to 12.82 μm, as well as retrieved particle effective radius Reff, distribution width σg, surface area S and volume V. As a basis for aerosol retrievals, a multi-wavelength Look-Up- Table (LUT) algorithm has been developed that uses a combination of 4wavelength Stratospheric Aerosol and Gas Experiment (SAGE) II extinction spectra (0.385-1.02 gym) and the Cryogenic Limb Array Etalon Spectrometer (CLASS) 7.96 and 12.82 gm extinction measurements. The LUT matches SAGE II/CLASS extinction ratios to pre- computed ratios that are based on a range of unimodal lognormal size distributions. By varying the distribution width, the uncertainties in measured extinction are propagated to corresponding uncertainties in Reff, S and V. The LUT includes an altitude- and time-dependent procedure to estimate and remove bias introduced by assuming a unimodal functional form. Bias correction reduces uncertainty in Reff, S and V by approximately 7%, 5% and 1%, respectively. This suggests that aerosol volume, and to a lesser extent surface area, are not as sensitive to a priori assumptions about distribution shape as retrievals of Reff. Aerosol retrievals show notable increases after most major volcanic eruptions, with increases in Reff lagging increases in other parameters. Post-volcanic increases in σg, indicative of broader size distributions, are consistent with sudden increases in both small and large particle sizes. After Pinatubo, retrieved Reff and σg took nearly 5 years to return to pre-eruption values, while slightly shorter recovery times are obtained for S and V. Seasonal variations in S and V are observed at high latitudes (with high values occurring in winter), but are less obvious in Reff. Latitudinal banding is often noted in retrievals

  13. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    NASA Astrophysics Data System (ADS)

    Osman, M.; Tarasick, D. W.; Liu, J.; Moeini, O.; Thouret, V.; Fioletov, V. E.; Parrington, M.; Nédélec, P.

    2015-11-01

    A three-dimensional gridded climatology of carbon monoxide (CO) has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012 are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations, and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO dataset is archived monthly from 2001-2012 on a grid of 5° longitude × 5° latitude × 1 km altitude, from the surface to 14 km altitude. The mapping product has been carefully evaluated, by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less, and found to be less than 30 % for almost all cases. The trajectory-mapped CO dataset has also been validated by comparison profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Maps are also compared with Version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. While agreement is good in the lowermost troposphere, the MOPITT CO profile shows negative biases of ~ 20 % between 500 and 300 hPa. These upper troposphere biases are not related to the mapping procedure, as almost identical differences are found with the original in situ MOZAIC-IAGOS data. The total CO trajectory-mapped MOZAIC-IAGOS climatology column agrees with the

  14. The reflectivity of Mars at 1064 nm: Derivation from Mars Orbiter Laser Altimeter data and application to climatology and meteorology

    NASA Astrophysics Data System (ADS)

    Heavens, N. G.

    2017-06-01

    The Mars Orbiter Laser Altimeter (MOLA) on board Mars Global Surveyor (MGS) made > 108 measurements of the reflectivity of Mars at 1064 nm (R1064) by both active sounding and passive radiometry. Past studies of R1064 neglected the effects of atmospheric opacity and viewing geometry on both active and passive measurements and also identified a potential calibration issue with passive radiometry. Therefore, as yet, there exists no acceptable reference R1064 to derive a column opacity product for atmospheric studies and planning future orbital lidar observations. Here, such a reference R1064 is derived by seeking R1064M,N : a Minnaert-corrected normal albedo under clear conditions and assuming minimal phase angle dependence. Over darker surfaces, R1064M,N and the absolute level of atmospheric opacity were estimated from active sounding. Over all surfaces, the opacity derived from active sounding was used to exclude passive radiometry measurements made under opaque conditions and estimate R1064M,N. These latter estimates then were re-calibrated by comparison with RM, N derived from Hubble Space Telescope (HST) observations over areas of approximately uniform reflectivity. Estimates of R1064M,N from re-calibrated passive radiometry typically agree with HST observations within 10%. The resulting R1064M,N is then used to derive and quantify the uncertainties of a column opacity product, which can be applied to meteorological and climatological studies of Mars, particularly to detect and measure mesoscale cloud/aerosol structures.

  15. Pacific Region Integrated Climatology Information Products (PRICIP) Derived-data Products

    NASA Astrophysics Data System (ADS)

    Marra, J. J.

    2008-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Integrated Data and Environmental Applications (IDEA) Center has initiated the Pacific Region Integrated Climatology Information Products (PRICIP) project to improve our understanding of patterns and trends of storm frequency and intensity - 'storminess'- within the Pacific region and develop a suite of integrated data and information products. Strong winds, heavy rains, and high seas theme-specific data integration and product development teams have been formed to carry out this work. These teams are comprised of recognized agency and university- based experts in the area of climate-related processes that govern storminess. They include representatives from NOAA's National Climatic Data Center (NCDC), Center for Operational Products and Services (CO-OPS), and National Weather Service (NWS), as well as the University of Hawai'i, University of Alaska, University of Guam, and Oregon State University. Each team is developing regional climatological overviews, identifying corresponding extremes indices, establishing data treatment and analysis protocols, and conducting analyses to establish baseline statistics, long term trends, patterns of variability, and event return recurrence intervals via Generalized Extreme Value (GEV) analyses. Preliminary results of these analyses can be viewed via a beta-version of a Google map- based query utility (http://www.pricip.org/ddp.php ). Data sources for these analyses include NOAA's Integrated Surface Hourly (ISH) mean sea level pressure and wind speed data; the Global Historical Climate Network (GHCN) precipitation dataset; the National Water Level Observing Network (NWLON) sea level station records; the National Data Buoy Center (NDBC) wave buoy records; the U.S. Army Corps of Engineers" Coastal Data Information (CDIP) buoy data, and other data. The northern and central north Pacific, which includes Alaska, the Pacific Northwest, and Hawai'i, have been targeted as

  16. Radiation Climatology of the Greenland Ice Sheet Derived from Greenland Climate Network Data

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Box, Jason

    2003-01-01

    The magnitude of shortwave and longwave dative fluxes are critical to surface energy balance variations over the Greenland ice sheet, affecting many aspects of its climate, including melt rates, the nature of low-level temperature inversions, the katabatic wind regime and buoyant stability of the atmosphere. Nevertheless, reliable measurements of the radiative fluxes over the ice sheet are few in number, and have been of limited duration and areal distribution (e.g. Ambach, 1960; 1963, Konzelmann et al., 1994, Harding et al., 1995, Van den Broeke, 1996). Hourly GC-Net radiation flux measurements spanning 1995-2001 period have been used to produce a monthly dataset of surface radiation balance components. The measurements are distributed widely across Greenland and incorporate multiple sensors

  17. Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data

    NASA Astrophysics Data System (ADS)

    Osman, Mohammed K.; Tarasick, David W.; Liu, Jane; Moeini, Omid; Thouret, Valerie; Fioletov, Vitali E.; Parrington, Mark; Nédélec, Philippe

    2016-08-01

    A three-dimensional gridded climatology of carbon monoxide (CO) has been developed by trajectory mapping of global MOZAIC-IAGOS in situ measurements from commercial aircraft data. CO measurements made during aircraft ascent and descent, comprising nearly 41 200 profiles at 148 airports worldwide from December 2001 to December 2012, are used. Forward and backward trajectories are calculated from meteorological reanalysis data in order to map the CO measurements to other locations and so to fill in the spatial domain. This domain-filling technique employs 15 800 000 calculated trajectories to map otherwise sparse MOZAIC-IAGOS data into a quasi-global field. The resulting trajectory-mapped CO data set is archived monthly from 2001 to 2012 on a grid of 5° longitude × 5° latitude × 1 km altitude, from the surface to 14 km altitude.The mapping product has been carefully evaluated, firstly by comparing maps constructed using only forward trajectories and using only backward trajectories. The two methods show similar global CO distribution patterns. The magnitude of their differences is most commonly 10 % or less and found to be less than 30 % for almost all cases. Secondly, the method has been validated by comparing profiles for individual airports with those produced by the mapping method when data from that site are excluded. While there are larger differences below 2 km, the two methods agree very well between 2 and 10 km with the magnitude of biases within 20 %. Finally, the mapping product is compared with global MOZAIC-IAGOS cruise-level data, which were not included in the trajectory-mapped data set, and with independent data from the NOAA aircraft flask sampling program. The trajectory-mapped MOZAIC-IAGOS CO values show generally good agreement with both independent data sets.Maps are also compared with version 6 data from the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument. Both data sets clearly show major regional CO sources such

  18. Changes in satellite-derived impervious surface area at US historical climatology network stations

    NASA Astrophysics Data System (ADS)

    Gallo, Kevin; Xian, George

    2016-10-01

    The difference between 30 m gridded impervious surface area (ISA) between 2001 and 2011 was evaluated within 100 and 1000 m radii of the locations of climate stations that comprise the US Historical Climatology Network. The amount of area associated with observed increases in ISA above specific thresholds was documented for the climate stations. Over 32% of the USHCN stations exhibited an increase in ISA of ⩾20% between 2001 and 2011 for at least 1% of the grid cells within a 100 m radius of the station. However, as the required area associated with ISA change was increased from ⩾1% to ⩾10%, the number of stations that were observed with a ⩾20% increase in ISA between 2001 and 2011 decreased to 113 (9% of stations). When the 1000 m radius associated with each station was examined, over 52% (over 600) of the stations exhibited an increase in ISA of ⩾20% within at least 1% of the grid cells within that radius. However, as the required area associated with ISA change was increased to ⩾10% the number of stations that were observed with a ⩾20% increase in ISA between 2001 and 2011 decreased to 35 (less than 3% of the stations). The gridded ISA data provides an opportunity to characterize the environment around climate stations with a consistently measured indicator of a surface feature. Periodic evaluations of changes in the ISA near the USHCN and other networks of stations are recommended to assure the local environment around the stations has not significantly changed such that observations at the stations may be impacted.

  19. A regional rainfall climatology over Mexico and the southwest United States derived from passive microwave and geosynchronous infrared data

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Maddox, Robert A.; Howard, Kenneth W.; Keehn, Peter R.

    1993-01-01

    A three-year climatology of satellite-estimated rainfall for the warm season for the southwest United States and Mexico has been derived from data from the Special Sensor Microwave Imager (SSM/I). The microwave data have been stratified by month (June, July, August), year (1988, 1989, 1990), and time of day (morning and evening orbits). A rain algorithm was employed that relates 86-GHz brightness temperatures to rain rate using a coupled cloud-radiative transfer model. Results identify an early evening maximum in rainfall along the western slope of the Sierra Madre Occidental during all three months. A prominent morning rainfall maximum was found off the western Mexican coast near Mazatlan in July and August. Substantial differences between morning and evening estimates were noted. To the extent that three years constitute a climatology, results of interannual variability are presented. Results are compared and contrasted to high-resolution (8 km, hourly) infrared cloud climatologies, which consist of the frequency of occurrence of cloud colder than -38 C and -58 C. This comparison has broad implications for the estimation of rainfall by simple (cloud threshold) techniques. By sampling the infrared data to approximate the time and space resolution of the microwave, we produce ratios (or adjustment factors) by which we can adjust the infrared rain estimation schemes. This produces a combined microwave/infrared rain algorithm for monthly rainfall. Using a limited set of raingage data as ground truth, an improvement (lower bias and root-mean-square error) was demonstrated by this combined technique when compared to either method alone. The diurnal variability of convection during July 1990 was examined using hourly rain estimates from the Geostationary Operational Environmental Satellite (GOES) precipitation index and the convective stratiform technique, revealing a maximum in estimated rainfall from 1800 to 2100 local time. It is in this time period when the SSM

  20. Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe

    2000-01-01

    A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.

  1. A Multilayer Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaud, Franco (Technical Monitor)

    2001-01-01

    A dataset including daily- and monthly-mean turbulent fluxes (momentum, latent heat, and sensible heat) and some relevant parameters over global oceans, derived from the Special Sensor Microwave/Imager (SSM/I) data, for the period July 1987-December 1994 and the 1988-94 annual and monthly-mean climatologies of the same variables is created. It has a spatial resolution of 2.0deg x 2.5deg latitude-longitude. The retrieved surface air humidity is found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The retrieved wind stress and latent heat flux show useful accuracy as verified against research quality measurements of ship and buoy in the western equatorial Pacific. The 1988-94 seasonal-mean wind stress and latent heat flux show reasonable patterns related to seasonal variations of the atmospheric general circulation. The patterns of 1990-93 annual-mean turbulent fluxes and input variables are generally in good agreement with one of the best global analyzed flux datasets that based on COADS (comprehensive ocean-atmosphere data set) with corrections on wind speeds and covered the same period. The retrieved wind speed is generally within +/-1 m/s of the COADS-based, but is stronger by approx. 1-2 m/s in the northern extratropical oceans. The discrepancy is suggested to be mainly due to higher COADS-modified wind speeds resulting from underestimation of anemometer heights. Compared to the COADS-based, the retrieved latent heat flux and sea-air humidity difference are generally larger with significant differences in the trade wind zones and the ocean south of 40degS (up to approx. 40-60 W/sq m and approx. 1-1.5 g/kg). The discrepancy is believed to be mainly caused by higher COADS-based surface air humidity arising from the overestimation of dew point temperatures and from the extrapolation of observed high humidity southward into data-void regions south of 40degS. The retrieved sensible heat flux is generally within +/-5

  2. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

    NASA Astrophysics Data System (ADS)

    Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas

    2016-06-01

    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ < 0.03) have been observed during 6 % of the observation time, whereas above Zürich and Jülich fewer clouds of that type were observed. Cirrus have been observed up to altitudes of 14.4 km a.s.l. above Jungfraujoch, whereas they have only been observed to about 1 km lower at the other stations. These features highlight the advantage of the high-altitude station Jungfraujoch, which is often in the free troposphere above the polluted boundary layer, thus enabling lidar measurements of thinner and higher clouds. In addition, the measurements suggest a change in cloud morphology at Jungfraujoch above ˜ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected

  3. New features of global climatology revealed by satellite-derived oceanic rainfall maps

    NASA Technical Reports Server (NTRS)

    Rao, M. S. V.; Theon, J. S.

    1977-01-01

    Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed.

  4. Linking Carbon Fluxes with Remotely-Sensed Vegetation Indices for Leaf Area and Aboveground Biomass Through Footprint Climatology

    NASA Astrophysics Data System (ADS)

    Wayson, C.; Clark, K.; Hollinger, D. Y.; Skowronski, N.; Schmid, H. E.

    2010-12-01

    A major challenge of bottom-up scaling is that in-situ flux observations are spatially limited. Thus, to achieve valid regional exchange rates, models are used to interpolate and extrapolate to the vegetational/spatial domain covered by these observations. To parameterize these models from flux data, efforts must be made to select data that best represents the region being modeled as well as linking the fluxes to remotely-sensed data products that can be produced from site to regional scales. Because most long-term flux stations are not in spatially extensive, homogeneous locations, this requirement is often a challenge. However, this requirement can be met by selecting observation periods whose flux footprints are statistically representative of the type of ecosystem identified in the model. The flux footprint function indicates the time-varying surface “field-of-view” (or spatial sampling window) of an eddy-flux sensor, oriented mostly in upwind direction. For each observation period, the modeled flux footprint window is overlain with a high-resolution vegetation index map to determine a footprint-weighted vegetation index for which the observation is representative. Using flux-footprint analysis to link fluxes to models using just an enhanced vegetation index (EVI) map shows a positive trend between EVI and eddy covariance measured fluxes, but the link is not strong. Leaf area is linked with carbon (C) uptake, but forests tend to maximize leaf area, as determined through remote sensing, early on with forests having similar leaf areas across a wide range of ages. Adding another remotely-sensed dataset, aboveground biomass map (AGB), helps capture the processes of lower productivity rates (as biomass increases per unit of leaf area there is a decline, due to the forest ageing) and the C losses due to respiration, both heterotrophic and autotrophic (linked to live and detrital biomass pools). Adding biomass from LIDAR and a combined EVI-biomass layer to examine

  5. Hemispheric-scale Snow Cover Climatologies Derived From Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2002-12-01

    During the past thirty-five years much important information on Northern Hemisphere snow cover has been provided by the NOAA weekly snow extent charts derived from visible-band polar orbiting and geo-stationary satellite imagery. This product represents the longest single time series of any geophysical product obtained from satellite and is available from NSIDC as the Northern Hemisphere EASE-Grid Weekly Snow Cover and Sea Ice Extent Version 2. Because of the ability to penetrate clouds, provide data during darkness and the potential to provide an index of snow depth or water equivalent, passive microwave satellite remote sensing can greatly enhance snow measurements based on visible data alone. It is now possible to monitor the global fluctuation of snow cover over a twenty-three year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). We present a recent NSIDC prototype data set of microwave-derived mean monthly snow water equivalent. While other satellite-derived snow extent data are available, they are regional in scale, limited in time period and often do not represent consistent data processing techniques. The launch of the NASA EOS platforms of Terra in December 1999 and Aqua in May 2002 provide new and enhanced opportunities for mapping of snow at the global scale. Both Terra and Aqua carry a MODIS (Moderate Resolution Imaging Spectroradiometer) which provides snow maps at an unprecedented 500 m resolution. The Aqua platform also carries the AMSR-E (Advanced Microwave Scanning Radiometer-EOS) which has approximately double the spatial resolution of SSM/I and will be providing passive microwave-derived snow water equivalent at the global scale beginning in 2003. Because there are clear advantages, and corresponding disadvantages, in applying only visible or passive microwave methods to snow mapping, we are currently developing a blended product which

  6. Upper Stratospheric Temperature Climatology Derived from SAGE II Observations: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Wang, P.-H.; Cunnold, D. M.; Wang, H. J.; Chu, W. P.; Thomason, L. W.

    2002-01-01

    This study shows that the temperature information in the upper stratosphere can be derived from the SAGE II 385-mn observations. The preliminary results indicate that the zonal mean temperature increases with altitude below 50 km and decreases above 50 km. At 50 km, a regional maximum of 263 K is located in the tropics, and a minimum of 261 K occurs in the subtropics in both hemispheres. The derived long-term temperature changes from 1985 to 1997 reveal a statistically significant negative trend of -2 to -2.5 K/decade in the tropical upper stratosphere and about -2 K/decade in the subtropics near the stratopause. At latitudes poleward of 50, the results show a statistically significant positive trend of about 1 K/decade in the upper stratosphere. The preliminary results also show large annual temperature oscillations in the extratropics with a maximum amplitude of approx. 8 K located at about 44 km near 50 in both hemispheres during local summer. In addition, the semiannual oscillation is found to be a maximum in the tropics with a peak amplitude of approx. 3.3 K located at about 42 km during the equinox.

  7. Climatology of Martian water ice clouds from Mars Express/OMEGA: derivation of the diurnal cycle

    NASA Astrophysics Data System (ADS)

    Szantai, A.; Audouard, J.; Madeleine, J.-B.; Forget, F.; Pottier, A.; Gondet, B.; Langevin, Y.; Bibring, J.-P.

    2015-10-01

    Images derived from the slope of the water ice absorption band between 3.4 and 3.525 μm from the OMEGA spectrometer onboard Mars Express have been used to detect clouds. From a series of OMEGA images covering 4 Martian years (between 2004 and 2011), the pixels are used to construct a cloud coverage database over a regular 4D grid in longitude,latitude, solar longitude and Martian local time. It can be used to observe the evolution of clouds over specific regions, and their diurnal and annual cycle. As an example, the diurnal cloud life cycle in the tropics (-25°S to 25°N) during the Northern summer shows the presence of thick clouds in the early morning (possibly haze), which dissipate before noon (local time). In the afternoon, the cloud cover grows again, possibly due to convection generated by the increased solar heating.

  8. A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Khaiyer, M. M.; Rapp, A. D.; Doelling, D. R.; Nordeen, M. L.; Minnis, P.; Smith, W. L., Jr.; Nguyen, L.

    2001-01-01

    While the various instruments maintained at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) Central Facility (CF) provide detailed cloud and radiation measurements for a small area, satellite cloud property retrievals provide a means of examining the large-scale properties of the surrounding region over an extended period of time. Seasonal and inter-annual climatological trends can be analyzed with such a dataset. For this purpose, monthly datasets of cloud and radiative properties from December 1996 through November 1999 over the SGP region have been derived using the layered bispectral threshold method (LBTM). The properties derived include cloud optical depths (ODs), temperatures and albedos, and are produced on two grids of lower (0.5 deg) and higher resolution (0.3 deg) centered on the ARM SGP CF. The extensive time period and high-resolution of the inner grid of this dataset allows for comparison with the suite of instruments located at the ARM CF. In particular, Whole-Sky Imager (WSI) and the Active Remote Sensing of Clouds (ARSCL) cloud products can be compared to the cloud amounts and heights of the LBTM 0.3 deg grid box encompassing the CF site. The WSI provides cloud fraction and the ARSCL computes cloud fraction, base, and top heights using the algorithms by Clothiaux et al. (2001) with a combination of Belfort Laser Ceilometer (BLC), Millimeter Wave Cloud Radar (MMCR), and Micropulse Lidar (MPL) data. This paper summarizes the results of the LBTM analysis for 3 years of GOES-8 data over the SGP and examines the differences between surface and satellite-based estimates of cloud fraction.

  9. A global monthly sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Shea, Dennis J.; Trenberth, Kevin E.; Reynolds, Richard W.

    1992-01-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S.

  10. A global monthly sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Shea, Dennis J.; Trenberth, Kevin E.; Reynolds, Richard W.

    1992-01-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S.

  11. Validating surface energy balance fluxes derived from airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Chavez Eguez, Jose Luis

    Remote sensing-derived energy balance components were compared against measured eddy covariance energy balance terms using heat flux source area models to validate the airborne multispectral remote sensing procedure in the estimation of instantaneous and daily evapotranspiration rates. A procedure was developed to generate raster layers of the footprint weights for weighting/integrating the different components of the energy balance model and obtain meaningful comparisons to similar energy balance terms measured at eddy covariance and/or Bowen ratio stations. Soil heat flux and surface aerodynamic temperature models were studied in an effort to improve the remote sensing estimation of distributed evapotranspiration rates. Aerial and ground data were acquired over a riparian corridor (Salt Cedar, Tamarix grove), soybean and cornfields (rainfed crops) in different ecosystems. The results confirmed that net radiation is well estimated with the remote sensing technique showing an estimation error of only -4.8 +/- 20.7 W m-2, (-0.5 +/- 3.6%). Linear and exponential soil heat flux models were found to correlate strongly to leaf area index and net radiation. The surface aerodynamic temperature term in the sensible heat flux equation was parameterized using surface radiometric temperature, air temperature, wind speed, and leaf area index. It is suggested that the surface aerodynamic temperature model be tested for a wide range of vegetation types, atmospheric stability conditions, surface heterogeneity, and ecosystems to assess the model limitations. The flux source area footprint model "FSAM" integrated heat flux pixels that compared better to measured values and it is recommended as a standard procedure to compare airborne remote sensing-derived heat fluxes against measured fluxes by eddy covariance systems; when compared to the "FASOWG" footprint model and simple arithmetic averages. Finally, the method that uses alfalfa reference daily evapotranspiration in

  12. The SPARC Intercomparison of Middle Atmosphere Climatologies

    NASA Technical Reports Server (NTRS)

    Randel, William; Fleming, Eric; Geller, Marvin; Gelman, Mel; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2003-01-01

    Our current confidence in 'observed' climatological winds and temperatures in the middle atmosphere (over altitudes approx. 10-80 km) is assessed by detailed intercomparisons of contemporary and historic data sets. These data sets include global meteorological analyses and assimilations, climatologies derived from research satellite measurements, and historical reference atmosphere circulation statistics. We also include comparisons with historical rocketsonde wind and temperature data, and with more recent lidar temperature measurements. The comparisons focus on a few basic circulation statistics, such as temperature, zonal wind, and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. Assimilated data sets provide the most realistic tropical variability, but substantial differences exist among current schemes.

  13. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  14. The Climatological Annual Cycle of Satellite-derived Phytoplankton Pigments in the Alboran Sea: A Physical Interpretation

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Carr, M. E.

    1998-01-01

    The circulation and upwelling processes (coastal and gyre-induced) that control the phytoplankton distribution in the Alboran sea are examined by analyzing monthly climatological patterns of Coastal Zone Color Scanner (CZCS) pigment concentrations, sea surface temperatures, winds, and seasonal geostrophic fields.

  15. The Climatological Annual Cycle of Satellite-derived Phytoplankton Pigments in the Alboran Sea: A Physical Interpretation

    NASA Technical Reports Server (NTRS)

    Garcia-Gorriz, E.; Carr, M. E.

    1998-01-01

    The circulation and upwelling processes (coastal and gyre-induced) that control the phytoplankton distribution in the Alboran sea are examined by analyzing monthly climatological patterns of Coastal Zone Color Scanner (CZCS) pigment concentrations, sea surface temperatures, winds, and seasonal geostrophic fields.

  16. Suggestions for the measurement and derivation of fluxes and flux divergences from a satellite

    SciTech Connect

    Man-Li C. Wu )

    1990-04-15

    The theoretical studies shown here indicate that the best bands to measure and derive the total outgoing longwave radiation (OLR), surface downward flux (SDF), and cooling rates (CRs) using linear regression are (1) the band between 800 and 1,200 cm{sup {minus}1} for OLR, (2) the band between 500 and 660 cm{sup {minus}1} or 660 and 800 cm{sup {minus}1} for SDF, and (3) the band between 660 and 800 cm{sup {minus}1} for CRs. These results are obtained from scatter plots of total fluxes and cooling rates associated with the various bands. The advanced very high resolution radiometer OLR is damped compared with the Nimbus 7 Earth radiation budget (ERB) OLR, which is derived from the broadband, narrow field of view ERB instrument, owing to its use of only one narrow band (centered around the 11-{mu}m window region) measurement.

  17. Suggestions for the measurement and derivation of fluxes and flux divergences from a satellite

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.

    1990-01-01

    Consideration is given to the determination of the optimal bands for measuring and deriving the total outgoing longwave radiation (OLR), surface downward flux (SDF), and cooling rates (CRs) using linear regression. The optimal bands are determined from scatter plots of total fluxes and cooling rates associated with the various bands. It is found that the best band for OLR is between 800 and 1200/cm, while the best band for SDF is between 500 and 660/cm or between 660 and 800/cm. For CRs, it is shown that the best band is also between 660 and 800/cm. It is noted that the AVHRR OLR is damped compared with the Nimbus-7 earth radiation budget (ERB) OLR derived from the broadband, narrow FOV ERB instrument.

  18. Suggestions for the measurement and derivation of fluxes and flux divergences from a satellite

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.

    1990-01-01

    Consideration is given to the determination of the optimal bands for measuring and deriving the total outgoing longwave radiation (OLR), surface downward flux (SDF), and cooling rates (CRs) using linear regression. The optimal bands are determined from scatter plots of total fluxes and cooling rates associated with the various bands. It is found that the best band for OLR is between 800 and 1200/cm, while the best band for SDF is between 500 and 660/cm or between 660 and 800/cm. For CRs, it is shown that the best band is also between 660 and 800/cm. It is noted that the AVHRR OLR is damped compared with the Nimbus-7 earth radiation budget (ERB) OLR derived from the broadband, narrow FOV ERB instrument.

  19. Climatological mean and decadal change in surface ocean pCO 2, and net sea-air CO 2 flux over the global oceans

    NASA Astrophysics Data System (ADS)

    Takahashi, Taro; Sutherland, Stewart C.; Wanninkhof, Rik; Sweeney, Colm; Feely, Richard A.; Chipman, David W.; Hales, Burke; Friederich, Gernot; Chavez, Francisco; Sabine, Christopher; Watson, Andrew; Bakker, Dorothee C. E.; Schuster, Ute; Metzl, Nicolas; Yoshikawa-Inoue, Hisayuki; Ishii, Masao; Midorikawa, Takashi; Nojiri, Yukihiro; Körtzinger, Arne; Steinhoff, Tobias; Hoppema, Mario; Olafsson, Jon; Arnarson, Thorarinn S.; Tilbrook, Bronte; Johannessen, Truls; Olsen, Are; Bellerby, Richard; Wong, C. S.; Delille, Bruno; Bates, N. R.; de Baar, Hein J. W.

    2009-04-01

    A climatological mean distribution for the surface water pCO 2 over the global oceans in non-El Niño conditions has been constructed with spatial resolution of 4° (latitude) ×5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO 2 obtained from 1970 to 2007. The database used for this study is about 3 times larger than the 0.94 million used for our earlier paper [Takahashi et al., 2002. Global sea-air CO 2 flux based on climatological surface ocean pCO 2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601-1622]. A time-trend analysis using deseasonalized surface water pCO 2 data in portions of the North Atlantic, North and South Pacific and Southern Oceans (which cover about 27% of the global ocean areas) indicates that the surface water pCO 2 over these oceanic areas has increased on average at a mean rate of 1.5 μatm y -1 with basin-specific rates varying between 1.2±0.5 and 2.1±0.4 μatm y -1. A global ocean database for a single reference year 2000 is assembled using this mean rate for correcting observations made in different years to the reference year. The observations made during El Niño periods in the equatorial Pacific and those made in coastal zones are excluded from the database. Seasonal changes in the surface water pCO 2 and the sea-air pCO 2 difference over four climatic zones in the Atlantic, Pacific, Indian and Southern Oceans are presented. Over the Southern Ocean seasonal ice zone, the seasonality is complex. Although it cannot be thoroughly documented due to the limited extent of observations, seasonal changes in pCO 2 are approximated by using the data for under-ice waters during austral winter and those for the marginal ice and ice-free zones. The net air-sea CO 2 flux is estimated using the sea-air pCO 2 difference and the air-sea gas transfer rate that is parameterized as a function of (wind speed) 2 with a scaling factor of 0.26. This is estimated by inverting

  20. Consistency Between Tropical Divergent Circulations from Reanalysis Data Sets and Satellite-Derived Precipitation, Radiation, and Surface Fluxes

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Roads, John; McCaul, Eugene W.

    1999-01-01

    Large-scale divergent circulations are part of the atmospheric dynamic response to diabatic heating from condensation, radiative processes, and surface heat fluxes. Vertical motion and the associated divergent wind is thus intimately tied to the hydrologic cycle and the global heat balance. Vertical motions are recovered diagnostically from reanalyses and, as such, are subject to shortcommings in model physics, numerics, and data availability. We use several Global Energy and Water Cycle Experiment (GEWEX) Earth Observation System (EOS) data sets derived from satellite data to assess interannual divergent flow anomalies in the National Centers for Environmental Prediction (NCEP), Goddard Space Flight Center (GSFC), and GSFC Data Assimilation Office (DAO) analyses. Among the data sets are monthly, 2.5 degree gridded precipitation (Microwave Sounding Unit (MSU) and Special Sensor Microwave Imager (SSM/I-based)), Top or the atmosphere (TOA) radiative fluxes from ERBS, surface radiative fluxes from the SRB project, and surface latent and sensible flux estimates from SSM/I. These data sets can be considered as independent of the reanalysis fields. We focus largely on the period 1987-1989 encompassing a strong El Nino / la Nina couplet. Consequently we emphasize interannual changes as well as climatological aspects of the reanalyses. In the processes of this study we use simple integral constraints enforced through the satellite-derived data sets to derive corrections to the divergent circulation produced from the reanalyses. We examine the implications of these corrections in describing how perturbations to the tropical heat balance evolve during a warm / cool couplet. In particular the perturbations to the planetary scale water vapor transport, and the resulting changes in TOA and surface radiative fluxes are considered.

  1. An application of remotely derived climatological fields for risk assessment of vector-borne diseases : a spatial study of filariasis prevalence in the Nile Delta, Egypt.

    SciTech Connect

    Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.; Brookmeyer, P.; Weil, G. J.; Sultan, M.; Harb, M.; Environmental Research; Washington Univ.; Utah State Univ.; Egyptian Ministry of Health

    1999-12-01

    This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasis prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.

  2. Detect signals of interdecadal climate variations from an enhanced suite of reconstructed precipitation products since 1850 using the historical station data from Global Historical Climatology Network and the dynamical patterns derived from Global Precipitation Climatology Project

    NASA Astrophysics Data System (ADS)

    Shen, S. S.

    2015-12-01

    This presentation describes the detection of interdecadal climate signals in a newly reconstructed precipitation data from 1850-present. Examples are on precipitation signatures of East Asian Monsoon (EAM), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillations (AMO). The new reconstruction dataset is an enhanced edition of a suite of global precipitation products reconstructed by Spectral Optimal Gridding of Precipitation Version 1.0 (SOGP 1.0). The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). This enhanced version has three different temporal resolutions (5-day, monthly, and annual) and two different spatial resolutions (2.5 deg and 5.0 deg). It also has a friendly Graphical User Interface (GUI). SOGP uses a multivariate regression method using an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1981-20010 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed according to the number of EOF modes used in the reconstruction. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction has been validated by GPCP data after 1979. Our reconstruction successfully displays the 1877 El Nino (see the attached figure), which is considered a validation before 1900. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort of San Diego State University (Sam Shen, Gregori Clarke, Christian Junjinger, Nancy Tafolla, Barbara Sperberg, and

  3. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable

  4. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable

  5. Global sea-air CO 2 flux based on climatological surface ocean pCO 2, and seasonal biological and temperature effects

    NASA Astrophysics Data System (ADS)

    Takahashi, Taro; Sutherland, Stewart C.; Sweeney, Colm; Poisson, Alain; Metzl, Nicolas; Tilbrook, Bronte; Bates, Nicolas; Wanninkhof, Rik; Feely, Richard A.; Sabine, Christopher; Olafsson, Jon; Nojiri, Yukihiro

    Based on about 940,000 measurements of surface-water pCO 2 obtained since the International Geophysical Year of 1956-59, the climatological, monthly distribution of pCO 2 in the global surface waters representing mean non-El Niño conditions has been obtained with a spatial resolution of 4°×5° for a reference year 1995. The monthly and annual net sea-air CO 2 flux has been computed using the NCEP/NCAR 41-year mean monthly wind speeds. An annual net uptake flux of CO 2 by the global oceans has been estimated to be 2.2 (+22% or -19%) Pg C yr -1 using the (wind speed) 2 dependence of the CO 2 gas transfer velocity of Wanninkhof (J. Geophys. Res. 97 (1992) 7373). The errors associated with the wind-speed variation have been estimated using one standard deviation (about±2 m s -1) from the mean monthly wind speed observed over each 4°×5° pixel area of the global oceans. The new global uptake flux obtained with the Wanninkhof (wind speed) 2 dependence is compared with those obtained previously using a smaller number of measurements, about 250,000 and 550,000, respectively, and are found to be consistent within±0.2 Pg C yr -1. This estimate for the global ocean uptake flux is consistent with the values of 2.0±0.6 Pg C yr -1 estimated on the basis of the observed changes in the atmospheric CO 2 and oxygen concentrations during the 1990s (Nature 381 (1996) 218; Science 287 (2000) 2467). However, if the (wind speed) 3 dependence of Wanninkhof and McGillis (Res. Lett. 26 (1999) 1889) is used instead, the annual ocean uptake as well as the sensitivity to wind-speed variability is increased by about 70%. A zone between 40° and 60° latitudes in both the northern and southern hemispheres is found to be a major sink for atmospheric CO 2. In these areas, poleward-flowing warm waters meet and mix with the cold subpolar waters rich in nutrients. The pCO 2 in the surface water is decreased by the cooling effect on warm waters and by the biological drawdown of pCO 2 in

  6. NASA GLDAS Evapotranspiration Data and Climatology

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  7. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    USGS Publications Warehouse

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  8. 16-year Climatology of Cold-Season Extreme Precipitation-Drought Statistics derived from NLDAS Precipitation Data Over the Conterminous U.S.

    NASA Astrophysics Data System (ADS)

    Matsui, T.; Mocko, D. M.

    2015-12-01

    We examine radar-gauge merged 1/8-degree hourly precipitation data from the North American Land Data Assimilation System (NLDAS) Phase-II datasets from 1997 to 2013. For each 1/8 grid, we derived statistics of single-event storm duration, total accumulated precipitation, and dry period between each storm events during cold (Oct-Mar) seasons, and histogram of event-by-event statistics are used to estimate the thresholds for extreme (below-1%) and very extreme (below-0.1%) events. In this way, we constructed unique climatology maps of the extreme precipitation-drought frequencies and probability density functions. This climatology map depicted that cold-season extremely heavy precipitation events are populated over West Coast, Deep South, and coastal zone of North East, suggesting impacts of land-falling maritime storm systems. Simultaneously, datasets depicts that long-extended precipitation events are mostly populated over North West, and lower Mississippi Basin up to North East centered at Appalachian Mountains, resembling east Pacific storm tracks and nor'easter storm tracks, respectively. Furthermore, season-by-season statistics of these extreme events were examined for each National Climate Assessment (NCA) regimes in comparison with a number of major atmospheric oscillations and teleconnection patterns as well as Arctic Amplifications. Index of Arctic Amplification includes variability of 500mb zonal wind speed and pole-to-midlatitude differences in atmospheric thickness, linking to the phase speed of the Rossby wave. Finally, we present ensemble correlations scores, and discuss the physical processes and underlying mechanisms for their key characteristics as well as the predictive skill and predictability of the extreme events from sub-seasonal to interannual scales during cold seasons.

  9. Mechanisms of passive tracer interhemispheric transport: An analysis of model-derived and observational interhemispheric transport climatology and interannual variations

    NASA Astrophysics Data System (ADS)

    Lintner, Benjamin Richard

    2003-10-01

    Examination of the distributions of minor atmospheric constituents may provide valuable insight into atmospheric transport processes. Interhemispheric transport (IHT), the cross-equatorial linkage of the Northern and Southern Hemispheres, is an important aspect of transport that can be explored using the properties of passive tracers. In this dissertation, the principal spatial and temporal features of IHT are examined through modeling and observational approaches. Using the Goddard Institute for Space Studies-University of California, Berkeley (GISS-UCB) atmospheric general circulation model (AGCM) and its companion tracer transplant model (TTM), IHT climatology is first described. Means of assessing IHT, including a simple two-box model and transport partitioning, are introduced, and the seasonality of IHT is elaborated. Particular emphasis is placed upon the elucidation of the longitudinal and vertical features of IHT. IHT sensitivity to source emission geometry and convective mixing is also explored using both the TTM and a Lagrangian trajectory model (LTM) approach. This dissertation further addresses the interannual variability (IAV) of IHT within the GISS-UCB AGCM framework. Analysis of several AGCM simulations, including an ensemble of "Identical Forcing" runs, reveals that IHT IAV is small relative to either the mean IHT timescale or its seasonal variations. IHT IAV is linked to both axisymmetric and regional circulations, and both forced and unforced circulation variations contribute significantly to the development of IHT anomalies. Among the mechanisms that modulate IHT on interannual timescales are changes in the intensity/geometry of the Hadley circulation, variations of the strength/displacement of the zonal-mean and regional Intertropical Convergence Zones (ITCZs), the El Nino/Southern Oscillation (ENSO), and the Indian Ocean Monsoon (IOM). The IOM appears to play an especially prominent role in the modulation of IHT. A comparison of AGCM

  10. Net air-sea surface heat flux during 1984-2004 over the North Pacific and North Atlantic oceans (10°N-50°N): annual mean climatology and trend

    NASA Astrophysics Data System (ADS)

    Li, Gen; Ren, Baohua; Zheng, Jianqiu; Yang, Chengyun

    2011-06-01

    Using the Objectively Analyzed air-sea Fluxes dataset (and also the National Oceanography Centre Southampton Flux Dataset v2.0), we examined both the annual mean climatology and trend of net air-sea surface heat flux ( Q net) for 1984-2004 over the North Pacific and North Atlantic oceans (10°N-50°N). The annual mean Q net climatology shows that oceans obtain the positive Q net over much of the North Pacific and North Atlantic oceans. Exceptions are the regions of western boundary currents (WBCs) including the Kuroshio and its extension off Japan and the Gulf Stream off the USA and its extension, where oceans release lots of heat into the atmosphere, mainly ascribed to the large surface turbulent heat loss. The statistically significant negative Q net trends occurred in the WBCs, while the statistically significant positive Q net trends appeared in the central basins of Northern Subtropical Oceans (CNSOs) including the central basin of Northern Subtropical Pacific and the central basin of Northern Subtropical Atlantic. These indentified Q net trends, which are independent of both El Niño-Southern Oscillation (ENSO) and ENSO Modoki but closely related to global warming forcing, are predominately due to the statistically significant surface latent heat (LH) trends. Over the WBCs, the positive LH trends are mainly induced by the sea surface temperature increasing, indicating the ocean forcing upon overlying atmosphere. In contrast, over the CNSOs, the negative LH trends are mainly caused by the near-surface air specific humidity increasing, indicative of an oceanic response to overlying atmospheric forcing.

  11. Validation of Improved Broadband Shortwave and Longwave Fluxes Derived From GOES

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Nordeen, Michele L.; Palikonda, Rabindra; Yi, Yuhong; Minnis, Patrick; Doelling, David R.

    2009-01-01

    Broadband (BB) shortwave (SW) and longwave (LW) fluxes at TOA (Top of Atmosphere) are crucial parameters in the study of climate and can be monitored over large portions of the Earth's surface using satellites. The VISST (Visible Infrared Solar Split-Window Technique) satellite retrieval algorithm facilitates derivation of these parameters from the Geostationery Operational Environmental Satellites (GOES). However, only narrowband (NB) fluxes are available from GOES, so this derivation requires use of narrowband-to-broadband (NB-BB) conversion coefficients. The accuracy of these coefficients affects the validity of the derived broadband (BB) fluxes. Most recently, NB-BB fits were re-derived using the NB fluxes from VISST/GOES data with BB fluxes observed by the CERES (Clouds and the Earth's Radiant Energy Budget) instrument aboard Terra, a sun-synchronous polar-orbiting satellite that crosses the equator at 10:30 LT. Subsequent comparison with ARM's (Atmospheric Radiation Measurement) BBHRP (Broadband Heating Rate Profile) BB fluxes revealed that while the derived broadband fluxes agreed well with CERES near the Terra overpass times, the accuracy of both LW and SW fluxes decreased farther away from the overpass times. Terra's orbit hampers the ability of the NB-BB fits to capture diurnal variability. To account for this in the LW, seasonal NB-BB fits are derived separately for day and night. Information from hourly SW BB fluxes from the Meteosat-8 Geostationary Earth Radiation Budget (GERB) is employed to include samples over the complete solar zenith angle (SZA) range sampled by Terra. The BB fluxes derived from these improved NB-BB fits are compared to BB fluxes computed with a radiative transfer model.

  12. A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra

    NASA Technical Reports Server (NTRS)

    McMillian, W. Wallace; Strow, L. Larrabee; Revercomb, H.; Knuteson, R.; Thompson, A.

    2003-01-01

    This final report summarizes all research activities and publications undertaken as part of NASA Atmospheric Chemistry and Modeling Analysis Program (ACMAP) Grant NAG-1-2022, 'A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra'. Major project accomplishments include: (1) analysis of more than 300,000 AERI spectra from the ARM SGP site yielding a 5-year (1998-2002) timeseries of CO retrievals from the Lamont, OK AERI; (2) development of a prototype CO profile retrieval algorithm for AERI spectra; (3) validation and publication of the first CO retrievals from the Scanning High-resolution Interferometer Sounder (SHIS); and (4) development of a prototype AERI tropospheric O3 retrieval algorithm. Compilation and publication of the 5-year Lamont, OK timeseries is underway including a new collaboration with scientists at the Lawrence Berkeley National Laboratory. Public access to this data will be provided upon article submission. A comprehensive CO analysis of the archive of HIS spectra of remains as the only originally proposed activity with little progress. The greatest challenge faced in this project was motivating the University of Wisconsin Co-Investigators to deliver their archived HIS and AERIOO data along with the requisite temperature and water vapor profiles in a timely manner. Part of the supplied HIS dataset from ASHOE may be analyzed as part of a Master s Thesis under a separate project. Our success with the SAFARI 2000 SHIS CO analysis demonstrates the utility of such aircraft remote sensing data given the proper support from the instrument investigators. In addition to the PI and Co-I s, personnel involved in this CO climatology project include one Post Doctoral Fellow, one Research Scientist, two graduate students, and two undergraduate students. A total of fifteen presentations regarding research related to this

  13. What the flux? Deriving empirical estimates of riverine Mo fluxes over Earth history

    NASA Astrophysics Data System (ADS)

    Romaniello, S. J.; Ostrander, C. M.; Johnson, A.; Planavsky, N.; Anbar, A. D.

    2016-12-01

    Molybdenum (Mo) is a key micronutrient in the marine nitrogen cycle and thus plays an important role in regulating global marine primary productivity and biogeochemistry. At present, Mo is the most abundant transition metal in seawater, despite being one of the least abundant transition metals in crustal rocks. This counterintuitive behavior is the result of the high solubility and mobile nature of the molybdate anion under oxidizing conditions. However, previous studies have pointed out that the oxidative weathering flux of Mo to the ocean was likely much lower under Archean conditions, and that when coupled with reduced solubility of Mo in anoxic seawater, portions of the ocean may have been Mo starved. With few exceptions, riverine fluxes of elements have been only poorly constrained over geologic time. In the absence of strong empirical constraints, fluxes are either imagined to have been similar to today, or radically different, depending primarily on the chemistry of the element and model implored by the authors. Based on large variations of Mo concentrations in shales, several authors have invoked models where riverine Mo fluxes vary in response to atmospheric O2 availability but it has been difficult to provide independent constraints to support or refute these models. Here we demonstrate a novel approach for constraining riverine Mo fluxes from the Archean to present by independently estimating the seawater Mo inventory from Mo/TOC ratios and the Mo residence time from Mo isotope ratios. At steady state, the riverine flux is then the ratio of these parameters. Surprisingly, despite strong secular evolution of seawater Mo concentrations and residence time, this approach suggests the overall rate of Mo supply to the ocean was probably relatively constant within one order of magnitude over most of Earth history. This result provides new insights into both the processes controlling Mo availability to the oceans and, more broadly, the controls on oxidative

  14. Carbon Flux Estimated from CO2 Concentration using Half Order Derivative Method

    NASA Astrophysics Data System (ADS)

    Shahnaz, S.; Wang, J.

    2013-12-01

    The object of this study is to test the half-order derivative method for estimating carbon flux from CO2 concentration time series data at single level near the surface. When the transport process is described by a diffusion equation, carbon flux may be expressed as a weighted average of CO2 concentration time-series known as half-order time derivative. CO2 concentration and flux data collected from Ameriflux network at 10 sites in USA, Canada, Mexico and Brazil were used in this study. The preliminary results show good agreement between the modeled and observed CO2 flux during growing seasons. The study suggests that the half order derivative method is a useful tool in monitoring global carbon budget as direct measurements of carbon flux over extensive regions are limited.

  15. Derivation of Improved Surface and TOA Broadband Fluxes Using CERES-derived Narrowband-to-Broadband Coefficients

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Doelling, David R.; Chan, Pui K.; Nordeen, MIchele L.; Palikonda, Rabindra; Yi, Yuhong; Minnis, Patrick

    2006-01-01

    Satellites can provide global coverage of a number of climatically important radiative parameters, including broadband (BB) shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA) and surface. These parameters can be estimated from narrowband (NB) Geostationary Operational Environmental Satellite (GOES) data, but their accuracy is highly dependent on the validity of the narrowband-to-broadband (NB-BB) conversion formulas that are used to convert the NB fluxes to broadband values. The formula coefficients have historically been derived by regressing matched polarorbiting satellite BB fluxes or radiances with their NB counterparts from GOES (e.g., Minnis et al., 1984). More recently, the coefficients have been based on matched Earth Radiation Budget Experiment (ERBE) and GOES-6 data (Minnis and Smith, 1998). The Clouds and the Earth's Radiant Energy Budget (CERES see Wielicki et al. 1998)) project has recently developed much improved Angular Distribution Models (ADM; Loeb et al., 2003) and has higher resolution data compared to ERBE. A limited set of coefficients was also derived from matched GOES-8 and CERES data taken on Topical Rainfall Measuring Mission (TRMM) satellite (Chakrapani et al., 2003; Doelling et al., 2003). The NB-BB coefficients derived from CERES and the GOES suite should yield more accurate BB fluxes than from ERBE, but are limited spatially and seasonally. With CERES data taken from Terra and Aqua, it is now possible to derive more reliable NB-BB coefficients for any given area. Better TOA fluxes should translate to improved surface radiation fluxes derived using various algorithms. As part of an ongoing effort to provide accurate BB flux estimates for the Atmospheric Radiation Measurement (ARM) Program, this paper documents the derivation of new NB-BB coefficients for the ARM Southern Great Plains (SGP) domain and for the Darwin region of the Tropical Western Pacific (DTWP) domain.

  16. Climatology of urban regional systems

    NASA Technical Reports Server (NTRS)

    Pease, R. W.

    1970-01-01

    The combining of remote sensing technologies to urban-regional energy climatology is studied. It was found to be three dimensional with a mosaic urban surface, each smaller surface with its own radiant and thermal properties. Urban patterns of radiant exchange were found to be constantly changing during diurnal and annual cycles. Results were derived from Barbados data using remote methods for monitoring and mapping radiation. Isoline maps of terrestrial radiation patterns were made generalizing the minute patterns of the scan image.

  17. The NEWS Water Cycle Climatology

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  18. Real-time soil flux measurements and calculations with CRDS + Soil Flux Processor: comparison among flux algorithms and derivation of whole system error

    NASA Astrophysics Data System (ADS)

    Alstad, K. P.; Venterea, R. T.; Tan, S. M.; Saad, N.

    2015-12-01

    Understanding chamber-based soil flux model fitting and measurement error is key to scaling soils GHG emissions and resolving the primary uncertainties in climate and management feedbacks at regional scales. One key challenge is the selection of the correct empirical model applied to soil flux rate analysis in chamber-based experiments. Another challenge is the characterization of error in the chamber measurement. Traditionally, most chamber-based N2O and CH4 measurements and model derivations have used discrete sampling for GC analysis, and have been conducted using extended chamber deployment periods (DP) which are expected to result in substantial alteration of the pre-deployment flux. The development of high-precision, high-frequency CRDS analyzers has advanced the science of soil flux analysis by facilitating much shorter DP and, in theory, less chamber-induced suppression of the soil-atmosphere diffusion gradient. As well, a new software tool developed by Picarro (the "Soil Flux Processor" or "SFP") links the power of Cavity Ring-Down Spectroscopy (CRDS) technology with an easy-to-use interface that features flexible sample-ID and run-schemes, and provides real-time monitoring of chamber accumulations and environmental conditions. The SFP also includes a sophisticated flux analysis interface which offers a user-defined model selection, including three predominant fit algorithms as default, and an open-code interface for user-composed algorithms. The SFP is designed to couple with the Picarro G2508 system, an analyzer which simplifies soils flux studies by simultaneously measuring primary GHG species -- N2O, CH4, CO2 and H2O. In this study, Picarro partners with the ARS USDA Soil & Water Management Research Unit (R. Venterea, St. Paul), to examine the degree to which the high-precision, high-frequency Picarro analyzer allows for much shorter DPs periods in chamber-based flux analysis, and, in theory, less chamber-induced suppression of the soil

  19. Higher order treatment on temporal derivative of angular flux for time-dependent MOC

    SciTech Connect

    Tsujita, K.; Endo, T.; Yamamoto, A.; Kamiyama, Y.; Kirimura, K.

    2013-07-01

    A new kinetic analysis method, whose angular dependence of temporal derivative for angular flux is accurately treated within practical memory requirement, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, the computational resources, i.e., the memory capacity, can be still a crucial problem for rigorous kinetic calculations using MOC. In the straightforward approach for kinetic calculation using MOC, the segment-averaged angular fluxes should be stored on the memory in order to explicitly calculate the temporal derivative of the angular flux, which would require huge memory. Thus, in the conventional kinetic calculation code using MOC, the temporal derivative of the angular flux has been approximated as angularly isotropic in order to reduce the memory requirement (isotropic assumption). However, the approximation error caused by the conventional isotropic assumption has not been thoroughly and quantitatively investigated so far and an accurate kinetic calculation method, which can quantitatively estimate the above approximation error within practical memory storage, has not been developed. The present study tries to address this issue with a newly developed approach. Effect of the approximate treatment for the temporal derivative of angular flux is evaluated through benchmark calculations. (authors)

  20. Climatology of precipitating convective clouds in ERA-Interim derived from the Emanuel and Živković-Rothman parameterisation scheme

    NASA Astrophysics Data System (ADS)

    Philipp, Anne; Seibert, Petra

    2016-04-01

    The convective parameterisation scheme of Emanuel and Živković-Rothman (1999) was designed to represent cumulus convection with a special focus on convective water fluxes. This scheme is implemented in the Lagrangian particle transport and dispersion model FLEXPART (FLEXible PARTicle dispersion model, http://flexpart.eu) to calculate a redistribution matrix used for the transport simulation. In order to improve the wet scavenging through convective clouds in this model, we are statistically evaluating a global data set of cloud base and cloud top heights of precipitating clouds derived from the EZ99 scheme and based on ECMWF's ERA-Interim data. They have a spectral resolution of about 80 km and 60 vertical levels available every 6 hours. The results will be evaluated as a function of season and geographical region.

  1. Arctic cloudiness - Comparison of ISCCP-C2 and Nimbus-7 satellite-derived cloud products with a surface-based cloud climatology

    NASA Technical Reports Server (NTRS)

    Schweiger, Axel J.; Key, Jeffrey R.

    1992-01-01

    One surface-based and two satellite arctic cloud climatologies are compared in terms of the annual cycle and spatial patterns of total monthly cloud amounts. Additionally, amounts and spatial patterns of low, middle, and high cloud type are compared. The surface-based dataset is for the years 1951-81, while the satellite-based data are for 1979-85 and 1983-86. The satellite cloud amounts are generally 5-35 percent less than the surface observations over the entire Arctic. However, regional differences may be as high as 45 percent. During July the surface-based cloud amounts for the central Arctic are about 40 percent greater than the satellite-based, but only 10 percent greater in the Norwegian Sea area. Surprisingly, (ISCCP) cloud climatology and surface observations agree better during winter than during summer. Possible reasons for these differences are discussed.

  2. Arctic cloudiness - Comparison of ISCCP-C2 and Nimbus-7 satellite-derived cloud products with a surface-based cloud climatology

    NASA Technical Reports Server (NTRS)

    Schweiger, Axel J.; Key, Jeffrey R.

    1992-01-01

    One surface-based and two satellite arctic cloud climatologies are compared in terms of the annual cycle and spatial patterns of total monthly cloud amounts. Additionally, amounts and spatial patterns of low, middle, and high cloud type are compared. The surface-based dataset is for the years 1951-81, while the satellite-based data are for 1979-85 and 1983-86. The satellite cloud amounts are generally 5-35 percent less than the surface observations over the entire Arctic. However, regional differences may be as high as 45 percent. During July the surface-based cloud amounts for the central Arctic are about 40 percent greater than the satellite-based, but only 10 percent greater in the Norwegian Sea area. Surprisingly, (ISCCP) cloud climatology and surface observations agree better during winter than during summer. Possible reasons for these differences are discussed.

  3. Directional gravity wave momentum fluxes in the stratosphere derived from AIRS high-resolution temperatures

    NASA Astrophysics Data System (ADS)

    Ern, Manfred; Hoffmann, Lars; Preusse, Peter

    2017-04-01

    Gravity waves are an important driver of atmospheric dynamics. Due to their small scales, gravity waves are poorly resolved in most general circulation models and chemistry climate models, and the effect of gravity waves on the background flow has to be parametrized. A key quantity of these parametrization schemes is the vertical flux of horizontal momentum due to gravity waves. Gravity wave parametrization schemes are poorly constrained, and for a further improvement global observations of gravity wave momentum fluxes from satellite are required. First attempts were based on absolute values of gravity wave momentum fluxes derived from satellite instruments having only one viewing direction. For a better comparison with parametrization schemes, however, directional momentum fluxes, i.e. momentum flux vectors, are needed. We make use of 3D temperature distributions resulting from a dedicated high resolution temperature retrieval based on the 3D observations of the nadir scanning satellite instrument AIRS on board the EOS Aqua satellite. For January 2009 and an altitude of 36km as the first attempt, full 3D gravity wave wavenumber vectors are determined in small 3D fitting volumes, and global distributions of zonal and meridional gravity wave momentum fluxes are derived. Resulting global patterns of momentum fluxes are similar to those previously known from absolute momentum fluxes in the stratosphere: enhanced values are found in the polar jets and in the summertime subtropics. Momentum fluxes derived from AIRS are directed prevalently opposite to the background winds, i.e. eastward in the summertime subtropics, and prevalently westward in the polar jets. In addition, in the polar jets meridional momentum fluxes are opposite in their direction to the meridional winds induced by planetary waves. We also find that the distribution of AIRS net momentum fluxes is dominated by gravity waves of relatively large amplitude, and of relatively long horizontal scale

  4. Diurnal variation climatology of short-lived at atmospheric compositions (ClO, BrO, HO2 and HOCl) derived from SMILES NICT data

    NASA Astrophysics Data System (ADS)

    Kreyling, Daniel; Sagawa, Hideo; Kasai, Yasuko

    2013-04-01

    We present a diurnal variation climatology for short-lived at atmospheric compositions, such as ClO, BrO, HO2 and HOCl, as well as for longer life time species, like O3 and HCl from observations of unprecedented sensitivity with the Superconducting SubMIllimeter wave Limb-Emission Sounder (SMILES), which is installed on the Japanese Experiment Module (JEM) at the International Space Station (ISS). With its non sun synchronous orbit, SMILES measurements comprise observations at all local times. The target altitude range is between lower stratosphere and mesopause. Differences in diurnal variation chemistry of strato-, and mesospheric BrO and ClO of the diurnal climatology are presented. The data employed is produced by the SMILES level 2 retrieval algorithm version 2.1.5 at the National Institute of Information and Communications Technology (NICT). The SMILES climatology data sets are available via the SMILES data distribution homepage in NICT at https://smiles-p6.nict.go.jp/products/research_latitude-longitude.jsf

  5. Estimating sensible heat flux in agricultural screenhouses by the flux-variance and half-order time derivative methods

    NASA Astrophysics Data System (ADS)

    Achiman, Ori; Mekhmandarov, Yonatan; Pirkner, Moran; Tanny, Josef

    2016-04-01

    Previous studies have established that the eddy covariance (EC) technique is reliable for whole canopy flux measurements in agricultural crops covered by porous screens, i.e., screenhouses. Nevertheless, the eddy covariance technique remains difficult to apply in the farm due to costs, operational complexity, and post-processing of data - thereby inviting alternative techniques to be developed. The subject of this research was estimating the sensible heat flux by two turbulent transport techniques, namely, Flux-Variance (FV) and Half-order Time Derivative (HTD) whose instrumentation needs and operational demands are not as elaborate as the EC. The FV is based on the standard deviation of high frequency temperature measurements and a similarity constant CT. The HTD method requires mean air temperature and air velocity data. Measurements were carried out in two types of screenhouses: (i) a banana plantation in a light shading (8%) screenhouse; (ii) a pepper crop in a dense insect-proof (50-mesh) screenhouse. In each screenhouse an EC system was deployed for reference and high frequency air temperature measurements were conducted using miniature thermocouples installed at several levels to identify the optimal measurement height. Quality control analysis showed that turbulence development and flow stationarity conditions in the two structures were suitable for flux measurements by the EC technique. Energy balance closure slopes in the two screenhouses were larger than 0.71, in agreement with results for open fields. Regressions between sensible heat flux measured by EC and estimated by FV resulted with CT values that were usually larger than 1, the typical value for open field. In both shading and insect-proof screenhouses the CT value generally increased with height. The optimal measurement height, defined as the height with maximum R2 of the regression between EC and FV sensible heat fluxes, was just above the screen. CT value at optimal height was 2.64 and 1.52 for

  6. SPARC Intercomparison of Middle Atmosphere Climatologies

    NASA Technical Reports Server (NTRS)

    Randel, William; Fleming, Eric; Geller, Marvin; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2002-01-01

    This atlas presents detailed incomparisons of several climatological wind and temperature data sets which cover the middle atmosphere (over altitudes approx. 10-80 km). A number of middle atmosphere climatologies have been developed in the research community based on a variety of meteorological analyses and satellite data sets. Here we present comparisons between these climatological data sets for a number of basic circulation statistics, such as zonal mean temperature, winds and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. We also include comparisons between the global climatologies and historical rocketsonde wind and temperature measurements, and also with more recent lidar temperature data. These comparisons highlight differences and uncertainties in contemporary middle atmosphere data sets, and allow biases in particular analyses to be isolated. In addition, a brief atlas of zonal mean temperature and wind statistics is provided to highlight data availability and as a quick-look reference. This technical report is intended as a companion to the climatological data sets held in archive at the SPARC Data Center (http://www.sparc.sunysb.edu).

  7. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP NCAR Reanalyses: Characteristics and Temporal Variability.

    NASA Astrophysics Data System (ADS)

    Marengo, Jose A.; Soares, Wagner R.; Saulo, Celeste; Nicolini, Matilde

    2004-06-01

    A climatology of the South American low-level jet east of the Andes (SALLJ) is developed using the 1950 2000 circulation and moisture fields from the NCEP NCAR reanalyses and available upper-air observations made in Bolivia and Paraguay since 1998. Upper- and low-level circulation fields were derived for seasonal means and SALLJ composites during the warm and cold seasons. The Bonner criterion 1 was applied for sites in central Bolivia and downstream near northern Paraguay, to determine the spatial and temporal characteristics of the SALLJ. On the circulation characteristics, SALLJ composites during the warm season show the enhanced low-level meridional moisture transport coming from equatorial South America as well as an upper-level wave train emanating from the west Pacific propagating toward South America. The intensification of the warm season SALLJ follows the establishment of an upper-level ridge over southern Brazil and a trough over most of Argentina. The circulation anomalies at upper and lower levels suggest that the intensification of the SALLJ would lead to an intensification of the South Atlantic convergence zone (SACZ) later on and to the penetration of cold fronts with an area of enhanced convection ahead at the exit region of the SALLJ.Regarding the time variability, the SALLJ seems to occur all year long, bringing tropical moist air masses from the Amazon into southern Brazil northern Argentina more frequently in the warm season, and bringing tropical maritime air, which is less humid than the tropical air masses coming from the subtropical Atlantic high, more frequently during the cold season. SALLJs are detected mostly during the warm season to the north of 20°S, while to the south the SALLJs seem to occur all year long. The diurnal cycle shows that SALLJs are more frequent and intense between 0600 and 1200 UTC for the warm season north of 20°S, while at the region downstream the maximum is detected between 0000 and 0600 UTC during the cold

  8. Intraseasonal to interannual variability of Kelvin wave momentum fluxes as derived from high-resolution radiosonde data

    NASA Astrophysics Data System (ADS)

    Sjoberg, Jeremiah P.; Birner, Thomas; Johnson, Richard H.

    2017-07-01

    Observational estimates of Kelvin wave momentum fluxes in the tropical lower stratosphere remain challenging. Here we extend a method based on linear wave theory to estimate daily time series of these momentum fluxes from high-resolution radiosonde data. Daily time series are produced for sounding sites operated by the US Department of Energy (DOE) and from the recent Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign. Our momentum flux estimates are found to be robust to different data sources and processing and in quantitative agreement with estimates from prior studies. Testing the sensitivity to vertical resolution, our estimated momentum fluxes are found to be most sensitive to vertical resolution greater than 1 km, largely due to overestimation of the vertical wavelength. Climatological analysis is performed over a selected 11-year span of data from DOE Atmospheric Radiation Measurement (ARM) radiosonde sites. Analyses of this 11-year span of data reveal the expected seasonal cycle of momentum flux maxima in boreal winter and minima in boreal summer, and variability associated with the quasi-biennial oscillation of maxima during easterly phase and minima during westerly phase. Comparison between periods with active convection that is either strongly or weakly associated with the Madden-Julian Oscillation (MJO) suggests that the MJO provides a nontrivial increase in the lowermost stratospheric momentum fluxes.

  9. Moisture and latent heat flux variabilities in the tropical Pacific derived from satellite data

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1988-01-01

    This paper describes a method of determining latent heat flux and the ocean-atmosphere moisture from sea surface temperature, precipitable water, and surface wind speed data derived from 1980-1983 observations of SMMR aboard Nimbus 7 above tropical Pacific. The observation period included a very intense El Nino-Southern Oscillation (ENSO) episode. It was found that, during the early phase of the 1982-1983 ENSO, a surface convergence center moved east leading the anomalous equatorial westerlies. At this center, the low wind and high humidity caused negative (low) latent heat flux anomalies, despite anomalously high sea surface temperatures. Latent heat flux was found to play an important role in the seasonal cooling of the upper ocean, except in areas covered by major surface convergence zones and in areas of ocean upwelling.

  10. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations

    DOE PAGES

    Tang, Ying; Winkler, Julie; Zhong, Shiyuan; ...

    2017-07-10

    The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We also assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereasmore » current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. Furthemore, the choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.« less

  11. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations.

    PubMed

    Tang, Ying; Winkler, Julie; Zhong, Shiyuan; Bian, Xindi; Doubler, Dana; Yu, Lejiang; Walters, Claudia

    2017-07-10

    The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereas current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. The choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.

  12. Importance of snowmelt-derived fluxes on the groundwater flow in a high elevation meadow (Invited)

    NASA Astrophysics Data System (ADS)

    Lowry, C.; Loheide, S. P.; Deems, J. S.; Moore, C. E.; Lundquist, J. D.

    2010-12-01

    In order to manage or restore riparian ecosystems in high elevation environments, under both current and future climatic conditions, we must have an understanding of both stream flow and groundwater dynamics. Seasonal changes in both stream flow and water table fluctuations in these environments are dependent on snowmelt-derived flux entering riparian zones from the larger watershed. Without reliable data, from field observations or numerical modeling, there is little chance of accurately quantifying changes in water table dynamics, surface inundation, soil moisture or stream stage, which are critical to riparian vegetation within these systems. In the work presented here, we show the impact of snowmelt-derived groundwater flux from the surrounding hillslopes on water table dynamics in Tuolumne Meadows, which is located in the Sierra Nevada Mountains of California, USA. Results show the importance of a combination of fluxes at the hillslope boundaries, snowmelt within the meadow and changes in the stream stage on water levels within the meadow. These results also demonstrate the importance of timing of groundwater flux entering the meadow as a result of spring snowmelt, which was observed to vary over 20 days based on the location, aspect, and local geology of the contributing area within the larger watershed. Identifying temporal and spatial variability in flux entering the meadow is necessary in order to simulate changes in water levels within the meadow. Caution must be taken when linking watershed scale models to local meadow scale models as results can vary significantly based on the temporal and spatial scales at which boundary fluxes are lumped. Without a clear hydrologic representation of snowmelt on the surrounding hillslopes, it is difficult to simulate groundwater dynamics within these riparian ecosystems with the accuracy necessary for understanding ecosystem response.

  13. Role of CNT3 in the transepithelial flux of nucleosides and nucleoside-derived drugs

    PubMed Central

    Errasti-Murugarren, Ekaitz; Pastor-Anglada, Marçal; Casado, F Javier

    2007-01-01

    We examined the role of the concentrative nucleoside transporter CNT3 in the establishment of a transepithelial flux of natural nucleosides and their pharmacologically active derivatives in renal epithelial cell lines. Murine PCT cells grown on a transwell dish showed endogenous CNT3 activity at their apical membrane that was responsible for the sodium-dependent transepithelial flux of both purine and pyrimidine nucleosides. hCNT3 was also identified in human kidney and its role in the transport of nucleosides was tested. To this end, MDCK cells, lacking endogenous CNT3 activity, were genetically engineered to express the human orthologue of CNT3 (hCNT3-MDCK cells). In these cells, hCNT3 was inserted into the apical membrane, thus generating, as for PCT cells, a transepithelial flux of both nucleosides and nucleoside-derived drugs. Apical-to-basolateral transepithelial flux was present in all cells expressing a functional CNT3 transporter and was significantly higher than that found either in PCT cells in absence of sodium or in mock-transfected MDCK cells. Nevertheless in all cases a significant amount of the transported nucleoside was retained and transformed inside cells. However release to the opposite compartment was CNT3 dependent, not only in terms of absolute flux (much higher when an apical CNT3 transporter was active) but also regarding metabolic transformations of the apically absorbed nucleosides. These results underline a critical role of CNT3 in the renal reabsorption of nucleosides and their derivatives as well as in their intracellular metabolism. PMID:17412768

  14. On the heat flux vector for flowing granular materials--part II: derivation and special cases

    SciTech Connect

    Massoudi, Mehrdad

    2006-09-10

    Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non-linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame-invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non-linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient.

  15. Heat and moisture flux modeling of the FIFE grassland canopy aided by satellite derived canopy variables

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Crosson, William L.; Cooper, Harry J.; Weng, Heng-Yi

    1990-01-01

    Satellite data corresponding to radiance variables are used to derive three canopy properties which describe slowly modulating boundary conditions of the interface between the biosphere and the atmosphere. The canopy properties are key factors in the regulation of heat and moisture transfer and are found to be radiance patterns within a homogeneous ecosystem. The physical modeling technique is enhanced by the satellite data, and the surface fluxes are represented more accurately in the resulting biosphere-interface model.

  16. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Adizzone, Joe; Nelkin, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global air-sea turbulent fluxes are needed for driving ocean models and validating coupled ocean-atmosphere global models. A method was developed to retrieve surface air humidity from the radiances measured by the Special Sensor Microwave/Imager (SSM/I) Using both SSM/I-retrieved surface wind and air humidity, they computed daily turbulent fluxes over global oceans with a stability-dependent bulk scheme. Based on this method, we have produced Version 1 of Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF) dataset from the SSM/I data and other data. It provides daily- and monthly-mean surface turbulent fluxes and some relevant parameters over global oceans for individual F8, F10, and F11 satellites covering the period July 1987-December 1994. It also provides 1988-94 annual- and monthly-mean climatologies of the same variables, using only F8 and F1 1 satellite data. It has a spatial resolution of 2.0 degrees x 2.5 degrees lat-long and is archived at the NASA/GSFC DAAC. The purpose of this paper is to present an updated assessment of the GSSTF 1.0 dataset.

  17. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  18. A charge-charge flux-dipole flux decomposition of the dipole moment derivatives and infrared intensities of the AB 3 (A = N, P; B = H, F) molecules

    NASA Astrophysics Data System (ADS)

    César, Paulo H.; Faria, Sérgio H. D. M.; da Silva, João V.; Haiduke, R. L. A.; Bruns, Roy E.

    2005-10-01

    The quantum theory of atoms in molecules (AIM) has been used to decompose dipole moment derivatives and fundamental infrared intensities of the AB 3 (A = N,P; B = H,F) molecules into charge-charge flux-dipole flux (CCFDF) contributions. Calculations were carried out at the MP2(FC)/6-311++G(3d,3p) level. Infrared intensities calculated from the AIM atomic charges and atomic dipoles are within 13.8 km mol -1 of the experimental values not considering the NH 3 and PH 3 stretching vibrations for which the experimental bands are severely overlapped. Group V atomic dipoles are very important in determining the molecular dipole moments of NF 3, PH 3 and PF 3 although the atomic charges account for almost all of the NH 3 molecular moment. Dipole fluxes on the Group V atom are important in determining the stretching band intensities of all molecules whereas they make small contributions to the bending mode intensities. Consideration of dipole flux contributions from the terminal atoms must also be made for accurately describing the intensities of all these molecules. As expected from a simple bond moment model, charge contributions dominate for most of the NH 3, NF 3, and PF 3 dipole moment derivatives and intensities. Charge flux and dipole flux contributions are very substantial for all the PH 3 vibrations, cancelling each other for the stretching modes and reinforcing one another for the bending modes.

  19. Surface fluxes of trace gases derived from convective-layer profiles

    SciTech Connect

    Davis, K.J.

    1992-01-01

    Non-local gradient and variance functions relating the surface and entrainment fluxes of a passive scalar to the mean mixing ratio and variance profiles in the cloud-free, convective boundary layer have been determined from large eddy simulations. These functions can be used to calculate the surface and entrainment fluxes of trace gases over a large area, given profile measurements within the convective boundary layer. This dissertation develops the convective layer gradient technique for estimating fluxes and demonstrates two potentially valuable applications. An attempt is made to verify the large eddy simulation gradient functions with aircraft observations from the First ISLSCP Field Experiment and the San Joaquin Valley Air Quality Study. Results show general agreement with the simulated gradient functions but precise comparison is made difficult by scatter in the aircraft derived functions. The gradient functions are used to estimate forest emissions of nonmethane hydrocarbons using tethered balloon profiles. Mean emission estimates from profiles collected during the Amazon Boundary Layer Experiment 2A and the Rural Oxidants in the Southern Environment I experiment show good agreement with estimates made from budget arguments. Daytime isoprene emissions from the dry season Amazon are estimated. Summer, daytime isoprene, alpha-pinene, and beta-pinene emissions from an Alabama pine-oak forest are estimated. This technique provides a valuable means of measuring biogenic hydrocarbon emissions, a precursor to photochemical ozone production. The convective layer gradient technique holds the potential for remote estimation of surface fluxes over large areas using remote profiling technology, such as Differential Absorption Lidar (DIAL). The minimum signal-to-noise ratio for successful ozone deposition estimates using this DIAL system and the convective layer gradient technique was less than the signal-to-noise level in the analyzed DIAL observations.

  20. Situational Lightning Climatologies

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  1. First space-based derivation of the global atmospheric methanol emission fluxes

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Guenther, A.; Razavi, A.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Karagulian, F.; de Mazière, M.; Vigouroux, C.; Amelynck, C.; Schoon, N.; Laffineur, Q.; Heinesch, B.; Aubinet, M.; Rinsland, C.; Müller, J.-F.

    2011-05-01

    significant error reductions achieved by the optimization concern the derived biogenic emissions over the Amazon and over the Former Soviet Union. The robustness of the derived fluxes to changes in convective updraft fluxes, in methanol removal processes, and in the choice of the biogenic a priori inventory is assessed through sensitivity inversions. Detailed comparisons of the model with a number of aircraft and surface observations of methanol, as well as new methanol measurements in Europe and in the Reunion Island show that the satellite-derived methanol emissions improve significantly the agreement with the independent data, giving thus credence to the IASI dataset.

  2. Comparison of surface energy fluxes with satellite-derived surface energy flux estimates from a shrub-steppe

    SciTech Connect

    Kirkham, Randy R.

    1993-12-01

    This thesis relates the components of the surface energy balance (i.e., net radiation, sensible and latent heat flux densities, soil heat flow) to remotely sensed data for native vegetation in a semi-arid environment. Thematic mapper data from Landsat 4 and 5 were used to estimate net radiation, sensible heat flux (H), and vegetation amount. Several sources of ground truth were employed. They included soil water balance using the neutron thermalization method and weighing lysimeters, and the measurement of energy fluxes with the Bowen ratio energy balance (BREB) technique. Sensible and latent heat flux were measured at four sites on the U.S. Department of Energy`s Hanford Site using a weighing lysimeter and/or BREB stations. The objective was to calibrate an aerodynamic transport equation that related H to radiant surface temperature. The transport equation was then used with Landsat thermal data to generate estimates of H and compare these estimates against H values obtained with BREB/lysimeters at the time of overflight. Landsat and surface meteorologic data were used to estimate the radiation budget terms at the surface. Landsat estimates of short-wave radiation reflected from the surface correlate well with reflected radiation measured using inverted Eppley pyranometers. Correlation of net radiation estimates determined from satellite data, pyranometer, air temperature, and vapor pressure compared to net radiometer values obtained at time of overflight were excellent for a single image, but decrease for multiple images. Soil heat flux, GT, is a major component of the energy balance in arid systems and G{sub T} generally decreases as vegetation cover increases. Normalized difference vegetation index (NDVI) values generated from Landsat thermatic mapper data were representative of field observations of the presence of green vegetation, but it was not possible to determine a single relationship between NDVI and GT for all sites.

  3. Uncertainties and biases of source masses derived from fits of integrated fluxes or image intensities

    NASA Astrophysics Data System (ADS)

    Men'shchikov, A.

    2016-09-01

    Fitting spectral distributions of total fluxes or image intensities are two standard methods for estimating the masses of starless cores and protostellar envelopes. These mass estimates, which are the main source and basis of our knowledge of the origin and evolution of self-gravitating cores and protostars, are uncertain. It is important to clearly understand sources of statistical and systematic errors stemming from the methods and minimize the errors. In this model-based study, a grid of radiative transfer models of starless cores and protostellar envelopes was computed and their total fluxes and image intensities were fitted to derive the model masses. To investigate intrinsic effects related to the physical objects, all observational complications were explicitly ignored. Known true values of the numerical models allow assessment of the qualities of the methods and fitting models, as well as the effects of nonuniform temperatures, far-infrared opacity slope, selected subsets of wavelengths, background subtraction, and angular resolutions. The method of fitting intensities gives more accurate masses for more resolved objects than the method of fitting fluxes. With the latter, a fitting model that assumes optically thin emission gives much better results than the one allowing substantial optical depths. Temperature excesses within the objects above the mass-averaged values skew their spectral shapes towards shorter wavelengths, leading to masses underestimated typically by factors 2-5. With a fixed opacity slope deviating from the true value by a factor of 1.2, masses are inaccurate within a factor of 2. The most accurate masses are estimated by fitting just two or three of the longest wavelength measurements. Conventional algorithm of background subtraction is a likely source of large systematic errors. The absolute values of masses of the unresolved or poorly resolved objects in star-forming regions are uncertain to within at least a factor of 2-3.

  4. Flux densities of meteoroids derived from optical double-station observations

    NASA Astrophysics Data System (ADS)

    Koschny, D.; Drolshagen, E.; Drolshagen, S.; Kretschmer, J.; Ott, T.; Drolshagen, G.; Poppe, B.

    2017-09-01

    We have developed a new method to determine flux densities of meteoroids using optical double-station meteor observations. It is based on the assumption that the velocity distribution is constant for all mass bins. By comparing the observed velocity distribution with a model distribution we determine de-biasing factors to correct for meteors too slow to emit a detectable amount of light. We use this method to correct a dataset of about 20000 double-station meteoroids detected over a period of about 3.5 years with the Canary Island Long-Baseline Observatory (CILBO). The resulting cumulative flux density has a slope comparable to the model of Grün et al. (1985). The largest uncertainty is the luminous efficiency. Depending on which values for the luminous efficiency are assumed, the mass estimate deviates by about one to 1.5 orders of magnitude. Using the luminous efficiencies derived by Weryk et al. (2013) results in an excellent agreement of our data with the Grün data.

  5. Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data

    NASA Astrophysics Data System (ADS)

    Ern, M.; Hoffmann, L.; Preusse, P.

    2017-01-01

    In order to reduce uncertainties in modeling the stratospheric circulation, global observations of gravity wave momentum flux (GWMF) vectors are required for comparison with distributions of resolved and parametrized GWMF in global models. For the first time, we derive GWMF vectors globally from data of a nadir-viewing satellite instrument: we apply a 3-D method to an Atmospheric Infrared Sounder (AIRS) temperature data set that was optimized for gravity wave (GW) analysis. For January 2009, the resulting distributions of GW amplitudes and of net GWMF highlight the importance of GWs in the polar vortex and the summertime subtropics. Net GWMF is preferentially directed opposite to the background wind, and, interestingly, it is dominated by large-amplitude GWs of relatively long horizontal wavelength. For convective GW sources, these large horizontal scales are in contradiction with traditional thoughts. However, the observational filter effect needs to be kept in mind when interpreting the results.

  6. Effect of sphingosine derivatives on calcium fluxes in thyroid FRTL-5 cells.

    PubMed Central

    Törnquist, K; Ekokoski, E

    1994-01-01

    The effects of sphingosine derivatives on Ca2+ fluxes were investigated in thyroid FRTL-5 cells labelled with Fura 2. Addition of sphingosylphosphocholine (SPC) or sphingosine (SP) increased intracellular free Ca2+ ([Ca2+]i) in a dose-dependent manner. At the highest dose tested (30 microM), the response was biphasic: a rapid transient increase in [Ca2+]i, followed by a new, elevated, level of [Ca2+]i. Both phases of the SPC-evoked increase in [Ca2+]i were dependent on extracellular Ca2+, whereas only the SP-evoked elevated level of [Ca2+]i was dependent on the influx of Ca2+. Both compounds released sequestered Ca2+ from thapsigargin- and inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pools. In addition, the increase in [Ca2+]i in response to SPC, but not to SP, was attenuated in cells treated with phorbol myristate acetate or with the putative Ca(2+)-channel blocker SKF 96365, and in cells pretreated with pertussis toxin for 24 h. SPC did not activate the production of IP3. Furthermore, both SPC and SP released sequestered Ca2+ from permeabilized cells. We observed that SPC, but not SP, stimulated release of [3H]arachidonate from cells prelabelled with [3H]arachidonate for 24 h. Both SPC and SP stimulated the incorporation of [3H]thymidine into DNA in cells grown in the absence of thyroid-stimulating hormone (TSH). The results suggest that sphingosine derivatives are putative regulators of Ca2+ fluxes in FRTL-5 cells, and that SP and SPC may act on [Ca2+]i via different mechanisms. Furthermore, both SP and SPC may be of importance in modulating thyroid-cell proliferation. Images Figure 6 Figure 7 Figure 8 PMID:8166643

  7. An analysis and implications of alternative methods of deriving the density (WPL) terms for eddy covariance flux measurements

    Treesearch

    W. J. Massman; J. -P. Tuovinen

    2006-01-01

    We explore some of the underlying assumptions used to derive the density or WPL terms (Webb et al. (1980) Quart J RoyMeteorol Soc 106:85-100) required for estimating the surface exchange fluxes by eddy covariance. As part of this effort we recast the origin of the density terms as an assumption regarding the density fluctuations rather than as a (dry air) flux...

  8. Intercomparison of Satellite Derived Gravity Time Series with Inferred Gravity Time Series from TOPEX/POSEIDON Sea Surface Heights and Climatological Model Output

    NASA Technical Reports Server (NTRS)

    Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)

    2001-01-01

    The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.

  9. QTAIM charge-charge flux-dipole flux interpretation of electronegativity and potential models of the fluorochloromethane mean dipole moment derivatives.

    PubMed

    Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E

    2011-11-17

    Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results

  10. Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations.

    PubMed Central

    Barry, P H

    1998-01-01

    Since the late 1960s it has been known that the passage of current across a membrane can give rise to local changes in salt concentration in unstirred layers or regions adjacent to that membrane, which in turn give rise to the development of slow transient diffusion potentials and osmotic flows across those membranes. These effects have been successfully explained in terms of transport number discontinuities at the membrane-solution interface, the transport number of an ion reflecting the proportion of current carried by that ion. Using the standard definitions for transport numbers and the regular diffusion equations, these polarization or transport number effects have been analyzed and modeled in a number of papers. Recently, the validity of these equations has been questioned. This paper has demonstrated that, by going back to the Nernst-Planck flux equations, exactly the same resultant equations can be derived and therefore that the equations derived directly from the transport number definitions and standard diffusion equations are indeed valid. PMID:9635743

  11. Hepatic zonation of carbon and nitrogen fluxes derived from glutamine and ammonia transformations

    PubMed Central

    2010-01-01

    Background Glutaminase predominates in periportal hepatocytes and it has been proposed that it determines the glutamine-derived nitrogen flow through the urea cycle. Glutamine-derived urea production should, thus, be considerably faster in periportal hepatocytes. This postulate, based on indirect observations, has not yet been unequivocally demonstrated, making a direct investigation of ureogenesis from glutamine highly desirable. Methods Zonation of glutamine metabolism was investigated in the bivascularly perfused rat liver with [U-14C]glutamine infusion (0.6 mM) into the portal vein (antegrade perfusion) or into the hepatic vein (retrograde perfusion). Results Ammonia infusion into the hepatic artery in retrograde and antegrade perfusion allowed to promote glutamine metabolism in the periportal region and in the whole liver parenchyma, respectively. The results revealed that the space-normalized glutamine uptake, indicated by 14CO2 production, gluconeogenesis, lactate production and the associated oxygen uptake, predominates in the periportal region. Periportal predominance was especially pronounced for gluconeogenesis. Ureogenesis, however, tended to be uniformly distributed over the whole liver parenchyma at low ammonia concentrations (up to 1.0 mM); periportal predominance was found only at ammonia concentrations above 1 mM. The proportions between the carbon and nitrogen fluxes in periportal cells are not the same along the liver acinus. Conclusions In conclusion, the results of the present work indicate that the glutaminase activity in periportal hepatocytes is not the rate-controlling step of the glutamine-derived nitrogen flow through the urea cycle. The findings corroborate recent work indicating that ureogenesis is also an important ammonia-detoxifying mechanism in cells situated downstream to the periportal region. PMID:20055990

  12. Combined Satellite - and ULS-Derived Sea-Ice Flux in the Weddell Sea

    NASA Technical Reports Server (NTRS)

    Drinkwater, M.; Liu, X.; Harms, S.

    2000-01-01

    Several years of daily microwave satellite ice-drift are combined with moored Upward Looking Sonar (ULS) ice-drafts into an ice volume flux record at points along a flux gate across the Weddell Sea, Antarctica.

  13. The influence of climate on soil carbon turnover times derived from carbon flux and pool data

    NASA Astrophysics Data System (ADS)

    Khomik, M.; Reichstein, M.; Schrumpf, M.; Beer, C.; Curiel-Yuste, C. J.; Jenssens, I.; Luyssaert, S.; Subke, J.; Trumbore, S.; Wutzler, T.; Jung, M.; Lasslop, G.; Fluxnet Lathuille Synthesis Team (Cf. Www. Fluxdata. Org)

    2010-12-01

    Our understanding of the climatic controls on the rate of soil organic carbon (SOM) decomposition is still limited and greatly debated, especially the temperature sensitivity of decomposition. This lack of understanding and consensus hinders the ability to develop and improve models of soil carbon dynamics. In light of this, we used annual ecosystem carbon flux measurements and soil organic carbon stocks to derive soil carbon turnover times (TO) for a selection of eddy flux sites (FLUXNET LaThuille dataset) , following a method proposed by Sanderman et al.(2003). We then related these TO to mean annual temperatures (MAT) and found that TO decreased exponentially with increasing MAT, in accordance with Sanderman et al (2003) and other studies. However, upon closer examination, we also found that this exponential relationship was largely driven by the difference in TO between sites located in the boreal climate zone and those in the tropical, Mediterranean and temperate climates, combined. The range of computed TO values in the boreal zone was higher compared to the rest. Likewise, we also analyzed the combined effect of MAT and total annual precipitation (TAP) on TO and found that TAP was also negatively correlated to TO, although not as strongly as MAT. Similar to the response to MAT, the observed overall TAP vs TO relationship was also driven primarily by the difference in the range of TO values computed for sites from the boreal climate zone. The results of this study add to our understanding of the spatial variability of SOM controls and can be used to improve and/or direct future studies on soil carbon cycling. Sanderman, J., R. G. Amundson, and D. D. Baldocchi, Application of eddy covariance measurements to the temperature dependence of soil organic matter mean residence time, Global Biogeochem. Cycles, 17(2), 1061, doi:10.1029/2001GB001833, 2003.

  14. Tornado climatology of Austria

    NASA Astrophysics Data System (ADS)

    Holzer, A. M.

    After several decades of little work, a revised tornado climatology for Austria is presented. Tornadoes seldom form in the alpine areas, however, near the eastern flanks of the Alps, favourable conditions for tornado genesis are found. Whereas in the alpine regions less than 0.3 tornadoes per 10,000 km 2 a year touch down (averaged for provinces or major parts of a province), we can count 0.9 in the greater Graz area, 1.0 in the greater Linz area and 1.2 tornadoes per 10,000 km 2 a year in the greater Vienna area, suggesting the existence of so-called tornado alleys. As these regions are the most populated areas of Austria, there is a possible population bias in the dataset. The overall average for Austria is 0.3 tornadoes per 10,000 km 2 a year. The database consists of 89 tornadoes, one landspout and six waterspouts, with a total of 96 events. The seasonal peak is in July with a maximum probability of tornadoes in the late afternoon and early evening hours. Every fifth tornado occurs in the hour after 5 p.m. The maximum intensity determined for a tornado in Austria was T7 on the TORRO-Scale (F3 on the Fujita-Scale), the most common intensity is T2 on the TORRO-Scale (F1 on the Fujita-Scale).

  15. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves

    NASA Astrophysics Data System (ADS)

    Tait, D. R.; Maher, D. T.; Sanders, C. J.; Santos, I. R.

    2017-03-01

    Mangroves are increasingly being recognized as a major player in coastal hydrological and biogeochemical cycles with their complex belowground structure (i.e., crab burrows) facilitating porewater exchange and submarine groundwater discharge. Here, we quantify porewater exchange rates and associated fluxes of nutrients at six mangrove dominated sites covering a broad latitudinal gradient (∼12.4°S to ∼38.3°S) in Australia. Porewater exchange rates were calculated using the natural tracer radium (223Ra and 224Ra) and ranged from 1.5 cm day-1 in the temperate region to 30.9 cm day-1 in the tropics. When porewater exchange rates were multiplied by the global weighted area of mangroves in each of their respective climate zones, this would equate to global porewater exchange rates of 6.4 × 1012 m3 yr-1 (223Ra) and 7.2 × 1012 m3 yr-1 (224Ra) which is equivalent to 17-19% of global riverine freshwater flows. This porewater exchange rate could recirculate a volume of water equal to continental shelf waters adjacent to mangroves every 12.4 (223Ra) and 10.1 (224Ra) years. The radium-derived estimates are within 40% of previous values based on 222Rn (1.3 × 1013 m3 yr-1). The mangrove sites studied were seen to be both nitrogen (N) and phosphorous (P) limited which was driven by a combination of porewater exchange, low incoming surface water nutrient fluxes, and the high contribution of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP). The average porewater total dissolved nitrogen (TDN) and total dissolved phosphorous (TDP) concentrations were ∼3.4 and 2.7 times greater respectively than in surface waters. The average surface water export of TDN was 2.39 ± 1.30 mmol N m-2 day-1. If upscaled to the global mangrove area, these TDN exports (1.69 Tg N yr-1) would be equal to 6 ± 3% of global river exports. In contrast, there was an overall import of total dissolved phosphorus (TDP) from coastal waters (0.95 ± 0.40 mmol P m-2 day-1) into the

  16. The NASA Energy and Water Cycle Climatology (NEWCC) Integration Project

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Lin, B.; NEWCC Team

    2008-05-01

    To date, a truly self-consistent, quantitative description of the Earth's global water and energy cycles, based on the highest quality, independently-observed pieces of information that decipher each of the key storage terms, fluxes, and pathways has been elusive. Such a data compilation of adequate climate quality is of vital interest and an ultimate scientific need of the global observation, modeling, and prediction community. To meet this need, we present results from the first phase of a NASA Energy and Water Cycle Climatology (NEWCC) Integration Project, a collaborative effort whose aim is to construct a defensible, self-consistent, long-term climatology of the global energy and water cycles. Our working hypothesis is that an observationally-based estimate of water and energy fluxes and storages, derived from focused and independently observed components of these cycles, can be balanced and provide useful characterizations and evaluation data for climate prediction and predictability studies. The NEWCC team members are actively involved in key facets of this observational arena, and thus for the first phase of NEWCC, we bring together state-of-the-art, (predominantly) satellite-based observations that include: precipitation, ocean and land evaporation, runoff, atmospheric water storage, ocean and land storage changes, atmospheric transport, radiation, latent and sensible heat fluxes, and subsequently hope to include explicit snow/ice information, such as snow water equivalent and ice mass changes. Our current efforts focus on the period spanning the years 2003 to 2005, for which the most recent and highest-quality satellite-based information is available for all the aforementioned quantities. We present an assessment of the ability of these observational datasets to satisfy the water and energy budgets and the degree to which they show consistency in their mean annual cycles as well as geospatial variability. In doing so, we will highlight, where possible, the

  17. Northwest Africa - A Climatological Study,

    DTIC Science & Technology

    1996-08-01

    A climatological study of NorthwestAfrica, includingAlgeria, Tunisia, Morocco , Western Sahara, and the northern parts of Mauritania, Mali, and Niger...additional hazards. 14. Subject Terms: CLIMATOLOGY, METEOROLOGY, WEATHER, GEOGRAPHY, AFRICA, ALGERIA, MOROCCO , TUNISIA, WESTERN SAHARA, MAURITANIA, MALI, NIGER...line where mean annual rainfall exceeds 250 boundary. This zone includes most of Morocco , mm (the area south of this line is described in and the

  18. Performance of scene dependent angular models in deriving top-of-atmosphere radiative fluxes from satellite radiance measurements

    NASA Technical Reports Server (NTRS)

    Suttles, John T.; Wielicki, Bruce A.; Vemury, Sastri

    1990-01-01

    The ERB experiment algorithm is applied to the Nimbus-7 scanner data for June 1979 to analyze the performance of scene-dependent angular models. The ERBE-derived albedo and LW flux are compared to results from the sorting-into-angular-bins (SAB) method described by Arking and Vemury (1984) and the ERB Matrix algorithm described by Jacobowitz et al. (1984). Results are given for the variation of ERBE-derived flux with viewing zenith angle. Comparing results derived from the ERBE algorithm and from the SAB method, zonal mean differences for the month were less than 0.01 for albedo and 2 W/ sq m for longwave flux. When compared to the ERB matrix algorithm, the ERBE algorithm gives less dependence on viewing zenith angle for SW fluxes, but more for LW fluxes. Cloud results from the ERBE method using broadband Nimbus-7 ERB radiances are compared with the new cloud ERB data results of Stowe et al. (1988). Agreement typically within 0.10 was found.

  19. On Deriving Incident Auroral Particle Fluxes in the Daytime Using Combined Ground-Based Optical and Radar Measurements

    NASA Technical Reports Server (NTRS)

    Pallamraju, Duggirala; Chakrabarti, Supriya; Solomon, Stanley C.

    2011-01-01

    Particle energies and fluxes have predominantly been measured from instruments onboard satellites. In this study, we use daytime ground-based oxygen redline emission measurements, along with the ionospheric electron density, and electron temperature profiles measured from the incoherent scatter radar, and a physics-based modeling approach to derive the energy and flux of particles incident over Boston during the storm of 30 October 2003. We find that the characteristic energy and the associated flux vary between 0.07.5.7 keV and 0.5.130 mW/sq m, respectively, during the intense magnetic disturbance that brought aurora to midlatitudes. Such an approach not only offers another method to estimate the incident particle energies and fluxes but also enhances our understanding on the channels of energy deposition in the upper atmospheric region, especially during magnetic disturbances, about which database is poor.

  20. On Deriving Incident Auroral Particle Fluxes in the Daytime Using Combined Ground-Based Optical and Radar Measurements

    NASA Technical Reports Server (NTRS)

    Pallamraju, Duggirala; Chakrabarti, Supriya; Solomon, Stanley C.

    2011-01-01

    Particle energies and fluxes have predominantly been measured from instruments onboard satellites. In this study, we use daytime ground-based oxygen redline emission measurements, along with the ionospheric electron density, and electron temperature profiles measured from the incoherent scatter radar, and a physics-based modeling approach to derive the energy and flux of particles incident over Boston during the storm of 30 October 2003. We find that the characteristic energy and the associated flux vary between 0.07.5.7 keV and 0.5.130 mW/sq m, respectively, during the intense magnetic disturbance that brought aurora to midlatitudes. Such an approach not only offers another method to estimate the incident particle energies and fluxes but also enhances our understanding on the channels of energy deposition in the upper atmospheric region, especially during magnetic disturbances, about which database is poor.

  1. Atmospheric freshwater fluxes and their effect on the global thermohaline circulation

    SciTech Connect

    Zaucker, F.; Stocker, T.F.; Broecker, W.S.

    1994-06-15

    Atmospheric water vapor fluxes were derived from a 1-year data set of horizontal wind speed and specific humidity assimilated from meteorological observations by the European Center for Medium-Range Weather Forecast (ECMWF). Vertically integrated horizontal freshwater fluxes were compared to those of two data sets based on a climatology and on simulations with an atmospheric general circulation model (AGCM). Zonal transports agree fairly well at all latitudes outside the tropics, where fluxes are about double for the AGCM data set. Meridional fluxes of the AGCM and ECMWF data sets show close agreement, while the climatological fluxes are generally smaller with a considerable northward shift in the southern hemisphere. Atmosphere-to-ocean freshwater fluxes were derived from the three data sets. Not only is there substantial disagreement between the data sets, but their zonal averages over the Atlantic, Pacific, and Indian Ocean basins show little resemblance to the respective restoring freshwater fluxes from a 2-dimensional ocean model. If the ocean model is forced with the observed and modeled atmospheric fluxes, we find that the mode of ocean circulation is determined mostly the net flux to the high-latitude oceans and the amount of freshwater exported from the Atlantic basin. The latitudinal structure of the freshwater fluxes in low-latitudes and midlatitudes has little influence on the modeled thermohaline circulation. The fluxes derived from the climatology and ECMWF permit North Atlantic Deep Water (NADW) formation, but a strong freshwater input to the Southern Ocean inhibits Antarctic Bottom Water formation. The AGCM transports so much moisture to the Arctic Ocean that NADW formation is shut down, resulting in a ocean circulation mode of southern sinking in all three ocean basins.

  2. A spectral climatology for atmospheric compensation of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Powell, John H.; Resmini, Ronald G.

    2016-05-01

    Most Earth observation hyperspectral imagery (HSI) detection and identification algorithms depend critically upon a robust atmospheric compensation capability to correct for the effects of the atmosphere on the radiance signal. Atmospheric compensation methods typically perform optimally when ancillary ground truth data are available, e.g., high fidelity in situ radiometric observations or atmospheric profile measurements. When ground truth is incomplete or not available, additional assumptions must be made to perform the compensation. Meteorological climatologies are available to provide climatological norms for input into the radiative transfer models; however no such climatologies exist for empirical methods. The success of atmospheric compensation methods such as the empirical line method suggests that remotely sensed HSI scenes contain comprehensive sets of atmospheric state information within the spectral data itself. It is argued that large collections of empirically-derived atmospheric coefficients collected over a range of climatic and atmospheric conditions comprise a resource that can be applied to prospective atmospheric compensation problems. A previous study introduced a new climatological approach to atmospheric compensation in which empirically derived spectral information, rather than sensible atmospheric state variables, is the fundamental datum. The current work expands the approach across an experimental archive of 127 airborne HSI datasets spanning nine physical sites to represent varying climatological conditions. The representative atmospheric compensation coefficients are assembled in a scientific database of spectral observations and modeled data. Improvements to the modeling methods used to standardize the coefficients across varying collection and illumination geometries and the resulting comparisons of adjusted coefficients are presented. The climatological database is analyzed to show that common spectral similarity metrics can be used

  3. Air-sea Fluxes Derived From Satellite Data: Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Schulz, J.; Andersson, A.; Bakan, S.; Fennig, K.; Klepp, C. P.; Klocke, D.

    2007-05-01

    Time series of satellite data, suitable for retrieval of water cycle components over the ocean, approach lengths that make them attractive to be used for the analysis of inter-annual variability and trends. Additionally, they can serve as an evaluation tool for model based atmospheric reanalyses and climate models. Based on the example of the satellite-derived Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data set (HOAPS-3) the presentation will contain some comparisons to ERA40 and control runs of the ECHAM5 climate model to elucidate the current status of similarities and differences between models and observations. The HOAPS-3 data set utilized the NOAA pathfinder sea surface temperature data set and several retrieval schemes for basic variables as near-surface humidity and wind speed applicable to the series of SSM/I instruments. The data set covers a time span from 1987-2005. Satellite based data sets are constructed from a series of instruments flying on successive platforms, e.g. SSM/I on the DMSP series and AVHRR on the NOAA series. To use those data for establishing time series suitable for trend detection a very careful correction of individual instrument and satellite platform errors has to be performed. Examples for those errors are orbit decay of the satellite that changes zenith angles over time and diurnal drift of the satellite platform aliasing in the diurnal cycle. Despite the high quality of some of those corrections a inter- sensor homogenization to a reference platform is unavoidable. The presentation will give a short review on used techniques and their advantages and disadvantages. Finally, the presentation will discuss the idea to use infrared sounding data from the IASI instrument on the MetOp satellite to improve current near-surface humidity and temperature retrievals and ways to include error information to the data sets.

  4. Sensitive detection and estimation of cell-derived peroxynitrite fluxes using fluorescein-boronate.

    PubMed

    Rios, Natalia; Piacenza, Lucía; Trujillo, Madia; Martínez, Alejandra; Demicheli, Verónica; Prolo, Carolina; Álvarez, María Noel; López, Gloria V; Radi, Rafael

    2016-12-01

    The specific and sensitive detection of peroxynitrite (ONOO(-)/ONOOH) in biological systems is a great challenge due to its high reactivity towards several biomolecules. Herein, we validated the advantages of using fluorescein-boronate (Fl-B) as a highly sensitive fluorescent probe for the direct detection of peroxynitrite under biologically-relevant conditions in two different cell models. The synthesis of Fl-B was achieved by a very simply two-step conversion synthetic route with high purity (>99%) and overall yield (∼42%). Reactivity analysis of Fl-B with relevant biological oxidants including hydrogen peroxide (H2O2), hypochlorous acid (HOCl) and peroxynitrite were performed. The rate constant for the reaction of peroxynitrite with Fl-B was 1.7×10(6)M(-1)s(-1), a million times faster than the rate constant measured for H2O2 (k=1.7M(-1)s(-1)) and 2,700 faster than HOCl (6.2×10(2)M(-1)s(-1)) at 37°C and pH 7.4. The reaction of Fl-B with peroxynitrite was significant even in the presence of physiological concentrations of CO2, a well-known peroxynitrite reactant. Experimental and simulated kinetic analyses confirm that the main oxidation process of Fl-B takes place with peroxynitrite itself via a direct bimolecular reaction and not with peroxynitrite-derived radicals. Fl-B was successfully applied for the detection of endogenously-generated peroxynitrite by endothelial cells and in macrophage-phagocyted parasites. Moreover, the generated data allowed estimating the actual intracellular flux of peroxynitrite. For instance, ionomycin-stimulated endothelial cells generated peroxynitrite at a rate of ∼ 0.1μMs(-1), while immunostimulated macrophages do so in the order of ∼1μMs(-1) inside T. cruzi-infected phagosomes. Fl-B revealed not to be toxic in concentrations up to 1mM for 24h. Cellular peroxynitrite detection was achieved by conventional laboratory fluorescence-based methods including flow cytometry and epi-fluorescence microscopy. Fl-B was shown to be

  5. How well can regional fluxes be derived from smaller-scale estimates?

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Ritter, John A.

    1992-01-01

    Regional surface fluxes are essential lower boundary conditions for large scale numerical weather and climate models and are the elements of global budgets of important trace gases. Surface properties affecting the exchange of heat, moisture, momentum and trace gases vary with length scales from one meter to hundreds of km. A classical difficulty is that fluxes have been measured directly only at points or along lines. The process of scaling up observations limited in space and/or time to represent larger areas was done by assigning properties to surface classes and combining estimated or calculated fluxes using an area weighted average. It is not clear that a simple area weighted average is sufficient to produce the large scale from the small scale, chiefly due to the effect of internal boundary layers, nor is it known how important the uncertainty is to large scale model outcomes. Simultaneous aircraft and tower data obtained in the relatively simple terrain of the western Alaska tundra were used to determine the extent to which surface type variation can be related to fluxes of heat, moisture, and other properties. Surface type was classified as lake or land with aircraft borne infrared thermometer, and flight level heat and moisture fluxes were related to surface type. The magnitude and variety of sampling errors inherent in eddy correlation flux estimation place limits on how well any flux can be known even in simple geometries.

  6. A conceptual model of ocean freshwater flux derived from sea surface salinity

    NASA Astrophysics Data System (ADS)

    Nieves, V.; Wang, J.; Willis, J. K.

    2014-09-01

    A conceptual model is proposed to express freshwater flux (evaporation minus precipitation) as a function of sea surface salinity (and vice versa). The model is formulated using an idealized one-dimensional diffusion equation for the ocean surface layer. It is shown to provide good agreement with existing freshwater flux estimates and salinity observations. It also has the potential to enhance our capability of monitoring and modeling global freshwater fluxes and salinity as a data retrieval algorithm for remote sensing. The model may improve physical parameterization in coupled ocean-atmosphere models to study the global water cycle.

  7. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Juana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2017-01-01

    Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components. This helps to reveal underlying dynamics, to identify potential environmental drivers and, thus, to calculate reliable CH4 emission estimates. The flux separation is based on identification of ebullition-related sudden concentration changes during single measurements. Therefore, a variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R script, adjusted for the purpose of CH4 flux calculation. The algorithm was validated by performing a laboratory experiment and tested using flux measurement data (July to September 2013) from a former fen grassland site, which converted into a shallow lake as a result of rewetting. Ebullition and diffusion contributed equally (46 and 55 %) to total CH4 emissions, which is comparable to ratios given in the literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period. The water temperature gradient was identified as one of the major drivers of diffusive CH4 emissions, whereas no significant driver was found in the case of erratic CH4 ebullition events.

  8. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    SciTech Connect

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; Henderson, M. G.; Borovsky, J. E.; Denton, J. S.; Pitchford, D.; Hartley, D. P.

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite-years of observations from the Magnetospheric Plasma Analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local-times and 40 energies, at all possible values of Kp. Bi-linear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local-time, and for given values of geomagnetic activity (proxied by the 3-hour Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II (CEASE-II), also located at geosynchronous orbit, indicate a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user-requirements.

  9. An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit

    DOE PAGES

    Denton, M. H.; Thomsen, M. F.; Jordanova, V. K.; ...

    2015-04-01

    Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite-years of observations from the Magnetospheric Plasma Analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local-times and 40 energies, at all possible values of Kp. Bi-linear interpolation is used between grid points to provide the ionmore » flux and the electron flux values at any energy and local-time, and for given values of geomagnetic activity (proxied by the 3-hour Kp index), and also for given values of solar activity (proxied by the daily F10.7 index). Initial comparison of the electron flux from the model with data from a Compact Environmental Anomaly Sensor II (CEASE-II), also located at geosynchronous orbit, indicate a good match during both quiet and disturbed periods. The model is available for distribution as a FORTRAN code that can be modified to suit user-requirements.« less

  10. A North American regional reanalysis climatology of the Haines Index

    Treesearch

    Wei Lu; Joseph J. (Jay) Charney; Sharon Zhong; Xindi Bian; Shuhua. Liu

    2011-01-01

    A warm-season (May through October) Haines Index climatology is derived using 32-km regional reanalysis temperature and humidity data from 1980 to 2007. We compute lapse rates, dewpoint depressions, Haines Index factors A and B, and values for each of the low-, mid- and high-elevation variants of the Haines Index. Statistical techniques are used to investigate the...

  11. First space-based derivation of the global atmospheric methanol emission fluxes

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Guenther, A.; Razavi, A.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Karagulian, F.; de Mazière, M.; Vigouroux, C.; Amelynck, C.; Schoon, N.; Laffineur, Q.; Heinesch, B.; Aubinet, M.; Müller, J.-F.

    2011-02-01

    This study provides improved methanol emission estimates on the global scale, in particular for the largest methanol source, the terrestrial biosphere, and for biomass burning. To this purpose, one complete year of spaceborne measurements of tropospheric methanol columns retrieved for the first time by the thermal infrared sensor IASI aboard the MetOp satellite are compared with distributions calculated by the IMAGESv2 global chemistry-transport model. Two model simulations are performed using a priori biogenic methanol emissions either from the new MEGANv2.1 emission model, which is fully described in this work and is based on net ecosystem flux measurements, or from a previous parameterization based on net primary production by Jacob et al. (2005). A significantly better model performance in terms of both amplitude and seasonality is achieved through the use of MEGANv2.1 in most world regions, with respect to IASI data, and to surface- and air-based methanol measurements, even though important discrepancies over several regions are still present. As a second step of this study, we combine the MEGANv2.1 and the IASI column abundances over continents in an inverse modelling scheme based on the adjoint of the IMAGESv2 model to generate an improved global methanol emission source. The global optimized source totals 187 Tg yr-1 with a contribution of 100 Tg yr-1 from plants, only slightly lower than the a priori MEGANv2.1 value of 105 Tg yr-1. Large decreases with respect to the MEGANv2.1 biogenic source are inferred over Amazonia (up to 55%) and Indonesia (up to 58%), whereas more moderate reductions are recorded in the Eastern US (20-25%) and Central Africa (25-35%). On the other side, the biogenic source is found to strongly increase in the arid and semi-arid regions of Central Asia (up to a factor of 5) and Western US (factor of 2), probably due to a source of methanol specific to these ecosystems which is unaccounted for in the MEGANv2.1 inventory. Detailed

  12. Developing a cloud mask climatology covering two Meteosat satellite generations

    NASA Astrophysics Data System (ADS)

    Posselt, Rebekka; Stöckli, Reto; Liniger, Mark A.

    2013-04-01

    Long term cloud cover observations from satellites are fundamental for climate model validation and climate monitoring. Further, they support ground-based observations in regions with sparse coverage. Additionally, information on cloud cover is needed to derive other physical parameters such as surface radiation fluxes or clear sky and cloudy atmospheric states and is of high relevance for the solar energy sector. Within the current project phase of the Satellite Application Facility on Climate Monitoring (CM SAF) an algorithm to calculate a climatological cloud mask (or cloud cover probability) from Meteosat satellites is developed. The algorithm shall be applicable for both Meteosat first generation (1983-2005) and Meteosat second generation (2004-present) which significantly differ in their spectral properties. The algorithm linearly aggregates a set of continuous scores instead of the commonly used decision tree approach. The scores are calculated for different channels as well as different spatial and temporal settings. Each score yields a probability for the pixel's cloud cover. The final result, the cloud cover probability, is obtained by combining all available scores taking into account the varying performance of the scores during day and night and over snow. The uncertainty of the final cloud cover estimate is an inherent part of the probability. The algorithm is calibrated using cloud cover measurements from SYNOP stations located on the Meteosat disc. The subsequent validation is done at an independent set of collocated SYNOP/ARSA (Automated Radiosonde Archive) stations. The presentation introduces the applied cloud mask algorithm and presents the results of the validation for both satellite generations. The comparison of the two satellite generations addresses the climatological homogeneity of the future cloud mask climate data record which will be distributed by CM SAF after 2016. Special attention is also drawn to issues like the day-night-bias of

  13. Climatological Downscaling and Evaluation of AGRMET Precipitation Analyses Over the Continental U.S.

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Peters-Lidard, C. D.; Eylander, J. B.; Daly, C.; Tian, Y.; Zeng, J.

    2007-05-01

    The spatially distributed application of a land surface model (LSM) over a region of interest requires the application of similarly distributed precipitation fields that can be derived from various sources, including surface gauge networks, surface-based radar, and orbital platforms. The spatial variability of precipitation influences the spatial organization of soil temperature and moisture states and, consequently, the spatial variability of land- atmosphere fluxes. The accuracy of spatially-distributed precipitation fields can contribute significantly to the uncertainty of model-based hydrological states and fluxes at the land surface. Collaborations between the Air Force Weather Agency (AFWA), NASA, and Oregon State University have led to improvements in the processing of meteorological forcing inputs for the NASA-GSFC Land Information System (LIS; Kumar et al. 2006), a sophisticated framework for LSM operation and model coupling experiments. Efforts at AFWA toward the production of surface hydrometeorological products are currently in transition from the legacy Agricultural Meteorology modeling system (AGRMET) to use of the LIS framework and procedures. Recent enhancements to meteorological input processing for application to land surface models in LIS include the assimilation of climate-based information for the spatial interpolation and downscaling of precipitation fields. Climatological information included in the LIS-based downscaling procedure for North America is provided by a monthly high-resolution PRISM (Daly et al. 1994, 2002; Daly 2006) dataset based on a 30-year analysis period. The combination of these sources and methods attempts to address the strengths and weaknesses of available legacy products, objective interpolation methods, and the PRISM knowledge-based methodology. All of these efforts are oriented on an operational need for timely estimation of spatial precipitation fields at adequate spatial resolution for customer dissemination and

  14. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  15. Evaluation and Applications of Cloud Climatologies from CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Getzewitch, Brian; Vaughan, Mark

    2008-01-01

    Clouds have a major impact on the Earth radiation budget and differences in the representation of clouds in global climate models are responsible for much of the spread in predicted climate sensitivity. Existing cloud climatologies, against which these models can be tested, have many limitations. The CALIOP lidar, carried on the CALIPSO satellite, has now acquired over two years of nearly continuous cloud and aerosol observations. This dataset provides an improved basis for the characterization of 3-D global cloudiness. Global average cloud cover measured by CALIOP is about 75%, significantly higher than for existing cloud climatologies due to the sensitivity of CALIOP to optically thin cloud. Day/night biases in cloud detection appear to be small. This presentation will discuss detection sensitivity and other issues associated with producing a cloud climatology, characteristics of cloud cover statistics derived from CALIOP data, and applications of those statistics.

  16. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    PubMed

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations

    PubMed Central

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie

    2013-01-01

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data. PMID:24386441

  18. Estimating carbon flux phenology with satellite-derived land surface phenology and climate drivers for different biomes: a synthesis of AmeriFlux observations.

    PubMed

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie

    2013-01-01

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  19. Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations

    SciTech Connect

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie

    2013-12-27

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this paper, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. In conclusion, this methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.

  20. Estimating Carbon Flux Phenology with Satellite-Derived Land Surface Phenology and Climate Drivers for Different Biomes: A Synthesis of AmeriFlux Observations

    DOE PAGES

    Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; ...

    2013-12-27

    Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this paper, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptakemore » (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. In conclusion, this methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.« less

  1. Regional CO2 fluxes for eastern Amazonia derived from aircraft vertical profiles

    NASA Astrophysics Data System (ADS)

    Gatti, L. V.; Miller, J. B.; D'Amelio, M. T.; Wofsy, S.; Tans, P.

    2008-12-01

    We have determined regional scale (~105 - 106 km2) CO2 fluxes using atmospheric measurements from aircraft vertical profiles over eastern Amazonia (site SAN: 02°51'S; 54°57'W). Profiles started December 2000 and have continued through 2008. 17 air samples per profile were collected aboard light aircraft between the surface and 4-5 km using the NOAA/ESRL semi- automatic portable flask package. We use a column integration technique to determine the CO2 flux for each vertical profile, where the measured CO2 profile is differenced from a CO2 background, which was determined using co-measured SF6 as a transport tracer. Two NOAA/ESRL background sites, Ascension Island (ASC) located in the Atlantic Ocean (8°S, 14°W) and Barbados (RPB) located in the Atlantic Ocean (12°N, 59°W) were used to calculate the fractions of air arriving at the sites studied. Back trajectories from the HYSPLIT model were calculated for every profile every 500m of altitude to determine the time the air mass took to travel between the coast and SAN. The observed flux, which is representative of that between the coast and measurement sites, averaged -0.03 ± 1.5 g C m-2day-1 for the wet season and 0.3 ± 0.9 g C m-2day-1 for the dry season. The flux variability is high, probably reflecting the dynamic nature of the response of the terrestrial biosphere to environmental conditions. We have attempted to remove the influence of biomass burning from the fluxes using measurements of co-measured CO. This reduces the dry season flux to -0.04 ± 1.2 g C m- 2day-1. We will compare these results to the seasonality found in eddy covariance measurements and to that estimated from models of the terrestrial biosphere.

  2. A climatology of visible surface reflectance spectra

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  3. Aerosol, surface, and cloud optical parameters derived from airborne spectral actinic flux: measurement comparison with other methods

    NASA Astrophysics Data System (ADS)

    Stark, H.; Bierwirth, E.; Schmidt, S.; Kindel, B. C.; Pilewskie, P.; Lack, D. A.; Madronich, S.; Parrish, D. D.

    2009-12-01

    Optical parameters of aerosols, surfaces, and clouds are essential for an accurate description of Earth’s radiative balance. We will present values for such parameters derived from spectral actinic flux measured on board the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in April 2008. We will compare these measurements to results obtained from other instruments on board the same aircraft, such as the Solar Spectral Flux Radiometer (SSFR) for irradiance measurements and aerosol extinction and absorption measurements by cavity ring-down and Particle Soot Absorption Photometer (PSAP). Actinic flux is sensitive to these parameters and can be used to measure them directly in the atmosphere without in-situ sampling methods required. We will describe the specifics of the actinic flux measurements, show advantages and disadvantages of this measurement technique, and compare results with other techniques. Furthermore, we will compare our measurements with model calculations from radiative transfer models such as the Tropospheric Ultraviolet and Visible (TUV) radiation model, the widely used library of radiative transfer (libradtran) model, and a Monte-Carlo radiation model (GRIMALDI). Also, we will investigate satellite measurements to constrain the radiation measurements to general radiation conditions in the arctic and to compare the results to aerosol optical depth retrievals. In particular, we will show results for surface albedo of the Arctic Ocean ice surface, extinction and absorption of Arctic haze layers, and optical thickness and albedo measurements of clouds.

  4. Daily evapotranspiration estimates by scaling instantaneous latent heat flux derived from a two-source model

    USDA-ARS?s Scientific Manuscript database

    Radiometric brightness temperature can be used in energy balance models that estimate sensible and latent heat fluxes of the land surface. However, brightness temperature is usually available only at one time of day when acquired from aircraft, fine-scale satellite platforms, or infrared thermometer...

  5. Deriving hourly surface energy fluxes and ET from Landsat Thematic mapper data using METRIC

    USDA-ARS?s Scientific Manuscript database

    Surface energy fluxes and evapotranspiration (ET) have long been recognized as playing an important role in determining exchanges of energy and mass between the hydrosphere, atmosphere, and biosphere. In this study, we applied the METRIC (Mapping ET at high Resolutions with Internal Calibration) alg...

  6. Deriving clear-sky longwave spectral flux from spaceborne hyperspectral radiance measurements: a case study with AIRS observations

    NASA Astrophysics Data System (ADS)

    Chen, Xiuhong; Huang, Xianglei

    2016-12-01

    Previous studies have shown that longwave (LW) spectral fluxes have unique merit in climate studies. Using Atmospheric Infrared Sounder (AIRS) radiances as a case study, this study presents an algorithm to derive the entire LW clear-sky spectral fluxes from spaceborne hyperspectral observations. No other auxiliary observations are needed in the algorithm. A clear-sky scene is identified using a three-step detection method. The identified clear-sky scenes are then categorized into different sub-scene types using information about precipitable water, lapse rate and surface temperature inferred from the AIRS radiances at six selected channels. A previously established algorithm is then used to invert AIRS radiances to spectral fluxes over the entire LW spectrum at 10 cm-1 spectral interval. Accuracy of the algorithms is evaluated against collocated Clouds and the Earth's Radiant Energy System (CERES) observations. For nadir-view observations, the mean difference between outgoing longwave radiation (OLR) derived by this algorithm and the collocated CERES OLR is 1.52 Wm-2 with a standard deviation of 2.46 Wm-2. When the algorithm is extended for viewing zenith angle up to 45°, the performance is comparable to that for nadir-view results.

  7. Geogenic Sources Strongly Contribute to the Mackenzie River Delta's Methane Emissions Derived From Airborne Flux Data

    NASA Astrophysics Data System (ADS)

    Kohnert, K.; Serafimovich, A.; Metzger, S.; Hartmann, J.; Sachs, T.

    2015-12-01

    Arctic permafrost-associated wetlands and thawing permafrost emit the greenhouse gas methane (CH4), either as a product of recent microbial activity in the active layer or taliks, or from deeper geogenic sources where pathways through the permafrost exist. Current emission estimates vary strongly between different models and there is still disagreement between bottom-up estimates from local field studies and top-down estimates from atmospheric measurements. We use airborne flux data from two campaigns in the Mackenzie River Delta, Canada, in July 2012 and 2013 to directly quantify permafrost CH4 emissions on the regional scale, to analyse the regional pattern of CH4 fluxes and to estimate the contribution of geogenic emissions to the overall CH4 budget of the delta. CH4 fluxes were calculated with a time-frequency resolved version of the eddy covariance technique, resulting in a gridded 100 m x 100 m resolution flux map within the footprints of the flight tracks. We distinguish geogenic gas seeps from biogenic sources by their strength and show that they contribute strongly to the annual CH4 budget of the delta. Our study provides the first estimate of annual CH4 release from the Mackenzie River Delta and the adjacent coastal plain. We show that one percent of the covered area contains the strongest geogenic seeps which contribute disproportionately to the annual emission estimate. Our results show that geogenic CH4 emissions might need more attention, especially in areas where permafrost is vulnerable to thawing sufficiently to create pathways for geogenic gas migration. The presented map can be used as a baseline for future CH4 flux studies in the Mackenzie River Delta.

  8. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes

    USGS Publications Warehouse

    Yuan, W.; Liu, S.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, Allen H.; Goulden, M.L.; Hollinger, D.Y.; Hu, Y.; Law, B.E.; Stoy, Paul C.; Vesala, T.; Wofsy, S.C.

    2007-01-01

    The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.

  9. Heat Flux Comparison Using Buoy- and SAR-derived Motion Products From ISW 1992

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Drinkwater, M. R.

    2004-12-01

    Sea-ice kinematics relevant to surface fluxes using ERS-1 SAR images coincident with buoys in the western Weddell Sea in Austral Autumn of 1992 is examined. Using a toy model, effects of aliasing in surface flux determination are tested. Results show variability associated with storms, ocean tides, inertial oscillations, and other high frequency forcing affects integrated sea-ice growth rates along this shelf/slope location. Integrated salt and new ice production rates computed from buoys are found to be two times larger than those using ERS-1 SAR motion products. Cognizant of the limitations in satellite image pairs separated by time, we report on differences in salt and ice production rates, it follows directly that the differences in salt and ice production rates result primarily from inadequate temporal resolution of shorter than daily (sub-daily) heat flux variability and sea-ice divergence. Comparison with other studies shows the problem is widespread thereby impacting the modeling of sea-ice mass balance and variability. These small-scale processes have significant ramifications to larger scales and the global thermohaline circulation.

  10. Satellite derived estimates of global export flux composition and attenuation in the mesopelagic

    NASA Astrophysics Data System (ADS)

    Bisson, K.; Siegel, D.

    2016-02-01

    Quantifying the ecosystem dynamics that transform carbon from the surface ocean into the twilight zone is critical for evaluating the role of the ocean in the global carbon cycle. Yet, these processes remain largely anonymous in current Earth system models. Here we build on a recent satellite based approach to quantify global sinking carbon flux from the surface ocean and link phytoplankton functional types partitioned by both size and composition into the satellite-based food web modeling to test the ballast hypothesis. A simple food web model that uses chlorophyll and the particle size distribution from SeaWIFS is modified with estimates of coccolithophore and diatom chl obtained from the SCIAMACHY satellite to trace the composition of carbon from the base of the euphotic zone into the mesopelagic. Deep sediment trap data from the updated Honjo et al. [2008] dataset are used to used to constrain the vertical fluxes of organic carbon, carbonate and opal to the deep ocean. Estimates of remineralization length scales from this method are consistent with previous findings. We use these results to model the roles of ballasting in determining composition-specific remineralization length scales. This synthesis of observations and models offers a first step towards quantifying the major components of export flux in the mesopelagic from remotely sensible observations.

  11. Validating hydro-meteorological fluxes using GRACE-derived water storage changes - a global and regional perspective

    NASA Astrophysics Data System (ADS)

    Eicker, Annette; Springer, Anne; Kusche, Jürgen; Jütten, Thomas; Diekkrüger, Bernd; Longuevergne, Laurent

    2016-04-01

    Atmospheric and terrestrial water budgets, which represent important boundary conditions for both climate modeling and hydrological studies, are linked by evapotranspiration (E) and precipitation (P). These fields are provided by numerical weather prediction models and atmospheric reanalyses such as ERA-Interim and MERRA-Land; yet, in particular the quality of E is still not well evaluated. Via the terrestrial water budget equation, water storage changes derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission, combined with runoff (R) data can be used to assess the realism of atmospheric models. While on short temporal scales (inter-annual down to sub-seasonal) the modeled fluxes agree remarkably well with GRACE water storage changes, the models exhibit large biases and fail to capture the long-term flux trends in P-E-R corresponding to GRACE accelerations (Eicker et al. 2016). This leads to the assumption that despite the short time span of available gravity field observations, GRACE is able to provide new information for constraining the long-term evolution of water fluxes in future atmospheric reanalyses. In this contribution we will investigate the agreement of GRACE water storage changes with P-E-R flux time series from different (global and regional) atmospheric reanalyses, land surface models, as well as observation-based data sets. We will perform a global analyses and we will additionally focus on selected river basins. The investigations will be carried out for various temporal scales, focussing on the short-term fluxes (month-to-month variations), for which models and GRACE agree well with correlations of the de-trended and de-seasoned fluxes time series reaching up to 0.8 and more. We will furthermore extent the study towards even higher temporal frequencies, investigating whether the modeled and observed fluxes show sub-monthly variability that can be detected in daily GRACE time series. Eicker, A., E. Forootan, A. Springer

  12. Deriving Corrections to FNOC Surface Heat Flux Estimates for Use in North Pacific Ocean Predictions.

    DTIC Science & Technology

    1982-09-01

    confidence should be given to the va.ues near the northern and southern boundaries of the domain. The primary ship-cf-opportunity tracks lie on the...pattern shown in Fig. la. In particular, the correction reduzes the surface heat flux (upward is defined to be positive) along the southern bound - ary. It...n et cotn 44ed unoretdsraeha-nJoiA Corrcte sufac h -’ ’ iotedlam 1- N 17 W. is te Rrreced ot-l suiac heaing Un 4 ngLs r cal c- ovr twomcnt intevals

  13. Particulate organic carbon export fluxes on Chukchi Shelf, western Arctic Ocean, derived from 210Po/210Pb disequilibrium

    NASA Astrophysics Data System (ADS)

    He, Jianhua; Yu, Wen; Lin, Wuhui; Men, Wu; Chen, Liqi

    2015-05-01

    Fluxes of particulate organic carbon (POC) were derived from 210Po/210Pb disequilibrium during the 4th Chinese National Arctic Research Expedition (CHINARE-4) from July 1 to September 28, 2010. Average residence times of particulate 210Po in the euphotic zone were -16.00 a to 1.54 a, which are higher than those of dissolved 210Po (-6.89 a to -0.70 a). Great excesses of dissolved 210Po were observed at all stations, with an average 210Po/210Pb ratio of 1.91±0.20, resulting from 210Pb atmospheric deposition after sea ice melt. POC fluxes from the euphotic zone were estimated by two methods (E and B) in the irreversible scavenging model. Estimated POC fluxes were 945-126 mmol C/(m2·a) and 1 848-109 mmol C/(m2·a) by methods E and B, respectively, both decreasing from low to high latitude. The results are comparable to previous works for the same region, indicating efficient biological pumping in the Chukchi Sea. The results can improve understanding of the carbon cycle in the western Arctic Ocean.

  14. A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database

    PubMed Central

    2014-01-01

    Background Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. Results We present EcoCyc–18.0–GEM, a genome-scale model of the E. coli K–12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc–18.0–GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc–18.0–GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model’s derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc–18.0–GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization. Conclusion Significant

  15. Assessing inter-sensor variability and sensible heat flux derivation accuracy for a large aperture scintillometer.

    PubMed

    Rambikur, Evan H; Chávez, José L

    2014-01-27

    The accuracy in determining sensible heat flux (H) of three Kipp and Zonen large aperture scintillometers (LAS) was evaluated with reference to an eddy covariance (EC) system over relatively flat and uniform grassland near Timpas (CO, USA). Other tests have revealed inherent variability between Kipp and Zonen LAS units and bias to overestimate H. Average H fluxes were compared between LAS units and between LAS and EC. Despite good correlation, inter-LAS biases in H were found between 6% and 13% in terms of the linear regression slope. Physical misalignment was observed to result in increased scatter and bias between H solutions of a well-aligned and poorly-aligned LAS unit. Comparison of LAS and EC H showed little bias for one LAS unit, while the other two units overestimated EC H by more than 10%. A detector alignment issue may have caused the inter-LAS variability, supported by the observation in this study of differing power requirements between LAS units. It is possible that the LAS physical misalignment may have caused edge-of-beam signal noise as well as vulnerability to signal noise from wind-induced vibrations, both having an impact on the solution of H. In addition, there were some uncertainties in the solutions of H from the LAS and EC instruments, including lack of energy balance closure with the EC unit. However, the results obtained do not show clear evidence of inherent bias for the Kipp and Zonen LAS to overestimate H as found in other studies.

  16. Linking GRACE-Derived Water Storage Accelerations to Changes in Hydro-Mteorological Fluxes over West Africa

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Eicker, A.; Springer, A.; Forootan, E.; Jütten, T.; Diekkrüger, B.

    2015-12-01

    Several researchers have postulated that, under a changing climate, an intensification of the water cycle is under way. This is usually related to increases in hydrological fluxes such as precipitation (P), evapotranspiration (E), and discharge (R). It is under debate, however, whether such observed or reconstructed flux changes are real for West Africa and on what scale. Large-scale increase or decrease of the flux deficit P-E-R, i.e. flux changes that do not compensate, would lead to acceleration or deceleration of water storage potentially visible in GRACE-derived time series. In agreement with earlier studies, we do find accelerations in global maps of gridded GRACE water storage anomalies (Eicker et al., submitted). For sub-Sahel West Africa such accelerations amount up to 7 mm/a2; i.e. statistically significant even seen the short GRACE record. However, W Africa water storage variability is strongly controlled by sea surface temperature and precipitation (Forootan et al., 2014), and interannual/decadal climate variability may mask long-term changes e.g. related to land use change. Yet, here we show that even after isolating and removing a global climate mode in the GRACE data that appears ENSO-related, using a new method, the observed signal over W Africa remains. We can explain this effect only partly with changing surface water levels (Volta reservoir). We then repeat our analysis with flux fields from global atmospheric reanalysis that include land surface models in online (ERA-Interim, CFSR) and off-line (MERRA-Land) mode, and TRMM precipitation data. We find that these fields show surprising skills in reconstructing water storage variability at the monthly timescale when compared to GRACE. In contrast, in particular ERA-Interim falls short in displaying trends that would correspond to GRACE accelerations. We hypothesize this may be due to time-varying biases in the reanalysis-generated fluxes as noticed in other studies. Essentially we conclude that

  17. Simple models for stomatal conductance derived from a process model: cross-validation against sap flux data.

    PubMed

    Buckley, Thomas N; Turnbull, Tarryn L; Adams, Mark A

    2012-09-01

    Representation of stomatal physiology in models of plant-atmosphere gas exchange is minimal, and direct application of process-based models is limited by difficulty of parameter estimation. We derived simple models of stomatal conductance from a recent process-based model, and cross-validated them against measurements of sap flux (176-365 d in length) in 36 individual trees of two age classes for two Eucalyptus species across seven sites in the mountains of southeastern Australia. The derived models - which are driven by irradiance and evaporative demand and have two to four parameters that represent sums and products of biophysical parameters in the process model - reproduced a median 83-89% of observed variance in half-hourly and diurnally averaged sap flux, and performed similarly whether fitted using a random sample of all data or using 1 month of data from spring or autumn. Our simple models are an advance in predicting plant water use because their parameters are transparently related to reduced processes and properties, enabling easy accommodation of improved knowledge about how those parameters respond to environmental change and differ among species. © 2012 Blackwell Publishing Ltd.

  18. TRMM-Based Lightning Climatology

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  19. An Air Transport Climatology for Subtropical Southern Africa

    NASA Astrophysics Data System (ADS)

    Tyson, P. D.; Garstang, M.; Swap, R.; Kâllberg, P.; Edwards, M.

    1996-03-01

    An air transport climatology is derived for subtropical southern Africa (Africa south of 15°S) by classifying daily synoptic situations into predominant circulation types. The annual variation of these provides the basis for determining month-by-month transport. Percentage zonal transport in easterly and westerly directions, levels of transport, and times of transit are derived from forward trajectory analyses using European Centre for Medium- range Weather Forecasts (ECMWF) data for a 7-year period.It is shown that semi-permanent subtropical continental anticyclones, transient mid-latitude ridging anticyclones and mid-latitude westerly disturbances produce major transport into the south-western Indian Ocean in the Natal plume. Only quasi-stationary tropical easterly waves result in appreciable transport into the tropical South Atlantic Ocean in the Angolan plume. Total transport is a function of circulation type and frequency, as well as plume dimensions. Transport in continental highs follows an annual cycle reaching peak values in excess of 70 per cent in winter. That in easterly waves also exhibits an annual cycle, but one peaking in summer, when up to 55 per cent transport may occur in north-western regions. Transport in ridging highs and westerly perturbations is much less and occurs throughout the year, with a slight tendency to peak in spring. Recirculation of air is shown to be considerable when anticyclonic conditions prevail.Monthly, seasonal, and annual mass fluxes over and out of southern Africa are determined from transport fields, frequency of occurrence of circulation types and from measurements of aerosol concentrations. An annual mass flux of aerosols some 134 Mtons is generated over the subcontinent. About 60 Mtons year-1 are deposited, and approximately 29 Mtons year-1 are exported westward over the Atlantic Ocean and 45 Mtons year-1 eastward over the Indian Ocean. Twenty-six million tons of the 74 Mtons of aerosols exported annually to the

  20. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  1. Climatologies at high resolution for the earth's land surface areas.

    PubMed

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E; Linder, H Peter; Kessler, Michael

    2017-09-05

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth's land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979-2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better.

  2. Eight Year Climatology from observational (AIRS) and model (MERRA) data

    NASA Astrophysics Data System (ADS)

    Hearty, T. J.; Savtchenko, A. K.; Won, Y.; Theobald, M.; Vollmer, B.; Manning, E.; Smith, P. M.; Ostrenga, D.; Leptoukh, G. G.

    2010-12-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert.

  3. A climatology of potential severe convective environments across South Africa

    NASA Astrophysics Data System (ADS)

    Blamey, R. C.; Middleton, C.; Lennard, C.; Reason, C. J. C.

    2017-09-01

    Severe thunderstorms pose a considerable risk to society and the economy of South Africa during the austral summer months (October-March). Yet, the frequency and distribution of such severe storms is poorly understood, which partly stems out of an inadequate observation network. Given the lack of observations, alternative methods have focused on the relationship between severe storms and their associated environments. One such approach is to use a combination of covariant discriminants, derived from gridded datasets, as a probabilistic proxy for the development of severe storms. These covariates describe some key ingredient for severe convective storm development, such as the presence of instability. Using a combination of convective available potential energy and deep-layer vertical shear from Climate Forecast System Reanalysis, this study establishes a climatology of potential severe convective environments across South Africa for the period 1979-2010. Results indicate that early austral summer months are most likely associated with conditions that are conducive to the development of severe storms over the interior of South Africa. The east coast of the country is a hotspot for potential severe convective environments throughout the summer months. This is likely due to the close proximity of the Agulhas Current, which produces high latent heat fluxes and acts as a key moisture source. No obvious relationship is established between the frequency of potential severe convective environments and the main large-scale modes of variability in the Southern Hemisphere, such as ENSO. This implies that several factors, possibly more localised, may modulate the spatial and temporal frequency of severe thunderstorms across the region.

  4. A climatology of potential severe convective environments across South Africa

    NASA Astrophysics Data System (ADS)

    Blamey, R. C.; Middleton, C.; Lennard, C.; Reason, C. J. C.

    2016-11-01

    Severe thunderstorms pose a considerable risk to society and the economy of South Africa during the austral summer months (October-March). Yet, the frequency and distribution of such severe storms is poorly understood, which partly stems out of an inadequate observation network. Given the lack of observations, alternative methods have focused on the relationship between severe storms and their associated environments. One such approach is to use a combination of covariant discriminants, derived from gridded datasets, as a probabilistic proxy for the development of severe storms. These covariates describe some key ingredient for severe convective storm development, such as the presence of instability. Using a combination of convective available potential energy and deep-layer vertical shear from Climate Forecast System Reanalysis, this study establishes a climatology of potential severe convective environments across South Africa for the period 1979-2010. Results indicate that early austral summer months are most likely associated with conditions that are conducive to the development of severe storms over the interior of South Africa. The east coast of the country is a hotspot for potential severe convective environments throughout the summer months. This is likely due to the close proximity of the Agulhas Current, which produces high latent heat fluxes and acts as a key moisture source. No obvious relationship is established between the frequency of potential severe convective environments and the main large-scale modes of variability in the Southern Hemisphere, such as ENSO. This implies that several factors, possibly more localised, may modulate the spatial and temporal frequency of severe thunderstorms across the region.

  5. Climatological Upper Atmospheric Data Assimilation from Multiple Missions and Instruments

    NASA Astrophysics Data System (ADS)

    Drob, D. P.; Siskind, D. E.

    2014-12-01

    The most up-to-date multi-mission, multi-instrument climatological data summary of Earth's upper atmospheric composition comes from the series of empirical reference models known as Mass Spectrometer and Incoherent Scatter (MSIS®). Derived from over forty years of NASA satellite mission data, sounding rockets, and non-NASA ground-based measurements, MSIS has long provided a statistical data summary of upper atmosphere neutral temperature, total mass density, and the individual species concentrations of O, O2, N, N2, He, H, and Ar. These specifications are a function of day-of- year, solar local time, latitude, longitude, altitude, solar-flux, and geomagnetic activity and are obtained via an approach that uses an optimal error-weighted multi-variant non-linear least-squares parameter estimation procedure; i.e. upper atmospheric data assimilation. While MSIS continues to provide a convenient and generally reliable functional representational of historical upper atmospheric observational mission datasets, the most recent upgrade (NRLMSISE-00) was in 2001 and consequently does not include any data from the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission which began in 2002. Furthermore, this new generation of data has identified critical deficiencies in MSIS reference in the MLT region. Another drawback of the present MSIS is the lack of simultaneous uncertainty estimates as part of the standard model output. This presentation describes recent efforts to updated MSIS from the mesosphere to the exobase (60-500 km) based predominately upon TIMED SABER data but also utilizing other relevant satellite and ground- based datasets. This work sponsored by the Office of Naval Research.

  6. 30 CFR 779.18 - Climatological information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES... shall contain a statement of the climatological factors that are representative of the proposed permit...

  7. 30 CFR 783.18 - Climatological information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL... application shall contain a statement of the climatological factors that are representative of the proposed...

  8. Fukushima-derived radiocesium flux observed by time-series sediment traps in the western North Pacific

    NASA Astrophysics Data System (ADS)

    Honda, Makio; Kawakami, Hajime; Nagao, Seiya; Watanabe, Shuichi; Saino, Toshiro

    2013-04-01

    On 11 March 2011, the 2011 Tohoku-Oki Earthquake occurred. This earthquake and the tsunami it generated seriously damaged the Fukushima Daiichi Nuclear Power Plant (FNPP1). Large quantities of artificial radionuclides were emitted from FNPP1 by hydrogen explosions, venting, and intentional and accidental discharge of radiologically contaminated water. At two stations in the western North Pacific, K2 in the subarctic gyre and S1 in the subtropical gyre, time-series sediment traps were collecting sinking particles when the FNPP1 accident occurred. Radiocesium (134Cs and 137Cs) derived from FNPP1 accident was detected in sinking particles collected at 500 m by late March 2011 and at 4810 m by early April 2011 at both stations. The sinking velocity of 134Cs and 137Cs was estimated to be 8 to 36 m day-1 between the surface and 500 m and >180 m day-1 between 500 m and 4810 m. 137Cs specific activity varied from 0.14 to 0.25 Bq g-1 dry weight. These values are higher than those of surface seawater, suspended particles, and zooplankton collected in April 2011. Although the radiocesium may have been adsorbed onto or incorporated into clay minerals, correlations between 134Cs and lithogenic material were not always significant; therefore, the form of the cesium associated with the sinking particles is still an open question. The total 137Cs flux by late June at K2 and by late July at S1 was 0.5 to 1.7 Bq m-2 at both depths. Compared with 137Cs input to both stations by April 2011, estimated from the surface 137Cs activity and mixed layer depth and by assuming that the observed 137Cs flux was constant throughout the year, the estimated removal rate of 137Cs from the upper layer (residence time in the upper layer) was 0.3 to 1.5% (68 to 312 years). The estimated removal rates and residence times are comparable to previously reported values. Based on preliminary results of measurement of flux and concentration of 134Cs flux at 4810 m of K2 obtained by February 2012, the maximum

  9. Partitioning modes and rates of sediment flux derived from terrace-channel coupling

    NASA Astrophysics Data System (ADS)

    Higson, J. L.; Singer, M. B.

    2012-12-01

    Sediment supply to channels from failed banks/terraces is a geomorphic problem that has received scant treatment in the literature, especially with respect to the partitioning of such laterally eroded sediment into bedload v. suspended load and the resultant channel grain size distribution. Such coupling between terraces/banks and channels is an important component for understanding the exhaustion of the legacy sediments in disturbed watersheds, especially where terraces are contaminated by past mining activities. More than 4x106 kg of mercury (Hg) was lost during the 19th Century hydraulic mining process in the Sierra Nevada foothills of California and documented levels of total Hg concentration in legacy terraces all along the Yuba River are up to 3 orders of magnitude higher than background values. Thus, the ongoing erosion of legacy terraces from the mining period poses important risks to sensitive and ecologically productive lowlands downstream. The problem of bank/terrace erosion in river corridors is generally treated either using a channel centerline (toe cutting) approach or by infinite slope stability at a cross section, but the interaction of failed sediment with the channel is an important and missing component for fully assessing downstream risks of failing contaminated terraces. We have developed a new physically based model that can be used to quantify the extent and caliber of episodic erosion of legacy terrace sediments. The model combines analysis of bank/terrace failure in response to variable fluvial hydrology with a representation of local cross section evolution of grain size distribution and sediment routing. Terrace stability is calculated through an infinite slope stability model, driven by a Dupuit-Forchheimer groundwater model to assess soil moisture contributing to failure. The grain size distribution (GSD) in the channel bed is evolved based on calculation of sediment transport, which also yields net flux of fine material that is known

  10. Climatology of stratospheric ozone based on SBUV and SBUV/2 data: 1978-1994. Technical note

    SciTech Connect

    Randel, W.J.; Wu, F.

    1995-04-01

    This atlas presents climatological stratospheric ozone statistics derived from nearly sixteen years (1978-1994) of daily global satellite observations. Data from Nimbus 7 Solar Backscatter Ultraviolet (SBUV) (covering November 1978-June 1990) and NOAA 11 SBUV/2 (January 1989-April 1994) are combined into a continuous time series; both column ozone profile information over 25-50 km is presented. The long term record is used to document climatological means, along with daily and interannual variability statistics, for zonal mean and planetary wave variations in ozone column and profile data. Monthly mean cross sections are presented, along with climatological latitude-time and height-time sections.

  11. Climatology of equatorial stratosphere over Lagos, Nigeria

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi Samuel

    We have used 12 complete calendar years (January 1993-December 2004) of monthly averages of measurements made by the Dobson spectrophotometer instrument over an urban site, Lagos (6.6oN, 3.3oE), southwest Nigeria, to study equatorial stratospheric column ozone variations and trends. Our results indicate that the time-averaged total column ozone has a seasonal cy-cle, which maximizes in June and July with a value of 259 Dobson units (DU) and minimizes in February with a magnitude of 250 DU. Statistical analysis of the climatological mean monthly total Dobson O3 record for 1993-2004 show that the local trend is approximately +0.041±0.0011 DU/year (+0.49±0.013% per decade). Spectral analysis was applied to the monthly averages series. The significant periodicity at 95% confidence level demonstrate prominent spectra peaks near 1.9 and 3.6 years, representative of quasi-biennial oscillation (QBO) and quasi-triennial oscillation (QTO), respectively. Signal due to semiannual variation is also identified at Lagos sounding site. Comparison with the ozone observations from Total Ozone Mapping Spectrom-eter (TOMS) on board the Earth-Probe (EP) satellite for the period from 1997 to 2002 reveal that EP/TOMS instrument consistently larger than the ground-based measurement from Dob-son station. Percentage mean relative disparity ranges from -11% to 15%. The root mean square error (RMSE) between satellite and ground-based observations over Lagos ranges be-tween ˜35-83 DU with largest and lowest variability occurring during the ascending phase of solar activity (1999, 10.7 cm radio flux, F10.7 equals 154 flux units) and during the peak phase of solar activity (2001, F10.7 equals 181), respectively.

  12. Deriving Daytime Variables From the AmeriFlux Standard Eddy Covariance Data Set

    SciTech Connect

    van Ingen, Catharine; Agarwal, Deborah A.; Humphrey, Marty; Li, Jie

    2008-12-06

    A gap-filled, quality assessed eddy covariance dataset has recently become available for the AmeriFluxnetwork. This dataset uses standard processing and produces commonly used science variables. This shared dataset enables robust comparisons across different analyses. Of course, there are many remaining questions. One of those is how to define 'during the day' which is an important concept for many analyses. Some studies have used local time — for example 9am to 5pm; others have used thresholds on photosynthetic active radiation (PAR). A related question is how to derive quantities such as the Bowen ratio. Most studies compute the ratio of the averages of the latent heat (LE) and sensible heat (H). In this study, we use different methods of defining 'during the day' for GPP, LE, and H. We evaluate the differences between methods in two ways. First, we look at a number of statistics of GPP. Second, we look at differences in the derived Bowen ratio. Our goal is not science per se, but rather informatics in support of the science.

  13. Storm time equatorial magnetospheric ion temperature derived from TWINS ENA flux

    NASA Astrophysics Data System (ADS)

    Katus, R. M.; Keesee, A. M.; Scime, E.; Liemohn, M. W.

    2017-04-01

    The plasma sheet plays an integral role in the transport of energy from the magnetotail to the ring current. We present a comprehensive study of the equatorial magnetospheric ion temperatures derived from Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) energetic neutral atom (ENA) measurements during moderate to intense (Dstpeak < -60 nT) storm times between 2009 and 2015. The results are validated using ion temperature data derived from the Geotail low-energy particle energy analyzer and the Los Alamos National Laboratory magnetospheric plasma analyzer. The ion temperatures are analyzed as a function of storm time, local time, and L shell. We perform a normalized superposed epoch analysis of 48 geomagnetic storms and examine the spatial and temporal evolution of the plasma as a function of storm phase. This analysis illustrates the spatial and temporal variation of the ions from the plasma sheet into the inner magnetosphere. We find that the ion temperature increases approaching the storm peak. This enhancement has the largest magnetic local time extent near 12 RE distance downtail.

  14. On the ratio of intercellular to ambient CO2 (c i/c a) derived from ecosystem flux

    NASA Astrophysics Data System (ADS)

    Tan, Zheng-Hong; Wu, Zhi-Xiang; Hughes, Alice C.; Schaefer, Douglas; Zeng, Jiye; Lan, Guo-Yu; Yang, Chuang; Tao, Zhong-Liang; Chen, Bang-Qian; Tian, Yao-Hua; Song, Liang; Jatoi, Muhammad Tahir; Zhao, Jun-Fu; Yang, Lian-Yan

    2017-07-01

    The ratio of intercellular to ambient CO2 concentrations (c i/c a) plays a key role in ecophysiology, micrometeorology, and global climatic change. However, systematic investigation on c i/c a variation and its determinants are rare. Here, the c i/c a was derived from measuring ecosystem fluxes in an even-aged monoculture of rubber trees (Hevea brasiliensis). We tested whether c i/c a is constant across environmental gradients and if not, which dominant factors control c i/c a variations. Evidence indicates that c i/c a is not a constant. The c i/c a exhibits a clear "V"-shaped diurnal pattern and varies across the environmental gradient. Water vapor pressure deficit (D) is the dominant factor controls over the c i/c a variations. c i/c a consistently decreases with increasing D. c i/c a decreases with square root of D as predicted by the optimal stomatal model. The D-driving single-variable model could simulate c i/c a as well as that of sophisticated model. Many variables function on longer timescales than a daily cycle, such as soil water content, could improve c i/c a model prediction ability. Ecosystem flux can be effectively used to calculate c i/c a and use it to better understand various natural cycles.

  15. Seasonal cycles in radium and barium within a subterranean estuary: Implications for groundwater derived chemical fluxes to surface waters

    NASA Astrophysics Data System (ADS)

    Gonneea, Meagan Eagle; Mulligan, Ann E.; Charette, Matthew A.

    2013-10-01

    There is increasing evidence that submarine groundwater discharge (SGD) is an important source of water and dissolved materials to the ocean. One of the primary tracers of this process is the quartet of radium isotopes (223Ra, 224Ra, 226Ra and 228Ra), whereby excess activities in surface waters can often be attributed to an input supplied via SGD. This approach requires the radium end member activity to be well constrained, however, natural variability in groundwater radium may span several orders of magnitude. Therefore, this variability is usually the main driver of uncertainties in volumetric SGD estimates. To investigate the physical and biogeochemical controls on groundwater radium activities, we conducted a three-year time series of radium and barium, a chemical analogue for radium, within the subterranean estuary of a coastal aquifer (Waquoit Bay, MA, USA). Gonneea et al. (2013) demonstrated that movement of the salinity interface within the subterranean estuary is driven by changes in the hydraulic gradient between groundwater level and sea level height. For Waquoit Bay, seasonal scale sea level change, not groundwater level, was the main driver in hydraulic gradient fluctuations. Seasonal changes in groundwater chemistry can be attributed to the resulting movement of the salinity transition zone between terrestrial and marine groundwater. Landward movement of the interface results in a large release of radium isotopes (226Ra = 1400 dpm 100 L-1) and barium (3000 nmol kg-1) associated with an increase in groundwater salinity. The magnitude of these releases cannot be explained by in situ production or weathering alone, but is likely due to salinity driven desorption from surface-bound sediment inventory. The timing of these peak concentrations is not always in phase with model-derived estimates of SGD; as a result, the groundwater concentration rather than the water flux is the main driver of Ra and Ba inputs to Waquoit Bay surface waters. The behavior of

  16. The Climatology of Hailstone Embryos.

    NASA Astrophysics Data System (ADS)

    Knight, Nancy C.

    1981-07-01

    Data on hailstone embryo types, using a broad classification as graupel or frozen drops, are presented from several geographical areas representing distinctly different storm `climatologies.' The relative frequency of the two embryo types varies greatly from area to area, in a Way that correlates rather well with average cloud-base temperature. The warmer based clouds produce hail with more frozen drop embryos. The correlation may be explainable either in terms of the dominant precipitation growth process-liquid coalescence or the ice process-or in terms of recycling of embryos, or both. In light of these results, the transferability of any hail suppression technology from one area to another should not be considered to be automatic.

  17. Comparative climatology - Mars and earth

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    1985-01-01

    Spacecraft missions to Mars during the 1960's and 1970's gave a remarkably detailed picture of the meteorological and climatological conditions that characterize its atmosphere. During the relatively brief history of close-up exploration of Mars, much of the ambiguity associated with the early telescopic observations has been resolved, and a new image of the red planet has emerged. Accurate measurements taken both from orbit and the surface reveal a cool, thin atmosphere that condenses, transports water, and generates clouds and dust storms, and that has a global-scale wind system not unlike the one known on earth. This paper highlights the current view of the Martian climate system and what controls it. For perspective, comparisons with earth's climate system are included where appropriate.

  18. Spectrally Resolved Flux Derived from Collocated AIRS and CERES Observations and its Application in Model Validation. Part I; Clear-Sky Over the Tropic Oceans

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Yang, Wenze; Loeb, Norman G.; Ramaswamy, V.

    2008-01-01

    Spectrally resolved outgoing IR flux, the integrand of the outgoing longwave radiation (OLR), has its unique value in evaluating model simulations. Here we describe an algorithm of deriving such clear-sky outgoing spectral flux through the whole IR region from the collocated Atmospheric Infrared Sounder (AIRS) and the Clouds & the Earth's Radiant Energy System (CERES) measurements over the tropical oceans. Based on the scene types and corresponding angular distribution models (ADMs) used in the CERES Single Satellite Footprint (SSF) dataset, spectrally-dependent ADMs are developed and used to estimate the spectral flux at each AIRS channel. A multivariate linear prediction scheme is then used to estimate spectral fluxes at frequencies not covered by the AIRS instrument. The whole algorithm is validated using synthetic spectra as well as the CERES OLR measurements. Using the GFDL AM2 model simulation as a case study, the application of the derived clear-sky outgoing spectral flux in model evaluation is illustrated. By comparing the observed and simulated spectral flux in 2004, compensating errors in the simulated OLR from different absorption bands can be revealed, so does the errors from frequencies within a given absorption band. Discrepancies between the simulated and observed spatial distributions and seasonal evolutions of the spectral fluxes at different spectral ranges are further discussed. The methodology described in this study can be applied to other surface types as well as cloudy-sky observations and corresponding model evaluations.

  19. On the estimation of climatological Z-R relationships

    NASA Technical Reports Server (NTRS)

    Krajewski, Witold F.; Smith, James A.

    1991-01-01

    A statistical framework for climatological Z-R parameter estimation is developed and simulation experiments are conducted to examine sampling properties of the estimators. Both parametric and nonparametric models are considered. For parametric models, it is shown that Z-R parameters can be estimated by maximum likelihood, a procedure with optimal large sample properties. A general nonparametric framework for climatological Z-R estimation is also developed. Nonparametric procedures are attractive because of their flexibility in dealing with certain types of measurement errors common to radar data. Simulation experiments show that even under favorable assumptions on error characteristics of radar and raingages, large datasets are required to obtain accurate Z-R parameter estimates. Another important conclusion is that estimation results are generally quite sensitive to radar and raingage measurement thresholds. For fixed sample size, the simulation results can be used to provide quantitative assessments of the accuracy of Z-R model parameter estimates. These results are particularly useful for error analysis of precipitation products that are derived using climatological Z-R relations. One example is the large-area rainfall estimates derived using the height-area rainfall threshold (HART) technique.

  20. Spatially adaptive probabilistic computation of a sub-kilometre resolution lightning climatology for New Zealand

    NASA Astrophysics Data System (ADS)

    Etherington, Thomas R.; Perry, George L. W.

    2017-01-01

    Lightning is a key component of the Earth's atmosphere and climate systems, and there is a potential positive feedback between a warming climate and increased lightning activity. In the biosphere, lightning is important as the main natural ignition source for wildfires and because of its contribution to the nitrogen cycle. Therefore, it is important to develop lightning climatologies to characterise and monitor lightning activity. While traditional methods for constructing lightning climatologies are suitable for examining lightning's influence on atmospheric processes, they are less well suited for examining questions about biosphere-lightning interactions. For example, examining the interaction between lightning and wildfires requires linking atmospheric processes to finer scale terrestrial processes and patterns. Most wildfires ignited by lightning are less than one hectare in size, and so require lightning climatologies at a comparable spatial resolution. However, such high resolution lightning climatologies cannot be derived using the traditional cell-count methodology. Here we present a novel geocomputational approach for analysing lightning data at high spatial resolutions. Our approach is based on probabilistic computational methods and is capable of producing a sub-kilometre lightning climatology that honours the spatial accuracy of the strike locations and is adaptive to underlying spatial patterns. We demonstrate our methods by applying them to the mid-latitude oceanic landmass of New Zealand, an area with geographic conditions that are under-represented in existing lightning climatologies. Our resulting lightning climatology has unparalleled spatial resolution, and the spatial and temporal patterns we observe in it are consistent with other continental and tropical lightning climatologies. To encourage further use and development of our probabilistic approach, we provide Python scripts that demonstrate the method alongside our resulting New Zealand

  1. Wind waves climatology of the Southeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Aguirre, Catalina; Rutllant, José; Falvey, Mark

    2017-04-01

    The Southeast Pacific coast still lacks a high-resolution wave hindcast and a detailed description of its wave climatology. Since buoy wave measurements are particularly scarce along the coast of South America, a model hindcast forced with wind information derived from atmospheric Reanalysis seems an attractive way to generate a wave climatology in this poorly studied region, providing far better spatial and temporal coverage than can be achieved using observational data alone. Here, the climatology of wind waves over the Southeast Pacific is analyzed using a 32-year hindcast from the WaveWatch III model, complemented by satellite-derived Significant Wave Height (SWH) and buoy measurements for validation. Using partitioned spectral data, a regional climatology of wind sea and swell parameters was constructed. In general, the simulated SWH shows a good agreement with satellite and in-situ SWH measurements. The spatial pattern of SWH is clearly influenced by the meridional variation of mean surface wind speed, where the stronger winds over the Southern Ocean play a significant role generating higher waves at higher latitudes. Nevertheless, regional features are observed in the annual variability of SWH, which are associated with the existence of atmospheric coastal low-level jets off the coast of Peru and central Chile. In particular, the seasonal variation of these synoptic scale jets shows a direct relationship with the annual variability of SWH. Off the coast of Peru at 15°S the coastal low-level jet is strongest during austral winter, increasing the wind sea SWH. In contrast, off central Chile, there is an important increase of wind sea SWH during summer. The seasonal variation of the wind sea component leads to a contrasting seasonal variation of the total SWH at these locations: off Peru the coastal jet amplifies the annual variability of SWH, while off Central Chile the annual variability of SWH is suppressed by the presence of the coastal jet.

  2. Conference on Applied Climatology, 6th, Charleston, SC, Mar. 7-10, 1989, Preprints

    SciTech Connect

    Not Available

    1989-01-01

    Papers on applied climatology are presented, covering topics such as climate resources, precipitation climatology and land use planning, urbanization and rainfall distribution, climate changes, heat stress climatology, climate and culture, climate and agriculture, studies of the 1988 drought, and climatic records. Papers are included on orography and precipitation variability, climate scenarios for impact assessment, temperature changes and the greenhouse effect, the relationship between a GCM simulated climate and the observed local climate, a synoptic approach to the detection of climatic change, and climate modeling with a limited area model coupled to a GCM. Other topics include high-resolution ground-based remote sensors, the application of a spatial synoptic climatological index to changes in atmospheric NO{sub 2} and SO{sub 2} concentrations, thunderstorm and lightning relationships, satellite-derived vegetation indices as indicators of climatic variability, and the relationships between precipitation and 700 mb height patterns.

  3. Effects of Climatological Model Biases on the Projection of Tropical Climate Change

    NASA Astrophysics Data System (ADS)

    Xie, S. P.; Zhou, Z. Q.

    2015-12-01

    Climate models suffer from long-standing biases including the double intertropical convergence zone (ITCZ) problem and the excessive westward extension of the equatorial Pacific cold tongue. An atmospheric general circulation model is used to investigate how model biases in the mean state affect the projection of tropical climate change. The model is forced with a pattern of sea surface temperature (SST) increase derived from a coupled simulation of global warming but uses an SST climatology derived from either observations or a coupled historical simulation. The comparison of the experiments reveals that the climatological biases have important impacts on projected changes in the tropics. Specifically, during February-April when the climatological ITCZ displaces spuriously into the Southern Hemisphere, the model overestimates (underestimates) the projected rainfall increase in the warmer climate south (north) of the equator over the eastern Pacific. Furthermore, the global warming-induced Walker circulation slowdown is biased weak in the projection using coupled model climatology, suggesting that the projection of the reduced equatorial Pacific trades may also be under-estimated. This is related to the bias that the climatological Walker circulation is too weak in the model, which is in turn due to too weak mean SST gradient in the zonal direction. Our results highlight the importance of improving the climatological simulation for more reliable projections of regional climate change.

  4. Introduction to Global Urban Climatology

    NASA Astrophysics Data System (ADS)

    Varquez, A. C. G.; Kanda, M.; Kawano, N.; Darmanto, N. S.; Dong, Y.

    2016-12-01

    Urban heat island (UHI) is a widely investigated phenomenon in the field of urban climate characterized by the warming of urban areas relative to its surrounding rural environs. Being able to understand the mechanism behind the UHI formation of a city and distinguish its impact from that of global climate change is indispensable when identifying adaptation and mitigation strategies. However, the lack of UHI studies many cities especially for developing countries makes it difficult to generalize the mechanism for UHI formation. Thus, there is an impending demand for studies that focus on the simultaneous analyses of UHI and its trends throughout the world. Hence, we propose a subfield of urban climatology, called "global urban climatology" (GUC), which mainly focuses on the uniform understanding of urban climates across all cities, globally. By using globally applicable methodologies to quantify and compare urban heat islands of cities with diverse backgrounds, including their geography, climate, socio-demography, and other factors, a universal understanding of the mechanisms underlying the formation of the phenomenon can be established. The implementation of GUC involves the use of globally acquired historical observation networks, gridded meteorological parameters from climate models, global geographic information system datasets; the construction of a distributed urban parameter database; and the development of techniques necessary to model the urban climate. Research under GUC can be categorized into three approaches. The collaborative approach (1st) relies on the collection of data from micro-scale experiments conducted worldwide with the aid or development of professional social networking platforms; the analytical approach (2nd) relies on the use of global weather station datasets and their corresponding objectively analysed global outputs; and the numerical approach (3rd) relies on the global estimation of high-resolution urban-representative parameters as

  5. Are The Large-Scale Biosphere-Atmosphere Experiment In Amazonia (LBA) Representative Of Long-Term Climatology? A Study Using Climate Weather Stations In Brazil.

    NASA Astrophysics Data System (ADS)

    Rosolem, R.; Shuttleworth, W. J.; Goncalves, L. G.

    2007-12-01

    The Large-Scale Biosphere-Atmosphere Experiment in Amazonia has already contributed understanding of the flux exchange between the Amazonian rainforest and atmosphere and other significant components of the ecohydrometeorological system, and it will continue to do so. However, when considering LBA-derived information on whether the Amazon is a source or sink of carbon, or whether land use changes in the Amazon are affecting the local and perhaps global climate, it is important to characterize the period during which the LBA project has been carried out in terms of its climatological context. In other words, to address the question "How does the climate during the LBA data collection period compare with the long-term climatology in Amazon." Such information is not only useful for future project planning but is crucial information for modeling purposes: the calibration or validation of models using LBA data may be influenced by the climate conditions prevalent when these data were collected. This investigates the extent to which the actual period of data collection at LBA sites is representative of the long-term climatology for the sites. The research uses long-term weather station data taken from the databases of Brazilian National Water Agency (Agencia Nacional de Aguas - ANA) and National Oceanic and Atmospheric Administration - National Climatic Data Center division (NOAA-NCDC) for stations located near the Sao Gabriel da Cachoeira, Manaus, Santarem, Caxiuana, Jaru, Sinop, and Bananal LBA sites, and compares these weather station data during the LBA data collection period with the entire dataset available for each weather station. Analysis of the precipitation records demonstrates that the precipitation climate during the LBA study period was not significant different from the long- term climatology at all the LBA sites but that at a few sites the temperature climate during LBA was statistically different.

  6. Climatological assessment of recent severe weather events

    SciTech Connect

    Changnon, D.; Changnon, S.A.

    1997-11-01

    A climatological assessment of a series of exceptionally severe and damaging storms during 1991-1994 was pursued to put these events and their frequency and intensity/severity into a temporal perspective. The severe weather events were assessed according to the damage they caused. Insurance-derived measures of property and crop losses due to weather were used in this study; these measures adjust individual storm losses to changing socioeconomic conditions. Two methods were used to assess the events: (1) a comparative analysis of event frequency, losses and intensity with those in the preceding 40 years, and (2) a comparison of temporal variations of the 1949-1994 events with fluctuations in population, cyclonic activity, and temperatures. The results showed that the 1991-1994 property losses ranked high in number and amount of loss. However, storm intensity was found to be higher in the 1950s. The temporal distributions of the catastrophes and crop losses were well related to North American cyclonic activity, and when cyclonic activity, U.S. mean temperatures, and population were combined, they explained 865 of the variability found in the frequency of catastrophes during 1949-1994. The results suggest that, although the severe weather events in 1991-1994 were exceptionally high in frequency and losses, much of the loss was a result of the ever increasing target at risk. 9 refs., 7 figs., 1 tab.

  7. Ionospheric Climatology Over Millstone Hill

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Holt, J. M.

    2002-05-01

    26 years of incoherent scatter observations over Millstone Hill since 1976 have been analyzed and modeled in order to study the climatological behavior in the local ionosphere-thermosphere system. A bin-fit technique is applied to process and represent the huge volume of data: measurements are binned according to local time, season, and altitude; sorted data in each bin are fitted into an empirical model where solar activity index F107 and geomagnetical activity index Ap are included as keyed inputs [Holt et al., 2002]. This paper focuses on seasonal, semiannual and annual variations and the long-term trend in electron density, electron temperature and ion temperature measurements over a 200-500 km height range of the F2 layer. A clear semiannual variation of the electron density is seen above the F2 peak during the day, as well as at the F2 peak and below during the later afternoon to evening period (16-20LT) . The semiannual variation of the electron temperature persists with minimum at equinox during the night, while the annual variation prevails by day with maximum in summer.

  8. Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand.

    PubMed

    Nunn, A J; Cieslik, S; Metzger, U; Wieser, G; Matyssek, R

    2010-06-01

    Stomatal O3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O3 flux was 33% of the total O3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O3 flux and reflected stomatal regulation rather than O3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O3 risk assessment in forests from O3 exposure towards flux-based concepts. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Climatological data summary 1993 with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1994-06-01

    This document presents the climatological data summary for calendar year 1993. It presents updated historical climatologies for temperature, wind, precipitation, and other miscellaneous meteorological parameters from the Hanford Meteorology Station (HMS) and Hanford Meteorological Monitoring Network. It also presents climatological normal and extreme values of temperature and precipitation for the HMS. Previous documents have included climatological data collected at the old Hanford Townsite, located approximately 10 miles east-northeast of the present HMS. The records for these two different sites have been frequently interchanged as if representing the same location. With the exception of Section 2.0, the remainder of this document uses data only from the HMS, with a period of record beginning December 7, 1944.

  10. Validation of the effect of cross-calibrated GOES solar proton effective energies on derived integral fluxes by comparison with STEREO observations

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. V.; Sandberg, I.; Mewaldt, R. A.; Daglis, I. A.; Jiggens, P.

    2017-02-01

    The derivation of integral fluxes from instrument coincidence rates requires accurate knowledge of their effective energies. Recent cross calibrations of GOES with the high-energy-resolution Interplanetary Monitoring Platform (IMP) 8 Goddard Medium Energy Experiment (GME) (Sandberg et al., Geophys. Res. Lett, 41, 4435, 2014a) gave significantly lower effective energies than those currently used by the NOAA Space Weather Prediction Center to calculate solar proton integral fluxes from GOES rates. This implies systematically lower integral fluxes than currently produced. This paper quantifies the differences between the current and the cross-calibrated GOES integral fluxes and validates the latter. Care is taken to rule out the spectral resolution of the measurements or different integration algorithms as major contributors to differences in the magnitudes of the derived integral fluxes. The lower effective energies are validated by comparison with the independent, high-resolution observations by the STEREO Low-Energy Telescope (LET) and High-Energy Telescope (HET) during the December 2006 solar proton events. The current GOES product is similar to the >10 MeV integral fluxes recalculated by using the Sandberg et al. effective energies but is substantially greater at higher energies. (The median ratios of the current to the recalculated fluxes are 1.1 at >10 MeV, 1.7 at >30 MeV, 2.1 at >60 MeV, and 2.9 at >100 MeV.) By virtue of this validation, the cross-calibrated GOES integral fluxes should be considered more accurate than the current NOAA product. The results of this study also demonstrate good consistency between the two long-term IMP 8 GME and STEREO LET and HET solar proton data sets.

  11. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway.

    PubMed

    Jeong, Yu Jeong; An, Chul Han; Woo, Su Gyeong; Park, Ji Hye; Lee, Ki-Won; Lee, Sang-Hoon; Rim, Yeonggil; Jeong, Hyung Jae; Ryu, Young Bae; Kim, Cha Young

    2016-09-01

    The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.

  12. Smart Climatology Applications for Undersea Warfare

    DTIC Science & Technology

    2008-09-01

    project specifications. Green shading indicates resolution finer than 1 degree, global domain, and at least a 30- year period. Table from World...climatologies. 1. Generalized Digital Environmental Model Ocean Climatology Over 100 years worth of ocean observations are available in the form of various...R. Reynolds, R. Jenne, and D. Joseph, 1996: The NCEP/NCAR 40- year re-analysis project . Bull. Am. Meteorol. Soc., 77, 437-471. Kistler, R., and Co

  13. Surface Energy Heat Fluxes Using Remotely Sensed Parameters

    NASA Technical Reports Server (NTRS)

    Toll, David L.; Vukovich, Fred M.; Pontikes, Elizabeth G.

    1997-01-01

    Realistic estimates of surface energy heat fluxes are needed for the study of water and energy interactions between the land and atmosphere. The primary objective of this work is to study the estimation of surface heat energy fluxes using remote sensing derived parameters under different spatial and temporal conditions. Surface energy fluxes and remote sensing derived data from two sources were analyzed. First, we used surface heat flux, remote sensing, and ancillary data from the International Satellite Land Surface Climatology Project (ISLSCP), mapped at a 1 deg. x 1 deg. grid. Second, we used NOAA AVHRR (1 km), weather station, and ancillary data to derive estimates of surface latent and sensible heat energy fluxes over a 100 sq kilometers area for three test sites: 1) First ISLSCP Field Experiment (FIFE) grassland site, Konza Prairie, Kansas; 2) Howland, Maine Forest Ecosystem Dynamics Site; and 3) Walnut Gulch, scrubland site, surrounding Tombstone, Arizona. Satellite derived estimates of land surface temperature, surface albedo, and spectral vegetation index are used in selected models to provide estimates of surface heat fluxes. Analysis of results from the 1 deg. x 1 deg. grid for North America indicated there were similar, overall correlations between sensible and latent heat energy fluxes versus remotely sensed vegetation index and ground temperature during dry and wet year conditions. However, there were significant differences in correlations between years when stratified by land cover class. Analysis of 100 km x 100 km data (1 km resolution) indicated partitioning the areas in to primary versus secondary cover, with the secondary cover comprising less than 5% of the area, significantly improved surface heat energy flux estimates.

  14. An Argo mixed layer climatology and database

    NASA Astrophysics Data System (ADS)

    Holte, James; Talley, Lynne D.; Gilson, John; Roemmich, Dean

    2017-06-01

    A global climatology and database of mixed layer properties are computed from nearly 1,250,000 Argo profiles. The climatology is calculated with both a hybrid algorithm for detecting the mixed layer depth (MLD) and a standard threshold method. The climatology provides accurate information about the depth, properties, extent, and seasonal patterns of global mixed layers. The individual profile results in the database can be used to construct time series of mixed layer properties in specific regions of interest. The climatology and database are available online at http://mixedlayer.ucsd.edu. The MLDs calculated by the hybrid algorithm are shallower and generally more accurate than those of the threshold method, particularly in regions of deep winter mixed layers; the new climatology differs the most from existing mixed layer climatologies in these regions. Examples are presented from the Labrador and Irminger Seas, the Southern Ocean, and the North Atlantic Ocean near the Gulf Stream. In these regions the threshold method tends to overestimate winter MLDs by approximately 10% compared to the algorithm.

  15. A satellite and model based flood inundation climatology of Australia

    NASA Astrophysics Data System (ADS)

    Schumann, G.; Andreadis, K.; Castillo, C. J.

    2013-12-01

    To date there is no coherent and consistent database on observed or simulated flood event inundation and magnitude at large scales (continental to global). The only compiled data set showing a consistent history of flood inundation area and extent at a near global scale is provided by the MODIS-based Dartmouth Flood Observatory. However, MODIS satellite imagery is only available from 2000 and is hampered by a number of issues associated with flood mapping using optical images (e.g. classification algorithms, cloud cover, vegetation). Here, we present for the first time a proof-of-concept study in which we employ a computationally efficient 2-D hydrodynamic model (LISFLOOD-FP) complemented with a sub-grid channel formulation to generate a complete flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent. The model was built completely from freely available SRTM-derived data, including channel widths, bank heights and floodplain topography, which was corrected for vegetation canopy height using a global ICESat canopy dataset. Channel hydraulics were resolved using actual channel data and bathymetry was estimated within the model using hydraulic geometry. On the floodplain, the model simulated the flow paths and inundation variables at a 1 km resolution. The developed model was run over a period of 40 years and a floodplain inundation climatology was generated and compared to satellite flood event observations. Our proof-of-concept study demonstrates that this type of model can reliably simulate past flood events with reasonable accuracies both in time and space. The Australian model was forced with both observed flow climatology and VIC-simulated flows in order to assess the feasibility of a model-based flood inundation climatology at the global scale.

  16. Seasonal streamflow forecasting by conditioning climatology with precipitation indices

    NASA Astrophysics Data System (ADS)

    Crochemore, Louise; Ramos, Maria-Helena; Pappenberger, Florian; Perrin, Charles

    2017-03-01

    Many fields, such as drought-risk assessment or reservoir management, can benefit from long-range streamflow forecasts. Climatology has long been used in long-range streamflow forecasting. Conditioning methods have been proposed to select or weight relevant historical time series from climatology. They are often based on general circulation model (GCM) outputs that are specific to the forecast date due to the initialisation of GCMs on current conditions. This study investigates the impact of conditioning methods on the performance of seasonal streamflow forecasts. Four conditioning statistics based on seasonal forecasts of cumulative precipitation and the standardised precipitation index were used to select relevant traces within historical streamflows and precipitation respectively. This resulted in eight conditioned streamflow forecast scenarios. These scenarios were compared to the climatology of historical streamflows, the ensemble streamflow prediction approach and the streamflow forecasts obtained from ECMWF System 4 precipitation forecasts. The impact of conditioning was assessed in terms of forecast sharpness (spread), reliability, overall performance and low-flow event detection. Results showed that conditioning past observations on seasonal precipitation indices generally improves forecast sharpness, but may reduce reliability, with respect to climatology. Conversely, conditioned ensembles were more reliable but less sharp than streamflow forecasts derived from System 4 precipitation. Forecast attributes from conditioned and unconditioned ensembles are illustrated for a case of drought-risk forecasting: the 2003 drought in France. In the case of low-flow forecasting, conditioning results in ensembles that can better assess weekly deficit volumes and durations over a wider range of lead times.

  17. Development of a 28-Year (1987-2014) Climatology of Single and Multi-sensor Satellite-based Retrievals of Near-surface Humidity and Temperature

    NASA Astrophysics Data System (ADS)

    Jackson, D. L.

    2016-02-01

    Accurate and high-resolution observations of near-surface (10 m) humidity (Qa) and temperature (Ta) observations are considered essential for determination of turbulent sensible and latent heat fluxes at the ocean surface. Satellite observations used to derive Ta and Qa extend nearly 30 years thus providing the opportunity of long data record of high resolution satellite-derived ocean heat fluxes. Our retrieval methods incorporate intercalibrated Fundamental Climate Data Record (FCDR) satellite observations from the Advanced Microwave Sounding Unit-A (AMSU-A) developed at NESDIS STAR and FCDR observations from the Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager/Sounder (SSMIS) developed at Colorado State University. The training and validation of the retrieval algorithms incorporates matched satellite and temperature and humidity observations from selected ship observations from the Shipboard Automated Meteorological and Oceanographic System (SAMOS) Initiative, NOAA PSD research vessels, and dropsonde observations from NOAA and NASA aircraft. The description of the retrieval algorithms is provided and advantages and disadvantages of single-sensor versus multi-sensor retrievals is discussed. The long-term stability and error characteristics of the retrieved Ta and Qa products are assessed and implications on deriving satellite-derived climatology of surface turbulent heat fluxes is examined.

  18. Biomes computed from simulated climatologies

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Esch, Monika

    1994-01-01

    The biome model of Prentice et al. (1992a) is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fur Meteorologie. This study is undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced C02 concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favourable for the existence of certain biomes, not as a prediction of a future distribution of biomes.[/ab

  19. Biomes computed from simulated climatologies

    SciTech Connect

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  20. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  1. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  2. Assessing the severity of rainfall-derived infiltration and inflow and sewer deterioration based on the flux stability of sewage markers.

    PubMed

    Shelton, Jessica M; Kim, Lavane; Fang, Jiasong; Ray, Chittaranjan; Yan, Tao

    2011-10-15

    This study investigated the flux stability of select chemical and biological sewage markers, including caffeine, total nitrogen (TN), total suspended solids (TSS), E. coli, and enterococci, and their suitability in assessing the severity of rainfall-derived infiltration and inflow (RDII) in a residential sewershed. To quantify and compare marker flux stability, concentrations of the candidate markers in two dry-weather periods were determined and the one-day lag autocorrelation coefficients (r) of their mass fluxes were calculated. TN (r = 0.82-0.88) exhibited higher and more consistent flux stability than TSS (r = 0.49-0.82), caffeine (r = 0.56-0.58), E. coli (r = 0.36-0.87), and enterococci (by culture; r = 0.40-0.52), all of which except enterococci by qPCR (r = -0.10-0.21) showed significant autocorrelation. Sewage flows and marker concentrations were also monitored in two wet-weather periods, and the severity of RDII (R(RDII)) were calculated using either flow measurements or marker concentrations independently. Corresponding to its outstanding flux stability, R(RDII) values estimated by TN predicted all severe RDII instances and gave the highest and most consistent correlation (r = 0.74-0.78) among the different sewage markers. Overall, the study illustrated the feasibility of using the flux stability of sewage markers in assessing the severity of RDII and thereby deterioration levels in sewer systems.

  3. A global satellite assisted precipitation climatology

    USGS Publications Warehouse

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  4. A global satellite-assisted precipitation climatology

    NASA Astrophysics Data System (ADS)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  5. New dynamic NNORSY ozone profile climatology

    NASA Astrophysics Data System (ADS)

    Kaifel, A. K.; Felder, M.; Declercq, C.; Lambert, J.-C.

    2012-01-01

    Climatological ozone profile data are widely used as a-priori information for total ozone using DOAS type retrievals as well as for ozone profile retrieval using optimal estimation, for data assimilation or evaluation of 3-D chemistry-transport models and a lot of other applications in atmospheric sciences and remote sensing. For most applications it is important that the climatology represents not only long term mean values but also the links between ozone and dynamic input parameters. These dynamic input parameters should be easily accessible from auxiliary datasets or easily measureable, and obviously should have a high correlation with ozone. For ozone profile these parameters are mainly total ozone column and temperature profile data. This was the outcome of a user consultation carried out in the framework of developing a new, dynamic ozone profile climatology. The new ozone profile climatology is based on the Neural Network Ozone Retrieval System (NNORSY) widely used for ozone profile retrieval from UV and IR satellite sounder data. NNORSY allows implicit modelling of any non-linear correspondence between input parameters (predictors) and ozone profile target vector. This paper presents the approach, setup and validation of a new family of ozone profile climatologies with static as well as dynamic input parameters (total ozone and temperature profile). The neural network training relies on ozone profile measurement data of well known quality provided by ground based (ozonesondes) and satellite based (SAGE II, HALOE, and POAM-III) measurements over the years 1995-2007. In total, four different combinations (modes) for input parameters (date, geolocation, total ozone column and temperature profile) are available. The geophysical validation spans from pole to pole using independent ozonesonde, lidar and satellite data (ACE-FTS, AURA-MLS) for individual and time series comparisons as well as for analysing the vertical and meridian structure of different modes of

  6. The Adaptive Ecosystem Climatology (AEC): Implementation

    NASA Astrophysics Data System (ADS)

    Penta, B.; deRada, S.; Grüss, A.; Gould, R. W., Jr.; McCarthy, S.

    2016-02-01

    Ecological forecasting used in decision-making for conservation and resource management frequently relies upon climatologies, remote sensing observations, or models. Each of these elements has inherent limitations and errors. The Adaptive Ecosystem Climatology (AEC) is a flexible, on-line tool for ecoforecasting applications; it melds in-situ observations, satellite data, and output from a state-of-the-art, data assimilative, coupled bio-optical-physical ocean model system. AEC mitigates the shortcomings of these individual components and combines their strengths to enhance decision-making tools for conservation and natural resource management. The system is implemented on the NOAA Ocean NOMADS web portal. Visualization and analysis tools are available on this portal, climatologies can be displayed, and data files can be downloaded, for direct input into external management models (such as ecosystem, oil trajectory, or fisheries models) and other ecoforecasting applications. Ocean properties available from the coupled model and satellite imagery include primary ecosystem components (temperature, salinity, sea surface height, currents, plankton, and chlorophyll). We have built a three-dimensional, dynamically balanced, gridded, static climatology for each calendar day, employing data for the period 1980-2012. Using the static climatology as a background `first guess', recent observations (satellite or in situ) are assimilated to adjust the climatology toward current conditions, to provide updated, representative fields (adaptive climatology). AEC can be used to examine mean conditions, to analyze available observations, or as input and boundary conditions to many types of models (conceptual, statistical, water-quality, biogeochemical, production, mass-balance energy flow models, individual-based, and multispecies models with explicit species interaction terms, sophisticated end-to-end models, etc.). We demonstrate the utility of AEC using an individual

  7. Seasonal export fluxes of size-fractionated particulate derived from polonium-210: A case study in Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Yang, Weifeng; Huang, Yipu; Chen, Min; Qiu, Yusheng

    2010-03-01

    Size-fractionated 210Po and 210Pb, in the size fractions >0.4 μm, >2 μm and >10 μm, were examined to determine the seasonal variability of particulate fluxes in Xiamen Bay. Good correlations between 210Po and particulate organic carbon (POC) or non-Particulate Organic Matter (nPOM) suggested that 210Po can be used to trace the export fluxes of POC and nPOM. Both steady-state (SS) model and nSS model were used to evaluate fluxes of size-fractionated 210Po, results showed that nSS model was better than the SS model in coastal areas. Based on the nSS model, size-fractionated POC fluxes decreased with increasing particle size. For the particle size studied, maximum POC fluxes occurred in autumn, followed by spring, winter, and summer. Fluxes of nPOM were an order of magnitude higher than the corresponding size-fractionated POC fluxes. Differences between size-fractionated nPOM fluxes indicated that hydrodynamic conditions were the main factor regulating transportation of particulate out of the inner Bay. In winter most particulates, including >10 μm particles, were transported under the strongest hydrodynamic conditions. In contrast, only a fraction of the <2 μm particulates were transported from the inner Bay in spring. This study suggested that 210Po is a powerful tracer of seasonal particulate export in coastal seas.

  8. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    Treesearch

    Jingfeng Xiao; Qianlai Zhuang; Beverly E. Law; Jiquan Chen; Dennis D. Baldocchi; David R. Cook; Ram Oren; Andrew D. Richardson; Sonia Wharton; Siyan Ma; Tomothy A. Martin; Shashi B. Verma; Andrew E. Suyker; Russel L. Scott; Russel K. Monson; Marcy Litvak; David Y. Hollinger; Ge Sun; Kenneth J. Davis; Paul V. Bolstad; Sean P. Burns; Peter S. Curtis; BErt G. Drake; Matthias Falk; MArc L. Fischer; David R. Foster; Lianhong Gu; Julian L. Hadley; Gabriel G. Katul; Roser Matamala; Steve McNulty; Tilden P. Meyers; J. William Munger; Asko Noormets; Walter C. Oechel; Kyaw Tha U Paw; Hans Peter Schmid; Gregory Starr; Margaret S. Torn; Steven C. Wofsy

    2010-01-01

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales....

  9. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  10. Nimbus-7 global cloud climatology. II - First year results

    NASA Technical Reports Server (NTRS)

    Stowe, Larry L.; Yeh, H. Y. Michael; Wellemeyer, Charlie G.; Eck, Thomas F.; Kyle, H. Lee

    1989-01-01

    Results are presented on the analysis of the Nimbus-7 satellite data set obtained on regional and seasonal variations in global cloud cover. Four midseason months (April, July, and October 1979 and January 1980) were analyzed for the total cloud amount, the cloud amounts at high, middle, and low altitudes, the cirrus and deep convective clouds, and the cloud and clear-sky 11.5 micron-derived radiances; in addition, noon versus midnight cloud amounts were examined. The Nimbus-7 data are compared with three previously published cloud climatologies, and the differences among these data sets are discussed.

  11. [EFfect of quinazolone-alkyl-carboxylic acid derivatives on the transmembrane Ca2+ ion flux mediated by AMPA receptors].

    PubMed

    Szárics, Eva; LaszTóczi, Bálint; Nyikos, Lajos; Barabás, Péter; Kovács, Ilona; Skuban, Nina; Nagy, Péter I; Kökösi, József; Takácsné, Novák Krisztina; Kardos, Julianna

    2002-01-01

    The excitatory neurotransmitter, Glu, plays a crucial role in many sensory and motor functions as well as in brain development, learning and memory and it is also involved in the pathogenesis of a number of neurological disorders, including epilepsy, Alzheimer's and Parkinson's diseases. Therefore, the study of Glu receptors (GluRs) is of therapeutical importance. We showed here by fluorescence monitoring of transmembrane Ca2+ ion fluxes in response to (S)-alpha-amino-3-hidroxi-5-metil-4-izoxazol propionic acid ((S)-AMPA) on the time scale of 0.00004-10 s that Ca2+ ion influx proceeds through faster and slower desensitizing receptors. Pharmacological isolation of the slower and faster desensitizing AMPA receptor was possible by fluorescence monitoring of Ca2+ ion translocation in response to (S)-AMPA in the presence and absence of various 2-methyl-4-oxo-3H-quinazoline-3-alkyl-carboxilic acid derivatives (Qxs): the acetic acid Q1 inhibits the slower desensitizing receptor response specifically, while the acetyl-piperidine Q5 is a more potent inhibitor of the faster desensitizing receptor response. In addition, spontaneous interictal activity, as induced by high [K+] conditions in hippocampal slices, was reduced significantly by Q5, suggesting a possible anticonvulsant property of Q5. Substitutions of Qxs into the GluR2 S1S2 binding core were consistent with their effect by causing variable degree of S1S2 bridging interaction as one of the main determinants of AMPA receptor agonist activity. The exploitation of differences between similar receptors will be important in the development and use of drugs with high pharmacological specificity.

  12. Concentration and vertical flux of Fukushima-derived radiocesium in sinking particles from two sites in the Northwestern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Honda, M. C.; Kawakami, H.; Watanabe, S.; Saino, T.

    2013-06-01

    At two stations in the western North Pacific, K2 in the subarctic gyre and S1 in the subtropical gyre, time-series sediment traps were collecting sinking particles when the Fukushima Daiichi Nuclear Power Plant (FNPP1) accident occurred on 11 March 2011. Radiocesium (134Cs and 137Cs) derived from the FNPP1 accident was detected in sinking particles collected at 500 m in late March 2011 and at 4810 m in early April 2011 at both stations. The sinking velocity of 134Cs and 137Cs was estimated to be 22 to 71 m day-1 between the surface and 500 m and >180 m day-1 between 500 m and 4810 m. 137Cs concentrations varied from 0.14 to 0.25 Bq g-1 dry weight. These values are higher than those of surface seawater, suspended particles, and zooplankton collected in April 2011. Although the radiocesium may have been adsorbed onto or incorporated into clay minerals, correlations between 134Cs and lithogenic material were not always significant; therefore, the form of the cesium associated with the sinking particles is still an open question. The total 137Cs inventory by late June at K2 and by late July at S1 was 0.5 to 1.7 Bq m-2 at both depths. Compared with 137Cs input from both stations by April 2011, estimated from the surface 137Cs concentration and mixed-layer depth and by assuming that the observed 137Cs flux was constant throughout the year, the estimated removal rate of 137Cs from the upper layer (residence time in the upper layer) was 0.3 to 1.5% yr-1 (68 to 312 yr). The estimated removal rates and residence times are comparable to previously reported values after the Chernobyl accident (removal rate: 0.2-1%, residence time: 130-390 yr).

  13. Chesapeake Bay nitrogen fluxes derived from a land-estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets.

    PubMed

    Feng, Yang; Friedrichs, Marjorie A M; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E; Wiggert, Jerry D; Hood, Raleigh R

    2015-08-01

    The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within-estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite-derived data, and a simulation using environmental conditions for 2001-2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 10(9) g N yr(-1)) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 10(9) g N yr(-1)) and buried (46 × 10(9) g N yr(-1)) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 10(9) g N yr(-1)) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50-60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf.

  14. Chesapeake Bay nitrogen fluxes derived from a land‐estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

    PubMed Central

    Friedrichs, Marjorie A. M.; Wilkin, John; Tian, Hanqin; Yang, Qichun; Hofmann, Eileen E.; Wiggert, Jerry D.; Hood, Raleigh R.

    2015-01-01

    Abstract The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land‐estuarine‐ocean biogeochemical modeling system is developed to quantify Chesapeake riverine nitrogen inputs, within‐estuary nitrogen transformation processes and the ultimate export of nitrogen to the coastal ocean. Model skill was evaluated using extensive in situ and satellite‐derived data, and a simulation using environmental conditions for 2001–2005 was conducted to quantify the Chesapeake Bay nitrogen budget. The 5 year simulation was characterized by large riverine inputs of nitrogen (154 × 109 g N yr−1) split roughly 60:40 between inorganic:organic components. Much of this was denitrified (34 × 109 g N yr−1) and buried (46 × 109 g N yr−1) within the estuarine system. A positive net annual ecosystem production for the bay further contributed to a large advective export of organic nitrogen to the shelf (91 × 109 g N yr−1) and negligible inorganic nitrogen export. Interannual variability was strong, particularly for the riverine nitrogen fluxes. In years with higher than average riverine nitrogen inputs, most of this excess nitrogen (50–60%) was exported from the bay as organic nitrogen, with the remaining split between burial, denitrification, and inorganic export to the coastal ocean. In comparison to previous simulations using generic shelf biogeochemical model formulations inside the estuary, the estuarine biogeochemical model described here produced more realistic and significantly greater exports of organic nitrogen and lower exports of inorganic nitrogen to the shelf. PMID:27668137

  15. The Climatology of Australian Aerosol

    NASA Astrophysics Data System (ADS)

    Mitchell, Ross M.; Forgan, Bruce W.; Campbell, Susan K.

    2017-04-01

    Airborne particles or aerosols have long been recognised for their major contribution to uncertainty in climate change. In addition, aerosol amounts must be known for accurate atmospheric correction of remotely sensed images, and are required to accurately gauge the available solar resource. However, despite great advances in surface networks and satellite retrievals over recent years, long-term continental-scale aerosol data sets are lacking. Here we present an aerosol assessment over Australia based on combined sun photometer measurements from the Bureau of Meteorology Radiation Network and CSIRO/AeroSpan. The measurements are continental in coverage, comprising 22 stations, and generally decadal in timescale, totalling 207 station-years. Monthly climatologies are given at all stations. Spectral decomposition shows that the time series can be represented as a weighted sum of sinusoids with periods of 12, 6 and 4 months, corresponding to the annual cycle and its second and third harmonics. Their relative amplitudes and phase relationships lead to sawtooth-like waveforms sharply rising to an austral spring peak, with a slower decline often including a secondary peak during the summer. The amplitude and phase of these periodic components show significant regional change across the continent. Fits based on this harmonic analysis are used to separate the periodic and episodic components of the aerosol time series. An exploratory classification of the aerosol types is undertaken based on (a) the relative periodic amplitudes of the Ångström exponent and aerosol optical depth, (b) the relative amplitudes of the 6- and 4-month harmonic components of the aerosol optical depth, and (c) the ratio of episodic to periodic variation in aerosol optical depth. It is shown that Australian aerosol can be broadly grouped into three classes: tropical, arid and temperate. Statistically significant decadal trends are found at 4 of the 22 stations. Despite the apparently small

  16. Export Fluxes in Contrasting Environments of the South-East Pacific Ocean Derived From Drifting Sediment traps (BIOSOPE)

    NASA Astrophysics Data System (ADS)

    Miquel, J.; Gasser, B.; Claustre, H.

    2006-12-01

    The South-East Pacific presents contrasting oceanographic environments related to different oceanographic features such as High Nutrient Low Chlorophyl (HNLC) zones, upwelling of eastern boundaries or ultra- oligotrophy of the central gyre. This results in significant differences in particle production in surface waters and export to the deeper ocean. During the BIOSOPE (BIogeochemistry and Optics SOuth Pacific Experiment) cruise held in October-December 2004, particle flux in upper waters was assessed using drifting sediment traps. Traps were deployed at 2 depths (below the maximum chl.a and at the base of the euphotic layer) in six geographical areas, ranging from the oligotrophic central gyre through the mesotrophic area off Marquesas Islands to the eutrophic waters off the South-American coast. For all analyzed parameters fluxes were contrastingly different at the various sites, with lowest fluxes at the central gyre area and highest fluxes at the upwelling sites. Mass flux ranged from 2-7 mg m-2 d-1 to 410-630 mg m-2 d-1, POC flux from less than 1 mg POC m-2 d-1 up to 63 mg POC m^{- 2} d-1, and Th-234 from 35-47 dpm m-2 d-1 to >5000 dpm m-2 d-1. Fluxes were always lower at the deeper horizon except for Th-234 flux which was variable. Also, fluxes were very different at the two upwelling sites studied. The relation between the environmental and trophic characteristics of the sites visited and the two orders of magnitude in fluxes observed is discussed.

  17. Satellite-derived surface characterization and surface fluxes across the Southern Great Plains Cloud and Radiation Testbed Site.

    SciTech Connect

    Gao, W.; Coulter, R. L.; Lesht, B. M.; Qiu, J.; Wesely, M. L.; Environmental Research

    1996-01-01

    Atmospheric processes in the lower boundary layer are strongly modulated by energy and mass fluxes from and to the underlying surface. The atmosphere-surface interactions usually occur at small temporal (seconds to minutes) and spatial (centimeters to meters) scales, which causes difficulties with including surface processes in atmospheric models, which can only handle much larger scales (kilometers). Developing schemes to characterize spatial variabilities in surface fluxes over heterogeneous surfaces for a regionally representative surface flux that can be correctly used in atmospheric models becomes an important issue. The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) has an outline area of 350 x 450 km, across which land surface type, topography, vegetation, and soil conditions vary widely (Gao 1994). Surface flux measurements at a limited number of surface stations, including surface latent and sensible heat fluxes, net radiation, and soil heat flux by energy balance Bowen ratio (EBBR) stations, heat and momentum fluxes by eddy correlation stations, and upwelling radiation flux by surface radiation stations, are influenced by local surface conditions surrounding the stations and thus may not be able to provide fluxes representative of the entire CART site. Use of these data to represent the entire CART site in modeling studies and in comparing with large-scale satellite observations could lead to significant uncertainties. This study uses high-resolution ({approx}1 km) remote sensing by National Oceanic and Atmospheric Administration (NOAA) polar-orbiting environmental satellites to characterize spatial and temporal variations in land surface conditions and then to develop methods for estimating spatial variations and CART-representative values of surface fluxes.

  18. First look at the NOAA Aircraft-based Tropospheric Ozone Climatology

    NASA Astrophysics Data System (ADS)

    Leonard, M.; Petropavlovskikh, I. V.; McClure-Begley, A.; Lin, M.; Tarasick, D.; Johnson, B. J.; Oltmans, S. J.

    2015-12-01

    The Global Greenhouse Gas Reference Network's aircraft program has operated since the 1990s as part of the NOAA Global Monitoring Division network to capture spatial and temporal variability in greenhouse tracers (i.e. CO2, CO, N2O, methane, SF6, halo- and hydro-carbons). Since 2005 the suite of airborne measurements also includes ozone, humidity and temperature profiling through the troposphere (up to 8 km). Light commercial aircraft are equipped with modified 2B Technology ozone monitors (Model 205DB), incorporate temperature and humidity probes, and include global positioning system instrumentation. The dataset was analyzed for tropospheric ozone variability at five continental US stations. As site locations within the Tropospheric Aircraft Ozone Measurement Program have flights only once (four times at one site) a month and begun a decade ago, this raises the question of whether this sampling frequency allows the derivation of an accurate vertical climatology of ozone values. We interpret the representativeness of the vertical and seasonal ozone distribution from aircraft measurements using multi-decadal hindcast simulations conducted with the GFDL AM3 chemistry-climate model. When available, climatology derived from co-located ozone-sonde data will be used for comparisons. The results of the comparisons are analyzed to establish altitude ranges in the troposphere where the aircraft climatology would be deemed to be the most representative. Aircraft-based climatologies are tested from two approaches: comparing the aircraft-based climatology to the daily sampled model and to the subset of model data with matching aircraft dates. Whenever the model and aircraft climatologies show significant seasonal differences, further information is gathered from a seasonal Gaussian distribution plot. We will report on the minimum frequency in flights that can provide adequate climatological representation of seasonal and vertical variability in tropospheric ozone.

  19. Gridded Croatian climatology for 1961-1990

    NASA Astrophysics Data System (ADS)

    Perčec Tadić, Melita

    2010-10-01

    In climatology, one of the most important pieces of information about the climate of a place or a region is information about the Climatological Normals (CLINO)—the average values of meteorological elements for a 30-year period. This kind of information usually comes in tables and is available for different observation sites from national meteorological services or from World Meteorological Organisation publications. The key issue, then, becomes how to interpolate these values over the entire area of interest to get reliable and accurate estimates (maps) of climatic elements. Here, the regression kriging framework has been applied for mapping of 20 climatological parameters for the 1961-1990 period for the 56,594 km2 of Croatian territory, with a resolution of 1 km. In total, 152 main and climatological and 567 precipitation-measuring stations have been used in the analysis. Extensive pre-processing of metadata on station co-ordinates has been done, as well as completion of missing monthly averages. The final results are 20 climatological maps available in high resolution together with error maps and accuracy assessment measures.

  20. Building advanced climatology of short-wave solar radiation over the global oceans using a new parameterization of short wave radiation

    NASA Astrophysics Data System (ADS)

    Aleksandrova, M.; Sinitsyn, A.; Gulev, S. K.

    2011-12-01

    Short-wave (SW) radiation is one of the key air-sea flux components playing an important role in on the ocean heat balance. Global climatologies of SW radiation are now available from different satellite missions and reanalyses. However, satellite based products cover only the last few decades and in reanalyses SW radiation appears to be one of the most inaccurate diagnostic variables. An alternative way to produce long-term time series of SW radiation is to use Voluntary Observing Ship (VOS) data and bulk parameterizations of SW radiation. Nevertheless, during the last years there was a little of effort to improve existing parameterizations of SW radiation which are typically based on the radiative flux dependencies on the total cloud cover and solar altitude. We make use a full collection of VOS data from the International Comprehensive Data Set (ICOADS) and a new parameterization of SW radiation developed at the Sea Atmosphere Interaction And Climate Laboratory of P.P.Shirshov Institute of Oceanology (SAIL) to produce a new generation global gridded data set for SW radiation for the period 1900-2008. The major feature of the SAIL parameterization is the use of the information about cloud types along with the routine information about total cloud cover. This approach allows for derivation of different dependencies of the atmospheric transmission functions onto cloud amount for different types of clouds. Relationships parameterizing these dependencies were developed using 4 years of highly accurate in-situ measurements in the Atlantic. This approach results in a critical improvement of the results for the situations close to complete overcast (6-8 oktas)..Using new parameterization and special approaches to avoid inhomogeneous sampling effect we developed a global monthly climatology of SW radiative fluxes over the global ocean at a 2-degree resolution. Special attention has been paid to the homogenization of fields in the Southern Ocean characterized by extremely

  1. An EOF Iteration Approach for Obtaining Homogeneous Radiative Fluxes from Satellites Observations

    NASA Technical Reports Server (NTRS)

    Zhang, Banglin; Pinker, Rachel T.; Stackhouse, Paul W., Jr.

    2007-01-01

    Conventional observations of climate parameters are sparse in space and/or in time and the representativeness of such information needs to be optimized. Observations from satellites provide improved spatial coverage than point observations however they pose new challenges for obtaining homogeneous coverage. Surface radiative fluxes, the forcing functions of the hydrologic cycle and biogeophysical processes, are now becoming available from global scale satellite observations. They are derived from independent satellite platforms and sensors that differ in temporal and spatial resolution and in the size of the footprint from which information is derived. Data gaps, degraded spatial resolution near boundaries of geostationary satellites, and different viewing geometries in areas of satellite overlap, could result in biased estimates of radiative fluxes. In this study, discussed will be issues related to the sources of inhomogeneity in surface radiative fluxes as derived from satellites; development of an approach to obtain homogeneous data sets; and application of the methodology to the widely used International Satellite Cloud Climatology Project (ISCCP) data that currently serve as a source of information for deriving estimates of surface and top of the atmosphere radiative fluxes. Introduced is an Empirical Orthogonal Function (EOF) iteration scheme for homogenizing the fluxes. The scheme is evaluated in several ways including comparison of the inferred radiative fluxes against ground observations, both before and after the EOF approach is applied. On the average, the latter reduces the rms error by about 2-3 W/m2.

  2. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    stimulate further research on this critical subject. The study of climate involves much more than understanding atmospheric processes. This subtlety is particularly appreciated for Earth, where chemical cycles, geology, ocean influences, and biology are considered in most climate models. In Part IV, Surface and Interior, we look at the role that geochemical cycles, volcanism, and interior mantle processes play in the stability and evolution of terrestrial planetary climates. There is one vital commonality between the climates of all the planets of the solar system: Regardless of the different processes that dominate each of the climates of Earth, Mars, Venus, and Titan, they are all ultimately forced by radiation from the same star, albeit at variable distances. In Part V, Solar Influences, we discuss how the Sun's early evolution affected the climates of the terrestrial planets, and how it continues to control the temperatures and compositions of planetary atmospheres. This will be of particular interest as models of exoplanets, and the influences of much different stellar types and distances, are advanced by further observations. Comparisons of atmospheric and climate processes between the planets in our solar system has been a focus of numerous conferences over the past decade, including the Exoclimes conference series. In particular, this book project was closely tied to a conference on Comparative Climatology of Terrestrial Planets that was held in Boulder, Colorado, on June 25-28, 2012. This book benefited from the opportunity for the author teams to interact and obtain feedback from the broader community, but the chapters do not in general tie directly to presentations at the conference. The conference, which was organized by a diverse group of atmospheric and climate scientists led by Mark Bullock and Lori Glaze, sought to build connections between the various communities, focusing on synergies and complementary capabilities. Discussion panels at the end of most

  3. Variable SO2 emission rates for Anatahan volcano, the Commonwealth of the Northern Mariana Islands: Implications for deriving arc-wide volatile fluxes from erupting volcanoes

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Fischer, T. P.; McGonigle, A. J. S.; de Moor, J. M.

    2007-07-01

    We report new spectroscopic-derived SO2 emission rates for Anatahan volcano, Mariana Islands. Measurements of SO2 fluxes reveal large fluctuations over the 2003-2005 period - from 78 kg s-1 which occurred on the same day as resurgent volcanic activity (March, 2005) to 50 kg s-1 and 25 kg s-1 made days/weeks after the start of eruptive sequences in 2003 and 2004 respectively. Even the lowest values make Anatahan a major global source of SO2 over the past decade. These SO2 emission rates are used to estimate the CO2 flux from the arc as a whole (=3.6 - 40 × 107 mol km-1 yr-1). Such values are significantly higher than estimates derived using other approaches: they are also high compared to other convergent margins (e.g., Central America) where the input flux of CO2 is substantially greater. Our results caution against including volatile fluxes from actively-degassing volcanoes to produce volatile outputs considered representative of entire arc fronts.

  4. Arctic regional methane fluxes by ecotope as derived using eddy covariance from a low-flying aircraft

    NASA Astrophysics Data System (ADS)

    Sayres, David S.; Dobosy, Ronald; Healy, Claire; Dumas, Edward; Kochendorfer, John; Munster, Jason; Wilkerson, Jordan; Baker, Bruce; Anderson, James G.

    2017-07-01

    The Arctic terrestrial and sub-sea permafrost region contains approximately 30 % of the global carbon stock, and therefore understanding Arctic methane emissions and how they might change with a changing climate is important for quantifying the global methane budget and understanding its growth in the atmosphere. Here we present measurements from a new in situ flux observation system designed for use on a small, low-flying aircraft that was deployed over the North Slope of Alaska during August 2013. The system combines a small methane instrument based on integrated cavity output spectroscopy (ICOS) with an air turbulence probe to calculate methane fluxes based on eddy covariance. We group surface fluxes by land class using a map based on LandSat Thematic Mapper (TM) data with 30 m resolution. We find that wet sedge areas dominate the methane fluxes with a mean flux of 2.1 µg m-2 s-1 during the first part of August. Methane emissions from the Sagavanirktok River have the second highest at almost 1 µg m-2 s-1. During the second half of August, after soil temperatures had cooled by 7 °C, methane emissions fell to between 0 and 0.5 µg m-2 s-1 for all areas measured. We compare the aircraft measurements with an eddy covariance flux tower located in a wet sedge area and show that the two measurements agree quantitatively when the footprints of both overlap. However, fluxes from sedge vary at times by a factor of 2 or more even within a few kilometers of the tower demonstrating the importance of making regional measurements to map out methane emissions spatial heterogeneity. Aircraft measurements of surface flux can play an important role in bridging the gap between ground-based measurements and regional measurements from remote sensing instruments and models.

  5. A comparison of methods for deriving solute flux rates using long-term data from streams in the mirror lake watershed

    USGS Publications Warehouse

    Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.

    1998-01-01

    Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.

  6. High-resolution (30 m), annual (1986 - 2010) carbon stocks and fluxes for southeastern US forests derived from remote sensing, inventory data, and a carbon cycle model

    NASA Astrophysics Data System (ADS)

    Gu, H.; Zhou, Y.; Williams, C. A.

    2016-12-01

    Disturbance events are highly heterogeneous in space and time, impacting forest carbon dynamics and challenging the quantification and reporting of carbon stocks and flux. This study documents annual carbon stocks and fluxes from 1986 and 2010 mapped at 30-m resolution across southeastern US forests, characterizing how they respond to disturbances and ensuing regrowth. Forest inventory data (FIA) are used to parameterize a carbon cycle model (CASA) to represent post-disturbance carbon trajectories of carbon pools and fluxes for harvest, fire and bark beetle disturbances of varying severity and across forest types and site productivity settings. Time since disturbance at 30 meters is inferred from two remote-sensing data sources: disturbance year (NAFD, MTBS and ADS) and biomass (NBCD 2000) intersected with inventory-derived curves of biomass accumulation with stand age. All of these elements are combined to map carbon stocks and fluxes at a 30-m resolution for the year 2010, and to march backward in time for continuous, annual reporting. Results include maps of annual carbon stocks and fluxes for forests of the southeastern US, and analysis of spatio-temporal patterns of carbon sources/sinks at local and regional scales.

  7. Comparative climatology of four marine stratocumulus regimes

    NASA Technical Reports Server (NTRS)

    Hanson, Howard P.

    1990-01-01

    The climatology of marine stratocumulus (MSc) cloud regimes off the west coasts of California, Peru, Morocco, and Angola are examined. Long-term, annual averages are presented for several quantities of interest in the four MSc regimes. The climatologies were constructed using the Comprehensive Ocean-Atmosphere Data Set (COADS). A 40 year time series of observations was extracted for 32 x 32 deg analysis domains. The data were taken from the monthly-averaged, 2 deg product. The resolution of the analysis is therefore limited to scales of greater than 200 km with submonthly variability not resolved. The averages of total cloud cover, sea surface temperature, and surface pressure are presented.

  8. Moisture Fluxes Derived from EOS Aqua Satellite Data for the North Water Polynya Over 2003-2009

    NASA Technical Reports Server (NTRS)

    Boisvert, Linette N.; Markus, Thorsten; Parkinson, Claire L.; Vihma, Timo

    2012-01-01

    Satellite data were applied to calculate the moisture flux from the North Water polynya during a series of events spanning 2003-2009. The fluxes were calculated using bulk aerodynamic formulas with the stability effects according to the Monin-Obukhov similarity theory. Input parameters were taken from three sources: air relative humidity, air temperature, and surface temperature from the Atmospheric Infrared Sounder (AIRS) onboard NASA's Earth Observing System (EOS) Aqua satellite, sea ice concentration from the Advanced Microwave Scanning Radiometer (AMSR-E, also onboard Aqua), and wind speed from the ECMWF ERA-Interim reanalysis. Our results show the progression of the moisture fluxes from the polynya during each event, as well as their atmospheric effects after the polynya has closed up. These results were compared to results from studies on other polynyas, and fall within one standard deviation of the moisture flux estimates from these studies. Although the estimated moisture fluxes over the entire study region from AIRS are smaller in magnitude than ERA-Interim, they are more accurate due to improved temperature and relative humidity profiles and ice concentration estimates over the polynya. Error estimates were calculated to be 5.56 x10(exp -3) g/sq. m/ s, only 25% of the total moisture flux, thus suggesting that AIRS and AMSR-E can be used with confidence to study smaller scale features in the Arctic sea ice pack and can capture their atmospheric effects. These findings bode well for larger-scale studies of moisture fluxes over the entire Arctic Ocean and the thinning ice pack.

  9. A bottom-up approach to derive the closure relation for modelling hydrological fluxes at the watershed scale

    NASA Astrophysics Data System (ADS)

    Vannametee, Ekkamol; Karssenberg, Derek; Hendriks, Martin; Bierkens, Marc

    2014-05-01

    Physically-based hydrological modelling could be considered as an ideal approach for predictions in ungauged basins because observable catchment characteristics can be used to parameterize the model, avoiding model calibration using discharge data, which are not available. Lumped physically-based modelling at the watershed scale is possible with the Representative Elementary Watershed (REW) approach. A key to successful application of this approach is to find a reliable way of developing closure relations to calculate fluxes from different hydrological compartments in the REWs. Here, we present a bottom-up approach as a generic framework to identify the closure relations for particular hydrological processes that are scale-independent and can be directly parameterized using the local-scale observable REW characteristics. The approach is illustrated using the Hortonian runoff as an example. This approach starts from developing a physically-based high-resolution model describing the Hortonian runoff mechanism based on physically-based infiltration theory and runoff generation processes at a local scale. This physically-based model is used to generate a synthetic discharge data set of hypothetical rainfall events and HRUs (6×105 scenarios) as a surrogate for real-world observations. The Hortonian runoff closure relation is developed as a lumped process-based model, consisting of the Green-Ampt equation, a time-lagged linear reservoir model, and three scale-transfer parameters representing the processes within REWs. These scale-transfer parameters are identified by calibrating the closure relations against the synthetic discharge data set for each scenario run, which are, in turn, empirically related to their corresponding observable REW properties and rainstorm characteristics. This results in a parameter library, which allows direct estimation of scaling parameter for arbitrary REWs based on their local-scale observable properties and rainfall characteristics

  10. A model of the tropical Pacific sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  11. A model of the tropical Pacific sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  12. Black Sea Mixed Layer Sensitivity to Various Wind and Thermal Forcing Products on Climatological Time Scales

    DTIC Science & Technology

    2005-06-08

    of the Black Sea, used a monthly mean Ezer 1999; Townsend et al. 2000; Metzger 2003; Lee et heat flux climatology (Efimov and Timofeev 1990), al...94) Altman and Kumish (1986) Staiieva and Stanev (1998) Efiniov and Timofeev (1990) Stanev (1990) Simonov and Altman (1991) Golubev and Kuftarkov...Altman ct al. 1987: Efimov and Timofeev 1990) operational model upgrades. The reanalyses from 5270 JOURNAL OF CLIMATE VOtLUME 18 TABLE 2

  13. Mesoscale distributions of ultraviolet spectral irradiance, actinic flux, and photolysis rates derived from multispectral satellite data and radiative transfer models

    NASA Astrophysics Data System (ADS)

    Wetzel, Melanie A.; Slusser, James R.

    2005-04-01

    Global atmospheric trends in ozone column amount have focused attention on the environmental risk of exposure to ultraviolet (UV) radiation. Monitoring UV irradiance in diverse and remote locations is necessary to understand the variability of exposure, dose rates, and resultant vulnerability of ecological systems. The U.S. Department of Agriculture (USDA) UV-B Monitoring Program maintains a wide network for ground-based continuous measurement of solar radiation in several wavelengths of interest for photosynthesis, plant growth, UV exposure to humans, and photochemistry. This network provides data for analysis of UV climatology and trends at those sites. A satellite-based method to produce mesoscale-resolution mapped distributions of UV spectral irradiance has been developed that utilizes this network data for verification. The methodology combines radiative transfer modeling, multispectral image pixel classification, cloud optical depth retrievals, and auxiliary remote sensing data. Retrieved parameters are compared with ground-based measurements from the USDA network instrumentation at two sites [Poker Flat Research Range, Alaska; 65.12 deg N, 147.43 deg W, 550 m mean sea level (MSL); and Storm Peak Laboratory, Colorado, 40.45 deg N, 106.73 deg W, 3220 m MSL]. The results are used to evaluate the effects of cloud distribution and surface albedo in determining mesoscale variability of UV exposure and photolysis rates in high-latitude and high-altitude environments.

  14. Hanford Site Climatological Data Summary 1999 with Historical Data

    SciTech Connect

    Hoitink, Dana J.; Burk, Kenneth W.; Ramsdell, James V.

    2000-05-11

    This document presents the climatological data measured at the Hanford Site for claendar year 1999. The information contained includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitaion and other meteorological parameters.

  15. Statistical survey of nighttime midlatitude magnetic fluctuations: Their source location and Poynting flux as derived from the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Park, Jaeheung; Lühr, Hermann; Stolle, Claudia; Rodriguez-Zuluaga, Juan; Knudsen, David J.; Burchill, Johnathan K.; Kwak, Young-Sil

    2016-11-01

    This is the first statistical survey of field fluctuations related with medium-scale traveling ionospheric disturbances (MSTIDs), which considers magnetic field, electric field, and plasma density variations at the same time. Midlatitude electric fluctuations (MEFs) and midlatitude magnetic fluctuations (MMFs) observed in the nighttime topside ionosphere have generally been attributed to MSTIDs. Although the topic has been studied for several decades, statistical studies of the Poynting flux related with MEF/MMF/MSTID have not yet been conducted. In this study we make use of electric/magnetic field and plasma density observations by the European Space Agency's Swarm constellation to address the statistical behavior of the Poynting flux. We have found that (1) the Poynting flux is directed mainly from the summer to winter hemisphere, (2) its magnitude is larger before midnight than thereafter, and (3) the magnitude is not well correlated with fluctuation level of in situ plasma density. These results are discussed in the context of previous studies.

  16. A Fog Climatology for Cape Town International Airport

    NASA Astrophysics Data System (ADS)

    van Schalkwyk, L.; Dyson, L. L.

    2010-07-01

    Cape Town International Airport (CTIA) is situated off the cold Benguela current on the extreme southern side of the west coast of South Africa and experiences fog more frequently than any other international airport in South Africa. The aim of this research is ultimately to improve fog forecasts and to determine the characteristics of fog at CTIA by means of a comprehensive fog climatology. A fog climatology is derived making use of 06:00Z observations over a period of 31 years (1978-2008). The fog season for CTIA is observed to start in March and persists till August, while May is found to be the month with the highest frequency of fog events. Analysis of advection and radiation fog events shows that the occurrence of advection fog events dominate during the earlier part of the fog season, whilst radiation fog occurrences increase towards the latter part. Advection fog events at CTIA have been shown to occur frequently from a northwesterly and a southerly wind direction, but monthly wind roses for CTIA at 06:00Z show that a northeasterly wind (land breeze) is dominant during advection events in July and August. This suggests a third type of fog event, namely advected radiation fog, which accounts for fog that forms due to radiative processes to the east and northeast of the aerodrome, where after it is advected towards the airport when the land breeze is at its strongest prior to sunrise. The climatology is supplemented by an analysis of hourly data which are available for the limited period of 2004-2007. With the aid of hourly data, more accurate estimations of the average time of onset and dissipation of fog are determined as well as duration time: information critical to the aviation forecaster.

  17. On the climatological probability of the vertical propagation of stationary planetary waves

    NASA Astrophysics Data System (ADS)

    Karami, Khalil; Braesicke, Peter; Sinnhuber, Miriam; Versick, Stefan

    2016-07-01

    We introduce a diagnostic tool to assess a climatological framework of the optimal propagation conditions for stationary planetary waves. Analyzing 50 winters using NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research) reanalysis data we derive probability density functions (PDFs) of positive vertical wave number as a function of zonal and meridional wave numbers. We contrast this quantity with classical climatological means of the vertical wave number. Introducing a membership value function (MVF) based on fuzzy logic, we objectively generate a modified set of PDFs (mPDFs) and demonstrate their superior performance compared to the climatological mean of vertical wave number and the original PDFs. We argue that mPDFs allow an even better understanding of how background conditions impact wave propagation in a climatological sense. As expected, probabilities are decreasing with increasing zonal wave numbers. In addition we discuss the meridional wave number dependency of the PDFs which is usually neglected, highlighting the contribution of meridional wave numbers 2 and 3 in the stratosphere. We also describe how mPDFs change in response to strong vortex regime (SVR) and weak vortex regime (WVR) conditions, with increased probabilities of the wave propagation during WVR than SVR in the stratosphere. We conclude that the mPDFs are a convenient way to summarize climatological information about planetary wave propagation in reanalysis and climate model data.

  18. Heat flux estimates over vegetation derived using radiometric surface temperatures and a boundary layer model in comparison with sodar-derived values. M.S. Thesis; [Rock Springs Agricultural Research Center, Pennsylvania

    NASA Technical Reports Server (NTRS)

    Cooper, J. N. (Principal Investigator)

    1981-01-01

    An attempt was made to validate a method that uses radiometric surface temperatures and a boundary layer model to estimate surface energy budgets and characteristics. Surface temperatures from a hand-held radiometer and sodar data were collected simultaneously on seven days between mid-July and mid-October 1980. The comparison of the RDMS and sodar heat fluxes proved disappointing. Free convection conditions, required to produce sodar-derived heat fluxes, were inhibited by a terrain-induced low level inversion. Only three out of seven cases produced meaningful sodar heat fluxes. Of those three cases, one had good agreement and the other two had sodar heat fluxes 15 to 45 w/sq m lower than the RDMS values. Since the RDMS method is relatively untested, it was impossible to conclusively determine its validity from the results. There was evidence that the true heat flux was not underestimated by the RDMS, so it could be concluded that the Bowen ratios over well-watered vegetation were likely to be quite small.

  19. Climatology of extratropical transition for North Atlantic tropical cyclones in the high-resolution GFDL climate model

    NASA Astrophysics Data System (ADS)

    Liu, M.; Vecchi, G. A.; Smith, J. A.

    2015-12-01

    The extratropical transition (ET) process of tropical cyclones can lead to fundamental changes in hurricane structure and storms that continue to pose large threats to life and properties. Given the importance of ET, it is necessary to understand how ET changes under a warming climate. Towards this goal, the GFDL climate model (FLOR) is first used to understand the current-day ET climatology. The standard model and a flux-adjusted version of FLOR are both used to examine ET climatology. The operational cyclone phase space method is used to define the onset and completion times of ET. The ET climatology from the climate model is compared with those from two reanalysis data sets ranging from 1979 to 2012. Both models exhibit good skills at simulating the frequency map of phase space diagram. The flux-adjusted version shows much better skill in capturing the ET climatology in terms of ET track patterns, ET locations and monthly ET variations. The model is able to simulate the frequency ratio of reintensified tropical cyclones from all ET cases. Future work involves examining changes in the ET climatology under a changing climate.

  20. The Savannah River Technology Center Research and Development Climatology Center

    SciTech Connect

    Kurzeja, R.J.

    1995-12-31

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) built and has operated the Climatology Site (CS) for almost 10 years. The Climatology Site provides a wide variety of meteorological support functions for Savannah River Site (SRS) operations and research. This document describes the Climatology Site facility to familiarize present and potential users with its capabilities.

  1. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  2. Carbon 13-Metabolic Flux Analysis derived constraint-based metabolic modelling of Clostridium acetobutylicum in stressed chemostat conditions.

    PubMed

    Wallenius, Janne; Maaheimo, Hannu; Eerikäinen, Tero

    2016-11-01

    The metabolism of butanol producing bacteria Clostridium acetobutylicum was studied in chemostat with glucose limited conditions, butanol stimulus, and as a reference cultivation. COnstraint-Based Reconstruction and Analysis (COBRA) was applied using additional constraints from (13)C Metabolic Flux Analysis ((13)C-MFA) and experimental measurement results. A model consisting of 451 metabolites and 604 reactions was utilized in flux balance analysis (FBA). The stringency of the flux spaces considering different optimization objectives, i.e. growth rate maximization, ATP maintenance, and NADH/NADPH formation, for flux variance analysis (FVA) was studied in the different modelled conditions. Also a previously uncharacterized exopolysaccharide (EPS) produced by C. acetobutylicum was characterized on monosaccharide level. The major monosaccharide components of the EPS were 40n-% rhamnose, 34n-% glucose, 13n-% mannose, 10n-% galactose, and 2n-% arabinose. The EPS was studied to have butanol adsorbing property, 70(butanol)mg(EPS)g(-1) at 37°C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, D. D.; Ma, Siyan; Cook, David R.; Oren, Ram; Katul, G. G.; Gu, Lianhong

    2010-03-01

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000 2004, and was validated using observed GPP over the period 2005 2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr 1 for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated by these

  4. A new high-resolution climatology for the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Korablev, A.; Johannessen, O. M.; Pnyushkov, A.; Smirnov, A.

    2009-04-01

    Constantly growing interests in high-resolution oceanographic fields stimulate compilation of comprehensive initial datasets and advanced methodology of the objective analysis. Observed level database for the Nordic Seas and the North Atlantic compiled from large amount of initial sources was recently considerably updated by adding historical and modern measurements. Improved database allows evaluating ocean climate variability in the area for 1900-2007. Applied quality control algorithms on observed data were specifically designed to preserve regional variability and to produce the oceanographic fields with enhanced spatial resolution. Objectively analyzed (OA) temperature, salinity and dissolved oxygen monthly fields at the standard levels for the 1900-2007 on 0.25 x 0.5 gr. latitude-longitude grid were computed by means of block variant of ordinary kriging system. The OA monthly fields comprise climatology and can be used for studying of temporal and spatial parameters variation. A number of stable regimes and periods with abrupt changes of the water masses thermohaline properties were identified and will be discussed. Monthly mean fields were compared with available high-resolution (better then 0.5 gr.) climatology fields, including Generalized Digital Environmental Model (GDEM) version 3.0 and NODC/NOAA products based on data from World Ocean Databases 2001 and 2005. Results show considerable discrepancies originated from differences in initial datasets, quality control algorithms and methods of objective analysis. Allocation of the collected oceanographic stations for more than one century and derived climatological fields over the Nordic Seas reveals a disproportion in data coverage. Repeated standard stations, sections and polygons are most important for uniform long-term time series compositing and ocean climate variation study. Luck of observations over the west and northern parts of the region do not allows reliable climatology fields compilation

  5. Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model

    NASA Astrophysics Data System (ADS)

    Zhu, Jieshun; Kumar, Arun

    2017-04-01

    Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.

  6. Tracer Lamination in the Stratosphere: A Global Climatology

    NASA Technical Reports Server (NTRS)

    Appenzeller, Christof; Holton, James R.

    1997-01-01

    Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. The change in time of these gradients is used to define a tracer lamination rate. It is shown that this quantity can be calculated by the cross product of the horizontal temperature and horizontal tracer gradients. A climatology based on UARS satellite-borne ozone data and on ozone-like pseudotracer data is presented. Three stratospheric regions with high lamination rates were found: the part of the stratospheric overworld which is influenced by the polar vortex, the part of the lowermost stratosphere which is influenced by the tropopause and a third region in the subtropical lower stratosphere mainly characterized with strong vertical shear. High lamination rates in the stratospheric overworld were absent during summer, whereas in the lowermost stratosphere high lamination rates were found year-round. This is consistent with the occurrence and seasonal variation of the horizontal tracer gradient and vertical shear necessary for tilting the tracer surfaces. During winter, high lamination rates associated with the stratospheric polar vortex are present down to approximately 100 hPa. Several features of the derived climatology are roughly consistent with earlier balloon-borne studies. The patterns in the southern and northern hemisphere are comparable, but details differ as anticipated from a less disturbed and more symmetric southern polar vortex.

  7. The SPARC Intercomparison of Middle-Atmosphere Climatologies.

    NASA Astrophysics Data System (ADS)

    Randel, William; Udelhofen, Petra; Fleming, Eric; Geller, Marvin; Gelman, Mel; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Wu, Fei; Baldwin, Mark; Chanin, Marie-Lise; Keckhut, Philippe; Labitzke, Karin; Remsberg, Ellis; Simmons, Adrian; Wu, Dong

    2004-03-01

    An updated assessment of uncertainties in “observed” climatological winds and temperatures in the middle atmosphere (over altitudes 10 80 km) is provided by detailed intercomparisons of contemporary and historic datasets. These datasets include global meteorological analyses and assimilations, climatologies derived from research satellite measurements, historical reference atmosphere circulation statistics, rocketsonde wind and temperature data, and lidar temperature measurements. The comparisons focus on a few basic circulation statistics (temperatures and zonal winds), with special attention given to tropical variability. Notable differences are found between analyses for temperatures near the tropical tropopause and polar lower stratosphere, temperatures near the global stratopause, and zonal winds throughout the Tropics. Comparisons of historical reference atmosphere and rocketsonde temperatures with more recent global analyses show the influence of decadal-scale cooling of the stratosphere and mesosphere. Detailed comparisons of the tropical semiannual oscillation (SAO) and quasi- biennial oscillation (QBO) show large differences in amplitude between analyses; recent data assimilation schemes show the best agreement with equatorial radiosonde, rocket, and satellite data.

  8. A Statistical Aggregation Engine for Climatology and Trend Analysis

    NASA Astrophysics Data System (ADS)

    Chapman, D. R.; Simon, T. A.; Halem, M.

    2014-12-01

    Fundamental climate data records (FCDRs) from satellite instruments often span tens to hundreds of terabytes or even petabytes in scale. These large volumes make it difficult to aggregate or summarize their climatology and climate trends. It is especially cumbersome to supply the full derivation (provenance) of these aggregate calculations. We present a lightweight and resilient software platform, Gridderama that simplifies the calculation of climatology by exploiting the "Data-Cube" topology often present in earth observing satellite records. By using the large array storage (LAS) paradigm, Gridderama allows the analyst to more easily produce a series of aggregate climate data products at progressively coarser spatial and temporal resolutions. Furthermore, provenance tracking and extensive visualization capabilities allow the analyst to track down and correct for data problems such as missing data and outliers that may impact the scientific results. We have developed and applied Gridderama to calculate a trend analysis of 55 Terabytes of AIRS Level 1b infrared radiances, and show statistically significant trending in the greenhouse gas absorption bands as observed by AIRS over the 2003-2012 decade. We will extend this calculation to show regional changes in CO2 concentration from AIRS over the 2003-2012 decade by using a neural network retrieval algorithm.

  9. A climatological link between slantwise instability and surface weather conditions

    NASA Astrophysics Data System (ADS)

    Glinton, M. R.; Gray, S. L.; Chagnon, J. M.; Morcrette, C. J.

    2012-04-01

    Midlatitude weather phenomena including rainbands in fronts and cloud heads and the descending sting jets found in extreme windstorms have been attributed, in part, to the release of conditional symmetric instability (CSI). CSI is a slantwise parcel instability arising from the combination of inertial and gravitational instability in a baroclinic atmosphere; its release gives slantwise convection. However, to date, demonstration of the link between CSI and severe weather has been confined to a few case studies. Weather forecast models with domains big enough to encompass entire midlatitude storms do not have sufficient resolution to realistically resolve the release of CSI, and CSI release is not parameterized in these models. The consequences of this lack of representation of CSI release are currently unknown and motivate this study. We present a North Atlantic climatology of the energy available for slantwise convection due to CSI derived from the ERA-Interim re-analysis, and compare it with an equivalent climatology of CAPE (the energy available for upright convection due to conditional instability). The annual cycle of land and sea surface temperatures are shown to strongly modulate these instabilities. The statistical relationship between these instabilities and surface weather conditions are presented.

  10. Tropospheric temperature climatology and trends observed over the Middle East

    NASA Astrophysics Data System (ADS)

    Basha, Ghouse; Marpu, P. R.; Ouarda, T. B. M. J.

    2015-10-01

    In this study, we report for the first time, the upper air temperature climatology, and trends over the Middle East, which seem to be significantly affected by the changes associated with hot summer and low precipitation. Long term (1985-2012) radiosonde data from 12 stations are used to derive the mean temperature climatology and vertical trends. The study was performed by analyzing the data at different latitudes. The vertical profiles of air temperature show distinct behavior in terms of vertical and seasonal variability at different latitudes. The seasonal cycle of temperature at the 100 hPa, however, shows an opposite pattern compared to the 200 hPa levels. The temperature at 100 hPa shows a maximum during winter and minimum in summer. Spectral analysis shows that the annual cycle is dominant in comparison with the semiannual cycle. The time-series of temperature data was analyzed using the Bayesian change point analysis and cumulative sum method to investigate the changes in temperature trends. Temperature shows a clear change point during the year 1999 at all stations. Further, Modified Mann-Kendall test was applied to study the vertical trend, and analysis shows statistically significant lower tropospheric warming and cooling in upper troposphere after the year 1999. In general, the magnitude of the trend decreases with altitude in the troposphere. In all the latitude bands in lower troposphere, significant warming is observed, whereas at higher altitudes cooling is noticed based on 28 years temperature observations over the Middle East.

  11. Using Remote-Sensing Derived Estimates of Soil Moisture to Constrain and Improve Terrestrial Biosphere Model Predictions of Terrestrial Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Moorcroft, P. R.; Zhang, K.; Ali, A. A.; Scott, D.

    2015-12-01

    In both natural and managed ecosystems the fluxes of carbon into and out of the ecosystem are strongly connected to the dynamics of soil moisture. In this study, we examine how remote-sensing derived estimates of root zone soil moisture (RZSM) available from the AirMOSS P-band radar remote sensing instrument can be used to constrain terrestrial biosphere model predictions of carbon, water and energy fluxes on timescales ranging from hours to decades. Results from ecosystems in the continental US, including an eastern temperate forest, a mid-western grassland, a Californian oak-savannah, and a western conifer forest, indicate that RZSM measurements can provide an important data-constraint on terrestrial biosphere model predictions of how plant photosynthesis and ecosystem respiration respond to changes in soil moisture availability. In doing so, they pave the way for improved estimates of key model parameters and for reducing uncertainty in regional and continental carbon budgets.

  12. A 19-Month Climatology of Marine Aerosol-Cloud-Radiation Properties Derived From DOE ARM AMF Deployment at the Azores: Part I: Cloud Fraction and Single-Layered MBL Cloud Properties

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Minnis, Patrick; Wood, Robert

    2013-01-01

    A 19-month record of total, and single-layered low (0-3 km), middle (3-6 km), and high (> 6 km) cloud fractions (CFs), and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties has been generated from ground-based measurements taken at the ARM Azores site between June 2009 and December 2010. It documents the most comprehensive and longest dataset on marine cloud fraction and MBL cloud properties to date. The annual means of total CF, and single-layered low, middle, and high CFs derived from ARM radar-lidar observations are 0.702, 0.271, 0.01 and 0.106, respectively. More total and single-layered high CFs occurred during winter, while single-layered low CFs were greatest during summer. The diurnal cycles for both total and low CFs are stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at approx. 1 km and higher one between 8 and 11 km during all seasons, except summer, when only the low peak occurs. The persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, while the low pressure and moist air masses during winter generate more total and multilayered-clouds, and deep frontal clouds associated with midlatitude cyclones.

  13. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Reichstein, Markus; Margolis, Hank A.; Cescatti, Alessandro; Richardson, Andrew D.; Arain, M. Altaf; Arneth, Almut; Bernhofer, Christian; Bonal, Damien; Chen, Jiquan; Gianelle, Damiano; Gobron, Nadine; Kiely, Gerald; Kutsch, Werner; Lasslop, Gitta; Law, Beverly E.; Lindroth, Anders; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J.; Papale, Dario; Sottocornola, Matteo; Vaccari, Francesco; Williams, Christopher

    2011-09-01

    We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° × 0.5° spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 ± 7 J × 1018 yr-1), H (164 ± 15 J × 1018 yr-1), and GPP (119 ± 6 Pg C yr-1) were similar to independent estimates. Our global TER estimate (96 ± 6 Pg C yr-1) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

  14. Passive acoustic derived bubble flux and applications to natural gas seepage in the Mackenzie Delta, NWT, Canada and Coal Oil Point, CA

    NASA Astrophysics Data System (ADS)

    Culling, D.; Leifer, I.; Dallimore, S.; Alcala, K.

    2012-12-01

    Minnaert equation predicts. Furthermore, bubbles from a cohesive media escaped in pulses of multiple bubbles, which caused significant inter-bubble acoustic coupling and mud-bubble interaction. The acoustic signature of subsurface bubble migration and concurrent sediment movements, including bubble pinch off, presented additional complexities. Use of passive acoustic derived flux was applied to natural gas seepage in the Mackenzie Delta in the North West Territories, Canada as well as offshore Coal Oil Point (COP), CA. Video data were used to calibrate the COP acoustic observations and showed a strong current impact for non-cohesive sediments. Seepage flux in the delta (cohesive sediments) was calibrated using a custom turbine tent that directly measured flux. Further applications of passive acoustic-derived seep fluxes include monitoring of marine pipelines for leaks, and studying biogenic wetlands ebullition as well as thermogenic and hydrate seepage.

  15. Top-down and bottom-up aerosol-cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux

    NASA Astrophysics Data System (ADS)

    Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.

    2017-08-01

    Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment

  16. A method to derive downwelling longwave fluxes at the Arctic surface from TIROS operational vertical sounder data

    NASA Astrophysics Data System (ADS)

    Francis, Jennifer A.

    1997-01-01

    The dominant component of the polar surface energy budget during half the year is the downwelling flux of longwave radiation (DLF), yet little is known about its spatial and temporal variability except on monthly timescales. As surface measurements will always be sparse, the most promising opportunity for diagnosing the DLF is provided by satellite data. Estimating this flux from space, however, presents challenges over all surface types and particularly in polar environments where cloud detection and cloud fraction estimation are less certain. A new method is presented to estimate DLF from measurements by the TIROS-N operational vertical sounder (TOVS). Temperature profiles, humidity estimates, and cloud cover are retrieved from TOVS radiances using the improved initialization inversion algorithm, which has been modified to produce more accurate results over snow and sea ice. This information is combined with brightness temperature differences from pairs of infrared and near-infrared TOVS channels. These differences are used to infer cloud phase and geometric thickness. Longwave fluxes are then calculated using a forward radiative transfer model. Results during winter 1988 and spring 1992 are compared with hourly radiation measurements from the Coordinated Eastern Arctic Experiment in the eastern Arctic basin and from the Lead Experiment in the Beaufort Sea. Error analyses yield a bias of approximately 3 W m-2, a standard deviation of 23 W m-2, and a correlation coefficient of about 0.75. These errors are comparable to results from similar studies over midlatitude land and ocean areas where clouds are more easily identified.

  17. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  18. Assessing the Potential to Derive Air-Sea Freshwater Fluxes from Aquarius-Like Observations of Surface Salinity

    NASA Technical Reports Server (NTRS)

    Zhen, Li; Adamec, David

    2009-01-01

    A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.

  19. Aircraft trace gas measurements during the London 2012 Olympics: Air quality and emission fluxes derived from sampling upwind and downwind of a megacity

    NASA Astrophysics Data System (ADS)

    Allen, G.; O'Shea, S.; Muller, J.; Jones, B.; O'Sullivan, D.; Lee, J. D.; Bauguitte, S.; Gallagher, M. W.; Percival, C.; Barratt, B.; McQuaid, J. B.; Illingworth, S.

    2013-12-01

    This study presents airborne in situ and remote sensing measurements recorded during July and August 2012, across the period of the London 2012 Summer Olympics and simultaneous with the Clear air for London (ClearfLo) ground-based measurement and modelling campaign. Through long-term (2-year) and intensive observation periods (Winter 2011 and Summer 2012), the ClearfLo programme aims to better understand emissions, as well as the chemical, dynamical and micro-meteorological processes which modulate air quality in the London urban environment - an important risk factor for both acute and chronic health effects. The work presented here focuses on two contrasting case studies within the summer ClearfLo period: 30 July 2012 and 9 August 2012, representing relatively clean background and polluted background cases, respectively, and characterised by well-mixed Atlantic westerly maritime inflow in the former and stagnant air (high pressure) in the latter. Measurements of CO, CO2, CH4, N2O, O3, HCN, and other gases measured on board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 aircraft will be presented and interpreted, with emphasis on observed concentration gradients and tracer-tracer correlations as well as airmass vertical structure and airmass history upwind and downwind of central London in each case. By applying a simple advective model and making use of vertically resolved thermodynamic and composition data, we are able to derive emission strengths for these gases that are representative of the total enclosed surface area. Example emissions for these two cases range between 6x105 kg(C)/hr and 9x105 kg(C)/hr for CO2, and ~0.6x105 kg(C)/hr for CH4. This airborne sampling methodology highlights the unique utility of aircraft measurements to routinely and climatologically characterise emissions from area sources such as cities, and points to future missions to target localised hotspots and distributed point sources.

  20. A new evaporation duct climatology over the South China Sea

    NASA Astrophysics Data System (ADS)

    Shi, Yang; Yang, Kunde; Yang, Yixin; Ma, Yuanliang

    2015-10-01

    The climatology of evaporation ducts is important for shipborne electromagnetic system design and application. The evaporation duct climatology that is currently used for such applications was developed in the mid 1980s; this study presents efforts to improve it over the South China Sea (SCS) by using a state-of-the-art evaporation duct model and an improved meteorology dataset. This new climatology provides better evaporation duct height (EDH) data over the SCS, at a higher resolution of 0.312°×0.313°. A comparison between the new climatology and the old one is performed. The monthly average EDH in the new climatology is between 10 and 12 m over the SCS, higher than that in the old climatology. The spatiotemporal characteristics of the evaporation duct over the SCS in different months are analyzed in detail, based on the new climatology.

  1. The Nimbus-7 Global Cloud Climatology

    NASA Technical Reports Server (NTRS)

    Hwang, Paul H.; Kyle, H. Lee; Stowe, Larry L.; Pellegrino, P. P.; Yeh, H. Y. Michael

    1988-01-01

    The Nimbus-7 Global Cloud Climatology (N7GCC) has been produced from measurements made between April 1979 and March 1985 using the Temperature Humidity IR Radiometer and the Total Ozone Mapping Spectrometer on the Nimbus-7 satellite. The N7GCC gives, near local noon and midnight, the fractional area covered by high-level, middle-level, and low-altitude clouds, and the total fractional area covered by all clouds. Statistics for cirrus, deep convective, and warm low-altitude clouds and the cloud and clear-sky radiances with correlative surface temperatures are also included. The N7GCC is compared with other cloud data sets, including the International Satellite Cloud Climatology Project.

  2. Climatology tuned reflectivity-rain rate relations

    NASA Technical Reports Server (NTRS)

    Short, David A.; Rosenfeld, Daniel; Atlas, David

    1989-01-01

    The climatologically-tuned relationships between reflectivity, Z, and rain rate, R, are examined. A method is presented which selects the Z-R relation that assures that the values of R are weighted according to their climatological frequency of occurrence. The method is an extension of the approach suggested by Calheiros and Zawadski (1987). Also, consideration is given to the method of optimizing Z-R relations by matching hourly gage and radar-deduced rain amounts proposed by Smith et al. (1975). These two methods are described and applied to data from Germany and from the GARP Atlantic Tropical Experiment. The differences in the Z-R relations obtained using the two approaches are discussed.

  3. The Nimbus-7 Global Cloud Climatology

    NASA Technical Reports Server (NTRS)

    Hwang, Paul H.; Kyle, H. Lee; Stowe, Larry L.; Pellegrino, P. P.; Yeh, H. Y. Michael

    1988-01-01

    The Nimbus-7 Global Cloud Climatology (N7GCC) has been produced from measurements made between April 1979 and March 1985 using the Temperature Humidity IR Radiometer and the Total Ozone Mapping Spectrometer on the Nimbus-7 satellite. The N7GCC gives, near local noon and midnight, the fractional area covered by high-level, middle-level, and low-altitude clouds, and the total fractional area covered by all clouds. Statistics for cirrus, deep convective, and warm low-altitude clouds and the cloud and clear-sky radiances with correlative surface temperatures are also included. The N7GCC is compared with other cloud data sets, including the International Satellite Cloud Climatology Project.

  4. Climatology tuned reflectivity-rain rate relations

    NASA Technical Reports Server (NTRS)

    Short, David A.; Rosenfeld, Daniel; Atlas, David

    1989-01-01

    The climatologically-tuned relationships between reflectivity, Z, and rain rate, R, are examined. A method is presented which selects the Z-R relation that assures that the values of R are weighted according to their climatological frequency of occurrence. The method is an extension of the approach suggested by Calheiros and Zawadski (1987). Also, consideration is given to the method of optimizing Z-R relations by matching hourly gage and radar-deduced rain amounts proposed by Smith et al. (1975). These two methods are described and applied to data from Germany and from the GARP Atlantic Tropical Experiment. The differences in the Z-R relations obtained using the two approaches are discussed.

  5. A seasonal climatology of effective diffusivity in the stratosphere

    NASA Astrophysics Data System (ADS)

    Allen, Douglas R.; Nakamura, Noboru

    2001-04-01

    A 7-year (1992-1998) seasonal climatology of effective horizontal diffusivity is presented for the stratosphere (350-1900 K). As in previous studies, the diagnosis is based on the equivalent length of a test tracer advected on isentropic surfaces, in this case using the van Leer flux-limiting scheme driven by the United Kingdom Meteorological Office assimilated winds. Although the magnitude of equivalent length is resolution dependent, its structure is shown to be reasonably robust for quantifying the inhomogeneous mixing in the stratosphere. The van Leer calculation agrees well with a more expensive spectral transform calculation at a comparable resolution, suggesting that the diagnostic is not sensitive to the advection scheme or subgrid representation of the models. A first attempt is also made at estimating the implicit numerical diffusion of the van Leer scheme, which is necessary to convert equivalent length to effective diffusivity. Compared with the spectral calculations with a constant diffusion coefficient, the van Leer results show notably greater diffusivity within the winter polar vortices despite the comparable equivalent lengths, suggesting that the scheme may be overdiffusing in the vicinities of mobile tracer extrema. The climatology of equivalent length is then presented, and the seasonal evolution is discussed in detail for the lower, middle, and upper stratosphere. The major mixing barriers (winter and summer polar vortices and tropical eddy transport barrier) are easily identified, as well as the strong mixing regions (surf zones). Generally, equivalent length tends to be small in regions of strong zonal wind and large in regions of weak wind. Large values of equivalent length are observed in the summer lower stratosphere and in the middle stratosphere during the breakup of the polar vortices. Interhemispheric asymmetry is observed both after the winter polar vortex breakup, where in the middle stratosphere the Southern Hemisphere shows much

  6. Arctic Cyclone Climatology: Present and Future

    NASA Astrophysics Data System (ADS)

    Spengler, T.; Ballinger, A. P.

    2012-04-01

    The Arctic waters and coastal areas have always been prone to severe weather due to high impact cyclone events, such as polar lows or major cold air outbreaks. Here we present a climatology of cyclones obtained with the University of Melbourne cyclone tracking routine. The data used is from a high-resolution model currently under development at GFDL, namely the cubed sphere global model. The model is run with a resolution of 50 km and with a full suite of physical processes in the atmosphere. In a first step the model data and its cyclone climatology for the current climate is compared to the interim reanalysis from the European Centre for Medium Range Weather Forecast (ERA Interim). Cyclone strength, position and tracks are investigated for systematic differences and the capabilities of the model to represent the current cyclone statistics are discussed. In a second step model data for two 10 years slices, 2026-2035 and 2086-2095, are analyzed. Changes in strength, location and tracks of the cyclones compared to the current climatological values are investigated. A comparison of dynamical processes sheds light on the nature of the changes and highlights potential reasons for the identified shifts.

  7. Climatological assessment of spatiotemporal trends in observational monthly snowfall totals and extremes over the Canadian Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Baijnath, Janine; Duguay, Claude; Sushama, Laxmi; Huziy, Oleksandr

    2017-04-01

    The Laurentian Great Lakes Basin (GLB) is susceptible to snowfall events that derive from extratropical cyclones and heavy lake effect snowfall (HLES). The former is generated by quasigeostropic forcing from positive temperature or vorticity advection associated with low-pressure centres. HLES is produced by planetary boundary layer (PBL) convection that is initiated as a result of cold and dry continental air mass advecting over relatively warm lakes and generating turbulent moisture and heat fluxes into the PBL. HLES events can have disastrous impacts on local communities such as the November 2014 Buffalo storm that caused 13 fatalities. Albeit the many HLES studies, most are focused on specific case study events with a discernible under examination of climatological HLES trend analyses for the Canadian GLB. The research objectives are to first determine the historical, climatological trends in monthly snowfall totals and to examine potential surface and atmospheric variables driving the resultant changes in HLES. The second aims to analyze the historical extremes in snowfall by assessing the intensity, frequency, and duration of snowfall within the domain of interest. Spatiotemporal snowfall and precipitation trends are computed for the 1982 to 2015 period using Daymet (Version 3) monthly gridded observational datasets from the Oak Ridge National Laboratory. The North American Regional Reanalysis (NARR), NOAA Optimum Interpolation Sea Surface Temperature (OISST), and the Canadian Ice Service (CIS) datasets are also used for evaluating trends in HLES driving variables such as air temperature, lake surface temperature (LST), ice cover concentration, omega, and vertical temperature gradient (VTGlst-850). Climatological trends in monthly snowfall totals show a significant decrease along the Ontario snowbelt of Lake Superior, Lake Huron and Georgian Bay at the 90 percent confidence level. These results are attributed to significant warming in LST, significant

  8. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data.

    PubMed

    Weihs, Philipp; Staiger, Henning; Tinz, Birger; Batchvarova, Ekaterina; Rieder, Harald; Vuilleumier, Laurent; Maturilli, Marion; Jendritzky, Gerd

    2012-05-01

    In the present study, we investigate the determination accuracy of the Universal Thermal Climate Index (UTCI). We study especially the UTCI uncertainties due to uncertainties in radiation fluxes, whose impacts on UTCI are evaluated via the mean radiant temperature (Tmrt). We assume "normal conditions", which means that usual meteorological information and data are available but no special additional measurements. First, the uncertainty arising only from the measurement uncertainties of the meteorological data is determined. Here, simulations show that uncertainties between 0.4 and 2 K due to the uncertainty of just one of the meteorological input parameters may be expected. We then analyse the determination accuracy when not all radiation data are available and modelling of the missing data is required. Since radiative transfer models require a lot of information that is usually not available, we concentrate only on the determination accuracy achievable with empirical models. The simulations show that uncertainties in the calculation of the diffuse irradiance may lead to Tmrt uncertainties of up to ±2.9 K. If long-wave radiation is missing, we may expect an uncertainty of ±2 K. If modelling of diffuse radiation and of longwave radiation is used for the calculation of Tmrt, we may then expect a determination uncertainty of ±3 K. If all radiative fluxes are modelled based on synoptic observation, the uncertainty in Tmrt is ±5.9 K. Because Tmrt is only one of the four input data required in the calculation of UTCI, the uncertainty in UTCI due to the uncertainty in radiation fluxes is less than ±2 K. The UTCI uncertainties due to uncertainties of the four meteorological input values are not larger than the 6 K reference intervals of the UTCI scale, which means that UTCI may only be wrong by one UTCI scale. This uncertainty may, however, be critical at the two temperature extremes, i.e. under extreme hot or extreme cold conditions.

  9. Comparison of high latitude thermospheric meridional neutral wind climatologies

    NASA Astrophysics Data System (ADS)

    Griffin, Eoghan Michael

    The combination of the long term databases of measurements from the Kiruna Fabry-Perot Interferometer and the EISCAT incoherent scatter radar, both covering more than a solar cycle of data, allows a unique comparison of the thermospheric meridional component of the neutral wind as observed by different experimental techniques. This allows the climatological behaviour of the neutral wind at high latitudes to be investigated, including the influence of both solar activity and season. Two techniques are applied to derive winds from the EISCAT database, one from previous work using the standard technique for incoherent scatter radars, and a new dataset derived using the Meridional Wind Model implementation of servo theory with the EISCAT data as input. The latter technique also uses contemporaneous EISCAT electric field data for correction to the equivalent servo winds. Alongside the local measurements from experiment, model predictions of the behaviour of the winds can also be compared. These have been included and use both empirical sources as in the Horizontal Wind Model and Meridional Wind Model with International Reference Ionosphere input, and also the results from a first principles theoretical model, the UCL Coupled Thermosphere and Ionosphere Model. Comparisons are made between the results from these techniques for each of eight categories corresponding to the four seasons, centred around the equinoxes and solstices, and for two solar activity levels. The detailed comparisons in each case and the implications of the results for the ability of the models to predict the long term behaviour of the winds and also for the degree of agreement between the techniques based on local measurements are discussed. Conclusions are drawn as to the major influences on the climatological behaviour of the wind at this latitude and the possibilities for further work to improve both experimental and modelling efforts.

  10. Radiative Flux Changes by Aerosols from North America, Europe, and Africa over the Atlantic Ocean: Measurements and Calculations from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Livingston, J. M.; Schmid, B.; Chien, A.; Bergstrom, R.; Durkee, P. A.; Hobbs, P. V.; Bates, T. S.; Quinn, P. K.; hide

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that is a major source of uncertainty in understanding the past climate and predicting climate change. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Experiment (TARFOX) and the 1997 second Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of American, European, and African aerosols over the Atlantic. In TARFOX, radiative fluxes and microphysics of the American aerosol were measured from the UK C-130 while optical depth spectra, aerosol composition, and other properties were measured by the University of Washington C-131A and the CIRPAS Pelican. Closure studies show that the measured flux changes agree with those derived from the aerosol measurements using several modelling approaches. The best-fit midvisible single-scatter albedos (approx. 0.89 to 0.93) obtained from the TARFOX flux comparisons are in accord with values derived by independent techniques. In ACE-2 we measured optical depth and extinction spectra for both European urban-marine aerosols and free-tropospheric African dust aerosols, using sunphotometers on the R/V Vodyanitskiy and the Pelican. Preliminary values for the radiative flux sensitivities (Delta Flux / Delta Optical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean are similar to those found in TARFOX. Combining a satellite-derived optical depth climatology with the aerosol optical model validated for flux sensitivities in TARFOX provides first-cut estimates of aerosol-induced flux changes over the Atlantic Ocean.

  11. Climatological Impact of Atmospheric River Based on NARCCAP and DRI-RCM Datasets

    NASA Astrophysics Data System (ADS)

    Mejia, J. F.; Perryman, N. M.

    2012-12-01

    This study evaluates spatial responses of extreme precipitation environments, typically associated with Atmospheric River events, using Regional Climate Model (RCM) output from NARCCAP dataset (50km grid size) and the Desert Research Institute-RCM simulations (36 and 12 km grid size). For this study, a pattern-detection algorithm was developed to characterize Atmospheric Rivers (ARs)-like features from climate models. Topological analysis of the enhanced elongated moisture flux (500-300hPa; daily means) cores is used to objectively characterize such AR features in two distinct groups: (i) zonal, north Pacific ARs, and (ii) subtropical ARs, also known as "Pineapple Express" events. We computed the climatological responses of the different RCMs upon these two AR groups, from which intricate differences among RCMs stand out. This study presents these climatological responses from historical and scenario driven simulations, as well as implications for precipitation extreme-value analyses.

  12. A semianalytical algorithm for quantitatively estimating sediment and atmospheric deposition flux from MODIS-derived sea ice albedo in the Bohai Sea, China

    NASA Astrophysics Data System (ADS)

    Xu, Zhantang; Hu, Shuibo; Wang, Guifen; Zhao, Jun; Yang, Yuezhong; Cao, Wenxi; Lu, Peng

    2016-05-01

    Quantitative estimates of particulate matter [PM) concentration in sea ice using remote sensing data is helpful for studies of sediment transport and atmospheric dust deposition flux. In this study, the difference between the measured dirty and estimated clean albedo of sea ice was calculated and a relationship between the albedo difference and PM concentration was found using field and laboratory measurements. A semianalytical algorithm for estimating PM concentration in sea ice was established. The algorithm was then applied to MODIS data over the Bohai Sea, China. Comparisons between MODIS derived and in situ measured PM concentration showed good agreement, with a mean absolute percentage difference of 31.2%. From 2005 to 2010, the MODIS-derived annual average PM concentration was approximately 0.025 g/L at the beginning of January. After a month of atmospheric dust deposition, it increased to 0.038 g/L. Atmospheric dust deposition flux was estimated to be 2.50 t/km2/month, similar to 2.20 t/km2/month reported in a previous study. The result was compared with on-site measurements at a nearby ground station. The ground station was close to industrial and residential areas, where larger dust depositions occurred than in the sea, but although there were discrepancies between the absolute magnitudes of the two data sets, they demonstrated similar trends.

  13. Formation of the world's largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids

    PubMed Central

    Ling, Ming-Xing; Liu, Yu-Long; Williams, Ian S.; Teng, Fang-Zhen; Yang, Xiao-Yong; Ding, Xing; Wei, Gang-Jian; Xie, Lu-Hua; Deng, Wen-Feng; Sun, Wei-Dong

    2013-01-01

    Rare Earth Elements (REE) are essential to modern society but the origins of many large REE deposits remain unclear. The U-Th-Pb ages, chemical compositions and C, O and Mg isotopic compositions of Bayan Obo, the world's largest REE deposit, indicate a protracted mineralisation history with unusual chemical and isotopic features. Coexisting calcite and dolomite are in O isotope disequilibrium; some calcitic carbonatite samples show highly varied δ26Mg which increases with increasing Si and Mg; and ankerite crystals show decreases in Fe and REE from rim to centre, with highly varied REE patterns. These and many other observations are consistent with an unusual mineralisation process not previously considered; protracted fluxing of calcitic carbonatite by subduction-released high-Si fluids during the closure of the Palaeo-Asian Ocean. The fluids leached Fe and Mg from the mantle wedge and scavenged REE, Nb and Th from carbonatite, forming the deposit through metasomatism of overlying sedimentary carbonate.

  14. Assessment of Optical Turbulence Profiles Derived From Probabilistic Climatology

    DTIC Science & Technology

    2007-03-01

    IRIA) Center,Environmental Research Institute of Michigan, 1993.10. Jumper G. Y., Roadcap J. R ., Adair S. C., Seeley G. P., and Fairley G. Atmo...three dimensional spatial covariance function describes this correlationwithin a volume of space for a random eld u( R ) = (x; y; z; t). The PSD charac...terizes the statistical distribution of the size and number of turbulent eddies in thevolume. [19] In three dimensions, the spatial variable, R , and the

  15. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel - annual budgets and seasonality

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Issoufou, H. B.-A.; Boulain, N.; Ramier, D.; Mainassara, I.; Charvet, G.; Boucher, M.; Chazarin, J.-P.; Oï, M.; Yahou, H.; Maidaji, B.; Arpin-Pont, F.; Benarrosh, N.; Mahamane, A.; Nazoumou, Y.; Favreau, G.; Seghieri, J.

    2014-05-01

    In the African Sahel, energy and water cycling at the land surface is pivotal for regional climate, water resources and land productivity, yet it is still extremely poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt, rainfed millet crop and fallow bush. These estimates build on the combination of a 7 year field dataset from two typical plots in southwestern Niger with detailed physically-based soil-plant-atmosphere modelling, yielding a continuous, comprehensive set of water and energy flux and storage variables over the 7 year period. In this study case in particular, blending field data with mechanistic modelling is considered as making best use of available data and knowledge for such purpose. It extends observations by reconstructing missing data and extrapolating to unobserved variables or periods. Furthermore, model constraining with observations compromises between extraction of observational information content and integration of process understanding, hence accounting for data imprecision and departure from physical laws. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to subseasonal scales from the 7 year series produced. Similarities and differences in the two ecosystems behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82-85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40-60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. The model developed in this context has the

  16. Regional Climatology and Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.

    1999-01-01

    The climatology and surface radiation budget (SRB) of a region are intimately related. This paper presents a brief examination of this relationship. An 8-year surface radiation budget data set has been developed based on satellite measurements. In that data set and in this paper a region is defined as a quasi-square 2.5o in latitude and approximately the same physical distance in longitude. A pilot study by Wilber et al. (1998) showed a variety of behaviors of the annual cycles for selected regions. Selected desert regions form a loop in a specific part of the plot, with large NLW and large NSW. Tropical wet regions form much smaller loops in a different part of the plot, with small NLW and large NSW. For regions selected in high latitude the annual cycles form nearly linear figures in another part of the plot. The question arises as to whether these trajectories are characteristic of the climatology of the region or simply the behavior of the few regions selected from the set of 6596 regions. In order to address this question, it is necessary to classify the climatology of the each region, e.g. as classified by Koeppen (1936) or Trenwarthe and Horne (1980). This paper presents a method of classifying climate of the regions on the basis of the surface radiation behavior such that the results are very similar to the classification of Trenwarthe and Horne. The characteristics of the annual cycle of SRB components can then be investigated further, based on the climate classification of each region.

  17. A new climatological oceanic eddy census

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Pascual, Ananda; Pujol, Isabel; Faugère, Yannice; Delepoulle, Antoine; Briol, Frederic

    2015-04-01

    We present a new climatological oceanic eddy census dataset based on gridded sea level anomalies from satellite altimeter observations that is due for release by Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO). The identification and automated tracking of oceanic eddies is carried out using the py-eddy-tracker of Mason et al. (2014). Daily outputs of eddy properties (including position, radius, amplitude and nonlinearity) covering the period 1993-2013 over the global domain are presented and discussed. Validation and comparison is made with the published global eddy track database of Chelton et al. (2011).

  18. A long-term climatology of medicanes

    NASA Astrophysics Data System (ADS)

    Cavicchia, Leone; von Storch, Hans; Gualdi, Silvio

    2014-09-01

    Medicanes, intense and destructive mesoscale cyclones exhibiting several similarities with tropical hurricanes, are known to struck occasionally the Mediterranean Sea. Thanks to a high-resolution dynamical downscaling effort, we are able to study for the first time the long-term climatology of those rare storms in a systematic way. The distribution of medicanes frequency in space and time is discussed, and the environmental factors responsible for their formation are investigated. We find that medicanes develop in those areas of the Mediterranean region where intrusions of cold air in the upper troposphere can produce configurations of thermodynamical disequilibrium of the atmosphere similar to those associated with the formation of tropical cyclones.

  19. Momentum flux of convective gravity waves derived from an off-line gravity wave parameterization: Spatiotemporal variations at source level

    NASA Astrophysics Data System (ADS)

    Kang, Min-Jee; Chun, Hye-Yeong; Kim, Young-Ha

    2017-04-01

    Spatiotemporal variations in momentum flux spectra of convective gravity waves (CGWs) at the source level (cloud top), including nonlinear forcing effects, are examined using an off-line version of CGW parameterization and global reanalysis data. We used 1-hourly NCEP Climate Forecast System Reanalysis (CFSR) forecast data for a period of 32 years (1979-2010), with a horizontal resolution of 1° x1°. The cloud-top momentum flux (CTMF) is not solely proportional to the convective heating rate but is affected by the wave-filtering and resonance factor (WFRF), background stability and temperature underlying the convection. Consequently, the primary peak of CTMF is in the winter hemisphere midlatitude in association with storm-track region where secondary peak of convective heating exists, whereas the secondary peak of CTMF appears in the summer hemisphere tropics and intertropical convergence zone (ITCZ), where primary peak of convective heating exists. The magnitude of CTMF fluctuates largely with 1 year and 1 day periods, commonly in major CTMF regions. At low latitudes and Pacific storm track region, a 6-month period is also significant, and the decadal cycle appears in the Asian summer monsoon region and the Andes Mountains. The equatorial eastern Pacific region exhibits substantial inter-annual to decadal scale of variability with decreasing trend that is described as statistically significant. Interestingly, the correlation between convective heating and the CTMF is relatively lower in the equatorial region than in other regions. The CTMF spectra in the large-CTMF regions reveal that the spectrum shape and width changes with season and location, along with anisotropic shape of the CTMF spectrum, caused by changes in wind speed at the cloud top and the moving speed of convection. The CTMF in the 10°N to 10°S during the period of February to May 2010, when the PreConcordiasi campaign held, approximately follows a lognormal distribution but with a slight

  20. Derivation of the photometric flux of daylight from filtered measurements of global (sun and sky) radiant energy.

    PubMed

    Drummond, A J; Angström, A K

    1971-09-01

    The study reported on here is a continuation of an earlier investigation by the same authors into the relationship between natural illumination and shortwave solar radiation. Whereas the initial approach treated the illumination of sunlight as derived from the corresponding filtered direct radiation component, the results now given extend this work to parallel determination of the (more generally applicable) illumination of integral daylight on the basis of similarly filtered global (sun and sky) radiation. Characteristics are outlined of the instrumentation employed in the investigation undertaken at different locations, viz., Newport, Jerusalem (Israel), and Mauna Loa (Hawaii), as compared with the basic work that utilized data assembled at Pretoria (South Africa). Included is an extension to recent solar radiation measurements obtained on high-altitude aircraft. In general, it is established that it is possible to derive such estimates of natural illumination from radiometric measurements with an accuracy comparable with that obtainable in the best direct photometric efforts.

  1. How complex climate networks complement eigen techniques for the statistical analysis of climatological data

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Petrova, Irina; Loew, Alexander; Marwan, Norbert; Kurths, Jürgen

    2015-11-01

    Eigen techniques such as empirical orthogonal function (EOF) or coupled pattern (CP)/maximum covariance analysis have been frequently used for detecting patterns in multivariate climatological data sets. Recently, statistical methods originating from the theory of complex networks have been employed for the very same purpose of spatio-temporal analysis. This climate network (CN) analysis is usually based on the same set of similarity matrices as is used in classical EOF or CP analysis, e.g., the correlation matrix of a single climatological field or the cross-correlation matrix between two distinct climatological fields. In this study, formal relationships as well as conceptual differences between both eigen and network approaches are derived and illustrated using global precipitation, evaporation and surface air temperature data sets. These results allow us to pinpoint that CN analysis can complement classical eigen techniques and provides additional information on the higher-order structure of statistical interrelationships in climatological data. Hence, CNs are a valuable supplement to the statistical toolbox of the climatologist, particularly for making sense out of very large data sets such as those generated by satellite observations and climate model intercomparison exercises.

  2. How complex climate networks complement eigen techniques for the statistical analysis of climatological data

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan; Petrova, Irina; Löw, Alexander; Marwan, Norbert; Kurths, Jürgen

    2015-04-01

    Eigen techniques such as empirical orthogonal function (EOF) or coupled pattern (CP) / maximum covariance analysis have been frequently used for detecting patterns in multivariate climatological data sets. Recently, statistical methods originating from the theory of complex networks have been employed for the very same purpose of spatio-temporal analysis. This climate network (CN) analysis is usually based on the same set of similarity matrices as is used in classical EOF or CP analysis, e.g., the correlation matrix of a single climatological field or the cross-correlation matrix between two distinct climatological fields. In this study, formal relationships as well as conceptual differences between both eigen and network approaches are derived and illustrated using global precipitation, evaporation and surface air temperature data sets. These results allow us to pinpoint that CN analysis can complement classical eigen techniques and provides additional information on the higher-order structure of statistical interrelationships in climatological data. Hence, CNs are a valuable supplement to the statistical toolbox of the climatologist, particularly for making sense out of very large data sets such as those generated by satellite observations and climate model intercomparison exercises.

  3. Climatologies at high resolution for the earth’s land surface areas

    PubMed Central

    Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael

    2017-01-01

    High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled model output temperature and precipitation estimates of the ERA-Interim climatic reanalysis to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation climatology for the years 1979–2013. We compare the data derived from the CHELSA algorithm with other standard gridded products and station data from the Global Historical Climate Network. We compare the performance of the new climatologies in species distribution modelling and show that we can increase the accuracy of species range predictions. We further show that CHELSA climatological data has a similar accuracy as other products for temperature, but that its predictions of precipitation patterns are better. PMID:28872642

  4. A climatology of the California Current System from a network of underwater gliders

    NASA Astrophysics Data System (ADS)

    Rudnick, Daniel L.; Zaba, Katherine D.; Todd, Robert E.; Davis, Russ E.

    2017-05-01

    Autonomous underwater gliders offer the possibility of sustained observation of the coastal ocean. Since 2006 Spray underwater gliders in the California Underwater Glider Network (CUGN) have surveyed along California Cooperative Oceanic Fisheries Investigations (CalCOFI) lines 66.7, 80.0, and 90.0, constituting the world's longest sustained glider network, to our knowledge. In this network, gliders dive between the surface and 500 m, completing a cycle in 3 h and covering 3 km in that time. Sections extend 350-500 km offshore and take 2-3 weeks to occupy. Measured variables include pressure, temperature, salinity, and depth-average velocity. The CUGN has amassed over 10,000 glider-days, covering over 210,000 km with over 95,000 dives. These data are used to produce a climatology whose products are for each variable a mean field, an annual cycle, and the anomaly from the annual cycle. The analysis includes a weighted least-squares fit to derive the mean and annual cycle, and an objective map to produce the anomaly. The final results are variables on rectangular grids in depth, distance offshore, and time. The mean fields are finely resolved sections across the main flows in the California Current System, including the poleward California Undercurrent and the equatorward California Current. The annual cycle shows a phase change from the surface to the thermocline, reflecting the effects of air/sea fluxes at the surface and upwelling in the thermocline. The interannual anomalies are examined with an emphasis on climate events of the last ten years including the 2009-2010 El Niño, the 2010-2011 La Niña, the warm anomaly of 2014-2015, and the 2015-2016 El Niño.

  5. Precipitation Climatology on Titan-like Exomoons.

    PubMed

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets.

  6. The Global Precipitation Climatology Project: First Algorithm Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Arkin, Phillip A.; Xie, Pingping

    1994-01-01

    The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Program to produce global analyses of the area- and time-averaged precipitation for use in climate research. To achieve the required spatial coverage, the GPCP uses simple rainfall estimates derived from IR and microwave satellite observations. In this paper, we describe the GPCP and its first Algorithm Intercomparison Project (AIP/1), which compared a variety of rainfall estimates derived from Geostationary Meteorological Satellite visible and IR observations and Special Sensor Microwave/Imager (SSM/I) microwave observations with rainfall derived from a combination of radar and raingage data over the Japanese islands and the adjacent ocean regions during the June and mid-July through mid-August periods of 1989. To investigate potential improvements in the use of satellite IR data for the estimation of large-scale rainfall for the GPCP, the relationship between rainfall and the fractional coverage of cold clouds in the AIP/1 dataset is examined. Linear regressions between fractional coverage and rainfall are analyzed for a number of latitude-longitude areas and for a range of averaging times. The results show distinct differences in the character of the relationship for different portions of the area. These results suggest that the simple IR-based estimation technique currently used in the GPCP can be used to estimate rainfall for global tropical and subtropical areas, provided that a method for adjusting the proportional coefficient for varying areas and seasons can be determined.

  7. Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems Derived From Flux-Tower Measurements

    SciTech Connect

    Gilmanov, Tagir; Aires, L.; Barcza, Z.; Baron, V.; Belelli, L.; Beringer, J.; Billesbach, David; Bonal, D.; Bradford, J.; Ceschia, E.; Cook, D.

    2010-01-01

    Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light- response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush- steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167–183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Gru ̈nwald, K. Havra ́nkova ́, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439). Maximum values of the quantum yield (a 5 75 mmol ? mol21), photosynthetic capacity (Amax 5 3.4 mg CO2 ? m22 ? s21), gross photosynthesis (Pg,max 5 116 g CO2 ? m22 ? d21), and ecological light-use efficiency (eecol 5 59 mmol ? mol21) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8 600 g CO2 ? m22 ? yr21), total ecosystem

  8. Resource recycling through artificial lightweight aggregates from sewage sludge and derived ash using boric acid flux to lower co-melting temperature.

    PubMed

    Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei

    2012-02-01

    This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 degrees C 0.5 hr and a sintering temperature of 850 degrees C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates'surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.

  9. An improved methodology for deriving high-resolution surface shortwave radiative fluxes from MODIS in the Arctic region

    NASA Astrophysics Data System (ADS)

    Niu, Xiaolei; Pinker, Rachel T.

    2015-03-01

    The Arctic is experiencing an unprecedented increase in surface air temperature and decrease in sea ice extent. The causes of these changes are still being debated; radiative fluxes are believed to play an important role in this warming. The primary motivation for this study is to advance the quality and resolution of currently available information on surface shortwave (solar) irradiance (SWR) for the Arctic. Such information is needed to meet the challenge for accurate estimates of heat input into the open waters. An inference scheme that utilizes the Moderate Resolution Imaging Spectroradiometer (MODIS) observations is optimized for high latitudes and implemented at 5 km for 2007 at an hourly time scale. Evaluation of the 5 km based SWR estimates against hourly ground observations at Barrow site shows a mean bias of 7.9 W m-2 (3% of mean values), a standard deviation of 58.2 W m-2 (23% of mean value), and a high correlation of 0.95. Evaluation of the SWR estimates against daily ground measurements at these latitudes shows good agreement with surface observations at three sites, with a mean bias of 1.9 W m-2 (1.1% of mean values), a standard deviation of 31.5 W m-2 (17.8% of mean value), and a high correlation of 0.96. Information at this high resolution and good quality can lead to improved estimates of heat input into the complex Arctic domain. For the Beaufort Sea domain (70°N-80°N, 120°E-50°E), the differences can amount to 116 MJ m-2 (~7%) of the total solar input of this region.

  10. A climatologically significant aerosol longwave indirect effect in the Arctic

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Vogelmann, Andrew M.

    2006-01-01

    The warming of Arctic climate and decreases in sea ice thickness and extent observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin, and important positive reinforcements including ice-albedo and cloud-radiation feedbacks. The importance of cloud-radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer. The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes. Here we use multisensor radiometric data to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the `first indirect' effect. Under frequently occurring cloud types we find that this leads to an increase of an average 3.4watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.

  11. Temporal and Spatial Changes in Northern Hemisphere Floating Climatological Seasons

    NASA Astrophysics Data System (ADS)

    Choi, G.; Robinson, D. A.

    2007-12-01

    Floating climatological seasons, for which onsets and durations vary temporally and spatially, are examined over Northern Hemisphere continents and oceans. Among the variables evaluated are surface air temperature, snow extent, vegetation greenness, and atmospheric carbon dioxide concentrations. Seasonal thresholds are defined for each variable (e.g. daily mean temperature exceeding 5°C (20°C) to mark the beginning of spring (summer)). The dates on which these thresholds are reached at a given location are determined for each year over the past three decades. These seasonal onsets and offsets "float" temporally and spatially from year to another. An analysis of floating dates finds that winter duration has shortened in Europe, eastern Asia, and western North America, primarily due to an earlier spring onset. The spatial pattern of this earlier onset is associated with a positive Arctic Oscillation (AO) regime in the previous winter months. The positive winter AO finds anomalously high pressure sitting in the middle latitudes in locations where spring arrives early. This is likely due to a combination of advective fluxes of warmth and moisture and the local enhancement of solar radiation reaching the surface under clear skies. This, in turn, promotes earlier snow melt that further enhances warming and an earlier green-up. Extended summer duration is observed over continents and oceans (except the Arctic Ocean, where summer does not exist). The oceanic zone along 30°N has experienced a particularly large increase in duration, suggesting Hadley cell expansion.

  12. Observational Analysis of Seasonal and Diurnal Variations in Water Vapor Flux in the Eastern United States and its Application to Model Evaluation

    NASA Astrophysics Data System (ADS)

    Ryu, Y.; Smith, J. A.; Baeck, M. L.; Bou-Zeid, E.

    2013-12-01

    The seasonal and diurnal climatology of water vapor flux in the eastern United States is examined using high temporal resolution observation data. Vertical profiles of water vapor flux are computed at 15-minute time interval for the period of 2007-2012 from Global Positioning System precipitable water observations, radiosonde profiles of water vapor density at 00 UTC and 12 UTC, and Velocity-Azimuth Display wind profiles derived from the Sterling, VA WSR-88D. The vertically integrated water vapor flux shows a clear seasonal variation, in which its zonal component reaches a maximum in summer and a minimum in winter. A seasonal transition of the meridional water vapor flux from spring to summer is observed. Water vapor flux exhibits pronounced seasonal contrasts in its diurnal cycle. In spring, strong (weak) southwesterly water vapor flux is observed in the nighttime (in the daytime). In summer, while the water vapor flux is southwesterly from afternoon until around midnight, it becomes northwesterly after midnight and reaches its maximum in the early morning. These results are generally consistent with results using the North American Regional Reanalysis (NARR) data. However, the magnitude of water vapor flux derived from the NARR data at 3-hour interval is found to be much smaller than observed one particularly for the meridional component. A case study is carried out using the Weather Research and Forecast model, and the performance of the model is evaluated against the observational and reanalysis datasets.

  13. Comparison of 37 months global net radiation flux derived from PICARD-BOS over the same period observations of CERES and ARGO

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Wild, Martin

    2016-04-01

    The absolute level of the global net radiation flux (NRF) is fixed at the level of [0.5-1.0] Wm-2 based on the ocean heat content measurements [1]. The space derived global NRF is at the same order of magnitude than the ocean [2]. Considering the atmosphere has a negligible effects on the global NRF determination, the surface global NRF is consistent with the values determined from space [3]. Instead of studying the absolute level of the global NRF, we focus on the interannual variation of global net radiation flux, which were derived from the PICARD-BOS experiment and its comparison with values over the same period but obtained from the NASA-CERES system and inferred from the ocean heat content survey by ARGO network. [1] Allan, Richard P., Chunlei Liu, Norman G. Loeb, Matthew D. Palmer, Malcolm Roberts, Doug Smith, and Pier-Luigi Vidale (2014), Changes in global net radiative imbalance 1985-2012, Geophysical Research Letters, 41 (no.15), 5588-5597. [2] Loeb, Norman G., John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R. Doelling, Takmeng Wong, Brian J. Soden, and Graeme L. Stephens (2012), Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geoscience, 5 (no.2), 110-113. [3] Wild, Martin, Doris Folini, Maria Z. Hakuba, Christoph Schar, Sonia I. Seneviratne, Seiji Kato, David Rutan, Christof Ammann, Eric F. Wood, and Gert Konig-Langlo (2015), the energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 44 (no.11-12), 3393-3429.

  14. Mapping of coupling hot spots of satellite derived latent heat flux in indian agro-climatic regions

    NASA Astrophysics Data System (ADS)

    Choudhury, I.

    2014-11-01

    This study focuses on the understanding and mapping of coupling hotspots of LE versus terrestrial and meteorological parameters. Single source surface energy balance model was used to derive surface energy balance parameters. Agro climatic region wise monthly information of terrestrial, energy balance and meteorological parameters were derived during June- September from decadal analysis of MODIS data (2003-2012) over India (68-100°E, 5-40°N) at 5 km spatial resolution. Information on rainfall was obtained from gridded rainfall data (1° × 1° spatial resolution) from Indian Meteorological Department (IMD). The spatiotemporal variability of the parameters such as rainfall, evapotranspiration (ET), evaporative fraction (EF), soil water index (SWI), land surface temperature (LST) and air temperature (Ta) showed strong influence on seasonal LE fluctuation. LE showed positive linear coupling with ET (0.52

  15. The reactivity of plant-derived organic matter in the Amazon River and implications on aquatic carbon fluxes to the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Sawakuchi, H. O.; Keil, R. G.; da Silva, R.; Brito, D. C.; Cunha, A. C.; Gagne-Maynard, W.; de Matos, A.; Neu, V.; Bianchi, T. S.; Krusche, A. V.; Richey, J. E.

    2014-12-01

    The remineralization of terrestrially-derived organic carbon (OC), along with direct CO2 inputs from autochthonous plant respiration in floodplains, results in an evasive CO2 gas flux from inland waters that is an order of magnitude greater than the flux of OC to the ocean. This phenomenon is enhanced in tropical systems as a result of elevated temperatures and productivity relative to temperate and high-latitude counterparts. Likewise, this balance is suspected to be influenced by increasing global temperatures and alterations to hydrologic and land use regimes. Here, we assess the reactivity of terrestrial and aquatic plant-derived OM near the mouth of the Amazon River. The stable isotopic signature of CO2 (δ13CO2) was monitored in real-time during incubation experiments performed in a closed system gas phase equilibration chamber connected to a Picarro Cavity Ring-Down Spectrometer. Incubations were performed under natural conditions and with the injection of isotopically labeled terrestrial macromolecules (e.g. lignin) and algal fatty acids. Under natural conditions, δ13CO2 became more depleted, shifting from roughly -23‰ to -27‰ on average, suggesting that C3 terrestrial vegetation was the primary fuel for CO2 production. Upon separate injections of 13C-labeled lignin and algal fatty acids, δ13CO2 increased near instantaneously and peaked in under 12 hours. Roughly 75% of the labeled lignin was converted to CO2 at the peak in δ13CO2, whereas less than 20% of the algal fatty acids were converted to CO2 (preliminary data subject to change). The rate of labeled-OC remineralization was enhanced by the addition of a highly labile substrate (e.g. ethyl acetate). Likewise, constant measurements of O2/pCO2 along the lower river revealed anomalously high CO2 and low O2 levels near the confluence of the mainstem and large tributaries with high algal productivity. These collective results suggest that the remineralization of complex terrestrial macromolecules is

  16. Recent climatological trends and potential influences on forest phenology around western Lake Superior, USA

    NASA Astrophysics Data System (ADS)

    Garcia, Matthew; Townsend, Philip A.

    2016-11-01

    We assess long-term climatological means, trends, and interannual variability around the western end of Lake Superior during 1984-2013 by using available weather station data. Our results focus on changes in basic and derived climate indicators from seasonal and annual temperature and precipitation, to the traditionally defined frost-free season, to a novel definition of the climatological growing season. We describe seasonal and year-to-year climate variability that influences forest phenology, using an alternative growing season metric that is based on the warm-season plateau in accumulated chilling days as an indicator of environmental triggers for vegetation growth and senescence. Our results indicate +0.56°C regional warming during our 30 year study period, with cooler springs (-1.26°C) and significant autumn warming (+1.54°C). The duration of the climatological growing season has increased +0.27 d/yr, extending primarily into autumn. Summer precipitation in our study area has declined by an average -0.34 cm/yr, potentially leading to moisture stress that impairs vegetation carbon uptake rates and can render the forest more vulnerable to disturbance. Many changes in temperature, precipitation, and climatological growing season are most prominent in locations where Lake Superior exerts a strong hydroclimatological influence, especially the Minnesota shoreline and in forest areas downwind (southeast) of the lake. Observed trends in lake temperature and ice phenology have also changed, coincident with a large-scale climatological regime shift around 1998. A number of factors are likely altering forest phenology and the role of the forest in the climate system of this ecologically important and highly varied forest-and-lake region.

  17. Developing a high-resolution climatology for the Central California coastal region

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sook; Gangopadhyay, Avijit; Rosenfeld, Leslie K.; Bub, Frank L.

    2007-09-01

    This work presents a procedure for developing a high-resolution, regional climatology estimate, named RClimo, off the coast of central California. This high-resolution climatology may provide an alternative way to initialize numerical nowcast/forecast exercises in coastal regions. The methodology includes two primary steps: (1) averaging available data on a high-resolution grid and (2) objective interpolating the resulting average profiles onto a regular grid. The first step involves the computation of averages over density layers in the vertical and allowing for data gaps in the horizontal if data are unavailable at a high resolution. The OA in the second step uses anisotropic correlation length scales derived from the data themselves and an averaging radius to preserve the scales and variability of the synoptic fields. The dataset used to compute this climatology includes the archived CalCOFI dataset, the Autonomous Ocean Sampling Network (AOSN) 2003 experiments near Monterey Bay, and many other previously undocumented profiles from various sources. As part of the climatology product, associated uncertainty is also generated through density averaging and employing the Gauss-Markov minimum error variance during Objective Analysis. The final climatology estimate is hence subject to greater error for larger mapping-grid size or lower data density, suggesting uncertainties that vary in space. The maximum value of the resulting error distribution for the RClimo estimate from the 50-km bins is less than 11% of the temperature estimate and 1% of the salinity estimate, whereas those for the 20-km-bin RClimo are 11% and 0.9%, respectively. We have conducted comparisons between the RClimo and 1/4° Levitus climatology fields via numerical simulations initialized with each field. Simulations were performed using Regional Ocean Modeling System (ROMS) and for the month of August, a peak period of upwelling-favorable wind, with and without the atmospheric forcing. The RClimo

  18. Metrological challenges for measurements of key climatological observables Part 2: oceanic salinity

    NASA Astrophysics Data System (ADS)

    Pawlowicz, R.; Feistel, R.; McDougall, T. J.; Ridout, P.; Seitz, S.; Wolf, H.

    2016-02-01

    Salinity is a key variable in the modelling and observation of ocean circulation and ocean-atmosphere fluxes of heat and water. In this paper, we examine the climatological relevance of ocean salinity, noting fundamental deficiencies in the definition of this key observable, and its lack of a secure foundation in the International System of Units, the SI. The metrological history of salinity is reviewed, problems with its current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10.

  19. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol - Part 1: Source fluxes

    NASA Astrophysics Data System (ADS)

    Fuentes, E.; Coe, H.; Green, D.; de Leeuw, G.; McFiggans, G.

    2010-10-01

    , which revealed a higher production of particles with Dp0<100 nm at regions with high biological activity. These findings suggest that the increase in the atmospheric aerosol modal sizes from winter to summer, reported by long-term observations in North Atlantic waters, is not directly due to an impact of the higher primary organic matter production occurring during warm periods. A novel sub-micrometric size-resolved source flux function, explicitly defined as a function of the diatomaceous exudate concentration, was derived from the size distribution measurements and the estimation of the fractional whitecap coverage. According to the defined parameterisation, a 300 μM OC<0.2 μm concentration of diatomaceous exudate in seawater produces an overall increment in the total source particle flux of ~20% with respect to the organics-free seawater case. The effect increases with decreasing particle size for Dp0<100 nm, resulting in multiplicative factors between 1.02-2 with respect to the particle flux generated from seawater devoid of marine organics. The total source flux derived from the presented parameterisation was compared to recent definitions of sea-spray source fluxes based on laboratory and field observations in the literature.

  20. On the impacts of phytoplankton-derived organic matter on the properties of the primary marine aerosol - Part 1: Source fluxes

    NASA Astrophysics Data System (ADS)

    Fuentes, E.; Coe, H.; Green, D.; de Leeuw, G.; McFiggans, G.

    2010-06-01

    MBLe cruise, which revealed a higher production of particles with Dp0<100 nm at regions with high biological activity. A novel sub-micrometric size-resolved source flux function, explicitly defined as a function of the diatomaceous exudate concentration, was derived from the size distribution measurements and the estimation of the fractional whitecap coverage. According to the defined parameterisation, a 300 μM OC<0.2μm concentration of diatomaceous exudate in seawater produces an overall increment in the total source particle flux of ~20% with respect to the organics-free seawater case. The effect increases with decreasing particle size for Dp0<100 nm, resulting in multiplicative factors between 1.02-2 with respect to the particle flux generated from seawater devoid of marine organics. The total source flux derived from the presented parameterisation was compared to recent definitions of sea-spray source fluxes based on laboratory and field observations in the literature.

  1. Hanford Site Climatological Data Summary 1998

    SciTech Connect

    DJ Hoitink; JV Ramsdell; KW Burk

    1999-05-26

    This document presents the climatological data measured at the U.S. Department of Energy's Hanford Site for calendar year 1998. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature; precipitation, normal and extreme values of temperature and precipitation and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk (1994, 1995, 1996, 1997, 1998); however, Appendix B--Wind Climatology (1994) is excluded. 1998 was much warmer than normal, tying 1992 as the warmest year on record. The average temperature was 56.4 F, 3.1 F above normal (53.3 F). The highest July temperature ever recorded was 112 F on July 27, 1998. The first week in May, three daily temperature records were broken or tied. November 1998 was the third warmest on record. For the year 1998, there were 73 days with maximum temperature >90 F, the third highest on record. For the 12-month period, 11 months were warmer than normal and 1 was cooler than normal. The summer (June, July, and August) and autumn (September, October, and November) of 1998 were the fourth warmest on record. 1998 was slightly wetter than normal. Precipitation totaled 6.45 in., 103% of normal (6.26 in.); snow-fall totaled 7.2 in., compared to the normal of 13.8 in. There were eight thunderstorms recorded at Hanford Meteorological Station in July 1998, tying 1983 for the most thunderstorms in July. The average wind speed during 1998 was 7.9 mph, 0.2 mph above normal (7.7 mph). There were 32 days with peak gusts {ge}40 mph, compared to a yearly average of 26 mph. The peak gust during the year was 56 mph from the south-southwest on November 21. November 1998 had a record number of days (10) with wind gusts {ge}40 mph. The heating-degree days for 1997-1998 were 4,523 (14% below the 5

  2. Hanford Site climatological data summary 1996, with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1997-04-01

    This document presents the climatological data measured at the US Department of Energy`s Hanford Site for calendar year 1996. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters.

  3. Horizontal gradient correction of the high resolution ocean climatology

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Chang, Y. S.; Shin, H. R.

    2016-12-01

    National Oceanography Data Center (NODC) has developed high resolution (0.1° by 0.1°) regional climatologies. They provide reliable temperature and salinity mean fields comparing to those of previous 1°or 0.25° gridded data. However, Chang and Shin (2014) pointed a vertical gradient problem showing abnormal density inverse phenomena along the coastal areas in the East Asian Seas regional climatology. In this study, we additionally recognized abnormal geostrophic currents when we use same climatology. Geostrophic currents show repeated strong patterns at 1° intervals especially in the East Sea, which is related to horizontal temperature gradients at the same areas. It is due to employ new small radius of influence to generate high resolution climatology, meanwhile they still use 1° gridded background and sparse serial observations. Here, we reproduce high resolution climatology by using optimal interpolation method and seek possible horizontal gradient corrections to resolve this problem.

  4. The Global Climatology Network Precipitation data

    SciTech Connect

    Peterson, T.C.; Easterling, D.R.; Vose, R.S.; Eischeid, J.K.

    1993-08-01

    Several years ago, in response to growing concern about global climate change, the US National Climatic Data Center and the Carbon Dioxide Information Analysis Center undertook an effort to create a baseline global land surface climate data set called the Global Historical Climatology Network (GHCN, Vose et al., 1992). GHCN was created by merging several large existing climate data sets into one data base. Fifteen separate data sets went into the creation of the GHCN version 1.0. GHCN version 1.0 was released in 1992. It has 7,533 precipitation stations, but the number of stations varies with time. A slight majority (55%) have records in excess of 50 years, and a significant proportion (13%) have records in excess of 100 years. The longest period of record for any given station is 291 years (1697--1987 for Kew, United Kingdom).

  5. Climatology of fog in SW-Iceland

    NASA Astrophysics Data System (ADS)

    Barranco, Aurelio; Ólafsson, Haraldur

    2016-04-01

    The climatology of fog in Keflavik Airport in Southwest-Iceland has been investigated for the latter half of the 20th Century. Fog is twice as frequent in the late night than in the afternoon, suggesting important, but not dominating, impact of the diurnal cycle. There is large interannual variability in the frequency of fog, but no clear long-term trend. However, there is a clear shift in seasonal frequency; the period 1953-1977 had relatively frequent fog in the autumn, while 1978-1998, fog is relatively frequent in the spring and summer. This indicates sensitivity of the fog to mean sea surface temperatures. An attempt is made to assess frequency of fog in climate scenarii.

  6. Climatology of Urban-regional Systems

    NASA Technical Reports Server (NTRS)

    Pease, R. W.

    1971-01-01

    Urbanized areas have come to be significant if not dominant components of many regional land surfaces. They represent perhaps the most dramatic recent change man has made in his environment - a change that may well burgeon in the foreseeable future as greater percentages of world populations crowd into metropolitan areas. The climate of urban-regional systems is involved because temperature, air, and pollutants added to the air are significant aspects of this change. During the past two years, substantial progress has been made in the application of remote sensing techniques to the study of urban climatology by programs jointly sponsored by NASA and the United States Geological Survey. The initial effort has endeavored with considerable success to map terrestrial radiation emission or the general thermal state of the land surface with the aid of imaging radiometers (mechanical-optical scanners).

  7. Tohono O'odham Monsoon Climatology

    NASA Astrophysics Data System (ADS)

    Ackerman, G.

    2006-12-01

    The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.

  8. On reconstruction of time series in climatology

    NASA Astrophysics Data System (ADS)

    Privalsky, V.; Gluhovsky, A.

    2015-10-01

    The approach to time series reconstruction in climatology based upon cross-correlation coefficients and regression equations is mathematically incorrect because it ignores the dependence of time series upon their past. The proper method described here for the bivariate case requires the autoregressive time- and frequency domains modeling of the time series which contains simultaneous observations of both scalar series with subsequent application of the model to restore the shorter one into the past. The method presents further development of previous efforts taken by a number of authors starting from A. Douglass who introduced some concepts of time series analysis into paleoclimatology. The method is applied to the monthly data of total solar irradiance (TSI), 1979-2014, and sunspot numbers (SSN), 1749-2014, to restore the TSI data over 1749-1978. The results of the reconstruction are in statistical agreement with observations.

  9. Inner Radiation Belt Dynamics and Climatology

    NASA Astrophysics Data System (ADS)

    Guild, T. B.; O'Brien, P. P.; Looper, M. D.

    2012-12-01

    We present preliminary results of inner belt proton data assimilation using an augmented version of the Selesnick et al. Inner Zone Model (SIZM). By varying modeled physics parameters and solar particle injection parameters to generate many ensembles of the inner belt, then optimizing the ensemble weights according to inner belt observations from SAMPEX/PET at LEO and HEO/DOS at high altitude, we obtain the best-fit state of the inner belt. We need to fully sample the range of solar proton injection sources among the ensemble members to ensure reasonable agreement between the model ensembles and observations. Once this is accomplished, we find the method is fairly robust. We will demonstrate the data assimilation by presenting an extended interval of solar proton injections and losses, illustrating how these short-term dynamics dominate long-term inner belt climatology.

  10. The composition and flux of vascular-plant derived organic matter export from small mountainous rivers during typhoon event

    NASA Astrophysics Data System (ADS)

    Bao, Hongyan; Kao, Shuh-Ji

    2014-05-01

    Small mountainous rivers, which suffer from landslides triggered by tropical cyclones, may transfer particulate organic carbon (POC) from land to the ocean in an express way, hyperpycnal flow. A significant amount of organic carbon produced by biosphere was channeled to the deep sea during flash flood. The OC source characterization is essential to understand the biosphere denudation and the responses of river basin to the growing climate extremes. Lignin phenols had been widely used in the geochemical studies to trace the terrestrial POC transport as it is unique to the vascular plants. In present study, we first measured lignin phenols in samples collected from three stations in a Taiwan river, Chuoshui River, during the Typhoon Mindulle in 2004 with high time resolution (every 3 hours) to explore the source variation and accurately quantify vascular plant derived OM throughout the flood. In the mainstream, Λ8 (Lignin concentration normalized to POC) varied from approximately 0.4 mg/100mg OC at the flood rising and up to 2.4 mg/100mg OC at the peak discharge. A significant positive correlation between water discharge and Λ8 was observed (r=0.93, p<0.001) suggesting that precipitation, thus discharge is the primary control for the transport of the vascular plant OM. Moreover, a significant negative relation observed between Λ8 and degradation indicator (P/(V+S)) (r=0.62, p<0.001)revealed that freshly produced vascular POC was diluted by highly degraded OC. We calculated that approximately 1.3 Gg of particulate lignin was exported within 84h from Chuoshui River to the ocean, in which ~50% was achieved during the 3 hours discharge peak. The event exporting particulate lignin from Chuoshui River was ~10% of annual export from Changjiang, which is 600x larger in watershed size. Moreover, >90% particulate lignin in Chuoshui River was delivered via hyperpycnal flow, representing an efficient sequestration of terrestrial OC in deep ocean.

  11. Do Australian sclerophyll forests exhibit seasonality? an analysis with phenocam, eddy covariance fluxes, and satellite derived phenology.

    NASA Astrophysics Data System (ADS)

    Restrepo-Coupe, N.; Huete, A. R.; Davies, K.; Macfarlane, C.; Beringer, J.; Van Gorsel, E.; Maier, C.; Resco de Dios, V.

    2014-12-01

    Temperate broadleaf evergreen forests in Australia exhibit characteristically unique and contradictory seasonality behaviors with strongly seasonal gross primary productivity (GPP) values and weak to no seasonality in satellite-derived vegetation indices (VIs), leaf area index (LAI), and fraction of absorbed photosynthetically active radiation (fPAR). As part of adaptation strategies to highly variable rainfall and water balance deficit conditions, sclerophyll forests allocate carbon to long-lived, thick leaves with low water content, and generally exhibit small seasonal changes in canopy infrastructure (LAI). Erectophile leaf angle distributions, and/or differences in leaf adaxial and abaxial optical properties allow the leaves to achieve thermal protection. However, these leaf traits complicate any spectral analysis and the study of sclerophyll forest phenology. Our goal was to utilize tower mounted phenocam imagery of whole-canopy, multiple tree crowns, and understory layers to trace multi-functional phenology profiles at three sclerophyll forest sites (one banksia dominated and two eucalyptus dominated) all part of the Terrestrial Ecosystem Research Network (TERN). We contrast and compare in-situ phenocam time series data with satellite vegetation products from the Moderate Resolution Imaging Spectroradiometer (MODIS), and eddy covariance measures of ecosystem built photosynthetic capacity (ecosystem light use efficiency, LUE, and chlorophyll fPAR). We found that at sclerophyll forests, despite ecosystem photosynthetic capacity exhibiting weak seasonality, climate and in particular rainfall pulses, drove diverse responses over each of the different forest components (e.g. overstory and understory). Interestingly, tree and understory growing and browning cycles were out-of phase, and contributed to the characteristic VI seasonality behavior of the whole ecosystem.

  12. A hemispheric climatology of monsoon depressions

    NASA Astrophysics Data System (ADS)

    Hurley, J. V.; Boos, W.

    2012-12-01

    Monsoon depressions are large (1000-2000 km diameter) cyclonic low pressure systems having organized deep convection, best known for forming in the Bay of Bengal and migrating northwest over northern India in the monsoon trough. About 3 to 5 of these systems occur during each monsoon season, contributing about half of the Indian summer rainfall. Despite their importance as a precipitation source, their dynamics are poorly constrained. Furthermore, although they do occur elsewhere, such as around Australia and in the southern Indian Ocean, there does not exist a collective inventory of these systems outside of the Bay of Bengal region. Here we present a climatology of monsoon depressions produced from the ERA-Interim Reanalysis. Feature tracks are identified using an automated tracking algorithm (K. Hodges' TRACK code) applied to the 850 hPa relative vorticity field for local summer, 1989 to 2003. Using criteria based on relative vorticity and sea level pressure, cyclonic low pressure systems are separated into different intensity categories, one of which corresponds to the definition for monsoon depressions used by the India Meteorological Department. The resultant distribution of storms obtained for the Bay of Bengal region compares well with a previously compiled climatology of monsoon depressions that was limited to the region surrounding India. Having validated our ability to identify monsoon depressions in their classic genesis region near India, we then extend the methods to include the western Pacific, Australia, and the southern Indian Ocean. Track distributions and composite structures of monsoon depressions for these different regions will be presented.

  13. Decadal cirrus climatology with lidar at midlatitude

    NASA Astrophysics Data System (ADS)

    Hoareau, C.; Keckhut, P.; Baray, J. l.

    2012-04-01

    High-altitude clouds, like cirrus, have been identified as one important regulator of the radiance balance of the earth-atmosphere system (Twomey, 1991), and constitute about 30% of the earth's surface cover (Liou, 1986). Through radiation effects, these clouds are likely to modulate climate system on all scales and are important regulators of the radiative balance of the atmosphere despite their optical depth (Liou et al., 2002). Currently, role of cirrus clouds in the regulation of water vapor as well as the vertical transport of water vapor and ice particles in the vicinity of the tropopause is not perfectly known (Corti et al., 2008). The processes involved are debated (Kiemle et al., 2008) and different formation processes could lead to different cloud characteristics that require to be identified before specific statistical analysis (Keckhut et al., 2006). Lidar measurements provide accurate information on the vertical distribution of cirrus and, therefore, are now used to develop highly resolved cirrus database. A first climatology of cirrus clouds at Midlatitude from lidar measurements has shown cirrus clouds were observed in half of the time (~54%) with subvisible cirrus clouds (SVC) events composing ~23% of the occurrence (Goldfarb et al., 2001). However no distinction according the altitude have been investigated although altitude range and vertical extension of cirrus clouds are critical parameters for the radiative balance of the atmosphere. In a more recent study, a statistical multivariate analysis of one year lidar data acquired in south of France have been realized in order to determine distinct classes of cirrus showing three different classes (Keckhut et al. 2006). Similar results according the classification have been observed in this present study based on a climatology constructed over the period 1996-2007 using a high resolution Rayleigh-Mie-Raman lidar. As the database is long enough, the evolution of cirrus clouds occurrence has also been

  14. A climatology of air-sea interactions at the Mediterranean LION and AZUR buoys

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Prieur, Louis; Bouin, Marie-Noëlle; Giordani, Hervé

    2014-05-01

    The LION and AZUR buoys (respectively at 42.1°N 4.7°E and 43.4°N 7.8°E) provide an extended data set since respectively 1999 and 2001 to present for studying air-sea interactions in the northwestern Mediterranean basin. The two buoys are located where high wind events occur (resp. north western and north easterly gale winds), that force and condition deep oceanic winter convection in that region. A short-term climatology (resp. 13 and 11 years) of air-sea interactions has been developed, which includes classical meteo-oceanic parameters, but also waves period and significant wave heights and radiative fluxes. Moreover turbulent surface fluxes have been estimated from various bulk parameterizations, in order to estimate uncertainties on fluxes. An important dispersion of turbulent fluxes is found at high wind speeds according to the parameterization used, larger than taking into account the second order effects of cool skin, warm layer and waves. An important annual cycle affects air temperatures (ATs), SSTs and turbulent fluxes at the two buoys. The annual cycle of ATs and SSTs can be well reconstructed from the first two annual harmonics, while for the turbulent heat fluxes the erratic occurrence of high and low flux events, well correlated with high/dry and low windy periods, strongly affect their annual and interannual cycles. The frequency of high surface heat fluxes and high wind stress is found highest during the autumn and winter months, despite the fact that north-westerly gale winds occur all year long at LION buoy. During calm weather period, ATs and SSTs experience an important diurnal cycle (on average 1 and 0.5°C respectively), that affect latent and sensible heat fluxes. Finally, an estimate of the interannual variability of the turbulent fluxes in Autumn and Winter is discussed, in order to characterize their potential role on deep ocean convection.

  15. Biogeochemical fluxes and fate of diazotroph-derived nitrogen in the food web after a phosphate enrichment: modeling of the VAHINE mesocosms experiment

    NASA Astrophysics Data System (ADS)

    Gimenez, Audrey; Baklouti, Melika; Bonnet, Sophie; Moutin, Thierry

    2016-09-01

    The VAHINE mesocosm experiment in the oligotrophic waters of the Nouméa lagoon (New Caledonia), where high N2 fixation rates and abundant diazotroph organisms were observed, aimed to assess the role of the nitrogen input through N2 fixation in carbon production and export and to study the fate of diazotroph-derived nitrogen (DDN) throughout the planktonic food web. A 1-D vertical biogeochemical mechanistic model was used in addition to the in situ experiment to enrich our understanding of the dynamics of the planktonic ecosystem and the main biogeochemical carbon (C), nitrogen (N) and phosphate (P) fluxes. The mesocosms were intentionally enriched with ˜ 0.8 µmol L-1 of inorganic P to trigger the development of diazotrophs and amplify biogeochemical fluxes. Two simulations were run, one with and the other without the phosphate enrichment. In the P-enriched simulation, N2 fixation, primary production (PP) and C export increased by 201, 208 and 87 %, respectively, consistent with the trends observed in the mesocosms (+124, +141 and +261 % for N2 fixation, PP and C export, respectively). In total, 5-10 days were necessary to obtain an increase in primary and export productions after the dissolved inorganic phosphate (DIP) enrichment, thereby suggesting that classical methods (short-term microcosms experiments) used to quantify nutrient limitations of primary production may not be relevant. The model enabled us to monitor the fate of fixed N2 by providing the proportion of DDN in each compartment (inorganic and organic) of the model over time. At the end of the simulation (25 days), 43 % of the DDN was found in the non-diazotroph organisms, 33 % in diazotrophs, 16 % in the dissolved organic nitrogen pool, 3 % in the particulate detrital organic pool and 5 % in traps, indicating that N2 fixation was of benefit to non-diazotrophic organisms and contributed to C export.

  16. DL0805-2, a novel indazole derivative, relaxes angiotensin II-induced contractions of rat aortic rings by inhibiting Rho kinase and calcium fluxes

    PubMed Central

    Yuan, Tian-yi; Chen, Yu-cai; Zhang, Hui-fang; Li, Li; Jiao, Xiao-zhen; Xie, Ping; Fang, Lian-hua; Du, Guan-hua

    2016-01-01

    Aim: DL0805-2 [N-(1H-indazol-5-yl)-1-(4-methylbenzyl) pyrrolidine-3-carboxamide] is a DL0805 derivative with more potent vasorelaxant activity and lower toxicity. This study was conducted to investigate the vasorelaxant mechanisms of DL0805-2 on angiotensin II (Ang II)-induced contractions of rat thoracic aortic rings in vitro. Methods: Rat thoracic aortic rings and rat aortic vascular smooth muscle cells (VSMCs) were pretreated with DL0805-2, and then stimulated with Ang II. The tension of the aortic rings was measured through an isometric force transducer. Ang II-induced protein phosphorylation, ROS production and F-actin formation were assessed with Western blotting and immunofluorescence assays. Intracellular free Ca2+ concentrations were detected with Fluo-3 AM. Results: Pretreatment with DL0805-2 (1–100 μmol/L) dose-dependently inhibited the constrictions of the aortic rings induced by a single dose of Ang II (10−7 mol/L) or accumulative addition of Ang II (10−10–10−7 mol/L). The vasodilatory effect of DL0805-2 was independent of endothelium. In the aortic rings, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) suppressed Ang II-induced Ca2+ influx and intracellular Ca2+ mobilization, and Ang II-induced phosphorylation of two substrates of Rho kinase (MLC and MYPT1). In VSMCs, pretreatment with DL0805-2 (1, 3, and 10 μmol/L) also suppressed Ang II-induced Ca2+ fluxes and phosphorylation of MLC and MYPT1. In addition, pretreatment with DL0805-2 attenuated ROS production and F-actin formation in the cells. Conclusion: DL0805-2 exerts a vasodilatory action in rat aortic rings through inhibiting the Rho/ROCK pathway and calcium fluxes. PMID:27041459

  17. A comparison of ground-based and satellite-derived radiative heat flux at Mt Etna: the 12 August lava fountain case study

    NASA Astrophysics Data System (ADS)

    Ganci, Gaetana; Calvari, Sonia; James, Mike; Del Negro, Ciro

    2013-04-01

    The recent eruptive activity at Mt Etna has been characterized by quiet frequent, intermittent episodes of lava fountains associated with small lava flow output, occurring especially at the SE Crater. During 2011, 18 paroxysmal lava fountains were produced by a new cone, named "Sturiale Cone", on the east flank of the SE Crater. Given the high hazard posed by this activity, and the need of improving detection, description and knowledge of these events, remote monitoring through fixed cameras and satellites has becoming crucial, especially using thermal sensors. We here focus on the 12 August 2011 episode, the strongest of the lava fountains occurred in 2011, and also the best monitored, given the clear sky, absence of clouds, and possibility to collect also images from a close-up view. We disposed of a total of 8 fixed cameras working around the volcano, three of them offering a thermal view of the episode. Moreover, as satellite observations, we could use the complete data set from the SEVIRI sensor, which has a temporal resolution of 15 minutes. To compare the field- and satellite-derived radiative heat flux curves, thermal images were registered by taking into account a DEM, the GPS camera position, the relative camera rotations and first order lens distortion parameters. Moreover, it was performed a pixel by pixel correction from path length and atmospheric effects. Finally, a temperature threshold was fixed to identify the active lava area and the amount of heat lost by radiation from all the pixels covered by lava was computed. SEVIRI data were analyzed by the HOTSAT thermal monitoring system. Through automatic hot-spot detection algorithm based on dynamic thresholds, we are able to provide an estimate of the radiant heat flux for each thermally anomalous pixel and possibly convert it into time averaged discharge rate. Preliminary results showed a good agreement on timing, shape and amplitude of the radiative heat flux time series between thermal camera and

  18. Long-term records of global radiation, carbon and water fluxes derived from multi-satellite data and a process-based model

    NASA Astrophysics Data System (ADS)

    Ryu, Youngryel; Jiang, Chongya

    2016-04-01

    To gain insights about the underlying impacts of global climate change on terrestrial ecosystem fluxes, we present a long-term (1982-2015) global radiation, carbon and water fluxes products by integrating multi-satellite data with a process-based model, the Breathing Earth System Simulator (BESS). BESS is a coupled processed model that integrates radiative transfer in the atmosphere and canopy, photosynthesis (GPP), and evapotranspiration (ET). BESS was designed most sensitive to the variables that can be quantified reliably, fully taking advantages of remote sensing atmospheric and land products. Originally, BESS entirely relied on MODIS as input variables to produce global GPP and ET during the MODIS era. This study extends the work to provide a series of long-term products from 1982 to 2015 by incorporating AVHRR data. In addition to GPP and ET, more land surface processes related datasets are mapped to facilitate the discovery of the ecological variations and changes. The CLARA-A1 cloud property datasets, the TOMS aerosol datasets, along with the GLASS land surface albedo datasets, were input to a look-up table derived from an atmospheric radiative transfer model to produce direct and diffuse components of visible and near infrared radiation datasets. Theses radiation components together with the LAI3g datasets and the GLASS land surface albedo datasets, were used to calculate absorbed radiation through a clumping corrected two-stream canopy radiative transfer model. ECMWF ERA interim air temperature data were downscaled by using ALP-II land surface temperature dataset and a region-dependent regression model. The spatial and seasonal variations of CO2 concentration were accounted by OCO-2 datasets, whereas NOAA's global CO2 growth rates data were used to describe interannual variations. All these remote sensing based datasets are used to run the BESS. Daily fluxes in 1/12 degree were computed and then aggregated to half-month interval to match with the spatial

  19. Ozone Climatological Profiles for Version 8 TOMS and SBUV Retrievals

    NASA Technical Reports Server (NTRS)

    McPeters, R. D.; Logan, J. A.; Labow, G. J.

    2003-01-01

    A new altitude dependent ozone climatology has been produced for use with the latest Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) retrieval algorithms. The climatology consists of monthly average profiles for ten degree latitude zones covering from 0 to 60 km. The climatology was formed by combining data from SAGE II (1988 to 2000) and MLS (1991-1999) with data from balloon sondes (1988-2002). Ozone below about 20 km is based on balloons sondes, while ozone above 30 km is based on satellite measurements. The profiles join smoothly between 20 and 30 km. The ozone climatology in the southern hemisphere and tropics has been greatly enhanced in recent years by the addition of balloon sonde stations under the SHADOZ (Southern Hemisphere Additional Ozonesondes) program. A major source of error in the TOMS and SBUV retrieval of total column ozone comes from their reduced sensitivity to ozone in the lower troposphere. An accurate climatology for the retrieval a priori is important for reducing this error on the average. The new climatology follows the seasonal behavior of tropospheric ozone and reflects its hemispheric asymmetry. Comparisons of TOMS version 8 ozone with ground stations show an improvement due in part to the new climatology.

  20. A climatological network for regional climate monitoring in Sardinia.

    NASA Astrophysics Data System (ADS)

    Delitala, Alessandro M. S.

    2016-04-01

    In recent years the Region of Sardinia has been working to set-up a Regional Climatological Network of surface stations, in order to monitor climate (either stationary or changing) at sub-synoptic scale and in order to make robust climatological information available to researchers and to local stake-holders. In order to do that, an analysis of long climatological time series has been performed on the different historical networks of meteorological stations that existed over the past two centuries. A set of some hundreds of stations, with about a century of observations of daily precipitation, was identified. An important subset of them was also defined, having long series of observations of temperature, wind, pressure and other quantities. Specific investments were made on important stations sites where observations had been carried for decades, but where the climatological stations did not exist anymore. In the present talk, the Regional Climatological Network of Sardinia will be presented and its consistency discussed. Specific attention will be given to the most important climatological stations which have got more than a century of observations of meteorological quantities. Critical issues of the Regional Climatological Network, like relocation of stations and inhomogeneity of data due to instrumental changes or environmental modifications, will be discussed.

  1. Uncertainties in climatological tropical humidity profiles: Some implications for estimating the greenhouse effect

    SciTech Connect

    Gutzler, D.S. )

    1993-05-01

    The vertical profile of water vapor, the principal infrared-absorbing gas in the atmosphere, is an important factor in determining the energy balance of the climate system. This study examines uncertainties in calculating a climatological humidity profile: specifically one derived from radiosonde data representative of the moist and highly convective region over the western tropical Pacific Ocean. Uncertainties in the humidity data are large in conditions of low temperature or low humidity in the mid- and upper troposphere. Results derived from a single United States station (Koror) and from an average of four United States-operated stations (all near the equator west of the date line) yield nearly identical results. No humidity measurements are reported in fully the upper third of the troposphere. The implications of these uncertainties for determining the climatological humidity profile are quantitatively assessed by bracketing the range of plausible assumptions for unreported humidity to produce extreme estimates of the climatological profile. These profiles, together with the observed climatological temperature profile, are used as input to a radiative transfer model to ascertain the uncertainty in clear-sky outgoing infrared radiance due to water vapor uncertainties. The radiance uncertainty is shown to be comparable in magnitude to the purely radiative response of the tropical atmosphere to doubling carbon dioxide. The uncertainty associated with unmeasured upper-tropospheric humidity is approximately equal to that arising from incompletely measured midtropospheric humidity. Clear-sky radiative uncertainties, however, are modest relative to the uncertainty associated with variations of infrared absorption due to clouds, as demonstrated by introducing citrus ice particles into the radiative transfer calculations.

  2. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  3. Hanford Site climatological data summary 1997, with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1998-03-01

    This document presents the climatological data measured at the U.S. Department of Energy`s Hanford Site for calendar year 1997. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk; however, Appendix B - Wind Climatology is excluded.

  4. A Climatology of Central American Gyres

    NASA Astrophysics Data System (ADS)

    Papin, P. P.; Griffin, K. S.; Bosart, L. F.; Torn, R. D.

    2012-12-01

    Monsoon gyres, commonly found over the western Pacific Ocean, are characterized by broad low-level cyclonic circulations that occur at a variety of spatial scales ranging from 1500-3000 km. Low-level cyclonic gyre circulations, while less frequent and occupying a smaller scale, have also been observed over Central America during the tropical cyclone (TC) season. A noteworthy gyre observed during the 2010 PREDICT field project served as a "collector" of TC Matthew and a source for TC Nicole. During October 2011, devastating flooding occurred in Guatemala and El Salvador when TD 12-E, embedded in a gyre circulation, made landfall on the Pacific coast of Central America. These gyre occurrences, their apparent links to TC activity, and their association with high-impact weather motivates this presentation. A preliminary analysis of Central American gyres suggests that their spatial scales vary between 1000-2000 km. These gyres also tend to be co-located with reservoirs of deep moisture that are characterized by high precipitable water values (>50 mm) and embedded deep convection on their southern and eastern sides. Catastrophic flooding can occur when gyre cyclonic circulations interact with the topography of Central America. A Central American gyre climatology including gyre frequency over the TC season and individual gyre duration will be presented. This climatology is then used to craft a gyre composite using previous gyre cases from 1980-2010. Particular attention will be given to the common synoptic and sub-synoptic scale features that precede and take place during gyre formation. This includes the role that intraseasonal and interannual circulations such as the Madden-Julian Oscillation (MJO) and El Nino-Southern Oscillation (ENSO) might play in gyre development. TC genesis events within gyre circulations will also be highlighted and examined further. Finally, the results of a September 2010 case study will be used to illustrate the impact that Central American

  5. Lightning climatology in the Congo Basin

    NASA Astrophysics Data System (ADS)

    Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.

    2016-09-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide Lightning Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with Lightning Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong activity from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very active region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).

  6. Updated population metadata for United States historical climatology network stations

    USGS Publications Warehouse

    Owen, T.W.; Gallo, K.P.

    2000-01-01

    The United States Historical Climatology Network (HCN) serial temperature dataset is comprised of 1221 high-quality, long-term climate observing stations. The HCN dataset is available in several versions, one of which includes population-based temperature modifications to adjust urban temperatures for the "heat-island" effect. Unfortunately, the decennial population metadata file is not complete as missing values are present for 17.6% of the 12 210 population values associated with the 1221 individual stations during the 1900-90 interval. Retrospective grid-based populations. Within a fixed distance of an HCN station, were estimated through the use of a gridded population density dataset and historically available U.S. Census county data. The grid-based populations for the HCN stations provide values derived from a consistent methodology compared to the current HCN populations that can vary as definitions of the area associated with a city change over time. The use of grid-based populations may minimally be appropriate to augment populations for HCN climate stations that lack any population data, and are recommended when consistent and complete population data are required. The recommended urban temperature adjustments based on the HCN and grid-based methods of estimating station population can be significantly different for individual stations within the HCN dataset.

  7. Climatology of the stratospheric polar vortex and planetary wave breaking

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Holton, James R.

    1988-01-01

    The distribution of Ertel's potential vorticity (PV) on the 850 K isentropic surface is used to establish a climatology for the transient evolution of the planetary scale circulation in the Northern Hemisphere winter midstratosphere. PV distributions are computed from gridded NMC daily temperature and height maps for the 10 and 30 mb levels, and show that a very good approximation for 850 K PV can be derived from 10 mb heights and temperatures alone. It is assumed that reversals of the latitudinal gradient of PV, localized in longitude and latitude may be regarded as signatures of planetary wave breaking. Wave breaking identified by such signatures tends to occur mainly in the vicinity of the Aleutian anticyclone, with a secondary maximum over Europe. The area of the polar vortex, defined as the area enclosed by PV contours greater than a certain critical value, is strongly influenced by wave breaking. Erosion of the polar vortex due to transport and mixing of PV leads to a preconditioned state, when defined in terms of vortex area, that always occurs prior to major stratospheric warmings. During winters with little PV transport or mixing, the vortex area evolves rather uniformly in response to radiative forcing. During winters with major sudden warmings, the wave breaking signature as defined here first appears at low values of PV, then rapidly moves toward higher values as the vortex area is reduced and the 'surf-zone' structure becomes well defined.

  8. Climatology of the stratospheric polar vortex and planetary wave breaking

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Holton, James R.

    1988-01-01

    The distribution of Ertel's potential vorticity (PV) on the 850 K isentropic surface is used to establish a climatology for the transient evolution of the planetary scale circulation in the Northern Hemisphere winter midstratosphere. PV distributions are computed from gridded NMC daily temperature and height maps for the 10 and 30 mb levels, and show that a very good approximation for 850 K PV can be derived from 10 mb heights and temperatures alone. It is assumed that reversals of the latitudinal gradient of PV, localized in longitude and latitude may be regarded as signatures of planetary wave breaking. Wave breaking identified by such signatures tends to occur mainly in the vicinity of the Aleutian anticyclone, with a secondary maximum over Europe. The area of the polar vortex, defined as the area enclosed by PV contours greater than a certain critical value, is strongly influenced by wave breaking. Erosion of the polar vortex due to transport and mixing of PV leads to a preconditioned state, when defined in terms of vortex area, that always occurs prior to major stratospheric warmings. During winters with little PV transport or mixing, the vortex area evolves rather uniformly in response to radiative forcing. During winters with major sudden warmings, the wave breaking signature as defined here first appears at low values of PV, then rapidly moves toward higher values as the vortex area is reduced and the 'surf-zone' structure becomes well defined.

  9. Tropical Tropospheric Ozone Climatology: Approaches Based on SHADOZ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Chatfield, Robert B.; Hudson, Robert D.; Andrade, Marcos; Coetzee, Geert J. R.; Posny, Francoise

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, , for 12 stations that span the entire equatorial zone [Thompson et al., JGR, 108,8238, 2003]. The most striking features of tropospheric ozone profiles in SHADOZ are: (1) persistent longitudinal variability in tropospheric ozone profiles, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; (2) intense short-term variability triggered by changing meteorological conditions and advection of pollution. The implications of these results for profile climatologies and trends are described along with several approaches to classifying ozone profiles: 1) Seasonal means during MAM (March-April-May) and SON (September-October-November); 2) Maxima and minima, identified through correlation of TOMS-derived TTO (tropical tropospheric ozone) column depth with the sonde integrated tropospheric ozone column; and 3) Meteorological regimes, a technique that is effective in the subtropics where tropical and mid-latitude conditions alternate.

  10. Climatology characterization of equatorial plasma bubbles using GPS data

    NASA Astrophysics Data System (ADS)

    Magdaleno, Sergio; Herraiz, Miguel; Altadill, David; de la Morena, Benito A.

    2017-01-01

    The climatology of equatorial plasma bubbles (EPBs) for the period 1998-2008 was studied using slant total electron content (sTEC) derived from global positioning system (GPS) data. The sTEC values were calculated from data measured at 67 International GNSS Service (IGS) stations distributed worldwide around the geomagnetic equator and embracing the region of the ionospheric equatorial anomaly (IEA). EPBs and their characteristics were obtained using the Ionospheric Bubble Seeker (IBS) application, which detects and distinguishes sTEC depletions associated with EPBs. This technique bases its analysis on the time variation of the sTEC and on the population variance of this time variation. IBS finds an EPB by default when an sTEC depletion is greater than 5 TEC units (TECu). The analysis of the spatial behavior shows that the largest rate of EPB takes place at the equator and in the South America-Africa sector, while their occurrence decreases as the distance from the magnetic equator increases. The depth and duration of the sTEC depletions also maximize at the equator and in the South America-Africa sector and weaken departing from the equator. The results of the temporal analysis for the data of the IGS stations located in AREQ, NKLG, IISC, and GUAM indicate that the greatest rate of EPB occurrence is observed for high solar activity.

  11. Metabolic Characterization of Polarized M1 and M2 Bone Marrow-derived Macrophages Using Real-time Extracellular Flux Analysis.

    PubMed

    Van den Bossche, Jan; Baardman, Jeroen; de Winther, Menno P J

    2015-11-28

    Specific metabolic pathways are increasingly being recognized as critical hallmarks of macrophage subsets. While LPS-induced classically activated M1 or M(LPS) macrophages are pro-inflammatory, IL-4 induces alternative macrophage activation and these so-called M2 or M(IL-4) support resolution of inflammation and wound healing. Recent evidence shows the crucial role of metabolic reprogramming in the regulation of M1 and M2 macrophage polarization. In this manuscript, an extracellular flux analyzer is applied to assess the metabolic characteristics of naive, M1 and M2 polarized mouse bone marrow-derived macrophages. This instrument uses pH and oxygen sensors to measure the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR), which can be related to glycolytic and mitochondrial oxidative metabolism. As such, both glycolysis and mitochondrial oxidative metabolism can be measured in real-time in one single assay. Using this technique, we demonstrate here that inflammatory M1 macrophages display enhanced glycolytic metabolism and reduced mitochondrial activity. Conversely, anti-inflammatory M2 macrophages show high mitochondrial oxidative phosphorylation (OXPHOS) and are characterized by an enhanced spare respiratory capacity (SRC). The presented functional assay serves as a framework to investigate how particular cytokines, pharmacological compounds, gene knock outs or other interventions affect the macrophage's metabolic phenotype and inflammatory status.

  12. A Variational Analysis of Divergence Profiles Based upon Column-Integrated Mass, Moisture and Energetic Constraints with Satellite-Derived Boundary Fluxes

    NASA Technical Reports Server (NTRS)

    Lu, Huei-Lin; Robertson, Franklin R.

    2003-01-01

    A diagnostic study is made of the mean global divergent circulation based upon a constrained least action principle that minimizes column-integrated divergent kinetic energy subject to constraints on mass, moisture, available potential energy (ape) and total kinetic energy. The concept of gross moist stability was incorporated in the prescription of Lagrange weight function associated with the ape constraint in order to simulate the net effects of cumulus convective heating in the tropics. The variational analyses were validated satisfactorily with the original NCEP/NCAR-reanalysis divergence fields for the Septembers of 1987 and 1988. Further analyses show that in the tropical ascending regions, the analyzed divergences are dominated by the mass and ape constraints; the moisture constraint is implicitly satisfied while the kinetic energy constraint is highly dependent on the ape constraint. In the subtropical descending regions, the analyzed divergences are dominated by the mass, moisture and kinetic energy constraints; the ape constraint is implicitly satisfied. When the constraint integrals were blended with the satellite-derived boundary flux data from GPCP precipitation and ERBE/SRB radiation estimates, the newly analyzed divergences are significantly stronger than the reanalysis divergences in the areas where the estimates of precipitation rates are higher. With few exceptions, the increases in upper-layer divergences are coupled with nearly equal increases in lower-layer convergences.

  13. Automated Video-Based Analysis of Contractility and Calcium Flux in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes Cultured over Different Spatial Scales

    PubMed Central

    Huebsch, Nathaniel; Loskill, Peter; Mandegar, Mohammad A.; Marks, Natalie C.; Sheehan, Alice S.; Ma, Zhen; Mathur, Anurag; Nguyen, Trieu N.; Yoo, Jennie C.; Judge, Luke M.; Spencer, C. Ian; Chukka, Anand C.; Russell, Caitlin R.; So, Po-Lin

    2015-01-01

    Contractile motion is the simplest metric of cardiomyocyte health in vitro, but unbiased quantification is challenging. We describe a rapid automated method, requiring only standard video microscopy, to analyze the contractility of human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CM). New algorithms for generating and filtering motion vectors combined with a newly developed isogenic iPSC line harboring genetically encoded calcium indicator, GCaMP6f, allow simultaneous user-independent measurement and analysis of the coupling between calcium flux and contractility. The relative performance of these algorithms, in terms of improving signal to noise, was tested. Applying these algorithms allowed analysis of contractility in iPS-CM cultured over multiple spatial scales from single cells to three-dimensional constructs. This open source software was validated with analysis of isoproterenol response in these cells, and can be applied in future studies comparing the drug responsiveness of iPS-CM cultured in different microenvironments in the context of tissue engineering. PMID:25333967

  14. Examination of the relationship between riometer-derived absorption and the integral proton flux in the context of modeling polar cap absorption

    NASA Astrophysics Data System (ADS)

    Fiori, R. A. D.; Danskin, D. W.

    2016-11-01

    Energetic protons can penetrate into the ionosphere increasing ionization in the D region causing polar cap absorption that may potentially block high-frequency radio communications for transpolar flights. The protons are guided by the geomagnetic field into the high-latitude polar cap region. Riometers monitor variations in ionospheric absorption by observing the level of background cosmic radio noise. Current polar cap absorption modeling techniques are based on the linear relationship between absorption and the square root of the integral proton flux, which has previously only been demonstrated using data from a single high-latitude polar station. The proportionality constant describing this relationship is evaluated for two different polar cap absorption events occurring 7-11 March 2012 and 23 January 2012 to 1 February 2012. Examination of the proportionality constant using data from riometers distributed between 60° and 90° magnetic latitude reveals a previously unreported latitudinal dependence for data at magnetic latitudes of ≤66.8° on the dayside and ≤70.8° on the nightside. Incorporating the latitudinal dependence into the current D Region Absorption Prediction absorption model improves the agreement between measurement-derived and modeled parameters by increasing the correlation coefficient between data sets, reducing the root-mean-square error, and reducing the bias.

  15. Situational Lightning Climatologies for Central Florida: Phase V

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2011-01-01

    The AMU added three years of data to the POR from the previous work resulting in a 22-year POR for the warm season months from 1989-2010. In addition to the flow regime stratification, moisture and stability stratifications were added to separate more active from less active lighting days within the same flow regime. The parameters used for moisture and stability stratifications were PWAT and TI which were derived from sounding data at four Florida radiosonde sites. Lightning data consisted of NLDN CG lightning flashes within 30 NM of each airfield. The AMU increased the number of airfields from nine to thirty-six which included the SLF, CCAFS, PAFB and thirty-three airfields across Florida. The NWS MLB requested the AMU calculate lightning climatologies for additional airfields that they support as a backup to NWS TBW which was then expanded to include airfields supported by NWS JAX and NWS MFL. The updated climatologies of lightning probabilities are based on revised synoptic-scale flow regimes over the Florida peninsula (Lambert 2007) for 5-, 10-, 20- and 30-NM radius range rings around the thirty-six airfields in 1-, 3- and 6-hour increments. The lightning, flow regime, moisture and stability data were processed in S-PLUS software using scripts written by the AMU to automate much of the data processing. The S-PLUS data files were exported to Excel to allow the files to be combined in Excel Workbooks for easier data handling and to create the tables and charts for the Gill. The AMU revised the Gill developed in the previous phase (Bauman 2009) with the new data and provided users with an updated HTML tool to display and manipulate the data and corresponding charts. The tool can be used with most web browsers and is computer operating system independent. The AMU delivered two Gills - one with just the PWAT stratification and one with both the PWAT and TI stratifications due to insufficient data in some of the PWATITI stratification combinations. This will allow

  16. Mesospheric gravity-wave climatology at Adelaide

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.

    1986-01-01

    The MF Adelaide partial-reflection radar has been operating continuously since November 1983. This has enabled a climatology of gravity-wave activity to be constructed for the mesosphere. The data have been analyzed for a medium-period range of 1 to 8 hr. and a longer period range between 8 and 24 hr. covering the inertio-period waves. The tidal motions have been filtered out prior to analysis. For the data analyses so far (Nov. 1983 to Dec. 1984), a number of interesting features emerged. Firstly, the wave activity at heights above 80 km shows a small seimannual variation with season with the activity being strongest in summer and winter. At heights below 80 km however, there is a similar but more marked variation with the weakest amplitudes occurring at the time of the changeovers in the prevailing circulation. If breaking gravity waves are responsible for much of the turbulence in the mesosphere, then the periods March to April and September to October might also be expected to be periods of weak turbulence. The wave field appears to be partially polarized. The meridional amplitudes are larger than the zonal amplitudes, especially in water. It is found that the degree of polarization is about 15% in summer and 30% in winter. The polarized component is found to propagate in the opposite direction to the background flow in the stratosphere, which suggests that the polarization arises through directional filtering of the waves as they propagate up from below.

  17. Climatology of monsoon rains of Myanmar (Burma)

    NASA Astrophysics Data System (ADS)

    Roy, N. Sen; Kaur, Surinder

    2000-06-01

    Based on 33 years' rainfall data of Myanmar for the summer monsoon months (June-September), the detailed rainfall climatology of the country has been studied. Seasonal rainfall series are found to approximate to a Gaussian distribution. By using the rainfall distribution and coefficient of variation, it has been possible to divide the country into five homogeneous rainfall regions. Different statistical characteristics of the seasonal, monthly and zonal rainfall, as well as the whole country's rainfall, have been determined. Analysis of interannual and intraseasonal variability highlights the fact that the correlation between the rainfall of different months and zones is rather weak. Trend and periodicity of the rainfall series have been examined by different statistical techniques, indicating little evidence of a trend. The power spectrum of the rainfall series appears to show only marginal significance at the 95% level for an 11 year cycle. The rainfall series of Myanmar shows little correspondence with neighbouring Bangladesh and Northeast India, even though all of them are influenced by similar weather systems.

  18. Sprite Climatology in the Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30-02:15 LST (22:30-00:15 UT; LST=UT+2). The detection times of sprites are well-correlated with a relative increase in the fraction of +CG strokes, which exhibit maxima between 00:00-02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogeneous types are slightly more frequent than mixed ones (55%). Our observations suggest winter East Mediterranean thunderstorms to have a vertical structure that is an intermediate type between high tropical convective systems and the lower cloud-top cells in winter thunderstorms over the Sea of Japan. The climatology shows that the Eastern Mediterranean is a major sprite producer during Northern Hemisphere winter, and thus the existing and future optical observation infrastructure in Israel offers ground-based coverage for upcoming space missions that aim to map global sprite activity.

  19. Sprite climatology in the Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30 and 02:15 LST (22:30-00:15 UT; LST = UT + 2). The detection times of sprites are well-correlated with a relative increase in the fraction of + CG strokes, which exhibit maxima between 00:00 and 02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in Central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogenous types are slightly more frequent than mixed ones (55%). Our observations suggest winter Mediterranean thunderstorms to have a vertical structure in between high tropical convective systems and the lower cloud-top cells in Japan. The climatology shows the Eastern Mediterranean to be a major sprite producer in Northern Hemisphere winter, and offers ground-based coverage for future space missions.

  20. Climatology of the equatorial lower stratosphere

    NASA Technical Reports Server (NTRS)

    Dunkerton, T. J.; Delisi, D. P.

    1985-01-01

    Twenty years of radiosonde data have been analyzed in an attempt to develop a latitudinal structure climatology of winds, temperature and geopotential at 30 and 50 mb in the equatorial stratosphere. The fine latitudinal resolution provided by the WMO station network reveals several interesting features in the latitudinal structure of the annual and quasi-biennial cycles which dominate this region. For example, the westerly and easterly acceleration phases of the quasi-biennial oscillation are markedly different. Westerly accelerations appear first at the equator, spreading outward with time to higher latitudes, and are more intense, on average, than the easterly accelerations. The easterly accelerations are more uniform in latitude, but less uniform in time, sometimes occurring in two stages. The quasi-biennial wind and temperature oscillations are symmetric about the equator, while the annual harmonic in zonal wind is antisymmetric about the equator, but is not proportional to the Coriolis parameters. Monthly mean zonal wind and temperature appear to be in thermal wind balance at the equator. Some brief remarks are also made concerning variability of the quasi-biennial oscillation and the effects of El Chichon.

  1. Tower Mesonetwork Climatology and Interactive Display Tool

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the 45th Weather Squadron and Spaceflight Meteorology Group use data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria, and issue and verify forecasts for ground operations. Systematic biases in these parameters could adversely affect an analysis, forecast, or verification. Also, substantial geographical variations in temperature and wind speed can occur under specific wind directions. To address these concerns, the Applied Meteorology Unit (AMU) developed a climatology of temperatures and winds from the tower network, and identified the geographical variation and significant tower biases. The mesoclimate is largely driven by the complex land-water interfaces across KSC/CCAFS. Towers with close proximity to water typically had much warmer nocturnal temperatures and higher wind speeds throughout the year. The strongest nocturnal wind speeds occurred from October to March whereas the strongest mean daytime wind speeds occurred from February to May. These results of this project can be viewed by forecasters through an interactive graphical user interface developed by the AMU. The web-based interface includes graphical and map displays of mean, standard deviation, bias, and data availability for any combination of towers, variables, months, hours, and wind directions.

  2. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Crane, R. G.

    1985-01-01

    A daily climatology of the atmospheric circulation of the Arctic and the associated cloud conditions were determined. These are used for comparisons with the variability of general circulation model, generated circulation, and cloud cover for the same region.

  3. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  4. Hanford Site Climatological Summary 2004 with Historical Data

    SciTech Connect

    Hoitink, Dana J.; Burk, Kenneth W.; Ramsdell, James V.; Shaw, William J.

    2005-06-03

    This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation.

  5. Dominance of ENSO-Like Variability in Controlling Tropical Ocean Surface Energy Fluxes in the Satellite Era

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Miller, T. L.; Bosilovich, M. G.

    2008-01-01

    Ocean surface turbulent and radiative fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Moreover, interannual to decadal climate variability depends crucially on the nature of these exchange processes. For example, addressing the question of the degree to which the global hydrologic cycle is changing depends on our ability to observe and model these fluxes accurately. In this work we investigate the interannual to decadal variation of fluxes over the global tropics, especially the tropical oceans. Recent versions of satellite-derived fresh water flux estimates as well as some reanalyses (e.g. products from Remote Sensing Systems, the Woods Hole Oceanographic Institute, and Global Precipitation Climatology Project) suggest that increases in evaporation and precipitation over the past 20 years exceed those expected on the basis of climate model projected responses to greenhouse gas forcing. At the same time, it is well known that E1 Nino / Southern Oscillation behavior in the Pacific exhibits significant variability at scales longer than interannual. We examine here the degree to which surface fluxes attending these interannual to decadal fluctuations are related to ENSO. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations.

  6. Dominance of ENSO-Like Variability in Controlling Tropical Ocean Surface Energy Fluxes in the Satellite Era

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Miller, T. L.; Bosilovich, M. G.

    2008-01-01

    Ocean surface turbulent and radiative fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Moreover, interannual to decadal climate variability depends crucially on the nature of these exchange processes. For example, addressing the question of the degree to which the global hydrologic cycle is changing depends on our ability to observe and model these fluxes accurately. In this work we investigate the interannual to decadal variation of fluxes over the global tropics, especially the tropical oceans. Recent versions of satellite-derived fresh water flux estimates as well as some reanalyses (e.g. products from Remote Sensing Systems, the Woods Hole Oceanographic Institute, and Global Precipitation Climatology Project) suggest that increases in evaporation and precipitation over the past 20 years exceed those expected on the basis of climate model projected responses to greenhouse gas forcing. At the same time, it is well known that E1 Nino / Southern Oscillation behavior in the Pacific exhibits significant variability at scales longer than interannual. We examine here the degree to which surface fluxes attending these interannual to decadal fluctuations are related to ENSO. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations.

  7. LIVAS: a 3-D multi-wavelength aerosol/cloud climatology based on CALIPSO and EARLINET

    NASA Astrophysics Data System (ADS)

    Amiridis, V.; Marinou, E.; Tsekeri, A.; Wandinger, U.; Schwarz, A.; Giannakaki, E.; Mamouri, R.; Kokkalis, P.; Binietoglou, I.; Solomos, S.; Herekakis, T.; Kazadzis, S.; Gerasopoulos, E.; Balis, D.; Papayannis, A.; Kontoes, C.; Kourtidis, K.; Papagiannopoulos, N.; Mona, L.; Pappalardo, G.; Le Rille, O.; Ansmann, A.

    2015-01-01

    We present LIVAS, a 3-dimentional multi-wavelength global aerosol and cloud optical climatology, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. LIVAS database provides averaged profiles of aerosol optical properties for the potential space-borne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global climatology is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent spectral conversion factors for backscatter and extinction, derived from EARLINET ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversion factors are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO extinction and backscatter data correspondingly to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud climatology based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for space-borne lidar performance assessments. The final global climatology includes 4-year (1 January 2008-31 December 2011) time-averaged CALIPSO data on a uniform grid of 1×1 degree with the original high vertical resolution of CALIPSO in order to ensure realistic simulations of the atmospheric variability in lidar end-to-end simulations.

  8. Simulating a 40-year flood event climatology of Australia with a view to ocean-land teleconnections

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Andreadis, Konstantinos; Stampoulis, Dimitrios; Bates, Paul

    2015-04-01

    We develop, for the first time, a proof-of-concept version for a high-resolution global flood inundation model to generate a flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent at a native 1 km resolution. The objectives of our study includes (1) deriving an inundation climatology for a continent (Australia) as a demonstrator case to understand the requirements for expanding globally; (2) developing a test bed to assess the potential and value of current and future satellite missions (GRACE, SMAP, ICESat-2, AMSR-2, Sentinels and SWOT) in flood monitoring; and (3) answering science questions such as the linking of inundation to ocean circulation teleconnections. We employ the LISFLOOD-FP hydrodynamic model to generate a flood inundation climatology. The model will be built from freely available SRTM-derived data (channel widths, bank heights and floodplain topography corrected for vegetation canopy using ICESat canopy heights). Lakes and reservoirs are represented and channel hydraulics are resolved using actual channel data with bathymetry inferred from hydraulic geometry. Simulations are run with gauged flows and floodplain inundation climatology are compared to observations from GRACE, flood maps from Landsat, SAR, and MODIS. Simulations have been completed for the entire Australian continent. Additionally, changes in flood inundation have been correlated with indices related to global ocean circulation, such as the El Niño Southern Oscillation index. We will produce data layers on flood event climatology and other derived (default) products from the proposed model including channel and floodplain depths, flow direction, velocity vectors, floodplain water volume, shoreline extent and flooded area. These data layers will be in the form of simple vector and raster formats. Since outputs will be large in size we propose to upload them onto Google Earth under the GEE API license.

  9. Snow density climatology across the former USSR

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.

    2014-04-01

    Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for linking snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density (bulk density) climatology and its spatiotemporal variations across the former Soviet Union (USSR) from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.22 ± 0.05 g cm-3 over the study area. The maximum and minimum monthly mean snow density was about 0.33 g cm-3 in June, and 0.14 g cm-3 in October, respectively. Maritime and ephemeral snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, on the coast of Arctic Russia, and the Kamchatka Peninsula, while the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966-2008) monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. There was a high correlation of snow density with elevation for tundra snow and snow density was highly correlated with latitude for prairie snow.

  10. Snow density climatology across the former USSR

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.

    2013-07-01

    Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for retrieving snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density climatology and its spatiotemporal variations across the former Soviet Union (USSR) from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.194 ± 0.046 g cm-3 over the study area. The maximum and minimum monthly mean snow density was ˜ 0.295 g cm-3 in June, and 0.135 g cm-3 in October, respectively. Maritime snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, in Arctic Russia, and in some regions of the Russian Far East, and the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966-2008) monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. Snow density decreased with elevation, at about 0.004 g cm-3 per 100 m increase in elevation. This same relationship existed for all snow classes except for maritime and ephemeral snow.

  11. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  12. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  13. Exploring reanalysis application for the purposes of climatological applications at regional scale

    NASA Astrophysics Data System (ADS)

    Kaspar, F.; Kaiser-Weiss, A.; Obregon, A.; Borsche, M.

    2014-12-01

    drawn. Finally, the wind climatologies derived from the different reanalyses (ERA-Interim, ERA-20C, HErZ-COSMO) are compared with point measurements and gridded field climatologies derived from ground-based stations, illustrating the added value of the reanalysis fields.

  14. Comparison of Satellite-Derived TOA Shortwave Clear-Sky Fluxes to Estimates from GCM Simulations Constrained by Satellite Observations of Land Surface Characteristics

    NASA Technical Reports Server (NTRS)

    Anantharaj, Valentine G.; Nair, Udaysankar S.; Lawrence, Peter; Chase, Thomas N.; Christopher, Sundar; Jones, Thomas

    2010-01-01

    Clear-sky, upwelling shortwave flux at the top of the atmosphere (S(sub TOA raised arrow)), simulated using the atmospheric and land model components of the Community Climate System Model 3 (CCSM3), is compared to corresponding observational estimates from the Clouds and Earth's Radiant Energy System (CERES) sensor. Improvements resulting from the use of land surface albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) to constrain the simulations are also examined. Compared to CERES observations, CCSM3 overestimates global, annual averaged S(sub TOA raised arrow) over both land and oceans. However, regionally, CCSM3 overestimates S(sub TOA raised arrow) over some land and ocean areas while underestimating it over other sites. CCSM3 underestimates S(sub TOA raised arrow) over the Saharan and Arabian Deserts and substantial differences exist between CERES observations and CCSM3 over agricultural areas. Over selected sites, after using groundbased observations to remove systematic biases that exist in CCSM computation of S(sub TOA raised arrow), it is found that use of MODIS albedo improves the simulation of S(sub TOA raised arrow). Inability of coarse resolution CCSM3 simulation to resolve spatial heterogeneity of snowfall over high altitude sites such as the Tibetan Plateau causes overestimation of S(sub TOA raised arrow) in these areas. Discrepancies also exist in the simulation of S(sub TOA raised arrow) over ocean areas as CCSM3 does not account for the effect of wind speed on ocean surface albedo. This study shows that the radiative energy budget at the TOA is improved through the use of MODIS albedo in Global Climate Models.

  15. A Radar Climatology for Germany - a 16-year high resolution precipitation data and its possibilities

    NASA Astrophysics Data System (ADS)

    Walawender, Ewelina; Winterrath, Tanja; Brendel, Christoph; Hafer, Mario; Junghänel, Thomas; Klameth, Anna; Weigl, Elmar; Becker, Andreas

    2017-04-01

    range of spatial analyses: from country to city scale. Multiple events can be investigated in details, depending on the user needs, as temporal resolution differs from 15 years to 1 hour. Apart from standard products such as precipitation sum, the radar climatology will provide its derivatives as well e.g. extreme precipitation characteristics and rain erosivity potential (R factor) map. Employing GIS functionalities into the Radar Climatology dataset has made it universal and interoperable - suitable for integration with a wide range of other geodata formats or services. It can be treated also as input layer for further analyses which demand spatially continuous data on precipitation and for building more integrated products tailored to the user needs. One of the most important concepts may be an application of the Radar Climatology data as a key factor in risk assessment analysis and developing strategies for risk management in urban planning, hydrology, agriculture etc.

  16. The HOAPS Climatology V4: updates and results from comparisons to various satellite, buoy and ship data records

    NASA Astrophysics Data System (ADS)

    Schroeder, Marc; Graw, Kathrin; Andersson, Axel; Fennig, Karsten; Bakan, Stephan; Klepp, Christian

    2017-04-01

    The global water cycle is a key component of the global climate system as it describes and links many important processes such as evaporation, convection, cloud formation and precipitation. Through latent heat release, it is also closely connected to the global energy cycle and its changes. The difference between precipitation and evaporation yields the freshwater flux, which indicates if a particular region of the earth receives more water through precipitation than it loses through evaporation or vice versa. On global scale and long time periods, however, the amounts of evaporation and precipitation are balanced. A profound understanding of the water cycle is therefore a key prerequisite for successful climate modelling. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) set is a fully satellite based climatology of precipitation, evaporation and freshwater budget as well as related turbulent heat fluxes and atmospheric state variables over the global ice free oceans. All geophysical parameters are derived from passive microwave radiometers, except for the SST, which is taken from AVHRR measurements based on thermal emission of the Earth. Starting with the release 3.1, the HOAPS climate data record is hosted by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) and the further development is shared with the University of Hamburg and the MPI-M. While the HOAPS release 3.2 in 2012 covered the entire record of the passive microwave radiometer SSM/I, the new version of the HOAPS data set, version 4, includes also the SSMIS record up to December 2014 and uncertainty estimates for parameters related to evaporation. These HOAPS data products are available as monthly averages and 6-hourly composites on a regular latitude/longitude grid with a spatial resolution of 0.5° x 0.5° from July 1987 to December 2014 (December 2008 for HOAPS3.2). Covering nearly 28 years the new HOAPS data set is highly valuable for climate

  17. An Uneven ENSO Oscillator From Changes in Climatology

    NASA Astrophysics Data System (ADS)

    Hsieh, W. W.; Ye, Z.; Wu, A.

    2003-12-01

    A new `uneven ENSO oscillator' concept is introduced to describe the uneven changes in the ENSO warm phase and cool phase due to changes in the climatology, e.g. the Pacific climate regime shift around 1976. Using a neural network model for nonlinear canonical correlation analysis of the tropical Pacific wind stress anomalies and sea surface temperature anomalies, we compared the 1981-99 period to the 1961-75 period. During 1981-99, the location of the equatorial easterly anomalies during the ENSO cool phase was unchanged from the earlier period, but westerly anomalies during the warm phase were shifted eastward by up to 25o. Based on the delay oscillator theory, such an eastward shift would lengthen the duration of the warm episodes by up to 45%, but leave the duration of the cool episodes unchanged, hence an uneven ENSO oscillator. The Lamont coupled model of the tropical Pacific was then used to study how changes in the model climatology would produce an uneven oscillator. The eastward shift in the westerly anomalies during the warm episodes and the lengthening of the warm episode duration were indeed found in the coupled model when the 1981-99 climatologies were used instead of the 1961-75 climatology. In particular, it was mainly the change in the wind stress climatology rather than the change in the upper ocean climatology which caused the eastward shift in the westerly anomalies. The uneven ENSO oscillator theory has implications not only for how ENSO changed under decadal/interdecadal variations in the climatology, but also under longer term climate change.

  18. The Adaptive Ecosystem Climatology (AEC): Design and Development

    NASA Astrophysics Data System (ADS)

    deRada, S.; Penta, B.; McCarthy, S.; Gould, R. W., Jr.

    2016-02-01

    The concept of ecosystem-based management (EBM), recently introduced to rectify the shortcomings of single-species management policies, has been widely accepted as a basis for the conservation and management of natural resources. In line with NOAA's Integrated Ecosystem Assessment (IEA) Program, EBM is an integrated approach that considers the entire ecosystem and the interactions among species rather than focusing on individual components. This integrative approach relies on heterogeneous data, physical as well as biogeochemical data, among many others. Relative to physical data, however, marine biogeochemical records, also critical in IEA and EBM, are still lacking, both in terms of mature models and in terms of observational data availability. TheAdaptive Ecosystem Climatology (AEC) was conceived as a novel approach to address these limitations, mitigating the shortcomings of the individual components and combining their strengths to enhance decision-making activities. AEC is designed on the concept that a high-frequency climatology can be used as a baseline into which available observational data can be ingested to produce a higher accuracy product. In the absence of observations, the climatology acts as a best estimate. AEC was developed using a long-term simulation of a coupled biophysical numerical model configured for the Gulf of Mexico. Using the model results, we constructed a three-dimensional, dynamically balanced, gridded, static climatology for each calendar day. Using this `static' climatology as a background `first guess', observations from a particular date are ingested via optimal interpolation to `nudge' the climatology toward current conditions, thus providing representative fields for that date (adaptive climatology). With this adaptive approach, AEC can support a variety of EBM objectives, from fisheries, to resource management, to coastal resilience.

  19. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  20. A global climatology of stratosphere-troposphere exchange using the ERA-interim dataset from 1979 to 2011

    NASA Astrophysics Data System (ADS)

    Skerlak, B.; Sprenger, M.; Wernli, H.

    2013-05-01

    In this study we use the ERA-Interim reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) and a refined version of a previously developed Lagrangian methodology to compile a global 33 year climatology of stratosphere-troposphere exchange (STE) from 1979 to 2011. Fluxes of mass and ozone are calculated across the tropopause, pressure surfaces in the troposphere, and the top of the planetary boundary layer (PBL). This climatology provides a state-of-the-art quantification of the geographical distribution of STE and the preferred transport pathways, and insight into the temporal evolution of STE during the last 33 yr. We confirm the distinct zonal and seasonal asymmetry found in previous studies using comparable methods. The subset of "deep STE", where stratospheric air reaches the PBL within 4 days or vice versa, shows especially strong geographical and seasonal variations. The global hotspots for deep STE are found along the west coast of North America and over the Tibetan Plateau, especially in boreal winter and spring. An analysis of the time series reveals significant positive trends of the net downward mass flux and of deep STE in both directions. The downward ozone flux across the tropopause is dominated by the seasonal cycle of ozone concentrations at the tropopause and peaks in summer, when the mass flux is nearly at its minimum. For the subset of deep STE events, the situation is reversed and the downward ozone flux into the PBL is dominated by the mass flux and peaks in early spring. Thus surface ozone concentration along the west coast of North America and around the Tibetan Plateau are likely to be influenced by deep stratospheric intrusions. Quantitatively, all our results depend on the minimum residence time τ used to filter out transient STE trajectories. This dependence is shown to be a~power law with exponents ranging between -0.44 and -0.87 for mass and ozone fluxes in both directions.

  1. Onshore Wind Stress and Buoyancy Flux Observed on a Dissipative Mediterranean Beach

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited ONSHORE WIND ...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE ONSHORE WIND STRESS AND BUOYANCY FLUX OBSERVED ON A DISSIPATIVE MEDITERRANEAN BEACH 5. FUNDING...a climatologically Mediterranean coastline to explore the wind stress and buoyancy flux. An eddy covariance system was deployed in the intertidal

  2. A climatology of Central American Gyres

    NASA Astrophysics Data System (ADS)

    Papin, Philippe P.

    Central American gyres (CAGs) are large, low-level, cyclonic circulations that are observed over Central America during the tropical cyclone (TC) season. CAGs often occur in conjunction with TCs, and can result in torrential rainfall over portions of Central America, the Caribbean Islands, and eastern United States. The lack of prior research on CAGs, their apparent links to TC activity, and their association with high- impact weather motivates this study. To study CAG occurrence, an algorithm was developed to identify cyclonic circulations possessing similar characteristics to monsoon depressions (MDs) and monsoon gyres (MGs) in other ocean basins. This algorithm also includes a series of tests that distinguishes CAG events from large TCs and non-closed circulations. This algorithm was run between May-November 1980-2010 using the National Centers for Environmental Prediction Climate Forecast System Reanalysis 0.5o gridded dataset to produce the CAG climatology. 42 CAGs were classified (˜1.4 per season) with a bimodal distribution of occurrence favoring the early (May-Jun) and late (Sep-Nov) TC season. Stratification of CAG occurrence by the phase of the Madden Julian Oscillation (MJO) shows that over 75% of all CAGs develop in phases 8,1, and 2. A gyre-relative, time-lagged, CAG composite analysis is performed on CAG cases spanning from three days prior to two days after CAG formation. Positive low-level geopotential height anomalies are present in the east Pacific and Atlantic basins and are associated with anomalous low-level flow before the formation of the CAG. This results in increasing cyclonic vorticity near anomalously high precipitable water over Central America, a pattern that aids the generation of deep convection and the broad closed low-level cyclonic circulation that defines the CAG. CAGs are also split into two subsets using potential vorticity (PV) on the 350K isentropic surface. Tropical CAGs possess upper-tropospheric ridging associated with low

  3. A climatology of leaf surface wetness

    NASA Astrophysics Data System (ADS)

    Klemm, O.; Milford, C.; Sutton, M. A.; Spindler, G.; van Putten, E.

    The wetness of plant leaf surfaces is an important parameter in the deposition process of atmospheric trace gases. Particularly gases with high water solubility tend to deposit faster to a wet surface, compared to a dry one. Further, drying up of a wet leaf surface may lead to revolatilization of previously deposited gases. Despite the high importance of leaf surface wetness in biosphere/atmosphere exchange, there is no quantitative description of this parameter on the ecosystem scale, quantifying its initiation, duration, dissipation, correlation with parameters such as air humidity, turbulence, vegetation type, plant physiology, and others. This contribution is a first step towards a climatology of leaf surface wetness, based on a large data basis from various ecosystems. Leaf surface wetness was monitored at two grassland and two forest research sites in NW and central Europe throughout the vegetation period of 1998. It was sensed through measurement of the electrical conductivity between two electrodes that were clipped to the living plant leaf surfaces. This yields a relative signal that responds promptly to the presence of leaf wetness. A routine is presented that combines the data from several sensors to the dimensionless leaf wetness, LW, with values between zero and one. Periods of high leaf wetness (LW>0.9) were in most cases triggered by precipitation events. After termination of rain, LW decreased quickly at the forest sites and dropped to values below 0.1 within less than 24 hours in most cases. At the grassland sites, the formation of dew led to a more complex pattern, with the occurrence of diurnal cycles of LW. Although periods of low relative air humidity (e.g., rH<50%) are normally associated with periods of low leaf wetness, the extent of correlation between these two parameters at rH>60% varies between the different sites. The grassland sites show very similar distributions of the LW data with rH, indicating a positive correlation between LW and

  4. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1991-01-01

    Reliable estimates of the components of the surface radiation budget are important in studies of ocean-atmosphere interaction, land-atmosphere interaction, ocean circulation and in the validation of radiation schemes used in climate models. The methods currently under consideration must necessarily make certain assumptions regarding both the presence of clouds and their vertical extent. Because of the uncertainties in assumed cloudiness, all these methods involve perhaps unacceptable uncertainties. Here, a theoretical framework that avoids the explicit computation of cloud fraction and the location of cloud base in estimating the surface longwave radiation is presented. Estimates of the global surface downward fluxes and the oceanic surface net upward fluxes were made for four months (April, July, October and January) in 1985 to 1986. These estimates are based on a relationship between cloud radiative forcing at the top of the atmosphere and the surface obtained from a general circulation model. The radiation code is the version used in the UCLA/GLA general circulation model (GCM). The longwave cloud radiative forcing at the top of the atmosphere as obtained from Earth Radiation Budget Experiment (ERBE) measurements is used to compute the forcing at the surface by means of the GCM-derived relationship. This, along with clear-sky fluxes from the computations, yield maps of the downward longwave fluxes and net upward longwave fluxes at the surface. The calculated results are discussed and analyzed. The results are consistent with current meteorological knowledge and explainable on the basis of previous theoretical and observational works; therefore, it can be concluded that this method is applicable as one of the ways to obtain the surface longwave radiation fields from currently available satellite data.

  5. Comparing momentum and mass (aerosol source function) fluxes for the North Atlantic and the European Arctic using different parameterizations

    NASA Astrophysics Data System (ADS)

    Wróbel, Iwona; Piskozub, Jacek

    2016-04-01

    Wind speed has a disproportionate role in the forming of the climate as well it is important part in calculate of the air-sea interaction thanks which we can study climate change. It influences on mass, momentum and energy fluxes and the standard way of parametrizing those fluxes is use this variable. However, the very functions used to calculate fluxes from winds have evolved over time and still have large differences (especially in the case of aerosol sources function). As we have shown last year at the EGU conference (PICO presentation EGU2015-11206-1) and in recent public article (OSD 12,C1262-C1264,2015) there is a lot of uncertainties in the case of air-sea CO2 fluxes. In this study we calculated regional and global mass and momentum fluxes based on several wind speed climatologies. To do this we use wind speed from satellite data in FluxEngine software created within OceanFlux GHG Evolution project. Our main area of interest is European Arctic because of the interesting air-sea interaction physics (six-monthly cycle, strong wind and ice cover) but because of better data coverage we have chosen the North Atlantic as a study region to make it possible to compare the calculated fluxes to measured ones. An additional reason was the importance of the area for the North Hemisphere climate, and especially for Europe. The study is related to an ESA funded OceanFlux GHG Evolution project and is meant to be part of a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). We have used a modified version FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) for calculating trace gas fluxes to derive two purely wind driven (at least in the simplified form used in their parameterizations) fluxes. The modifications included removing gas transfer velocity formula from the toolset and replacing it with the respective formulas for momentum transfer and mass (aerosol production

  6. Image processing software for providing radiometric inputs to land surface climatology models

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Goetz, Scott J.; Strebel, Donald E.; Hall, Forrest G.

    1989-01-01

    During the First International Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), 80 gigabytes of image data were generated from a variety of satellite and airborne sensors in a multidisciplinary attempt to study energy and mass exchange between the land surface and the atmosphere. To make these data readily available to researchers with a range of image data handling experience and capabilities, unique image-processing software was designed to perform a variety of nonstandard image-processing manipulations and to derive a set of standard-format image products. The nonconventional features of the software include: (1) adding new layers of geographic coordinates, and solar and viewing conditions to existing data; (2) providing image polygon extraction and calibration of data to at-sensor radiances; and, (3) generating standard-format derived image products that can be easily incorporated into radiometric or climatology models. The derived image products consist of easily handled ASCII descriptor files, byte image data files, and additional per-pixel integer data files (e.g., geographic coordinates, and sun and viewing conditions). Details of the solutions to the image-processing problems, the conventions adopted for handling a variety of satellite and aircraft image data, and the applicability of the output products to quantitative modeling are presented. They should be of general interest to future experiment and data-handling design considerations.

  7. Mapping Atmospheric Moisture Climatologies across the Conterminous United States.

    PubMed

    Daly, Christopher; Smith, Joseph I; Olson, Keith V

    2015-01-01

    Spatial climate datasets of 1981-2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981-2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981-2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4

  8. Mapping Atmospheric Moisture Climatologies across the Conterminous United States

    PubMed Central

    Daly, Christopher; Smith, Joseph I.; Olson, Keith V.

    2015-01-01

    Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981–2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m

  9. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  10. Magma Diversity in the Trans-Mexican Volcanic Belt: the role of Mantle Heterogeneities, Slab-derived Fluxes and Crustal Contamination.

    NASA Astrophysics Data System (ADS)

    Schaaf, P.; Valdez, G.; Siebe, C.; Carrasco, G.

    2005-12-01

    The Plio-Quaternary Trans-Mexican Volcanic Belt (TMVB) is related to subduction of the Cocos and Rivera plates underneath the North American plate. Non-parallelism of the magmatic arc with respect to the trench can be explained by oblique subduction and changes of dip angle. In this contribution we compare geochemical and Sr-Nd-Pb isotope data of five TMVB stratovolcanoes (from east to west: Colima Volcano, Nevado de Toluca, Popocatepetl, La Malinche, and Pico de Orizaba) and associated cinder cones. Volcanic products range in stratovolcanoes from andesites (e.g. Colima, Popocatepetl) to rhyolites (e.g. Pico de Orizaba), and from basalts to andesites in the monogenetic cones. Concentrations of incompatible elements correlate positively with Sr-Nd-Pb isotope ratios from east to west along the arc. 87Sr/86Sr, eNd, and 206Pb/204Pb range from 0.7034-0.7050, +6.9 to minus 1.8, and 18.57-18.78, respectively, displaying considerable differences. In the central TMVB, REE patterns of closely spaced high-Mg basaltic andesites differ substantially. This cannot be explained by fractional crystallization processes or differential partial melting of a homogeneous mantle source. Instead, it points towards small-scale mantle heterogeneities. LILE (e.g. Cs, Rb, Ba, Pb) and HFSE (e.g. Ta, Nb, Zr) display variations of orders in magnitude at different segments along the arc. These variations might correlate with amounts of slab-derived aqueous fluids and intensity of metasomatic reactions between the subducting lithosphere and the overlying mantle wedge. Isotopic ratios of mid-lower crustal xenoliths found in nearly all stratovolcano products reflect the nature of the underlying crust beneath the TMVB. Tertiary-Cretaceous plagiogranites (Colima), Cretaceous limestones (Popocatepetl), and Grenvillian quartzites (Pico de Orizaba)and their increasing radiogenic isotope ratios match well with the observed isotopic signatures of the stratovolcanoes. Moreover, elevated CO2 amounts in

  11. On the precipitation climatology of Turkey by harmonic analysis

    NASA Astrophysics Data System (ADS)

    Kadolu, Mikdat; Öztürk, Naim; Erdun, Hakan; En, Zekai

    1999-12-01

    Basic climatological features over any region are hidden in many meteorological variables, especially in precipitation and temperature records. Among these features the single most important one is the periodicity of different harmonics. Identification of periodic features require regionally and temporally representative data sets and treatment methodology for depicting their amplitudes, frequencies, phase angles and basic statistical parameters. In this paper, only precipitation records are considered for depicting spatial periodic features over the whole of Turkey. Herein, more than 200 precipitation records, uniformly scattered all over Turkey, are studied with basic harmonic analysis revealing the various climatological patterns of Turkey in the form of contour maps. It is observed that only the first and the second harmonics are sufficient to explain more than 90% of the climatological variations in Turkey.

  12. Comparison of three methods to derive canopy-scale flux measurements above a mixed oak and hornbeam forest in Northern Italy

    NASA Astrophysics Data System (ADS)

    Acton, William; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Mentel, Thomas; Tomlinson, Sam; Dragosits, Ulrike; Hewitt, Nicholas; Nemitz, Eiko

    2015-04-01

    Plants emit a wide range of Biogenic Volatile Organic Compounds (BVOCs) into the atmosphere. These BVOCs are a major source of reactive carbon into the troposphere and play an important role in atmospheric chemistry by, for example, acting as an OH sink and contributing to the formation of secondary organic aerosol. While the emission rates of some of these compounds are relatively well understood, large uncertainties are still associated with the emission estimates of many compounds. Here the fluxes and mixing ratios of BVOCs recorded during June/July 2012 over the Bosco Fontana forest reserve in northern Italy are reported and discussed, together with a comparison of three methods of flux calculation. This work was carried out as a part of the EC FP7 project ECLAIRE (Effects of Climate Change on Air Pollution and Response Strategies for European Ecosystems). The Bosco Fontana reserve is a semi natural deciduous forest dominated by Carpinus betulus (hornbeam), Quercus robur (pedunculate oak) and Quercus rubra (northern red oak). Virtual disjunct eddy covariance measurements made using Proton Transfer Reaction-Mass Spectrometry (PTR-MS) and Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) were used to calculate fluxes and mixing ratios of BVOCs above the forest canopy at Bosco Fontana. BVOC mixing ratios were dominated by methanol with acetaldehyde, acetone, acetic acid, isoprene, the sum of methyl vinyl ketone and methacrolein, methyl ethyl ketone and monoterpenes also recorded. A large flux of isoprene was observed as well as significant fluxes of monoterpenes, methanol, acetaldehyde and methyl vinyl ketone / methacrolein. The fluxes recorded using the PTR-MS and PTR-ToF-MS showed good agreement. Comparison of the isoprene fluxes calculated using these instruments also agreed well with fluxes modelled using the MEGAN algorithms (Guenther et al. 2006). The detailed tree distribution maps for the forest at Bosco Fontana compiled by Dalponte et

  13. Utilizing satellite-derived estimates of land surface temperature and vegetation characteristics in modeling the vertical water and heat fluxes for a river basin

    NASA Astrophysics Data System (ADS)

    Muzylev, E. L.; Uspensky, A. B.; Startseva, Z. P.; Volkova, E. V.; Kukharsky, A. V.

    2009-04-01

    New version of the model of vertical water and heat transfer in the "soil-vegetation-atmosphere" system (SVAT) has been developed, accounting for land surface heterogeneities in river basin. The model is specially designed to assimilate satellite data and is intended for calculation of evapotranspiration Ev, soil water content W, sensible and latent heat fluxes and other water and heat balance components as well as vertical soil moisture and temperature profiles and vegetation cover and soil surface temperatures for any time interval within vegetation season. The river basin landscape patchiness is represented in the model with soil constants, leaf area index LAI, vegetation cover fraction B, land surface albedo A, and other vegetation characteristics that were treated as model parameters. The Seim River basin was chosen for investigation, situated in forest-steppe zone of the Central Russia (Kursk region) with watershed area equal to 7460 km2. Satellite-derived estimates of land surface characteristics have been extracted from AVHRR/NOAA (1999-2006 vegetation seasons) and MODIS/EOS Terra and Aqua (2003-2005 vegetation seasons) cloud-free data. The developed technique of AVHRR data processing provides the cloud detection and the retrieval of soil temperature Тsg and emissivity E, surface-air temperature at a level of vegetation cover Ta, effective radiative temperature Ts.eff (weighted linear combination of Ta and Tsg), as well as the derivation of normalized vegetation index NDVI, LAI and B. The updated multi-threshold technique of cloud detection in the AVHRR field of view has been applied to increase the reliability of cloud-free fragments selection. The algorithms of Ta, Ts.eff, Tg derivation utilize linear regression estimators similar to well-known "local" split window technique. The values of E for these regression formulas have been specified using empirical relationships between E and B, E and NDVI as well as the emissivity models for various surface

  14. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids.

    PubMed

    Jordà, Joel; de Jesus, Sérgio S; Peltier, Solenne; Ferrer, Pau; Albiol, Joan

    2014-01-25

    The yeast Pichia pastoris has emerged as one of the most promising yeast cell factories for the production of heterologous proteins. The readily available genetic tools and the ease of high-cell density cultivations using methanol or glycerol/methanol mixtures are among the key factors for this development. Previous studies have shown that the use of mixed feeds of glycerol and methanol seem to alleviate the metabolic burden derived from protein production, allowing for higher specific and volumetric process productivities. However, initial studies of glycerol/methanol co-metabolism in P. pastoris by classical metabolic flux analyses using (13)C-derived Metabolic Flux Ratio (METAFoR) constraints were hampered by the reduced labelling information obtained when using C3:C1 substrate mixtures in relation to the conventional C6 substrate, that is, glucose. In this study, carbon flux distributions through the central metabolic pathways in glycerol/methanol co-assimilation conditions have been further characterised using biosynthetically directed fractional (13)C labelling. In particular, metabolic flux distributions were obtained under 3 different glycerol/methanol ratios and growth rates by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids using the software tool (13)CFlux2. Specifically, cells were grown aerobically in chemostat cultures fed with 80:20, 60:40 and 40:60 (w:w) glycerol/methanol mixtures at two dilutions rates (0.05 hour(-1) and 0.16 hour(-1)), allowing to obtain additional data (biomass composition and extracellular fluxes) to complement pre-existing datasets. The performed (13)C-MFA reveals a significant redistribution of carbon fluxes in the central carbon metabolism as a result of the shift in the dilution rate, while the ratio of carbon sources has a lower impact on carbon flux distribution in cells growing at the same dilution rate. At low growth rate, the percentage of methanol directly dissimilated to CO2 ranges

  15. An inverse method to derive surface fluxes from the closure of oceanic heat and water budgets: Application to the north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Caniaux, G.; Prieur, L.; Giordani, H.; Redelsperger, J.-L.

    2017-04-01

    The large amount of data collected during DeWEX, MOOSE, and HyMeX campaigns in the north-western Mediterranean in 2012-2013 allowed to implement an inverse method to solve the difficult problem of heat and water budget closure. The inverse method is based on the simulation of the observed heat and water budgets, strongly constrained by observations collected during the campaigns and on the deduction of adjusted surface fluxes. The inverse method uses a genetic algorithm that generates 50,000 simulations of a single-column model and optimizes some adjustable coefficients introduced in the surface fluxes. Finally, the single-column model forced by the adjusted fluxes during 1 year and over a test area of about 300 × 300 km2 simulates the daily mean satellite bulk SST with an accuracy/uncertainty of 0.011 ± 0.072°C, as well as daily mean SSS and residual buoyancy series deduced from wintertime analyses with an accuracy of 0.011 ± 0.008 and 0.03 ± 0.012 m2 s-2, respectively. The adjusted fluxes close the annual heat and rescaled water budgets by less than 5 W m-2. To our knowledge, this is the first time that such a flux data set is produced. It can thus be considered as a reference for the north-western Mediterranean and be used for estimating other flux data sets, for forcing regional models and for process studies. Compared with the adjusted fluxes, some operational numerical weather prediction models (ARPEGE, NCEP, ERA-INTERIM, ECMWF, and AROME), often used to force oceanic models, were evaluated: they are unable to retrieve the mean annual patterns and values.

  16. A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011

    NASA Astrophysics Data System (ADS)

    Škerlak, B.; Sprenger, M.; Wernli, H.

    2014-01-01

    In this study we use the ERA-Interim reanalysis data set from the European Centre for Medium-Range Weather Forecasts (ECMWF) and a refined version of a previously developed Lagrangian methodology to compile a global 33 yr climatology of stratosphere-troposphere exchange (STE) from 1979 to 2011. Fluxes of mass and ozone are calculated across the tropopause, pressure surfaces in the troposphere, and the top of the planetary boundary layer (PBL). This climatology provides a state-of-the-art quantification of the geographical distribution of STE and the preferred transport pathways, as well as insight into the temporal evolution of STE during the last 33 yr. We confirm the distinct zonal and seasonal asymmetry found in previous studies using comparable methods. The subset of "deep STE", where stratospheric air reaches the PBL within 4 days or vice versa, shows especially strong geographical and seasonal variations. The global hotspots for deep STE are found along the west coast of North America and over the Tibetan Plateau, especially in boreal winter and spring. An analysis of the time series reveals significant positive trends of the net downward mass flux and of deep STE in both directions, which are particularly large over North America. The downward ozone flux across the tropopause is dominated by the seasonal cycle of ozone concentrations at the tropopause and peaks in summer, when the mass flux is nearly at its minimum. For the subset of deep STE events, the situation is reversed and the downward ozone flux into the PBL is dominated by the mass flux and peaks in early spring. Thus surface ozone concentration along the west coast of North America and around the Tibetan Plateau are likely to be influenced by deep stratospheric intrusions. We discuss the sensitivity of our results on the choice of the control surface representing the tropopause, the horizontal and vertical resolution of the trajectory starting grid, and the minimum residence time τ used to filter

  17. Oceanographic and climatological atlas of Bristol Bay. Final report

    SciTech Connect

    Wise, J.L.; Leslie, L.D.; Labelle, J.C.

    1987-10-01

    This is a reference document of oceanography, meteorology, sea ice, and climatology. It was prepared for use by the U.S. Coast Guard on-scene coordinator in the event of an oil spill in Bristol Bay at any time. The oceanography section contains information for bathymetry, circulation, water temperature and salinity, waves, tides, river discharge, and oil spill transport. The meteorology section includes seasonal weather and storm tracks, storm surges, superstructure icing, and wind chill. Climatology includes graphs and test on temperature, precipitation, wind, visibility, and cloudiness. Ice information includes seasonal formation and drift, concentration, thickness, nearshore ice, and freeze-up and breakup dates.

  18. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  19. An assessment of the climatological representativeness of IAGOS-CARIBIC trace gas measurements using EMAC model simulations

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Ruhnke, Roland; Zahn, Andreas; Neumaier, Marco; Kirner, Ole; Braesicke, Peter

    2017-02-01

    Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC are often used to derive climatologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to what extent such climatologies are representative of the true state of the atmosphere. Climatologies are considered relative to the tropopause in mid-latitudes (35 to 75° N) for trace gases with different atmospheric lifetimes. Using the chemistry-climate model EMAC, we sample the modeled trace gases along CARIBIC flight tracks. Representativeness is then assessed by comparing the CARIBIC sampled model data to the full climatological model state. Three statistical methods are applied for the investigation of representativeness: the Kolmogorov-Smirnov test and two scores based on the variability and relative differences. Two requirements for any score describing representativeness are essential: representativeness is expected to increase (i) with the number of samples and (ii) with decreasing variability of the species considered. Based on these two requirements, we investigate the suitability of the different statistical measures for investigating representativeness. The Kolmogorov-Smirnov test is very strict and does not identify any trace-gas climatology as representative - not even of long-lived trace gases. In contrast, the two scores based on either variability or relative differences show the expected behavior and thus appear applicable for investigating representativeness. For the final analysis of climatological representativeness, we use the relative difference score and calculate a representativeness uncertainty for each trace gas in percent. In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measurements, we compare the trace gas variability between model and measurements. We find that the model reaches 50-100 % of the measurement variability. The tendency of the model to underestimate

  20. Impacts of atmospheric and oceanic resolution on the tropical Pacific climatology simulated by GFDL's new climate models

    NASA Astrophysics Data System (ADS)

    Wittenberg, A. T.; Vecchi, G. A.; Delworth, T. L.; Rosati, A.; Anderson, W.; Zeng, F. J.

    2014-12-01

    We examine impacts of atmospheric and oceanic grid refinement on simulations of the tropical Pacific climatology, using a series of high-resolution global coupled GCMs recently developed at GFDL. Starting from the CM2.1 model developed for CMIP3, the new models progressively refine the horizontal grid spacing in the atmosphere by a factor of five (CM2.5-FLOR), and additionally in the ocean by factors of four (CM2.5) and ten (CM2.6). The atmospheric refinement is found to substantially improve the coupled simulation's tropical Pacific climatology of SST, rainfall, surface pressure, winds, coastal upwelling, and upper-ocean temperature and salinity -- and also reduces the net air-sea heat flux into the ocean near the equator, indicating reduced ocean-dynamical cooling due to weaker trade winds. Oceanic refinement, in contrast, results in much less improvement to the simulated surface climatology -- and in some respects actually degrades the simulation, for example by over-intensifying the thermal stratification of the equatorial upper ocean. This suggests that in the more strongly-eddying regimes permitted by higher resolution, some of the ocean component's physical parameterizations may need retuning or reformulation. The causes of these various sensitivities are discussed, along with avenues toward future improvements.

  1. A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe

    NASA Astrophysics Data System (ADS)

    Kämäräinen, Matti; Hyvärinen, Otto; Jylhä, Kirsti; Vajda, Andrea; Neiglick, Simo; Nuottokari, Jaakko; Gregow, Hilppa

    2017-02-01

    A method for estimating the occurrence of freezing rain (FZRA) in gridded atmospheric data sets was evaluated, calibrated against SYNOP weather station observations, and applied to the ERA-Interim reanalysis for climatological studies of the phenomenon. The algorithm, originally developed at the Finnish Meteorological Institute for detecting the precipitation type in numerical weather prediction, uses vertical profiles of relative humidity and temperature as input. Reanalysis data in 6 h time resolution were analysed over Europe for the period 1979-2014. Mean annual and monthly numbers of FZRA events, as well as probabilities of duration and spatial extent of events, were then derived. The algorithm was able to accurately reproduce the observed, spatially averaged interannual variability of FZRA (correlation 0.90) during the 36-year period, but at station level rather low validation and cross-validation statistics were achieved (mean correlation 0.38). Coarse-grid resolution of the reanalysis and misclassifications to other freezing phenomena in SYNOP observations, such as ice pellets and freezing drizzle, contribute to the low validation results at station level. Although the derived gridded climatology is preliminary, it may be useful, for example, in safety assessments of critical infrastructure.

  2. Local climatological modeling of ionospheric irregularities detected by GPS in the mid-latitude region

    NASA Astrophysics Data System (ADS)

    Wautelet, G.; Warnant, R.

    2012-11-01

    Global Positioning System, or GPS, plays an important role in everyday life. More particularly, precise positioning applications constitute a continuously growing sector whose surveyors, civil engineers and more recently farmers represent the principal users. Ionospheric irregularities are considered as the main threat for those applications as their occurrence and their effects on positioning are generally unknown or unmodeled. This paper aims at setting up a local climatological model of such irregularities which can be used as a forecasting tool. The model is based upon a time series of GPS-derived ionospheric irregularities in Belgium covering 10 years of data (period 2002-2011). Our climatological model is twofold: its first component describes the daily variability and is derived from a principal component analysis (PCA) which allows us to retrieve the main patterns of the time series. With the use of low order polynomial and harmonic functions, the second component describes the influence of solar cycle and seasons on irregularity occurrence. Moreover, a statistical autoregressive formulation adapts the model to current conditions. Model validation covers both low and active solar activity periods (years 2008 and 2011) and shows that model accuracy varies with solar conditions and season: values are lower during winter and active solar activity periods, where modeling error can reach up to 60% of the observed value. During summer, model performance is clearly improved, with relative errors generally smaller than 20% for periods of low but also active solar activity.

  3. Climatology of wave breaking and mixing in the Northern Hemisphere summer stratosphere

    SciTech Connect

    Wagner, R.E.

    1999-07-02

    The cause of large zonal ozone variations observed by POAM II (Polar Ozone and Aerosol Measurement II) in the Northern Hemisphere (NH) summer stratosphere between 55N-65N and 20-30 km is investigated using the United Kingdom Meteorological Office stratospheric data set with time-mean anomalies removed. This study tests the hypothesis from Hoppel et al. 1999 that breaking of westward-propagating planetary waves in the region of maximum ozone variance (RMV) induces substantial meridional transport which is responsible for the observed ozone variance. EP-flux vectors show that wave activity propagates vertically from source regions in the lower midlatitude troposphere into the stratosphere and RMV during the NH summer. In the RMV, EP-flux divergence is clearly nonzero, which means the zonal-mean zonal flow is forced by waves in this region. Close examination of individual zonal wavenumber contributions to the climatological monthly-mean EP-flux divergence shows that wavenumbers 1-5 generally account for over 90% of the forcing of the zonal-mean flow in the RMV from June to August.

  4. The First International Satellite Land-Surface Climatology Project (ISLSCP) Field Experiment (FIFE)

    NASA Technical Reports Server (NTRS)

    Schmugge, T. J.; Sellers, P. J.

    1985-01-01

    The International Satellite Land Surface Climatology Project (ISLSCP) will verify the use of satellite data for the estimation of land-surface properties through field experiments using point measurements on the ground and areal measurements from aircraft overflights. In addition to validating satellite estimates of surface properties, it studies approaches for obtaining areal averages of the radiation, moisture and heat fluxes made using remotely sensed data. The procedure suggested combines the surface point measurements of the fluxes with the aircraft areal observations using a surface energy balance model to interpolate between the point estimates of these fluxes and calculate area-averaged quantities. The surface parameters to be estimated from aircraft observations include: surface radiation temperature, albedo, land cover or vegetation index, and surface soil moisture (the latter to be obtained using passive and active microwave approaches). The area-averages of the surface properties are compared with satellite data where possible. The First ISLSCP Field Experiment is planned for l987 at a site having relatively uniform vegetation cover in the central great plains of the USA. for 1987 at a site having relatively uniform vegetation cover in the central great plains of the USA.

  5. Modelling carbon fluxes of forest and grassland ecosystems in Western Europe using the CARAIB dynamic vegetation model: evaluation against eddy covariance data.

    NASA Astrophysics Data System (ADS)

    Henrot, Alexandra-Jane; François, Louis; Dury, Marie; Hambuckers, Alain; Jacquemin, Ingrid; Minet, Julien; Tychon, Bernard; Heinesch, Bernard; Horemans, Joanna; Deckmyn, Gaby

    2015-04-01

    Eddy covariance measurements are an essential resource to understand how ecosystem carbon fluxes react in response to climate change, and to help to evaluate and validate the performance of land surface and vegetation models at regional and global scale. In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), vegetation dynamics and carbon fluxes of forest and grassland ecosystems simulated by the CARAIB dynamic vegetation model (Dury et al., iForest - Biogeosciences and Forestry, 4:82-99, 2011) are evaluated and validated by comparison of the model predictions with eddy covariance data. Here carbon fluxes (e.g. net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RECO)) and evapotranspiration (ET) simulated with the CARAIB model are compared with the fluxes measured at several eddy covariance flux tower sites in Belgium and Western Europe, chosen from the FLUXNET global network (http://fluxnet.ornl.gov/). CARAIB is forced either with surface atmospheric variables derived from the global CRU climatology, or with in situ meteorological data. Several tree (e.g. Pinus sylvestris, Fagus sylvatica, Picea abies) and grass species (e.g. Poaceae, Asteraceae) are simulated, depending on the species encountered on the studied sites. The aim of our work is to assess the model ability to reproduce the daily, seasonal and interannual variablility of carbon fluxes and the carbon dynamics of forest and grassland ecosystems in Belgium and Western Europe.

  6. Global cloud climatology from surface observations

    SciTech Connect

    Warren, S.

    1995-09-01

    Surface weather observations from stations on land and ships in the ocean are used to obtain the global distribution, at 5{sup o}x5{sup o} latitude-longitude resolution, of total cloud cover and the average amounts of the different cloud types: cumulus, cumulonimbus, stratus, stratocumulus, nimbostratus, altostratus, altocumulus, cirrus, cirrostratus, cirrocumulus, and fog. Diurnal and seasonal variations are derived, as well as interannual variations and multi-year trends. 3 refs., 3 figs.

  7. Evaluations of SST Climatologies in the Tropical Pacific Ocean

    DTIC Science & Technology

    2009-02-27

    Pacific SST . , • , .. .. . . r . , .. / ,. . * . K .. . . * ’ * ucts which provide high temporal ...boundaries Casey and Cornillon, 1999]. An observation-based clima - r 1 -ru 1 r.u- • . .r e...along with SSTs from AVHRR satellite retrievals. The NOAA SST product was built from two intermediate climatologies: a 2° SST clima - tology developed

  8. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  9. A climatological description of the Savannah River Site

    SciTech Connect

    Hunter, C.H.

    1990-05-22

    This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site or near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.

  10. Some Spatial Aspects of Southeastern United States Climatology.

    ERIC Educational Resources Information Center

    Soule, Peter T.

    1998-01-01

    Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)

  11. Are climatological correlations with the Hale double sunspot cycle meaningful?

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Herman, J. R.

    1975-01-01

    A sunspot cycle which may have been subject to a predicted phase reversal between 1800 and 1880 A. D is discussed. Several climatological parameters normally correlated with this cycle are examined and do not exhibit a corresponding phase reversal during this period. It is proposed that this apparent discrepancy can be resolved by suitable observations during the upcoming half decade.

  12. GLOBE backscatter - Climatologies and mission results. [Global Backscatter Experiment

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Post, Madison J.

    1991-01-01

    The Global Backscatter Experiment (GLOBE) goals require intensive study of the global climatology of atmospheric aerosol backscatter at IR wavelengths. Airborne and ground-based lidars have been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. Descriptions of the calibration techniques and selected measurement results are presented.

  13. GLOBE backscatter - Climatologies and mission results. [Global Backscatter Experiment

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Post, Madison J.

    1991-01-01

    The Global Backscatter Experiment (GLOBE) goals require intensive study of the global climatology of atmospheric aerosol backscatter at IR wavelengths. Airborne and ground-based lidars have been developed to measure atmospheric backscatter profiles at CO2 laser wavelengths. Descriptions of the calibration techniques and selected measurement results are presented.

  14. Aerodynamic Temperature Derived from Flux-Profile Measurements and Two-Source Model Predictions over a Cotton Row Crop in an Advective Environment

    USDA-ARS?s Scientific Manuscript database

    The surface aerodynamic temperature (SAT) is related to the atmospheric forcing conditions (radiation, wind speed and air temperature) and surface conditions. SAT is required in the bulk surface resistance equation to calculate the rate of sensible heat flux exchange. SAT cannot be measured directly...

  15. A Continuous Measure of Gross Primary Production for the Conterminous U.S. Derived from MODIS and AmeriFlux Data

    SciTech Connect

    Xia, Jingfeng; Zhuang, Qianlai; Law, Beverly E.; Chen, Jiquan; Baldocchi, Dennis D.; Cook, David R.; Oren, Ram; Richardson, Andrew D.; Wharton, Sonia; Ma, Siyan; Martin, Timothy A.; Verma, Shashi B.; Suyker, Andrew E.; Scott, Russell L.; Monson, Russell K.; Litvak, Marcy; Hollinger, David Y.; Sun, Ge; Davis, Kenneth J.; Bolstad, Paul V.; Burns, Sean P.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Katul, Gabriel G.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Starr, Gregory; Torn, Margaret S.; Wofsy, Steven C.

    2009-01-28

    The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and interannual time scales. However, these measurements only represent the fluxes at the scale of the tower footprint. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach. The predictive model was trained using observed GPP over the period 2000-2004, and was validated using observed GPP over the period 2005-2006 and leave-one-out cross-validation. Our model predicted GPP fairly well at the site level. We then used the model to estimate GPP for each 1 km x 1 km cell across the U.S. for each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP estimates provide a spatially and temporally continuous measure of gross primary production for the U.S. that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr{sup -1} for the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of U.S. GPP were dominated

  16. National Ice Center Arctic Sea Ice Charts and Climatologies In Gridded and GIS Format

    NASA Astrophysics Data System (ADS)

    Fetterer, F.; Fowler, C.; Ballagh, L. M.; Street, T.; Meier, W. N.; Clemente-Colon, P.

    2006-12-01

    The U.S. National Ice Center (NIC) is a joint Navy, NOAA, and Coast Guard sea ice analysis and forecasting center. Since 1972, NIC has produced weekly Arctic and Antarctic sea ice charts for operational uses including mission planning and safety of navigation. Arctic charts include information on sea ice concentration and edge position as well as (since about 1995) information on ice type. The charts are constructed by analysts using available in situ, remotely sensed, and model data sources. Data sources and methods of chart construction have evolved since 1972 resulting in inconsistencies in the data record; a characteristic shared with most operational products. However the arctic-wide charts are the product of manual interpretation and data fusion, informed by the analyst's expertise and by ancillary products such as climatologies and ice information shared by foreign operational ice services. They are therefore often more accurate, especially since the addition of synthetic aperture radar to data sources in the mid 1990s, than are the passive microwave derived sea ice data sets commonly used by researchers. This is especially true for ice edge location because of its operational importance. NIC provides charts free of charge on their Web site. These charts are not easy for most researchers to use, however, because they are in a proprietary GIS format and the ice concentration and type information is encoded in polygon attributes that follow World Meteorological Organization coding conventions. We converted the charts to a gridded raster format (Equal Area Scalable Earth, or EASE-Grid) and created monthly climatology products (median, maximum, minimum, first quartile, and third quartile concentrations as well as frequency of occurrence of ice at any concentration for 33 year, 10 year, and 5 year periods.) Charts and climatologies are available at the National Snow and Ice Data Center. The products cover 1972-2004, and we plan to update the collection yearly.

  17. Fire Weather Index : from high resolution climatology to Climate change impact study

    NASA Astrophysics Data System (ADS)

    Cloppet, E.; Regimbeau, M.

    2010-09-01

    Fire meteo indices provide efficient guidance tools for the prevention, early warning and surveillance of forest fires. These indices are only based on meteorological input data. Fire meteorological danger is estimated by Météo-France at national level through the use of Fire Weather Index. This study deals with the impact of climate change on fire danger in France. It has been motivated by the numerous forest fires during the 2003 drought and it aims at finding whether such events will be more frequent in the future. The first step of this project was to produce a high resolution FWI climatology. Safran model has been used to derive a 50-year hydrometeorological reanalysis, running from 1958 to 2008, on a 8 km regular grid. This reanalysis has been used in order to assess a long-term trend (a statistically significant increase in FWI for France). Then climate change potential impact on forest fire risk has been studied with climate change scenarios (ARPEGE V4 model with 3 emissions scenarios : A1B, A2 and B1) with special focus on downscaling and correction methods. Quantile-quantile normalization approach has been applied in order to calculate daily FWI from 2030 to 2100. Observed climatology (1958-2008 reanalysis on a 8km grid) has been compared to model climatology. Correction method has been applied for each statistical threshold. This method allowed us to produce downscaled FWI data and to study climate change impact at 8 km resolution. Trends are very clear for FWI and in terms of total number of daily FWI above a threshold. We can expect a huge increase in forest fire risk by 2060. All the French territory could face an average fire risk currently observed on Mediterranean area only. According to A2 and A1B scenarios, the year 2003 could become in France the standard in terms of fire risk by 2060.

  18. A regional climatology of the Humboldt Current System

    NASA Astrophysics Data System (ADS)

    Grados Quispe, M.; Chaigneau, A.; Blanco, J.; Vasquez, L.; Dominguez, N.

    2009-12-01

    A 3-dimensional, high-resolution, regional climatology of the Humboldt Current System (HCS) north of 25°S is presented. The methodology is based on a four-dimensional ocean interpolation scheme using locally weighted least square fitting, as developed by Dunn and Ridgway [2001] and Ridgway et al. [2002] in the Australian Seas. The method is applied to all the available historical profiles from the National Oceanographic Data Center [WOD05, Boyer et al., 2006], ARGO buoy profiles [http://www.argo.ucsd.edu] for 2000-2007 and historical in situ long-term information from the Peruvian Marine Research Institute (IMARPE) and Fisheries Development Institute (IFOP) for the period 1960-2008. The regional climatology, which extends from the equator to 25°S and from the coast to 8° offshore with a resolution of 0.1°x0.1°, is thus constructed from more than 70 000 temperature profiles, 38 000 salinity profiles and 43 000 oxygen profiles to form a seasonal climatology of temperature and salinity along Peru and northern Chile. The resulting maps depict interesting small-scales coastal properties such as clear distinct upwelling centers and frontal zones. Geostrophic currents relative to 500 m depth are also computed from the density field, highlighting new circulation features. This study provides a contemporaneous view of the circulation and the water masses characteristics in the Humboldt Current System at seasonal scales. This regional climatology represents coastal boundary features (upwelling cells, frontal regions) better than other climatologies. In view of on-going international research efforts to understand the coastal upwelling and coastal currents in the southern ocean off Peru, the main characteristics of the upwelling cell, currents and coastal winds variability of the Pisco (13°S)-San Juan (15°S) region are presented. This improved gridded product is expected to be used for initializing and validating high resolution regional numerical models.

  19. A new aircraft hurricane wind climatology and applications in assessing the predictive skill of tropical cyclone intensity using high-resolution ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.

    2015-07-01

    Hurricane surface wind is a key measure of storm intensity. However, a climatology of hurricane winds is lacking to date, largely because hurricanes are relatively rare events and difficult to observe over the open ocean. Here we present a new hurricane wind climatology based on objective surface wind analyses, which are derived from Stepped Frequency Microwave Radiometer measurements acquired by NOAA WP-3D and U.S. Air Force WC-130J hurricane hunter aircraft. The wind data were collected during 72 aircraft reconnaissance missions into 21 western Atlantic hurricanes from 1998 to 2012. This climatology provides an opportunity to validate hurricane intensity forecasts beyond the simplistic maximum wind speed metric and allows evaluating the predictive skill of probabilistic hurricane intensity forecasts using high-resolution model ensembles. An example of application is presented here using a 1.3 km grid spacing Weather Research and Forecasting model ensemble forecast of Hurricane Earl (2010).

  20. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    NASA Astrophysics Data System (ADS)

    Popp, C.; Wang, P.; Brunner, D.; Stammes, P.; Zhou, Y.; Grzegorski, M.

    2011-03-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA) data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near-infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS) derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80) and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006) of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU) algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric trace gas

  1. An Aircraft-Based Upper Troposphere Lower Stratosphere O3, CO, and H2O Climatology for the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.; Hinsta, E. J.; Loewenstein, M.; Lopez, J.; Paige, M. E.; Pittman, J. V.; Podolske, J. R.; Proffitt, M. R.; Sachse, G. W.; Schiller, C.; Schlager, H.; Smith, J.; Spelten, N.; Webster, C.; Weinheimer, A.; Zondlo, M. A.

    2010-01-01

    We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation

  2. An Aircraft-Based Upper Troposphere Lower Stratosphere O3, CO, and H2O Climatology for the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Tilmes, S.; Pan, L. L.; Hoor, P.; Atlas, E.; Avery, M. A.; Campos, T.; Christensen, L. E.; Diskin, G. S.; Gao, R.-S.; Herman, R. L.; hide

    2010-01-01

    We present a climatology of O3, CO, and H2O for the upper troposphere and lower stratosphere (UTLS), based on a large collection of high ]resolution research aircraft data taken between 1995 and 2008. To group aircraft observations with sparse horizontal coverage, the UTLS is divided into three regimes: the tropics, subtropics, and the polar region. These regimes are defined using a set of simple criteria based on tropopause height and multiple tropopause conditions. Tropopause ]referenced tracer profiles and tracer ]tracer correlations show distinct characteristics for each regime, which reflect the underlying transport processes. The UTLS climatology derived here shows many features of earlier climatologies. In addition, mixed air masses in the subtropics, identified by O3 ]CO correlations, show two characteristic modes in the tracer ]tracer space that are a result of mixed air masses in layers above and below the tropopause (TP). A thin layer of mixed air (1.2 km around the tropopause) is identified for all regions and seasons, where tracer gradients across the TP are largest. The most pronounced influence of mixing between the tropical transition layer and the subtropics was found in spring and summer in the region above 380 K potential temperature. The vertical extent of mixed air masses between UT and LS reaches up to 5 km above the TP. The tracer correlations and distributions in the UTLS derived here can serve as a reference for model and satellite data evaluation

  3. Use of EARLINET climatology for validation of vertical model profiles

    NASA Astrophysics Data System (ADS)

    Mortier, Augustin; Schulz, Michael

    2017-04-01

    For over a decade, intensive in-situ, ground-based and spaceborne remote observations are dedicated to the aerosols, a major component of the Earth atmosphere. These observations are mostly motivated by the high variability of the particles in space and time and their effect on the climate at a global scale, and at a regional scale on air quality. In the meantime, global and regional models provide aerosol concentrations (as projection, reanalysis or in near real time in chemical weather forecasting) respectively for the calculation of radiative effects and the assessment of air quality. The vertical distribution of the aerosol is a key-parameter since it affects its lifetime and reflects physical processes such as wet and dry deposition or chemical reactions. The aerosols present in low levels of the troposphere directly affect local air quality, while elevated aerosol layers can be transported long-range and contribute to pollution in remote regions. The evaluation of aerosol column and simulated vertical profiles are thus of particular interest for the performance characterisation of air quality models. The Copernicus Atmosphere Monitoring System (CAMS) delivers daily near real time aerosols products over Europe. In the framework of producing a regional a posteriori validation of the CAMS models, we propose, through this study, a validation exercise of the vertical aerosol profiles. This shall rely on the ACTRIS European Aerosol Research Lidar Network (EARLINET) measurements because of their quality and the opportunity to derive a climatology from long-term measurements. PM10 profiles are given from the models while mostly backscatter profiles are available from EARLINET database. After studying the representativeness of the EARLINET data (2006-2014), we present a comparison with the modeled vertical profiles (7 models and the Ensemble) at the location of measurement stations for the different seasons of the year 2016. The challenge of comparing the measured

  4. European drought climatologies for the period 1950 to 2012

    NASA Astrophysics Data System (ADS)

    Spinoni, Jonathan; Naumann, Gustavo; Vogt, Jürgen V.; Barbosa, Paulo

    2014-05-01

    In the context of global climate change, characterized in particular by rising temperatures and more extreme weather events, drought is one of the most relevant natural disasters that has hit Europe frequently in the last decades. This paper presents climatologies of a set of drought indicators and derived drought characteristics at European scale for the period 1950-2012. Following the definitions in Spinoni et al. (2013), we computed drought frequency, duration, severity, and maximum intensity on a grid with spatial resolution of 0.25°x0.25°. Calculations have been based on three well-known drought indicators calculated for time scales of 3 and 12 months: the Standardized Precipitation Index (SPI), the Standardized Precipitation-Evapotranspiration Index (SPEI), and the Reconnaissance Drought Index (RDI). Indicators have been calculated on a monthly basis for the period 1951-2012, using statistical distributions fitted to a 30-year baseline period (1971-2000). Input data stem from the E-OBS (version 9.0) European grids (0.25°x0.25°) provided by the Royal Meteorological Service of The Netherlands (KNMI). Monthly precipitation data served as input for all indicators, while mean monthly temperature data were used to calculate Thornthwaite's potential evapotranspiration necessary to calculate SPEI and RDI. On the basis of these indicators, we then quantified, on a monthly basis, the total European area under meteorological drought conditions from 1950 to 2012 and their intensity. We further sub-divided Europe into 14 regions according to geographical borders and climatic features and for each of them we computed linear trends of different drought characteristics (i.e. frequency, duration, severity, and intensity) for the entire period, and for the sub-periods 1951-1980 and 1981-2010. Results show that the Mediterranean, the Balkans, and Eastern Europe are characterized by increasing drought frequency, duration, severity, and maximum intensity, while Russia and

  5. Uncertainties in calculating precipitation climatology in East Asia

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, S. K.

    2016-02-01

    This study examines the uncertainty in calculating the fundamental climatological characteristics of precipitation in the East Asia region from multiple fine-resolution gridded analysis data sets based on in situ rain gauge observations and data assimilations. Five observation-based gridded precipitation data sets are used to derive the long-term means, standard deviations in lieu of interannual variability and linear trends over the 28-year period from 1980 to 2007. Both the annual and summer (June-July-August) mean precipitation is examined. The agreement amongst these precipitation data sets is examined using two metrics including the signal-to-noise ratio (SNR) defined as the ratio between long-term means and the corresponding standard deviations, and Taylor diagrams, which allow examinations of the pattern correlation, the standard deviation, and the centered root mean square error. It is found that the five gauge-based precipitation analysis data sets agree well in the long-term mean and interannual variability in most of the East Asia region including eastern China, Manchuria, South Korea, and Japan, which are densely populated and have fairly high-density observation networks. The regions of large inter-data-set variations include Tibetan Plateau, Mongolia, northern Indo-China, and North Korea. The regions of large uncertainties are typically lightly populated and are characterized by severe terrain and/or extremely high elevations. Unlike the long-term mean and interannual variability, agreement between data sets in the linear trend is weak, both for the annual and summer mean values. In most of the East Asia region, the SNR for the linear trend is below 0.5: the inter-data-set variability exceeds the multi-data ensemble mean. The uncertainty in the spatial distribution of long-term means among these data sets occurs both in the spatial pattern and variability, but the uncertainty for the interannual variability and time trend is much larger in the

  6. Temperature climatology of the middle atmosphere from long-term lidar measurements at mid- and low-latitudes

    NASA Technical Reports Server (NTRS)

    McDermid, I. Stuart; Leblanc, Thierry; Keckhut, Philippe; Hauchecorne, Alain; She, C. Y.; Krueger, David A.

    1998-01-01

    The temperature structure of the middle atmosphere has been studied for several decades using a variety of techniques. However, temperature profiles derived from lidar measurements can provide improved vertical resolution and accuracy. Lidars can also provide long-term data series relatively absent of instrumental drift, and integration of the measurements over several hours removes most of the gravity wave-like short-scale disturbances. This paper describes a seasonal climatology of the middle atmosphere temperature derived from lidar measurements obtained at several mid- and low-latitude locations. Results from the following lidars, which have all obtained a long-term measurement record, were used in this study: the two Rayleigh lidars of the Service d'Aeronomie du CNRS, France, located at the Observatoire de Haute Provence (OHP, 44.0 deg N) and at the Centre d'Essais des Landes (CEL, 44.0 deg N), the two Rayleigh/Raman lidars of the Jet Propulsion Laboratory, USA, located at Table Mountain, California (TMF, 34.4 deg N) and at Mauna Loa, Hawaii (MLO, 19.5 deg N), and the Colorado State University, USA, sodium lidar located at Fort Collins, Colorado (CSU, 40.6 deg N). The overall data set extends from 1978 to 1997 with different periods of measurements depending on the instrument. Three of the instruments are located at primary or complementary stations (OHP, TMF, MLO) within the Network for Detection of Stratospheric Change (NDSC). Several aspects of the temperature climatology obtained by lidar in the middle atmosphere are presented, including the climatological temperature average through the year; the annual and semi-annual components, and the differences compared to the CIRA-86 climatological model.

  7. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    NASA Astrophysics Data System (ADS)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  8. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  9. Satellite-Derived Distributions, Inventories and Fluxes of Dissolved and Particulate Organic Matter Along the Northeastern U.S. Continental Margin

    NASA Technical Reports Server (NTRS)

    Mannino, A.; Hooker, S. B.; Hyde, K.; Novak, M. G.; Pan, X.; Friedrichs, M.; Cahill, B.; Wilkin, J.

    2011-01-01

    Estuaries and the coastal ocean experience a high degree of variability in the composition and concentration of particulate and dissolved organic matter (DOM) as a consequence of riverine and estuarine fluxes of terrigenous DOM, sediments, detritus and nutrients into coastal waters and associated phytoplankton blooms. Our approach integrates biogeochemical measurements, optical properties and remote sensing to examine the distributions and inventories of organic carbon in the U.S. Middle Atlantic Bight and Gulf of Maine. Algorithms developed to retrieve colored DOM (CDOM), Dissolved (DOC) and Particulate Organic Carbon (POC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors are applied to quantify the distributions and inventories of DOC and POC. Horizontal fluxes of DOC and POC from the continental margin to the open ocean are estimated from SeaWiFS and MODIS-Aqua distributions of DOC and POC and horizontal divergence fluxes obtained from the Northeastern North Atlantic ROMS model. SeaWiFS and MODIS imagery reveal the importance of estuarine outflow to the export of CDOM and DOC to the coastal ocean and a net community production of DOC on the shelf.

  10. Surface and bottom temperature and salinity climatology along the continental shelf off the Canadian and U.S. East Coasts

    NASA Astrophysics Data System (ADS)

    Richaud, Benjamin; Kwon, Young-Oh; Joyce, Terrence M.; Fratantoni, Paula S.; Lentz, Steven J.

    2016-08-01

    A new hydrographic climatology has been created for the continental shelf region, extending from the Labrador shelf to the Mid-Atlantic Bight. The 0.2-degree climatology combines all available observations of surface and bottom temperature and salinity collected between 1950 and 2010 along with the location, depth and date of these measurements. While climatological studies of surface and bottom temperature and salinity have been presented previously for various regions along the Canadian and U.S. shelves, studies also suggest that all these regions are part of one coherent system. This study focuses on the coherent structure of the mean seasonal cycle of surface and bottom temperature and salinity and its variation along the shelf and upper slope. The seasonal cycle of surface temperature is mainly driven by the surface heat flux and exhibits strong dependency on latitude (r≈-0.9). The amplitude of the seasonal cycle of bottom temperature is rather dependent on the depth, while the spatial distribution of bottom temperature is correlated with latitude. The seasonal cycle of surface salinity is influenced by several components, such as sea-ice on the northern shelves and river discharge in the Gulf of St. Lawrence. The bottom salinity exhibits no clear seasonal cycle, but its spatial distribution is highly correlated with bathymetry, thus Slope Water and its intrusion on the shelf can be identified by its relatively high salinity compared to shallow, fresher shelf water. Two different regimes can be identified, especially on the shelf, separated by the Laurentian Channel: advection influences the phasing of the seasonal cycle of surface salinity and bottom temperature to the north, while in the southern region, river runoff and air-sea heat flux forcing are dominant, especially over the shallower bathymetry.

  11. Analysis and comparison of diurnal variations of cloud radiative forcing: Earth Radiation Budget Experiment and International Satellite Cloud Climatology Project results

    SciTech Connect

    Kim, Y.

    1994-10-01

    Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth`s radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.

  12. Analysis and comparison of diurnal variations of cloud radiative forcing: Earth Radiation Budget Experiment and International Satellite Cloud Climatology Project results

    NASA Technical Reports Server (NTRS)

    Kim, Yongseung

    1994-01-01

    Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth's radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.

  13. Analysis and comparison of diurnal variations of cloud radiative forcing: Earth Radiation Budget Experiment and International Satellite Cloud Climatology Project results

    NASA Technical Reports Server (NTRS)

    Kim, Yongseung

    1994-01-01

    Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth's radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.

  14. Validating soil denitrification models based on laboratory N_{2} and N_{2}O fluxes and underlying processes derived by stable isotope approaches

    NASA Astrophysics Data System (ADS)

    Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Müller, Carsten; Müller, Christoph; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole

    2016-04-01

    Robust denitrification data suitable to validate soil N2 fluxes in denitrification models are scarce due to methodical limitations and the extreme spatio-temporal heterogeneity of denitrification in soils. Numerical models have become essential tools to predict denitrification at different scales. Model performance could either be tested for total gaseous flux (NO + N2O + N2), individual denitrification products (e.g. N2O and/or NO) or for the effect of denitrification factors (e.g. C-availability, respiration, diffusivity, anaerobic volume, etc.). While there are numerous examples for validating N2O fluxes, there are neither robust field data of N2 fluxes nor sufficiently resolved measurements of control factors used as state variables in the models. To the best of our knowledge there has been only one published validation of modelled soil N2 flux by now, using a laboratory data set to validate an ecosystem model. Hence there is a need for validation data at both, the mesocosm and the field scale including validation of individual denitrification controls. Here we present the concept for collecting model validation data which is be part of the DFG-research unit "Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)" starting this year. We will use novel approaches including analysis of stable isotopes, microbial communities, pores structure and organic matter fractions to provide denitrification data sets comprising as much detail on activity and regulation as possible as a basis to validate existing and calibrate new denitrification models that are applied and/or developed by DASIM subprojects. The basic idea is to simulate "field-like" conditions as far as possible in an automated mesocosm system without plants in order to mimic processes in the soil parts not significantly influenced by the rhizosphere (rhizosphere soils are studied by other DASIM projects). Hence, to allow model testing in a wide range of conditions

  15. Climatological Processing and Product Development for the TRMM Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Marks, D. A.; Kulie, M. S.; Robinson, M.; Silberstein, D. S.; Wolff, D. B.; Ferrier, B. S.; Amitai, E.; Fisher, B.; Wang, J.; Augustine, D.; Thiele, O.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November 1997.The main purpose of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented. The primary goal of TRMM GV is to provide basic validation of satellite-derived precipitation measurements over monthly climatologies for the following primary sites: Melbourne, FL; Houston, TX; Darwin, Australia- and Kwajalein Atoll, RMI As part of the TRMM GV effort, research analysts at NASA Goddard Space Flight Center (GSFC) generate standardized rainfall products using quality-controlled ground-based radar data from the four primary GV sites. This presentation will provide an overview of TRMM GV climatological processing and product generation. A description of the data flow between the primary GV sites, NASA GSFC, and the TRMM Science and Data Information System (TSDIS) will be presented. The radar quality control algorithm, which features eight adjustable height and reflectivity parameters, and its effect on monthly rainfall maps, will be described. The methodology used to create monthly, gauge-adjusted rainfall products for each primary site will also be summarized. The standardized monthly rainfall products are developed in discrete, modular steps with distinct intermediate products. A summary of recently reprocessed official GV rainfall products available for TRMM science users will be presented. Updated basic standardized product results involving monthly accumulation, Z-R relationship, and gauge statistics for each primary GV site will also be displayed.

  16. Ultraviolet radiation climatology of the Earth`s surface and lower atmosphere. Final report

    SciTech Connect

    Madronich, S.; Stamnes, K.

    1999-03-01

    Ultraviolet (UV) radiation is the driving force of tropospheric chemistry and is furthermore detrimental to most living tissues. A three year modeling program was carried out to characterize the UV radiation in the lower atmosphere, with the objective of development a climatology of UV biologically active radiation, and of photo-dissociation reaction rates that are key to tropospheric chemistry. A comprehensive model, the Tropospheric Ultraviolet-Visible (TUV) model, was developed and made available to the scientific community. The model incorporates updated spectroscopic data, recent advances in radiative transfer theory, and allows flexible customization for the needs of different users. The TUV model has been used in conjunction with satellite-derived measurements of total atmospheric ozone and cloud amount, to develop a global climatology of UV radiation reaching the surface of the Earth. Initial validation studies are highly encouraging, showing that model predictions agree with direct measurements to ca. 5--10% at times when environmental conditions are well known, and to 10--30% for monthly averages when local environmental conditions can only be estimated remotely from satellite-based measurements. Additional validation studies are continuing.

  17. Validation and analysis of microwave-derived rainfall over the tropics. Master's thesis

    SciTech Connect

    Fleishauer, R.P.

    1993-01-01

    A recently developed single channel microwave rain rate retrieval algorithm exists to measure global precipitation over the data-sparse tropical oceans. The objective of this study is to retrieve and validate rainfall using this algorithm, followed by an analysis of the derived rainfall fields. Retrieval consists of applying the algorithm technique to the extraction of four years worth of achieved data from the Electrically Scanning Microwave Radiometer (ESMR) instrument flown aboard the NIMBUS 5 satellite. The Pacific Atoll Raingage Data Set is chosen as a ground truth measure to validate the ESMR-Derived rainfall data against, comparing slope, intercept and correlation between 5 deg x 5 deg area average. Despite limitations imposed by the comparison of point measurements to area-averaged rainfall, results show a 0.80 correlation. Monthly and quarterly climatological mean rainfall estimates are produced, with a consequent analysis of prominent signals, especially in the Intertropical Convergence Zone (ITCZ), South Pacific Convergence Zone (SPCZ) and the Indian monsoon. Latent heat flux is computed, using the ESMR-derived rainfall, and plotted to show qualitatively where seasonal latent thermodynamic energy sources and sinks exist in the atmosphere. A comparison of the summer and winter quarterly composites of the above products with previously compiled climatologies and Outgoing Longwave Radiation (OLR) showed only minor discrepancies in location and intensity, which are discussed in some detail.

  18. Global Climatology of Surface Precipitation: Role of TRMM and GPM

    NASA Astrophysics Data System (ADS)

    Adler, R. F.; Wang, J.; Gu, G.

    2011-12-01

    An accurate estimate of global and regional precipitation in terms of climatology, inter-annual variations and trends is critical to understand our planet's state in terms of water availability and the impact of climate change phenomena such as global warming. The Global Precipitation Climatology Project (GPCP) data set has been a highly used satellite and gauge merged product for studies in these areas. Data from the Tropical Rainfall Measuring Mission (TRMM), now spanning almost 14 years in length, is considered to be the most accurate satellite estimation of tropical precipitation, due to its passive microwave, radar and combined estimates of surface precipitation. The Global Precipitation Measurement (GPM) mission will follow in TRMM's footsteps, improving the quality of the precipitation estimations even more with improved instrumentation and expanding the latitude range to middle and high latitudes. The development of accurate climatologies and even monthly estimates from these missions will be valuable in themselves, but also presents an opportunity to incorporate their advanced information into merged, long-term observational data sets such as the GPCP analysis. An example of the use of TRMM (and eventually GPM) data in developing a new tropical climatology will be described as the TRMM Composite Climatology (TCC), based on a combination of thirteen years (1998-2010) of various precipitation products (Version 6) from TRMM. The TCC consists of a merger of three selected TRMM rainfall products over both land and ocean to give a "TRMM-best" climatological estimate. Inputs to the composite were selected based on knowledge of the performance of the retrievals, limitations of the algorithms, and the presence of artifacts. In addition to the mean precipitation estimates, the TCC includes the variation among the three estimates at each point to give an estimate of the error in the estimated mean value. Comparison of the TCC with validation data and with the GPCP

  19. Measured and parameterized energy fluxes estimated for Atlantic transects of RV Polarstern

    NASA Astrophysics Data System (ADS)

    Bumke, Karl; Macke, Andreas; Kalisch, John; Kleta, Henry

    2013-04-01

    parameterized sensible and latent heat fluxes shows that the data are suitable to validate satellite derived fluxes at the sea surface and re-analysis data. References Dupuis, H., P. K. Taylor, A. Weill, and K. Katsaros, 1997: Inertial dissipation method applied to derive turbulent fluxes over the ocean during the surface of the ocean. J. Geophys. Res., 102 (C9), 21 115-21 129. Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, J. B. Edson, 2003: Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Climate, 16, 571-591. Large, W.G., and S.G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dynamics 33, 341-364. Macke, A., Kalisch, J., Zoll, Y., and Bumke, K., 2010: Radiative effects of the cloudy atmosphere from ground and satellite based observations, EPJ Web of Conferences, 5 9, 83-94

  20. Estimations of ABL fluxes and other turbulence parameters from Doppler lidar data

    NASA Technical Reports Server (NTRS)

    Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn

    1989-01-01

    Techniques for extraction boundary layer parameters from measurements of a short-pulse CO2 Doppler lidar are described. The measurements are those collected during the First International Satellites Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). By continuously operating the lidar for about an hour, stable statistics of the radial velocities can be extracted. Assuming that the turbulence is horizontally homogeneous, the mean wind, its standard deviations, and the momentum fluxes were estimated. Spectral analysis of the radial velocities is also performed from which, by examining the amplitude of the power spectrum at the inertial range, the kinetic energy dissipation was deduced. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. Combining many measurements would normally reduce the error provided that, it is unbiased and uncorrelated. The nature of some of the algorithms however, is such that, biased and correlated errors may be generated even though the raw measurements are not. Data processing procedures were developed that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is shown to reduce the errors substantially. The principal features of the derived turbulence statistics for two case studied are presented.

  1. Observational and Dynamical Wave Climatologies. VOS vs Satellite Data

    NASA Astrophysics Data System (ADS)

    Grigorieva, Victoria; Badulin, Sergei; Chernyshova, Anna

    2013-04-01

    The understanding physics of wind-driven waves is crucially important for fundamental science and practical applications. This is why experimental efforts are targeted at both getting reliable information on sea state and elaborating effective tools of the sea wave forecasting. The global Visual Wave Observations and satellite data from the GLOBWAVE project of the European Space Agency are analyzed in the context of these two viewpoints. Within the first "observational" aspect we re-analyze conventional climatologies of all basic wave parameters for the last decades [5]. An alternative "dynamical" climatology is introduced as a tool of prediction of dynamical features of sea waves on global scales. The features of wave dynamics are studied in terms of one-parametric dependencies of wave heights on wave periods following the theoretical concept of self-similar wind-driven seas [3, 1, 4] and recently proposed approach to analysis of Voluntary Observing Ship (VOS) data [2]. Traditional "observational" climatologies based on VOS and satellite data collections demonstrate extremely consistent pictures for significant wave heights and dominant periods. On the other hand, collocated satellite and VOS data show significant differences in wave heights, wind speeds and, especially, in wave periods. Uncertainties of visual wave observations can explain these differences only partially. We see the key reason of this inconsistency in the methods of satellite data processing which are based on formal application of data interpolation methods rather than on up-to-date physics of wind-driven waves. The problem is considered within the alternative climatology approach where dynamical criteria of wave height-to-period linkage are used for retrieving wave periods and constructing physically consistent dynamical climatology. The key dynamical parameter - exponent R of one-parametric dependence Hs ~ TR shows dramatically less pronounced latitudinal dependence as compared to observed Hs

  2. On the suitability of regional climate models for reconstructing climatologies

    NASA Astrophysics Data System (ADS)

    Tapiador, Francisco J.; Angelis, Carlos F.; Viltard, Nicolas; Cuartero, Fernando; de Castro, Manuel

    2011-08-01

    This paper discusses the potential of Regional Climate Models (RCMs) as reanalysis tools by presenting a reconstruction of the European climate using several RCMs with diverse physical parameterizations. The use of RCMs is intended to increase the spatial resolution of the analysis provided by Global Models through dynamic downscaling. At the same time, the use of several models allows us to characterize the uncertainties, as these can be estimated from the spread of the ensemble. When the RCMs are nested in reanalyses instead of in a Global Model it is possible to create climatologies of unprecedented robustness for variables such as temperature, precipitation, wind speed, and humidity, among others. While these climatologies are subject to further improvement as methods and computing power evolve, they point the way forward to the development of atmospheric information products suitable for a variety of studies including education, agriculture, renewable energies and climate change research, biogeography, insurance, risk assessment, hydrology, and regional planning.

  3. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  4. The Global Precipitation Climatology Project (GPCP) combined precipitation dataset

    SciTech Connect

    Huffman, G.J.

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5{degrees} x 2.5{degrees} latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  5. A simulation of small to giant Antarctic iceberg evolution: Differential impact on climatology estimates

    NASA Astrophysics Data System (ADS)

    Rackow, Thomas; Wesche, Christine; Timmermann, Ralph; Hellmer, Hartmut H.; Juricke, Stephan; Jung, Thomas

    2017-04-01

    We present a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. The study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. We simulate drift and lateral melt using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. Climatology estimates of Antarctic iceberg melting based on simulations of small (≤2.2 km), "small-to-medium-sized" (≤10 km), and small-to-giant icebergs (including icebergs >10 km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.

  6. A simulation of small to giant Antarctic iceberg evolution: differential impact on climatology estimates

    NASA Astrophysics Data System (ADS)

    Rackow, Thomas; Wesche, Christine; Timmermann, Ralph; Hellmer, Hartmut H.; Juricke, Stephan; Jung, Thomas

    2017-04-01

    We present a simulation of Antarctic iceberg drift and melting that includes small (<2.2 km), medium-sized, and giant tabular icebergs with lengths of more than 10km. The model is initialized with a realistic size distribution obtained from satellite observations. Our study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. Taking iceberg modeling a step further, we simulate drift and melting using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's keel. The climatology estimates of Antarctic iceberg melting based on simulations of small, 'small-to-medium'-sized, and small-to-giant icebergs (including icebergs > 10km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.

  7. A Lagrangian Climatology of Tropical Moisture Exports to the Northern Hemispheric Extratropics

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter; Wernli, Heini

    2010-05-01

    Case studies have shown that heavy precipitation events and rapid cyclogenesis in the extratropics can be fueled by moist and warm tropical air masses. Often the tropical moisture export (TME) occurs through a longitudinally confined region in the subtropics. Here a comprehensive climatological analysis of TME is constructed on the basis of seven-day forward trajectories started daily from the tropical lower troposphere using 6-hourly ERA-40 data from the 23-year period 1979-2001. The objective TME identification procedure retains only those trajectories that reach a water vapor flux of at least 100 g kg-1 m s-1 somewhere north of 35°N. The results show four distinct activity maxima with different seasonal behavior: (I) The "pineapple express", which connects tropical moisture sources near Hawaii with precipitation near the North American west coast, has a marked activity maximum in boreal winter. (II) TME over the West Pacific is largest in summer, partly related to the East Asian monsoon and the Meiyu-Baiu front. This region alone is responsible for a large portion of TME across 35°N. (III) The narrow activity maximum over the Great Plains of North America is rooted over the Gulf of Mexico and the Caribbean Sea, and has a clear maximum in summer and spring. (IV) TME over the western North Atlantic shows the smallest annual cycle with a maximum in winter and autumn. The interannual variability of (I) and (IV) is significantly modulated by El Niño. Over the African-European-Asian region, high orographic barriers impede TME. A typical TME trajectory evolution is poleward and quasi-horizontal in the subtropics and then more eastward and upward in the southern midlatitudes, where TME contributes up to 60% to climatological precipitation. The TME dataset presented here can serve as a basis for future studies on extreme events.

  8. Assesment of CALIPSO's level 3 climatological product

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, Nikolaos; Mona, Lucia; Pappalardo, Gelsomina

    2015-04-01

    Since December 2011 has been released the latest CALIPSO Level 3 (CL3) monthly product and is subject to calibration/validation studies. EARLINET as the unique European lidar network on a continental scale is the key candidate for these kind of studies. CALIPSO Level 3 data were compared against EARLINET monthly averages obtained by profiles during satellite overpasses. Data from stations of Potenza, Naples, Granada, Évora and Leipzig equipped with advanced multi-wavelength Raman lidars were used for this study. EARLINET monthly profiles yielded higher extinction values comparing to CALIPSO ones. In order to mitigate uncertainties due to spatial and temporal differences, we reproduced the CL3 filtering rubric onto the CALIPSO Level 2 data. Only grid CALIPSO overflights during EARLINET correlative measurements were used. From these data, monthly averages on 2x5 grid are reconstructed. The CALIPSO monthly mean profiles following the new approach are called CALIPSOLevel 3*,CL3*. This offers the possibility to achieve direct comparable datasets, even if greatly reduces the number of satellite grid overflights. Moreover, the comparison of matched observations reduces uncertainties from spatial variability that affects the sampled volumes. The agreement typically improved, in particular above the areas directly affected by the anthropogenic activities within the planetary boundary layer. In contrast to CL3 product, CL3* data offers the possibility to assess also the CALIPSO performance in terms of the backscatter coefficient keeping the same quality assurance criteria applied to extinction coefficient. Lastly, the typing capabilities of CALIPSO were assessed outlining the importance of the correct aerosol type assessment to the CALIPSO aerosol properties retrieval. This work is the first in-depth assessment to evaluate the aerosol optical properties reported in the CL 3 data product. The outcome will assist the establishment of independently derived uncertainty

  9. Spatio-temporal modelling of lightning climatologies for complex terrain

    NASA Astrophysics Data System (ADS)

    Simon, Thorsten; Umlauf, Nikolaus; Zeileis, Achim; Mayr, Georg J.; Schulz, Wolfgang; Diendorfer, Gerhard

    2017-03-01

    This study develops methods for estimating lightning climatologies on the day-1 km-2 scale for regions with complex terrain and applies them to summertime observations (2010-2015) of the lightning location system ALDIS in the Austrian state of Carinthia in the Eastern Alps. Generalized additive models (GAMs) are used to model both the probability of occurrence and the intensity of lightning. Additive effects are set up for altitude, day of the year (season) and geographical location (longitude/latitude). The performance of the models is verified by 6-fold cross-validation. The altitude effect of the occurrence model suggests higher probabilities of lightning for locations on higher elevations. The seasonal effect peaks in mid-July. The spatial effect models several local features, but there is a pronounced minimum in the north-west and a clear maximum in the eastern part of Carinthia. The estimated effects of the intensity model reveal similar features, though they are not equal. The main difference is that the spatial effect varies more strongly than the analogous effect of the occurrence model. A major asset of the introduced method is that the resulting climatological information varies smoothly over space, time and altitude. Thus, the climatology is capable of serving as a useful tool in quantitative applications, i.e. risk assessment and weather prediction.

  10. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  11. Situational Lightning Climatologies for Central Florida: Phase IV

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-,20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  12. Mars Orbiter Camera climatology of textured dust storms

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Toigo, Anthony D.; Kulowski, Laura; Wang, Huiqun

    2015-09-01

    We report the climatology of "textured dust storms", those dust storms that have visible structure on their cloud tops that are indicative of active dust lifting, as observed in Mars Daily Global Maps produced from Mars Orbiter Camera wide-angle images. Textured dust storms predominantly occur in the equinox seasons while both solstice periods experience a planet-wide "pause" in textured dust storm activity. These pauses correspond to concurrent decreases in global atmospheric dust opacity. Textured dust storms most frequently occur in Acidalia Planitia, Chryse Planitia, Arcadia Planitia, and Hellas basin. To examine the nature of the link between textured dust storms and atmospheric dust opacity, we compare the textured dust storm climatology with a record of atmospheric dust opacity and find a peak global correlation coefficient of approximately 0.5 with a lag of 20-40° in solar longitude in the opacity compared to the solar climatology. This implies that textured dust storms observed at 1400 local time by MOC are responsible for a large fraction of atmospheric dust opacity and that other mechanisms (e.g., dust devil lifting or storm-scale lifting not observed in this study) may supply a comparable amount of dust.

  13. Hanford Site climatological data summary 1995 with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1996-05-01

    This document presents the climatological data measured at the US Department of Energy`s Hanford Site for calendar year 1995. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk (1994, 1995); however, Appendix B--Wind Climatology (1994) is excluded. 1995 was warmer than normal, averaging 54.7 F, 1.4 F above normal (53.3 F). For the 12-month period, 8 months were warmer than normal, and 4 were cooler than normal. 1995 was the wettest year on record. Precipitation totaled 12.31 in., 197% of normal (6.26 in.); snowfall totaled 7.7 in., compared to the normal of 13.8 in. The average wind speed during 1995 was 7.8 mph, 0.1 mph above normal (7.7 mph). The peak gust during the year was 61 mph from the south-southwest on December 12. There were 27 days with peak gusts {ge} 40 mph, compared to a yearly average of 26.

  14. Derivation of Surface Net Radiation at the Valencia Anchor Station from Top of the Atmosphere Gerb Fluxes by Means of Linear Models and Neural Networks

    NASA Astrophysics Data System (ADS)

    Geraldo Ferreira, A.; Lopez-Baeza, Ernesto; Velazquez Blazquez, Almudena; Soria-Olivas, Emilio; Serrano Lopez, Antonio J.; Gomez Chova, Juan

    2012-07-01

    In this work, Linear Models (LM) and Artificial Neural Networks (ANN) have been developed to estimate net radiation (RN) at the surface. The models have been developed and evaluated by using the synergy between Geostationary Earth Radiation Budget (GERB-1) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, both instruments onboard METEOSAT-9, and ``in situ'' measurements. The data used in this work, corresponding to August 2006 and June to August 2007, proceed from Top of the Atmosphere (TOA) broadband fluxes from GERB-1, every 15 min, and from net radiation at the surface measured, every 10 min, at the Valencia Anchor Station (VAS) area, having measured independently the shortwave and the longwave radiation components (downwelling and upwelling) for different land uses and land cover. The adjustment of both temporal resolutions for the satellite and in situ data was achieved by linear interpolation that showed less standard deviation than the cubic one. The LMs were developed and validated by using satellite TOA RN and ground station surface RN measurements, only considering cloudy free days selected from the ground data. The ANN model was developed both for cloudy and cloudy-free conditions using seven input variables selected for the training/validation sets, namely, hour, day, month, surface RN, solar zenith angle and TOA shortwave and longwave fluxes. Both, LMs and ANNs show remarkably good agreement when compared to surface RN measurements. Therefore, this methodology can be successfully applied to estimate RN at surface from GERB/SEVIRI data.

  15. Use of RegCM gridded dataset for thunderstorm favorable conditions analysis over Poland—climatological approach

    NASA Astrophysics Data System (ADS)

    Walawender, Ewelina; Kielar, Rafał; Ustrnul, Zbigniew

    2017-01-01

    The paper analyzes equivalent data for a low density meteorological station network (spatially discontinuous data) and poor temporal homogeneity of thunderstorm observational data. Due to that, a Regional Climate Model (RegCM) dataset was tested. The Most Unstable Convective Available Potential Energy index value (MUCAPE) above the 200 J kg-1 threshold was selected as a predictor describing favorable conditions for the occurrence of thunderstorms. The quality of the dataset was examined through a comparison between model results and soundings from several aerological stations in Central Europe. Good, statistically significant (0.05 significance level) results were obtained through correlation analysis; the value of Pearson's correlation coefficient was above 0.8 in every single case. Then, using methods associated with gridded climatology, data series for 44 weather stations were derived and an analysis of correlation between RegCM modeled data and in situ thunderstorm observations was conducted with coefficients in the range of 0.75-0.90. The possibility of employing the dataset in thunderstorm climatology analysis was checked via a few examples by mapping monthly, seasonal, and annual means. Moreover, long-term variability and trend analysis along with modeled MUCAPE data were tested. As a result, the RegCM modeled MUCAPE gridded dataset was proposed as an easily available, suitable, and valuable predictor for thunderstorm climatology analysis and mapping. Finally, some limitations are discussed and recommendations for further improvements are given.

  16. Uncertainty quantification for a climatology of the frequency and spatial distribution of North Atlantic tropical cyclone landfalls

    NASA Astrophysics Data System (ADS)

    Tolwinski-Ward, S. E.

    2015-03-01

    A spatially resolved climatology for the annual frequency of tropical cyclone (TC) landfalls along the Atlantic coast of North America is developed, and its uncertainty deriving from multiple sources is quantified. Historical landfall counts in piecewise-linear segments approximating the coastline are modeled using Poisson regression with spatial random effects. Predictors include index representations of the mean hurricane-season phases of the Southern Oscillation, the Atlantic Multidecadal Oscillation, and the North Atlantic Oscillation, with the effect of the latter also modeled spatially. This spatial generalized linear model for landfall frequency is used in conjunction with a data level accounting explicitly for the time-dependent uncertainty in the recorded landfall positions. The model performs skillfully in cross-validation exercises. The inferred effects of the climatic predictors are also consistent with current scientific understanding of the mechanisms through which related large-scale climatic variability affects the development and motion of Atlantic tropical cyclones. Sampling variability in the data over the short length of the observational record and observational error in the historical data are found to contribute substantially to the overall climatological uncertainty. The contribution from uncertainty in the underlying model parameters is negligible compared to these other sources. The model presented here could be used for applications in insurance and risk management, and adaptations could also be used to investigate changes in TC landfall climatology under an uncertain and changing climate.

  17. Situational Lightning Climatologies for Central Florida: Phase IV: Central Florida Flow Regime Based Climatologies of Lightning Probabilities

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2009-01-01

    The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.

  18. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Cho, Byung S.

    1992-01-01

    A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.

  19. The influence of grazing on surface climatological variables of tallgrass prairie

    NASA Technical Reports Server (NTRS)

    Seastedt, T. R.; Dyer, M. I.; Turner, Clarence L.

    1992-01-01

    Mass and energy exchange between most grassland canopies and the atmosphere are mediated by grazing activities. Ambient temperatures can be increased or decreased by grazers. Data have been assembled from simulated grazing experiments on Konza Prairie Research Natural Area and observations on adjacent pastures grazed by cattle show significant changes in primary production, nutrient content, and bidirectional reflectance characteristics as a function of grazing intensity. The purpose of this research was to provide algorithms that would allow incorporation of grazing effects into models of energy budgets using remote sensing procedures. The approach involved: (1) linking empirical measurements of plant biomass and grazing intensities to remotely sensed canopy reflectance, and (2) using a higher resolution, mechanistic grazing model to derive plant ecophysiological parameters that influence reflectance and other surface climatological variables.

  20. Mars Sample Return: The Next Step Required to Revolutionize Knowledge of Martian Geological and Climatological History

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.

    2012-01-01

    The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic

  1. Diffuse venting at the ASHES hydrothermal field: Heat flux and tidally modulated flow variability derived from in situ time-series measurements

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Fornari, Daniel J.; Crone, Timothy J.; Kinsey, James; Kelley, Deborah; Elend, Mitch

    2016-04-01

    Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ˜12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ˜6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m-2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.

  2. An improved near-surface velocity climatology for the global ocean from drifter observations

    NASA Astrophysics Data System (ADS)

    Laurindo, Lucas C.; Mariano, Arthur J.; Lumpkin, Rick

    2017-06-01

    This work updates the methods of Lumpkin and Johnson (2013) to obtain an improved near-surface velocity climatology for the global ocean using observations from undrogued and 15-m drogued Global Drifter Program (GDP) drifters. The proposed procedure includes the correction of the slip bias of undrogued drifters, thus recovering about half of the GDP dataset; and a new approach for decomposing Lagrangian data into mean, seasonal and eddy components, which reduces the smoothing of spatial gradients inherent in data binning methods. The sensitivity of the results to method parameters, the method performance relative to other techniques, and the associated estimation errors, are evaluated using statistics calculated for a test dataset consisting of altimeter-derived geostrophic velocities subsampled at the drifter locations, and for the full altimeter-derived geostrophic velocity fields. It is demonstrated that (1) the correction of drifter slip bias produces statistically similar mean velocities for both drogued and undrogued drifter datasets at most latitudes and reduces differences between their variance estimates, (2) the proposed decomposition method produces pseudo-Eulerian mean fields with magnitudes and horizontal scales closer to time-averaged Eulerian observations than other methods, and (3) standard errors calculated for pseudo-Eulerian quantities underestimate the real errors by a factor of almost two. The improved decomposition method and the inclusion of undrogued drifters in the analysis allows resolving details of the time-mean circulation not well defined in the previous version of the climatology, such as the cross-stream structure of western boundary currents, recirculation cells, and zonally-elongated mid-ocean striations.

  3. Climatological Processing of Radar Data for the TRMM Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Kulie, Mark; Marks, David; Robinson, Michael; Silberstein, David; Wolff, David; Ferrier, Brad; Amitai, Eyal; Fisher, Brad; Wang, Jian-Xin; Augustine, David; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November, 1997. The main purpose of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented. The primary goal of TRMM GV is to provide basic validation of satellite-derived precipitation measurements over monthly climatologies for the following primary sites: Melbourne, FL; Houston, TX; Darwin, Australia; and Kwajalein Atoll, RMI. As part of the TRMM GV effort, research analysts at NASA Goddard Space Flight Center (GSFC) generate standardized TRMM GV products using quality-controlled ground-based radar data from the four primary GV sites as input. This presentation will provide an overview of the TRMM GV climatological processing system. A description of the data flow between the primary GV sites, NASA GSFC, and the TRMM Science and Data Information System (TSDIS) will be presented. The radar quality control algorithm, which features eight adjustable height and reflectivity parameters, and its effect on monthly rainfall maps will be described. The methodology used to create monthly, gauge-adjusted rainfall products for each primary site will also be summarized. The standardized monthly rainfall products are developed in discrete, modular steps with distinct intermediate products. These developmental steps include: (